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1. 

In termen van kriging variantie is een regelmatig grid vrijwel nooit het optimale 

bemonsteringsschema. 

Ditproefechrifi 

2. 

Het optimaal gebruiken van beschikbare voorinformatie zal in ruimtelijke bodem- en milieu-
inventarisaties steeds belangrijker worden. Een flexibel algoritme voor optimalisatie van 

bemonstering zoals Spatial Simulated Annealing is hierbij onontbeerlijk. 

Ditproefschrift 

3. 

Bij een gegeven aantal observaties kan het nemen van monsters buiten de grenzen van het 
onderzoeksgebied leiden tot een belangrijke verbetering van de interpolatie, in termen van 

zowel kriging variantie als gekwadrateerde kriging fout. 

Ditproefschri.fi 

4. 

Door de sterke focus op het ontwikkelen van geavanceerde interpolatie- en simulatie-
technieken is theorievorming over bemonstering in de geostatistiek jarenlang ten onrechte 

verwaarloosd. 
Ditproefkbrift 

5. 

Aangezien Indicator Kriging geen verdelingsfunctie, maar een voorspelde verdelingsfunctie 
oplevert, kan de kriging variantie in dit algoritme niet worden genegeerd. 

Dit proefsclmfi 

http://Ditproefschri.fi


6. 
Case studies in bodemkundige proefschriften zijn uitsluitend relevant als ze dienen voor het 
testen of dlustreren van het ontwikkelde gedachtegoed. Zij mogen nooit een doel op zich 

worden. 

7. 

Iedere wetenschap krijgt de wetenschappers die zij verdient. 

vgLPatdFeyerabend, 'Againstmethod' 

Zelfkennis is het begin van alle wijsheid; zelfoverschatting het begin van alle (verlangen naar) 
rnacht. 

9. 
Het is vreemd dat veel ecologische koffie- en thee- merken het Max Havelaar keurmerk niet 
voeren, aangezien dit suggereert dat de mens de enige productiefactor is die niet duurzaam 

aangewend hoeft te worden. 

10. 

Cursussen time-management zijn zinloos, aangezien mensen die er tijd voor vnj kunnen 
maken, het niet nodig hebben, en mensen die het nodig hebben, er geen tijd voor vnj kunnen 

maken. 

11. 

Na zonneschijn komt regen. 

12. 

Niets is zo ongeloofwaardig als een statisticus met vhegangst. 



Voor Opa van Groningen 

"For nitrates are not the land, nor phosphates; 
and the length of fiber in the cotton is not the land. 

Carbon is not a man, nor salt nor-water-nor-calcium. 
He is all these, but he is much more, much more, 
and the land is so much more than its analysis " 

John Steinbeck 
'The Grapes of Wrath' 
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List of Symbols 
The following list contains symbols that are used in more than one chapter of this 

thesis. 

A , 

AR 
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ReV 
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Research area. 

Part of research area that can be sampled, A s 

Length of separation vector, x ; - x ; 

Separation vector, x ; - x ; . 

ith Soil layer. 

Number of sampling points, x l v . . , x n . 

Number of evaluation points on a fine raster grid, x ' , . 

Number of lag classes for experimental variogram. 

Transition probability of St to Si+1 during optimisation with 

Spatial Simulated Annealing. 

Regionalized variable, usually denoted by Z(-). 

Sampling scheme, consisting of sampling points x1,...,xn . 

Intermediate sampling scheme in the Ith step of optimisation 

using Spatial Simulated Annealing. 

Location vector of predicted point using (indicator) kriging. 

Location vector of the ith observation point. 

Location vector of the/* evaluation point. 

Location vector of the nearest observation point xi to x . 

Observation of the ReV Z(-) at location x . 

Regionalized Variable (ReV). 

Level of significance. 

Fitness function to be minimised, expresses the performance 

of sampling scheme S. 
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(Semi-) variance as function of separation vector fi. 
Estimated (semi-) variance as function of fi. 
Weight of the Ith observation point in the kriging predictor of 
x0 . 
Standard deviation of seperation vectors fi in lag class i. 
Ordinary kriging variance 
Realised number of point pairs in lag class z. 
Ideal number of point pairs in lag class i, as defined by the 
user. 



Chapter 1 

General Introduction 

'"Forty-two!yelled Loonquawl. 'Is thatallyou'vegotto show for seven anda half million-years'work? 
'Ichecked it very thoroughly', saidthe computer, 'and that quite definitely is the answer. I think the problem, 

to be quite honest with you, isthatyou'veneveractuallyknownwhatthequestionis.'" 

