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Abstract 

 
Three technologies showed to improve productivity and sustainability of pond 

production: (1) C/N ratio control, (2) providing substrates for periphyton 

development, and (3) fish driven re-suspension. The novelty of this PhD research is to 

combine these technologies, with the goal to raise pond productivity above levels 

obtained with each one of these technologies separately, and to increase the nutrient 

use efficiency in ponds above levels presently achieved, further enhancing 

sustainability. This combined technology is further referred to as C/N controlled 

periphyton (C/N-CP) technology. A series of experiments (Chapter 2-6) were 

conducted to develop such technology. The first step (Chapter 2) evaluated if 

increasing C/N ratio (from 10 to 20) in combination with providing vertical substrates 

for periphyton development in freshwater prawn monoculture ponds can enhance 

overall pond productivity. The results were encouraging due to the 75% increase of 

production; in addition it seemed that natural foods were underutilized by freshwater 

prawn. Therefore, the next step (Chapter 3) was further analysis of the above 

mentioned experiment investigating how C/N ratio control and addition of substrates 

influenced the natural food communities in freshwater monoculture ponds. This study 

suggested further investigation on the possibility of increasing stocking density of 

freshwater prawn and inclusion of tilapia due to its both sediment re-suspension and 

periphyton grazing activity. Therefore, in the third step (Chapter 4) increasing 

stocking densities of prawn (from 2 to 3 m
−2

) and addition of different levels of tilapia 

(0, 0.5 and 1 individual m
−2

) were tested. This study concludes that both stocking 

densities (2 and 3 juveniles m
−2

) of prawn with the addition of 0.5 tilapia m
−2

 resulted 

in higher fish production, good environmental condition and economic return. In the 

fourth step (Chapter 5), the effects of addition of periphyton substrates and tilapia 

driven bioturbation were tested in C/N controlled (C:N=20) system. This study 

showed that addition of tilapia (0.5 individual m
−2

) and periphyton substrates in C/N 

controlled ponds benefited freshwater prawn production and recommended that 

economic sustainability could still be further enhanced by identifying cheaper on-farm 

carbohydrate sources. Therefore, in the last step (Chapter 6) maize flour (Zea mays) is 

considered as a cheaper on-farm carbohydrate source and compared with tapioca 

starch. In addition, in this study considering the importance of rohu (Labeo rohita) as 

an indispensable species in south Asian aquaculture, both tilapia and rohu are 

considered to determine the suitability of either species in C/N-CP ponds. In added 

finfish (0.5 individual m
−2

), 100% tilapia were found to be beneficial in C/N-

controlled (C:N=20:1) prawn farming system compared to 50% tilapia+50% rohu or 

100% rohu.  In conclusion, a significant improvement of system environment, 

productivity and economic benefits was observed due to synergism among C:N ratio 

control, addition of periphyton substrates and tilapia driven bioturbation.  Therefore, 

C/N-CP technology is a promising technology, improving the sustainability and 

productivity of present prawn farming by simple and affordable means.  
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Globally, production from capture fisheries has leveled off and most of the main 

fishing areas are fully or over-exploited. Capture fisheries will, therefore, not be able 

to meet the growing global demand for aquatic food. About 30% of the global capture 

fisheries production is not used as human food, but to produce fishmeal and fish oil 

used in animal feeds. Concurrently, the demand for aquatic food grows due to 

population growth coupled with an increase in the per capita fish consumption. The 

present world population is 6.6 billion people (FAO, 2008) and expected to grow to 9 

billion by 2050 (UN, 2000). Given the projected population growth over the next two 

decades, it is estimated that at least an additional 40 million tonnes of aquatic food 

will be required by 2030 to maintain the current per capita consumption (FAO, 2002). 

Therefore, due to the stagnating capture fisheries production, aquaculture is expected 

to play a major role in filling up the growing gap between global fish demand and 

supply. Today, aquaculture already accounts for 46.7 percent of the world‘s food fish 

supply (FAO, 2010). World aquaculture has grown tremendously during the last fifty 

years from a production of less than a million tonnes in the early 1950s to 52.5 

million tonnes (excluding aquatic plants) in 2008, with a value of US$ 98.4 billion 

(FAO, 2010). Therefore, aquaculture has the potential to make a significant 

contribution to this increasing demand for aquatic food in most regions of the world; 

in order to achieve this; however, the sector (and aqua-farmers) faces significant 

challenges. 

  

Potentials and role of aquaculture in Bangladesh 

 

Being a country of rivers and floodplains, fish plays a very important role in the daily 

life of many people in Bangladesh. The Bengali expression ―Mache Bhate Bengali‖, 

or ―Fish and Rice make a Bengali,‖ illustrates this importance. Historically people 

depended mainly on natural waters for supplies of fish; but as a result of declining 

catches of wild fish due to an increased fishing pressure by the growing population as 

well as environmental degradation, people began to culture fish in enclosed waters. At 

present, aquaculture has been expanding both vertically and horizontally as pond fish 

culture and crustacean (shrimp and freshwater prawn) farming offer tremendous 

potential. A broader selection of species is now cultured including high value 

crustacean species such as Penaeus monodon and Macrobrachium rosenbergii. In 

Bangladesh, during the last ten years the annual growth rate in total production was 
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around 5% whereas, the average annual growth in aquatic production through 

aquaculture was close to 10% (Figure 1).  

 

Bangladesh is blessed with vast inland water bodies and has emerged as one of the 

leading nations in freshwater aquaculture production during recent years. In 2008, it 

was the sixth largest aquaculture producing country in the world, supplying 8.8% of 

global aquaculture production, excluding China (FAO, 2010). The country is situated 

on the deltaic plains with a large proportion of its area comprising the floodplain of 

three converging rivers, the Ganges, the Brahmaputra-Jamuna and the Meghna (GBM 

river system). Inland water resources comprise 305,025 ha of ponds and ditches, 

5,488 ha of oxbow lakes, 217,877 ha of shrimp farms, 853,863 ha of rivers and 

estuaries, 114,161 ha of beels (shallow natural depression), 68,800 ha of man-made 

reservoirs (Kaptai lake) and 2,832,792 ha of floodplains (DOF, 2009). The total fish 

production in 2007-08 was 2.56 million metric tones of which 39.23% came from 

aquaculture; pond aquaculture contributed more than 90% to the total aquaculture 

production (DOF, 2009). 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Trends of total production and aquaculture production over the last ten 

years in Bangladesh (Source: graph is prepared by using the data from DOF, 2009). 

 

In Bangladesh, fisheries and aquaculture play a major role in nutrition, employment 

and foreign exchange earnings. About 12 million people are associated with the 

fisheries sector, of which 1.4 million people rely exclusively on fisheries related 

activities (DOF, 2005). Fish and fisheries products are contributing about 4.04% of 

annual export earning (DOF, 2009). Fish provides 58% of the animal protein intake in 
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Bangladesh and about 3.74% of national GDP, or 20.87% of the agriculture GDP 

(DOF, 2009). 
 

In Bangladesh, aquaculture production systems are mainly extensive and extended 

extensive, with some semi-intensive and a few intensive systems. The average annual 

production is still very low compared to many fish producing countries. This is 

mainly because of the operation of intensive aquaculture which demands high 

investment and technical expertise are not affordable by resource-poor farmers. There 

is considerable potential for improvement of culture systems to intensify productivity. 

Therefore, novel, simple and affordable technologies are needed to improve 

livelihoods, including nutrition, food security and income in the aquaculture sector. 

 

Status of freshwater prawn farming in Bangladesh 
 

Freshwater prawn (Macrobrachium rosenbergii) is indigenous to South and South-

East Asia, together with northern Australia and the western Pacific islands (New, 

1988). It is an important aquaculture industry in many Asian countries, which together 

contributes over 98% of the global freshwater prawn production. The global farmed 

production of freshwater prawn (Macrobrachium rosenbergii) in 2007 was over 

221,000 tones (FAO, 2009). Considering the giant freshwater prawn (M. rosenbergii) 

alone, the major producers in 2007 were China (56.3%), Thailand (12.3%), India 

(12.3%), Bangladesh (9.4%) and Taiwan (4.5%). The farmed production of M. 

rosenbergii increased 2.7 times globally and 4.0 times in Bangladesh during the last 

decade (Figure 2).  

 

In Bangladesh, freshwater prawn farming is currently one of the most important 

sectors of the national economy and during the last two decades, its development has 

attracted considerable attention because of its export potential. This species is now 

considering as an emerging crustacean aquaculture species, receiving considerable 

attention in Bangladesh recently, and fetching attractive prices in both domestic and 

international markets. The contribution of freshwater prawn to Bangladesh shrimp
1
 

production increased from 10.6% in 1998 to 25.7% in 2008 (Figure 3). The shrimp 

sector in Bangladesh generated US $418 million in 2007, representing 3.4% of the 

total export value, with freshwater prawn contributing 20-25% (DOF, 2009). In 

Bangladesh, freshwater prawn farming areas increased from just 2200 ha in 1991 to 

                                                
1
 Bangladesh shrimp production includes both freshwater prawns and marine or brackish water shrimps. 
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50,000 ha today, expanding on average 10-20% per annum (Khondaker, 2007).This 

figure is expected to rise with the expansion of prawn cultivation into new areas.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Production of farmed freshwater prawn (Macrobrachium rosenbergii) in 

the world and Bangladesh (Source: graph is prepared by using the data from FAO, 

2009). 

 

  

 

 

 

 

 

 

 

 

Figure 3. Contribution of freshwater prawn in total shrimp and prawn production 

over the last ten years in Bangladesh (Source: graph is prepared by using data from 

DOF, 2009; FAO, 2009) 

 

There are two prawn farming systems in Bangladesh: pond and gher. In southwest 

Bangladesh, the cultivation of prawn in modified rice field is locally referred to as 

‗gher‘ (Rutherford, 1994). Although prawn farming practice is still traditional and 
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extensive in nature, now many farmers are practicing improved methods where 

prawns are cultivated semi-intensively. Extensive production typically use slightly 

modified versions of traditional methods with low-density (10000-18000 postlarvae 

ha
–1

) and relies mainly on natural productivity (e.g., phytoplankton, zooplankton and 

benthos) of the ponds and occasionally with supplementary diets consisting of a 

mixture of locally available feed ingredients, such as rice bran, wheat bran, oil cake 

and fish meal (Ahmed et al., 2008). Semi-intensive operations practice intermediate 

levels of stocking (18000-30000 post larvae ha
–1

), applying manufactured pelleted 

feeds (Ahmed et al., 2008). Most of the farmers practice polyculture of freshwater 

prawn with various carp species  having complementary feeding habits to make better 

use of the natural food available (Asaduzzaman et al., 2006a). Resource-poor farmers 

prefer semi-intensive polyculture because the capital needed to buy expensive 

artificial feeds is minimized, while the exploitation of natural foods in ponds is 

optimized. Nevertheless, there is a tendency by richer farmers to further increase 

production through the application of higher amounts of artificial feeds. However, on 

average yields from the extensive ponds in Bangladesh are in the range of 390 to 412 

kg ha
–1

 year
–1

 and productivity is low compared with other countries (Table 1). 

Countries with a larger export market than Bangladesh use more intensive techniques 

and have significantly higher yields. So, Bangladesh urgently needs to increase 

freshwater prawn productivity to satisfy the future demand of aquatic products and to 

retain and expand the present export markets. 

 

Table 1.  

Comparison of prawn yields in Bangladesh and other producing countries (Source: 

modified from Ahmed et al., 2008). 

 

Country Prawn production 

(kg ha
–1

 year
–1

) 

Reference 

Bangladesh 390-412 Asaduzzaman et al. (2006a) 

China 1,500 Weimin and Xianping (2002) 

India 600-1,000 Raizada et al. (2005) 

Taiwan 1,500 New (2005) 

Thailand 2,338 Vicki (2007) 

Vietnam 1,000-1,500 Ridmontri (2002) 
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Intensifying freshwater prawn production: needs and challenges 
 

Until today, freshwater prawn production in Bangladesh increased primarily by 

expanding the culture area. This demand large additonal quantity of water and land 

area, both being scarce resources. Therefore, a more practical and sustainable way to 

raise prawn production is by increasing pond productivity per unit land area and 

water. Mostly, aquaculture intensification comes with higher stocking densities and 

greater use of water, feeds and fertilizers, leading to increased waste production 

(Beveridge et al., 1997). In addition, in many countries the increase in production, 

particularly in shrimp aquaculture, has recently seen the negative impacts of 

unsustainable production method with regard to environment and consumer safety. 

Therefore, raising pond productivity in an ecological, social and economic sustainable 

way is essential to feed future generations. 

 

Higher yields can be obtained by applying more energy, capital and technology. 

Unfortunately, these resources require capital, which is out of reach to the majortity of 

the resource poor farmers in Bangladesh. Farmers need new pond production 

concepts, relying on locally available resources and requiring little investment, that 

are sustainable (see review of Azim and Little, 2006). To this end, several recent 

studies in many countries, demonstrated various low-cost technologies that can 

significantly raise pond productivity, but that were so far never tested in combination. 

 

Major issues in optimizing productivity and sustainability in stagnant ponds 

 

Stagnant ponds have mostly no inlet and drainage system. Such ponds provide the 

majority of crustacean and finfish production in Bangladesh. With no water exchange, 

the farmer relies on the intrinsic self-purification capacity of the pond. The major 

problem associated with aquaculture in stagnant ponds is rapid eutrophication, 

resulting from increasing concentrations of nutrients and organic matters during 

culture. In these stagnant ponds, formulated feeds are the principal nutrient input. To 

produce 1 kg live weight fish one needs 1-3 kg of dry weight feed (assuming a food 

conversion ratio about 1-3), depending on the culture species and the quality of the 

feed (Naylor et al., 2000). About 36% of the feed is not consumed and accumulates at 

the pond bottom in the form of organic waste (Brune et al., 2003). The microbial 

decomposition of organic matter in the system leads to an increased levels of TAN 

and nitrite, both harmful to fish even at low concentration (Meade, 1985; Jimenez-
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Montealegre et al., 2002; Torres-Beristain et al., 2006). Bacteria present in water and 

sediment transform TAN into nitrite and nitrate by nitrification. However, in stagnant 

water ponds TAN tends to accumulate within the system due to insufficient 

nitrification activity (Grommen et al., 2002). Deteriorated water quality has resulted 

in disease outbreaks and heavy financial losses and in criticism from various 

environmental organizations as being environmentally irresponsible. In addition, 

organic residues create sites with a high biological oxygen demand in stagnant ponds. 

The oxygen supply to the pond bottom is limited, even in the periods of natural 

mixing and surface re-aeration due to strong winds. Low oxygen availability affects 

the benthic community‘s diversity and structure, and reduced sediments are avoided 

by shrimps and prawns (Gray et al., 2002; Buzzelli et al., 2002). Therefore, the 

production potential of aquaculture in stagnant ponds is limited and often associated 

with poor water quality, disease outbreak, high production cost and low economic 

benefit (Figure 4).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4. Sustainability issues of freshwater prawn farming in stagnant ponds 

 

The dependency on the use of fishmeal and fish oil as prime feed ingredients in 

shrimp farming is also not sustainable (Naylor et al. 2000). Manufactured feeds for 

fish culture represent 50% or more in the production cost, primarily due to the cost of 
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the protein component (Bender et al., 2004). Only 20% to 30% of the feed is retained 

in fish biomass, the rest potentially polluting the culture environment (Briggs and 

Funge-Smith, 1994; Jackson et al., 2003; Thakur and Lin, 2003). Therefore, to make 

fish farming more sustainable in stagnant ponds, pond management should be geared 

towards improving nutrient retention. 

 

Means for Intensifying productivity in stagnant ponds 

 

Recently, several studies in many countries demonstrated various low-cost 

technologies that can significantly raise pond productivity. Among these low-cost 

technologies, C/N ratio control through carbohydrate addition (Avnimelech, 1999; 

Hari et al., 2004; Avnimelech, 2007), providing substrates for periphyton 

development (van Dam et al., 2002; Tidwell et al., 2000, 2002, 2005; Azim et al., 

2003a, 2003b; Keshavanath et al., 2001;  Milstein et al., 2009) and fish driven re-

suspension (Riise and Roos, 1996; Jimenez-Montealegre et al., 2002; Ritvo et al., 

2004; Milstein et al., 2002) seems to be promising options for resource poor farmers.  

A brief overview of these technologies and their role in productivity are discussed 

below. 

 

(1) C/N ratio control 

 

C/N ratio control through carbohydrate addition seems to be relatively cheap and 

simple way to intensify aquaculture. Microbial control of water quality and 

heterotrophic production of single cell protein (biofloc) by manipulating C:N ratio in 

both biofloc technology (BFT) ponds and extensive ponds are rapidly expanding 

(McIntosh, 2000; Hari et al., 2004; Hargreaves, 2006; Crab et al., 2007; Avnimelech, 

2007). Fish and shrimp, in general, utilize just 20-25% of feed proteins. This implies 

that one has to supply with the feed, 4 times the amount of protein as harvested with 

the fish. The non-utilized protein is excreted as ammonium that often limits fish 

growth and even leads to mortality. This problem can be overcome in heterotorphic 

systems by the addition of carbonaceous substrates. At high carbon to nitrogen ratios 

(C:N) heterotrophic microorganisms would dominate over autotrophic 

microorganisms and would assimilate total ammonia nitrogen, nitrite and nitrate, to 

produce cellular proteins that can serve as supplemental feed source for the culture 

fish and shrimps (Avnimelech, 1999; Moss et al., 1999; Browdy et al., 2001; Burford 
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and Lorenzen, 2004). This promoted nitrogen uptake by bacterial growth decreases 

the ammonium concentration more rapidly than nitrification (Hargreaves, 2006). 

Again, the conversion of ammonium to microbial protein needs less dissolved oxygen 

compared to oxygen requirement for nitrification (Avnimelech, 2006; Ebeling et al., 

2006) suggesting the preference of heterotrophic community rather than nitrifying 

bacteria in C/N controlled system. In a heterotrophic microbial based production 

system, bacterial flocs provide more stable water quality than does a phytoplankton-

based production system (Boyd and Clay, 2002). C/N ratio control can increase 

nitrogen retention from the added feed by 7% (Schneider et al., 2005) to 13% (Hari et 

al., 2004). Therefore, nitrogen retention from the added feed can be increased 

approximately from 25% to the 32-38%. In summary, C/N ratio control benefits 

aquaculture by improving water quality through reducing toxic inorganic nitrogen 

content such as ammonia and nitrite, improving nutrient utilization efficiency, 

reducing nutrient discharge and finally improving overall sustainability of 

aquaculture. 

 

(2) Providing vertical substrates for periphyton development 

 

Another means to intensify production in aquaculture ponds is through stimulating 

periphyton development. Extensive work was conducted and published during the last 

decade on periphyton‘s role and ecology in aquaculture ponds (Azim et al., 2005a). 

Vertical surfaces (bamboo poles, plastic stripes etc.) placed in ponds are colonized 

with microbial communities, including bacteria, algae, protozoa and fungi embedded 

in an extra-cellular polysaccharide matrix. The assemblage of attached organisms on 

submerged surfaces, including associated non-attached fauna are referred to as 

periphyton (van Dam et al., 2002). This community is actively metabolizing organic 

residues and significantly enlarges the pond‘s food base. In fed ponds, roughly 3 

times the amount of organic matter that was retained in fish production settles to the 

pond bottom, creating an anoxic zone characterized by inefficient recycling of organic 

wastes. An important benefit of periphyton communities is their ability to absorb 

dissolved and suspended matter, inclusive organic matter from the water column, 

reducing bottom accumulation while maximizing the percentage of organic matter 

remaining exposed to aerated conditions in the water column. Besides entrapping 

organic detritus, periphyton removes nutrients from the water column and helps to 
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control the dissolved oxygen concentration and the pH of the surrounding water 

(Azim et al., 2002; Dodds, 2003; Bender et al., 2004). Supplying substrates improves 

the nitrogen-related processes (nitrification), thus keeping ammonia level low (Langis 

et al., 1988). In a traditional fish pond, phytoplankton is the most important 

component for energy fixation and fuelling the food web. When substrates are 

installed in the pond, inorganic nutrients can also follow the extra periphyton loop 

(Azim, 2001). This adds a third natural food source existing of periphytic 

microorganisms that can be consumed by the fish and also dead periphyton 

contributes to the detrital mass in the ponds (van Dam and Verdegem, 2005). 

However, unlike dead phytoplankton, dead periphyton remains attached to substrates, 

providing a rich source of organic nutrients for heterotrophic microorganisms. 

Processing of this organic matter yields inorganic nutrients that can be utilized by 

living algae again (Wetzel, 1983). For freshwater finfish, the reported increase in 

production associated with substrates ranged from 30-115% in carp monoculture and 

30-210% in carp polyculture, depending on amount and types of substrate used, 

cultured species, nature of ponds (on-station or on-farm), and other management 

aspects such as feeding and/or fertilization (see review of Azim and Little, 2006). It 

has been reported that both survival and growth of shrimps and freshwater prawn 

were significantly higher due to provision of substrates as compared to traditional 

production system without substrates (Cohen et al., 1983; Tidwell and Bratvold, 2005; 

Uddin et al., 2006). In summary, the benefits exerted from periphyton-based ponds 

are periphyton as additional natural food, substrates as shelter to minimize territorial 

effects and improved water quality through trapping suspended solids, organic matter 

breakdown and enhanced nitrification. 

 

(3) Fish driven re-suspension 
 

Still another means to raise aerobic microbial breakdown of organic matter in the 

ponds is through re-suspension. This can be done mechanically, but also very 

effectively through the action of fish, especially sediment browsing species like 

tilapia. Most of these fish species are specialized to feed on benthic organisms and in 

doing so affect water transparency, nutrient cycling, and phytoplankton, zooplankton, 

and benthic macroinvertebrate abundances (Northcote, 1988). Even a relatively short 

perturbation of bottom sediments can lead to significant changes of organic matter 

transformations and may even oxidize pond bottoms. By digging and sieving of 
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sediments, benthivorous fishes increase oxygen availability in the sediment and cause 

re-suspension of bottom particles, which in turn has a large impact on the abiotic and 

biotic properties of the overlying water column (Phan-Van et al., 2008; Jiménez-

Montealegre et al., 2002). In fed ponds, organic matter in the form of uneaten feed, 

feces, dead plankton settles to pond bottom, creating an anoxic zone where nutrients 

remain trapped (Avnimelech and Zohar, 1986). By fish driven re-suspension, the 

bottom nutrients are exposed to aerobic conditions in the water column and better 

mineralized, stimulating the natural food web (Jiménez-Montealegre et al., 2002). 

Rivto et al. (2004) demonstrated that fish driven re-suspension leads to an appreciable 

mixing and oxidation of sediments. The digging and sieving of sediments by 

benthivorous fish also increased diffusion rates across the sediment-water interface 

(Hohener and Gachter, 1994), which in turn increases nutrient availability in the 

overlying water. Stocking bottom browsing species in polyculture ponds is a 

traditional world-wide applied methodology to enhance pond productivity. In most 

cases fish driven re-suspension significantly improved production. In polyculture 

ponds, total production increased almost twice in the presence of 0.5 benthivorous 

fish (common carp) m
–2

 (Rahman, 2006). In summary, fish driven re-suspension leads 

to better nutrients retention in combination with increased production, thereby 

improve farm productivity and sustainability. 

 

C/N-controlled periphyton-based  system    

 

The proposed C/N-controlled periphyton-based system (C/N-CP) combines and 

upgrades the previously described three approaches. The first is microbial control of 

water quality and recycling of protein through the adjustment of C/N ratio in the 

pond. The second is based upon the application of vertical substrates and development 

of periphyton, improving water quality and providing shelter and additional food for 

the cultured species and thereby improving productivity. The third one is fish driven 

re-suspension, improving nutrients retention and farm productivity. Although the 

effects of C/N control, substrate addition, and fish driven re-suspension on pond 

ecology and production are well documented, their combined effects on productivity 

have never been investigated in stagnant ponds.  Previous studies showed that each of 

these techniques enhanced production in stagnant ponds, and further enhanced 

production might be obtained through synergism between the various techniques.  
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The above technology requires installation of hard substrates and application of cheap 

carbohydrates, resources which can be produced within the farmers‘ traditional 

agricultural systems. The combination of fish drive re-suspension with vertical 

substrates in C/N ratio control ponds may be even more efficient, due to the 

possibility that the re-suspended organic particles will be trapped by the periphyton 

communities. With this technology, the utilization of the aquatic food web is 

optimized by encouraging bacteria and epiphytic production, hence recycling 

nutrients and enlarging the microbial based food web. The proposed C/N-CP system 

carries a number of environmental advantages as well. The system is based upon the 

induction of an efficient food web that utilizes natural food sources and recycle waste 

components. In addition, less wastes accumulate in the pond. An important 

environmental advantage is the ability to recycle nitrogen and raise protein utilization.  

 

Addition of tilapia and/or rohu in C/N-CP freshwater prawn farming system 

 

In order to fulfill our research objective, we should have to choose an additional 

species which has re-suspension activity and can effectively graze on periphyton and 

plankton. Avnimelech et al. (1999) reported that tilapias effectively re-suspend 

sediment, and such activity is more pronounced in large fish. In addition of re-

suspension activity, tilapia can effectively graze on the periphyton (Uddin, 2007; 

Azim et al., 2003a; Dempster et al., 1993; Milstein et al., 2009) and phytoplankton 

(Perschbacher and Lorio, 1993). Again, Uddin (2007) showed that in mixed culture 

the feeding niches of tilapia and prawn only partially overlap, and recommended this 

duo-culture as an alternative to polyculture of Chinese and Indian carps. Moreover, it 

is found in almost all the countries of the world, and farmers prefer tilapia as culture 

species due to its adaptation to a wide range of environments, good taste, fast growth, 

easy reproduction and versatile feeding behavior.  

 

Of all species stocked in polyculture, fish farmers in south Asia like to stock a native 

major carp, commonly known as rohu, because it fetches the highest market price and 

has the highest consumer preference (Dey et al., 2005). This species is a column 

feeder mainly living on plankton (Jhingran and Pullin, 1985) and periphyton (Azim et 

al., 2003c) but sediment re-suspension with rohu has not been reported as for tilapia 

(Costa-Pierce and Pullin, 1989; Riise and Roos, 1996; Avnimelech et al., 1999; 

Jimenez-Montealegre et al., 2002).  Therefore, in this study rohu is used to determine 
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the suitability of either species with freshwater prawn in C/N-controlled periphyton-

based system. 

 

Objectives, hypothesis and outline of the thesis 

 

The present research aims to develop a sustainable methodology for stagnant ponds 

without a massive investment common to many intensive system. The overall 

objective is to combine heterotrophic pond management, periphyton technology and 

fish driven re-suspension into a low cost technology, further referred to as C/N-

controlled periphyton-based (C/N-CP) technology, applicable by small scale 

farmers. To reach this goal special attention was given to 1) enhancing heterotrophic 

bacteria activity, improving feed utilization efficiencies and raising crop yields; 2) 

optimizing periphyton development and quality through C:N ratio control; 3) 

minimizing the development of anoxic bottom conditions through proper pond 

preparation and fish bioturbation. The development of such a methodology is of high 

priority to satisfy future demands for aquatic products, while providing the 

opportunity to resource poor farmers to participate and benefit significantly from the 

growth of aquaculture production. The present research explores the hypothesis that 

combination of C/N ratio control, providing substrates for periphyton development 

and fish driven re-suspension, will leads to a substantial increase of average farm 

productivity and sustainability in stagnant ponds.  

 

This PhD thesis starts with a general introduction (this Chapter) and concludes with a 

general discussion (Chapter 7). The research (Chapter 2-6) followed a step-wise 

approach. The first step (Chapter 2) evaluated if increasing C/N ratio (from 10 to 20) 

in combination with providing vertical substrates for periphyton development in 

freshwater prawn monoculture ponds can enhance overall pond productivity. The 

results were encouraging due to the 75% increase of production; in addition it seemed 

that natural foods were underutilized by freshwater prawn. Therefore, the next step 

(Chapter 3) was further analysis of the above mentioned experiment investigating 

how C/N ratio control and addition of substrates influenced the natural food 

communities in freshwater monoculture ponds. This study suggested further 

investigation on the possibility of increasing stocking density of freshwater prawn and 

inclusion of tilapia due to its both sediment re-suspension and periphyton grazing 
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activity. Therefore, in the third step (Chapter 4) increasing stocking densities of prawn 

(from 2 to 3 m
−2

) and addition of different levels of tilapia (0, 0.5 and 1individual 

m
−2

) were tested. This study concludes that both stocking densities (2 and 3 juveniles 

m
−2

) of prawn with the addition of 0.5 tilapia m
−2

 resulted in higher fish production, 

good environmental condition and economic return. In the fourth step (Chapter 5), the 

effects of addition of periphyton substrates and tilapia driven bioturbation were tested 

in C/N controlled (C:N=20) system. This study showed that addition of tilapia (0.5 

individual m
−2

) and periphyton substrates in C/N controlled ponds benefited 

freshwater prawn production and recommended that economic sustainability could 

still be further enhanced by identifying cheaper on-farm carbohydrate sources. 

Therefore, in the last step (Chapter 6) maize flour (Zea mays) is considered as a 

cheaper on-farm carbohydrate source and compared with tapioca starch. In addition, 

in this study considering the importance of rohu as an indispensable species in south 

Asian aquaculture, both tilapia and rohu are considered to determine the suitability of 

either species in C/N-CP ponds.  In the general discussion (Chapter 7), major 

conclusions of the previous chapters were integrated and interpreted, strengths and 

weaknesses of the followed approaches were outlined and suggestions for further 

studies were given. 
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Abstract 

 

The present research investigated the effect of carbon/nitrogen ratio (C/N ratio) 

control in ponds with or without substrate addition for periphyton development on 

production of giant freshwater prawn. C/N ratios of 10, 15 and 20 were investigated in 

40 m
2
 ponds stocked with 2 prawn juveniles (5.023±0.02 g) m

–2
 with or without 

added substrates for periphyton development. The various treatment combinations of 

C/N ratio and periphyton substrate addition are abbreviated as ‗CN10‘, ‗CN15‘, 

‗CN20‘, ‗CN10+P‘, ‗CN15+P‘ and ‗CN20+P‘, P representing periphyton substrate. A 

locally formulated and prepared feed containing 30% crude protein with C/N ratio 10 

was applied. Tapioca starch was used as carbohydrate source for manipulating C/N 

ratio and applied to the water column separately from the feed. Increasing the C/N 

ratio from 10 to 20 reduced (P<0.001) the total ammonia-nitrogen (TAN), nitrite–

nitrogen (NO2–N) and nitrate–nitrogen (NO3–N) in water column and total Kjeldahl 

nitrogen (TKN) in sediment. The addition of substrates only influenced the NO2–N 

concentration in the water column (P<0.001). Increasing the C/N ratio raised the total 

heterotrophic bacterial (THB) population in the water column, sediment and 

periphyton (P<0.001). It also increased the dry matter (DM), ash free dry matter 

(AFDM), and chlorophyll a content of periphyton (P<0.001). The lowest specific 

growth rate (SGR), the highest food conversion ratio (FCR), and the lowest protein 

efficiency ratio (PER) were recorded in treatment CN10 (P<0.05). The addition of 

substrates did not influence size at harvest (P>0.05) but improved the survival from 

62.8 to 72% (P<0.001). Increasing the C/N ratio from 10 to 20 increased the net yield 

by 40% and addition of substrate increased the net yield by 23%. The combination of 

C/N ratio control and substrate addition increased the net yield by 75% from 309 

(CN10) to 540 (CN20+P) kg ha
–1

 (120 days)
−1

. This 75% higher production concurred 

with (1) a lower inorganic nitrogen content in the water column, (2) a higher THB 

abundance supplying additional single cell protein to augment the prawn production, 

and (3) an improved periphyton productivity and quality. 

 

 

 

Keywords: C/N ratio, Substrate addition, Periphyton, Freshwater prawn, 

Heterotrophic bacteria 
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1 Introduction 
 

Freshwater prawn (Macrobrachium rosenbergii) is indigenous to South and South-

East Asia, together with northern Australia and the western Pacific islands (New, 

1988). It is an important aquaculture industry in many Asian countries, which together 

contributes over 98% of the global freshwater prawn production. In Bangladesh, 

freshwater prawn farming areas increased from just 2200 ha in 1991 to 35,000–40,000 

ha today (DOF, 2006). There is a great potential for further development of 

freshwater prawn farming in ponds and extensive low lying agricultural lands 

throughout the country. On average, yields from extensive ponds are in the range of 

300–600 kg ha
−1 

year
−1

 (Asaduzzaman et al., 2006). Raising of freshwater prawn 

production through expansion of pond area would demand large additional quantities 

of water and land area, both are very scarce resources. In consequences, the most 

practical way to raise freshwater prawn production is by increasing pond productivity 

per unit land area and water. The challenge is to do this sustainably. Aquaculture 

intensification, however, comes with higher stocking densities and greater use of 

water, feeds and fertilizers, leading to increased waste production (Beveridge et al., 

1997). Operation of intensive aquaculture also demands high investment and technical 

expertise, which are not affordable by resource-poor farmers of Bangladesh. Efforts 

are needed to intensify aquaculture by using the resources derived from other 

agricultural systems and manipulating natural food thereby maximizing overall 

nutrient retention (Azim and Little, 2006). 

 

To this end, the use of periphyton substrates and manipulation of C:N ratio in 

freshwater finfish and prawn production in extensive ponds have been found 

promising (see reviews of van Dam et al., 2002; Hargreaves, 2006; Azim and Little, 

2006). These techniques require installation of hard substrates or application of cheap 

carbohydrates, resources which could potentially be produced within the farmers‘ 

traditional agricultural systems. It has been reported that both survival and growth of 

freshwater prawn were significantly higher due to provision of substrates as compared 

to traditional production system without substrates (Cohen et al., 1983; Tidwell and 

Bratvold, 2005; Uddin et al., 2006). The benefits exerted from periphyton-based 

ponds are periphyton as additional natural food, substrate as shelter to minimize 

territorial effects and improved water quality through trapping suspended solids, 

organic matter breakdown and enhanced nitrification. On the other hand, microbial 
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control of water quality and heterotrophic production of single cell protein (biofloc) 

by manipulating C:N ratio in both biofloc technology (BFT) ponds and extensive 

ponds are rapidly expanding especially in producing penaeid shrimp (McIntosh, 2000; 

Hari et al., 2004; Hargreaves, 2006; Crab et al., 2007; Avnimelech, 2007). Generally, 

C:N ratio manipulations work in BFT and in extensive ponds. In the latter, it is 

assumed that development of biofilm on the bottom takes on the role of bioflocs in 

BFT.  

 

However, although the effects of substrate addition and C:N control on finfish and 

shellfish production are well documented, their combined effects on productivity have 

never been investigated in extensive ponds. The goal of the present research is to 

quantify the single and combined effects of C:N ratio manipulation and substrate 

addition on prawn production. Attention was also given to the effect of C:N ratio 

manipulation on (1) periphyton quantity and quality and (2) the heterotrophic 

bacterial activity in the water column, sediment and periphyton. 

 

2 Materials and Methods 

 

2.1 Experimental design 
 

An on-station trial was conducted with a 3×2 factorial design with three levels of C:N 

ratio (10, 15 and 20) as first factor, and with and without substrates addition for 

periphyton development as second factor. The treatments without periphyton 

substrates are referred to as ‗CN10‘, ‗CN15‘ and ‗CN20‘, while the treatments with 

periphyton substrates are referred to as ‗CN10+P‘, ‗CN15+P‘ and ‗CN20+P‘. 

Treatments were executed in triplicate and assigned randomly between ponds. 

 

2.2 Experimental site and pond preparation 

 

The experiment was carried out at the Fisheries Field Laboratory of the Faculty of 

Fisheries, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh for a 

period of 120 days. A 81×8.9 m pond was drained completely and partitioned by 

galvanized iron sheets into 18 small ponds of 40 m
2
 each. The ponds were rain-fed 

and fully exposed to prevailing sunlight. Before starting the experiment, ponds were 

manually cleaned of aquatic vegetation. All unwanted fishes were eradicated by 

rotenone application at the rate of 100 g pond
−1

. Lime (CaCO3) was applied to all 
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ponds at the rate of 250 kg ha
−1

 on Day 1. On Day 2, ponds were filled with water 

from the nearby deep tube-well. On Day 4, 15 bamboo kanchi (side shoots of 

bamboo) per m
2 

water surface area, with a mean diameter of 2.8 cm were posted 

vertically into the bottom mud in substrate treatment ponds, excluding a 0.5 m wide 

perimeter. This resulted in an additional area of 40 m
2
 for periphyton development 

equaling about 100% of the pond surface area. On the Day 5, all ponds were fertilized 

with semi decomposed cattle manure, urea and triple super phosphate (TSP) at the 

rates of 3000, 100 and 100 kg ha
−1

, respectively. After fertilization, the ponds were 

left for 10 days to allow plankton development in the water column and periphyton 

growth on substrates, and subsequently stocked. 

