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PROPOSITIONS 

1. Interesting things are coming by accident. 
(The Tulips, Anna Pavord, 1999) 

2. With boundaries of something we can explain everything of it, but without 
boundaries we cannot explain anything. 

3. Plants are able to make a decision very much the way computers do. 
(Aphalo etal. 1999. Journal of Experimental Botany, 50:1629-1634.) 

4. Scientific models are not useful for practice, and practical models are not 
good for science; yet they need each other. 

(Kearney M. 1992. Acta Horticulturae, 313, 165-171) 

5. Light use efficiency is a hyperbolic function of daily light integral. 
(this thesis) 

6. Practical innovations should come from industry, rather than from science. 

7. If you want to be happy for a lifetime, grow chrysanthemums. 
(A Chinese philosopher) 

These propositions are a part of the thesis, "Analysis and Simulation of Growth and 
Yield of Cut Chrysanthemum" by Jeong Hyun Lee, Wageningen, The Netherlands, 
17 December, 2002. 
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ABSTRACT 
Lee, J.H. 2002, Analysis and Simulation of Growth and Yield of Cut Chrysanthemum. 
Dissertation, Wageningen University, Wageningen, The Netherlands. 120pp: English and 
Dutch summaries. 

Seasonal variation in daily light integral naturally leads to seasonal variation in production and 
plant quality in year-round cut chrysanthemum (Chrysanthemum, Indicum group). Growers try 
to deliver constant product quantity and quality throughout the year by adapting plant density, 
day length, duration of long-day periods and supplementary lighting. Optimising crop 
management is very complex and requires a great deal of knowledge that is best represented by 
a generic model. There is, however, no such model available and there is also a lack of 
information on the dynamics of crop performance, i.e. dry mass production and leaf area index. 

In this thesis, growth and yield of cut chrysanthemum were analysed and quantified, as 
related to radiation, planting date and plant density. A generic model, CHRYSIMvl.O, was 
derived from an existing photosynthesis-driven model, calibrated and validated for year-round 
cut chrysanthemum. 

Final plant fresh and dry mass and number of flowers per plant decreased with plant density 
and this decrease was larger in summer than in winter. The observed variation in plant fresh 
mass can be described by a linear relationship with cumulative incident photosynthetically 
active radiation (PAR) per plant. Dynamics of aboveground total dry mass per m2 (TDM) and 
leaf area index (LAI) were well described by the expolinear growth equation. Moreover a 
modified expolinear growth equation, formulated as a function of accumulated daily incident 
PAR was used to derive the light use efficiency (LUE, g MJ"1) for closed canopies. LUE showed 
a hyperbolic relation to daily incident PAR and LUE was used to determine the maximum crop 
growth rate (g m"2 d"1) at closed canopy. However, it was hard to generalise growth and yield of 
cut chrysanthemum under a wide range of crop growing conditions and in this approach 
measured LAI is still required as an input. These limitations lead to the development of a model 
for predicting LAI and use of it with a generic model for predicting growth and yield of year-
round cut chrysanthemum. 

Dynamics of LAI can be simulated by the combination of increase in leaf dry mass (LDM) 
and specific leaf area of new leaves (SLA„). Dynamics of LDM could be adequately described 
using a Gompertz function to describe dry mass partitioning to the leaves. SLAn was linearly 
related to the inverse of the daily incident PAR, to temperature and to plant density. Dynamics 
of LAI were satisfactorily simulated for independent experiments and for commercially-grown 
crops. 

CHRYSIMvl.O was validated, using measured LAI and dry matter partitioning to the organs 
as an input, to check first possible errors in crop photosynthesis, maintenance respiration and 
dry mass conversion efficiency. Global radiation outside, inside greenhouse temperature and 
CO2 concentration were also input to the model. Simulated TDM was equal to measured TDM 
in summer (natural light) only, whereas a large under-estimation occurred at constant shade, and 
in winter. At low light LUE was largely underestimated by CHRYSIMvl.O. Calibrating the 
parameters of the photosynthesis light response curve of the leaves, i.e. initial light use 
efficiency, e, and maximum leaf photosynthetic rate, Pgmax, based on one experiment resulted in 
largely improved simulations of TDM in all experiments, but unrealistic parameter values. 
Finally some limitations for application of CHRYSIMvl.O are discussed in this thesis. 

Key words: chrysanthemum, crop growth, development, explanatory model, expolinear growth, 
dry mass, dry matter partitioning, fresh mass, leaf area index, light interception, light use 
efficiency, plant density, season, simulation, validation, year-round. 
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I. GENERAL INTRODUCTION 

Greenhouse horticulture is the most intensive and sophisticated form of crop production 

among agricultural production systems (Challa and Van Straten, 1993; Bakker and 

Challa, 1995). At present, greenhouse crop production systems are closer than ever to 

generating plant products independent of season, and are therefore referred to as 'plant 

factories' (Hashimoto, 1993) or 'the greenhouse industry' (Bakker and Challa, 1995). 

Modern greenhouses have sophisticated computerized control systems for (dynamic) 

control of greenhouse environmental conditions such as temperature, water vapour 

pressure, CCh-concentration, radiation, day length and root environment, presenting 

numerous options to creatively control the most essential production factors, based on 

outside weather conditions, inputs (set points) and type and growth stage of the crop 

(Bakker et al., 1995; Heuvelink, 1996). Vast knowledge, however, is required to 

optimise these production systems in terms of balancing production costs and economic 

returns (Challa and Van Straten, 1993; Lentz, 1998). Furthermore, due to the large 

variation of plant species and cultivars grown, each with different properties and 

requirements, cultivation system control has become more complex (Challa et al, 1994; 

Heuvelink, 1996). Several authors (Krug 1989; Challa, 1990; Lentz, 1998) have 

discussed this complexity for greenhouse systems in general, and they concluded that 

crop growth models could help to define optimal production strategies. 