Douglas Adams 
'the Hitch Hikers' Guide to the Galaxy' 

1.1. Spatial sampling or soil sampling? 

This thesis is written by a soil scientist who specialised in geostatistics. Therefore, 
all case studies and most examples are drawn from soil science. Yet, the title of this 
thesis is 'Constrained Optimisation of Spatial Sampling' instead of '...Soil Sampling'. 
There are two reasons for this: 

i) The thesis is only concerned with soil sampling for characterisation of spatial 
distribution. Issues like optimising sampling of excavated soil for waste disposal, 
the optimal number of samples for bulking, calculation of the mean phosphate 
saturation, etc. fall outside its scope. Therefore, the spatial character of the study 
was made explicit in the title. 

ii) Although the case studies in this thesis are exclusively drawn from soil science, the 
developed techniques should be easy to modify for application in other scientific 
fields. The central concept in geostatistics is the theory of Regionalized Variables 
(ReV's), and any scientific field dealing with such ReV's could potentially benefit 
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from these techniques. These fields include, among many others, remote sensing 
(e.g. Csillageral., 1996), hydrology (e.g. Hendricks-Franssen and Gomez-Hernandez, 
1997), meteorology (e.g. Seo etai, 1990) and even marine biology (e.g. Petitgas, 
1993). 

1.2. Motives for the study 

The importance of sampling strategies in soil-related surveys stems from the 
fundamental fact that our knowledge on soils in their natural state is at best incomplete, 
at worst erratic. The data we have on soils is usually either indirect (such as aerial 
photography) or based upon destructive techniques (such as laboratory analysis). Maps 
on soil properties in their natural state therefore have to be inferred using conceptual 
models such as soil-landscape relationships, quantitative models such as provided by 
geostatistics, or (preferably) a combination of both. They are never fully known. This 
"frustratingfeature of reality" (Isaaks and Srivastava, 1989: p. 107) forces the geostatistician 
to collect samples as a basis for spatial characterisation. 

Yet, collecting samples has been relatively neglected in the geostatistical literature. 
While exceedingly complex algorithms for interpolation and (more recently) stochastic 
simulation have been developed, sampling strategies have not drawn much attention. 
Most textbooks on geostatistics start with data analysis, taking the data collection for 
granted, or at most dedicate a few lines to it. Deutsch and Journel (1998), while discussing 
13 different types of kriging and 8 types of stochastic simulation, fail to give any 
recommendations on the collection of data to feed these algorithms. Although 
Goovaerts (1997a) makes some remarks on the (nested) sampling strategy used to 
collect his main data set, he states that "In this book, one considers the situation where data 
have already been collected, possibly with no statistical treatment in mind" (Goovaerts, 1997a: 
p.75). Isaaks and Srivastava (1989) focus on how to correct for inadequate sampling 
strategies, rather than how to avoid them. Webster and Oliver (1990) include a much 
more detailed discussion on sampling strategies. Their main focus, however, is on 
sampling strategies derived from classical sampling theory (sampling designs such as 
systematic sampling, random sampling, etc.). In classical sampling theory (as opposed 
to geostatistics), several well-established sampling designs are routinely applied (e.g. 
Cochran, 1977; Thompson, 1992). More recently, optimisation strategies for such 
sampling designs in a spatial context have been developed (De Gruijter and Ter Braak, 
1990; Domburg £*<*/., 1994). 

The fact that few sampling strategies (apart from the well-known regular grids) 
belong to the established tools of the geostatistician, does not mean that no significant 
research on the subject has been done. Landmark papers were published on the optimal 
grid spacing (McBratney and Webster, 1981), the type of regular grid (Yfantis et al., 
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1987), optimal estimation of the variogram (Webster and Oliver, 1992) and on 
geostatistical vs. classical sampling theory (De Gruijter and Ter Braak, 1990). However, 
these results have not yet evolved into sampling strategies that can be routinely applied 
in practice, as have many interpolation and simulation algorithms. 

One of the reasons for this is the wide variety of optimisation criteria met in 
different soil-related surveys. Cressie remarks on sampling strategies that "at the very 
basis ofoptimalstatistical design is... the choke of what is to be estimated or predicted, second the 
choice of the estimator or predictor..." (Cressie, 1991: p.314). A few examples from the 
literature can show how far optimisation criteria, either implicitly or explicitly stated, 
can diverge in soil-related spatial studies: 

i) Yfantis etal. (1987) used the mean kriging variance as a discrimination criterion 
between different types of regular grids. 

it) Warrick and Myers (1987) used the point pair distribution of the sampling scheme 
for estimation of the variogram as an optimisation criterion for a Monte-Carlo 
optimisation. 