 

2.3 Prawn stocking and pond management 
 

Juveniles of M. rosenbergii (5.023±0.02 g) purchased from a nearby commercial 

hatchery were stocked in the ponds at a density of 2 juveniles m
−2

. A locally 

formulated and prepared pellet feed (2 mm) containing 30% protein with C/N ratio 

close to 10 was used. The proximate composition of the diet and tapioca starch is 

given in Table 1. The daily feeding rates were 5% body weight at the start of 

experiment, and declined gradually to 3% body weight at the end of the culture period 

with assuming 80% survival of total stock in each pond. Feed was distributed evenly 

over the pond's surface, twice daily at 07:00 and 18:00 h. Weights of 10% of total 

number of prawn were measured individually in every month to estimate the prawn 

biomass and adjust the feeding rate. The prawns were sampled using a cast net after 

removing some bamboo kanchi. After sampling, bamboo kanchi were put back to 

their original positions. 

 

Table 1. Proximate composition of the prepared feed and tapioca starch. 

Component Moisture (%) Protein (%) Lipid (%) Fiber (%) Ash (%) NFE
* 

Prepared feed 11.6 29.9 8.1 4.8 13.1 32.5 

Tapioca starch 12.9 1.6 0.9 5.4 5.2 74.0 

 

Locally purchased tapioca starch was used as carbohydrate source for manipulating 

the C/N ratio. In order to raise the C/N ratio to 15 and 20 in the respective ponds, 

additional 0.45 and 0.9 kg tapioca starch were applied for each kg of formulated feed, 

respectively. The pre-weighed tapioca starch was mixed in a beaker with pond water 
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and uniformly distributed over the ponds' surface directly after the feed application at 

07:00 h. 

 

2.4 Prawn harvesting and estimation of yield parameters 

 

Prawns were harvested after draining the ponds. Individual length (wooden measuring 

board) and weight (Denver-xp-3000; precision=0.1 g) were recorded. Specific growth 

rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER) and net yields 

were calculated as follows: 

SGR = [(ln final weight − ln initial weight) ×100] /days of experiment 

FCR = feed consumed (dry weight)/ live weight gain (wet weight) 

PER = live weight gain/protein consumed 

Net yield = total biomass at harvest − total biomass at stocking 

 

2.5 Determination of water quality parameters 

 

Water quality parameters, temperature (Celsius thermometer), dissolved oxygen (YSI 

digital DO meter, model 58), pH (CORNING 445 pH meter) and Secchi depth 

(Secchi disc) were monitored in situ at 06:00 and 18:00 h on weekly basis. Water 

samples were collected using a horizontal water sampler from three locations of each 

pond and pooled together. Total alkalinity (titrimetric method) and NO2–N, NO3–N, 

NH3-N and PO4–P concentrations (HACH kit model DR 2010) were measured on a 

fortnightly basis (APHA, 1992). Before nutrient analysis, water samples were filtered 

through microfibre glass filter paper (Whatman GF/C), using a vacuum pressure air 

pump. The filtered water was used for nutrient analysis. The filter paper was kept in a 

test tube containing 10 ml of 90% acetone, ground with a glass rod and preserved in a 

refrigerator for 24 h. Later, chlorophyll a was determined using a spectrophotometer 

(Milton Roy Spectronic, model 1001 plus) at 664- and 750-nm wave length, following 

Boyd (1979). 

 

2.6 Determination of sediment quality parameters 
 

Sediment samples were collected from three locations of each pond using PVC pipes 

(having 4 cm diameter and sampling depth 10 cm) were monitored on biweekly basis 

between 09:00 and 10:00 h. The samples were dried, ground and sieved with a 2mm 

sieve (Soil and Plant Analysis Council, 1999). Soil pH was determined by a direct 

reading digital pH meter (CORNING 445 pH meter) with soil water ratio 1:2.5 



Chapter 2 

 24 

(McLean, 1982). Organic matter of sediment was determined by ignition method 

(Page et al., 1989). Total nitrogen of sediment was determined by the common Micro-

Kjeldahl digestion method following Page et al., 1989. Total phosphorus of sediment 

samples were determined by acid digestion method (Jones and Case, 1990; Watson 

and Issac, 1990).  

 

2.7 Determination of periphyton biomass 
 

The periphyton biomass, in terms of dry mater (DM), ash free dry matter (AFDM) 

and pigment concentrate (chlorophyll a), growing on bamboo kanchi were determined 

monthly following standard methods (APHA, 1992), beginning from the 15th day of 

the substrate installation and continued at monthly intervals. From each pond, three 

poles were selected randomly and two 2×2 cm
2
 samples of periphyton were taken at 

each of three depths (25, 50 and 75 cm below from the water surface) per pole. At the 

time of periphyton collection, care was taken not to remove any of the substrate itself. 

After sampling, the poles were replaced in their original positions, marked and 

excluded from subsequent samplings. One of the two samples was used to determine 

total DM and ash content. The materials from each pole were collected on pre-

weighed and labeled pieces of aluminum foil, dried at 105 °C until constant weight 

(24 h in a Memmert stove, Model UM/BM 100–800), and kept in a desiccators until 

weighed (BDH 100A; precision 0.0001 g). Dry samples from depth and poles per 

pond were pooled, transferred to a muffle furnace and ashed at 450 °C for 6 h and 

weighed. The dry matter (DM) and ash free dry matter (AFDM) were determined by 

weight differences (APHA, 1992). 

 

Another sample was used to determine chlorophyll a concentrations following 

standard methods (APHA, 1992). Collected materials were immediately transferred to 

labeled tubes containing 10 ml of 90% acetone, sealed and stored overnight in a 

refrigerator. The following morning, samples were homogenized for 30 s with a tissue 

grinder, refrigerated for 4 h, and then centrifuged for 10 min at 2000–3000 rpm. The 

supernatant was carefully transferred to 1 cm glass cuvette and absorption measured 

at 750 and 664 nm using a spectrophotometer (Milton Roy Spectronic, model 1001 

plus). Chlorophyll a concentration was calculated using the equation given in APHA 

(1992). 
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2.8 Assessment of bacterial load in water, sediment and periphyton 
 

Total bacterial load of pond water, sediment and periphyton were determined on 

monthly basis between 09:00 and 10:00 h. All samples were collected from 5 different 

locations, mixed homogenously and collected with sterile glass bottles for bringing to 

the Bacteriological Laboratory, Department of Microbiology and Hygiene, Faculty of 

Veterinary Science, BAU, Mymensingh, Bangladesh. One ml water sample was 

transferred with a sterile pipette to a test tube containing 9.0 ml of phosphate buffered 

saline (PBS) and the tube was shaken thoroughly whereas 5.0 g of sediment and 

periphyton samples were weighed and transferred to a sterile conical flask and made 

up to 50 ml with phosphate buffered saline (PBS) and the contents mixed thoroughly 

to prepare a stock solution. Serial dilution of up to 10
−6

 for water and 10
−8

 for 

sediment and periphyton were prepared with PBS. Volumes (0.1 ml) of each dilution 

were spread over the surface of duplicate plates of tryptone soya agar (TSA; Difco, 

Detroit, MI, USA) with incubation at 30 °C for 24–48 h. Plates with 30–300 colony 

forming units (CFU) were counted with a Leica Quebec Darkfield Colony Counter 

(Leica, Inc., Buffalo, NY, USA) and expressed as colony forming units. 

 

2.9 Statistical analysis 

 

Growth and yield parameters (prawn growth, yield, FCR, SGR, PER and survival) 

were analyzed by a two-way ANOVA with addition of substrate (P and noP) and C/N 

ratio (10, 15 and 20) as main factors. Sediment, water quality and THB counts data 

were compared by splitplot/repeated measures ANOVA with addition of substrate (P 

and noP) and C/N ratio (10, 15 and 20) as main factors and time as the sub-factor 

(Gomez and Gomez, 1984). The data were checked for normality, and transformed if 

necessary. Especially percentage and ratio data were arcsine transformed. All 

ANOVA were performed using SAS 6.21 program (SAS Institute, Cary, NC 27513, 

USA). If a main effect is significant, the ANOVA was followed by Tukey's test at 

P<0.05 level of significance. 

 

 

 

 

 



 

 

 

Table 2.  Effects of different C/N ratio and addition of periphyton substrates on different water quality parameters based on two-way ANOVA. 

 

 
C/N ratio=Carbon/Nitrogen ratio; 10=treatments with C/N ratio 10; 15=treatments with C/N ratio 15; 20=treatment with C/N ratio 20; Yes=treatments with the addition of 

periphyton substrates; No=treatments without periphyton substrates; P=Periphyton substrates; CN×P=Interaction of different C/N ratio and periphyton substrates. The mean 

values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were significant, ANOVA was followed by Tukey test. 

*P<0.05; **P<0.01; ***P<0.001; NS, Not significant. 

Variables 

Means (Tukey test)  Significance (P value) 

C/N ratio  Substrate 

CN10 CN15 CN20  Yes No  C/N  P C/N×P 

Temp. (°C) at 6 AM 27.32 27.28 27.28  27.32 27.27  NS NS NS 

Temp. (°C) at 6 PM 30.7 30.63 30.59  30.6 30.68  NS NS NS 

DO (mg L
–1

) at 6 AM 4.64
c 

5.02
b 

5.31
a 

 4.98 5.0  *** NS NS 

DO (mg L
–1

) at 6 PM 6.11
c 

6.35
b 

6.65
a 

 6.36 6.38  *** NS NS 

pH range at 6 AM 7.1-8.4 7.0-8.2 6.9-8.3  6.9-8.3 7.1-8.4  - - - 

pH range at 6 PM 7.3-9.6 7.1-9.4 7.3-9.4  7.3-9.4 7.1-9.6  - - - 

Transparency (cm)  34.15
a 

30.46
b 

27.58
b 

 30.83 30.86  ** NS NS 

Total Alkalinity (mg L
–1

) 136.4 134.3 130.8  135.2 132.5  NS NS NS 

Chlorophyll-a (µg L
–1

) 119.5
b 

159.1
ab 

205.2
a 

 165.2 157.0  *** NS NS 

NO2-N (mg L
–1

) 0.011
a 

0.008
b 

0.007
b 

 0.007
b 

0.011
a 

 ** *** NS 

TAN (mg L
–1

) 0.238
a 

0.107
b 

0.078
b 

 0.117 0.165  *** NS NS 

NO3-N (mg L
–1

) 0.068
a 

0.042
b 

0.033
b 

 0.047 0.048  *** NS NS 

PO4-P (mg L
–1

) 0.67 0.67 0.77  0.75 0.65  NS NS NS 

2
6
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3 Results 

 

3.1 Water quality parameters 

 

Water quality parameters and outcomes of ANOVA are presented in Table 2. 

Temperature and pH of the water were similar among the treatments both in morning 

and evening. Increasing the C/N ratio from 10 to 20 increased the dissolved O2 

content of water from 4.6 to 5.3 mg l
−1

 in the morning and from 6.1 to 6.7mg l
−1

 in the 

evening. It also reduced the water transparency. The addition of substrates for 

periphyton development did not influence the dissolved O2 content and transparency 

in the water column. C/N ratio control had no effect on total alkalinity and PO4–P 

concentration of water column but it increased the chlorophyll a content. The 

ANOVA result showed that increasing C/N ratio reduced the nitrite–nitrogen, total 

ammonia-nitrogen and nitrate–nitrogen of pond water. On the other hand, the addition 

of periphyton substrates reduced the nitrite–nitrogen concentration of the water 

column with no effect on any other water quality parameters. 

 

3.2 Sediment quality parameters 

 

The sediment quality parameters are summarized in Table 3. The addition of 

carbohydrate for increasing C/N ratio increased the organic matter content in the 

sediment. Total nitrogen concentration in the sediment was also reduced by increasing 

C/N ratio. But C/N ratio control had no effect on pH and total phosphorus content of 

the sediment. The ANOVA result showed that the addition of periphyton substrates 

had only effect for reducing organic matter content of the sediment.  

 

3.3 Effects on bacterial load of water, sediment and periphyton 

 

The mean total heterotrophic bacterial load of water, sediment and periphyton was 

summarized in Table 4. The result of the ANOVA showed that the C/N ratio control 

influenced the THB count and promoted the growth of THB population in water 

column, sediment and periphyton whereas the addition of periphyton substrates had 

no effects on them. The THB count in the water column, sediment and periphyton 

increased during the culture period (Table 5). 



 

 

 

 

 
 

 

Table 3. Effects of different C/N ratio and addition of periphyton substrates on different sediment quality parameters based on two-way 

ANOVA 

 

C/N ratio=Carbon/Nitrogen ratio; 10=treatments with C/N ratio 10; 15=treatments with C/N ratio 15; 20=treatment with C/N ratio 20; Yes=treatments with the addition of 

periphyton substrates; No=treatments without periphyton substrates; P=Periphyton substrates; C/N×P=Interaction of different C/N ratio and periphyton substrates. The mean 

values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were significant, ANOVA was followed by Tukey test. 

*P<0.05; **P<0.01; ***P<0.001; NS, Not significant 

 

 

 

 

Variables 

Means (Tukey test)  Significance (P value) 

C/N ratio  Substrate 

CN10 CN15 CN20  Yes No  C/N  P C/N×P 

pH range 6.7-8.0 6.5-8.0
 

6.2-8.1
 

 6.2-8.1 6.5-8.0  - - - 

Organic matter (%) 2.25
c 

2.55
b 

2.72
a 

 2.44
b 

2.56
a 

 *** * NS 

Total nitrogen (%) 0.173
a 

0.142
b 

0.120
c 

 0.143 0.147  *** NS NS 

Total phosphorus (mg L
–1

) 17.33
 

19.75
 

19.91
 

 19.89 18.1  NS NS NS 
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Table 4. Effects of different C/N ratio and addition of periphyton substrates on total heterotrophic bacterial (THB) load of water, sediment and 

periphyton based on two-way ANOVA 

 
C/N ratio=Carbon/Nitrogen ratio; 10=treatments with C/N ratio 10; 15=treatments with C/N ratio 15; 20=treatment with C/N ratio 20; Yes=treatments with the addition of 

periphyton substrates; No=treatments without periphyton substrates; P=Periphyton substrates; C/N×P=Interaction of different C/N ratio and periphyton substrates. The mean 

values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were significant, ANOVA was followed by Tukey test. 

P<0.05; **P<0.01; ***P<0.001; NS, Not significant. 

 

Table 5. Total heterotrophic bacterial load of water, sediment and periphyton over sampling periods
ψ
. 

 

 

Mean values in the same row with different superscript differ significantly (P<0.05). 
ψ One sampling period is 30 days. 
Ф Results from split-plot two way ANOVA. *** P<0.001. 

 

Variables 

Means (Tukey test)  Significance (P value) 

C/N ratio  Substrate 

CN10 CN15 CN20  Yes No  C/N  P C/N×P 

Water THB (× 10
5 
cfu ml

–1
) 3.41

c 
4.66

b 
5.80

a 
 4.64 4.61

 
 *** NS NS 

Sediment THB (× 10
7 
cfu g

–1
) 5.03

c 
5.90

b 
6.84

a 
 5.90 5.94  *** NS NS 

Periphyton THB (× 10
7 
cfu g

–1
) 2.97

c 
3.46

b 
4.15

a 
 - -  *** - NS 

Variables Sampling periods Significance 
 Ф

 

 P value Period 1 Period 2 Period 3 Period 4 Period 5 

Water THB (× 10
5 
cfu ml

–1
) Mean 2.93

e 

4.38
e 

2.16
e 

4.36
d 

5.38
d 

3.20
d 

4.92
c 

6.02
c 

3.76
c 

5.28
b 

6.62
b 

4.13
b 

6.64
a 

7.23
a 

4.50
a 

*** 

*** 

*** 

Sediment THB (× 10
7 
cfu g

–1
) Mean 

Periphyton THB (× 10
7 
cfu g

–1
) Mean 

2
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3.4 Periphyton biomass 
 

Periphyton dry matter (DM), ash free dry matter (AFDM) and chlorophyll a 

concentration per unit substrate surface area are given in Table 6. The result of 

ANOVA showed that the C/N ratio control influenced all of these parameters. All of 

the parameters of periphyton biomass increased during the culture period (Figure 1). 

Mean values of all of these parameters were the highest in the CN20+P treatment, 

intermediate in CN15+P treatment and the lowest in CN10+P treatment (Figure 1). 

 

Table 6. Means of periphyton biomass scraped from bamboo kanchi in different 

treatments 

Values are the means of 5 sampling dates, three depths, three poles and three ponds (N=135). DM: Dry 

matter, AFDM: Ash free dry matter. Mean values in the same row with different superscript differ 

significantly (P< 0.05). ** P< 0.01. 

 

3.5 Freshwater prawn growth and yield parameters 
 

The yield parameters of freshwater prawn in different treatments are presented in 

Table 7. The ANOVA result showed that increasing C/N ratio increased the 

individual prawn weight at harvest but the addition of periphyton substrates had no 

effect on it. The SGR value was also increased with increasing C/N ratio. Both C/N 

ratio control and addition of periphyton substrates had effect on the protein efficiency 

ratio. The FCR was decreased by increasing of C/N ratio and the addition of 

periphyton substrates. The ANOVA result showed that C/N ratio had no effect on the 

survival of prawn but the addition of periphyton substrates increased the survival of 

prawn from 63 to 72%. Both the C/N ratio control and addition of periphyton 

substrates influenced the gross and net yield of prawn. The C/N ratio control (i.e. 

increasing C/N ratio from 10 to 20) increased net yield of prawn from 342 to 480 kg 

ha
−1

120d
−1

 (40%) and addition of periphyton substrates increased net yield from 370 

to 456 kg ha
−1

120d
−1

 (23%). The interaction of C/N ratio control and addition of 

periphyton substrates was not significant for net yield of prawn. Therefore, the effect 

of C/N ratio control is additive to substrate addition for periphyton development, both 

increasing the net yield of prawn. 

Variables Treatments Significance  

 P value CN10+P CN15+P CN20+P 

DM (mg cm
–2

) Mean±SE 2.92±0.06
b 

3.42±0.17
a 

3.63±0.19
a 

** 

** 

** 

AFDM (mg cm
–2

) Mean±SE 1.88±0.08
b 

2.30±0.15
a 

2.49±0.16
a 

Chlorophyll-a (µg cm
–2

) Mean±SE 12.59±0.23
b 

13.34±0.42
a 

14.72±0.59
a 
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Figure 1. Quantity of periphyton biomass per unit surface area during the 

experimental period. Values are means (±S.D.) of three replicates (each replicates 

contain three poles and three depth samples) per sampling date in each treatment. 

CN10+P=C/N ratio 10 + addition of periphyton substrates; CN15+P=C/N ratio 15 + 

addition of periphyton substrates; CN20+P=C/N ratio 20 + addition of periphyton. 



 

 

Table 7. Effects of different C/N ratio and addition of periphyton substrates on growth and yield parameters of freshwater prawn based on two-

way ANOVA. 

 

 

C/N ratio=Carbon/Nitrogen ratio; 10=treatments with C/N ratio 10; 15=treatments with C/N ratio 15; 20=treatment with C/N ratio 20; Yes=treatments with the addition of 

periphyton substrates; No=treatments without periphyton substrates; P=Periphyton substrates; C/N×P=Interaction of different C/N ratio and periphyton substrates. The mean 

values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were significant, ANOVA was followed by Tukey test. 

*P<0.05; ***P<0.001; NS, Not significant.  

 

 

 

 

Variables 

Means (Tukey test)  Significance (P value) 

C/N ratio  Substrate 

CN10 CN15 CN20  Yes No  C/N  P C/N×P 

Individual stocking weight (g) 5.1 5.2 5.1  5.2 5.1  NS NS NS 

Individual harvesting weight (g) 33.4
c 

38.5
b 

42.0
a 

 38.8 37.2  *** NS NS 

Individual weight gain (g) 28.3
c 

33.3
b 

36.9
a 

 33.6 32.0  *** NS NS 

Specific growth rate (% bw d
–1

) 1.56
c 

1.67
b 

1.75
a 

 1.67 1.65  *** NS NS 

Protein efficiency ratio 1.13
b 

1.33
a 

1.40
a 

 1.39
a 

1.18
b 

 *** *** NS 

Food conversion ratio 2.97
a 

2.54
b 

2.40
b 

 2.41
b 

2.85
a 

 *** *** NS 

Survival (%) 65.2 67.7
 

69.3
 

 72.1
a 

62.8
b 

 NS *** NS 

Gross yield (kg ha
–1

 120 d
–1

) 445
c 

522
b 

583
a 

 560
a 

473
b 

 *** *** NS 

Net yield (kg ha
–1

 120 d
–1

) 342
c 

418
b 

480
a 

 456
a 

370
b 

 *** *** NS 
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4. Discussion 

 

In freshwater prawn culture systems, phytoplankton and bacteria play a crucial role in 

the processing of nitrogenous wastes (Shilo and Rimon, 1982; Diab and Shilo, 1988). 

Manipulation of C/N ratio by addition of carbohydrate significantly reduced inorganic 

N concentrations in the water column and total nitrogen in the sediment. The findings 

are in the agreement with Hari et al, (2004); Avnimelech and Mokady (1988); 

Avnimelech et al. (1989) and Avnimelech (1999) who reported that the addition of 

carbohydrate to the production systems will reduce the TAN concentration through 

immobilization by bacterial biomass. It is reported that fish in a pond assimilate only 

15–30% of the nitrogen added in the feed (Acosta-Nassar et al., 1994; Gross et al., 

2000; Davenport et al., 2003), the remainder being lost to the system as ammonia and 

organic N in feces and feed residue, which also undergoes decomposition and 

eventually produces ammonia. Therefore, higher dietary protein levels resulted in 

significantly higher TAN and NO2–N concentrations in the water column. Li and 

Lovell (1992) reported that the ammonia concentration increased with increasing 

dietary protein concentration and protein feeding rate. In the present study, tapioca 

starch was used for increasing the C/N ratio of the feed resulting in a significant 

increase in the THB count, together with observed lower TAN concentrations in 

water. It also caused a significant reduction in NO2–N concentration in the water 

column, which can be attributed to low availability of TAN as substrate for 

nitrification and hence the production of NO2–N (Avnimelech, 1999; Hari et al., 

2004). Thus, the reduction in nitrogenous compound (NO3–N, NO2–N and TAN) 

could be attributed to the addition of carbonaceous substrates that lead to an increased 

microbial biomass, which immobilized TAN for the synthesis of new bacterial cells 

(Hari et al., 2004) and uptake of the nitrogenous compounds by phytoplankton. In 

general, nitrogen is needed to produce the protein rich microbial cells. Inorganic 

nitrogen is immobilized into bacterial cells when metabolized organic substrates have 

a high C:N ratio. 

 

The addition of substrates for periphyton development significantly reduced the NO2–

N and also lowering the TAN (0.165 mg l
−1

 without periphyton substrates and 0.117 

mg l
−1 

with periphyton substrates). This is because in substrate-based ponds, nitrifying 

bacteria develop on the substrates which are located in the water column where more 

oxygen is available than at the water-sediment interface. Periphytic biofilm enhance 
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nitrification (Langis et al., 1988), keeping NO2–N and TAN levels low. Therefore, 

accumulation of toxic inorganic nitrogen can be prevented by maintaining a high C/N 

ratio together with the addition of periphyton substrates and inducing uptake of 

ammonium by the microbial and periphyton algal community. The significantly 

higher bacterial load in the water column, sediment and periphyton in C/N20 ponds 

revealed that heterotrophic bacteria utilized the added carbon source resulting in 

higher productivity (Hari et al., 2004). This increased bacterial load led to higher 

decomposition rates releasing inorganic nutrients that in turn further stimulate 

bacterial development (Avnimelech et al., 1989). Under aerobic condition, microbial 

breakdown of organic matter leads to the production of new bacterial cells, amounting 

to the 40–60% of the metabolized organic matter (Avnimelech, 1999). Therefore, 

increased bacterial population function both as a bioreactor controlling water quality 

and as a protein food source for prawn. 

 

The periphyton biomass in terms of DM and AFDM increased steadily during the 

culture period and the rate of increase was higher in higher C/N ratio treatments. This 

might be because of low grazing pressure on periphyton by the overall low biomass of 

prawns and an increased periphyton density in the C/N15 and C/N20 treatments. The 

reported stocking densities of freshwater prawn were as high as 120,000 ha
−1

 in 

substrate based systems (Tidwell and Bratvold, 2005) which was 6 times higher than 

the density maintain in the present study. The higher periphyton chlorophyll a in 

CN20+P treatment is mainly because of higher rate of nutrient cycling within the 

periphyton biomass itself (Wetzel, 1983). With the higher C:N ratio, the 

decomposition rate by bacteria in periphyton substrates in the well-oxygenated water 

column is increased, resulting in more nutrients which were subsequently reutilized 

by the bacteria and algae. Generally, bacteria compete with algae on available 

inorganic nutrients. But, periphyton is a complex mixture of autotrophic and 

heterotrophic organism and cannot simply be regarded as an attached equivalent of 

phytoplankton, although it certainly performs similar functions, such as oxygen 

production and the uptake of inorganic nutrients. There is an intense exchange of 

inorganic and organic solutes between autotrophic and heterotrophic components 

within the periphyton assemblage, and suspended solids can be trapped by the 

periphytic biofilm (Verdegem et al., 2005). Therefore, there is a tight coupling 

between autotrophs and heterotrophs in the periphyton mat. The periphytic algae 
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supply organic matter (trapped OM and dead periphyton) to the heterotrophs, the 

latter inorganic nutrients (after recycling) to the autotrophs. Again in ponds with 

substrates, organic matter and nutrients derived from feed and carbohydrates are 

partly trapped by periphyton (van Dam et al., 2002) and had a fertilization effect on 

autotrophic periphyton in higher C/N ratio treatments. Hence, a better growth and turn 

over of bacteria in the periphyton, also means more inorganic nutrients for the algae 

in higher C/N ratio treatments. 

 

The highest net and gross yields of freshwater prawn were recorded in ponds 

maintained with higher C:N ratio and provided with periphyton substrates. The net 

yield of freshwater prawn increased by 40% due to increasing C/N ratio from 10 to 

20. Addition of periphyton substrates further increased net yield by 23%. This 

increase in net yield was mainly due to the increased survival since periphyton 

substrates did not have an effect on individual weight at harvest. Addition of 

substrates might have minimized territoriality of freshwater prawn. It provides 

additional shelter and natural food in the form of periphyton colonized on bamboo 

kanchi substrates along with improvements of environmental conditions through a 

range of ecological and biological process (Tidwell et al., 2000; Tidwell et al., 2002; 

van Dam et al., 2002; Milstein et al., 2003). However, there was no interaction effect 

of C/N ratio control and addition of substrates on net yield indicating that the effect of 

C/N ratio control is additive to substrate addition. Concurrently, similar survival rates 

in C/N controlled treatments without periphyton substrates addition showed that water 

and sediment quality were favorable for the freshwater prawn culture (Hariati et al., 

1996) and suggested that differences in production are related to food quality and 

food availability. The FCR was the lowest and PER and SGR was the highest in 

higher C/N ratio and periphyton substrates added treatments. Nevertheless, 

environmental parameters (increased abundance of plankton & periphyton biomass) 

indicate that the natural foods were underutilized by freshwater prawn in the present 

experiment. This suggests further investigation on the possibility of decreasing 

artificial feeding rate or increasing in stocking density of culture animals. Inclusion of 

a periphyton grazing fish species in this system could further increase the production 

and improve the system environment. Uddin et al. (2006) explored the potential of 

mixed culture of tilapia and freshwater prawn in periphyton-based system. Again, 

tilapia has bioturbation effect. So, it is being hoped that it will also improve nutrient 

cycling in extensive stagnant ponds of C/N-controlled periphyton-based system. 
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5. Conclusion 

 

The new technology could be referred to as C/N-controlled periphyton-based (C/N-

CP) system. This system of freshwater prawn farming reduced the potentially toxic 

TAN and NO2–N concentrations in the water column. The increasing C/N ratio 

facilitated increased THB growth in water, sediment and periphyton. Such type of 

THB production is an important component of natural food in ponds stocked with 

freshwater prawn. The THB population converts inorganic nitrogen into protein rich 

microbial cell, thus lowering the inorganic nitrogen content in water and sediment. 

Concurrently, the quality and quantity of periphyton of the added substrates was 

increased with increasing C/N ratio. The above result of the present study could be 

useful in improving the sustainability of freshwater prawn framing. In summary, the 

C/N-CPP system of freshwater prawn farming system benefited the freshwater prawn 

farming by (1) reducing toxic inorganic nitrogen content of pond water, (2) increasing 

THB and algal abundance supplying additional single cell protein to augment the 

prawn production, and (3) improved periphyton productivity and quality leading to a 

substantial increase of average farm production of prawns. 
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Abstract 

 

An on-station trial was conducted to investigate the effects of three C/N ratios (10/1, 

15/1 and 20/1) along with substrate presence or absence on natural food communities 

in freshwater prawn culture ponds. The experiment was carried out in 40 m
2
 ponds 

stocked with a stocking density of 2 prawn juveniles (5.023±0.02 g) m
–2

. A locally 

formulated and prepared feed containing 30% crude protein with C/N ratio 10 was 

applied to all ponds. In order to raise the C/N ratio of the feed input to 15 and 20, 

tapioca starch was applied separately as a source of carbohydrate in addition to the 

artificial feed. Under substrate treatments, bamboo side shoots were posted vertically 

in pond bottoms resulting in 100% additional surface area as periphyton substrates. 

The treatments with different C/N ratios are referred to as ‗CN10‘, ‗CN15‘ and 

‗CN20‘. Increasing the C/N ratio from 10 to 20 significantly increased the biovolume 

of phytoplankton, crustaceans and rotifers in the water column by 15%, 6% and 11%, 

respectively. The biovolume of periphytic plankton was 50% higher in treatment 

CN20 compared to treatment CN10. Increasing the C/N ratio from 10 to 20 raised the 

biovolume of total heterotrophic bacteria (THB) in the water column (70%), sediment 

(36%) and periphyton (40%). The chironomids biovolume was also significantly 

higher (28%) in treatment CN20 compared to treatment CN10. The addition of 

substrates decreased the biovolume of water column plankton by 14% but the 

combined biovolume (plankton + periphytic plankton) was almost double in substrate-

added ponds. The biovolume of plankton, periphytic plankton and THB increased 

significantly with culture time duration whereas the biovolume of benthic 

macroinvertebrates decreased significantly with culture time indicating that 

freshwater prawn grazed on them. A significant interaction between C/N ratios and 

substrate presence or absence was only observed for plankton biovolume in the water 

column. This study demonstrated that plankton, periphyton and microbial biofloc 

communities were underutilized by the freshwater prawn in treatment CN20. This 

leaves room for increasing the stocking density of prawn and/or inclusion of 

periphyton grazing fish species to improve nutrient utilization efficiency and overall 

sustainability. 

 

Keywords: C/N ratio, Substrates addition, Freshwater prawn, Natural food community, 

Plankton, Periphyton, Heterotrophic bacteria, Benthic macroinvertebrates 
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1 Introduction 
 

The ecology of aquaculture ponds consists of a number of interrelated physical, 

chemical and biological processes. Among them, following three basic processes are 

important: production, consumption and decomposition. The primary productivity is 

based on the use of solar energy to convert carbon dioxide into plant biomass through 

photosynthesis. Phytoplankton, periphytic algae and submerged plants all contribute 

to this primary productivity on which the food web in ponds is partially based. In 

aquaculture ponds, the food web is enhanced by added organic matter in the form of 

manure and artificial feed. In the consumption process, both autochthonous and added 

organic matters are eaten directly or indirectly by aquatic animals and used as 

building blocks of biomass and a source of energy. The decomposition of in situ 

produced and added organic matter is mediated by mainly heterotrophic micro-

organisms that break down and/or decompose organic matter producing detritus and 

inorganic nutrients. The released inorganic nutrients stimulate primary production, 

and broaden the base of autotrophic food webs. 

 

Pond aquaculture of finfish and crustaceans contributes bulk (47.4% and 6.2%, 

respectively) of the world aquaculture production (FAO, 2006). The majority of 

ponds are operated extensively or semi-intensively, strongly depending on the natural 

food production in the pond, but driven by external nutrient inputs. Artificial diet in 

prawn/shrimp aquaculture accounts 50-70% of total operating cost, and therefore, 

optimizing the natural productivity would be the most efficient strategy to optimize 

the cost of production. Therefore, better integration between various resources 

available on the farm and optimization of natural productivity of food webs is 

essential to improve on-farm efficiency. During the last decades, several attempts 

(polyculture and /or pond fertilization) have been made to increase and utilize the 

pond communities, which serve as natural food items for cultured fish species in 

aquaculture ponds. To this end, developments such as (1) C/N ratio control 

(Avnimelech, 1999; Hari et al., 2004; Avnimelech, 2007; Asaduzzaman et al., 2008) 

and (2) providing substrates for periphyton development (van Dam et al., 2002; 

Tidwell et al., 2000, 2002; Azim et al., 2003a, 2003b; Keshavanath et al., 2001;  

Milstein et al., 2009) have been found promising to increase natural food communities 

in aquaculture ponds, the former mainly increasing heterotrophic bacteria, the later 

mainly increase autotrophic organisms.   
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The C:N ratio of most of the feeds used in semi-intensive aquaculture ponds  is 

around 10:1, but bacteria require about 20 units of carbon per unit of nitrogen 

assimilated (Avnimelech, 1999).  Therefore, with such a low C:N ratio in the feed, 

carbon is the limiting nutrient for heterotrophic bacteria populations in aquaculture 

ponds. So, the bacterial population will not expand beyond a certain point due to the 

limited availability of carbon. The C:N ratio in the pond can be increased by adding 

different locally available cheap carbon sources (for review see Hargreaves, 2006). If 

the C:N ratio is increased by adding a carbohydrate source such as tapioca starch in 

addition to the regular feed, the increased availability of carbon allows the 

heterotrophic bacterial population to grow to a dense mass. Therefore, manipulation 

in the C/N ratio may result in a shift from an autotrophic to a heterotrophic system 

(Avnimelech, 1999; Browdy et al., 2001). The heterotrophic bacteria population 

utilizes the ammonium in addition to the organic nitrogenous wastes to synthesize 

new cells (single cell microbial protein) (Schneider et al., 2005), and it may be 

utilized as a natural food source by carps, tilapias (Schroeder, 1987; Beveridge et al., 

1989; Rahmatulla and Beveridge, 1993), shrimps (Burford et al., 2004) or freshwater 

prawn (Asaduzzaman et al., 2008). 

 

The principle of periphyton-based aquaculture is to increase the natural food 

production by adding hard substrate materials into the water column. In a traditional 

fish pond, phytoplankton is the most important component for energy fixation and 

fuelling the food web. When substrates are installed in the pond, inorganic nutrients 

can also follow the extra ‗periphyton loop‘ (Azim, 2001). This adds a third natural 

food source existing of periphytic microorganisms that can be consumed by the fish 

and also dead periphyton contributes to the detrital mass in the ponds (van Dam and 

Verdegem, 2005). However, unlike dead phytoplankton, dead periphyton remains 

attached to substrates, providing a rich source of organic nutrients for heterotrophic 

microorganisms. Processing of this organic matter yields inorganic nutrients that can 

be utilized by living algae again (Wetzel, 1983).  

 

Recently, we investigated the combined effects of C/N ratio control and periphyton 

substrates (referred to as C/N-CP technology) on freshwater prawn production in 

extensive ponds (Asaduzzaman et al., 2008). Although the effects of C/N ratio control 

and substrate addition on the finfish and shellfish production are well documented, 
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their combined effects on natural communities, part of which serve as natural diet for 

aquacultured species, have never been investigated. This paper is further analysis of 

the above mentioned experiment investigating how C/N ratio control and presence 

and absence of added substrates influence the natural food communities in 

aquaculture ponds. 

 

2 Materials and Methods 

 

2.1 Experimental design 

 

The experiment had a 3×2 factorial design with three levels of C:N ratio (10, 15 and 

20) and two levels of substrate (with and without substrates). Treatments with 

different C/N ratio are referred to as ‗CN10‘, ‗CN15‘ and ‗CN20‘. Treatments were 

executed in triplicate and assigned randomly between ponds.  

 

2.2 Experimental site and pond preparation 

 

The experiment was carried out at the Fisheries Field Laboratory of the Faculty of 

Fisheries, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh for a 

period of 120 days. A 81×8.9 m earthen pond was drained completely and partitioned 

by galvanized iron sheets into 18 small ponds of 40 m
2
 each with an average water 

depth of 1 m. The ponds were rain-fed and fully exposed to prevailing sunlight and 

used before for research. Before starting the experiment, ponds were manually 

cleaned of aquatic vegetation. All unwanted fishes were eradicated by rotenone 

application at the rate of 100 g pond
−1

. Lime (CaCO3) was applied to all ponds at the 

rate of 250 kg ha
−1

 (Day 1). On Day 2, ponds were filled with water from the nearby 

deep tube-well. On Day 4, 15 bamboo kanchi (side shoots of bamboo) per m
2 

water 

surface area, with a mean diameter of 2.8 cm were posted vertically into the bottom 

mud in substrate treatment ponds, excluding a 0.5 m wide perimeter. This resulted in 

an additional area of 40 m
2
 for periphyton development equaling about 100% of the 

pond surface area. On Day 5, all ponds were fertilized with semi decomposed cattle 

manure (3000 kg ha
−1

), urea (100 kg ha
−1

) and triple super phosphate (100 kg ha
−1

). 