YEAR-ROUND CUT CHRYSANTHEMUM 

Cut chrysanthemum (Chrysanthemum, Indicum group), a short-day plant, naturally 

blooms in the autumn of the Northern Hemisphere. In the past, cut chrysanthemum was 

mostly grown under natural day length conditions (outside, or in unheated glasshouses). 

Chrysanthemum supplies to the flower market were therefore seasonally limited 

(Spaargaren, 2002). However, since 1961 the use of blackout screens and artificial 

lighting in heated greenhouses has led to effective day length control, such that cut 

flowers can be produced at any time of year. As a result, cut flower production in the 

Netherlands has rapidly increased (Spaargaren, 2002). In 2000, glasshouses for cut 

chrysanthemum covered 774 ha in the Netherlands, which is 21% of the entire area of 

cut flower cultivation in Dutch glasshouses (Spaargaren, 2002). The present value of cut 

chrysanthemum production in the Netherlands amounts to approximately € 319 million 
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(Spaargaren, 2002). Coming second after rose, chrysanthemum dominates the flower 

market. 

Sophisticated year-round production programs for cut chrysanthemum, built upon 

growers' empirical knowledge, scientific research and the development of new 

cultivars, involve more than four crops per greenhouse area per year. Therefore cut 

chrysanthemum is one of the most intensive crops in greenhouse horticultural 

production systems (Machin, 1996). Chrysanthemum growers have to be able to carry 

out their production program with great accuracy every week of the year, and operate 

with a high decision making frequency (Machin, 1996). While seasonal variation in 

daily light integral naturally leads to seasonal variation in production and plant quality, 

chrysanthemum growers are commercially challenged to deliver constant product 

quantity and quality throughout the year. To maximize productivity and minimize 

variation in plant quality, growers therefore vary plant density, day length and duration 

of long-day periods (Langton et al. 1999). In the cut flower market, plant mass is one of 

the most important quality aspects, and this has been shown to be largely affected by the 

amount of light per plant (Langton et al. 1999). Particularly plant density is an 

important and effective crop management factor in determining final quality and 

productivity (Van der Hoeven et al, 1975). In the Netherlands, chrysanthemum growers 

decide in advance on plant density, when they order rooted cuttings for their next crop. 

Whereas greenhouse temperature can be effectively controlled throughout the year in 

modern greenhouses, daily light integral varies largely. However, supplementary 

assimilation light, which is increasingly applied in year-round cut chrysanthemum, may 

reduce seasonal variation in daily light integral and hence increase crop quality and 

production. Yet the optimal use of supplementary lighting, considering plant density, 

final plant mass, financial investments and returns, is not well quantified. In complex 

production systems such as these, growers could benefit from crop growth models to 

optimise farm management. 

RELATIONSHIP BETWEEN LIGHT AND PLANT DENSITY IN CUT CHRYSANTHEMUM 

Plant density is an important determinant of plant quality and yield (number of 

harvested stems). Manipulation of the number of plants per area has resulted in widely 

variable plant growth and quality of cut chrysanthemum (Van der Hoeven et al, 1975; 

Langton et al, 1999). At sufficient water and nutrient supply and effective pest and 

disease management, variation in plant growth and quality is mainly determined by 

competition for light among individual plants (Langton et al, 1999). Therefore 
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optimizing the amount of light per plant during the crop growth period is an important 

strategy to control plant growth and final quality. 

The daily amount of light intercepted by a crop strongly influences its growth rate 

(Monteith, 1977). Plant density affects light interception before the canopy closes, and 

hence plant density affects crop growth to some extent. The amount of intercepted light 

integral before canopy closure depends on leaf area per plant, number of plants, day 

length, duration of long-day periods and daily light integral. However, when the canopy 

is closed the fraction of intercepted light will reach its maximum (Monsi and Saeki, 

1953). Therefore plant density may not be a key factor influencing crop growth rate. 

Nevertheless, plant density does have strong effects on plant morphological aspects 

such as plant size, stem length, number of lateral branches and number of flowers (Van 

der Hoeven et al, 1975; Carvalho and Heuvelink, 2001). Clearly, in year-round cut 

chrysanthemum yield and plant quality are strongly interconnected. 

Supplementary assimilation light results in increased production, improved crop 

quality and decreased production time for chrysanthemum (Eng et al, 1985; Anderson, 

1990; Vernooij and Ploeger, 1999). However, important practical questions about 

application of assimilation light remain, particularly concerning (1) optimal use of 

supplementary lighting considering both plant growth and economic aspects, and (2) 

suitable plant densities throughout the year at different levels of supplementary light 

intensity. An almost infinite number of experiments would be required to answer these 

questions, because of the large number of possible combinations of leading factors such 

as planting week, assimilation light intensity and plant density. Crop simulation models 

are valuable additional tools in this situation, as valid models allow for swift and 

accurate crop growth prediction for a large range of input combinations. These 

predictions will assist in answering the aforementioned questions. In addition, economic 

information such as electricity price and market prices for different qualities of cut 

chrysanthemum is needed to determine the economical optimum for plant density and 

supplementary lighting intensity. 