Hi) Stein etal. (1988b) calculated the mean (squared) prediction error to assess the use 
of water table height as a covariable in cokriging of moisture deficit. 

iv) Webster and Oliver (1992) used the fluctuation of the experimental variogram 
values as a means of selecting between different sampling schemes. 

y) Brus (1994) aimed at minimal sampling variance of the mean Phosphate saturation 
over the whole study area. 

vi) Watson and Barnes (1995) defined several optimisation criteria, among them 
optimisation of the chance of detecting the maximum value in the area of interest. 

Before any optimisation of the sampling scheme can be tried, the optimisation 
criterion should be explicitly stated. In fact, the formulation of an optimisation criterion 
may contribute to the understanding of the problem at hand. For example, in studies 
aiming at optimal variogram characterisation, formulation of the optimisation criterion 
may well be the most difficult part of the whole survey, as will be shown in this thesis. 

A second reason for the lack of practical sampling strategies in geostatistics is that 
in soil survey many other, non-pedological criteria and issues may play an important 
role. Cressie observes on the problem of optimal sampling that "The statistical problem is 
part of a much bigger picture... "(Cressie, 1991: p.268). A good example in this context is 
the practice of soil remediation in urban areas, where the soil surveyor has to deal with 
such diverse scientific fields as ecology, toxicology, chemical technology and psychology 
(Okx etal., 1996). As a further complication, sampling constraints such as buildings, 
roads etc. can easily include 90% of the area. Apart from that, the surveyor should take 
into account financial constraints and is always tied to environmental legislation, which 
may not necessarily require the most reasonable course of action. 
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Therefore, an optimisation method for spatial sampling should also be both flexible 
and robust, and should be able to handle all types of errors, deviations and non-
scientific considerations that are usually met in practice, while still leaving room for the 
decision-making processes that are related to many types of spatial soil studies. This 
thesis presents such an optimisation method. 

1.3. Purposes of this study 

The main purpose of this thesis is the development of an all-purpose, flexible and 
robust optimisation algorithm for sampling in geostatistical studies. This overall purpose 
leads to several aims: 

i) Formulation of a range of optimisation criteria that honour a wide variety of aims 
in soil-related surveys. 

ii) Development of an optimisation algorithm for spatial sampling that is able to 
handle these different optimisation criteria. 

Hi) Incorporation of ancillary data such as co-related imagery, historic knowledge and 
expert knowledge in the sampling strategy. 

tv) Comparison of the performances of the developed optimisation algorithms with 
established sampling strategies. 

v) Application of developed optimisation techniques in practical soil sampling studies. 

1.4. Definitions and scope 

This thesis deals exclusively with optimisation in a geostatistical context. The 
variables that are considered are Regionalized Variables (ReV's), and the case studies 
presented therefore focus on issues like characterisation of the auto-correlation structure 
and optimal interpolation using different types of kriging. I use the term sampling scheme 
for sampling strategies in a geostatistical context (i.e. a list of optimal sampling locations 
for characterisation of the ReV). The term sampling design is used to refer to sampling 
strategies based upon classical sampling theory, and indicates a method of drawing 
sampling locations (e.g. simple random vs. stratified sampling) rather than actual sampling 
locations. 

As the purpose of this study was the development of an all-purpose optimisation 
algorithm, examples and case studies were drawn from as wide a variety of applications 
as possible. The studies in this thesis range from plot scale to geomorphological unit 
scale, from precision agriculture to soil contamination, from tropical to temperate 
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climates, and from univariate to multivariate analyses. Such a wide variety of case studies 
prohibits extensive discussion and interpretation of all results. Therefore, the case 
studies should be seen as an illustration of the developed methodology rather than as 
a purpose in itself. Most of the case studies in this thesis are part of a larger research-
or mapping effort, conducted by experienced soil scientists, and will therefore be 
included in more extensive reports elsewhere. 

1.5. Outline of the thesis 

This thesis is essentially a collection of papers and should be regarded as such. 
Chapters 2 to 8 have been or will be published in international peer-reviewed journals. 
Apart from the standardised layout and some minor editing for reasons of consistency 
(mainly notation), a combined references list and a list of symbols has been composed. 
Although this thesis represents a coherent line of research, some inevitable gaps and 
overlaps are therefore to be expected, especially in the introductions and conclusions 
of the papers/chapters. However, in my opinion these drawbacks were considerably 
outweighed by the advantage of having critical feedback from other scientists during 
the peer-reviewing process. 

Chapters 2 and 3 start with the outline of the main tools that I developed. These 
are applied, adapted and extended in chapters 4 to 8. 

In chapter 2 it is shown how probability maps produced using Indicator Kriging 
can be used in a multi-stage sampling approach to focus sampling on areas with higher 
risk of contamination. The method is applied in an environmental case study, and is 
tested using stochastic simulation. Compared with conventional sampling schemes, 
this method results in more efficient remediation maps with similar health risks. 