After fertilization, the ponds were left for 10 days to allow plankton development in 

the water column and periphyton growth on substrates, and were subsequently 

stocked. 
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2.3 Prawn stocking and pond management 

 

Juveniles of M. rosenbergii (5.023±0.02 g) purchased from a nearby commercial 

hatchery were stocked in the ponds at a density of 2 juveniles m
−2

. A locally 

formulated and prepared pellet feed (2 mm) containing 30% protein with C/N ratio 

close to 10 was applied. The daily feeding rate was 5% body weight at the start of 

experiment, and declined gradually to 3% body weight at the end of the culture period 

with assuming 80% survival of total stock in each pond. Feed was distributed evenly 

over the ponds‘ surface, twice daily at 07:00 and 18.00 h. Weights of 10% of total 

number of prawn were measured individually in every month to adjust the feeding 

rate. The tapioca starch was used as carbohydrate source for manipulating the C/N 

ratio. In order to raise the C/N ratio from 10 (as control) to 15 and 20, 0.45 and 0.9 kg 

tapioca starch were applied for each kg of formulated feed in the CN15 and CN20 

treatment ponds, respectively. The pre-weighed tapioca starch was mixed in a beaker 

with pond water and uniformly distributed over the ponds' surface directly after the 

feed application at 07:00 h. 

 

2.4 Assessment of the plankton in water column  

Plankton samples were collected monthly by pooling 10 liter of water from five 

different locations in each pond and passing them through a 45 µm mesh plankton net. 

The concentrated samples were preserved in small plastic bottles with 5% buffered 

formalin. Qualitative and quantitative estimations of plankton were done using a 

Sedgewick-Rafter (S-R) cell containing 1000 1-mm
3
 cells. A 1 ml sample was put in 

the S-R cell and was left 15 min undisturbed to allow plankton to settle. The plankton 

in 10 randomly selected cells were indentified up to genus level and counted under a 

binocular microscope (Swift, M-4000). Planktons were identified using keys by Ward 

and Whipple (1959), Prescott (1962), Belcher and Swale (1976), and Bellinger 

(1992). Plankton abundance was calculated using the following formula:      

N   = (P×C×100)/L 

where N is the number of plankton cells or units per liter of original water; P, the 

number of plankton counted in 10 fields; C, the volume of final concentrate of the 

sample (ml); L, the volume (l) of the pond water sample.   
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2.5 Assessment of periphytic plankton 

From each pond, three bamboo kanchi were selected randomly and 2×2 cm
2
 samples 

of periphyton were taken at each of three depths (25, 50 and 75 cm below from the 

water surface) per pole on a monthly basis starting after 7 days of substrate 

installation. Periphytic plankton samples from different depths and different bamboo 

kanchi were pooled and preserved in a labeled plastic vial containing 5% buffered 

formalin. After vigorous shaking, a 1 ml sub-sample was transferred in a S-R cell and 

the periphytic plankton number was estimated in 10 randomly selected cells under a 

binocular microscope (Swift, M-4000). Taxa were identified to genus level using the 

similar keys as plankton. Periphytic plankton density was calculated using the 

following formula:      

N   = (P×C×100)/S  

where N is the number of periphytic plankton cells or units per cm
2
 surface area; P, 

the number of periphytic plankton units counted in 10 fields; C, the volume of final 

concentrate of the sample (ml); S, the area of scraped surface (cm
2
).     

 

2.6 Assessment of bacterial load in water, sediment and periphyton 

 

Total bacterial load of pond water, sediment and periphyton were determined on 

monthly basis between 09:00 and 10:00 h. All samples were collected from 5 different 

locations, mixed homogenously and collected with sterile glass bottles for bringing to 

the Bacteriological Laboratory, Department of Microbiology and Hygiene, Faculty of 

Veterinary Science, BAU, Mymensingh, Bangladesh. One ml water sample was 

transferred with a sterile pipette to a test tube containing 9.0 ml of phosphate buffered 

saline (PBS) and the tube was shaken thoroughly whereas 5.0 g of each sediment and 

periphyton samples were weighed and transferred to a sterile conical flask and made 

up to 50 ml with phosphate buffered saline (PBS) and the contents mixed thoroughly 

to prepare a stock solution. Serial dilution of up to 10
−6

 for water and 10
−8

 for 

sediment and periphyton were prepared with PBS.  Volumes (0.1 ml) of each dilution 

were spread over the surface of duplicate plates of tryptone soya agar (TSA; Difco, 

Detroit, MI, USA) with incubation at 30 °C for 24–48 h. Plates with 30–300 colony 

forming units (CFU) were counted with a Leica Quebec Darkfield Colony Counter 

(Leica, Inc., Buffalo, NY, USA) and expressed as CFU. 
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2.7 Assessment of benthic macroinvertebrates 

The benthic macroinvertebrates samples were collected monthly with an Ekman grab 

(area: 225 cm
2
).  In each pond, bottom mud samples were collected from 3 different 

locations, which were then combined into a composite sample. Benthic 

macroinvertebrates were collected after filtering sediments through a 250 µm mesh 

sieve and preserved in a plastic vial containing 10% buffered formalin. Identification 

keys used for benthic macroinvertebrates were Brinkhurst (1971), and Pinder and 

Reiss (1983). Benthic macroinvertebrates density was calculated using the formula,  

 N = Y×10000/3A 

with N = the number of benthic organisms (number m
–2

); Y = total number of benthic 

organisms counted in 3 samples; A = area of Ekman dredge (cm
2
). 

 

2.8 Data calculation and analysis 
 

The biovolumes of plankton, periphytic plankton and benthic macroinvertebrates were 

calculated according to Rahman et al. (2006). The biovolumes of heterotrophic 

bacteria were calculated using the value of Nakano and Kawabata (2000). The 

biovolumes of plankton, periphytic plankton, THB and benthic macroinvertebrates 

were analyzed by repeated measures ANOVA with addition of substrate and C/N ratio 

as main factors and time as the sub-factor (Gomez and Gomez, 1984). The data were 

checked for normality, and percentage and ratio data were arcsine transformed. All 

ANOVA were performed using SAS 6.21 program (SAS Institute, Cary, NC 27513, 

USA). If a main effect was significant, the ANOVA was followed by Tukey's test at 

P<0.05 level of significance. 

 

3 Results 

 

3.1 Effects on plankton biovolume 

The plankton communities in pond water consisted of four groups of phytoplankton 

and two groups of zooplankton in all treatments. Forty four genera of phytoplankton 

belonging to Bacillariophyceae (13 genera), Chlorophyceae (21 genera), 

Cyanophyceae (7 genera) and Euglenophyceae (3 genera) were found (Table 1). 

Seventeen genera of zooplankton, including nine genera of Crustacea and eight genera 

of Rotifera were also identified. 
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Table 1.  

List of plankton and periphyton genera recorded from the experimental ponds. 

Group Genus Plankton Periphytic plankton 

 

Bacillariophyceae Actinella √ × 

 Asterionella √ × 

 Coscinodiscus √ √ 

 Cyclotella √ √√ 

 Diatoma √ √√ 

 Fragillaria √√ √√ 

 Melosira √√ √ 

 Navicula √√ √√ 

 Nitzschia √√ √ 

 Rhizosolenia √ × 

 Surirella √ √ 

 Synedra √√ √√ 

 Tabellaria √√ √√ 

Chlorophyceae Actinastrum √ √ 

 Ankistrodesmus √ √ 

 Botryococcus √ √ 

 Chaetophora √ √ 

 Chlorella √√ √√ 

 Closterium √ √ 

 Coelastrum √√ √ 

 Draparnaldia √ √ 

 Gonatozygon √ √ 

 Microspora × √√ 

 Oedogonium √ √ 

 Oocystis √ √√ 

 Palmella √√ √√ 

 Pediastrum √√ √√ 

 Scenedesmus √√ √√ 

 Sphaerocystis √√ √√ 

 Spirogyra √ × 

 Stigeoclonium √√ √ 

 Tetraedron √ √ 

 Ulothrix √√ √√ 

 Volvox √ √ 

 Zygnema √ √ 

Cyanophyceae Anabaena √√ √√ 

 Anacystis √ √ 

 Aphanizomenon √ √√ 

 Aphanocapsa √ √√ 

 Gomphosphaeria √√ √√ 

 Microcystis √√ √√ 

 Oscillatiria √ √ 

Euglenophyceae Euglena √√ √√ 

 Phacus √√ √√ 

 Trachelomonas √ × 

Rotifera Asplanchna √√ √√ 

 Brachionus √√ √√ 

 Filinia √ √√ 

 Keratella √ × 

 Lecane √ √ 

 Trichocerca √√ √ 

 Polyarthra  √ × 

 Notholca √ × 

Crustaceans Ceriodaphnia √ × 

 Cyclops √√ × 

 Daphnia √ × 

 Diaphanosoma √√ × 

 Diaptomus √ × 

 Lepotodora √ × 

 Moina √ × 

 Nauplius larvae √√ √√ 

 Sida √ × 

―√‖ indicates presence; ―√√‖ indicates dominating genera ―×‖ indicates absence 
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In all treatments the same genera of plankton were found. Among phytoplankton 

Synedra, Tabellaria, Fragillaria, Melosira, Navicula, and Nitzschia 

(Bacillariophyceae), Chlorella, Coelastrum, Palmella, Pediastrum, Sphaerocystis, 

Stigeoclonium, Ulothrix and Scenedesmus (Chlorophyceae), Microcystis, Anabaena 

and Gomphosphaeria (Cyanophyceae), Euglena and Phacus (Euglenophyceae), and 

among zooplankton Cyclops, Diaphanosoma and crustacean nauplii, and Brachionus, 

Asplanchna and Trichocerca (Rotifera) were the dominating genera.  

 

The results of the ANOVA on the biovolume of major groups of plankton are shown 

in Table 2. C/N ratio control influenced the biovolume of all the major groups of 

plankton (except Chlorophyceae and Cyanophyceae). The mean total biomass of 

Bacillariophyceae, Euglenophyceae and total phytoplankton were higher in treatment 

CN20 than in treatment CN10. In the case of Crustacea, Rotifera, total zooplankton 

and total plankton, the mean total biomass were higher in treatments CN20 and CN15 

compared to treatment CN10. Increasing C/N ratio from 10 to 20 increased the 

biovolume of phytoplankton by 15% and zooplankton by 8.5%. The addition of 

substrates also influenced the biovolume of all the major groups of plankton (except 

Chlorophyceae). It decreased the biovolume of phytoplankton by 11.2% and 

zooplankton by 14.4%. There was an interaction effect of C/N ratio control and 

periphyton substrates on biovolume of all of the major groups of plankton (except 

Chlorophyceae), total phytoplankton, total zooplankton and total plankton (Table 2; 

Figure 1). The ponds provided with periphyton substrates had similar biovolume in 

treatment CN10, much lower biovolume in CN15 and lower biovolume in CN20 than 

in ponds without periphyton substrates (interaction effects, Figure 1). However, 

plankton biomass was always higher in substrates free ponds compared to substrates 

added ponds (Figure 2) indicating that periphyton systems affect plankton production 

to some extent. However, although plankton biomass was always lower in substrate 

added ponds, combined biomass (plankton + periphyton) was significantly higher 

(95.7%) in these ponds compared to the substrate free ponds (Table 2). The mean 

biomass of different groups of plankton, total phytoplankton, total zooplankton and 

total plankton were tending to increase from the second month and continued until the 

end of the experiment (Table 3). There was an interaction effect of experimental 

period (months) and substrates addition on biovolume of all of the major groups of 

plankton (except Bacillariophyceae and Chlorophyceae), total phytoplankton, total 
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zooplankton and total plankton. However, there was no interaction effect of C/N ratio 

control and experimental periods on the biovolume of any groups of water column 

plankton (Table 3). 

 

 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 

 

Figure 1. Interaction effects of C/N ratio control and periphyton substrates on the 

biovolume (mean ±95% CI) of total phytoplankton (A), total zooplankton (B), and 

total plankton (C). CN 10 = treatment with C/N ratio 10; CN 15 = treatment with C/N 

ratio 15; CN 20 = treatment with C/N ratio 20.  
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Table 2. Effects of different C/N ratio and addition of periphyton substrates on the abundance (based on total volume, mm
3
 L

–1
) of different 

groups of plankton in ponds based on two-way repeated measures ANOVA. 

 

Variable 

Means (Tukey test)  Significance (P value) 

C/N ratio  Substrate 

CN10 CN15 CN20  Yes No  C/N  P C/N×P 

Bacillariophyceae 0.021
b
 0.023

ab
 0.024

a
  0.021

b
 0.024

a
  *** *** *** 

Chlorophyceae 0.044 0.043 0.048  0.044 0.047  NS NS NS 

Cyanophyceae 0.149 0.152 0.171  0.148
b
 0.166

a
  NS * ** 

Euglenophyceae 0.009
b
 0.011

ab
 0.012

a
  0.009

b
 0.013

a
  ** *** ** 

Total phytoplankton 0.223
b
 0.229

ab
 0.256

a
  0.222

b
 0.250

a
  * ** ** 

Crustacea  4.590
b
 5.262

a
 4.868

ab
  4.520

b
 5.294

a
  ** *** *** 

Rotifera 3.990
b
 4.332

ab
 4.442

a
  4.027

b
 4.483

a
  * ** * 

Total zooplankton 8.580
b
 9.594

a
 9.311

a
  8.546

b
 9.777

a
  ** *** *** 

Total plankton 8.804
b
 9.823

a
 9.566

a
  8.768

b
 10.027

a
  ** *** *** 

 

C/N ratio = Carbon/Nitrogen ratio; CN10 = treatment with C/N ratio 10; CN15 = treatment with C/N ratio 15; CN20 = treatment with C/N ratio 20; Yes = treatment with 

addition of periphyton substrates; No = treatment without addition of periphyton substrates; P = Periphyton substrates; C/N×P = interaction of different C/N ratio and 

periphyton substrates. The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were significant, 

ANOVA was followed by Tukey test. *P<0.05; ** P<0.01; *** P<0.001; NS, Not significant. 
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Table 3. Effects of experimental period and its interactions with addition of substrates and different C/N ratio on the abundance (based on total 

volume, mm
3
 L

–1
) of different groups of plankton in ponds based on two-way repeated measures ANOVA. 

 

 

 

The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were significant, ANOVA was followed by 

Tukey test. *P<0.05; ** P<0.01; *** P<0.001; NS, Not significant. 

 

 

 

 

Variable 

Means (Tukey test)  Significance (P value) 

Month 

March April May June July  Month  Month×Subs Month×C/N 

Bacillariophyceae 0.025
ab

 0.019
d
 0.020

cd
 0.023

cd
 0.026

a
  *** NS NS 

Chlorophyceae 0.056
a
 0.036

b
 0.042

ab
 0.047

ab
 0.045

ab
  ** NS NS 

Cyanophyceae 0.173
a
 0.143

ab
 0.0131

b
 0.164

ab
 0.176

a
  ** ** NS 

Euglenophyceae 0.011
b
 0.010

b
 0.010

b
 0.010

b
 0.041

a
  *** ** NS 

Total phytoplankton 0.265
a
 0.207

b
 0.204

b
 0.273

ab
 0.261

a
  *** ** NS 

Crustacea  5.089
ab

 4.088
c
 4.747

bc
 4.796

bc
 5.814

a
  *** * NS 

Rotifera 4.570
b
 3.770

c
 3.557

c
 4.079

bc
 5.296

a
  *** * NS 

Total zooplankton 9.659
b
 7.859

c
 8.035

c
 8.875

bc
 11.110

a
  *** ** NS 

Total plankton 9.925
b
 8.066

c
 8.508

c
 9.118

bc
 11.371

a
  *** ** NS 

Plankton + periphyton 
(cm

3
 pond

–1
) 

533.90
b
 456.12

c
 464.52

c
 505.96

bc
 632.50

a
  *** ** NS 
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Figure 2. Interaction effects of experimental period and addition of substrates for 

periphyton development on the biovolume (mean ±95% CI) of total phytoplankton 

(A), total zooplankton (B), and total plankton (C) in C/N controlled freshwater prawn 

monoculture ponds. 
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3.2 Effects on periphytic plankton biovolume 

 

The list of the identified genera under the different groups of periphytic plankton is 

summarized in Table 1. Most of the identified algal periphytic genera were common 

in water column phytoplankton (except 5 genera). About 40 genera of algae belonging 

to Bacillariophyceae (10 genera), Chlorophyceae (21), Cyanophyceae (7) and 

Euglenophyceae (2) and 6 genera of attached zooplankton belonging to Rotifer (5) 

and Crustacea (1) were identified as periphyton communities in substrate added 

ponds. Among autotrophic periphyton communities, Synedra, Tabellaria, Navicula, 

Fragillaria, Cyclotella and Diatoma (Bacillariophyceae), Chlorella, Sphaerocystes, 

Palmella, Pediastrum, Microspora, Oocystis, Ulothrix and Scenedesmus 

(Chlorophyceae), Microcystis, Anabaena, Aphanizomenon, Aphanocapsa and 

Gomphosphaeria (Cyanophyceae), Euglena and Phacus (Euglenophyceae), and 

among zoobenthic periphyton crustacean nauplii, and Asplanchna, Brachionus and 

Filinia (Rotifera) were the dominating genera.  

 

The results of the ANOVA of major groups of periphytic plankton biovolume are 

shown in Table 4. C/N ratio control influenced the biovolume of all the major groups 

of periphytic plankton except Crustaceans. The mean total biomass of all the major 

groups of algal periphyton and zoobenthic periphyton (except Crustaceans) were 

significantly higher in treatment CN20 than in treatment CN10. Increasing C/N ratio 

from 10 to 20 increased the biovolume of algal periphyton by 64%, zoobenthic 

periphyton by 48% and total periphyton by 50%. The biovolume of all the major 

groups of periphytic plankton (except Euglenophyceae and Crustaceans) also varied 

with the culture period and the mean total biomass was higher at the end of the culture 

periods (Table 4). However, there was no interaction effect of C/N ratio control and 

experimental periods on the biovolume of all groups of periphytic plankton.  

 

 

 

 

 

 



 

 

 

 

Table 4. Effects of C/N ratio control and experimental period on the abundance (based on total volume, mm
3
cm

–2
) of different groups of 

periphytic plankton in ponds based on two-way repeated measures ANOVA.  

 

Variable 

Means (Tukey test)  Significance (P value) 

C/N ratio  Month 

CN10 CN15 CN20  March April May June July  C/N  Month C/N×Month 

Bacillariophyceae 0.015
c
 0.020

b
 0.026

a
  0.014

b
 0.023

a
 0.019

ab
 0.023

a
 0.023

a
  *** *** NS 

Chlorophyceae 0.027
b
 0.037

a
 0.043

a
  0.023

c
 0.034

bc
 0.033

bc
 0.040

ab
 0.048

a
  *** *** NS 

Cyanophyceae 0.039
b
 0.050

ab
 0.062

a
  0.031

b
 0.060

a
 0.058

a
 0.057

a
 0.044

ab
  ** ** NS 

Euglenophyceae 0.001
b
 0.001

b
 0.002

a
  0.001 0.002 0.001 0.001 0.001  * NS NS 

Total phytoplankton 0.081
c
 0.108

b
 0.133

a
  0.069

b
 0.119

a
 0.110

a
 0.120

a
 0.116

a
  *** *** NS 

Rotifera 0.336
b
 0.399

ab
 0.498

a
  0.411

ab
 0.344

b
 0.321

b
 0.411

ab
 0.568

a
  * * NS 

Crustacea 0.149 0.218 0.219  0.204 0.204 0.189 0.175 0.204  NS NS NS 

Total zooplankton 0.485
b
 0.618

ab
 0.716

a
  0.615

ab
 0.548

b
 0.511

b
 0.586

ab
 0.772

a
  ** * NS 

Total plankton 0.566
b
 0.726

a
 0.849

a
  0.685

ab
 0.667

b
 0.621

b
 0.706

ab
 0.888

a
  *** * NS 

 

C/N ratio = Carbon/Nitrogen ratio; CN10 = treatment with C/N ratio 10; CN15 = treatment with C/N ratio 15; CN20 = treatment with C/N ratio 20; C/N × Month = 

interaction of different C/N ratio and months. The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects 

were significant, ANOVA was followed by Tukey test. *P<0.05; ** P<0.01; *** P<0.001; NS, Not significant. 
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3.3 Effects on total heterotrophic bacterial biovolume (THB) 

 

C/N ratio control influenced the THB biovolume of water column, sediment and 

periphyton whereas the addition of substrates had no effects on them (Table 5). 

Increasing C/N ratio from 10 to 20 increased the biovolume of water THB by 70%, 

sediment THB by 36% and periphyton THB by 40%. The biovolume of THB in the 

water column, sediment and periphyton increased during the culture period and the 

rate of increase was the highest in treatment CN20, intermediate in treatment CN15 

and the lowest in treatment CN10  (Figure 3; Table 6). There was no interaction effect 

of experimental periods (month) and substrates addition on the biovolume of THB 

load in water column, sediment and periphyton. However, an interaction effect of 

experimental period (month) and C/N ratio control was observed on the biovolume of 

THB load in water column, sediment and periphyton (Table 6).  

 

3.4 Effects on benthic macroinvertebrates biovolume 

 

The results of the ANOVA of major groups of benthic macroinvertebrates biovolume 

are shown in Table 7. The benthic macroinvertebrates were divided into 

Chironomidae, Oligochaeta, Mollusca and un-identified groups. Chironomidae was 

the most dominant groups among benthos contributing 65 to 70% to the total biomass 

followed by Oligochaeta. C/N ratio control influenced the biovolume of 

Chironomidae only among all the major groups of benthic macroinvertebrates. 

Increasing C/N ratio from 10 to 20 increased the biovolume of total benthic 

macroinvertebrates by 21%. Addition of substrates had no effect on the biovolume of 

any groups of benthic macroinvertebrates. The biovolume of Chironomidae and total 

benthic macroinvertebrates was similar during the initial sampling and the first month 

of culture and then decreased continuously until the end of the culture period (Table 

8). However, there was no interaction effect of C/N ratio control and experimental 

periods and substrates addition and experimental periods on the biovolume of all of 

the major groups of benthic macroinvertebrates (Table 8). 

 

 

 



 

 

Table 5. Effects of different C/N ratio and addition of periphyton substrates on the abundance (based on total volume) of total heterotrophic 

bacterial load in water, sediment and periphyton based on two-way repeated measures ANOVA 

 

C/N ratio = Carbon/Nitrogen ratio; CN10 = treatment with C/N ratio 10; CN15 = treatment with C/N ratio 15; CN20 = treatment with C/N ratio 20; C/N×Month = interaction 

of different C/N ratio and months. The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were 

significant, ANOVA was followed by Tukey test. *P<0.05; ** P<0.01; *** P<0.001; NS, Not significant. 

 

Table 6. Effects of experimental period and its interaction with addition of substrates and different C/N ratio on the abundance (based on total 

volume) to total heterotrophic bacterial load in water, sediment and periphyton based on two-way repeated measures ANOVA. 

 

The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were significant, ANOVA was followed by 

Tukey test.  *** P<0.001; NS, Not significant. 

Variable 

Means (Tukey test)  Significance (P value) 

C/N ratio   Periphyton substrate 

CN10 CN15 CN20  Yes No  C/N  P C/N×P 

Water THB (×103 µm3ml–1) 38.33c  52.49b  65.29a   52.20  51.88   *** NS NS 

Sediment THB (×105 µm3g–1) 56.58c  66.39b  76.99a   66.43  66.88   *** NS NS 

Periphyton THB (×105 µm3g–1) 33.45a  38.97b  46.74c   - -  *** - - 

Variable 

Means (Tukey test)  Significance (P value) 

Month 

March April May June July  Month  Month×Subs Month×C/N 

Water THB (×103 μm3ml–1) 32.97e 49.05d 55.38c 59.36b 63.44a  *** NS *** 

Sediment THB (×105μm3g–1) 49.29e 60.63d 67.67c 74.46b 81.33a  *** NS *** 

Periphyton THB (×105μm3g–1) 24.26e 34.91d 42.35c 46.43b 50.65a  *** - *** 
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Table 7. Effects of different C/N ratio and addition of periphyton substrates on the abundance (based on total volume, cm
3
m

–2
) of different 

groups of benthic macroinvertebrates in ponds based on two-way repeated measures ANOVA  

Variable 

Means (Tukey test)  Significance (P value) 

C/N ratio  Substrate 

CN10 CN15 CN20  Yes No  C/N  P C/N×P 

Chironomidae 7.837b  7.794b  10.058a   8.192  8.934   ** NS NS 

Oligochaeta 2.088  2.389  2.345   2.150  2.397   NS NS NS 

Mollusca 1.037  1.137  1.062   1.144  1.014   NS NS NS 

Un-identified groups 0.823  0.754  0.841   0.854  0.758   NS NS NS 

Total benthos 11.787b  12.077ab  14.309a   12.343  13.105   * NS NS 
 

C/N ratio = Carbon/Nitrogen ratio; CN10 = treatment with C/N ratio 10; CN15 = treatment with C/N ratio 15; CN20 = treatment with C/N ratio 20; C/N×Month = interaction 

of different C/N ratio and months. The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were 

significant, ANOVA was followed by Tukey test. *P<0.05; ** P<0.01; *** P<0.001; NS, Not significant. 

 

Table 8. Effects of experimental period and its interactions with addition of substrates and different C/N ratio on the abundance (based on total 

volume, cm
3
m

–2
) of different groups of benthic macroinvertebrates in ponds based on two-way repeated measures ANOVA 

The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. If the effects were significant, ANOVA was followed by 

Tukey test.  *** P<0.001; NS, Not significant. 

 

Variable 

Means (Tukey test)  Significance (P value) 

Month 

March April May June July  Month  Month×Subs Month×C/N 

Chironomidae 14.321
a
 14.468

a
 7.816

a
 3.143c 3.069c  *** NS NS 

Oligochaeta 2.923 2.410 1.939 2.190 1.907  NS NS NS 

Mollusca 1.445a 1.320ab 1.205abc 0.734bc 0.691c  ** NS NS 

Un-identified groups 0.817 0.838 0.911 0.796 0.670  NS NS NS 

Total benthos 19.508a 19.037a 11.871b 6.791c 6.413c  *** NS NS 
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Figure 3. Interaction effects of different C/N ratio and experimental time on the 

biovolume (mean ±95% CI)) of water heterotrophic bacteria (A), sediment 

heterotrophic bacteria (B) and periphyton heterotrophic bacteria (C) in C/N controlled 

freshwater prawn monoculture pond. 
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4 Discussions 
 

In aquaculture ponds, complex interrelated physical, chemical and biological 

processes contribute to the formation and the stability of the ecosystem. In C/N-CP 

ponds, the major pond communities are phytoplankton, periphyton (attached biota), 

zooplankton, microbial floc, and benthic macroinvertebrates. Among these pond 

communities, phytoplankton and algal periphyton are considered as autotrophic 

organisms, forming the base of the aquatic food web and the others are considered as 

heterotrophic organisms, contributing as consumer or decomposer to the pond 

ecosystem. The biomass of each of these communities in aquaculture ponds and lakes 

is influenced by management factors, such as species used in culture system, fish 

stocking density and ratio, and nutrient input quality and quantity (Milstein, 1993; 

Diana et al., 1997). Fish feeding habits also have an important influence on the 

quantity of these freshwater communities both directly by consumption and indirectly 

through influencing the food web and nutrients availability (Rahman et al., 2006).  

 

In the present research, the observed increase in the biovolume of water column 

plankton (9%) and periphytic plankton (50%) in higher C:N ratio treatment might be 

due to the higher amount of added organic matter in  such ponds. The higher C:N 

ratio treatment ponds (CN20) received additional 0.9 kg tapioca starch for each kg of 

applied feed to maintain a high C/N ratio compared to the CN10 treatment ponds. 

Azim and Little (2006) reported that the formation of autotrophic organisms in 

aquaculture ponds can be supplemented by the addition of organic matter. It has been 

reported that increased amounts of organic matter indirectly supplies inorganic 

nutrients through decomposition by bacteria (Moriarty, 1986; Milstein, 1992; 

Moriarty, 1997). In our previous study (Asaduzzaman et al., 2008), this resulted 

overall higher inorganic nutrient (except nitrogenous compounds) concentration in 

treatment CN20 compared to the other treatments. In turn, increased nutrients 

availability resulted in increased phytoplankton and periphyton production as 

indicated by a greater biovolume of them in treatment CN20.  Another cause might be 

due to the stimulatory effects between autotrophic and heterotrophic organisms. The 

experiment was conducted in earthen aquaculture ponds where both autotrophic and 

heterotrophic organisms interact. Algae and bacteria have a range of stimulatory or 

inhibitory effects on each other (Cole, 1982). Along with the added carbohydrate, 

senescent algae or algal detritus are a major source of organic substrate for 
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heterotrophic bacterial growth whereas living algae provide oxygen for 

decomposition. In return, bacteria regenerate inorganic nutrients and vitamins that 

stimulate algal productivity (Cole, 1982). At the same time, higher amount of 

phytoplankton, periphytic algae and THB might have quickly utilized the nutrients 

components mainly ammonia and nitrate from the water column resulting in a 

significant reduction of it in treatment CN20 (Asaduzzaman et al., 2008). The Pearson 

correlation analysis showed that there was a significant relationship among the 

nitrogenous compounds concentration, plankton and heterotrophic bacteria biovolume 

(Figure 4). It showed that observed higher biomass of bacteria and phytoplankton 

reduced the concentration of TAN and NO3-N. In general, phytoplanktons take up 

inorganic N and bacteria release inorganic N (through decomposition). In C/N-

controlled system, increased heterotrophic bacteria utilize N to synthesize bacterial 

protein and new cells thereby, reduced toxic nitrogenous compounds from the 

aquaculture ponds (Hari et al., 2004).  

 
  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4. Relationship among water TAN and biovolume of total phytoplankton (A), 

water NO3-N and biovolume of total phytoplankton (B), water TAN and biovolume of 

total heterotrophic bacteria (C), water NO3-N and biovolume of total heterotrophic 

bacteria (D). 
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Periphyton is a complex mixture of autotrophic and heterotrophic organisms (Azim et 

al., 2005) and hence, there is an intense exchange of inorganic and organic solutes 

between autotrophic and heterotrophic components within the periphyton assemblage 

(Verdegem et al., 2005). Again in ponds with substrates, organic matter and nutrients 

derived from feed and carbohydrates are partly trapped by periphyton (van Dam et al., 

2002) which had a fertilization effect on autotrophic periphyton in higher C/N ratio 

treatments. Hence, a better growth and turnover of bacteria in the periphyton, also 

means more inorganic nutrients for the algae in higher C/N ratio treatments. The 

biovolume of all of the major groups of autotrophic periphyton increased steadily 

during the experimental period (Table 3), indicating the low grazing pressure on 

periphyton by the overall low biomass of prawns. The reported stocking densities of 

freshwater prawn were as high as 120,000 ha
–1

 in substrate based systems (Tidwell 

and Bratvold, 2005) which was much higher than the density maintained in the 

present study. Freshwater prawn selectively feeds (animal portion and detrital 

aggregates rather than picking up mixed biomass) on periphyton (Uddin et al., 2006) 

thereby, allowing them to grow continuously in low stocking density monoculture 

ponds. 

 

The observed higher biovolume of autotrophic organisms due to increased C:N ratio 

also influenced zooplankton and zoobenthic periphyton, resulting in higher biomass in 

treatment CN20 compared to treatment CN10. Substrates addition decreased the 

phytoplankton biovolume in the water column, which might be due to the competition 

between periphytic algae and water column algae for light and bioavailable nutrients 

in overlying water. Secondly, periphyton substrates might have shading effects which 

reduce sunlight availability for phytoplankton. Thirdly, some algal species might 

prefer to be colonized on hard substrates and therefore move from planktonic state to 

the periphytic state if substrate were available. The observed higher biovolume (96%) 

of combined production of water column plankton and periphytic plankton in 

substrate based ponds indicated that periphyton substrates compensated the adverse 

effects on water column plankton. In addition, substrates based system provided 

additional natural food source (periphyton) compared to substrates free ponds, 

providing an extra source of natural food item for the cultured species. The observed 

higher mean biomass of water column phytoplankton, zooplankton and total plankton 
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in initial month was mainly due to fertilization effects during the pond preparation. 

Following a decrease in 1
st
 months, the biovolume of all of them increased steadily 

during the culture period (Figure 3). This might be due to the relatively low grazing 

pressure of water column plankton by prawn allowing them to grow continuously.  

 

The observed higher biovolume of bacteria in the water column, sediment and 

periphyton in treatment CN20 revealed that heterotrophic bacteria utilized the added 

carbon source resulting in higher productivity (Hari et al., 2004). The reported 

increase of THB count in the water column, sediment and periphyton during the 

culture period (Figure 3) was mainly because of increased amount of feed and 

carbohydrate application due to the increased biomass of prawn over the time. The 

higher autotrophic biomass and lower concentrations of toxic nitrogenous compounds 

also influenced benthic macroinvertebrate, resulting in higher biomass in treatments 

CN20 compared to treatment CN10. Despite the fact that the bottom dissolved oxygen 

concentration were within the suitable range (4.64-6.95 mg l
–1

) and the ponds became 

rich in nutrients over the time, the observed decrease in biovolume of total benthos 

during the culture period could have been caused by grazing by freshwater prawn. 

Freshwater prawn prefers to forage on animals like oligochates, chironomids, 

nematodes, gastropods and zooplankton in the natural habitat (Coyle et al., 1996; 

Tidwell et al., 1997). 

 

A conceptual model of nitrogenous compounds, freshwater prawn and food organisms 

interaction, as influenced by the increasing C/N ratio from 10 to 20 and addition of 

substrates for periphyton development using the data from Asaduzzaman et al., (2008) 

and Tables 2-8 is given in Figure 5. The uneaten feed and feces contributed to the 

organic mater load of the system. The microbial decomposition of organic matter in 

the system led to increased levels of TAN and nitrite, both harmful to freshwater 

prawns even at low concentrations (Jiménez-Montealegre et al., 2002; Torres-

Beristain et al., 2006). The process of nitrogenous compounds utilization and 

transformations take place in water, sediment and periphyton mat as indicated by 

block arrows (Figure 5). In C/N controlled periphyton based ponds (CN20+P) the 

added carbon source, together with the waste nitrogen was converted into microbial 

floc, which in turn can be eaten by the cultured freshwater prawn (Crab et al., 2007). 

Nitrifying bacteria process the ammonia into nitrite, which is also toxic, and then 
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nitrite into nitrate, which is much less harmful. Both TAN and nitrate were 

assimilated by the phytoplankton, periphyton and microbial floc present in the ponds.  

Increasing C/N ratio increased the biovolume of plankton, periphyton, heterotrophic 

bacteria and benthos, and finally increased the freshwater prawn production as 

indicated by upwards block arrows (Figure 5). Among these natural food items, 

freshwater prawn effectively graze on benthos indicated by solid arrow resulting in 

decrease of abundance over the time as indicated by downwards black block arrow, 

whereas, other natural food items were under-utilized by freshwater prawn as 

indicated by the dotted arrows. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. A conceptual model of nitrogenous compounds, freshwater communities 

and cultured prawn interaction, as influenced by the increasing C/N ratio from 10 to 

20 and addition of substrates for periphyton development.  