CROP GROWTH MODELS 

Crop growth models are powerful tools to describe and understand complex systems, 

compare different scenarios, and recapitulate acquired knowledge (Marcelis et al, 

1998). Therefore, models can be used as tools for research and education, in decision 

support systems and greenhouse climatic control systems, for prediction and production 

planning, and in policy analysis (Challa, 1985, 1988, 1990; Gary et al, 1998; Lentz, 

1998; Marcelis et al., 1998). In general, a distinction can be made between descriptive 
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and explanatory models. Descriptive models usually consist of one or more 

mathematical equations, which are derived from measured data sets (Penning de Vries 

et al., 1989). In contrast, explanatory models consist of quantitative descriptions of 

mechanisms and processes, and are based on scientific theory and hypotheses (Penning 

de Vries et al., 1989). The predictive potential of descriptive models is larger than of 

explanatory models as the former include all unknown effects, although its model 

parameters often lack biological meaning (Marcelis et al, 1998; Ishag and Dennett, 

1998). However, descriptive models and its model parameters are dependent on species 

or location (Marcelis et al, 1998), which is a major limitation to applying these models 

to variable conditions. Nevertheless, descriptive models are useful to summarize 

measurements as model parameters are relatively easy to estimate (Larsen, 1990; Kage 

et al, 200lab). In addition they are useful in on-line greenhouse climatic control 

systems because few state variables are included and computing time is short (Larsen, 

1990; Marcelis etal, 1998). 

Explanatory models for crop growth are mostly photosynthesis-driven models based 

on the amount of intercepted light by plant leaves, and hence predict assimilation 

(Marcelis et al, 1998). Subsequently, loss of assimilates to respiration and conversion 

of assimilates into structural dry mass are calculated, and partitioning of assimilates (or 

dry mass) into individual organs is estimated. Finally, fresh mass can be estimated from 

calculated dry mass (Marcelis et al. 1998). These models are used to predict dry mass 

production as an indicator for crop physical yield, as a function of greenhouse 

environmental conditions (Kano and Van Bavel, 1988; Lieth and Pasian, 1991; Dayan et 

al. 1993; Gary et al., 1995; Heuvelink, 1996). Explanatory photosynthesis-driven 

models have successfully been applied and validated for greenhouse tomato and 

cucumber crops (De Koning, 1994; Marcelis, 1994; Heuvelink, 1996; Marcelis and 

Gijzen, 1998). Compared to descriptive models, explanatory models have much more 

potential for application in complex year-round crop production systems, in terms of 

dynamic climatic control, production planning, crop management and economic 

evaluation. According to Lentz (1998), optimal set points for short term and long term 

cultivation periods cannot possibly be determined without explanatory crop models. 

However, although the use of explanatory models has received attention in the 

greenhouse research for many years, application of these models for predicting yield 

response to greenhouse environmental conditions is still limited to a few fruit-vegetable 

species and some ornamental crops (De Koning, 1994; Heuvelink, 1996; Marcelis et al, 

1998; Marcelis and Gijzen, 1998). Before practical application, models need to be 

validated in detail not only at the yield level, but also at the level of underlying 

processes (Heuvelink, 1996). The main obstacles for validation and application of 
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explanatory models in greenhouse production systems are lack of information, for most 

greenhouse crops, on dry mass dynamics in relation to (comprehensive) climatic data, 

and poor quantification and generalization of dry mass partitioning into organ and leaf 

development (Heuvelink, 1995a; Marcelis e? a/., 1998). 

CHALLENGES TO MODELLING YEAR-ROUND CUT CHYSANTHEMUM 

As mentioned earlier, crop performance dynamics are not well studied for many 

(ornamental) greenhouse crops, including cut chrysanthemum. Available data are often 

limited to final yield, final plant quality, and crop growth conditions in the vegetative 

phase. Growth curves are usually missing, and climatic data are often lacking or limited 

to overall figures during the crop growth period. Apart from this soaring lack of data, 

modelling greenhouse crop performance is challenged further by the problem of 

predicting leaf area development, which is a weak part of photosynthesis-driven models 

even as this information is essential to the process of crop light interception described 

by these models. 

The problem of predicting leaf area has been well reviewed by Marcelis et al. (1998). 

Principally, two approaches to prediction of leaf area development are available: (1) leaf 

area may be described as a function of plant developmental stage or (2) leaf area may be 

predicted from simulated leaf dry mass (Marcelis et al, 1998). Commonly, 

photosynthesis-driven models predict leaf area development based on simulated leaf dry 

mass and specific leaf area (SLA). However, according to Marcelis et al. (1998), this 

approach shifts the modelling problem from predicting leaf area to estimating SLA and 

dry mass partitioning into leaves. SLA is sensitive to environmental factors and sink-

source ratios, whereas dry mass partitioning into leaves is highly species-dependent 

(Marcelis et al, 1998). Acock et al. (1979) formulated a simple and promising model 

for the SLA of chrysanthemum considering light and temperature, but this model has 

not yet been validated. As for dry mass partitioning into leaves, this was shown to be 

constant during the vegetative phase of dry mass increase (Acock et al., 1979), but 

strongly declined during the generative phase of chrysanthemum (Hughes and 

Cockshull, 1971; Karlsson and Heins, 1992). None of these authors, however, have 

attempted to generalize dry mass partitioning into leaves, nor tried to predict leaf area 

development for cut chrysanthemum. Generalizing dry mass partitioning into leaves has 

only been done for arable crops, using Gompertz equation as a function of 

developmental stage (De Visser, 1994), and as a function of the day after emergence 