Chapter 3 introduces Spatial Simulated Annealing (SSA) as a general optimisation 
algorithm for spatial sampling schemes. It is shown how the Simulated Annealing 
algorithm is adapted for spatial purposes, and how ancillary information can be 
incorporated in the sampling strategy. The functionality of the algorithm is demonstrated 
using two optimisation criteria from the literature. 

Chapters 4, 5 and 6 deal with optimisation of sampling schemes for spatial 
interpolation. In Chapter 4, minimisation of the mean kriging variance is added to the 
optimisation criteria of SSA. It is shown how both kriging neighbourhood and 
anisotropy influence optimal sampling schemes. The optimisation criterion is illustrated 
in a case study on a river terrace in Thailand. 

Chapter 5 further explores the possibilities of minimising the kriging variance 
using SSA. Minimisation of the maximum kriging variance is added as an optimisation 
criterion, and the influence of variogram parameters on optimised sampling schemes 
is investigated. It is shown that all variogram parameters influence the optimised 
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sampling scheme, and that there is a considerable difference in this respect between 
minimising the mean kriging variance and minimising the maximum kriging variance. 

In Chapter 6, a new optimisation criterion is introduced that can assist in optimising 
sampling schemes for multivariate contamination studies. Using a spatial weight function, 
priorities in sampling can be set using historic information, expert judgement or 
preliminary observations. This technique is applied in a highly complex contamination 
study in the Rotterdam harbour. 

Chapter 7 deals with optimising sampling using the type of co-related imagery 
that is often met in precision agriculture (PA) studies. Using a simple scoring technique, 
yield maps are predicted. These maps assist in optimising sampling for finding soil-
yield relations. 

Chapter 8 deals with the question of optimising sampling for variogram estimation. 
A hybrid sampling scheme is introduced, combining the advantages of optimal coverage 
of the area and short range observations. Finally, it is shown that accuracy of the 
experimental variogram is usually of little value without considering the effects on 
kriging accuracy. 

Finally, chapter 9 summarises the main conclusions of the thesis, and gives some 
recommendations for further research. 

1.6. Software 

Spatial Simulated Annealing (SSA) is presented in this thesis as an optimisation 
algorithm for spatial sampling. It is described in chapter 3, and further extended in 
chapters 4 to 7. During the research I programmed the SSA optimisation algorithm as 
the S ANOS (Simulated ANnealing for Optimising Sampling) program. This program 
(written in C + +) can be downloaded in a preliminary version from http://www.itc.nl/ 
-groenig. It includes all optimisation criteria that are presented in this thesis. The site 
also includes some example files and a brief user manual. In the future, updates on 
both software and user manual will be made available at this site. 

http://www.itc.nl/


Chapter 2 

Using Probability Maps for Phased 
Sampling1 

Abstract 

A phased sampling procedure is proposed to optimise environmental risk assessment. Subse­
quent sampling stages were used as quantitative pre-information. With this pre-information prob­
ability maps were made using indicator kriging to direct subsequent sampling. In this way, better 
use of the remaining sampling stages was ensured. Phased sampling was applied to a lead-pollu­
tion study in the Dutch city of Schoonhoven. Environmental risks were quantified by the prob­
ability of exceeding the intervention level. Using six conditional simulations of stochastic fields, 
phased sampling schemes were compared to conventional sampling schemes in terms of type-I 
and type-II errors. The phased schemes had much lower type-I errors than the conventional 
schemes, and comparable type-II errors. Moreover, the phased sampling schemes left a smaller 
fraction of the not-remediated area polluted than the conventional ones did. They predicted 
almost 70% of the area correctly, as compared to 55% by conventional schemes. 

1 Published as: Van Groenigen, J.W., Stein, A. and Zuurbier, R. (1997). Optimisation of environmental sampling 
using interactive GIS. Soil Technology 10:83-97. 



OUTLINE OF MAJOR TOOLS 

2.1. Introduction 

In many environmental studies, Geographical Information Systems (GIS's) are 
routinely applied. Questions about the reliability of GIS-generated data, error 
propagation (Heuvelink etal, 1989), the division of tasks between user and computer 
(Okxetal., 1990), and their interaction (Stein etal., 1995) have been studied in the past. 
Systems are being proposed or developed which perform increasingly complex tasks. 
Intelligent GIS (Burrough, 1992), knowledge based systems (Domburg, 1994), expert 
systems (Burrough, 1986), decision support systems (Armstrong andDensham, 1990), 
and fuzzy Soil Information Systems (Kollias and Voliotis, 1991) are distinguished. 