 

In conclusion, increasing C/N ratio increased the biovolume of plankton, periphyton, 

heterotrophic bacteria and benthic macroinvertebrate. However, the availability of 

pond communities in the present research seemed to be underutilized by the 

freshwater prawn. This suggests further investigation on the possibility of decreasing 

artificial feeding rate or increasing in stocking density of prawn. In this system, the 

biomass of plankton and periphyton seemed to be totally unutilized by the freshwater 

prawn. Therefore, inclusion of both plankton and periphyton grazing fish species like 

tilapia (Dempster et al., 1993; Huchette et al., 2000; Azim et al., 2003a, Uddin 2007) 
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can further increase the production, system environment and overall sustainability in 

C/N-CP ponds and is subject of further research. 
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Abstract 

An on-station trial was conducted to evaluate the effect of stocking density of 

freshwater prawn and addition of different levels of tilapia on production in 

carbon/nitrogen (C/N) controlled periphyton based system. The experiment had a 2×3 

factorial design, in which two levels of prawn stocking density (2 and 3 juveniles m
−2

) 

were investigated in 40 m
2
 earthen ponds with three levels of tilapia density (0, 0.5 

and 1 juveniles m
−2

). A locally formulated and prepared feed containing 30% crude 

protein with C/N ratio close to 10 was applied considering the body weight of prawn 

only. Additionally, tapioca starch was applied to the water column in all ponds to 

increase C/N ratio from 10 (as in feed) to 20. Increasing stocking density of tilapia 

decreased the chlorophyll a concentration in water and total nitrogen in sediment, and 

increased the bottom dissolved oxygen. The concentrations of inorganic nitrogenous 

species (NH3–N, NO2–N and NO3–N) were low due to maintaining a high C/N ratio 

(20) in all treatment ponds. Increasing prawn density decreased periphyton biomass 

(dry matter, ash free dry matter, chlorophyll a) by 3–6% whereas tilapia produced a 

much stronger effect. Increasing stocking density of freshwater prawn increased the 

total heterotrophic bacterial (THB) load of water and sediment whereas tilapia 

addition decreased the THB load of periphyton. Both increasing densities of prawn 

and tilapia increased the value of FCR. Increasing prawn density increased gross and 

net prawn production (independent of tilapia density). Adding 0.5 tilapia m
−2

 on 

average reduced prawn production by 12–13%, and tilapia addition at 1 individual 

m
−2

 produced a further 5% reduction (independent of prawn density). The net yield of 

tilapia was similar between 0.5 and 1 tilapia m
−2

 treatments and increased by 8.5% 

with increasing stocking density of prawn. The combined net yield increased 

significantly with increasing stocking density of prawn and tilapia addition. The 

significantly highest benefit cost ratio (BCR) was observed in 0.5 tilapia m
−2

 

treatment but freshwater prawn density had no effect on it. Therefore, both stocking 

densities (2 and 3 juveniles m
−2

) of prawn with the addition of 0.5 tilapia m
−2

 resulted 

in higher fish production, good environmental condition and economic return and 

hence, polyculture of prawn and tilapia in C/N-controlled periphyton-based system is 

a promising option for ecological and sustainable aquaculture. 

 

Keywords: Tilapia, Freshwater prawn, Polyculture, Stocking density, C/N ratio, 

Periphyton, Heterotrophic bacteria 
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1 Introduction 

 

The use of periphyton substrates and manipulation of C:N ratio in freshwater finfish 

and prawn production in extensive ponds have been found promising (see reviews of 

van Dam et al., 2002; Hargreaves, 2006; Azim and Little, 2006). Asaduzzaman et al. 

(2008) showed that a feed input along with an additional carbohydrate application to 

maintain a C/N ratio of 20 in combination with substrate addition for periphyton 

development improved the net yield of freshwater prawn by 75%. Compared to 

control ponds (C/N ratio 10 and no substrates), these higher yield concurred with 

reduced levels of toxic inorganic nitrogenous compounds, increased periphyton 

productivity and higher concentrations of total heterotrophic bacteria in the water 

column and sediment. In these monoculture ponds, at a stocking density of 2 prawns 

per m
2
, the algal and periphyton biomasses seemed to be underutilized. Therefore, it 

was hypothesized that higher net yields and benefits can be obtained by increasing the 

prawn stocking density as well as by addition of tilapia as a predominant periphyton 

grazer. The key characteristic of this system is the reliance on the combination of 

natural and artificial feed. Recently, there has been a growing interest in polyculture 

of freshwater prawn with tilapia (Uddin, 2007; New, 2005; dos Santos and Valenti, 

2002). Uddin (2007) showed that in mixed culture the feeding niches of tilapia and 

prawn only partially overlap, and recommended this duo-culture as an alternative to 

polyculture of Chinese and Indian carps. 

 

In fed ponds, roughly 3 times the amount of organic matter that is retained in fish 

production settles to the pond bottom, creating an anoxic zone where nutrients remain 

trapped (Avnimelech and Zohar, 1986). By tilapia driven re-suspension the bottom 

nutrients are exposed to aerobic conditions in the water column and better 

mineralized, stimulating the natural food web (Jiménez-Montealegre et al., 2002). 

Ritvo et al. (2004) demonstrated that fish driven re-suspension leads to an appreciable 

mixing and oxidation of the sediment. It can be hypothesized that in ponds with 

substrates for periphyton development, part of the re-suspended matter will be trapped 

by the periphytic communities, and hence stay more time in the oxygen rich water 

column than in substrate free ponds. 

 

In brief, providing substrates for periphyton development, increasing the C/N ratio 

and stimulating fish driven re-suspension of nutrient rich sediments improve pond 
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production. These approaches are simple and cheap, making them also socially and 

economically sustainable, even for small-scale or poor farmers. The novelty of this 

research is to combine the three approaches, with the goal of rising pond productivity 

and hence the nutrient use efficiency and farming sustainability. The present research 

looked at the effects of different prawn and tilapia densities on the water, periphyton 

and sediment quality and (for periphyton only) the quantity. Attention was also given 

to the heterotrophic bacterial counts in the water column, sediment and periphytic 

biofilms. 

 

2 Materials and methods 

 

2.1 Experimental design 

 

An on-station trial was conducted with a 2×3 factorial design with two levels of 

stocking density of freshwater prawn (2 and 3 individual m
−2

) as first factor and three 

tilapia densities (0, 0.5 and 1 individual m
−2

) as second factor. The treatments with 

lower stocking density of prawn (2 juveniles m
−2

) are referred to as ‗P2T0‘, ‗P2T0.5‘ 

and ‗P2T1‘, while the treatments with higher stocking density (3 juveniles m
−2

) are 

referred to as ‗P3T0‘, ‗P3T0.5‘ and ‗P3T1‘. P2 and P3 refer to the different stocking 

densities per m
2
 of prawn and T0, T0.5 and T1 refer to the different stocking densities 

per m
2
 of tilapia. Treatments were executed in triplicate and assigned randomly 

among ponds. 

 

2.2 Experimental site and pond preparation 

 

The experiment was carried out at the Fisheries Field Laboratory of the Faculty of 

Fisheries, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh for a 

period of 120 days during 20th August to 20th December, 2007. A 81×8.9 m earthen 

pond with an average depth of 1 m was drained completely and partitioned by 

galvanized iron sheets into 18 small ponds of 40 m
2
 each. The ponds were rain-fed 

and fully exposed to prevailing sunlight and were previously used for research. Ponds 

were manually cleaned of aquatic vegetation before starting the experiment. All 

unwanted fishes were eradicated by rotenone application at the rate of 50 g pond
−1

. 

Lime (CaCO3) was applied to all ponds at the rate of 250 kg ha
−1

 on Day 1. On Day 4, 

ponds were filled with water from a deep tube-well. On Day 6, 15 side shoots of 

bamboo (locally known as kanchi) per m
2
 water surface area, with a mean diameter of 
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2.8 cm were posted vertically into the bottom mud in all ponds, excluding a 0.5 m 

wide perimeter. This resulted in an additional substrates surface area of 40 m
2
 for 

periphyton development equaling 100% of the pond surface area. On Day 8, all ponds 

were fertilized with semi-decomposed cattle manure, urea and triple super phosphate 

(TSP) at the rates of 3,000, 100 and 100 kg ha
− 1

, respectively. The ponds were left for 

10 days post-fertilization to allow plankton development in the water column and 

periphyton growth on substrates, and subsequently stocked. 

 

2.3 Stocking and pond management 

 

Juveniles of Macrobrachium rosenbergii (2 ± 0.02 g) and Oreochromis niloticus (24 

± 0.24 g) procured from a nearby commercial hatchery were stocked in the ponds 

according to the experimental design. A locally formulated and prepared pellet feed (2 

mm) containing 30% protein with C/N ratio close to 10 was used. The feed was 

applied considering the body weight of prawn only at a daily feeding rate of 5% body 

weight at the start of experiment, and gradually declining to 3% body weight at the 

end of the culture period. Feed was distributed evenly over the pond‘s surface, twice 

daily at 07:00 and 18:00 h. Individual weights of minimum 10% of initially stocked 

prawn and tilapia were sampled monthly to estimate the biomass and adjust the 

feeding rate. The prawn and tilapia were sampled using a cast net after removing 

some bamboo kanchi, which were re-positioned after sampling. 

 

Locally purchased tapioca starch was used as carbohydrate source for manipulating 

the C/N ratio. In order to raise the C/N ratio to 20 in all the ponds, 0.9 kg tapioca 

starch was applied for each kg of formulated feed. The pre-weighed tapioca starch 

was mixed in a beaker with pond water and uniformly distributed over the ponds‘ 

surface directly after the feed application at 07:00 h. The actual proximate 

composition of the diet and tapioca starch is given in Table 1. 

 

Table 1 

Proximate composition of the prepared feed and tapioca starch 
 

Component Moisture (%) Protein (%) Lipid (%) Fiber (%) Ash (%) NFE
* 

Prepared feed 11.6 29.9 8.1 4.8 13.1 32.5 

Tapioca starch 12.9 1.6 0.9 5.4 5.2 74.0 

The percentages are given on a wet weight basis.   

* NFE=nitrogen free extracts 
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2.4 Prawn/tilapia harvesting and estimation of yield parameters 

 

Prawns and tilapia were harvested after draining the ponds. Individual length (wooden 

measuring board; precision 0.1 cm) and weight (Denver-xp-3000; precision=0.1 g) 

were recorded. Specific growth rate (SGR), feed conversion ratio (FCR), and net 

yields were calculated as follows: 

SGR = [(ln final weight − ln initial weight) × 100]/days of experiment 

FCR (prawn only) = feed applied (dry weight) / live weight gain 

Net yield = total biomass at harvest − total biomass at stocking 

 

2.5 Determination of water quality parameters 

 

Water samples were collected using a horizontal water sampler from three locations 

of each pond and pooled before analysis. Water quality parameters, temperature 

(Celsius thermometer), surface and bottom dissolved oxygen (YSI digital DO meter, 

model 58), pH (CORNING445 pH meter) and transparency (Secchi disc) were 

monitored in situ at 09:00 h on a weekly basis. Before nutrient analysis, water 

samples were filtered through microfibre glass filter paper (Whatman GF/C), using a 

vacuum pressure air pump. Total alkalinity (titrimetric method) and NH3–N, NO2–N, 

NO3–N and PO4–P concentrations (HACH kit model DR 2010) in the filtrate were 

measured on a monthly basis (APHA, 1992). The filter paper was kept in a test tube 

containing 10 ml of 90% acetone, ground with a glass rod and preserved in a 

refrigerator for 24 h. Later, chlorophyll a was determined using a spectrophotometer 

(Milton Roy Spectronic, model 1001 plus) at 750- and 664-nm wave length, following 

Boyd (1979). Total heterotrophic bacterial (THB) load of water was determined as 

described in Asaduzzaman et al. (2008). 

 

2.6 Determination of sediment quality parameters 
 

Sediment samples were collected from three locations in each pond using PVC pipes 

(having 4 cm diameter and sampling depth 10 cm) on a monthly basis between 09:00 

and 10:00 h. The samples were dried, ground and sieved with a 2 mm sieve (Soil and 

Plant Analysis Council Inc., 1999). Soil pH was determined by a direct reading digital 

pH meter (CORNING 445 pH meter) with soil water ratio 1:2.5 (McLean, 1982). 

Organic matter of sediment was determined by ignition method (Page et al., 1989). 

Total nitrogen of sediment was determined by the common Micro-Kjeldahl digestion 
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method following Page et al. (1989). Total phosphorus of sediment samples were 

determined by the acid digestion method (Jones and Case, 1990; Watson and Isaac, 

1990). Sediment THB load was determined as described in Asaduzzaman et al. 

(2008). 

 

2.7 Determination of periphyton biomass 

 

From each pond, three poles were selected randomly and two 2×2 cm
2
 samples of 

periphyton were taken at each of three depths (25, 50 and 75 cm below from the water 

surface) per pole on a monthly basis starting after 7 days of substrate installation. One 

of the two samples from three poles and three depths were pooled for dry matter and 

ash free dry matter analysis. Another pooled sample from three poles and three depths 

were used for chlorophyll a determination. Dry matter, ash free dry matter, 

chlorophyll a and THB load of periphyton were analyzed as described in 

Asaduzzaman et al. (2008). The autotrophic index (AI) was calculated using the 

following formula (APHA, 1992): 

AI=AFDM in μg cm
−2

 /Chlorophyll a in μg cm
−2

. 

 

2.8 Economic analysis 
 

An economic analysis was performed to estimate the net return and benefit cost ratio 

in the different treatments. The following equation was used: 

R = I – (FC + VC + Ii) 

Where, R=net return, I=income from tilapia and prawn sale, FC=fixed/common costs, 

VC=variable costs and Ii=interest on inputs. The benefit cost ratio was determined 

with the following equation: 

Benefit cost ratio (BCR) = Total net return/Total input cost 

The wholesale price per kg of prawn was 400 taka. The wholesale price per kg of 

tilapia was 70 and 90 taka depending on size. The prices of inputs, fish and prawn 

correspond to the Mymensingh whole sale market prices in 2007 and are expressed in 

Bangladeshi taka (1US$=68.5 BDT). 

 

2.9 Statistical analysis 

 

Growth and yield parameters (growth, yield, FCR, SGR, and survival) and economic 

performance were analyzed by a two-way ANOVA with freshwater prawn stocking 

density and different levels of tilapia addition as main factors. Sediment and water 
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quality were compared by repeated measures ANOVA with freshwater prawn 

stocking density and different level of tilapia addition as main factors and time as the 

sub-factor (Gomez and Gomez, 1984). The assumptions of normal distributions and 

homogeneity of variances was checked before analysis. The percentage and ratio data 

were analyzed using arcsine-transformed data. All ANOVA were performed using 

SPSS (Statistical Package for Social Science) version 12. If a main effect was 

significant, the ANOVA was followed by Tukey's test at P<0.05 level of significance. 

 

 

3 Results 
 

3.1 Effects on water and sediment quality parameters 
 

Water and sediment quality parameters and outcomes of ANOVA are presented in 

Table 2. For water quality parameters, both stocking density of prawn and addition of 

different levels of tilapia influenced the surface and bottom DO. The addition of 

tilapia at 1 individual m
−2

 increased the bottom DO by 9% compared to the treatments 

without tilapia. Increasing prawn stocking density decreased the transparency by 8% 

whereas increasing stocking density of tilapia increased the transparency by 70%. 

Total alkalinity, NH3–N, NO2–N, NO3–N and PO4–P were not influenced by the 

stocking density of prawn and tilapia.  

 

All inorganic nitrogenous compounds (NH3–N, NO2–N and NO3–N) and PO4–P 

decreased significantly with the time whereas the total alkalinity was stable over the 

time (Table 3). The chlorophyll a concentration was not influenced by the stocking 

density of prawn, but addition of tilapia significantly reduced it with no difference 

between densities of 0.5 and 1 tilapia m
−2

. Chlorophyll a concentration decreased only 

during the first month with no significant variation during the rest of the experiment 

(Table 3). The addition of tilapia to the ponds facilitated a significant reduction of 

total nitrogen in the sediment. Total phosphorus in the sediment increased with 

increasing prawn density. Increasing prawn density increased the THB load of water 

and sediment by 7–8%. The THB count in the water column and sediment increased 

gradually during the culture period (Table 3), the final amounts more than doubling 

the initial values. 
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Table 2  

Effects of freshwater prawn density and tilapia addition on water and sediment quality 

parameters based on two-way ANOVA 

 

P2=treatment with 2 prawn m−2; P3=treatment with 3 prawn m−2; T0=treatment without addition of 

tilapia; T0.5=treatment with addition of 0.5 tilapia m− 2; T1=treatment with addition of 1 tilapia m−2, 

P×T=interaction of freshwater prawn density and addition of different levels of tilapia. The mean 

values with no superscript letter in common per factor indicate significant difference at 0.05. If the 

effects were significant, ANOVA was followed by Tukey test. NS=not significant. 

 

3.2 Effects on periphyton biomass 

 

Periphyton biomass (dry matter, ash free dry matter and chlorophyll a) per unit 

substrate surface area and THB load are given in Table 4. Increasing prawn density 

decreased these parameters by 3–6%. Tilapia produced a much stronger effect. 

Adding 0.5 tilapia m
−2

 decreased these parameters by 25–50%, and at 1 tilapia m
−2

 

these parameters decreased by a further 7–24%. Increasing tilapia density also 

decreased the mean values of all these parameters. The DM, AFDM and chlorophyll a 

contents in the treatments with tilapia increased during the first half of the 

experimental period after which they constantly decreased, in contrast to treatments 

without tilapia in which they increased steadily during the experiment (Figure 1). 

Tilapia addition at 1 individual m
−2

 decreased the THB load of periphyton by 7% 

compared to ponds without or with 0.5 tilapia m
−2

. 

Variables 

Means (Tukey test)  P×T 

Prawn density  Tilapia density 

P2 P3  T0 T0.5 T1  

Water quality parameters         

Temperature (°C) 27.1
 

26.9
 

 27.0
 

27.1
 

27.0
 

 NS 

Surface dissolved oxygen (mg l
–1

) 6.47
b 

6.51
a 

 6.50
a 

6.46
b 

6.51
a 

 NS 
Bottom dissolved oxygen (mg l

–1
)  3.81

b 
3.87

a 
 3.65

c 
3.90

b 
3.98

a 
 NS 

pH  7.27 7.31  7.30 7.29 7.28  
– 

Transparency (cm)  40
a 

37
b 

 27
b 

42
a 

46
a 

 0.01 
Total Alkalinity (mg l

–1
) 127

 
123

 
 125

 
123

 
127

 
 NS 

Chlorophyll a (µg l
–1

) 146
 

151
 

 196
a 

127
b 

122
b 

 NS 

Ammonia-N (mg l
–1

) 0.07
 

0.06
 

 0.07
 

0.07
 

0.06
 

 NS 

Nitrite-N (mg l
–1

) 0.007
 

0.006
 

 0.007
 

0.007
 

0.006
 

 NS 
Nitrate-N (mg l

–1
) 0.040

 
0.038

 
 0.041

 
0.035

 
0.040

 
 NS 

Phosphate-P (mg l
–1

) 0.64
 

0.72
 

 0.62
 

0.67
 

0.74
 

 NS 

THB (×10
5
 cfu ml

–1
) 6.81

b 
7.39

a 
 7.04

 
7.11

 
7.15

 
 NS 

Sediment quality parameters 
  

 
   

  

pH  7.36 7.13  7.34 7.20 7.19  - 

Organic matter (%) 2.08
 

2.12
 

 2.06
 

2.17 10.6
 

 NS 

Total nitrogen (%) 0.13
 

0.13  0.14
a 

0.13
ab 

0.12
b 

 NS 
Total phosphorus (mg l

–1
) 9.8

b 
10.8

a 
 10.2

 
10.2

 
10.6

 
 NS 

THB (×10
7
 cfu g

–1
) 7.18

b 
7.67

a 
 7.38

 
7.45

 
7.43

 
 NS 
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Table 3 

Water and sediment quality parameters over the sampling periods
ψ
 

 

Mean values in the same row with no superscript letter in common differ significantly (P<0.05). 

 Ψ One sampling period is 30 days. Ф Results from repeated measures 2-way ANOVA.  **P< 0.01; 

***P<0.001. 

 

Table 4 
 

Effects of freshwater prawn density and tilapia addition on periphyton biomass 

scraped from bamboo kanchi by factor based on two-way ANOVA 

 

 
P2=treatment with 2 prawn m−2; P3=treatment with 3 prawn m−2; T0=treatment without addition of 

tilapia; T0.5=treatment with addition of 0.5 tilapia m− 2; T1=treatment with addition of 1 tilapia m−2, 

P×T=interaction of freshwater prawn density and addition of different levels of tilapia. The mean 

values with no superscript letter in common per factor indicate significant difference at 0.05. If the 

effects were significant, ANOVA was followed by Tukey test. NS=not significant. 

 

 

 

Variables Sampling periods Significance Ф   

  P value 
Initial Period 1 Period 2 Period 3 Period 4 

Water quality parameters 
     

 

Total Alkalinity (mg l
–1

) 122
 

131
 

135
 

119
 

119
 

NS 

Chlorophyll a (µg l
–1

) 192
a 

143
b 

137
b 

135
b 

135
b 

** 

Ammonia-N (mg l
–1

) 0.12
a 

0.07
b 

0.06
c 

0.04
d 

0.03
d 

*** 
Nitrite-N (mg l

–1
) 0.014

a 
0.007

b 
0.005

bc 
0.004

c 
0.003

c 
*** 

Nitrate-N (mg l
–1

) 0.096
a 

0.045
b 

0.022
c 

0.017
c 

0.015
c 

*** 

Phosphate-P (mg l
–1

) 1.25
a 

0.81
b 

0.46
c 

0.42
c 

0.45
c 

*** 

THB (×10
5
 cfu ml

–1
) 4.02

e 
5.99

d 
7.46

c 
8.42

b 
9.59

a 
*** 

Sediment quality parameters
     

 

pH  7.60 6.84 7.64 7.28 6.84 - 

Organic matter (%) 2.10
ab 

1.96
c 

2.00
c 

2.24
a 

2.08
bc 

*** 
Total nitrogen (%) 0.188

a 
0.108

d 
0.112

cd 
0.123

bc 
0.123

bc 
*** 

Total phosphorus (mg L
–1

) 9.9
bc 

9.7
c 

9.1
c 

11.6
a 

11.3
ab 

*** 

THB (×10
7
 cfu g

–1
) 4.76

e 
6.45

d 
7.49

c 
8.55

b 
9.86

a 
*** 

Variables 

Means (Tukey test)  

P×T Prawn density  Tilapia density 

P2 P3  T0 T0.5 T1  

Dry matter (mg cm
–2

) 2.27
a 

2.16
b 
 3.14

a 
1.92

b 
1.48

c 
 NS 

Ash free dry matter (mg cm
–2

) 1.55
a 

1.45
b 
 2.43

a 
1.18

b 
0.90

c 
 NS 

Chlorophyll-a (µg cm
–2

) 9.68
a 

9.42
b 
 13.0

a 
8.62

b 
7.04

c 
 0.048 

Autotrophic index (AI) 151
a 

144
b 

 181
a 

136
b 

126
c 

 NS 

THB (×10
7
 cfu g

–1
) 3.90

 
3.99

 
 4.15

a 
3.94

a 
3.76

b 
 NS 
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Figure 1. Quantity of periphyton biomass per unit surface area during the 

experimental period. Values are means of three replicates (each replicates contain 

three poles and three depth samples) per sampling dates in each treatment. 

P2T0=treatment with 2 prawn and no tilapia m
−2

; P2T0.5=treatment with 2 prawn and 

0.5 tilapia m
−2

; P2T1=treatment with 2 prawn and 1 tilapia m
−2

; P3T0=treatment with 

3 prawn and no tilapia m
−2

; P3T0.5=treatment with 3 prawn and 0.5 tilapia m
−2

; 

P3T1=treatment with 3 prawn and 1 tilapia m
−2

. 
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3.3 Fish/prawn growth and yield parameters 
 

Growth and yield parameters of freshwater prawn, tilapia and their combined 

performances are shown in Table 5. Individual harvesting weight and individual 

weight gain of prawn decreased with increasing stocking density of prawn and with 

tilapia addition. Increasing prawn density did not influence the specific growth rate of 

prawn but the addition of tilapia decreased the specific growth rate with no significant 

difference between 0.5 and 1 tilapia m
− 2

. Increasing stocking density of prawn and 

tilapia addition increased the FCR.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Gross yield of fish and relative contribution of freshwater prawn and tilapia 

in the six treatments. P2T0=treatment with 2 prawn and no tilapia m
−2

; 

P2T0.5=treatment with 2 prawn and 0.5 tilapia m
−2

; P2T1=treatment with 2 prawn 

and 1 tilapia m
−2

; P3T0=treatment with 3 prawn and no tilapia m
−2

; P3T0.5=treatment 

with 3 prawn and 0.5 tilapia m
−2

; P3T1=treatment with 3 prawn and 1 tilapia m
−2

. 

Error bars represent standard deviations for prawn and tilapia production, 

respectively. 

 

The survival of prawn was not influenced by the stocking densities of prawn and 

tilapia addition. On average, increasing prawn density increased gross and net prawn 

production by almost 40% (independent of tilapia density). Adding 0.5 tilapia m
−2

 on 

average reduced prawn production by 12–13%, and tilapia addition at 1 individual 

m
−2

 produced a further 5% reduction (independent of prawn density). For tilapia, 

increasing stocking density of prawn did not influence the individual harvesting 

weight and individual weight gain. The highest individual weight at harvest (85% 

higher for T0.5 compared to T1) and individual weight gain (98.7%) were observed in 

treatments with 0.5 tilapia m
−2

. Increasing stocking density of prawn did not influence 

the specific growth rate but increasing tilapia density decreased their own specific 
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growth rate. Tilapia survival was not influenced by the stocking density of any of the 

species. The gross yield increased by 8.5% and 8.4% with increasing stocking density 

of prawn and tilapia, respectively. The net yield of tilapia also increased by 8.5% with 

increasing prawn stocking density but tilapia density had no effect on it. For 

combined production, increasing prawn density increased the combined FCR by 17% 

whereas the combined FCR decreased 3.72 and 3.95 times with the addition of 0.5 

and 1 tilapia m
−2

, respectively (with no significant differences between them). With 

increasing prawn density, the combined gross and net yield of prawn and tilapia 

increased by 14.9% and 16.5%, respectively. The combined gross yield of prawn and 

tilapia also increased with increasing prawn and tilapia density (Figure 2). 

 

Table 5 
 

Effects of freshwater prawn density and tilapia addition on growth and yield 

parameters of prawn and tilapia per factor based on 2-way ANOVA 

P2=treatment with 2 prawn m−2; P3=treatment with 3 prawn m−2; T0=treatment without addition of 

tilapia; T0.5=treatment with addition of 0.5 tilapia m− 2; T1=treatment with addition of 1 tilapia m−2, 

P×T=interaction of freshwater prawn density and addition of different levels of tilapia. The mean 

values with no superscript letter in common per factor indicate significant difference at 0.05. If the 

effects were significant, ANOVA was followed by Tukey test. NS=not significant. 

Variables 

Means (Tukey test)  

P×T Prawn density  Tilapia density 

P2 P3  T0 T0.5 T1  

Macrobrachium rosenbergii         

Individual Stocking weight (g) 2
 

2
 

 2
 

2
 

2
 

 NS 

Individual harvesting weight (g) 32
a 

29
b 

 34
a 

30
b 

28
b 

 NS 

Individual weight gain (g) 30
a 

27
b 

 32
a 

28
b 

26
b 

 NS 

Specific growth rate (% bw d
–1

) 2.21
 

2.16
 

 2.28
a 

2.15
b 

2.12
b 

 NS 
Food conversion ratio 2.50

b 
2.72

a 
 2.42

b 
2.66

a 
2.74

a 
 NS 

Survival (%) 75
 

75
 

 75
 

75
 

76
 

 NS 

Gross yield (kg ha
–1

 120 d
–1

) 478
b 

663
a 

 627
a 

554
b 

529
b 

 NS 
Net yield (kg ha

–1
 120 d

–1
) 433

b 
597

a 
 573

a 
498

b 
474

b 
 NS 

Oreochromis niloticus         

Individual Stocking weight (g) 24
 

24
 

 - 24
 

24
 

 NS 

Individual harvesting weight (g) 241
 

252
 

 - 320
a 

173
b 

 NS 
Individual weight gain (g) 217

 
228

 
 - 296

a 
149

b 
 NS 

Specific growth rate (% bw d
–1

) 1.87
 

1.91
 

 - 2.14
a 

1.63
b 

 NS 

Survival (%) 95
 

97
 

 - 96
 

96
 

 NS 
Gross yield (kg ha

–1
 120 d

–1
) 1537

b 
1653

a 
 - 1530

b 
1659

a 
 NS 

Net yield (kg ha
–1

 120 d
–1

) 1355
b 

1470
a 

 - 1409
 

1416
 

 NS 

Combined         

Food conversion ratio 1.13
b 

1.32
a 

 2.42
a 

0.65
b 

0.61
b 

 NS 
Gross yield (kg ha

–1
 120 d

–1
) 2015

b 
2316

a 
 627

c 
2084

b 
2188

a 
 NS 

Net yield (kg ha
–1

 120 d
–1

) 1458
b 

1699
a 

 573
c 

2028
b 

2134
a 

 NS 
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3.4 Economic comparison 
 

The cost-benefit analysis of different treatments is shown in Table 6. Freshwater 

prawn juveniles, feed, tapioca starch (carbohydrate) and the substrates were the most 

expensive inputs. The extrapolated cost of all variable inputs were higher in high 

prawn stocking density (3 juveniles m
−2

) treatments due to the higher prawn juveniles 

cost, increased feed and carbohydrate cost, as feed was applied based on the body 

weight of prawn. The significantly highest benefit cost ratio (BCR) was observed in 

0.5 tilapia m
−2

 treatments but freshwater prawn density had no effect on it. 

 

4 Discussion 

 

4.1 Effects on water and sediment quality parameters 

 

Water quality is strongly influenced by pond management including culture species 

combinations, stocking densities, and the quality and quantity of the nutrient inputs 

(Milstein, 1993; Diana et al., 1997). Decomposition and accumulation of organic 

matter in the sediment and water column affect water quality parameters in traditional 

earthen ponds without substrates. In ponds with substrates decomposition and 

accumulation also occur in the periphyton mats, resulting in synergistic and 

competitive relationships among them (Azim et al., 2003b). The oxygen budget in 

ponds is strongly affected by the balance/dominance of autotrophic and heterotrophic 

processes. The observed higher DO concentration in increased prawn density 

treatment might be attributed to the increased autotrophic activity. Higher prawn 

density ponds received higher amount of nutrients in the form of feed and 

carbohydrate, which facilitated the growth of phytoplankton thereby increasing DO 

by autotrophic activity. The addition of tilapia also increased the surface and bottom 

DO. Tilapia kept the phytoplankton population in a fast growing stage thereby 

increasing DO due to higher photosynthetic rate. This stimulating tilapia effect on 

phytoplankton has already been reported (Milstein and Svirsky, 1996). In addition, 

tilapia activity on the pond bottom and water column brings some oxygen to the 

bottom layers (Jiménez-Montealegre et al., 2002). Chlorophyll a concentration 

decreased and transparency of water increased with increased tilapia density due to 

the grazing on phytoplankton by tilapia. 



 

 

Table 6. Effects of freshwater prawn density and tilapia addition on economic parameters per factor based on two-way ANOVA 

Variables Amount Price rate Means (Tukey test)  P×T 

Prawn density  Tilapia density 

P2 P3 T0 T0.5 T1 
Fixed/common cost         
   Land rental cost 1 ha 21,000 ha

-1
 y

-1 
7000 7000 7000 7000 7000 - 

   Labor (Stocking to harvesting) 50 man-day 120 man-day
-1 

6000 6000 6000 6000 6000 - 
   Rotenone 12.5 kg 220 kg

-1 
2750 2750 2750 2750 2750 - 

   Lime 250 kg 10 kg
-1 

2500 2500 2500 2500 2500 - 
   Cowdung 3000 kg 0.5 kg

-1 
1500 1500 1500 1500 1500 - 

   Urea 100 kg 10 kg
-1
 1000 1000 1000 1000 1000 - 

   TSP 100 kg 25 kg
-1
 2500 2500 2500 2500 2500 - 

   Bamboo kanchi (reuse-5 times) 150,000 
pieces 

1 piece
-1 

30,000 30,000 30,000 30,000 30,000  

   Fuel cost 500 units 4 unit
-1 

2000 2000 2000 2000 2000 - 
   Subtotal   55,250 55,250 55,250 55,250 55,250 - 

Variable cost         
   Prawn juveniles 20,000 ha 4 juvenile

-1 
80,000 120,000 100,000 100,000 100,000 - 

   Tilapia juveniles  2 juvenile
-1 

10,000 10,000 -
 

10,000
 

20,000 - 
   Feed  25 kg

-1
 30,347

b 
46,625

a 
39,375 37,604 36,979 NS 

   Tapioca starch (Carbohydrate)  20 kg
-1
 21,850

b 
32,850

a 
28,350 27,075 26,625 NS 

   Subtotal   142,197
b 

208,475
a 

167,725 174,679 183,604 NS 
   Total   197,447

b 
263,725

a 
222,975 229,929 238,854 NS 

   Interest on inputs (4 months)  10% anually 6581
b 

8790
a 

7432 7664 7961 NS 
   Total inputs   204,029

b 
272,516

a 
230,407 237,593 246,815 NS 

Financial returns         
   Prawn sale  400 kg

-1
 191,044 265,200

a 
250,900 221,700 211,766 NS 

   Tilapia sale (depend on size)  70 & 90 kg
-1
 81,429 87,834 

- 
137,733 116,162 NS 

   Total returns   272,473 353,034
a 

250,900 359,433 327,928 NS 

   Total net returns   68,444
b 

80,518
a 

20,492 121,840 81,112 NS 
   Benefit cost ratio (BCR)   0.332

 
0.293

 
0.089 0.517 0.332 NS 

 

Calculation was based on 1 ha pond and 120 days experimental period. P2=treatment with 2 prawn m−2; P3=treatment with 3 prawn m−2; T0=treatment without addition of 

tilapia; T0.5=treatment with addition of 0.5 tilapia m− 2; T1=treatment with addition of 1 tilapia m−2, P×T=interaction of freshwater prawn density and addition of different 

levels of tilapia. The mean values with no superscript letter in common per factor indicate significant difference at 0.05. If the effects were significant, ANOVA was followed 

by Tukey test. NS=not significant. 
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The very low nitrogenous compounds in all treatments compared to other studies of 

freshwater prawn farming (Wahab et al., 2008; Kunda et al., 2008) might be due to 

maintaining a high C/N ratio (20) during the experimental period (Asaduzzaman et 

al., 2008). The decreasing trend of nitrogenous compounds (NH3–N, NO2–N, NO3–N) 

over the time could be attributed to the addition of carbonaceous substrates that lead 

to increased microbial biomass, which immobilized TAN (Asaduzzaman et al., 2008; 

Hari et al., 2004) and uptake of the nitrogenous compounds by phytoplankton and 

periphyton. Increasing prawn stocking density increased the total phosphorus in the 

sediment in response to the increase in feeding. Increasing the stocking density of 

tilapia decreased the total nitrogen in the sediment possibly due to increased 

denitrification in response to fish driven oxygenation events (Torres-Beristain et al., 

2006). The reported increase of THB count in the water column and sediment during 

the culture period (Table 3) is mainly because of increased amount of feed and 

carbohydrate application due to the increased biomass of prawn over the time. The 

increased bacterial load again led to higher decomposition rates releasing inorganic 

nutrients that in turn further stimulate bacterial development (Avnimelech et al., 

1989). 

 

4.2 Effects on periphyton biomass 
 

In tilapia added treatments, the steady periphyton biomass increase during the first 

two months followed by a continuous decrease until the end of the experiment (Figure 

1) may be accounted for by changes in the tilapia grazing pressure on periphyton. The 

low biomass of fish initially exerted low grazing pressure allowing periphyton to 

grow. As fish grew its increased grazing pressure led to reduced periphyton biomass. 

The observed lower level of periphytic algae and biomass (DM, Ash, AFDM and 

chlorophyll a) per unit surface area in tilapia added ponds indicated the preference of 

tilapia for periphyton as food. Tilapias are omnivores capable of feeding on benthic 

and attached (periphyton) algal and detrital aggregates (Dempster et al., 1993; Azim 

et al., 2003a). There is also evidence that Nile tilapia grows better grazing on 

periphyton than filtering suspended algae from water column (Hem and Avit, 1994; 

Guiral et al., 1995; Huchette et al., 2000; Azim et al., 2003b). Freshwater prawns 

were reported to selectively feed on periphyton (Uddin et al., 2006). It may have 

picked preferentially on animal portion and detritus aggregates rather than picking up 

the mixed biomass. The autotrophic index (AI) reported in the present experiment 

(85–210) indicates more algal component in the periphyton mass than AI values of 

190–350 reported by Azim (2001) under un-grazed conditions. With grazing the algal 
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biomass increased as shown by lower AI values of 130–225 (Azim, 2001). It is 

evident that periphytic algae need to be grazed constantly and kept at low biomass to 

maintain their high productivity (Hatcher, 1983; Hay, 1991; Huchette et al., 2000). 

The observed decrease of THB load in periphyton when tilapia density increases 

might be due to the increased tilapia grazing reducing periphyton biomass and the 

associated THB count. 

 

4.3 Effects on growth and yield parameters of prawn/tilapia 
 

For freshwater prawn, survival was not influenced by prawn density and tilapia 

addition. In tilapia-prawn polyculture system, Cohen and Ra'anan (1983) reported that 

survival rate did not correlate with either prawn or tilapia stocking rates. According to 

the Uddin (2007), tilapia density might affect prawn survival during molting. But the 

observed similar survival (75–76%) of prawn with different tilapia densities revealed 

that addition of substrates might have minimized the territoriality and different water 

quality parameters fell in the favorable limits of M. rosenbergii due to maintaining a 

high C:N ratio in all treatments. A limited level of cannibalism during the molting is 

normal and may be responsible for a mortality of 4% monthly (AQUACOP, 1990). 