(Teietal., 1996). 
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AIM AND OUTLINE OF THIS THESIS 

The aim of this study is to generalize the dynamics of crop growth performance for 

year-round cut chrysanthemum in terms of dry mass production and leaf area 

development, and to apply an existing explanatory model to cut chrysanthemum to 

determine its response to radiation and cropping strategies, specifically plant density 

management. This aim is approached by (1) describing and analysing the dynamics of 

growth and yield of greenhouse-grown cut chrysanthemum as influenced by planting 

date (season), plant density, and their interaction; (2) generalizing the effect of 

radiation and plant density on dry mass dynamics of year-round cut chrysanthemum 

with biologically meaningful parameters; (3) predicting leaf area development based on 

dry matter partitioning into leaves and specific leaf area of new leaves; (4) adaptation, 

validation, calibration and evaluation of an explanatory model for the prediction of dry 

matter production of year-round cut chrysanthemum. 

For this study, the photosynthesis-driven model TOMSIM (Bertin and Heuvelink, 

1993; Heuvelink, 1995b) was selected as explanatory model, as TOMSIM is built and 

validated based on a series of comprehensive experiments. TOMSIM is based on 

SUCROS87 (Spitters et al., 1989), and on a crop photosynthesis model of Gijzen 

(1992). The photosynthesis module of TOMSIM is not specific to tomato (Heuvelink, 

1996) and hence may be applied to other greenhouse crop species such as 

chrysanthemum. For this study, the module for calculating light intensity has been 

adjusted to the growing conditions of cut chrysanthemum in terms of supplementary 

assimilation light intensity and day length control. The resulting model, CHRYSIMvl.O 

(Chrysanthemum simulator version 1) has the same structure as TOMSIM (Heuvelink, 

1995b), consisting of a standard and adjusted model. The model computes daily crop 

growth rate (g m"2), based on daily crop gross assimilation rate (Pgd) and maintenance 

respiration (Rm). In the standard model, Pgd depends on crop leaf area and radiation, 

while Rm is a function of temperature and plant organ biomass. In the adjusted model 

(Heuvelink, 1995b) a reduction factor for Rm is included, which is a negative 

exponential function of simulated relative growth rate (RGR). 

The study is described and presented in four chapters. In Chapter II, long-term 

growth analyses are presented based on greenhouse experiments, conducted to obtain 

comprehensive data on dynamics of chrysanthemum dry mass production and leaf area 

index with detailed climatic data. Those data are needed to extend knowledge on 

dynamics of crop growth performance and for model development, calibration and 

validation. In Chapter II-1, the effect of planting date and plant density on dynamics of 

dry mass production and leaf area index are described and analysed. In addition, effects 
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of planting date and plant density on the relationship between yield and intercepted light 

are quantified. Theoretically, crop growth rate is approximately linearly related to daily 

light integral. Hence, a relative increase of light should result in proportional yield 

increases, but firm experimental proof for year-round greenhouse crops is lacking 

(Challa et al. 1994, Challa and Bakker, 1999). In Chapter II-2, this question is addressed 

in greenhouse experiments with different combinations of planting date, supplementary 

assimilation lighting, shading levels and plant densities. In addition, an attempt is made 

to generalize crop growth in relation to factors with biologically meaningful model 

parameters. 

Predicting leaf area index is a crucial component of photosynthesis-driven models 

based on light interception. Combining dry matter partitioning into leaves and specific 

leaf area appears to be a promising approach to predicting leaf area index. In Chapter 

III, this approach is applied to generalize leaf area index for cut chrysanthemum, based 

on seasonal experiments. 

Structure and application of the photosynthesis-driven model CHRYSIMvl.O is 

presented in Chapter IV. Using the measured data of Chapter II-2, model inputs are 

environmental factors (radiation, temperature, CO2), dry mass partitioning and leaf area 

index. This chapter includes an evaluation of the standard model, as well as an adjusted 

model with maintenance respiration reduced depending on simulated RGR, and a 

calibrated model implemented with a generalized crop growth rate (as in Chapter II-2) 

based on daily global radiation averaged over several years. 

In the general discussion (Chapter V) limitations of the model for application in 

ornamental crops are considered, specifically in terms of predicting physical yield by 

photosynthesis-driven models. In addition, possible improvements to the model are 

discussed, including the addition of quality aspects of cut chrysanthemum to the 

photosynthesis module. 



II. ANALYSIS OF GROWTH AND YIELD 

II. 1. EFFECTS OF PLANTING DATE AND PLANT DENSITY ON 

CROP GROWTH OF CUT CHRYSANTHEMUM 

Lee JH, Heuvelink E, Challa H 2002. Effects of planting date and plant density on crop growth of cut 
chrysanthemum. Journal of Horticultural Science and Biotechnology. 77, 238-247 

ABSTRACT 

The effects of planting date (season) and plant density (32, 48 or 64 plants m"2) on 

growth of cut chrysanthemum (Chrysanthemum, Indicum group) were investigated in 

six greenhouse experiments, applying the expolinear growth equation. Final plant fresh 

and dry mass and number of flowers per plant decreased with plant density and this 

decrease was larger in summer than in winter. Stem length hardly responded to plant 

density and total dry mass production per m2 linearly increased with plant density. Plant 

dry matter content was not influenced by plant density. Plant dry matter content, plant 

fresh and dry mass, number of flowers per plant, stem length and biomass production 

per m2 were all higher in summer than in winter. Final plant fresh mass (y; g) showed a 

linear relationship with cumulative incident photosynthetically active radiation (PAR) 

per plant (x; MJ plant"1) (y = 16.7x + 28.0, R2 = 0.97). This relationship implies 

proportionality between incident light per plant and plant density (at the same final plant 

fresh mass), showing that plant density effects were primarily mediated through 

competition for light. Dry mass production in time could be described accurately by the 

expolinear growth equation with three regression parameters: maximum relative growth 

rate (rm; assumed to be independent of plant density), maximum absolute growth rate 