Still, the reliability of the output of a GIS, such as maps, basically depends upon 
the quality of the data. When considering soil data that has to be collected in the field, 
data quality is determined in part by the sampling scheme: a poorly designed sampling 
scheme yields unreliable results (Corsten and Stein, 1994). In the past, attention was 
focused on sampling schemes which minimise the uncertainty of maps (McBratney et 
al., 1981). Also, qualitative and quantitative pre-information has been used to determine 
an optimal sampling scheme for soil pollution (Van Tooren, 1993) and variograms 
from previous comparable surveys have been used to optimise sampling schemes 
(Domburg etal., 1994; McBratney etal., 1981). 

Until now, phased sampling was barely investigated for geostatistical studies, 
although adaptive sampling has been applied to estimate parameters of distributions 
in non-geostatistical studies (e.g. Thompson, 1992). In this study, a data set is set up 
using different sampling stages. This is done by using already analysed samples as pre-
information for subsequent sampling. Phased sampling is applied to an area polluted 
with lead in the Dutch city of Schoonhoven. The aim was to provide a map showing 
the probability that a critical intervention threshold was exceeded. Moreover, the quality 
of the sampling scheme was compared with that of other schemes using conditional 
simulations (Cressie, 1991; Deutsch and Journel, 1992) to identify type-I and type-LI 
errors. 

2.2. Materials and methods 

2.2.1. Study area 

The study area is located in the Dutch city of Schoonhoven. In this city, a possibly 
severe lead-pollution was detected. Supposedly, most of this pollution was caused by a 
single factory that has been under operation, producing lead-containing chemicals, for 
over 200 years. The spatial distribution of the pollution was caused by a combination 
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T2h\t21Statisticdpararnetersoftbeprdimimtryresmrchandtbethreesam 
Lj (0-0.2 m) and L2 (0-0.5 m). 

Statistics 

No. of samples 
Mean 
Stand. Dev. 
Coeff. ofvar. 
Max. 
Min. 
Perc. above z; 
Median 

-
mg kg' 
mg kg'' 
-
mg kg' 
mg kg'1 

% 
mg kg' 

Pre-stage 

28 
274 
312 
1.14 
1300 
17 
17.1 
177.5 

Stage 1 

u 
76 
497 
692 
1.39 
4050 
21 
19.7 
165 

U 
100 
451 
780 
1.73 
5000 
11 
19.0 
195 

Stag 

u 
162 
323 
414 
1.28 
2200 
10 
13.6 
305 

e2 

u 
143 
333 
483 
1.45 
4250 
11 
15.0 
185 

Stage 3 
U 

201 
349 
481 
1.37 
4600 
10 
13.8 
190 

u 
177 
309 
320 
1.03 
1950 
11 
14.7 
195 

of atmospheric deposition from periodical cleaning of the factory, man-made deposition 
from contaminated sewer sludge, horse dung used during the production process and 
permanent background values. In the Netherlands, environmental standards are set to 
classify areas according to their degree of pollution. In particular, if concentrations on 
a single contaminant exceed the so-called intervention level, environmental measures 
have to be taken. For lead, the intervention level is equal to 600 mg kg"1 dry matter. 

To identify the extension of the pollution above the intervention level a survey 
was carried out. The aim was to delineate the extent of the pollution as precisely as 
possible, because remediation is expensive and health risks are at stake. Hence the 
samples have to be located as efficiently as possible. In addition to an estimate of the 
pollution at each location, it is important to know the accuracy of that estimation, 
since decision making on remediation of the soil should be based on probabilities of 
exceeding the intervention level. Typical probabilities to consider are 0.01 and 0.05. 
Maps showing these probabilities are obtained with indicator kriging (Deutsch and 
Journel, 1992). 

Preliminary research in Schoonhoven was done in 1988. Several transects were 
sampled in the surroundings of the factory. Analysis of these data indicated a lead 
pollution with a peak near the factory and decreasing concentrations with increasing 
distance from the factory (Table 2.1). As the total number of samples was only 28, 
little information was available on the spatial distribution of the pollution. But since 
the highest measurement equalled 1300 mg kg'1, and 17% of the measurements were 
above the intervention level, a thorough survey was carried out in 1992. During this 
survey, several depths were sampled at each sampling location, from which only two 
depth classes had sufficient data to apply a geostatistical analysis: 

i) layer 1 (L x), ranging to 0.2 m below the soil surface, including samples taken at 0-
0.2 m and at 0.1-0.2 m below the soil surface. 
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Figure 2.1. Schematic overview of a normal soil-survey using geostatistics (non-dottedfigures) and the 
extensions when usingphased sampling (dottedfigures) 

ii) layer 2 (L 2 ) , ranging to 0.5 m below the soil surface, including samples taken at 0-
0.5 m, 0.1-0.5 m and 0.3-0.5 m. 