Although survival of freshwater prawn was not affected by its own stocking density, 

its individual weight gain and specific growth rate were significantly lower in ponds 

stocked with the higher number of prawn or tilapia possibly due to the intra-specific 

and inter-specific competition for food and space (Uddin, 2007). The FCR calculated 

based on prawn biomass increased significantly with the addition of tilapia because 

part of the feed was eaten by the tilapia. This is also reflected in the gross and net 

yields of freshwater prawn, in which that the resulting inter-specific competition for 

food (and probably other things) between tilapia and prawn decreased the net yield of 

prawn when tilapia was present. 

 

The observed growth parameters of tilapia were influenced by the stocking density of 

tilapia and were higher in lower density (0.5 tilapia m
−2

) treatments, possibly due to 

the inter-specific prawn–tilapia competition for food and space (Uddin, 2007). In this 

experiment, growth and production performances of tilapia was higher compared to 

the Uddin et al. (2006), who observed 574 kg ha
−1

 125 d
−1

 production with 180 g 

average harvesting weight and 64% survival rate, while stocked with 20,000 fish ha
−1

 

(75% prawn plus 25% tilapia) in tilapia-prawn polyculture. The higher production of 

tilapia in the present research mainly was due to maintaining a high C:N ratio leading 

to better environmental conditions.  
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The combined net yield of prawn and tilapia was satisfactory. This indicates that 

natural food in the form of periphyton biomass, plankton and microbial bio-floc 

compensated the demand of supplementary feed by tilapia. The tilapias were regularly 

observed grazing on substrates for periphyton. Uddin et al. (2006) suggested that 

artificial feed can only be provided to freshwater prawn, whereas tilapia can depend 

on natural food. Therefore, it can be concluded that the C/N-controlled periphyton-

based system could replace the supplemental feed for tilapia through supplying 

adequate natural foods (periphyton, plankton and microbial bio-floc) in prawn-tilapia 

polyculture. 
 

5 Conclusion 
 

This study demonstrated that addition of tilapia at 0.5 individual m
−2

 with freshwater 

prawn in C/N-controlled periphyton-based ponds provided adequate natural food in 

the form of periphyton, plankton and microbial bio-floc that offers a good alternative 

to supplemental feeding for tilapia. Additionally, prawn polyculture with tilapia has a 

potentially higher net return than prawn monoculture. Generally, small scale farmers 

use their own resources as completely as possible including land, labor, substrates and 

manures. Therefore, the input costs in reality would be very low and net benefit would 

be higher in this system compared to the analyzed value of this research. Some 

ecological advantages of C/N-controlled periphyton-based system of prawn-tilapia 

polyculture, such as improved water and sediment quality and proper utilization of 

natural food, further increase the sustainability of this form of aquaculture. The future 

challenge is to identify the cheap carbohydrate source for manipulating the C/N ratio 

and adoption of this technology at on-farm levels through direct participation of 

farmers. 
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Abstract 

 

The present research investigated the effect of addition of tilapia and substrates for 

periphyton development on pond ecology, production and economic performances in 

C/N controlled freshwater prawn farming system. The absence and presence (0 and 

0.5 individual m
−2

) of tilapia were investigated in 40 m
2
 ponds stocked with 3 prawn 

juveniles (individual weight 5 g) m
−2

 with or without added substrates for periphyton 

development. A locally formulated and prepared feed containing 30% crude protein 

(C/N ratio 10) was applied daily, initially at 10% of the prawn stocked biomass and 

was gradually reduced to 3% of prawn biomass. Tapioca starch was used as 

carbohydrate source for increasing the C/N ratio from 10 (as in feed) to 20 and was 

applied to the water column separately from the feed. Addition of periphyton 

substrates significantly reduced the inorganic N-species (NH3–N, NO2–N and NO3–

N) in the water column. It decreased the abundance of plankton in the overlying water 

and increased the abundance of benthic macroinvertebrates. The abundance of 

periphytic algae and periphyton biomass (dry matter, ash free dry matter and 

chlorophyll a) were significantly higher in tilapia free ponds compared to tilapia 

added ponds. Both substrates and tilapia had significant effects on feed conversion 

ratio (FCR) of freshwater prawn: substrates decreased FCR by 14% while tilapia 

addition increased it by 16%. The addition of substrates did not influence prawn and 

tilapia size at harvest but improved the survival of prawn from 54 to 77%. Substrates 

contributed 44% and 19% higher net yield of prawn and tilapia, respectively whereas 

tilapia addition decreased the net yield of prawn by 14%. The economic analysis 

showed that addition of tilapia and periphyton substrates jointly improved the benefit–

cost ratio. Addition of tilapia and periphyton substrates in C/N controlled system 

benefited the freshwater prawn culture practices through (1) reducing toxic inorganic 

nitrogenous compounds in water (2) enhancing the utilization of natural foods (3) 

improving survival, production and economic benefit. 

 

 

 

 

Keywords: Tilapia, Freshwater prawn, Pond ecology, C/N ratio, Plankton, Periphyton, 

Heterotrophic bacteria, Benthos, Benefit–cost ratio 
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1 Introduction 

 

Freshwater prawn farming is an important aquaculture industry in many Asian 

countries, which contributes over 98% of the global freshwater prawn production. The 

increasing demand and steadily rising price in the international market have caused a 

silent revolution in the development of freshwater prawn farming in Bangladesh 

(Asaduzzaman et al., 2005). At present, the prawn culture area has increased to an 

estimated 50,000 ha (Khondaker, 2007). This figure is expected to rise with the 

increasing expansion of prawn cultivation in ponds and extensive low lying 

agricultural lands throughout the country (Kunda et al., 2008). On average, the annual 

production of freshwater prawn has been recorded at 412 kg ha
−1

 in monoculture and 

390 kg ha
−1

 in polyculture with finfish species (Asaduzzaman et al., 2006a), which is 

very low compared to other neighboring prawn producing countries. As a resource 

poor country, efforts are needed to intensify prawn farming systems by using the 

resources derived from other agricultural systems and enhancing natural food 

production and utilization, thereby maximizing overall nutrient retention (Azim and 

Little, 2006). 

 

Introducing substrates for periphyton development (Uddin, 2007; Tidwell and 

Bratvold, 2005; van Dam et al., 2002; Tidwell et al., 2000), manipulation of C:N ratio 

(Hargreaves, 2006; Azim and Little, 2006; Crab et al., 2007; Avnimelech, 2007) and 

the combination of both C:N ratio and periphyton substrates in freshwater prawn 

ponds (Asaduzzaman et al., 2008) were found promising. These techniques require 

installation of hard substrates and application of cheap carbohydrates, resources 

which are available within the farmers' traditional agricultural systems. Besides 

substrate and carbohydrate addition in freshwater prawn culture system, stocking 

tilapia was suggested to reduce underutilized natural foods (plankton, periphyton and 

microbial floc) observed in monoculture ponds (Asaduzzaman et al., 2008). In such 

system, tilapia depends on natural foods in the form of plankton (Perschbacher and 

Lorio, 1993), periphyton (Uddin, 2007; Azim et al., 2003a; Dempster et al., 1993) and 

microbial flocs (Azim and Little, 2008; Avnimelech, 2007; Beveridge et al., 1989). In 

addition, tilapia driven movements and re-suspension increase the bottom dissolved 

oxygen availability leading to better mineralization and stimulating the natural food 

web (Jiménez-Montealegre et al., 2002). Tilapias and prawns have different food and 
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feeding habits, but for both species, the addition of substrates resulted in extra growth 

and production (Uddin et al., 2006; Tidwell et al., 2000; Hem and Avit, 1994). 

Substrates increased production of freshwater prawn by providing shelter rather than 

growing periphyton as food (Asaduzzaman et al., 2008). Preliminary trials also 

showed that the addition of tilapia did not influence the survival of prawn in 

periphyton-based systems (Asaduzzaman et al., 2009a). This study monitored the 

effect of tilapia addition on prawn survival and production, pond ecology, and 

economic performance in presence and absence of substrates for periphyton 

development in C/N controlled ponds. Special attention was given to the effects of 

tilapia and substrates addition on (1) water and sediment quality; (2) abundance of 

plankton, periphyton and benthic macroinvertebrates; (3) heterotrophic bacterial 

counts in water, sediment and periphyton; and (4) production and economic 

performances of such system. 

 

2 Materials and methods 

 

2.1 Experimental design 

 

An on-station trial was conducted with a 2×2 factorial design with the absence and 

presence (0 or 0.5 individual m
−2

) of tilapia in monoculture of freshwater prawn (3 

juveniles m
−2

) as first factor, and with and without substrates addition for periphyton 

development as second factor. Treatments were executed in triplicate and assigned 

randomly between ponds. 

 

2.2 Experimental site and pond preparation 

 

The experiment was carried out at the Fisheries Field Laboratory of the Faculty of 

Fisheries, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh for a 

period of 120 days during 20
th

 February to 20
th
 June, 2008. A 81×8.9 m earthen pond 

with an average depth of 1 m was drained completely and partitioned by galvanized 

iron sheets into 18 small ponds of 40 m
2
 each. Among the 18 ponds, 12 ponds were 

used for this research. The ponds were rain-fed and fully exposed to prevailing 

sunlight and used before for research. Ponds were manually cleaned of aquatic 

vegetation before starting the experiments. All unwanted fishes were eradicated by 

rotenone application at the rate of 60 g pond
−1

. Lime (CaCO3) was applied to all 
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ponds at the rate of 250 kg ha
−1

 on Day 1. On Day 5, ponds were filled with 

groundwater from a deep tube-well. On Day 7, 15 side shoots of bamboo (locally 

known as kanchi) per m
2
 water surface area, with a mean diameter of 2.8 cm were 

posted vertically into the bottom mud in substrate treatment ponds, excluding a 0.5 m 

wide perimeter. This resulted in an additional substrates surface area of 40 m
2
 for 

periphyton development equaling 100% of the pond surface area. On Day 10, all 

ponds were fertilized with semi-decomposed cattle manure, urea and triple super 

phosphate (TSP) at the rates of 3000, 100 and 100 kg ha
−1

, respectively. Ponds were 

left for 7 days post-fertilization to allow plankton development in the water column 

and periphyton growth on substrates, and subsequently stocked. 

 

2.3 Stocking and pond management 

 

Juveniles of Macrobrachium rosenbergii (5 ± 0.04 g) procured from a nearby 

commercial hatchery were stocked at 3 juveniles m
−2

 in the ponds and nursed 

juveniles of all-male Oreochromis niloticus (24.3 ± 0.24 g) were stocked according to 

the experimental design. A locally formulated and prepared pellet feed (2 mm size) 

containing 30% protein with C/N ratio close to 10 was used. The feed was applied 

considering the body weight of prawn only at a daily feeding rate of 10% body weight 

at the start of the experiment, and was gradually reduced (first two months at 1.5% 

and last two months at 2%) to 3% body weight at the end of the culture period. Feed 

was distributed evenly over the ponds' surface twice daily at 07:00 and 18:00 h. 

 

Individual weights of minimum 10% of initially stocked prawn in numbers were 

recorded monthly to estimate the biomass and adjust the feeding rate. The prawns 

were sampled using a cast net after removing some bamboo kanchi, which were re-

positioned after the sampling. Locally purchased tapioca starch was used as 

carbohydrate source for manipulating the C/N ratio. In order to raise the C/N ratio to 

20 in all the ponds, 0.9 kg tapioca starch was applied for each kg of formulated feed. 

The pre-weighed tapioca starch was mixed in a beaker with pond water and uniformly 

distributed over the ponds' surface directly after the feed application at 07:00 h. 
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2.4 Prawn/tilapia harvesting and estimation of yield parameters 

 

Prawns and tilapia were harvested after draining the ponds. Individual length (wooden 

measuring board; precision 0.1 cm) and weight (Denver-xp-3000; precision=0.1 g) 

were recorded. Specific growth rate (SGR), feed conversion ratio (FCR), and net 

yields were calculated as follows: 

SGR = [(ln final weight−ln initial weight) × 100]/days of experiment 

FCR (prawn only) = feed applied (dry weight) / live weight gain 

Net yield = total biomass at harvest − total biomass at stocking  

 

2.5 Determination of water and sediment quality parameters 
 

Water samples were collected using a horizontal water sampler from three locations 

of each pond and pooled before analysis. Water quality parameters, temperature 

(Celsius thermometer), surface and bottom dissolved oxygen (YSI digital DO meter, 

model 58), pH (CORNING 445 pH meter) and transparency (Secchi disc) were 

monitored in situ at 09:00 h on a weekly basis. Before nutrient analysis, water 

samples were filtered through microfibre glass filter paper (Whatman GF/C), using a 

vacuum pressure air pump. Total alkalinity (titrimetric method) and NO2–N, NO3–N, 

TAN and PO4–P concentrations (HACH kit model DR 2010) in the filtrate were 

measured on a monthly basis (APHA, 1992). The filter paper was kept in a test tube 

containing 10 ml of 90% acetone, ground with a glass rod and preserved in a 

refrigerator for 24 h. Later, chlorophyll a was determined using a spectrophotometer 

(Milton Roy Spectronic, model 1001 plus) at 750- and 664-nm wave length, following 

Boyd (1979). 
 

Sediment samples were collected from three locations and pooled together in each 

pond using PVC pipes (having 4 cm diameter and sampling depth 10 cm) on a 

monthly basis between 09:00 and 10:00 h. The samples were dried, ground and sieved 

with a 2 mm sieve (Soil and Plant Analysis Council, 1999). Soil pH was determined 

by a direct reading digital pH meter (CORNING 445 pH meter) with soil water ratio 

1:2.5 (McLean, 1982). Organic matter of sediment was determined by the ignition 

method (Page et al., 1989). Total nitrogen of sediment was determined by the 

common Micro-Kjeldahl digestion method following Page et al. (1989). Total 

phosphorus of sediment samples were determined by the acid digestion method (Jones 

and Case, 1990; Watson and Isaac, 1990). 
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2.6 Assessment of plankton, heterotrophic bacterial load and benthic 

macroinvertebrates 

 

Plankton samples were collected monthly by passing 10 L of water at five locations of 

each pond through plankton net (mesh size 45 μm). The concentrated samples were 

preserved in small plastic bottles with 5% buffered formalin. The preserved samples 

were enumerated as described in Azim (2001) using a binocular microscope 

(Swift,M-4000). Samples to measure the total heterotrophic bacterial load (THB) of 

pond water, sediment and periphyton were collected monthly between 09:00 and 

10:00 h. In each pond, samples were collected at 5 different locations, mixed 

homogenously and taken in sterile glass bottles. Total heterotrophic bacterial load of 

water, sediment and periphyton was determined as described in Asaduzzaman et al. 

(2008). The benthic macroinvertebrates samples were collected monthly with an 

Ekman dredge (area 225 cm
2
). In each pond, bottom mud samples were collected 

from 3 different locations and washed through a 250 μm mesh size sieve. Benthic 

macroinvertebrates remaining on the sieve were preserved in a plastic vial containing 

a 10% buffered formalin solution. Identification keys used for benthic 

macroinvertebrates were Brinkhurst (1971) and Pinder and Reiss (1983). Benthic 

macroinvertebrates density was calculated using the formula, 

N = Y×10 000/3A 

with N=the number of benthic organisms (number m
−2

); Y=total number of benthic 

organisms counted in 3 samples; A=area of Ekman dredge (cm
2
). 

 

2.7 Study of the taxonomic composition and biomass of periphyton 

 

From each pond, three poles were selected randomly and three 2×2 cm
2
 samples of 

periphyton were taken at each of three depths (25, 50 and 75 cm below from the water 

surface) per pole on a monthly basis starting after 7 days of substrate installation. One 

of the three samples from three poles and three depths were pooled for dry matter and 

ash free dry matter analysis. The other two pooled samples from three poles and three 

depths were used for chlorophyll a and taxonomic study. Periphyton biomass and 

autotrophic index were analyzed as described in Asaduzzaman et al. (2009a). 

Periphytic algae were enumerated as described in Azim (2001) using a binocular 

microscope (Swift, M-4000). 
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2.8 Economic analysis 

 

An economic analysis was performed to estimate the net return and benefit–cost ratio 

in the different treatments. The following equation was used: 

R = I – (FC + VC + Ii) 

where, R=net return, I=income from tilapia and prawn sale, FC=fixed/common costs, 

VC=variable costs and Ii=interest on inputs. The benefit cost ratio was determined 

with the following equation: 

Benefit cost ratio (BCR) = Total net return/Total input cost 

The prices of inputs, fish and prawn correspond to the Mymensingh wholesale market 

prices in January to June 2008 and are expressed in Bangladeshi taka (1US$=69 

BDT). The wholesale price per kg of prawn was 400 taka. The wholesale price per kg 

of tilapia was 100 taka. 

 

2.9 Statistical analysis 

 

Growth and yield parameters and economic performance (growth, yield, FCR, SGR, 

and survival) were analyzed using a 2-way ANOVA with tilapia (0 and 0.5 tilapia 

m
−2

) and periphyton substrates (with and without) addition as main factors. Sediment, 

water quality, THB counts, plankton, periphyton, benthos data were compared by 

repeated measures ANOVA with the addition of tilapia (0 and 0.5 tilapia m
−2

) and 

periphyton substrates (with and without) as main factors and time as the sub-factor 

(Gomez and Gomez, 1984). The assumptions of normal distributions and 

homogeneity of variances were checked before analysis. The percentage and ratio 

data were analyzed using arcsine-transformed data. All ANOVA were tested at 5% 

level of significance using SPSS (Statistical Package for Social Science) version 14. 
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3 Results 

 

3.1 Effects on water and sediment quality parameters 

 

Water and sediment quality parameters and outcomes of ANOVA are presented in 

Table 1. Water temperature and pH were similar among the treatments. The addition 

of tilapia increased the bottom DO by 7%. Both the addition of tilapia and periphyton 

substrates significantly increased transparency and decreased the chlorophyll a 

concentration of water. The chlorophyll a concentration was always significantly 

lower in tilapia and periphyton substrates added ponds compared to tilapia and 

substrates free ponds during the culture periods (Figure 1).The mean values of NH3–

N, NO2–N, NO3–N and PO4–P decreased with the addition of periphyton substrates 

whereas the addition of tilapia increased only PO4–P concentration in water. The 

concentrations of all inorganic nitrogenous species decreased continuously during the 

culture periods in all treatments except for NO3–N in the treatment without tilapia and 

periphyton substrates (Figure 2). Among the sediment quality  parameters, the 

addition of tilapia decreased the total nitrogen by 30% as compared to the treatment 

without tilapia. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mean concentrations (±SD) of chlorophyll a of water in different treatment 

ponds during the experimental period. T0.5+P=tilapia 0.5 m
−2

+ substrates, 

T0.5=tilapia 0.5 m
−2 

+ no substrates, T0+P=no tilapia + substrates, T0=no tilapia + no 

substrates. 



 

 

 

Table 1. Effects of addition of periphyton substrates and tilapia on water and sediment quality parameters per factor based on 2-way ANOVA 

 

 
Yes=treatment with addition of periphyton substrates; No=treatment without periphyton substrates; T0.5=treatment with addition of 0.5 tilapia m−2; T0=treatments without 

addition of tilapia; P=periphyton substrates; T=tilapia addition; P×T=interaction of addition of periphyton substrates and tilapia. The mean values with no superscript letter in 

common per factor indicate significant difference at 0.05. *P<0.05; **P<0.01; ***P<0.001; NS, not significant. 

 

 

Variables 

Means (Tukey test)  ANOVA Significance 

 (P value) 
Periphyton substrate  Tilapia 

Yes No  T0.5 T0  P T P×T 

Water quality parameters          

Temperature (°C) 30.7 30.7  30.7 30.7  NS NS NS 
Surface dissolved oxygen (mg l

–1
) 5.3 5.4  5.4 5.3  NS NS NS 

Bottom dissolved oxygen (mg l
–1

)  3.0 3.0  3.1
a 

2.9
b 

 NS ** NS 

pH range  7.7-9.8 6.9-9.1  7.7-9.9 6.8-9.0  - - - 
Transparency (cm)  38.7

a 
35.2

b 
 44.2

a 
29.7

b 
 ** *** NS 

Total Alkalinity (mg l
–1

) 141.5 146.7  145.9 142.2  NS NS NS 

Chlorophyll a (µg l
–1

) 121.6
b 

153.0
a 

 102.9
b 

171.8
a 

 * *** NS 
Ammonia-N (mg l

–1
) 0.038

b 
0.059

a 
 0.047 0.050  * NS NS 

Nitrite-N (mg l
–1

) 0.006
b 

0.010
a 

 0.008 0.009  * NS NS 

Nitrate-N (mg l
–1

) 0.044
b 

0.075
a 

 0.051 0.068  ** NS NS 

Phosphate-P (mg l
–1

) 1.27
b 

1.87
a 

 1.84
a 

1.30
b 

 ** * NS 
Sediment quality parameters          

pH  6.7-7.3 6.8-7.3  6.7-7.1 6.7-7.3  - - - 

Organic matter (%) 2.06 2.10  2.08 2.08  NS NS NS 
Total nitrogen (%) 0.167 0.168  0.138

b 
0.197

a 
 NS *** NS 

Total phosphorus (mg l
–1

) 11.5 10.8  11.4 10.9  NS NS NS 

9
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Figure 2. Mean concentrations (±SD) of inorganic nitrogenous species of water in 

different treatment ponds during the experimental period. T0.5+P=tilapia 0.5 m
−2

+ 

substrates, T0.5=tilapia  0.5 m
−2 

+ no substrates, T0+P=no tilapia + substrates, T0=no 

tilapia + no substrates. 
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3.2 Effects on the abundance of plankton, bacteria and benthos 

 

The abundance of plankton, total heterotrophic bacterial (THB) load and benthos and 

outcomes of the ANOVAs are presented in Table 2. The plankton communities in 

pond water consisted of four groups of phytoplankton and two groups of zooplankton 

in all treatments. Forty five genera of phytoplankton belonging to Bacillariophyceae 

(11 genera), Chlorophyceae (23), Cyanophyceae (7) and Euglenophyceae (4) were 

found. Chlorophyceae followed by the Bacillariophyceae were the most dominant 

groups in terms of number of genera among phytoplankton in each treatment. The 

dominant genera were Synedra, Tabellaria, Navicula, Fragillaria, Cyclotella and 

Nitzschia (Bacillariophyceae), Ankistrodesmus, Chlorella, Sphaerocystes, Palmella, 

Pediastrum and Scenedesmus (Chlorophyceae), Microcystis, Merismopedia, 

Gleocapsa and Gomphosphaeria (Cyanophyceae), Euglena and Phacus 

(Euglenophyceae). The addition of tilapia significantly reduced the abundance of all 

phytoplankton groups. The addition of periphyton substrates also reduced the 

abundance of all phytoplankton groups except Bacillariophyceae. Ten genera of 

zooplankton, including five of Rotifera and five of Crustaceae were also identified. 

Cyclops, Diaphanosoma and Nauplius larvae (Crustaceae), and Brachionus and 

Filinia (Rotifera) were the dominant genera. The abundance of zooplankton did not 

vary significantly among the treatments. Both the addition of periphyton substrates 

and tilapia significantly reduced the number of total plankton. The abundance of all 

groups of phytoplankton decreased in the first months and then steadily increased 

during the rest of the period (Table 3). 

 

3.3 Effects on periphyton composition and biomass 

 

The periphyton composition per unit substrate surface area and the outcomes of 

ANOVA are presented in Table 4. About 40 genera of algae belonging to 

Bacillariophyceae (10 genera), Chlorophyceae (21), Cyanophyceae (7) and 

Euglenophyceae (2) and 6 genera of attached zooplankton belonging to Rotifer (5) 

and Crustacea (1) were also identified as periphytic communities in the substrate 

treatments. Chlorophyceae were the most abundant and Euglenophyceae were the 

least abundant groups of periphytic algae in each treatment. The addition of tilapia 

significantly reduced the number of all periphyton communities except 

Euglenophyceae and Rotifera.  



 

 

Table 2. Effects of addition of periphyton substrates and tilapia on the abundance of plankton, THB load and benthos per factor based on 2-way 

ANOVA 

 

Yes=treatment with addition of periphyton substrates; No=treatment without periphyton substrates; T0.5=treatment with addition of 0.5 tilapia m−2; T0=treatments without 

addition of tilapia; P=periphyton substrates; T=tilapia addition; P×T=interaction of addition of periphyton substrates and tilapia. The mean values with no superscript letter in 

common per factor indicate significant difference at 0.05. *P<0.05; **P<0.01; ***P<0.001; NS, not significant. 

Variables 

Means (Tukey test)  ANOVA Significance 

 (P value) 
Periphyton substrates  Tilapia 

Yes No  T0.5 T0  P T P×T 

Plankton (×10
3
 cells or colonies L

–1
)          

Bacillariophyceae 28.85 37.65  23.35
b 

43.15
a 

 NS ** NS 

Chlorophyceae 44.50
b 

66.10
a 

 36.13
b 

74.47
a 

 *** *** NS 

Cyanophyceae 9.85
b 

13.18
a 

 9.53
b 

13.5
a 

 * * NS 

Euglenophyce 8.05
b 

11.50
a 

 7.48
b 

12.07
a 

 * ** NS 
Total phytoplankton 91.25

b 
128.43

a 
 76.50

b 
143.18

a 
 *** *** NS 

Rotifera 4.27 4.98  4.72 4.53  NS NS NS 

Crustacea 1.82 1.73  1.75 1.80  NS NS NS 
Total zooplankton 6.08 6.72  6.46 6.33  NS NS NS 

Total plankton 97.33
b 

135.15
a 

 82.97
b 

149.52
a 

 *** *** NS 

Total heterotrophic bacterial  load 
  

       
Water (×10

5
 cfu ml

–1
) 5.18 5.12  5.10 5.21  NS NS NS 

Sediment (×10
7
 cfu g

–1
) 6.1 6.1  6.0 6.1  NS NS NS 

Periphyton (×10
7
 cfu g

–1
) - -  3.06

b 
5.02

a 
 - ** - 

Benthic macroinvertebrate (individual m
–2

)         
Chironomidae 908

a 
594

b 
 712

 
790

 
 * NS NS 

Olligochaeta 80
a 

50
b 

 56 75  * NS NS 

Mollusca 241 171  169
b 

243
a 

 NS * * 
Un-identified groups 85 88  89 85  NS NS NS 

Total benthos 1314
a 

903
b 

 1026 1193  ** NS NS 

1
0
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Table 3. Abundance of plankton, total heterotrophic bacteria and benthos over the sampling periods
a
 

 

Mean values in the same row with no superscript letter in common differ significantly (P<0.05). 

** P<0.01; *** P<0.001. a One sampling period is 30 days. 
b Results from repeated measures 2- way ANOVA. 

Variables Sampling periods Significance 
b 

 P value 
Initial Period 1 Period 2 Period 3 Period 4 

Plankton (×10
3
 cells or colonies L

–1
) 

     
 

Bacillariophyceae 72.9
a 

17.5
b 

20.1
b 

21.8
b 

33.9
b 

*** 

Chlorophyceae 54.3 45.9 48.8 58.3 69.2 NS 

Cyanophyceae 8.5
bc 

7.1
c 

8.0
bc 

12.8
b 

21.1
a 

*** 

Euglenophyce 10.0
ab 

4.7
b 

10.9
a 

10.4
ab 

12.9
a 

** 

Total phytoplankton 145.8
a 

75.2
c 

87.8
bc 

103.3
abc 

137.1
ab 

** 

Rotifera 6.6
a 

3.2
b 

6.6
a 

3.9
ab 

2.8
b 

*** 

Crustacea 1.3 2.6 1.9 1.4 1.7 NS 

Total zooplankton 7.9
ab 

5.8
abc 

8.5
a 

5.3
bc 

4.5
c 

** 

Total plankton 153.7
a 

80.9
c 

96.3
bc 

108.6
abc 

141.6
ab 

** 

Total heterotrophic bacterial  load 
     

 

Water (×10
5
 cfu ml

–1
) 2.5

a 
3.0

bc 
3.9

abc 
4.6

ab 
5.2

a 
** 

Sediment (×10
7
 cfu g

–1
) 3.3

e 
3.8

d 
5.1

c 
6.3

b 
7.2

a 
*** 

Periphyton (×10
7
 cfu g

–1
) 4.2

e 
5.0

d 
6.0

c 
7.5

b 
8.1

a 
*** 

Benthic macroinvertebrate (individual m
–2

) 
     

 

Chironomidae 1262
a 

1235
a 

623
b 

319
b 

315
b 

*** 

Olligochaeta 123
a 

64
b 

14
c 

48
bc 

77
b 

*** 

Mollusca 243 153 190 251 194 NS 

Un-identified groups 193
a 

78
b 

79
b 

74
b 

12
c 

*** 

Total benthos 1820
a 

1530
a 

906
b 

691
b 

598
b 

*** 

1
0
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The numbers of animals in the periphyton communities were not influenced by the 

addition of tilapia. Synedra, Tabellaria, Navicula, Fragillaria, Cyclotella, Diatoma 

and Coscinodiscus (Bacillariophyceae), Chlorella, Sphaerocystes, Palmella, 

Pediastrum, Microspora, Oedogonium, Oocystis, Ulothrix and Scenedesmus 

(Chlorophyceae), Microcystis, Anabaena, Aphanizomenon, Aphanocapsa and 

Gomphosphaeria (Cyanophyceae), Euglena and Phacus (Euglenophyceae), Nauplius 

larvae (Crustaceae), and Asplanchna, Brachionus and Filinia (Rotifera) were the 

dominant genera.The addition of tilapia decreased the number of total periphyton by 

52% compared to the treatment without tilapia. Periphyton dry matter (DM), ash, ash 

free dry matter (AFDM), chlorophyll a, and autotrophic index per unit substrate 

surface area are given in Table 4. Mean values of all of these parameters were 

significantly higher in ponds without tilapia. The DM, ash, AFDM and chlorophyll a 

contents increased during the first month after which they constantly decreased in the 

treatment with tilapia, in contrast to the treatment without tilapia (Figure 3). In the 

treatments without tilapia, DM, ash, AFDM and chlorophyll a contents increased 

steadily during the experiment (Figure 3). 
 

 

Table 4. Effects of addition of tilapia on the abundance of periphyton and biomass 

scraped from bamboo kanchi in different treatments 

 

T0.5=treatment with addition of 0.5 tilapia m−2; T0=treatments without addition of tilapia. The mean 

values with no superscript letter in common per factor indicate significant difference at 0.05. *P<0.05; 

*** P<0.001; NS, not significant. 

Variables Tilapia Significance  

 P value 
T0.5 T0 

Periphytic abundance (×10
3
 cells or colonies 

cm
–2

) 

  
 

Bacillariophyceae 8.99
b 

19.90
a 

*** 

Chlorophyceae 15.51
b 

36.90
a 

*** 

Cyanophyceae 9.75
b 

15.75
a 

*** 

Euglenophyce 0.44
 

0.56 NS 

Total algae 34.70
b 

73.11
a 

*** 

Rotifera 0.72 0.70 NS 

Crustacea 0.15
b 

0.25
a 

* 

Total zooperiphyton 0.87 0.95 NS 

Total periphyton 35.57
b 

74.07
a 

*** 

Quantitative biomass 
  

 

Dry matter (mg cm
–2

) 1.92
b 

3.58
a 

*** 

Ash free dry matter (mg cm
–2

) 1.17
b 

2.33
a 

*** 

Ash (mg cm
–2

) 0.75
b 

1.25
a 

*** 

Chlorophyll a (µg cm
–2

) 9.11
b 

13.56
a 

*** 

Autotrophic index (AI) 120
b 

170
a 

*** 
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Figure 3. Quantity of periphyton biomass per unit surface area during the 

experimental period. Values are means (±SD) of three replicates (each replicate was 

composed by three poles and three depth samples) per sampling date in each 

treatment. T0.5 + P=tilapia 0.5 m
−2

+substrates, T0+P=no tilapia + substrates. 
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3.4 Effects on growth and yield parameters of freshwater prawn and tilapia 

 

Effects of addition of periphyton substrates and tilapia, and their interactions on yield 

parameters of freshwater prawn are given in Table 5. The addition of periphyton 

substrates increased survival of prawn by 41% compared to the treatment without 

substrates. Both substrates and tilapia had significant effects on FCR of freshwater 

prawn: substrates decreased FCR by 14% while tilapia addition increased it by 16%. 

Gross and net yields of prawn were higher in ponds provided with substrates than in 

ponds without substrates. On average, substrates contributed 33% higher gross yield 

and 43% higher net yield of freshwater prawn. The addition of tilapia decreased the 

gross and net yield of prawn by 11% and 14%, respectively. 

 

Growth and yield parameters of tilapia with and without periphyton are presented in 

Table 5. Substrates had no significant effect on individual weight gain and survival of 

tilapia. The SGR value of tilapia was increased by 5% due to addition of periphyton 

substrates. Gross and net yield of tilapia was significantly higher in ponds provided 

with substrates than in ponds without substrates. On average, substrates contributed 

16% higher gross yield and 19% higher net yield of tilapia. The contribution of 

freshwater prawn and tilapia to the gross yield in each treatment are shown in Figure 

4. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Gross yield of fish and prawn and contribution of freshwater prawn and 

tilapia in each treatment. T0.5+P=tilapia 0.5 m
−2

 + substrates, T0.5=tilapia 0.5 m
−2

 + 

no substrates, T0+P=no tilapia + substrates, T0=no tilapia + no substrates. 



 

 

Table 5. Effects of addition of periphyton substrates and tilapia on growth and yield parameters of freshwater prawn and tilapia per factor based 

on 2-way ANOVA 

 

 

Yes=treatment with addition of periphyton substrates; No=treatment without periphyton substrates; T0.5=treatment with addition of 0.5 tilapia m−2; T0=treatments without 

addition of tilapia; P=periphyton substrates; T=tilapia addition; P×T=interaction of addition of periphyton substrates and tilapia. The mean values with no superscript letter in 

common per factor indicate significant difference at 0.05. *P<0.05; **P<0.01; ***P<0.001; NS, not significant. 

Variables 

Means (Tukey test)  ANOVA Significance 

 (P value) 
Periphyton substrates  Tilapia 

Yes No  T0.5 T0  P T P×T 

M. rosenbergii          

In. Stocking weight (g) 5.0 4.9  5.0 4.9  NS NS NS 

In. harvesting weight (g) 35.2 37.2  35.2 37.2  NS NS NS 

In. weight gain (g) 30.2 32.3  30.2 32.3  NS NS NS 

Specific growth rate (% bw d
–1

) 1.63
b 

1.70
a 

 1.63 1.68  * NS NS 
Food conversion ratio 2.05

b 
2.37

a 
 2.38

a 
2.05

b 
 ** ** NS 

Survival (%) 76.9
a 

54.4
b 

 63.6 67.8  *** NS NS 

Gross yield (kg ha
–1

 120 d
–1

) 810
a 

609
b 

 668
b 

751
a 

 *** ** * 
Net yield (kg ha

–1
 120 d

–1
) 660

a 
463

b 
 519

b 
604

a 
 *** ** * 

          

O. niloticus          

In. Stocking weight (g) 23.8 24.8  - -  NS - - 
In. harvesting weight (g) 253.1 233.3  - -  NS - - 

In. weight gain (g) 229.1 208.5  - -  NS - - 

Specific growth rate (% bw d
–1

) 1.97
a 

1.87
b 

 - -  * - - 
Survival (%) 96.7 90.1  - -  NS - - 

Gross yield (kg ha
–1

 120 d
–1

) 1222
a 

1051
b 

 - -  * - - 

Net yield (kg ha
–1

 120 d
–1

) 1103
a 

927
b 

 - -  * - - 

1
0
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Table 6. Effects of freshwater prawn density and tilapia addition on economic parameters per factor based on 2-way ANOVA 

Variables Amount Price rate Means (Tukey test)  ANOVA Significance 

(P value) Tilapia  Periphyton substrates 

T0.5 T0 Yes No T P T×P 
Fixed/common cost          

   Land rental cost 1 ha 24,000 ha
-1

 y
-1 

8000 8000 8000 8000 - - - 
   Labor (Stocking to harvesting) 50 man-day 140 man-day

-1 
7000 7000 7000 7000 - - - 

   Rotenone  12.5 kg 220 kg
-1 

2750 2750 2750 2750 - - - 
   Lime 250 kg 10 kg

-1 
2500 2500 2500 2500 - - - 

   Cowdung 3000 kg 0.5 kg
-1 

1500 1500 1500 1500 - - - 
   Urea 100 kg 12 kg

-1
 1200 1200 1200 1200 - - - 

   TSP 100 kg 40 kg
-1
 4000 4000 4000 4000 - - - 

   Fuel cost 500 units 4 unit
-1 

2000 2000 2000 2000 - - - 

   Prawn juveniles  4 juvenile
-1 

120,000 120,000 120,000 120,000 - - - 
   Subtotal   148,950 148,950 148,950 148,950 - - - 

Variable cost          
   Tilapia juveniles  2 juvenile

-1 
10,000 0 5000 5,000 - - - 

   Bamboo kanchi (reuse 5 times)  1 piece
-1 

15,000 15,000 30,000
 

0 - - - 
   Feed  25 kg

-1
 33,980 34,145 37,754

a 
30,371

b 
NS ** * 

   Tapioca starch (Carbohydrate)  20 kg
-1
 24,465

 
24,584

 
27,183

a 
21,867

b 
NS ** * 

   Subtotal   83,445
a 

73,728
b 

99,936
a 

57,238
b 

** *** * 

   Total   232,396
a 

222,678
b 

248,886
a 

206,188
b 

** *** * 
   Interest on inputs (4 months)  10% anually 7746

a 
7422

b 
8295

a 
6873

b 
** *** * 

   Total inputs   240,141
a 

230,100
b 

257,182
a 

213,060
b 

** *** * 

Financial returns          
   Prawn sale  400 kg

-1
 267,133

b 
300,533

a 
323,983

a 
243,683

b 
** *** * 

   Tilapia sale  100 kg
-1

 113,670
a 

0
b 

61,104
a 

52,567
b 

*** * * 
   Total returns   380,804

a 
300,533

b 
385,088

a 
296,250

b 
*** *** ** 

   Total net returns   140,663
a 

70,432
b 

127,905
a 

83,189
c 

*** *** * 
   Benefit cost ratio (BCR)   0.579

a 
0.303

b 
0.492

a 
0.390

c 
*** ** NS 

 

Calculation was based on 1 ha pond and 120 days experimental period.Yes=treatment with addition of periphyton substrates; No=treatment without periphyton substrates; 

T0.5=treatment with addition of 0.5 tilapia m−2; T0=treatments without addition of tilapia; P=periphyton substrates; T=tilapia addition; P×T=interaction of addition of 

periphyton substrates and tilapia. The mean values with no superscript letter in common per factor indicate significant difference at 0.05. *P<0.05; **P<0.01; ***P<0.001; 

NS, not significant. 
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3.5 Economic comparison 

 

The benefit–cost analysis of different treatments is shown in Table 6. Freshwater 

prawn juveniles, feed, tapioca starch (carbohydrate) and the substrates were the most 

expensive cost inputs. The extrapolated costs of all variable inputs were higher in 

substrates and tilapia added treatments. The economic analysis showed that addition 

of tilapia and periphyton substrates jointly improved the benefit–cost ratio. Therefore, 

it is concluded that the addition of tilapia and substrates for periphyton development 

is economically profitable compared to the substrates and tilapia free ponds in C/N 

controlled freshwater prawn farming system. 