(cm) and lost time (4). rm was 2.4 times higher and cm was 4.1 times higher in summer 

than in winter and no effect of plant density on cm was observed, whereas tb decreased 

linearly with increased plant density. Using these parameters and measured maximum 

leaf area index (LAI) for calculating dynamic growth patterns of LAI, resulted in large 

over- or under-estimations, except for summer-grown crops. When an extended 

expolinear growth function was fitted simultaneously on dry mass production and LAI 

in time, accurate time curves for LAI were obtained, whereas dry mass production was 

only accurately described for the summer crops. Only under rather constant radiation 

levels during a cultivation (summer), could accurate descriptions for both dry mass 
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production and LAI increase in time be obtained. Light use efficiency (LUE), the slope 

of the linear relationship between crop growth and cumulative intercepted PAR, varied 

between 3.4 g MJ"1 in summer and 5.3 g MJ"' in winter and LUE slightly increased with 

plant density. 

INTRODUCTION 

Daily light integral varies strongly throughout the year in northern Europe and as a 

consequence crop production and product quality varies. For many crops, including cut 

chrysanthemum, a constant ratio (light use efficiency, LUE, g MJ"1) between intercepted 

radiation and biomass production has been observed (Monteith, 1994; Heuvelink et al, 

2002). Hence, chrysanthemum plant dry mass tends to be much higher in summer than 

in winter (Hughes and Cockshull, 1971; Van der Hoeven et al, 1975; Langton et al., 

1999). Furthermore, crop management, e.g. plant density can have an influence on crop 

productivity and plant quality (Langton et al, 1999). Increased plant density increases 

the productivity per unit area whereas the individual plant mass decreases, e.g. for 

tomato (Heuvelink, 1995c) and for cut chrysanthemum (Van der Hoeven et al., 1975; 

Langton et al, 1999; Heuvelink et al, 2002). 

Growers have to produce the right amount and right quality at the right moment under 

pressure of the market throughout the year (Langton et al., 1999). Growers of cut 

chrysanthemum, a short-day (SD) plant, therefore vary plant density and duration of the 

long-day (LD) period with the season and they reduce the variation in daily light 

integral throughout the year by using supplementary assimilation light. By using a 

longer duration of the long-day period and applying lower plant densities and 

supplementary assimilation light in winter, Dutch cut chrysanthemum growers are able 

to reduce seasonal variation in plant mass to a factor two only (Lee et al, 2002), 

whereas natural daily light integral varies by a factor eight between summer and winter. 

Optimising the production system for cut chrysanthemum with its many variables is 

very complex. Besides the factors discussed above also temperature and CO2 play an 

important role. This complexity has been discussed for greenhouse production systems 

in general by several authors (Krug 1989; Challa, 1990; Lentz, 1998), who concluded 

that crop growth models could help defining optimal strategies. Models, in particular 

photosynthesis-driven models, are powerful tools to recapitulate our knowledge to 

describe and understand complex systems and to compare different scenarios (Marcelis 

et al, 1998). For the development, calibration and validation of such models 

10 
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quantitative information, especially dynamics of crop growth and crop growth 

characteristics e.g. leaf area index (LAI), are needed under a range of conditions 

(Heuvelink, 1995a). For many ornamental greenhouse crops, including cut 

chrysanthemum, however, dynamics of crop performance in time have hardly been 

studied. Concerning dynamics of crop growth, the expolinear growth equation provides 

biologically meaningful parameters as shown by several authors (Goudriaan and 

Monteith, 1990; Goudriaan, 1994; Dennett and Ishag, 1998; Ishag and Dennett, 1998). 

This growth equation, however, has not been thoroughly investigated for year around 

cultivated crops. 

The aim of the present work is to describe and analyse the dynamics of growth and 

yield of greenhouse-grown cut chrysanthemum as influenced by planting date (season) 

and plant density and their interaction. Six greenhouse experiments, with planting dates 

throughout the year, each with three plant densities were conducted. The expolinear 

growth equation and the LUE concept were used to generalise the growth 

measurements. In future papers, the detailed periodic crop measurements combined with 

climatic data presented here, will be used for the development, calibration and 

validation of an explanatory crop growth model for cut chrysanthemum. 

MATERIALS AND METHODS 

EXPERIMENTAL SET-UP 

Six experiments with different planting dates were conducted during three years (Table 

1) using two cultivars of cut chrysanthemum (Chrysanthemum (Indicum group)) i.e. 

'Reagan Improved' (Expt. 1, 2, 4 and 6) and 'Vyking' (Expt. 3 and 5; CBA, Aalsmeer, 

The Netherlands). The experiments were conducted in two (Expt. 1 and 6), three (Expt. 