Mixed samples were taken over different depth intervals. Data were stored in a 
Geographical Information System (GIS). 

2.2.2. Phased sampling 

The aim of environmental sampling can be to collect data such that the area with 
a low, fixed probability of being polluted with a contaminant above a threshold level is 
determined as precisely as possible. In this way, risk-qualified remediation can be 
executed. Commonly, sampling is conducted as follows (Figure 2.1): first, a sampling 
scheme is designed, using knowledge derived from earlier surveys on the soil parameter, 
geostatistics, historical information and organoleptic judgement. Next, data is collected 
following this scheme. In the field, deviations from the sampling scheme are likely to 
occur because of sampling constraints. For example, sampling below a house may be 
prohibitive. After sampling, spatial analyses are carried out, e.g. using geostatistics. At 
this stage, interactive data exploration as used in Haslett etal, (1990) may be applied. 
With trial and error and a good data presentation, insight is gained in the spatial 
properties of the data. If necessary, measurements can be re-analysed, removed or 
added after additional sampling. Also, the best method of spatial interpolation is chosen 
interactively, using expert-judgement. 

In this study, a phased sampling procedure is proposed. Data collected during 
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sampling is used to direct further sampling. Let the total number of observations to be 
collected (n) be fixed. Then the following sequence takes place: 

i) The sampling scheme chosen at first contains nj observations, with nt < n. For 
example, nx may be chosen equal to n ; = yii . The sampling scheme can be of a 
conventional type, e.g. random or grid, possibly stratified. 

ii) Collected data is stored and used to produce maps and probability maps. The data 
is used as if a. full data set was collected. 

Hi) Next, n2 points (for example n2 =-jnj) are selected at locations that require 
additional sampling, and a second sampling stage is carried out. 

rv) The steps ii) and Hi) are repeated until sufficient precision is obtained or the 
maximum number of data is reached. 

In this procedure, it is assumed that the spatial distribution of the pollution does 
not change significantly during the sampling period. The procedure is shown in Figure 
2.1 by the dotted figures and lines. If we consider A our 1-, 2- or 3-dimensional 
sampling area, the aim of the study is to determine the sub-area Fj (a) c A that has a 
probability higher than a of having concentrations of variable Z above the critical 
intervention level, Zj. To predict the locations with high pollution the areas with a 
probability a > 0.05 of exceeding zz are selected. These areas are excluded from further 
sampling. In this way geostatistical knowledge and field-knowledge which are useful to 
design sampling schemes increased during sampling, whereas by means of one stage 
procedures collected data are evaluated only afterwards. 

2.2.3. Geostatistics 

The aim of geostatistics is to analyse regionalized variables (ReV's). Suppose that 
the contaminant Z(x) can be considered an ReV, where x denotes the location in 
A and Z denotes the concentration of the contaminant. Usually, observations are 
collected, denoted with z(xj ),...,z(xn). The spatial dependence is commonly expressed 
in a variogram, defined as half the variance of pair differences of an ReV at two 
locations, x and x + fi, as a function of the distance E between these two locations 
(Webster and Oliver, 1990). The variogram may be used for a range of spatial 
interpolation techniques (e.g. kriging). Kriging provides the best linear unbiased predictor 
of a spatial variable at unvisited locations. When applied to a large number of closely 
located grid nodes, it can be used to make maps which show the predicted spatial 
distribution of the variable. In this study, several variables were interpolated. Lead 
content itself, but also an indicator variable, equal to 0 if the intervention threshold 
(600 mg kg"1) is exceeded and 1 when it is not. 
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An interpolated indicator variable can be used to predict the conditional probability 
that the intervention value is exceeded, given the observations. Therefore, it can be 
used to create probability maps, which show the probabilities of exceeding a critical 
value (Journel, 1983; Deutsch and Journel, 1992). 

When setting up a spatial sampling scheme in a geostatistical study, the questions 
to be decided upon are the number of observations, n, and the sampling locations 
x,,...,xn . In principle, global criteria may be defined, like the distribution of the 
observations in such a way that a prescribed precision of an interpolated map is obtained. 
This results normally in the optimal spacing of some regular grid. In this chapter we 
propose a phased procedure. To compare the interactive schemes with conventional 
ones, use was made of conditional simulations. Special attention was given to extreme 
spatial variability, and skewed distributions, commonly occuring in environmental 
pollution. Therefore, sequential indicator simulation (SIS) was applied (Deutsch and 
Journel, 1992; Bierkens and Burrough, 1993a/1993b). The SIS algorithm uses as input 
a data set on 2 (x ) , which is transformed using an indicator-function for several values 
along the distribution curve, with for each value an indicator variogram. The following 
sequence of events takes place: 

i) Start with an existing data set and define a grid for mapping. 
ii) A previously unvisited node in the grid Xj is drawn randomly. 
Hi) A conditional distribution function (cdf) is estimated at x{ with indicator kriging. 
isv) From the cdf a realisation z> ' (x ;) is obtained by drawing a random number 7T ' 

between 0 and 1, and finding the corresponding quantile of the conditional 
distribution function. 

i) z( (x ;) is added to the data set, and the procedure starts at a second unvisited 
node, randomly drawn from the grid, until all nodes of the grid have been drawn. 