 

4 Discussion 

 

4.1 Effects on water and sediment quality parameters 

 

Water quality in lentic natural water bodies is strongly dependent on the autotrophic 

and heterotrophic organisms developing within the systems. In periphyton-based 

system, the close linkage between autotrophic and heterotrophic processes in 

periphyton mats speed up nutrient cycling and positively influences water quality 

(Azim et al., 2003b; Milstein et al., 2003). The observed water temperature and pH 

were within the suitable range for freshwater prawn and tilapia culture (Zimmermann 

and Boyd, 2000; New, 2002). The observed DO concentrations were also suitable for 

prawn culture, although very low bottom DO values were recorded on a few 

occasions in tilapia free ponds. The addition of tilapia brings some oxygen to the 

bottom layers by their movements (Jiménez-Montealegre et al., 2002), thus increasing 

the bottom dissolved oxygen. Periphyton lowered the PO4–P of the overlying water 

which was also reported by Hansson (1990) and Bratvold and Browdy (2001). By 

lowering the nutrients concentration, periphyton reduced the phytoplankton biomass 

increasing water transparency. The observed lower level of nitrogenous compounds in 

substrates based ponds was due to enhanced nitrification. According to Langis et al. 

(1988) and Ramesh et al. (1999) bacterial biofilm (periphyton), including nitrifying 

bacteria, develop on the substrates which are located in the water column where more 

oxygen is available than at the water-sediment interface. In addition, the periphytic 

algal community contributes to the processing of the nitrogenous wastes in ponds 

(Shilo and Rimon, 1982; Diab and Shilo, 1988). The very low nitrogenous 
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compounds in all treatments compared to other studies of freshwater prawn farming 

(e.g.:Wahab et al., 2008; Kunda et al., 2008) could be attributed to the addition of 

carbonaceous substrates to maintain a C/N ratio of 20 during the experimental period. 

This led to increased microbial biomass, which immobilized TAN (Asaduzzaman et 

al., 2008; Asaduzzaman et al., 2006b; Hari et al., 2004) and uptake of the nitrogenous 

compounds by phytoplankton and periphyton. Addition of tilapia decreased the total 

nitrogen in the sediment possibly due to increased denitrification in response to fish 

driven oxygenation events (Torres-Beristain et al., 2006). 

 

4.2 Effects on the abundance of plankton, THB load and benthos 

 

The major natural foods in C/N controlled ponds are phytoplankton, zooplankton, 

microbial flocs, periphyton and benthic macroinvertebrates. The amounts of these 

natural foods in ponds are influenced by management factors such as species 

combination, stocking density and ratio, and nutrient input quality and quantity 

(Milstein, 1993; Diana et al., 1997). The phytoplankton species composition was 

representative of that found in Bangladesh prawn farming in rice fields and ponds 

(Wahab et al., 2008; Kunda et al., 2008; Uddin, 2007). The addition of tilapia affected 

phytoplankton directly by grazing and indirectly by nutrient re-suspension. The direct 

effect was more pronounced than the indirect effect, indicating that tilapia addition 

resulted in a higher grazing pressure on phytoplankton. Perschbacher and Lorio 

(1993) reported that tilapia stocked at densities higher than 5000 ha
−1

 promoted a very 

effective biological control over phytoplankton. However, the addition of tilapia did 

not have any significant effect on the abundance of zooplankton possibly due to 

escaping predation and less preference for zooplankton by tilapia (Uddin, 2007). 

Substrate addition decreased plankton abundance by lowering the nutrients 

concentration of the overlying water. The observed decrease in abundance of 

phytoplankton during the first month might be attributed to grazing by tilapia. The 

steadily increase in abundance of phytoplankton after the first month might be due to 

increased nutrient re-suspension by tilapia of increasing body size. Avnimelech et al. 

(1999) reported that tilapias do appreciably re-suspend sediment, and such activity is 

more pronounced in large fish. 
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The lower level of THB load of periphyton in the tilapia added treatment might be 

attributed to the increased tilapia grazing reducing periphyton biomass and the 

associated THB. The observed THB increase in the water column, sediment and 

periphyton during the culture period is mainly due to increased feed and carbohydrate 

application concurring with the increasing prawn biomass over time. The increased 

bacterial load again led to higher decomposition rates releasing inorganic nutrients 

that in turn further stimulated bacterial development (Avnimelech et al., 1989). 

 

Substrates addition enhanced the production of benthos in the culture systems. Similar 

findings were reported by Azim (2001). The observed decrease in number of total 

benthos during the culture period might be due to grazing by prawn. There are 

evidence that prawns in their natural habitats prefer to forage on animals like 

trochopterans, chironomids, oligochaetes, nematodes, gastropods and zooplankton 

(Corbin et al., 1983; Coyle et al., 1996; Tidwell et al., 1997). 

 

4.3 Effects on the periphyton composition and biomass 

 

The observed lower level of periphytic algae and biomass (DM, Ash, AFDM and 

chlorophyll a) per unit surface area in tilapia added ponds indicate the preference of 

tilapia for periphyton as food. Tilapias are omnivores capable of feeding on benthic 

and attached (periphyton) algal and detrital aggregates (Dempster et al., 1993; Azim 

et al., 2003a). There is also evidence that Nile tilapia grows better grazing on 

periphyton than filtering suspended algae from the water column (Hem and Avit, 

1994; Guirat et al., 1995; Huchette et al., 2000; Azim et al., 2003b). The similar 

abundance of periphytic zooplankton in all treatments indicates that the zooplankton 

communities were less preferable for the tilapias or escaped predation. The higher ash 

contents of periphyton in ponds stocked with freshwater prawn alone might also be 

related to low grazing pressure (Makrevich et al., 1993; Huchette et al., 2000). 

Generally, the ash content increase when the periphyton communities grow older 

under low grazing pressure (Makarevich et al., 1993). In tilapia added treatments, 

periphyton biomass increased steadily during the first months and then decreased 

continuously until the end of the experiment. Initially tilapia predation was lower than 

periphyton development, but after one month tilapia grazing reduced the periphyton 

biomass. The autotrophic index (AI) value was lower (120) in tilapia added ponds 
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compared to the tilapia free ponds (170), indicating more algal component in the 

periphyton mass in tilapia added ponds. With grazing the algal component in the 

periphytic biofilms increased as shown by lower AI values (Azim, 2001). It is evident 

that periphytic algae that are grazed constantly maintain productivity (Hatcher, 1983; 

Hay, 1991; Huchette et al., 2000). 

 

4.4 Effects on the growth and yield parameters of prawn and tilapia 

 

The increase in gross and net yield of prawn in substrate added ponds was mainly due 

to the increased survival, not to faster individual growth. Addition of substrates 

minimized territoriality of freshwater prawn, provided additional shelter and natural 

food along with improvements of environmental conditions through a range of 

ecological and biological processes (Tidwell et al., 2000; Tidwell et al., 2002; van 

Dam et al., 2002; Milstein et al., 2003; Asaduzzaman et al., 2008). The net yield of 

freshwater prawn was significantly higher with no tilapia than with tilapia, indicating 

that inter-specific competition between tilapia and prawn occurs. The FCR calculated 

based on prawn biomass increased significantly with the addition of tilapia because 

part of the feed was eaten by the tilapia, whereas substrates decreased the FCR value 

by 13% contributing periphyton as additional food. Also Uddin (2007) reported that 

FCR was 13% lower in fed-periphyton based ponds compared to fed-substrate-free-

ponds. In case of tilapia, substrate addition increased the gross and net yield, 

indicating that substrates provide additional food (Uddin, 2007). The economic 

analysis revealed that prawn–tilapia polyculture with a stocking density of 3 prawns 

and 0.5 tilapia m
−2

 in C/N-controlled periphyton-based system would be a very 

profitable business. 

 

5 Conclusion 

 

In summary, addition of tilapia (0.5 individual m
−2

) and periphyton substrates in C/N 

controlled ponds (C/N ratio 20) benefited freshwater prawn production (3 juveniles 

m
−2

) through (1) reducing toxic inorganic nitrogenous compounds in water (2) 

enhancing the availability of plankton, periphyton, microbial floc and benthic 

macroinvertebrates thus reducing the demand by tilapia for supplemental feed (3) 

improving survival, production and economic benefit. The result of the present study 

could be useful in improving the sustainability of freshwater prawn farming in terms 
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of ecological, social and financial benefits. Economic sustainability could still be 

further enhanced by identifying cheaper on-farm carbohydrate sources and periphyton 

substrates, and is subject of further research. 
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Abstract 

 

The present research investigated the effect of carbohydrate (CH) source for 

maintaining a high C:N ratio, and tilapia driven bioturbation on pond ecology, 

production and economical performances in C/N-controlled periphyton-based (C/N-

CP) freshwater prawn ponds. Two carbohydrate sources (high-cost tapioca starch and 

low-cost maize flour) were compared in 40 m
2
 ponds stocked with 80 freshwater 

prawn (Macrobrachium rosenbergii) juveniles (individual weight 0.81±0.03 g) and 20 

finfish fingerlings (Nile tilapia, Oreochromis niloticus and Indian major carp rohu, 

Labeo rohita) in three different combinations: 100% tilapia, 50% tilapia+50% rohu, 

and 100% rohu (individual weight 27.7±0.6 g). The CH sources for increasing C:N 

ratio from 10 (as in feed) to 20 had no significant effect (P>0.05) on water quality 

parameters, abundance of natural food (plankton, periphyton and benthos) and 

production of prawn and finfish. However, different fish combination had significant 

effects on pond ecology. The highest PO4–P (P<0.001) and the lowest chlo-a 

(P<0.01) concentrations in water were observed in ponds with 100% tilapia as 

compared to ponds stocked with 100% rohu. The abundance of phytoplankton, 

periphyton biomass (dry matter, ash, ash free dry matter and chlo-a) and benthos was 

significantly higher (P<0.05) in 100% rohu ponds than in 100% tilapia ponds 

indicating the more efficient utilization of natural food items by tilapia than by rohu. 

The freshwater prawn production was not affected (P>0.05) by the different stocking 

combinations of finfish. The net yield and survival of finfish were significantly higher 

in 100% tilapia ponds and lower in 100% rohu ponds resulting in 58% higher 

combined net yield (both prawn and finfish) in the former treatment during a 120-d 

culture period. This treatment gave the best economic return in terms of benefit–cost 

ratio while maize flour was used as CH source. In conclusion, maize flour can be used 

as an alternative cheap on-farm CH source for maintaining a high C:N ratio and 

tilapia driven re-suspension in C/N-CP system improves culture environment, natural 

food utilization, production and economic return, further enhancing economic 

sustainability of C/N-CP freshwater prawn farming system. 

 

 

Key words: C:N ratio, carbohydrate source, stocking ratio, bioturbation, freshwater 

prawn, tilapia, rohu, periphyton 
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1 Introduction 
 

Pond aquaculture contributes the bulk of the world aquaculture production and 

research efforts have been made to improve the productivity and sustainability of 

pond production. To this end, several recent developments seem to be promising: (1) 

C/N ratio control (Avnimelech, 1999, 2007; Hari et al., 2004); (2) providing 

substrates for periphyton development (van Dam et al., 2002; Tidwell et al., 2000, 

2002; Tidwell and Bratvold, 2005; Azim et al., 2003a,b; Keshavanath et al., 2001; 

Milstein et al., 2009); and (3) fish driven re-suspension (Riise and Roos, 1997; 

Jiménez-Montealegre et al., 2002; Ritvo et al., 2004; Milstein et al., 2002). Recently, 

Asaduzzaman et al. (2008, 2009a,b) combined these techniques, using freshwater 

prawn as a key species, with the goal to raise pond productivity above levels obtained 

with each one of these techniques separately, and to increase the nutrient use 

efficiency in ponds above levels presently achieved, further enhancing environmental 

and economical sustainability. This combined technology has been referred to as C/N-

controlled periphyton-based (C/N-CP) system. 

 

 

Operation of intensive aquaculture of freshwater prawn demands high investment and 

technical expertise, which are not affordable by resource-poor farmers in developing 

countries like Bangladesh. Therefore, efforts are needed to intensify aquaculture by 

using the resources derived from other agricultural systems and manipulating natural 

food thereby maximizing overall nutrient retention (Azim and Little, 2006). In C/N-

CP system, the added carbon source together with the waste nitrogen is converted into 

microbial bio-flocs, which in turn can be eaten by the cultured organisms. This 

technique provides an additional inexpensive protein source and improves the overall 

nutrient efficiency of the pond. Tapioca starch was used as CH source for maintaining 

a high C:N ratio in all our previous research on C/N-CP system (Asaduzzaman et al., 

2008, 2009a,b). The major problem of using tapioca starch as CH source in 

Bangladesh is its poor acceptance by the farmers due to very high cost (0.44 US$kg
−1

) 

and irregular availability due to an import product. Asaduzzaman et al. (2009b) 

recommended that identification of an alternative cheap on-farm CH source, which 

could potentially be produced within the farmers' traditional agricultural systems, is 

essential for economic sustainability of C/N-CP technology. In the present study, 

maize (Zea mays) flour is considered as a potential carbohydrate source due to its low 
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cost (0.18 US$kg
−1

), easy availability and wide acceptance by the farmers as one of 

the potential feed ingredients, and compared with tapioca starch in C/N-CP system. 

 

In our previous experiment, it has been shown that addition of omnivorous tilapia (0.5 

individual m
−2

) in C/N-CP based freshwater prawn culture system improved natural 

food utilization, production and economic benefit (Asaduzzaman et al., 2009b). The 

periphyton community took up both TAN and nitrate and edible biomass was formed. 

The added tilapia can effectively graze on the periphyton (Uddin, 2007; Azim et al., 

2003a; Dempster et al., 1993; Milstein et al., 2009) as well as phytoplankton 

community (Perschbacher and Lorio, 1993). Therefore, this technique improves the 

overall conversion efficiency of the feed. In addition, tilapia driven movements and 

re-suspension increase the bottom dissolved oxygen availability leading to better 

mineralization and stimulating the natural food web (Jiménez-Montealegre et al., 

2002). Of all species stocked in polyculture, fish farmers in south Asia like to stock a 

native major carp, commonly known as rohu, because it fetches the highest market 

price and has the highest consumer preference (Dey et al., 2005). This species is a 

column feeder mainly living on plankton (Jhingran and Pullin, 1985) and periphyton 

(Azim et al., 2003c) but it has no reported sediment re-suspension activity (Costa-

Pierce and Pullin, 1989; Riise and Roos, 1997; Avnimelech et al., 1999; Jiménez-

Montealegre et al., 2002). Considering the importance of rohu as an indispensable 

species in south Asian aquaculture, both tilapia and rohu were considered in C/N-

controlled freshwater prawn ponds to determine the suitability of either species by 

comparing how tilapia and rohu interact in the exploitation of natural foods in ponds 

or how they influence natural food availability. Therefore, the present study 

investigated three different stocking combinations of tilapia and rohu, and evaluated 

the effect of tilapia driven re-suspension on pond ecology, production and economic 

returns in C/N-CP system ponds. Special attention was given to the effects of different 

CH sources and tilapia driven re-suspension on (1)water quality parameters; (2) 

abundance of plankton, periphyton and benthic macroinvertebrate; and (3) production 

and economic performances of such system. 

 

2 Materials and Methods 
 

2.1 Experimental design 

An on-station trial was conducted with a 2×3 factorial design with two different 

carbohydrate (CH) sources (high-cost tapioca starch and low-cost maize flour) for 
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maintaining the C:N ratio at 20 as first factor, and 20 tilapia and/or rohu (27.7±0.6 g) 

in 40 m
2 

pond under three different stocking combinations (100% tilapia, 50% 

tilapia+50% rohu, and 100% rohu) as second factor. All ponds were stocked with 80 

prawn juveniles (0.81±0.03 g). The various treatment combinations of different CH 

sources are abbreviated as MF (maize flour) and TS (tapioca starch) whereas, 

stocking ratios of tilapia and rohu are abbreviated as 100T, 50T/50R and 100R, T 

representing tilapia and R rohu. 

 

2.2 Experimental site and pond preparation 

 

The experiment was carried out at the Fisheries Field Laboratory of the Faculty of 

Fisheries, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh for a 

period of 120 days during 1
st
 August to 30 November, 2008. An 81×8.9 m earthen 

pond with an average depth of 1 m was drained completely and partitioned by 

galvanized iron sheets into 18 small ponds of 40 m
2 
each. The ponds were rainfed and 

fully exposed to prevailing sunlight and used before for research. Ponds were 

manually cleaned of aquatic vegetation before starting the experiments. All unwanted 

fishes were eradicated by rotenone application at the rate of 100 g pond
−1

. Lime 

(CaCO3) was applied to all ponds at the rate of 250 kg ha
−1

 on Day 1. On Day 4, 

ponds were filled with groundwater from a deep tube-well. On Day 6, 15 side shoots 

of bamboo (locally known as kanchi) per m
2 
water surface area, with a mean diameter 

of 2.8 cm were posted vertically into the bottom mud in all ponds, excluding a 0.5 m 

wide perimeter. This resulted in an additional substrates surface area of 40 m
2
 for 

periphyton development equaling 100% of the pond surface area. On Day 9, all ponds 

were fertilized with semi-decomposed cattle manure, urea and triple super phosphate 

(TSP) at the rates of 3000, 100 and 100 kg ha
−1

, respectively. Ponds were left for 10 

days post-fertilization to allow plankton development in the water column and 

periphyton growth on substrates, and subsequently stocked. 

 

2.3 Stocking and pond management 

 

In all ponds, juveniles of Macrobrachium rosenbergii (individual weight 0.81±0.03 g) 

procured from a nearby commercial hatchery were stocked at 2 prawns m
−2

. Nursed 

juveniles of all-male Oreochromis niloticus and Labeo rohita (individual weight 

27.7±0.6 g) were stocked according to the experimental design. A locally formulated 
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and prepared pellet feed (2mm) containing 24.3% protein with C/N ratio close to 10 

was used. The feed was applied considering the body weight of prawn at a daily 

feeding rate of 10% body weight at the start of experiment, and gradually reduced 

(2% reduction in each month) to 4% body weight at the end of the culture period. 

Feed was distributed evenly over the ponds' surface twice daily at 07:00 and 18:00 h. 

Individual weights of minimum 10% of initially stocked prawn in numbers were 

recorded monthly to estimate the biomass and adjust the feeding rate. The prawns 

were sampled using a cast net after removing some bamboo kanchi, which were re-

positioned after the sampling. 

 

Locally purchased tapioca starch and maize flour were used as carbohydrate source 

for manipulating the C/N ratio. The analyzed proximate composition of feed, maize 

flour and tapioca starch is given in Table 1. In order to raise the C/N ratio to 20 in all 

the ponds, 0.82 kg tapioca starch was applied for each kg of formulated feed for TS 

treatment ponds, whereas 1.3 kg maize flour was applied for each kg of formulated 

feed in MF treatment ponds. The pre-weighed tapioca starch and maize flour were 

mixed in a beaker with pond water and uniformly distributed over the ponds' surface 

directly after the feed application at 07:00 h. 

 

Table 1  

Proximate composition of the prepared feed, tapioca starch and maize flour. The 

percentages are given on a wet weight basis. 

 

NFE = Nitrogen free extract = 100 – (moisture + protein + lipid + crude fiber + ash) 

 

2.4 Prawn/finfish harvesting and estimation of yield parameters 

 

Prawns and finfish were harvested after draining the ponds. Individual length 

(wooden measuring board; precision 0.1cm) and weight (Denver-xp-3000; 

Component Moisture  

(%) 

Protein  

(%) 

Lipid  

(%) 

Fiber 

(%) 

Ash 

(%) 

NFE 

(%) 

Prepared feed 8.69 24.27 10.0 6.15 20.61 30.28 

Tapioca starch 12.9 1.6 0.9 5.4 5.2 74.0 

Maize flour 11.08 7.72 4.64 5.40 1.14 70.02 
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precision=0.1g) were recorded. Feed conversion ratio (FCR), and net yields were 

calculated as follows: 

FCR (prawn only) = feed applied (dry weight)/live weight gain 

Net yield = total biomass at harvest – total biomass at stocking. 

 

2.5 Determination of water quality parameters  

 

Water samples were collected using a horizontal water sampler from three locations 

of each pond and pooled before analysis. Water quality parameters, surface and 

bottom temperature (Celsius thermometer), surface and bottom dissolved oxygen 

(YSI digital DO meter, model 58) and pH (CORNING 445 pH meter) were monitored 

in situ at sunrise (07:00 h) and sunset (18:00 h) on a weekly basis. Transparency 

(Secchi disc) was recorded weekly at 10:00 h. Before nutrient analysis, water samples 

were filtered through microfibre glass filter paper (Whatman GF/C), using a vacuum 

pressure air pump. Total alkalinity (titrimetric method) and NO2–N, NO3–N, NH3–N 

and PO4–P concentrations (HACH kit model DR 2010) in the filtrate were measured 

on a monthly basis (APHA, 1992). The filter paper was kept in a test tube containing 

10 mL of 90% acetone, ground with a glass rod and preserved in a refrigerator for 24 

h. Later, chlo-a was determined using a spectrophotometer (Milton Roy Spectronic, 

model 1001 plus) at 750- and 664-nm wave length, following Boyd (1979). 

 

2.6 Assessment of plankton and benthic macroinvertebrate  

 

Plankton samples were collected monthly by pooling 10 l of water from five locations 

in each pond and passing it through a 45 μm mesh plankton net. The concentrated 

samples were preserved in small plastic bottles with 5% buffered formalin. Plankton 

numbers were estimated using a Sedgewick–Rafter (S–R) cell and was left to stand 

for 15 min to allow plankton to settle. Then, the plankters on 10 randomly selected 

fields of the chamber were counted under a binocular microscope (Swift, M-4000). 

Taxa were identified to genus level using keys from Ward and Whipple (1959), 

Prescott (1962), Belcher and Swale (1976), and Bellinger (1992). Plankton abundance 

was calculated using the following formula: 

 

N = (P × C × 100)/ L 
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Where N is the number of plankton cells or units per liter of original water; P, the 

number of plankton counted in 10 fields; C, the volume of final concentrate of the 

sample (mL); L, the volume (L) of the pond water sample. 

 

The benthic macroinvertebrate samples were collected monthly with an Ekman 

dredge (covering an area of lower month 225 cm
2
). In each pond, bottom mud 

samples were collected from 3 different locations and washed through a 250 μm mesh 

size sieve. Benthic macroinvertebrate remaining on the sieve was preserved in a 

plastic vial containing a 10% buffered formalin solution and pooled together. 

Identification keys used for benthic macroinvertebrate were Brinkhurst (1971), and 

Pinder and Reiss (1983). Benthic macroinvertebrate density was calculated using the 

formula, 

 

N = Y × 10000/ 3A 

 

with N=the number of benthic organisms (number m
−2

); Y=total number of benthic 

organisms counted in 3 samples; A=area of Ekman dredge (cm
2
). 

 

2.7 Study of the biomass of periphyton 

 

From each pond, three poles were selected randomly and two 2×2 cm samples of 

periphyton were taken at three depths (25, 50 and 75 cm below the water surface) per 

pole on a monthly basis starting after 7 days of substrate installation. Half of the 2×2 

cm samples from three poles per pond per sampling day were pooled for dry matter 

(DM), ash and ash free dry matter (AFDM) analysis. The scraped samples from each 

pond were collected on pre-weighed and labeled pieces of aluminum foil, dried at 

105 °C until constant weight (24 h in a Memmert stove, Model UM/BM 100–800), 

and kept in a desiccator until weighed (BDH 100A; precision 0.0001 g). Dry samples 

from different depth and poles per pond were pooled, transferred to a muffle furnace 

and ashed at 450 °C for 6 h and weighed. The dry matter (DM), ash and ash free dry 

matter (AFDM) were determined by weight differences (APHA, 1992).  

 

The other half of the 2x2 cm samples per pond per sampling day were pooled and 

used to determine chlo-a concentrations following standard methods (APHA, 1992). 

Collected materials were immediately transferred to labeled tubes containing 10 mL 
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of 90% acetone, sealed and stored overnight in a refrigerator. The following morning, 

samples were homogenized for 30 s with a tissue grinder, refrigerated for 4 h, and 

then centrifuged for 10 min at 2000–3000 rpm. The supernatant was carefully 

transferred to a 1 cm glass cuvette and absorption measured at 750 and 664 nm using 

a spectrophotometer (Milton Roy Spectronic, model 1001 plus). Chlo-a concentration 

was calculated using the equation given in APHA (1992). The autotrophic index (AI) 

was calculated using the following formula (APHA, 1992): 
 

AI = AFDM in µg cm
–2

/Chlorophyll a in µg cm
–2

 

 

2.8 Economical analysis 

 

An economical analysis was performed to estimate the net return and benefit-cost 

ratio in the different treatments. The following equation was used: 

 

R = I – (FC + VC + Ii) 

 

Where, R = net return, I = income from prawn, tilapia and rohu sale, FC = 

fixed/common costs, VC = variable costs and Ii = interest on inputs. The benefit cost 

ratio was determined by following equation: 

 

Benefit cost ratio (BCR) = Total net return/Total input cost. 

 

The wholesale price per kg of prawn was 400 taka. The wholesale price per kg of 

tilapia and rohu was 100 taka. The prices of inputs, fish and prawn correspond to the 

Mymensingh wholesale market prices in July to December 2008 and are expressed in 

Bangladeshi taka (1US$ = 69 BDT). 

 

2.9 Statistical analysis 

 

Yield parameters (prawn and finfish growth, yield, FCR and survival) and economic 

parameters were analyzed by a 2-way ANOVA with CH source (maize flour and 

tapioca starch) and different stocking ratios of tilapia and rohu (100% tilapia, 50% 

tilapia+50% rohu, and 100% rohu) as main factors. Water quality, plankton, 

periphyton and benthic macroinvertebrates data were compared by repeated measures 

ANOVA with CH source (maize flour and tapioca starch) and different stocking ratios 
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of tilapia and rohu (100% tilapia, 50% tilapia+50% rohu, and 100% rohu) as main 

factors and time as the sub-factor (Gomez and Gomez, 1984). The assumptions of 

normal distributions and homogeneity of variances were checked before analysis. The 

percentage and ratio data were analyzed using arcsine-transformed data. All ANOVA 

were tested at 5% level of significance using SPSS (Statistical Package for Social 

Science) version 14. 

 

3 Results 

 

3.1 Effects on water quality parameters 

 

Mean values of water quality parameters and outcomes of ANOVA are presented in 

Table 2. The CH source for maintaining a high C:N ratio had no significant effect on 

any water quality parameters. There was no interaction effect of carbohydrate sources 

and finfish stocking ratio on water quality parameters as well. The finfish stocking 

ratio had also no significant effects on any of the measured water quality parameters 

at sunrise (7:00 h) and sunset (18:00 h) except bottom DO at sunset. The bottom 

dissolved oxygen was significantly higher in both treatments with tilapia as compared 

to ponds stocked with 100% rohu. Among other parameters, Secchi disc transparency 

was lower in treatment 50T/50R than in treatments 100R and 100T. The highest chlo-

a concentration was observed in treatment 100R, intermediate in treatment 50T/50R 

and the lowest in 100T ponds. The concentration was found to decrease gradually 

during the experimental periods with the higher rate in treatment 100T followed by 

treatments 50T/50R and 100R, respectively (Figure 1). The NO2–N concentration was 

always very low in all treatments compared to NO3–N and NH3–N concentration. All 

of the nitrogenous compounds were not affected by the stocking ratio of tilapia and 

rohu. Higher concentration of PO4–P was observed in treatments with 100T and 

50T/50R compared to the treatment 100R. The PO4–P concentration was more or less 

similar during the experimental periods in 100R ponds but, it tends to increase 

gradually after the 1 month of experimental period in 100T and 50T/50R ponds and 

the rate of increase was higher in 100T ponds compared to 50T/50R ponds (Figure 1). 
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Figure 1. Mean (±SD) concentration of PO4-P and Chlorophyll-a in different stocking 

ratio of tilapia and rohu (0.5 finfish m
–2

) treatment ponds during the experimental 

periods in C/N-CP based freshwater prawn (2 individual m
–2

) farming system. 

 

 

 



 

 

Table 2. Effects of carbohydrate source and finfish stocking combinations on water quality parameters based on 2-way ANOVA 
 

 

CH = Carbohydrate source to increase C/N ratio from 10 to 20; TS = treatments with tapioca starch as CH source; MF= treatments with maize flour as CH source; 100T = 

treatment with 100% tilapia; 50T/50R = treatments with 50%tilapia + 50% rohu; 100R= treatments with 100% rohu; F = Finfish (tilapia+rohu) stocking ratio; CH×F = 

Interaction of carbohydrate source and finfish stocking ratio. The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. 

If the effects were significant, ANOVA was followed by Tukey test. *P<0.05; **P<0.01; ***P<0.001; NS, Not significant. 

 

Variable 

Means (Tukey test)); Prawn 2 m–2 in all treatments  Significance (P value) 

CH source  Finfish stocking ratio (0.5 individual m–2) 

TS MF  100T 50T/50R 100R  CH F CH×F 

At Sunrise (7 am)           

Surface Temp. (°C) 27.3 27.2  27.3 27.3 27.4  NS NS NS 

Bottom Temp. (°C) 27.1 27.0  26.9 27.0 27.1  NS NS NS 

Surface DO (mg L–1) 4.99 5.01  5.03 5.01 4.97  NS NS NS 

Bottom DO (mg L–1)  3.43 3.44  3.44 3.45 3.42  NS NS NS 

Mean pH range  7.5-7.6 7.5-7.6  7.5-7.6 7.5-7.6 7.4-7.6  - - - 

At sunset (6 pm)           

Surface Temp. (°C) 29.2 29.2  29.4 29.4 29.2  NS NS NS 

Bottom Temp. (°C) 29.0 28.9  29.1 29.2 28.9  NS NS NS 

Surface DO (mg L–1) 8.05 8.03  8.14 8.04 7.96  NS NS NS 

Bottom DO (mg L–1)  5.22 5.29  5.48a 5.42a 4.85b  NS *** NS 

Mean pH range  7.8-7.9 7.7-7.8  7.7-7.8 7.8-8.0 7.7-7.8  - - - 

At morning (10 am)           

Secchi depth (cm)  43.2 43.7  45.9a 39.9b 44.5a   ** NS 

T. Alkalinity (mg L–1) 94.1 100.7  95.9 92.4 104.0  NS NS NS 

Chlorophyll a (µg L–1) 150.1 145.7  126.3b 150.2ab 167.1a  NS ** NS 

NH3-N (mg L–1) 0.203 0.195  0.189 0.198 0.209  NS NS NS 

NO2-N (mg L–1) 0.009 0.008  0.008 0.009 0.009  NS NS NS 

NO3-N (mg L–1) 0.056 0.059  0.065 0.057 0.051  NS NS NS 

PO4-P (mg L–1) 0.983 0.913  1.37a 0.97a 0.51b  NS *** NS 
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3.2 Effects on the abundance of plankton and benthic macroinvertebrates 

 

The abundance of plankton and benthos and outcomes of ANOVA are presented in 

Table 3. The plankton communities in pond water consisted of four groups of 

phytoplankton and two groups of zooplankton in all treatments. Forty two genera of 

phytoplankton belonging to Bacillariophyceae (11 genera), Chlorophyceae (21 

genera), Cyanophyceae (7 genera) and Euglenophyceae (3 genera) were found. 

Chlorophyceae was the most dominant group in terms of number of genera and 

abundance (cells or colonies L
−1

) among phytoplankton in each treatment. Seventeen 

genera of zooplankton, including eight genera of Rotifera and nine genera of 

Crustaceae were also identified. Among phytoplankton Synedra, Tabellaria, Diatoma, 

Fragillaria, Cyclotella and Nitzschia (Bacillariophyceae), Chlorella, Sphaerocystes, 

Palmella, Pediastrum, Stigeoclonium, Ulothrix and Scenedesmus (Chlorophyceae), 

Microcystis, Anabaena and Gomphosphaeria (Cyanophyceae), Euglena and Phacus 

(Euglenophyceae), and among zooplankton Cyclops, Diaphanosoma and Nauplius 

larvae (Crustaceae), and Brachionus, Asplanchna, Trichocerca, Polyarthra and 

Filinia (Rotifera) were the dominating genera. 

 

CH sources for maintaining a high C:N ratio had no significant effect on the 

abundance of any major group of phytoplankton and zooplankton. However, stocking 

combination of finfish affected the abundance of all the groups of phytoplankton and 

zooplankton. The mean abundance of all groups of phytoplankton was higher in 

treatment 100R except Bacillariophyceae and lower in treatment 100T. The opposite 

trend was observed with zooplankton. The mean abundance of all groups of 

zooplankton was higher in treatment 100T and lower in treatment 100R. The 

interaction between carbohydrate source and finfish stocking ratio had significant 

effect on zooplankton abundance only indicating that the carbohydrate source affected 

zooplankton abundance differently in different stocking combinations. All major 

groups of phytoplankton were tending to decrease for the first two months then 

increased gradually during the experimental periods (Table 4). In the case of 

zooplankton, the trend was not similar as phytoplankton during the culture period. 

The variations in abundance of phytoplankton and zooplankton during experimental 

periods are shown in Figure 2. 

 

The benthic macroinvertebrate were divided into Chironomidae, Oligochaeta, 

Mollusca and un-identified groups. Chironomidae followed by Oligochaeta was the 

most dominant groups among benthos in each treatment. CH sources for maintaining 

a high C:N ratio had no effect on the abundance of any major group of benthic 

macroinvertebrate. Stocking ratio of finfish affected the abundance of Chironomidae 
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and Oligochaeta among all identified groups of benthic macroinvertebrates and the 

mean values were higher in treatment 100R and lower in treatment 100T. As a result, 

total benthos was 41% higher in number in treatment 100R than in treatment 100T. 

The number of all major groups increased during the first month then decreased 

gradually during the culture period except Mollusca (Table 4). The abundance of total 

benthos was found to decrease gradually during the experimental periods with the 

higher rate in treatment 100T followed by treatments 50T/50R and 100R, respectively 

(Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mean (±SD) abundance of phytoplankton, zooplankton and benthos in 

different stocking combination of tilapia and rohu (0.5 finfish m
−2

) treatment ponds 

during the experimental periods in C/N-CP based freshwater prawn (2 individual m
−2

) 

farming system 



 

 

Table 3 

 

 Effects of carbohydrate sources and finfish stocking combinations on abundance of plankton and benthos based on 2-way ANOVA 

 

 

CH = Carbohydrate source to increase C/N ratio from 10 to 20; TS = treatments with tapioca starch as CH source; MF= treatments with maize flour as CH source; 100T = 

treatment with 100% tilapia; 50T/50R = treatments with 50%tilapia + 50% rohu; 100R= treatments with 100% rohu; F = Finfish (tilapia+rohu) stocking ratio; CH×F = 

Interaction of carbohydrate source and finfish stocking ratio. The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. 