2 and 4) or four (Expt. 3 and 5) compartments (12 m x 12.8 m) that were part of the 

multispan Venlo-type glasshouse at Wageningen University, The Netherlands (Lat. 52 

°N). Rooted cuttings of chrysanthemum were obtained from a commercial propagator 

(Fides Goldstock Breeding, Maasland, The Netherlands), and planted at 32, 48 or 64 

plants m"2 in each compartment (plots randomized). Plants were grown by single stem 

on four or eight-parallel soil beds (1.125 m wide and 10.25 m length per bed, a border 

soil bed was always present on both sides of the experimental soil beds). All beds had a 

movable wire netting (maze size: 0.125 m x 0.125 m) system, consisting of a frame 
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which included the heating pipes, to support the crop. LD was given at 16 h for 14 days 

after planting in Expt. 2 and 3 and at 19 h for 21 days in Expt. 1 and 6 by incandescent 

lamps (5-6 \imo\ m"2 s"' PAR measured with a 1 m line quantum sensor, LI-191 SA, LI-

COR, USA) and was at natural day length (about 15 h) for about 21 days after planting 

in Expt. 4 and 5. SD was given at 10 h in Expt. 2, 3 and 5 and at 11 h in Expt. 1, 4 and 6 

by using a blackout screen until the end of the experiment. Incandescent lamps were 

continuously turned on during day hours of the LD and SD period for Expt. 1, 2, 3 and 6. 

Soil was stem-sterilized before starting each of the Expt. 1, 2 and 5 and nutrient 

condition in the soil before starting each experiment was adjusted according to soil 

analysis (BLGG, Naaldwijk, The Netherlands). During cultivation, when soil moisture 

level (pF; tensiometer, DM-8, Nieuwkoop, Aalsmeer, The Netherlands) reached a value 

of about 2, irrigation was performed by micro sprinklers (overhead or on-the-ground 

system) with a nutrient solution (EC=1.2 dS m"1, pH=5.6) for 4-5 min followed by water 

application for 1-1.5 min in order to prevent damage to the leaves. Pest and disease 

control were according to an integrated pest management (IPM) scheme, using 

biological and chemical agents. No growth regulators were applied. 

The terminal bud was removed when this bud separated from the lateral buds and 

final harvest was conducted for all plant densities at the same date, i.e. when three or 

four flowers were fully open (ray florets horizontal) for plants grown at 48 plants m"2. 

TABLE 1. Basic information on the six glasshouse experiments. Dates are expressed as day of 
the year (day 1 = 1 January). 

Year 
Cultivar" 
Planting day 
Number of long days 
Number of short days 
Last day of the experiment 
Duration of cultivation (d) 
Outside global radiationb (MJ m"2 d'1) 
Incident SPARC (MJ m1) 
Average glasshouse temperature (°C) 
C02 concentration*1 (umol mol"1) 

1 
2000 

R 
12 
21 
61 
94 
82 

2-7 
91 

17.2 
415 

2 
1999 

R 
29 
17 
56 

102 
73 

4-9 
110 
18.7 
447 

Experiment 
3 

1998 
V 
55 
15 
54 

124 
69 

4-12 
129 
18.3 
370 

4 
1999 

R 
126 
22 
53 

201 
75 

17-19 
305 
21.4 
407 

5 
1998 

V 
177 
21 
60 

258 
81 

14-7 
231 
20.4 
395 

6 
1999 

R 
273 
21 
60 

354 
81 

6-2 
73 

19.2 
432 

a R=Reagan Improved, V=Vyking 
b Average over first two weeks of cultivation and last two weeks of cultivation 
c Cumulative incident daily photosynthetically active radiation over the whole cultivation 
d Between 10:00 and 16:00 h inside the glasshouse and averaged over the whole growing period 
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GREENHOUSE CLIMATE 

Greenhouse temperature set point for heating was 18°C for day and 19°C for night 

except for Expt. 1, where day/night temperature set points were 16/17°C. Set-point 

temperature for ventilation was always 1°C higher than for heating. Greenhouse 

temperature was measured with PT100 elements. CO2 concentration in each 

compartment was measured by a CO2 analyzer (URAS G, Hartmann & Braun, 

Frankfurt, Germany) and maintained between 350 - 400 \imo\ mol"1 by enriching with 

pure CO2. Global radiation was measured with a solarimeter (Kipp and Sons, Delft, The 

Netherlands) outside the greenhouse. Greenhouse temperature, CO2 concentration inside 

the greenhouse and outside global radiation intensity were recorded every 5 min by a 

commercial VitaCo system (Hoogendoorn, Vlaardingen, The Netherlands). 

Daily photosynthetically active radiation (PAR, MJ m"2 d"1) inside the greenhouse 

was calculated based on measured daily integral of outside global radiation and 

greenhouse transmissivity. From daily global radiation integral, half-hourly values for 

diffuse and direct PAR were calculated according to Gijzen (1992) and instantaneous 

greenhouse transmissivity was determined using Bot's (1983) model, parameterised as 

in Heuvelink et al. (1995). This model predicts transmissivity for direct radiation based 

on solar position, greenhouse roof angle, dimensions of the roof construction parts, 

transmissivity of the glass panes and the orientation of the greenhouse. For the 

greenhouse described by Heuvelink et al. (1995) measured and simulated transmissivity 

for diffuse radiation was 0.62, whereas for the present greenhouses transmissivity was 

0.49 (average of 42 positions measured on a cloudy day). Therefore, instantaneous 

greenhouse transmissivity was calculated as for the greenhouse of Heuvelink et al. 

(1995) and then divided by 0.62 and multiplied by 0.49. Daily PAR takes into account 

the loss of radiation by SD treatment and additional PAR from the incandescent lamps. 

Daily intercepted PAR was calculated as daily incident PAR multiplied by the fraction 

of PAR intercepted by the crop (= 1 - e(~k LAI); k = 0.72, see below). Accumulated 

incident PAR (SPAR, MJ m"2) was obtained as the integral of daily PAR inside the 

greenhouse from planting day until final harvest day. 

