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1. Objective

The aim of this research was to answer the question:
Is the sensitivity of Lemna and Lemna endpoints to metsulfuron-methyl 
representative of other macrophyte species and endpoints?
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Figure 1. Overview of experimental set-up.

4. Conclusions

Myriophyllum spicatum is among the most sensitive species for metsulfuron-
methyl. The formation of new tissues is a very sensitive endpoint for 
submerged, rooted, aquatic macrophytes and reflects the mode of action of 
the herbicide. Differences between Lemna gibba/minor and species more 
sensitive to metsulfuron-methyl are exceeding a factor of 10.

2. Materials and Methods

• Laboratory toxicity tests with aquatic macrophytes:
 − Chronic non-axenic 21- days tests;
 − Barko and Smart2 medium;
 − Natural fine clay sediment;
 −  Seventeen submerged macrophytes (monocotyledones and  

dicotyledones);
 −  3 apical, unbranched macrophyte shoots (10 cm) or 10 fronds of 

Lemnaceae;
 − Range of species (n=17): Figures 2 - 6.
• Controlled conditions:
 −  17°C; 14/10 light/dark regime; 400 W Philips HPI-T lamps; illumination 

160 ± 65 µmol.m -2.s -1 at water surface level. 

•  High potency herbicide biologically active at very low concentrations 
(ng/L)7.

• Test concentrations of the herbicide metsulfuron-methyl: 1 – 3300 ng/L.
• Compound is more toxic to aquatic macrophytes than to algae9.
•  Macrophyte toxicity data were generated in a climate room (method 

described above) (Dorsman, 20075; Jonas, 20088) and collected from 
literature (Fairchild, 19986; Roshon et al., 19999; Brock et al., 20003; 
Cedergreen et al., 20044).

•  Log-normal distributions were calculated and plotted1,10 to generate 
species sensitivity distributions (SSDs) and endpoint distributions. Model fit 
was evaluated using the Anderson-Darling goodness-of-fit test.

Figure 2. Myriophyllum spicatum.

Figure 3. Myriophyllum aquaticum and Potamogeton perfoliatus.

Figure 4. Potamogeton pectinatus.

Figure 5. Elodea canadensis.

Figure 6. Lemna species.

3.  Evaluation of species sensitivity distributions and 
endpoint distributions from single macrophyte species

3.1 Sensitivity of macrophytes

Myriophyllum spicatum is the most sensitive species for a range of endpoints 
(Fig. 7). The sensitivity of the species Lemna gibba/minor is very close to
the sensitivity of Elodea nuttallii for a range of endpoints (Fig. 7). Myriophyllum 
spicatum is in the lower end of the SSDs (Fig. 8). Lemna minor and Lemna 
gibba are near the middle of the SSDs, Lemna trisulca and Myriophyllum 
aquaticum are in the upper end (Fig. 8).
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Figure 7. Endpoint distributions from single macrophyte species for metsulfuron-methyl.

Figure 8. Macrophyte Species Sensitivity Distributions for metsulfuron-methyl based on the geomean 
approach and on the lowest endpoint approach.

Evaluation of the lowest reported EC50 for each species is a more 
conservative approach compared to the evaluation of the geomean of 
the reported EC50 values for each species.

Table 1. Hazard concentrations (ng/L) for macrophyte sensitivity distributions and for endpoint distributions.

The 5 % hazard concentrations (HC5) of the EC50-based SSDs for
metsulfuron-methyl are in the same range as or are lower than published 
values (Table 1; Cedergreen et al., 2004). The HC5 values are dependent
on the toxicity endpoints and measurement endpoints evaluated in the
specific SSDs.

3.2 Sensitivity of endpoints

The average length of the new shoots is a more sensitive endpoint than the 
specific leaf area (Table 1 and Fig. 9).

Figure 9. Macrophyte Species Sensitivity Distributions for metsulfuron-methyl based on specific endpoints.
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Species LL HC5 HC5 UL HC5 Goodness Type of Distribution Toxicity values included Figure
    of Fit

Lemna 60.2 103.2 154.3 Accepted Endpoint distribution all EC50 values Fig. 7

Myriophyllum spicatum 4.2 13.0 26.8 Accepted Endpoint distribution all EC50 values Fig. 7

Elodea nuttallii 25.2 49.1 80.7 Accepted Endpoint distribution all EC50 values Fig. 7

17 macrophyte species 13.1 39.7 82.4 Accepted Species distribution Geomean of EC50 values 
      per species Fig. 8

17 macrophyte species 1.3 5.8 15.6 Accepted Species distribution Lowest EC50 per species Fig. 8

9 macrophyte species 10.9 56.1 137.1 Accepted Species distribution for endpoint Specific Leaf Area Fig. 9

8 macrophyte species 0.2 4.5 22.9 Accepted Species distribution for endpoint average length 
      of new shoots Fig. 9