As each node is "dded in a random order to the conditioning data, extensive 
simulation will reproduce the imposed variogram (for proof, see Journel, 1989, pp. 34-
35). This results in a spatial variation which is much higher, and closer (but not similar) 
to the real variation, than spatial variation obtained with kriging. Below, SIS will be 
used to simulate environmental pollution. 

2.3. Results 

2.3.1. Actual sampling and probability maps 

The survey was conducted in three stages. At the first stage an equilateral triangular 
grid was applied with edges of 50 m, covering an area of about 600 x 800 m, surrounding 
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the factory. After this first stage, two additional stages were performed, yielding a 
three-stage sampling procedure. Table 2.1 summarises the statistical parameters of the 
subsequent stages. 

At stage one, relatively small data-sets were obtained for L1 and L 2 , consisting 
of 76 and 100 data, respectively. Compared to the preliminary stage, the means of 
these data (497 mg kg"1 and 451 mg kg1, respectively) are much higher, probably due to 
the closer distance to the source of pollution. Also, the maximum values of 4050 and 
5000 mg kg'1 are much higher than the preliminary measurements. The experimental 
variogram as well as the indicator variograms, however, fitted poorly (Figure 2.2). This 
was probably caused by a combination of three factors: 

i) the quantity of the data set: 76 and 100 measurements are still small numbers to 
deal with varying soil parameters. 

it) the quality of the sampling scheme. As the used triangular grid had a spacing of 50 
m, almost no information was available on spatial correlation at shorter distances. 

Hi) the variability of the ReV. The experimental variogram equalled a pure nugget effect. 

The data set of stage two largely solved the first problem by adding previously 
unanalysed samples, yielding now a total of 162 and 143 samples for Lx and L 2 , 
respectively. Also, several measurements were re-analysed, and some errors were 
corrected. This resulted in a much better fit of the indicator variograms. 

Because measurements at small distances were still lacking, a large nugget effect 
remained, which made it difficult to use the probability maps as described above. 
Sampling at the third stage focused on sampling at short distances. The sampling points 
were randomly drawn at short distances from existing sampling points, close to the 
centre of pollution. This yielded data sets, with 201 and 177 samples for L t and L 2 , 
respectively. The variograms showed a much better fit and had smaller nugget-variances 
(Figure 2.2). 

Figure 2.3 shows the predicted pollution, and the probability of exceeding the 
intervention level for L 2 , both calculated using indicator kriging. A major pollution 
occurs in the surroundings of the factory, south west of the centre of the map. North 
east of the factory, a small area with increased pollution is delineated, which could be 
caused by atmospherical deposition, the predominant wind direction being south west. 
Also, severe pollution is predicted in the north and the south direction of the area, 
which, however, seem to be caused by boundary effects of the kriging procedure. The 
map with the probabilities of exceeding the intervention level is relatively flat. The 
remainder of the map shows only small changes in probabilities, apart from an area in 
the east that is almost certainly not polluted. 
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Figure 2.2: Experimentalandfittedindicatorvariogrammodehforthemedianoftheleadccmten 
kg)for the data collected at the first stage, the third stage and for the first simulated lead pollution. 

2.3.2. Stochastic simulation 

To compare phased sampling with different other sampling schemes in a quantitative 
way, use was made of stochastic simulations using SIS, conditioned o n L , . The aim of 
this study was to determine Fj (0.05), which is defined as the area that has a probability 
larger than 0.05 of exceeding the intervention level. All sampling schemes were tested 
by comparing the polluted area obtained by simulation on their efficiency in estimating 
the (simulated) pollution. Each scheme consisted of n = 300 observations, but differed 
in terms of the number sampling stages and the way in which the locations of the 
samples were selected (Table 2.2). 

i) Scheme one (S1) consists of three stages, yielding nj = 158 , n2 =90 and n3 =52 
observations, respectively. At the first stage a square grid is applied with grid spacing 
of 60 m, to which a few random points are added to improve estimation of the 
nugget effect. At two succeeding stages random sampling within the selected area 
is applied. 

ii) Scheme two (S2) consists of two stages, with nl = 215 and n2 = 85 observations, 
respectively. 