MEASUREMENTS 

Destructive measurements were carried out every 7 to 10 days or every 3 to 4 days until 

start of SD in Expt. 1 and 6. Samples were taken from 5 (Expt. 4), 6 (Expt. 1, 2 and 6) 

or 8 (Expt. 3 and 5) plants per experimental plot, excluding border plants in two rows 

on each side of a bed. Stem length, number of flowers (including buds), total leaf area 
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(LI-COR Model 3100) and plant fresh and dry (105 °C for 14 h in a ventilated oven) 

mass were determined. No root measurements were conducted. 

EXPOLINEAR GROWTH EQUATIONS 

Two regressions (fittings) were conducted to describe dry mass production and LAI in 

time, based on the periodic measurements. First, a regression was performed on 

measured dry mass production in time only, using the simple expolinear equation 

(Goudriaan and Monteith, 1990): 

W = (cJrm)-hV + eir-i'-'>]] (1) 

where W (g m2) is dry mass at time t (d), and rm (g g"1 d"1) is the maximum relative 

growth rate in the exponential phase and cm (g m"2 d"1) is the maximum absolute growth 

rate in the linear phase, tb, (d) is the lost time to indicate the apparent time lost during 

canopy development before all radiation is intercepted; it determines the position of the 

curve on the time-axis (Goudriaan and Monteith, 1990). The weakest assumption in this 

simple expolinear equation is that leaf area ratio (LAR, m2 g"1) remains constant during 

the growing season and hence LAI increases indefinitely (Ishag and Dennett, 1998). An 

extended expolinear growth equation for describing a realistic growth pattern of leaf 

area was suggested by Goudriaan (1994): 

W = [cm-fJrm]-\n[\ + eM-^] (2) 

1, r 1 + e(r"'('-'')) 

— ln[ j 
k l + e° 

LAI = T\n[^ ^ J (3) 

where cm is the potential maximum absolute growth rate, fm (= l-e(~kLA'")) is the 

maximum fraction of light intercepted at maximum leaf area index (LAIm), and rm and tb 

are fitted parameters from the simple equation. LAIm is the maximum leaf area index 

and k is light extinction coefficient. Potential growth rate, cm* can be calculated by 

cmlfm, where cm is the fitted value from the simple expolinear equation. Thus it can be 

ensured that the calculated total dry mass production in time is the same as for equation 

(1). LAI progression in time can be calculated from equation (3) using the fitted 

parameters from the simple equation (1) as shown by Ishag and Dennett (1998). These 

authors, however, showed over- or under-estimation of LAI using the parameters from 

the simple equation for legume crops. Alternatively to this first method, in a second 

regression procedure, a simultaneous fitting for both measured total dry mass and LAI 

using equation (2) and (3) was conducted. 
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In both fitting procedures rm was assumed to be independent on plant and k was fixed 

for all experiments. In an experiment k was measured to be 0.87 (unpublished data), but 

this may not be representative for all planting dates in this study and therefore a 

theoretical value of 0.72 was assumed, based on a spherical leaf angle distribution 

(Goudriaan and Van Laar, 1994). Each fitting was performed by weighted least squares 

(Ishag and Dennett, 1998) using the non-linear fitting procedure of the SPSS software 

package (version 10, SPSS company, Chicago, USA). In the second fitting procedure 

periodically measured LAI was multiplied by a factor 100 in order to have a similar 

scale and weighting as the measured dry mass (g m"2). 

AN EMPIRICAL MODEL FOR PLANT FRESH MASS 

A relationship between total plant fresh mass (TFM) of year-round cut chrysanthemum 

and radiation and plant density (p^, plant m"2) has been presented by Langton et al. 

(1999): 

TFM = ^ (4) 
a + ». 

c + d-RADg 

where a = 0.00119 plant g"1, c = 1881.4 g m"2 and d = 4.006 (g MJ"1) and RADg = 

accumulated outside global radiation integral (MJ m"2) with adjusted photoperiod. These 

three regression parameters were estimated, based on a wide range of plant spacings 

(82.6-244.3 cm2 per plant, which is equal to 121-41 plants m"2) and an accumulated 

global radiation integral ranging from 236.9 to 1262.1 MJ m"2 (Langton et al., 1999). 

COMPARISON OF MEANS AND PARAMETERS 

Effects of planting date, plant density and their interaction were tested by analysis of 

variance based on a split-plot design using the Genstat software package (Genstat 5 

Committee, 1993). The plant density effect was separated in a linear and a quadratic 

component. For significant (P < 0.05) effects, means were separated by Students Mest 

(P = 0.05), using the least significant difference (LSD) based on the minimum number 

of replications. Additionally polynomial trend for a qualitative treatment of plant 

density was also tested. 
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RESULTS 

CLIMATIC DATA 

Clear differences between experiments in global radiation levels were observed (Table 

1). Expt. 1, 2 and 3 were planted in January or February and showed a rapid increase in 

daily global radiation during the experiment, whereas the opposite was observed for 

Expt. 6, which was planted at the end of September. Global radiation was high and 

rather constant for Expt. 4 and also for Expt. 5 except for the last weeks where radiation 

decreased by 50 %. As a consequence of the different global radiation levels, 

accumulated incident PAR was about 4 times higher in Expt. 4 compared to Expt. 6 and 

values for the other experiments were intermediate. Daily glasshouse temperature was 

3-4 °C higher in summer than in winter (Table 1) and almost constant during a 

cultivation, except for Expt. 4 and 5. In Expt. 4, daily glasshouse temperature averaged 

over 14 days rose from 20 °C to 24 °C during the last month of the experiment and in 

Expt. 5 it rose from 19 °C to 22 °C during the first month of the SD treatment and 

thereafter remained at about 19 °C until the end of the experiment. These increased 

temperatures resulted from the high radiation levels in summer combined with closure 

of the blackout screen partly during daytime, as natural daylength was about 15 h, 

whereas photoperiod during SD treatment was 11 h for Expt. 4 and 10 h for Expt. 5. As 

a result of CO2 enrichment, CO2 concentration was above ambient in all experiments, 

although not to the same extent (Table 1). 