If the effects were significant, ANOVA was followed by Tukey test. *P<0.05; **P<0.01; ***P<0.001; NS, Not significant 

Variables 

Means (Tukey test)); Prawn 2 m
–2

 in all treatments  Significance (P value) 

CH source  Finfish stocking ratio (0.5 individual m
–2

) 

TS MF  100T 50T/50R 100R  CH F CH×F 

Plankton (×10
3
 cells or colonies L

–1
)           

Bacillariophyceae 17.18 16.49  16.00
b 

18.87
a 

15.63
b 

 NS * NS 

Chlorophyceae 89.21 90.43  76.12
b 

95.82
a 

97.53
a 

 NS *** NS 
Cyanophyceae 28.08 31.80  24.05

b 
29.43

ab 
36.33

a 
 NS *** NS 

Euglenophyce 2.61 2.76  2.03
b 

2.78
a 

3.23
a 

 NS *** NS 

Total phytoplankton 137.1 141.5  118.2
b 

146.9
a 

152.7
a 

 NS *** NS 
Crustacea 6.91 6.31  8.20

a 
6.40

b 
5.23

b 
 NS *** NS 

Rotifera 6.61 6.46  8.21
a 

5.82
b 

5.57
b 

 NS *** * 

Total zooplankton 13.52 12.77  16.41
a 

12.22
b 

10.80
b 

 NS *** * 

Total plankton 137.07 141.48  118.2
b 

146.9
a 

152.7
a 

 NS *** NS 
Benthos (individual m

–2
)           

Chironomidae 621 573  473
c 

586
b 

731
a 

 NS *** * 

Olligochaeta 253 266  211
b 

270
ab 

298
a 

 NS *** NS 
Mollusca 137 133  133 145 129  NS NS NS 

Un-identified groups 25 25  24 25 26  NS NS NS 

Total benthos 1036 997  841
c 

1026
b 

1184
a 

 NS *** NS 
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Table 4 
 

Abundance of plankton and benthos over the sampling periods.
ψ 

 

 

Mean values in the same row with no superscript letter in common differ significantly (P<0.05).  
ψ One sampling period is 30 days 
Ф Results from repeated measures 2- way ANOVA 

*P<0.05 ** P<0.01; *** P<0.001 

Variables Sampling periods Significance
 Ф

   

 P value 
Initial Period 1 Period 2 Period 3 Period 4 

Plankton (×10
3
 cells or colonies L

–1
) 

     
 

Bacillariophyceae 20.86
a 

14.19
b 

14.89
b 

16.31
b 

17.92
ab 

*** 

Chlorophyceae 117.13
a 

69.11
c 

76.39
c 

85.44
bc 

101.03
ab 

*** 

Cyanophyceae 33.36
a 

26.81
b 

22.06
b 

30.86
ab 

36.61
a 

* 

Euglenophyce 2.97
a 

2.47
ab 

1.92
b 

3.03
a 

3.03
a 

* 

Total phytoplankton 174.33
a 

112.58
c 

115.25
c 

135.64
bc 

158.58
ab 

*** 

Crustacea 9.53
a 

7.53
ab 

6.39
bc 

4.69
c 

4.92
c 

*** 

Rotifera 8.69
a 

5.69
b 

5.86
b 

5.75
b 

6.66
ab 

*** 

Total zooplankton 18.22
a 

13.22
b 

12.25
b 

10.44
b 

11.58
b 

*** 

Total plankton 174.33
a 

112.58
c 

115.25
c 

135.64
bc 

158.58
ab 

*** 

Benthos (individual m
–2

)       

Chironomidae 849
a 

857
a 

657
b 

363
c 

260
c 

*** 

Olligochaeta 188
b 

392
a 

323
a 

225
b 

169
b 

*** 

Mollusca 134 129 135 131 149 NS 

Un-identified groups 28
ab 

33
a 

32
a 

21
bc 

12
c 

*** 

Total benthos 1198
b 

1410
a 

1147
b 

739
c 

589
c 

*** 
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3.3 Effects on periphyton biomass 

 

Periphyton DM, ash, AFDM, Chlo-a, and autotrophic index per unit substrate surface 

area are given in Table 5. CH sources for maintaining a high C:N ratio had no effect 

on any of the parameters of periphyton biomass. Mean values of all of these 

parameters were significantly higher in treatment 100R than in treatment 100T except 

autotrophic index but treatment 50T/50R had no significant difference with either 

treatment. The DM, ash, AFDM and chlo-a contents increased during the first month 

after which they constantly reduced in all treatments during the experiment (Figure 3). 

 

Table 5 

 

Effects of carbohydrate sources and finfish stocking combinations on periphyton 

biomass scraped from bamboo kanchi based on 2-way ANOVA 

 

CH = Carbohydrate source to increase C/N ratio from 10 to 20; TS = treatments with tapioca starch as 

CH source; MF= treatments with maize flour as CH source; 100T = treatment with 100% tilapia; 

50T/50R = treatments with 50%tilapia + 50% rohu; 100R= treatments with 100% rohu; F = Finfish 

(tilapia+rohu) stocking ratio; CH×F = Interaction of carbohydrate source and finfish stocking ratio. The 

mean values followed by the different superscript letter in each factor indicate significant difference at 

0.05. If the effects were significant, ANOVA was followed by Tukey test. *P<0.05; **P<0.01; 

***P<0.001; NS, Not significant. 

 

 

 

 

 

 

 

 

 

Variables 

Means (Tukey test)); Prawn 2 m–2 in all treatments  ANOVA 

Significance 

P-value 
CH source  Finfish stocking ratio 

(0.5 individual m–2) 

TS MF  100T 50T/50R 100R  CH F CH×F 

Dry matter (mg cm–2) 2.27 2.30  2.02b 2.27ab 2.56a  NS * NS 

Ash (mg cm–2) 0.76 0.76  0.82b 0.77ab 0.88a  NS ** NS 

Ash free DM (mg cm–2) 1.51 1.54  1.40b 1.50ab 1.68a  NS * NS 

Chlo. a (µg cm–2) 9.68 9.62  8.91b 9.47ab 10.57a  NS * NS 

Autotrophic index  156.3 158.3  155.2 158.6 158.1  NS NS NS 
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Figure 3. Quantity of periphyton biomass per unit surface area in different stocking 

ratio of tilapia and rohu (0.5 finfish m
−2

) treatment ponds during the experimental 

periods in C/N-CP based freshwater prawn (2 individuals m
−2

) farming system. 

Values are means (±SD) of three replicates (each replicate was composed by three 

poles and three depth samples) per sampling date in each treatment. 
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3.4 Effects on growth and yield parameters of freshwater prawn and finfish  

 

Effects of carbohydrate sources and finfish stocking ratio and their interactions on 

yield parameters of freshwater prawn and finfish are given in Table 6. The 

carbohydrate sources had no effect on the growth and yield parameters of freshwater 

prawn, tilapia, rohu and their combination. Although stocking ratio of finfish did not 

affect freshwater prawn, the ratio had significant effects on the growth and yields of 

the finfish themselves. Individual harvesting weight of tilapia was 23% higher in 

treatment 50T/50R compared to treatment 100T. On the other hand, the survival of 

rohu was significantly higher in treatment R100 compared to treatment T50/R50 but 

individual harvesting weight did not vary significantly among the treatments. The net 

yield of finfish in treatment 100T was 17% and 113% higher as compared to 

treatments 50T/50R and 100R, respectively. 

 

3.5 Economic comparison 

 

The benefit–cost analysis of different treatments is shown in Table 7. Freshwater 

prawn juveniles, feed, tapioca starch or maize flour and the substrates were the most 

expensive cost inputs. The extrapolated costs of all variable inputs were significantly 

higher in TS treatment than in MF treatment ponds. The total input cost was similar 

among different stocking ratio of tilapia and rohu ponds. The total return was 

significantly higher in treatments 100T and 50T/50R than in treatment 100R but the 

CH sources had no effect on it. The economic analysis showed that the benefit–cost 

ratio was 35% higher in MF treatment than in TS treatment. Again, the benefit–cost 

ratio in treatment T100 was 31% and 137% higher when compared with treatments 

T50/R50 and R100, respectively. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 6 Effects of carbohydrate sources and finfish stocking combinations on production of freshwater prawn and finfish based on 2-way ANOVA 

 

CH = Carbohydrate source to increase C/N ratio from 10 to 20; TS = treatments with tapioca starch as CH source; MF= treatments with maize flour as CH source; 100T = 

treatment with 100% tilapia; 50T/50R = treatments with 50%tilapia + 50% rohu; 100R= treatments with 100% rohu; F = Finfish (tilapia+rohu) stocking ratio; CH×F = 

Interaction of carbohydrate source and finfish stocking ratio. The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. 

If the effects were significant, ANOVA was followed by Tukey test. *P<0.05; **P<0.01; ***P<0.001; NS, Not significant. 

Variables 

Means (Tukey test)); Prawn 2 m
–2

 in all treatments  Significance (P value) 

CH source  Finfish stocking ratio (0.5 individual m
–2

) 

TS MF  100T 50T/50R 100R  CH F CH×F 

M. rosenbergii           
In. Stocking wt. (g) 0.81 0.82  0.82 0.81 0.82  NS NS NS 

In. harvesting wt. (g) 37.8 36.9  38.1 37.3 36.6  NS NS NS 
Food conversion ratio 2.06 2.19  2.08 2.19 2.09  NS NS NS 

Survival (%) 77.9 77.2  77.7 77.0 77.9  NS NS NS 
Gr. Yield (kg ha

–1
 120 day

–1
) 586 568  592 571 567  NS NS NS 

Net yield (kg ha
–1

 120 day
–1

) 570 552  575 555 551  NS NS NS 
O. niloticus           

In. Stocking wt. (g) 27.8 27.9  27.7 28.0 -  NS NS NS 
In. harvesting wt. (g) 289.2 293.5  261.1

b 
321.6

a 
-  NS ** NS 

Survival (%) 96.7 97.5  97.5 96.7 -  NS NS NS 
Gr. Yield (kg ha

–1
 120 day

–1
) 1014 1035  1272

a 
777

b 
-  NS *** NS 

Net yield (kg ha
–1

 120 day
–1

) 909 930  1133
a 

707
b 

-  NS *** NS 
L. rohita           

In. Stocking wt. (g) 27.6 27.6  - 27.7 27.5  NS NS NS 
In. harvesting wt. (g) 171.1 161.2  - 177.0 155.1  NS NS NS 

Survival (%) 81.7 80.0  - 75.0
b 

86.7
a 

 NS *** NS 
Gr. Yield (kg ha

–1
 120 day

–1
) 523 480  - 333

b 
670

a 
 NS *** NS 

Net yield (kg ha
–1

 120 day
–1

) 419 376  - 264
b 

531
a 

 NS *** NS 

Combined finfish           
Survival (%) 90.0 90.0  97.5

a 
85.8

b 
86.7

b 
 NS *** NS 

Gr. Yield (kg ha
–1

 120 day
–1

) 1024 1010  1272
a 

1110
b 

670
c 

 NS *** NS 
Net yield (kg ha

–1
 120 day

–1
) 886 871  1133

a 
970

b 
532

c 
 NS *** NS 

Prawn & finfish           
Gr. Yield (kg ha

–1
 120 day

–1
) 1611 1578  1864

a 
1681

b 
1237

c 
 NS *** NS 

Net yield (kg ha
–1

 120 day
–1

) 1456 1423  1709
a 

1525
b 

1083
c 

 NS *** NS 
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Table 7. Effects of carbohydrate sources for maintaining a high C:N ratio and tilapia driven re-suspension on economic parameters per factor based on 2-way 

ANOVA. Calculation was based on 1 ha pond and 120 days experimental period. Currencies are given in Bangladeshi Taka, BDT (1 US$ = 69 BDT). 
 

Variables Amount Price rate Means (Tukey test); Prawn 2 individual m-2 in all treatments  ANOVA Significance 

(P value) CH Source  Finfish stocking ratio (0.5 fish m-2) 

TS MF 100T 50T/50R 100R CH F CH×F 
Fixed/common cost           
   Land rental cost 1 ha 21,000 ha-1 y-1 7000 7000 7000 7000 7000 - - - 
   Labor 50 man-day 120 man-day-1 6000 6000 6000 6000 6000 - - - 
   Rotenone 12.5 kg 220 kg-1 2750 2750 2750 2750 2750 - - - 
   Lime 250 kg 10 kg-1 2500 2500 2500 2500 2500 - - - 
   Cowdung 3000 kg 0.5 kg-1 1500 1500 1500 1500 1500 - - - 
   Urea 100 kg 10 kg-1 1000 1000 1000 1000 1000 - - - 

   TSP 100 kg 25 kg-1 2500 2500 2500 2500 2500 - - - 
   Fuel cost 500 units 4 unit-1 2000 2000 2000 2000 2000 - - - 
   Substrates (reuse-5 times) 150,000 Pieces 1 piece-1 30,000 30,000 30,000 30,000 30,000 - - - 
   Subtotal   55,250 55,250 55,250 55,250 55,250 - - - 
Variable cost           
   Prawn juveniles 20,000 ha 4 juvenile-1 80,000 80,000 80,000 80,000 80,000 - - - 
   Tilapia juveniles  2.5 juvenile-1 12,500 12,500 25,000a 12,500b - NS *** NS 
   Rohu juveniles  3 juvenile-1 15,000 15,000 - 15,000b 30,000a NS *** NS 

   Feed  25 kg-1 30,069 30,902 30,729 31,250 29,479 NS NS NS 
   Tapioca starch/maize flour  30/12 kg-1 27,062a 19,283b 23,401 23,783 22,333 *** NS NS 
   Subtotal   164,631a 138,402b 149,510 152,718 152,322 *** NS NS 
   Total   219,881a 193,653b 204,760 207,968 207,572 *** NS NS 
   Interest on inputs (4 months)  10% anually 7329a 6455b 6825 6932 6919 *** NS NS 
   Total inputs   227,211a 200,107b 211,585 214,901 214,492 *** NS NS 
Financial returns           
   Prawn sale  400 kg-1 234,500 227,177 236,950 228,516 227,050 NS NS NS 
   Tilapia sale  100 kg-1 67,566 68,989 127,183a 77,650b - NS *** NS 

   Rohu sale  80 kg-1 27,895 25,591 - 26,660b 53,575a NS *** NS 
   Total returns   329,962 321,757 364,133a 332,827a 280,620b NS *** NS 
   Total net returns   102,751b 121,650a 152,547a 117,925b 66,127c ** *** NS 
   Benefit cost ratio (BCR)   0.453b 0.610a 0.730a 0.556b 0.308c ** *** NS 

 

CH = Carbohydrate source to increase C/N ratio from 10 to 20; TS = treatments with tapioca starch as CH source; MF= treatments with maize flour as CH source; 100T = 

treatment with 100% tilapia; 50T/50R = treatments with 50%tilapia + 50% rohu; 100R= treatments with 100% rohu; F = Finfish (tilapia+rohu) stocking ratio; CH×F = 

Interaction of carbohydrate source and finfish stocking ratio. The mean values followed by the different superscript letter in each factor indicate significant difference at 0.05. 

If the effects were significant, ANOVA was followed by Tukey test. *P<0.05; **P<0.01; ***P<0.001; NS, Not significant. 
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4 Discussion 

 

4.1 Effects on water quality parameters 
 

The water temperature, dissolved oxygen and pH were within the suitable range for 

freshwater prawn and tropical fish culture (Zimmermann and Boyd, 2000; New, 

2002). The observed higher bottom dissolved oxygen at sunset in ponds stocked with 

freshwater prawn and tilapia only was mainly due to the bioturbation effects by tilapia. 

Previous research reported that bioturbutary activities of tilapia can bring some DO 

downwards to the lower layers of the water column, improving aerobic conditions on 

the pond bottom (Phan-Van et al., 2008; Jiménez-Montealegre et al., 2002). That such 

an effect on bottom dissolved oxygen by tilapia was not found at sunrise might be due 

to the less availability of surface oxygen and poor bioturbutary effects by tilapia at 

very early morning. The observed lower concentration and decreasing trend of chlo-a 

in this treatment (Figure 1) might be due to higher turbidity reducing photosynthesis 

and hence primary production or higher grazing on phytoplankton by tilapia than rohu. 

Perschbacher and Lorio (1993) reported that tilapia stocked at densities higher than 

5000 ha
−1

 promoted a very effective biological control over phytoplankton. The 

similar inorganic N-species concentrations and other water quality parameters in 

ponds supplied with both maize flour and tapioca starch showed the possibility of 

using low-cost maize flour as cheap CH source for maintaining good water quality in 

C/N-CP system. The very low nitrogenous compounds in all treatments compared to 

other studies of freshwater prawn farming (e.g.Wahab et al., 2008; Kunda et al., 2008) 

could be attributed to the addition of carbohydrate to maintain a C/N ratio of 20 and 

periphyton substrates during the experimental period (Asaduzzaman et al., 2008, 

2009a,b). The observed higher level of PO4–P in ponds stocked with tilapia alone and 

tilapia–rohu together indicated that tilapia re-suspension induced nutrient release from 

the accumulated organic matter of the sediment into the water phase through the 

mud–water exchange mechanism, which enhances the overlying water PO4–P 

concentration (Jana and Das, 1992; Jana and Sahu, 1993; Saha and Jana, 2003). 

 

4.2 Effects on abundance of plankton and benthic macroinvertebrates 

 

The abundance of plankton and benthic macroinvertebrates in the culture system is 

influenced by a number of management factors, among them fish species 

combinations in polyculture, stocking density and ratio, and the nutrient input quality 

and quantity are most important (Milstein, 1993; Diana et al., 1997). Apart from these 
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management factors, fish feeding habits have an important influence on the 

abundance of plankton and benthos, both directly by consumption and indirectly 

through influencing the food web and nutrient availability. The phytoplankton species 

composition identified in the present experiment was representative of that found in 

Bangladesh prawn farming in rice fields and ponds (Asaduzzaman et al., 2009b; 

Wahab et al., 2008; Kunda et al., 2008; Uddin, 2007). The similar abundance of 

plankton and benthic macroinvertebrate in MF ponds and TS ponds reflected that both 

CH sources in C/N-CP system had the same effect. The comparatively lower 

abundance of phytoplankton in ponds with tilapia as finfish compared to ponds with 

rohu as finfish indicated that tilapia grazes on phytoplankton more efficiently than 

rohu does. In periphyton-based freshwater prawn-tilapia polyculture, Uddin (2007) 

reported that electivity indices of tilapia were negative for all zooplankton and 

positive for all phytoplankton groups except Bacillariophyceae, indicating that it 

preferred phytoplankton above zooplankton. In contrast, the abundance of 

zooplankton was lower in ponds with rohu compared to ponds with tilapia, indicating 

that rohu had a stronger preference for zooplankton than tilapia. Rohu is a column 

feeder browsing on zooplankton and decaying organic matter (Das and Moitra, 1955). 

Rahman (2006) showed that rohu's electivity indices were positive for all zooplankton 

groups and negative for all phytoplankton groups, confirming that it preferred 

zooplankton over phytoplankton. They concluded that in fed ponds, rohu ingested 1.3 

times more zooplankton than phytoplankton although the abundance of phytoplankton 

was higher than zooplankton. Again, this result in a way agrees with Miah et al. 

(1984), who reported that zooplankton is a more preferable food item than 

phytoplankton for rohu fry. In addition, tilapias re-suspend sediments, thereby 

influencing nutrient availability in the water column, which in turn affects 

photosynthesis and subsequently phytoplankton production. The observed decrease 

and/or similar abundance of phytoplankton during the first two months might be 

attributed to grazing by tilapia. The steadily increase in abundance of phytoplankton 

after the second month might be due to increased nutrient (mainly PO4–P) re-

suspension by tilapia of increasing body size. Avnimelech et al. (1999) reported that 

tilapias do appreciably re-suspend sediment, and such activity is more pronounced in 

large fish. The observed lowest abundance of Chironomidae, Oligochaeta and total 

benthic macroinvertebrate in tilapia ponds might indicate that tilapia directly feed on 

these benthic fauna or indirectly facilitated the feeding by freshwater prawn during 

sediment burrowing. Zur (1980) reported that tilapia is omnivorous and feeds on 
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benthic detritus and fauna too. Chironomid and some other benthic larvae dwell from 

a few millimeters to several centimeters deep in the sediment (Winkel, 1987). 

Therefore, prawn predation on chironomids may be facilitated due to the digging and 

sieving of sediments by tilapia. The observed decrease in number of benthos during 

the culture period might be due to increased grazing pressure by prawn and tilapia 

(Asaduzzaman et al., 2009b). There is evidence that prawns in their natural habitats 

prefer to forage on animals like trichopterans, chironomids, oligochaetes, nematodes, 

gastropods and zooplankton (Corbin et al., 1983; Coyle et al., 1996; Tidwell et al., 

1997). 

 

4.3 Effects on periphyton biomass 

 

The similar effects of maize flour and tapioca starch on periphyton biomass showed 

the potential of using low-cost maize flour instead of relatively high-cost tapioca 

starch for improving the periphyton quality in C/N-CP ponds. The observed lower 

level of periphytic biomass per unit surface area in tilapia ponds compared to rohu 

ponds indicates that periphyton is more effectively utilized by tilapia. Tilapias are 

omnivores capable of feeding on benthic and attached (periphyton) algal and detrital 

aggregates (Dempster et al., 1993; Azim et al., 2003a). Laboratory-based grazing 

trials also indicated that tilapias can ingest more plant based food per unit time when 

presented as periphyton than as plankton (Dempster et al., 1993, 1995). There are 

similar evidences that Nile tilapia shows better grazing on periphyton than filtering 

suspended algae from water column (Hem and Avit, 1994; Guirat et al., 1995; 

Huchette et al., 2000; Azim et al., 2003b). Again, rohu is known to be a 

predominantly column-feeding fish but it also feeds on periphyton in ponds provided 

with substrates (NFEP, 1997; Ramesh et al., 1999; Azim et al., 2001). Stable isotope 

analysis confirmed that rohu mostly relied on periphyton for food in periphyton-based 

system (Azim et al., 2002). Indeed, both species grazed on periphyton as evident by 

the gradual decrease of periphyton biomass in all treatment throughout the experiment 

as apparent in Figure 3 but it also indicated that tilapia is more efficient than rohu. 

The low range of AI values also indicated continuous grazing pressure on periphyton 

mass (Huchette et al., 2000). AI values between 100 and 200 are considered as algae 

dominating periphytic matter (APHA, 1992). Algae typically grow on the outer 

surfaces of substrate where there is sufficient sunlight and are continuously harvested 
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by fish grazing. The periphyton biomass in all ponds increased during the first month 

followed by a continuous decrease until the end of the experiment (Figure 3). This 

might be accounted for by changes in the tilapia and rohu grazing pressure on 

periphyton. The low biomass of tilapia and rohu initially exerted low grazing pressure 

allowing periphyton to grow and later, with increased fish biomass, grazing pressure 

led to reduced periphyton biomass. 

 

4.4 Effects on growth and yield parameters of prawn and finfish 

 

The growth and production performances of prawn and finfish were similar between 

TS and MF ponds. This may be due to the fact that both CH sources had the similar 

effects on water quality parameters and abundance of plankton, benthic 

macroinvertebrate and periphyton biomass. Therefore, it can be considered that maize 

flour can benefit the freshwater prawn farming like tapioca starch through reducing 

toxic inorganic nitrogen content, increasing heterotrophic bacteria and algal 

abundance and improving periphyton productivity (Asaduzzaman et al., 2008). In 

previous studies, different carbohydrate sources like tapioca starch (Asaduzzaman et 

al., 2008, 2009a,b), tapioca flour (Hari et al., 2004), mollases (Burford et al., 2004), 

glucose and cassava meal cellulose powder (Avnimelech and Mokady, 1988; 

Avnimelech et al., 1989; Avnimelech, 1999) were used in prawn, shrimp and finfish 

ponds to improve the water quality and productivity of ponds. Pond ecological and 

growth data revealed that maize flour can be a good source of organic carbon to 

maintain a high C:N ratio in C/N-controlled periphyton-based freshwater prawn ponds. 

Freshwater prawn production was not affected by the different stocking combinations 

of rohu and tilapia indicating that feeding niches of freshwater prawn did not or only 

partially overlapped with tilapia and/or rohu. In periphyton-based system, tilapia 

and/or rohu mainly depend on plankton and periphyton (Asaduzzaman et al., 2009a; 

Uddin, 2007; Ramesh et al., 1999; Azim et al., 2001); whereas previous research 

reported that plankton and periphyton had very little contribution to a prawn's diet 

(Asaduzzaman et al., 2008; Uddin, 2007). Uddin (2007) showed that in mixed culture 

the feeding niches of tilapia and prawn only partially overlap. The observed highest 

net yield of finfish in tilapia ponds might be due to the fast growth rate, more efficient 

utilization of natural food and bioturbation effects by tilapia as compared to rohu. The 

realistic economic analysis revealed that the use of maize flour in C/N-CP system 



Effects of CH sources & tilapia re-suspension 

 139 

reduced the carbohydrate cost thereby improving the economic benefits. Economic 

benefit can be increased further by stocking only tilapia rather than tilapia–rohu or 

only rohu in C/N-controlled periphyton-based freshwater prawn farming. Market 

price of tilapia was 100 BDT whereas rohu was 80 BDT. However, if the rohu were 

grown to 1 kg, it would be 250 BDT. On the other hand, market size of freshwater 

prawn should be at least 50 g which was not achieved in the present experiment. 

Therefore, economic analysis based on short term culture period is questionable 

especially for rohu. However, here is the advantage of culturing tilapia; it reached 

market size in 3–4 months. 

 

Conclusion 

 

Based on the findings of the present research, maize flour can be considered as an 

alternative cheap on-farm carbohydrate source due to its low costs, local production 

and wide utilization by the farmers as a fish and animal feed ingredients. The findings 

of the present research also confirmed that tilapia (0.5 fish m
−2

) driven re-suspension 

in freshwater prawn ponds improved the natural food utilization efficiency, pond 

productivity and economic benefit. The result of the present study could be useful in 

improving the economic sustainability of freshwater prawn farming in C/N-CP system. 

There exists scope for further improvement of economic sustainability of this 

technology by comparing the potential of other cheap carbohydrate sources such as 

sugarcane wastes and molasses. In the present study it was not possible to estimate the 

contribution of artificial feed and different types of natural food to the growth of 

freshwater prawn, tilapia and rohu. Therefore, studies with labeled 
13

C or 
15

N 

ingredients could help in tracing the utilization of organic carbon and inorganic 

nitrogen by different flora and elucidating food webs in ponds, and is subject of 

further research. 
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Introduction 
 

In semi-intensive aquaculture, manufactured feed constitutes the main nutrient input 

(Hargreaves, 1998) and is the most expensive cost factor for production (Sevilleja, 

1985). Cultured animals retain on average 30-50% of the feed, the rest contributing 

directly or indirectly to the nutrient load of water and sediment (Naylor et al., 2000). 

The microbial decomposition of organic matter in the system leads to an increased 

levels of TAN and nitrite, both harmful to fish at low concentrations. In stagnant 

water ponds, TAN tends to accumulate within the system due to insufficient 

nitrification activity (Grommen et al., 2002). Deteriorated water quality has resulted 

in disease outbreaks, low productivity and heavy financial losses and in criticism from 

various environmental organizations as being environmentally irresponsible. 

Therefore, farmers need new production sustainable management concepts for 

stagnant ponds, preferentially relying on locally available resources and requiring 

little investment (see review of Azim and Little, 2006). The major aim of this thesis 

was to develop a sustainable methodology for stagnant ponds not requiring a massive 

investment which is common to intensive systems. In order to achieve the goal, we 

combined C:N ratio control, periphyton technology and fish driven re-suspension into 

a low cost technology, further referred to as C/N-controlled periphyton-based (C/N-

CP) technology, applicable by small scale farmers. The underlying principle of 

enhancing pond productivity and sustainability in this system is based on the 

stimulation of suspended and attached bacteria and algae development, and by using 

them to improve water quality, provide additional food and improve nutrient 

efficiency.   

   

We first observed the effects of C/N ratio control and substrates addition for 

periphyton development on water quality and production of freshwater prawn. 

Secondly, we investigated how C/N ratio control and addition of substrates influenced 

the natural food communities in freshwater monoculture ponds. Thirdly, we studied 

the effects of increasing stocking density of prawn and addition of different level of 

tilapia on pond ecology and production in C/N-CP ponds. Fourthly, we studied the 

effects of addition of periphyton substrates and tilapias on pond ecology and 

production in C/N controlled system. Finally, we determined the effects of 

carbohydrate source to identify a cheaper on-farm carbohydrate to maintain a high 
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C:N ratio and fish driven re-suspension on pond ecology and production in C/N-CP 

ponds.  

 

In this chapter, the results from the above-mentioned studies are synthesized and 

cross-checked, while highlighting the major conclusion. We also outline strength and 

weakness of the followed approach and finally identified areas for further research. 

 

C/N ratio control reduced toxic nitrogenous compounds through immobilization by 

bacterial biomass 

 

In aquatic systems the values measured in nitrogenous compounds reflect the result of 

a wide range of biological and chemical processes that occur simultaneously. The 

uneaten feed and feces contribute to the organic matter load in the sediment of ponds. 

In stagnant ponds, the oxygen supply to the bottom sediment is limited. 

Mineralization of accumulated organic matter under anaerobic conditions leads to the 

formation of toxic metabolites like TAN, spoiling the living environment of the 

cultured organisms (Fast and Boyd, 1992; Hopkins et al., 1994; Avnimelech and 

Ritvo, 2003).  

 

Bacterial immobilization of ammonia in aquaculture ponds can be promoted by 

manipulating the C:N ratio of the nutrient input (Avnimelech et al., 1989; Avnimelech, 

1999; Burford et al., 2004; Hari et al., 2004). The C:N ratio of most of the feeds used 

in semi-intensive aquaculture ponds is around 10:1, but bacteria require about 20 units 

of carbon per unit of nitrogen assimilated (Avnimelech, 1999). If the C:N ratio is 

increased by adding a carbohydrate source in addition to the regular feed, the 

increased availability of carbon allows the heterotrophic bacterial population to grow 

to a dense mass.  We observed increasing C/N ratio from 10 to 20 significantly 

increased total heterotrophic bacterial abundance in water and sediment by 70% and 

36%, respectively (Chapter 2). Under aerobic condition, microbial breakdown of 

organic matter leads to the production of new bacterial biomass, amounting to 40–

60% of the metabolized organic matter (Avnimelech, 1999).  

 

The accumulation of inorganic nitrogen in a stagnant pond can be minimized by: (1) 

addition of organic carbon sources with a wide C:N ratio and (2) reduction of feed 

protein content. In our study, we increased C/N ratio from 10 (as in feed) to 15 and 20 
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by adding 0.45 and 0.9 kg tapioca starch for each kg of formulated feed, respectively. 

Increasing the C/N ratio from 10 to 20 significantly reduced the TAN concentration 

by 67.2% and NO2–N by 36.4% (Chapter 2), with a large fraction of the input N 

incorporated in new bacteria cells (single cell protein). This promoted nitrogen uptake 

by bacterial growth decreased the toxic nitrogenous compounds more rapidly than 

nitrification (Figure 1). The observed significant reduction in NO2–N concentration in 

the water column could be attributed to low availability of TAN as substrate for 

nitrification (Avnimelech, 1999; Hari et al., 2004). The inhibition of nitrification in 

aquatic environments by organic carbon was reported previously (Hanaki et al., 1990; 

Strauss and Lamberti 2000, 2002). Strauss and Lamberti (2000) added glucose as a 

carbon source and they observed a decreased nitrification when carbon level increased. 

These authors stated that at a high C/N ratio typical for nitrogen limited environments, 

the heterotrophic bacteria are more successful to capture the available nitrogenous 

compounds since they are more abundant and grow faster than the chemo-autotrophic 

nitrifying bacteria. Nitrification can also be suppressed due to space competition 

between nitrifying and heterotrophic bacteria (Wijeyekoon, et al., 2004). 

 

  

   

 

 

 

 

 

 

 

 

 

Figure 1. Mechanism of reduction of toxic nitrogenous compounds through 

immobilization by bacterial biomass. This figure showed that added carbon source for 

controlling of C/N ratio and TAN was converted into microbial biomass. The 

concentration of NO2 was also low due to low availability of TAN as substrate for 

nitrification. The downwards black block arrows indicated marked reduction of toxic 

nitrogenous compounds (Source: Modified from Crab et al., 2007) 
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C/N ratio control improved periphyton productivity 

 

Periphyton communities are comprised by bacteria, fungi, protozoa, phytoplankton, 

zooplankton, benthic organism and some invertebrates and their larvae (Azim, 2001). 

The added substrates in ponds water suported a periphyton community. The substrate 

will first be coated by organic substances, further colonized by bacteria and finally by 

algae and invertebrates, all of them embedded in a mucopolysaccharide matrix where 

organic detritus is trapped (van Dam et al., 2002). The presence of free-floating 

organic microparticles in pond water stimulates this process. Therefore, the quantity 

and quality of free-floating organic microparticles affects the speed with which the 

periphytic biofilms develops on the substrates in stagnant ponds. Increasing C/N ratio 

from 10 to 20 significantly increased the periphytic algal biomass in terms of 

biovolume by 64.2% (Chapter 3) and periphyton biomass in terms of dry matter by 

17% (Chapter 2). Most of the added carbohydrates remained suspended in the water 

column for a long time. The suspended organic matter and nutrients derived from feed 

and carbohydrates are partly trapped by periphyton (van Dam et al., 2002) which had 

a fertilization effect on autotrophic periphyton in higher C/N ratio treatments. There is 

an intense exchange of inorganic and organic solutes between autotrophic and 

heterotrophic components within the periphyton assemblage (Verdegem et al., 2005). 

The periphytic algae supplied organic matter (trapped OM and dead periphyton) to the 

heterotrophs, the latter inorganic nutrients to the autotrophs. The heterotrophic 

microbial community developing on substrates can be manipulated using C/N control 

in a way equivalent to bio-floc technology ponds. Therefore, increased heterotrophic 

bacterial activity in the periphyton mat stimulated autotrophic production in high C/N 

ratio ponds and ultimately improved periphyton production. 

 

Autrophic algal vs heterotrophic bacterial interaction in C/N-controlled ponds 

 

The relations between the autotrophic phytoplankton community and the 

heterotrophic organisms such as bacteria that depend on it are still not well 

understood and quantified (Hansson et al., 1998). These interactions include 

competition, mutualism, inhibition, stimulation and coexistence. Autotrophic algae, 

which are nutrient limited (mainly N and P), can only use dissolved inorganic 

nutrients while heterotrophic bacteria, can use both dissolved and particulate nutrients. 

Therefore, heterotrophic bacteria can compete with algae for dissolved nutrients (Aota 
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and Nakajima, 2000). The algae are generally ineffective in competing for available 

organic substrates at substrate concentrations maintained by active bacterial 

heterotrophic activity (Wetzel, 2001). When there is a strong carbon limitation (low 

C:N and C:P ratios) bacteria tend to be out-competed. However, under N or P 

limitation (high C:N and C:P ratio) algae will be less competitive (Torres Beristain, 

2005). At intermediate C:N and C:P ratios algae and bacteria will be both active 

(Thingstad and Pengerud, 1985). In previous research, the number of bacterial cells 

was found to increases linearly with the chlorophyll a concentration (Gasol and 

Duarte, 2000). In our experiment, increasing C/N ratio from 10 to 20 increased the 

biovolume of phytoplankton by 15% and heterotrophic bacteria in water column by 

70%, indicated mutual interaction between autotrophic algae and heterotrophic 

bacteria in C/N controlled ponds (Chapter 3). In aquaculture ponds, algae and 

bacteria have a range of stimulatory or inhibitory effects on each other (Cole, 1982). 

Along with the added carbohydrate, senescent algae or algal detritus are a major 

source of organic substrate for heterotrophic bacterial growth whereas living algae 

provide oxygen for decomposition. In return, bacteria regenerate inorganic nutrients 

and vitamins that stimulate algal productivity. C/N-controlled ponds received higher 

amount of nutrients in the form of carbohydrates and feeds. The increased amount of 

artificial feed and carbohydrates indirectly supplied nutrients to the autotrophic algae 

through decomposition by heterotrophic bacteria (Moriarty, 1986; Moriarty, 1997).  