USING PROBABILITY MAPS FOR PHASED SAMPLING 15 

Pb Prob. (Pb > 600) 

Pb [mg/kg] 

780 

t:y^ Water 

o Sampling points 

*• Factory 

Meters 

300 

Prob. 

Figure 23. Predicted lead contents in Scboonhoven (left) and probability of exceeding intervention levelzjbr 
layer 1 (right). 

Hi) Scheme three (S3) is a one-stage sampling, using a 40 x 40 m square grid. 
rv) Scheme four (S4) also is a one-stage sampling, with 300 points distributed randomly. 

These four sampling schemes were applied to six different conditional simulations. 
Figures 2.4 to 2.7 show four of these simulations, each of these containing one of the 
four sampling schemes. Similar pictures were obtained for the two other simulations, 
with every combination of sampling scheme and simulation covered. The indicator 
variogram for the median is given in Figure 2.2. Maps with simulated pollution show 
several hot-spots and almost no unpolluted areas. The simulated data has the same 
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distribution as the Schoonhoven data-set (Table 2.1). 
Three-staged phased sampling following S1 is shown in Figure 2.4. Phased sampling 

results in more detailed information of the areas with a higher pollution. Therefore, 
the probability-map (Figure 2.4) predicts most of the areas with concentrations 
exceeding 600 mg kg1. However, it also recognises areas which are only moderately 
polluted. Two-staged sampling following S2 shows a slightly less pronounced view 
(Figure 2.5). The predictions are less extreme, more areas with concentrations exceeding 
600 mg kg-1 were detected and less moderately polluted areas were detected. The spacing 
of S1 at the first stage is wider than that of S2 , hence causing S1 to overlook polluted 
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^^tll.Chxrviewofthesamplingschemesusedtosurveyth^ The number of sampling 
stages varies from 1 to 3, the type of sampling is either random or a square grid. 

Scheme 

S' 

s2 

s3 

s4 

Number of stages 

3 

2 

1 
1 

Number 
total 
300 

300 

300 
300 

of samples 
per stage 
158 
90 
52 
215 
85 
300 
300 

Sampling scheme 
type 
square 
random 
random 
square 
random 
square 
random 

spacing 
60 m 

50 m 

40 m 

-

areas of a very small size, and tending to over-estimate the pollution of moderately 
polluted areas. The grid sampling following S3 picks up almost all of the polluted 
areas, but areas which are not polluted are often included. This results in small areas 
which can be declared unpolluted (Figure 2.6). The random sampling following S4 , 
misses several important polluted areas because random sampling tends to leave large 
areas unsampled (Figure 2.7). 

The aim of the survey was to determine those areas which were polluted with a 
probability of at least 0.05. To quantify the performances of the four schemes, the 
sizes of areas that were falsely or rightly classified as polluted or non-polluted were 
calculated and described as type-I and type-LT errors (Table 2.3). Of the non-polluted 
areas, S2 classifies the smallest area as having a probability of exceeding Zj higher 
than 0.05 (28.3%). S1 scores second-best (32.3%), while S3 (42.3%) and S4 (44.2%) 
perform much worse. This means that, although the errors are high, the type-I error 
is smallest for S2 . If attention is focused on polluted but not remediated areas (type-
II error), the largest part of the polluted soil (12.3%) is remediated in the case of S3 , 
which therefore has the smallest type-II error, closely followed by S2 (12.2%), S1 

(12.0%) and S4 (11.4%). 
In the practice of soil remediation, making a decision as to remediating the area is 

often based upon a 0.95 certainty level of having removed all contaminated soil. This 

l!^\e23. Results of the four differmtsamplingschemes used in estin^ 
health risk, expressed as percentage of the not remediated area that is polluted. 

Scheme 

s' 
s2 

s3 

s4 

Not rerr 

(%) 
52.9 
56.9 
42.9 
41.0 

Not po 
ediated 

1 luted 
Remediated 

(%) 
32.3 
28.3 
42.3 
44.2 

Remediated 

<%) 
12.0 
12.2 
12.3 
11.4 

Polluted 
Not Remediated 
<%) 
2.8 
2.6 
2.5 
3.4 

Health risk 
(%) 

5.0 
4.4 
5.5 
7.7 
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implies that an error of 0.05 is accepted. The last column in Table 2.3 shows how high 
this error, which can be described as health risk, is for the different sampling schemes. 
Both S1 and S2 are within this certainty level. S3 does not reach the demand, because 
it is very inefficient in remediating polluted soil: to remediate 0.1% more polluted soil 
(as compared to S2), around 10 % of unpolluted soil had to be remediated. In summary, 
S2 performed better than S3 and S4 , whereas S1 failed to predict several small polluted 
areas. The 60 meter grid spacing of the first stage of S1 is probably too wide for this 
purpose. 