 

Substrates addition affected water quality and phytoplankton availability 

 

When substrates are installed in the stagnant pond, the food web is enlarged by the 

extra periphyton loop (Azim, 2001). In periphyton-based system, the close linkage 

between autotrophic and heterotrophic processes in periphyton mats speed up nutrient 

cycling and positively influences water quality (Azim et al., 2003b; Milstein et al., 

2003). Periphyton mats improved pond water quality through trapping of suspended 

solids, oxygen production, organic matter breakdown, ammonium and nitrate uptake 

and enhancement nitrification (Azim, 2001; Bratvold and Browdy, 2001; Thompson 

et al., 2002; van Dam et al., 2002). In stagnant aquaculture ponds, nitrification mostly 

occurs at the sediment and is limited not only by surface area but also by oxygen 

availability. In C/N-controlled system fast growing heterotrophic bacteria might limit 

the space needed by the slow growing chemo-autotrophic nitrifying bacteria. In our 
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research, addition of substrates significantly decreased mean values of TAN, NO2–N, 

NO3–N and PO4–P in C/N-controlled ponds (Chapter 5). Supplying substrates 

improved the nitrogen-related processes developing in the water column and the 

nitrogen flow is mainly linked to autotrophic and heterotrophic activity that takes 

place in the periphyton (Milstein, 2005). In a substrates based system, Langis et al. 

(1988) and Ramesh et al. (1999) reported that bacterial biofilm (periphyton), 

including nitrifying bacteria, develop on the substrates which are located in the water 

column where more oxygen is available than at the water-sediment interface. In 

addition, the periphytic algal community contributes to the processing of the 

nitrogenous wastes in ponds (Shilo and Rimon, 1982; Diab and Shilo,1988). The 

periphyton community takes up both TAN and nitrate and edible biomass is formed 

(Crab et al., 2007). In addition to the uptake of TAN and nitrate, periphyton grown on 

the added substrates lowered the phosphorus of the overlying water (Hansson, 1989; 

Bratvold and Browdy, 2001). 

 

In a stagnant fish pond, phytoplankton is the most important component for energy 

fixation and fuelling the food web. While in ponds phytoplankton productivity is 

positively correlated with nutrient concentrations (Boyd, 1990), in periphyton-based 

ponds, this relationship is interfered with by competition and interactions between 

periphyton and phytoplankton. In our research, substrates addition decreased the 

phytoplankton abundance by 29% (Chapter 5) and biomass based on biovolume by 

14% (Chapter 3).  Possible explanations include (1) competition between periphytic 

algae and water column algae for light and bioavailable nutrients in overlying water, 

(2) periphyton substrates might have shading effects which reduce sunlight availabity 

for phytoplankton, (3) some algal species might prefer to be colonized on hard 

substrates and therefore move from planktonic state to the periphytic state if substrate 

were available. Although plankton biomass was always lower in substrate added 

ponds, combined biomass (plankton + periphyton) was significantly higher (95.7%) in 

these ponds compared to the substrate free ponds (Chapter 3). 

 

Role of tilapia driven re-suspension in C/N-CP ponds 

 

In stagnant pond, organic residues including uneaten feed, fecal pellets and dead algae 

settle to the pond bottom, creating an anoxic zone where nutrients remain trapped 

(Avnimelech and Zohar, 1986). The development of anaerobic conditions in stagnant 
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ponds constrains production and is considered to be a barrier for future intensification. 

The cycling of organic matter in the pond is influenced by sedimentation and re-

suspension processes. Re-suspension brings organic matter and nutrients back into the 

oxygen rich water column where organic matter decomposition occurs much more 

efficiently, yielding less toxic components than in the sediment. Bioturbation activity 

generated by tilapia has the potential to improve bottom soil quality by increasing 

oxygen supply to a greater depth in aquaculture ponds bottoms. In our research, the 

addition of tilapia increased the bottom dissolved oxygen by 7-13% (Chapter 5, 6). 

Previous research reported that bioturbutary activities of tilapia can bring some 

dissolved oxygen downwards to the lower layers of the water column, improving 

aerobic conditions on the pond bottom (Phan-Van et al., 2008; Jiménez-Montealegre 

et al., 2002). Mineralization of organic matter happens faster under aerobic condition 

(Torres Beristain, 2005). Therefore, favouring aerobic decomposition of organic 

matter will stimulate nutrient cycling in ponds. The digging and sieving of sediment 

by tilapia also increased diffusion rates across the sediment-water interface (Hohener 

and Gachter, 1994), which in turn increased nutrient availability in the overlying 

water column. The tilapia-driven bioturbation increased PO4-P concentration in 

overlying water by 168% compared to rohu in C/N-CP freshwater prawn ponds 

(Chapter 6). Previous studies reported that tilapia re-suspension induced nutrient 

release from the accumulated organic matter of the sediment into the water phase 

through the mud-water exchange mechanism, which enhances the overlying water 

PO4-P concentration (Jana and Das, 1992; Jana and Sahu, 1993; Saha and Jana, 2003). 

 

Plankton and periphyton grazing by tilapia 

 

About 42-45 genera of phytoplankton and 10-17 genera of zooplankton were 

identified in the water column of different experimental trials (Chapter 3, 5, 6). The 

addition of tilapia affected phytoplankton directly by grazing and indirectly by 

nutrient re-suspension. It decreased the abundance of phytoplankton by 46.5% 

indicating that direct effect was more pronounced than the indirect effect (Chapter 

5). According to Meade (1988) and Schwartz (1998), tilapia decrease the overall 

phytoplankton cell age by higher grazing pressure. Therefore, tilapia is important not 

only for nutrient cycling but also for structuring the plankton community (Diana et al. 

1991). According to Dempster et al., (1995) and Lu et al. (2006), tilapia is an active 
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filter feeder that can grow rapidly by grazing on phytoplankton. Therefore, tilapia is 

considered as a potentially ideal animal for the control of algal biomass (Turker et al., 

2003; Lu et al. 2006). Perschbacher and Lorio (1993) reported that tilapia stocked at 

densities higher than 5000 ha
−1

 promoted a very effective biological control over 

phytoplankton. However, the addition of tilapia did not have any significant effect on 

the abundance of zooplankton. Possible explanations are (1) zooplankton escapes 

predation during grazing by tilapia and (2) less preference for zooplankton by tilapia.  

 

Natural food availability for tilapia is higher in substrate-based ponds as periphyton 

serves as an additional food web besides phytoplankton (Azim 2001). Laboratory 

studies by Dempster et al. (1993) have demonstrated that ingestion rates by tilapias 

are up to 25 times greater when algae are presented as periphyton than when given as 

phytoplankton. In our research, tilapia addition at 0.5 individual m
–2

 in freshwater 

prawn ponds decreased periphyton biomass (dry matter) by 39 to 46% (Chapter 4, 5). 

There is evidence that Nile tilapia grows better grazing on periphyton (Hem and Avit, 

1994; Guirat et al., 1995; Huchette et al., 2000; Azim et al., 2003b). In tilapia added 

ponds, the periphyton biomass decreased over time due to tilapia grazing (Chapter 4, 

5). In these experiments, periphyton biomass in terms of dry matter, ash free dry 

matter and chlorophyll-a concentration increased during first 1-2 months of stocking 

then decreased steadily subsequently. Possible explantions include (1) the low 

biomass of fish initially exerted low grazing pressure allowing periphyton to grow for 

first 2 months and after that as fish grew its increased grazing pressure led to reduced 

periphyton biomass and (2) selective grazing by tilapia at initial stage and then 

grazing become less selective at later stage. The periphytic algae must be grazed 

constantly and kept at low biomass in order to maintain high productivity, because 

increased standing biomass in the absence of grazers may lead to self-shading and 

death of algae, with consequent sloughing and dislodgement of the community 

(Hatcher, 1983; Hay, 1991; Huchette et al., 2000).  

 

Grazing pattern of tilapia and rohu on plankton and periphyton 

 

Fish feeding habits have an important influence on the abundance of plankton and 

periphyton, both directly by consumption and indirectly through influencing the food 

web and nutrient availability. Tilapias are omnivores capable of feeding on suspended 

plankton, and benthic and attached (periphyton) algal and detrital aggregates 
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(Dempster et al., 1993; Azim et al., 2003a). Rohu is known to be a predominantly 

column-feeding fish but it also feeds on periphyton in ponds provided with substrates 

(NFEP, 1997; Ramesh et al., 1999; Azim et al., 2001). In our research, we observed 

comparatively lower abundance of phytoplankton (22.6%) in ponds with tilapia 

compared to rohu in C/N-controlled freshwater prawn farming system (Chapter 6). 

This indicated tilapia was more efficient in grazing suspended phytoplankton than 

rohu. However, it was found that rohu was more efficient in grazing zooplankton. 

Uddin (2007) reported that electivity indices of tilapia were negative for all 

zooplankton and positive for all phytoplankton groups except Bacillariophyceae. In 

contrast, Rahman (2006) reported that rohu‘s electivity indices were positive for all 

zooplankton groups and negative for all phytoplankton groups, confirming that it 

preferred zooplankton over phytoplankton. In fed ponds, rohu ingested 1.3 times more 

zooplankton than phytoplankton although the abundance of phytoplankton was higher 

than zooplankton. In the case of periphyton, it was also found that mean values of 

periphyton biomass was significantly lower in ponds with tilapia compared to rohu in 

C/N-controlled freshwater prawn farming system (Chapter 6). Although both species 

are known as periphyton grazer as evident by gradual decrease of periphyton biomass 

(Chapter 6) but above result indicated that tilapia was more efficient periphyton 

grazer than rohu. Therefore, feed utilization efficiency was more when tilapia is added 

in C/N-CP ponds. However, considering the different grazing pattern of tilapia and 

rohu on phytoplankton and zooplankton, further research can be carried out on duo-

culture of these species in C/N-CP ponds. 

 

Maize flour as an alternative to tapioca starch as carbohydrate source 
 

In C/N-controlled ponds, adding the carbon rich substrate encourages microbial 

metabolism and growth, immobilizes inorganic nitrogen and serves as a means to 

control water quality (Avnimelech, 1999). Many carbon sources can be used. In 

previous studies, several carbohydrate sources added to promote immobilization of 

inorganic nitrogen include glucose, cassava meal (Avnimelech and Mokady, 1988), 

cellulose, sorghum meal (Avnimelech et al., 1989), corn flour (Milstein et al., 2001), 

molasses (Burford et al., 2004), and tapioca flour (Hari et al., 2004). The criteria to 

select carbonaceous substrates should be its bio-availability and ability to be dispersed 

in the water. A readily bio-degradable substrate is preferable in C/N-controlled 

systems. The substrate should be soluble or given in fine powdered form, so as to 
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slow its sedimentation rate and to keep it suspended in the water as much as possible. 

Based on these properties, we selected tapioca starch as carbohydrate source for 

controlling C/N ratio at 20 (Chapter 2,3,4,5).  The major problems of using tapioca 

starch as CH source in Bangladesh were its poor acceptance by the farmers due to 

very high cost and irregular availability of this imported product.  In order to improve 

economic sustainability, one should select substrates that are not costly. We selected 

maize flour as a potential carbohydrate source (Chapter 6) due to its low cost, easy 

availability and wide acceptance by the farmer as one of the potential feed ingredients. 

We observed similar effects of maize flour and tapioca starch on water quality 

parameters, abundance of natural food and production of prawn and finfish (Chapter 

6). In addition, the economic analysis showed that the benefit-cost ratio was 35% 

higher when maize flour was used as carbohydrate source compared to tapioca starch 

(Chapter 6). 

 

Additive effects of C/N ratio control and periphyton substrates on prawn production 

 

In addition to water quality control, increasing C/N ratio led to the buildup of 

microbial protein that contributed to fish nutrition and thereby, improved production. 

The net yield of freshwater prawn increased by 40% due to increasing C/N ratio from 

10 to 20 (Chapter 2). The higher yield in the present study showed that freshwater 

prawn could well utilize the additional protein derived from the increased bacterial 

biomass as a result of increasing C/N ratio from 10 to 20. Previous studies reported 

that microbial dense mass, commonly known as biofloc, might be utilized as a food 

source by carp, tilapia (Schroeder, 1987; Beveridge et al., 1989; Rahmatulla and 

Beveridge, 1993) or shrimp (Burford et al., 2004), thus lowering the demand for 

supplemental feed protein (Avnimelech, 1999). Although not confirmed in our study, 

we hypothesized that as like other reported species, microbial floc might be utilized 

by freshwater prawn as food source. Our hypothesis was supported by a 19% 

reduction of the FCR and 24% increase of protein efficiency ratio in C/N ratio 20 

ponds compared to C/N ratio 10 ponds (Chapter 2). C/N ratio control increased 

freshwater prawn production 40% while the water quality was better.  

 

The substrates addition positively influenced freshwater prawn production in tilapia-

prawn polyculture system (Uddin, 2007). We observed that addition of substrates for 

periphyton development increased net yield of freshwater prawn by 23% (Chapter 2). 
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This increase in net yield was mainly due to the increased survival since periphyton 

substrates did not have an effect on individual weight at harvest. We also observed 

that addition of substrates for periphyton development improved freshwater prawn 

production by 15% in tilapia free ponds (Chapter 2) and 41% in tilapia added ponds 

(Chapter 5). Addition of substrates might have minimized territoriality effect of 

freshwater prawn (Uddin, 2007). In addition, substrates addition decreased FCR value 

by 13% contributing periphyton as additional food. Uddin (2007) reported that FCR 

was 13% lower in fed-periphyton based ponds compared to fed-substrate-free-ponds. 

Therefore, the possible explanations for increased freshwater prawn production due to 

the addition of substrates are (1) increased survival due to minimized territoriality 

effects, (2) additional natural food in the form of periphyton colonized on bamboo 

kanchi, (3) improvements of water quality due to reduction of toxic nitrogenous 

compounds through a range of ecological and biological process, or (4) a combination 

of these factors. The interaction between C/N ratio control and addition of substrates 

for periphyton development was not significant for the net yield of freshwater prawn 

(Chapter 2). The effects of C/N ratio control and substrate addition for periphyton 

development were additive, jointly increased net yield of freshwater prawn by 75%.  

 

Tilapia addition affected freshwater prawn production 
 

The analysis of natural food communities in C/N-controlled periphyton-based ponds 

(Chapter 3) showed that the biomass of plankton and periphyton was totally 

unutilized in freshwater prawn monoculture. Therefore, we considered that inclusion 

of plankton and periphyton grazing fish species like tilapia (Dempster et al., 1993; 

Huchette et al., 2000; Azim et al., 2003a) could further increased the production and 

improved environmental quality and system stability in C/N-CP ponds. In our 

experiment, adding 0.5 tilapia m
−2

 on average reduced prawn production by 12–14% 

(Chapter 4, 5), and tilapia addition at 1 individual m
−2

 produced a further 5% 

reduction, independent of prawn density. Since tilapia addition did not influence the 

survival of prawn negatively, the observed decrease of net yield of freshwater prawn 

might be due to the inter-specific competition for food and space. In our experiments, 

feed was applied considering only the freshwater prawn biomass, neglecting fish 

biomass. During feeding, we observed that part of the supplied feed was quickly eaten 

by tilapia before settling to the pond bottom. This concurred with a 10% and 13% 

increase in FCR with the addition of 0.5 and 1 tilapia m
−2

, respectively, compared to 
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prawn monoculture ponds (Chapter 4). Apart from the supplied artificial feed, tilapia 

may compete with freshwater prawn for natural food. Uddin (2007) reported that in 

mixed culture the feeding niches of tilapia and prawn only partially overlapped. In our 

observation, this was mostly evident for plankton and periphyton only in freshwater 

prawn-tilapia polyculture. Prawns in their natural habitats prefer to forage on animals 

like trochopterans, chironomids, oligochaetes, nematodes, gastropods and 

zooplankton (Corbin et al., 1983; Coyle et al., 1996; Tidwell et al., 1997). We 

observed that total benthos was 41% higher in number in prawn-rohu ponds compared 

to the prawn-tilapia ponds (Chapter 6), which suggests that tilapia directly feed on 

the benthic fauna (Zur, 1980).  Although, tilapia addition decreased freshwater prawn 

production to some extent, the overall combined production was satisfactory. With the 

addition of 0.5 tilapia m
−2

 to ponds with 2 prawns m
−2

, the available natural food 

(plankton, periphyton, benthos, microbial floc) was used much better than before. 

Tidwell et al., 2000 suggests that addition of tilapia with freshwater prawn may 

improve overall pond efficiency. Although, addition of 0.5 tilapia m
−2

 in this system 

reduced production to some extent (12-14%) but the net yield of freshwater prawn in 

various experiment ranges from 433-660 kg ha
–1

 120 d
–1

 (1082-1650 kg ha
–1

 yr
–1

 

considering 10 month culture periods in a year in Bangladesh). The above level of 

production of freshwater prawn is around 2.5 to 3.5 times higher than the previously 

reported production in polyculture system of Bangladesh (Asaduzzaman et al., 

2006a). However, actual production of freshwater prawn in C/N-CP at farm level may 

be low compared to the present study. In addition to the freshwater prawn, tilapia 

production in various experiment ranges from 1100-1400 kg ha
–1

 120 d
–1

 (2750-3500 

kg ha
–1

 yr
–1

 considering 10 month culture periods in a year in Bangladesh). 

Significantly higher benefit-cost ratio in C/N-CP system also indicated the economic 

sustainability of this system. 

 

Conclusion and further perspectives 

 

C/N-CP system benefited freshwater prawn farming by (1) improving water quality 

through reducing toxic inorganic nitrogen content such as ammonia and nitrite, (2) 

enhancing natural food availability, (3) improving nutrient utilization efficiency, (4) 

improving farm productivity and economic returns, and (5) reducing nutrient 

discharge. The above technology requires installation of hard substrates and 
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application of cheap carbohydrates, resources which can be produced within the 

farmers‘ traditional agricultural systems. The system can be applied in different parts 

of the world and with different culture species. Therefore, C/N-CP will be able to 

satisfy future demands for aquatic products, while providing the opportunity to 

resource poor farmers to participate and benefit significantly from the growth of 

aquaculture production. 

 

The major strength of this study was that it looked at the combined effects of C/N 

ratio control, addition of substrates for periphyton development and fish driven re-

suspension. Although the effects of C/N control, substrate addition, and fish driven re-

suspension on pond ecology and production are well documented by many authors 

previously, their combined effects on pond ecology and productivity have never been 

investigated in stagnant ponds. In all experiments, we always monitored water and 

sediment quality, abundance of natural foods (plankton, periphyton, heterotrophic 

bacteria, benthic macroinvertebrates), and production and economic performances. 

The previous research on C/N ratio control by carbohydrate addition mainly focused 

on the water quality, nutrient budget and production but not on the pond ecology and 

economic benefits. The approach to look at these aspects in combination proved 

fruitful. By combining the results from the series of different studies, our 

understanding of changes in pond ecology, nutrient dynamics, pond productivity and 

economic benefits improved. A better understanding of the microbiological aspects, 

particularly bacteria growth patterns, characterization of biofilms and possible 

manipulation of the microbial community will be helpful to further optimize C/N-CP 

technology. In the present study, it was not possible to estimate the contribution of 

artificial feed and different types of natural food to the growth of freshwater prawn, 

tilapia and rohu. Therefore, studies with labeled 
13

C or 
15

N ingredients can help in 

tracing the utilization of organic carbon and inorganic nitrogen by different flora and 

elucidating food webs in ponds, and is subject of further research. There exists scope 

for further improvement of economic sustainability of this technology by comparing 

the potential of other cheap carbohydrate sources and cheaper on-farm periphyton 

substrates. In many cases, result from the on-station trial varied from the farm level 

implementation. Therefore, adoption of this technology at on-farm levels through 

direct participation of farmers should be carried out to validate the result of on-station 

trials. 
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Operation of intensive freshwater prawn farming (Macrobrachium rosenbergii) 

demands high investment and technical expertise, things not affordable by resource-

poor farmers. In stagnant freshwater ponds, the production capacity is limited because 

excessive accumulation and anaerobic decomposition of organic matter creates 

adverse culture conditions. Therefore, new concepts to reduce organic matter 

accumulation and increase nutrient cycling and retention should be explored. Three 

technologies showed to improve productivity and sustainability of pond production: 

(1) C/N ratio control, (2) providing substrates for periphyton development, and (3) 

fish driven re-suspension. Although the effects of C/N control, substrate addition, and 

fish driven re-suspension on production are well documented, their combined effects 

on productivity have never been investigated in extensive and semi-intensive ponds. 

The novelty of this research is to combine these technologies, with the goal to raise 

pond productivity above levels obtained with each one of these technologies 

separately, and to increase the nutrient use efficiency in ponds above levels presently 

achieved, further enhancing sustainability. This combined technology is further 

referred to as C/N controlled periphyton (C/N-CP) technology. C/N-CP technology 

relies on hard substrates and carbohydrates, resources available within the traditional 

agricultural farming systems. The present research explores the hypothesis that 

combining C/N ratio control, providing substrates for periphyton development and 

fish driven resuspension, will increase average farm productivity more than with 

either of these techniques alone. In this thesis, the present status of the 3 technologies 

was briefly reviewed, followed by a series of experiments testing C/N-CP technology 

in extensive freshwater prawn ponds in Bangladesh. 

 

Experiment 1 explored the effect of C:N ratio control in ponds with or without 

substrate addition for periphyton development on production of giant freshwater 

prawn. Increasing the C/N ratio from 10 to 20 reduced all of the nitrogenous species 

(TAN, NO2-N, and NO3-N) in water column and total Kjeldahl nitrogen (TKN) in 

sediment. The addition of substrates did not influence size at harvest but improved the 

survival of prawn by 14.6%. Increasing the C:N ratio from 10 to 20 increased the net 

yield by 40% and addition of substrate increased the net yield by 23%. The 

combination of C:N ratio control and substrate addition increased the net yield from 

309 to 540 kg ha
–1 

(120 days)
–1

. This 75% higher production concurred with (1) a 

lower inorganic nitrogen content in the water column, (2) a higher total heterotrophic 

bacteria (THB) abundance supplying additional single cell protein to augment the 

prawn production, and (3) an improved periphyton productivity and quality. 
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Experiment 2 explored how C:N ratio control and presence and absence of added 

substrates influenced the natural food communities in aquaculture ponds. Increasing 

the C:N ratio from 10 to 20 significantly increased the biovolume of plankton, 

periphytic plankton and chironomids by 8.7%, 50% and 28%, respectively. Increasing 

the C:N ratio from 10 to 20 raised the biovolume of total heterotrophic bacteria (THB) 

in the water column (70%), sediment (36%) and periphyton (40%). The addition of 

substrates decreased the biovolume of water column plankton by 14% but the 

combined biovolume (plankton + periphyton) was almost double in substrate-added 

ponds. This study demonstrated that plankton, periphyton and microbial biomass were 

underutilized by the freshwater prawn in treatment with C:N ratio 20. This left room 

for increasing the stocking density of prawn and/or inclusion of periphyton grazing 

fish species to improve nutrient utilization efficiency and sustainability.  

Experiment 3 explored the effect of increasing stocking density (2 and 3 individuals 

m
–2

 of freshwater prawn and addition of different levels (0, 0.5 and 1 individual m
–2

) 

of tilapia on production in C/N-CP systems. Increasing prawn density increased gross 

and net prawn production (independent of tilapia density). Adding 0.5 tilapia m
−2

 on 

average reduced prawn production by 12–13%, and tilapia addition at 1 individual 

m
−2

 produced a further 5% reduction (independent of prawn density). The net yield of 

tilapia was similar between 0.5 and 1 tilapia m
−2

 treatments and increased by 8.5% 

with increasing stocking density of prawn. The significantly highest benefit cost ratio 

(BCR) was observed in 0.5 tilapia m
–2

 treatment but freshwater prawn density had no 

effect on it. Therefore, both stocking densities (2 and 3 prawns m
–2

) of prawn with the 

addition of 0.5 tilapia m
–2

 resulted in higher fish production, good environmental 

conditions and economic return and hence, polyculture of prawn and tilapia in C/N-

CP system is a promising option for ecological and sustainable aquaculture. 

Experiment 4 investigated the effect of addition of tilapia (0.5 individual m
–2

) and 

substrates for periphyton development on pond ecology, production and economic 

performances in a C/N-controlled freshwater prawn farming system. The addition of 

periphyton substrates significantly reduced inorganic N-species (TAN, NO2-N, and 

NO3-N) in the water column. Tilapia addition decreased the abundance of natural 

foods (plankton, periphyton and total heterotrophic bacteria), indicating the 

preferential feeding of tilapia on these items. Substrates addition improved survival of 

prawn by 42.6% but tilapia addition had no effect on it. Substrates contributed to 44% 

and 19% higher net yield of prawn and tilapia, respectively, whereas tilapia addition 

decreased the net yield of prawn by 14%. The economic analysis showed that addition 
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of tilapia and periphyton substrates jointly improved the benefit-cost ratio. Addition 

of tilapia and periphyton substrates in C/N controlled system benefited the freshwater 

prawn culture practices through reducing toxic inorganic nitrogenous compounds in 

water, enhancing the utilization of natural foods, and improving survival, production 

and economic benefit. 

Experiment 5 investigated the effect of carbohydrate source (high-cost tapioca starch 

and low-cost maize flour) for maintaining a high C:N ratio, and fish driven 

bioturbation (0.5 individual m
–2

 in three different combinations: 100% tilapia, 50% 

tilapia + 50% rohu, and 100% rohu) on pond ecology, production and economical 

performances in C/N-CP freshwater prawn ponds. Similar effects of tapioca starch 

and maize flour on water quality, natural foods abundance and production were 

observed. Bioturbutary activities of tilapia increased dissolved oxygen to the bottom 

layer, improving aerobic condition of the pond bottom. In addition to the bioturbutary 

effects, tilapia more effectively utilized the natural food items compared to rohu. The 

net yield and survival of finfish were significantly higher in 100% tilapia ponds 

during a 120-d culture period. This treatment gave the best economic return in terms 

of benefit-cost ratio while maize flour was used as carbohydrate source. In conclusion, 

maize flour can be used as an alternative cheap on-farm carbohydrate source for 

maintaining a high C:N ratio and tilapia driven re-suspension in C/N-CP system 

improves culture environment, natural food utilization, production and economic 

return, further enhancing economic sustainability of C/N-CP freshwater prawn 

farming system. 

In the general discussion, the major conclusions are integrated and interpreted and 

suggestions for further studies are given. Both the addition of substrates and tilapia 

(0.5 individual m
–2

) were found to be beneficial in C/N-controlled (C:N=20:1) prawn 

(2 or 3 individual m
–2

) farming system. The strength of this research is that it looked 

at the combined effects of (1) C:N ratio control, (2) addition of substrates for 

periphyton development and (3) tilapia driven bioturbation. How the various 

combinations affected water and sediment quality, natural food availability, 

production and economical benefits, was documented. A significant improvement of 

system environment, productivity and economic benefits was observed due to 

synergism among C:N ratio control, addition of periphyton substrates and tilapia 

driven bioturbation. C/N-CP technology is a promising technology, improving the 

sustainability and productivity of present prawn farming by simple and affordable 

means.
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Intensieve teelt van zoetwatergarnaal (Macrobrachium rosenbergii) vereist hoge 

investeringen en technische kennis. Dit kunnen kleine boeren niet betalen. In 

zoetwatervijvers zonder doorstroming is de productiecapaciteit beperkt omdat 

ophoping en anaerobe afbraak van organische stof de vijver ongeschikt maakt voor 

kweek. Daarom dienen er nieuwe concepten ontwikkeld te worden die de ophoping 

van organische stof verminderen en nutriëntkringlopen en –retentie versnellen. Van 3 

technologieën is bekend dat ze de productiviteit en duurzaamheid in vijvers 

verbeteren: (1) C/N ratio beheer, (2) het inbrengen van substraat voor periphyton, en 

(3) het opwarrelen van sediment door vissen. Hoewel elk van deze 3 technieken goed 

beschreven is in de literatuur is hun combinatie nooit onderzocht in extensieve en 

semi-intensieve vijvers. Het vernieuwende van dit onderzoek is het combineren van 

deze technieken met als doel de productiviteit te verhogen tot een niveau niet haalbaar 

met elk van deze technieken apart, en de gebruikefficiëntie van nutriënten in 

extensieve vijvers op een hoger niveau te brengen dan momenteel mogelijk. Hierdoor 

wordt ook de duurzaamheid verbeterd. Deze combinatie van technieken wordt C/N 

gecontroleerde periphyton (C/N-CP) technologie genoemd. C/N-CP technologie 

maakt gebruik van hard substaat en koolstofbronnen, zaken die voorhanden zijn op 

traditionele landbouwbedrijven. Het onderzoek test de hypothese dat het combineren 

van het aansturen van de C/N ratio, het installeren van substraat om periphyton 

ontwikkeling te stimuleren en het uitzetten van bodem omwoelende vissen, de 

productiviteit meer zal verhogen dan mogelijk met elk van deze technieken 

afzonderlijk. De thesis begint met een korte beschrijving van elk van de 3 

bovengenoemde technieken, gevolgd door een serie experimenten met C/N-CP 

technologie in extensieve zoetwatergarnaalvijvers in Bangladesh. 

 

In het eerste experiment werd het effect onderzocht van verschillende C:N 

verhoudingen in vijvers met of zonder substraat voor periphyton op de productie van 

zoetwatergarnaal. Door de C/N ratio te herhogen van 10 naar 20 nam de concentratie 

van stikstofverbindingen (TAN, NO2-N, and NO3-N) in het water en Kjeldahl stikstof 

(TKN) in de bodem, af. Het uitzetten van substaat had geen effect op de individuele 

grootte van de garnalen bij de oogst, maar de overleving steeg 14.6%. De netto 

opbrengt steeg 40% door de C:N ratio te verhogen van 10 tot 20. Het inbrengen van 

substaat verhoogde de productie met 23%. De combinatie van C:N ratio verhoging en 

het toevoegen van substraat, deed de netto opbrengst stijgen van 309 tot 540 kg ha
–1 

in 
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120 dagen. Deze 75% toename in productie ging samen met (1) minder anorganische 

stikstofverbindingen in de waterkolom, (2) meer heterotrofe bacteriën die als ‗single 

cell protein‘ bijdragen aan het verhogen van de garnaalproductie, en (3) een hogere 

kwaliteit en productie van periphyton. 

 

In het tweede experiment werd onderzocht hoe C:N verhoudingen en toevoeging van 

substraat de beschikbaarheid van natuurlijk voedsel in vijvers beïnvloeden. Het 

verhogen van de C:N ratio van 10 naar 20 leidde tot een 8.7% meer plankton, 50% 

meer periphyton en 28% meer chirominiden in termen van biovolume. Het verhogen 

van de C:N ratio van 10 tot 20 deed het biovolume van heterotrofe bacteriën in het 

water toenemen met 70%, in het sediment met 36% en in het periphyton met 40%. 

Door het toevoegen van substraat nam het biovolume van plankton in het water met 

14% af, maar het gecombineerde plankton en periphyton biovolume was bijna 2 keer 

zo hoog in vijvers met substraat. Aangetoond werd dat het plankton, periphyton en 

bacteriën onderbenut zijn in vijvers met zoetwatergarnaal met een C:N verhouding 

van 20. Er was dus nog ruimte om de bezettingsdichtheid van garnalen te verhogen en 

vissen uit te zetten die grazen op periphyton. Dit kan leiden tot een verbetering van de 

nutriëntbenutting en duurzaamheid. 

 

In een derde experiment werd onderzocht hoe de bezettingsdichtheid van 

zoetwatergarnaal (2 en 3 individuen m
–2

) en tilapia (0, 0.5 en 1 individu m
–2

) de 

productie in C/N-CP vijvers beïnvloed. Verhoging van de bezettingsdichtheid van 

garnalen leidde tot een hogere bruto en netto productie (onafhankelijk van de tilapia 

dichtheid). Door 0.5 tilapia m
–2

 uit te zetten nam de productie van zoetwatergarnaal 

met 12-13% af. Werd de bezettingsdichtheid van tilapia verder verhoogd tot 1 tilapia 

m
–2

 dan daalde de garnaalproductie nog een extra 5% (onafhankelijk van de garnaal 

dichtheid). De netto opbrengt van tilapia was vergelijkbaar bij 0.5 en 1 tilapia m
–2

, en 

steeg 8.5% door toename van de garnaal bezettingsdichtheid. Het uitkering 

kostencoëfficiënt was het beste bij 0.5 tilapia m
–2

, en werd niet beïnvloed door de 

bezettingsdichtheid van garnalen. Beide garnaal bezettingsdichtheden (2 en 3 garnalen 

m
–2

) in combinatie met 0.5 tilapia m
–2

 leidden dus tot een hogere productie, goede 

omgevingsomstandigheden en aanzienlijke winst. Policultuur van zoetwatergarnaal en 

tilapia in C/N-CP vijvers is een veelbelovende optie voor een ecologisch 

verantwoorde en duurzame aquacultuur. 
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In het vierde experiment werd in C/N ratio gecontroleerde zoetwatergarnaalvijvers 

onderzocht hoe toevoeging van 0.5 tilapia m
–2

 en substraat voor periphyton, de 

ecologie, de productie en het economisch bedrijfsresultaat beïnvloeden. Het 

installeren van substraat verminderde significant de concentratie van anorganische N-

verbindingen  (TAN, NO2-N, and NO3-N) in de waterkolom. In aanwezigheid van 

tilapia nam de hoeveelheid natuurlijk voedsel (plankton, periphyton en heterotrofe 

bacteriën) af, wat er op duidt dat tilapia bij voorkeur natuurlijk voedsel eet. Met 

substraat nam de overleving van zoetwatergarnaal 42.6% toe. Toevoegen van tilapia 

had geen effect op de overleving van garnaal. Met substraat was de garnaal opbrengst 

44% hoger en de tilapia opbrengst 19%. Met tilapia nam de netto opbrengst van 

garnaal met 14% af. Zowel het toevoegen van substraat als het uitzetten van tilapia 

leidde tot een verbetering van het uitkering kostencoëfficiënt. Het toevoegen van 

tilapia en substraat in C/N ratio gecontroleerde zoetwatergarnaalvijvers is voordelig 

omdat de hoeveelheid anorganische toxische N-verbindingen afneemt, de hoeveelheid 

beschikbaar natuurlijk voedsel toeneemt, en de overleving, productie en winst stijgen. 

 

In een vijfde experiment werd onderzocht hoe de koolstofbron (duur tapioca zetmeel 

en goedkope maïsbloem) die gebruikt wordt om de C:N ratio hoog te houden, en het 

omwoelen van de bodem door vissen (0.5 vis m
–2

 in drie verschillende combinaties: 

100% tilapia, 50% tilapia + 50% rohu, en 100% rohu), de vijver ecologie, productie 

en winst beïnvloeden in C/N-CP vijvers. Er was geen verschil in waterkwaliteit, 

beschikbaarheid van natuurlijk voedsel en productie tussen tapiocameel en 

maïsbloem. Het omwoelen van de bodem door tilapia verhoogde de hoeveelheid 

beschikbare opgeloste zuurstof in de bodem. Daarnaast gebruikte tilapia beter het 

beschikbare natuurlijke voedsel dan rohu. De netto visopbrengst en -overleving 

gedurende de 120 dagen kweekperiode was significant beter in de 100% tilapia 

vijvers. Maïsbloem als koolstofbron in combinatie met 100% tilapia toonde het beste 

uitkering kostencoëfficiënt. Het onderzoek toonde aan dat maïsbloem een uitstekende 

goedkope koolstofbron is voor het hoog houden van de C:N ratio, en dat het 

omwoelen van de bodem door tilapia in C/N-CP vijvers, de kweekomgeving, de 

productie van natuurlijk voedsel, de vis- en garnaalproductie en de winst verbetert. 

Hierdoor wordt de economische duurzaamheid van C/N-CP vijvers verder verbeterd. 
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In de algemene discussie worden de belangrijkste bevindingen geïntegreerd en 

geïnterpreteerd, en worden er suggesties gegeven voor vervolgonderzoek. Zowel het 

toevoegen van substraat en van tilapia (0.5 tilapia m
–2

) beïnvloeden C/N 

gecontroleerde (C:N ratio = 20:1) zoetwatergarnaal (2 of 3 garnalen m
–2

) vijvers in 

positieve zin. De kracht van dit onderzoek was dat het de bestaande technieken (1) 

C:N ratio beheer, (2) het toevoegen van substaat voor periphyton ontwikkeling, en (3) 

bodembioturbatie door tilapia, combineerde. Welk effect de verschillende combinaties 

hadden op water- en bodemkwaliteit, beschikbaarheid van natuurlijk voedsel, 

vijverproductie en winst werd onderzocht. De productieomgeving, productiviteit en 

winst werd significant verbeterd dank zij synergie tussen C:N ratio beheer, het 

toevoegen van substraat voor periphyton, en bioturbatie door tilapia. C/N-CP 

technologie is veelbelovend. De technologie verbetert de duurzaamheid en 

productiviteit van bestaande zoetwatergarnaal productievijvers, en steunt daarbij op 

eenvoudige en betaalbare middelen. 
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