FINAL PLANT CHARACTERISTICS 

Strong seasonal and plant density effects on several plant and crop characteristics were 

observed (Fig. 1 and Table 2). Number of flowers per plant, plant fresh mass and plant 

dry mass decreased with plant density, this decrease being larger in summer than in 

winter (Fig. 1). Final plant fresh mass at 48 plants m"2 (Fig. IB), was 2.7 times higher in 

Expt. 4 than in Expt. 6 (for plant dry mass this factor was 3.2) and plant mass in the 

other experiments was intermediate. The differences in ratio (2.7 versus 3.2) can be 

explained by variation in the dry matter content throughout the season: plant dry matter 

content was about 2 point % higher (13.3 % instead of 11.2 %) in Expt. 4 than in Expt. 

6 (Table 2). Stem length showed an optimum response to plant density with a maximum 

length at 64 plants m"2, however, differences between densities were only small (< 6 %). 
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Stem length was highest in Expt. 4 and lowest in Expt. 3. Total biomass production per 

m2 showed a linear increase with plant density and was highest for Expt. 4, and lowest 

for Expt. 6. 

TABLE 2. Effect of season (Experiment) and plant density on dry matter content (DMC), stem 
length and total dry mass production (TDM) of glasshouse-grown cut chrysanthemum at final 
harvest. 

Factor 

Experiment 

Plant density (plants 

F-probabilities 
Experiment 
Plant density 

Linear 
Quadratic 

Experiment x Plant 

m"2) 

density 

1 
2 
3 
4 
5 
6 

LSD1 

32 

48 

64 

DMC 

(%) 
11.7 
12.6 
11.8 
13.3 
12.5 
11.2 
0.6 

12.2 

12.2 

12.3 

< 0.001 
0.466 
0.225 
0.884 
0.309 

Stem length 
(cm) 
63.6 
73.7 
57.9 
96.6 
84.1 
84.9 
3.3 

73.9 
77.2 

78.2 

< 0.001 
< 0.001 
< 0.001 

0.056 
0.349 

TDM 
(gm-2) 

351 
408 
382 
831 
693 
263 
65 

459 

515 
566 

< 0.001 
< 0.001 
< 0.001 

0.841 
0.795 

Least Significant Difference (P=0.05) for comparing experiment means. 

32 48 64 

Plant density (pi. m~2) 

32 48 64 

Plant density (pi. m'2) 

32 48 64 

Plant density (pi. m"2) 

FIG. 1. Effect of the interaction between season (experiment) and plant density on (A) number 
of flowers per plant (B) total plant fresh mass (TFM) and (C) total plant dry mass (TDM) for 
glasshouse-grown cut chrysanthemum. Symbols indicate Expt. 1 (O), Expt. 2 ( • ) . Expt. 3 
(A), Expt. 4 ( # ) , Expt. 5 ( • ) and Expt. 6 (A). Vertical bars represent standard errors for 
interaction means 
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200 
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50 -
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Incident PAR (MJ plant1) 

10 

FIG. 2. Relationship between total plant fresh 
mass (TFM) and incident PAR integral per 
plant over the whole cultivation period of 
glasshouse-grown cut chrysanthemum. 
Regression line: y=16.7x+28.9 (R2=0.97). 
Symbols indicate Expt. 1 (O), Expt. 2 ( • ) , 
Expt. 3 (A), Expt. 4 (#), Expt. 5 ( • ) and 
Expt. 6 (A). Vertical bar represents standard 
error of regression. 
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FIG. 3. Predicted total plant fresh mass 
(TFM) according to equation 4, plotted 
against measured TFM from six experiments 
with glasshouse-grown cut chrysanthemum at 
three plant densities (32 (O), 48 ( • ) or 64 
(A) plants 
experiments. 

m"). Numbers indicate 

Figure 2 shows that final plant fresh mass increased linearly with increased amount of 

light per plant. This relationship implied that 1 MJ additional light per plant over the 

whole growing period would increase plant fresh mass by 16.7g. Langton et al. (1999) 

reported a formula predicting plant fresh mass as a function of global radiation and plant 

density (equation 4), which could well describe plant fresh mass in the present study 

(Fig. 3). However, plant fresh masses at lower plant densities in the present 

experiments, were overestimated except for Expt. 4 and 5. 

DRY MASS PRODUCTION AND LAI IN TIME 

In all experiments, total dry mass production showed an exponential increase followed 

by a constant linear growth phase (Fig. 4). The expolinear growth equation with three 

parameters (equation 1) could accurately describe the dry mass increase in time (Fig. 4 

solid lines and Table 3). Parameters rm, cm and h were significantly influenced by 

season whereas only tb showed a linear decrease with increased plant density (Table 3). 

rm was about twice as high for the crops planted May (Expt. 4) or June (Expt. 5) than for 

the crops planted in January (Expt. 1 and 2) or February (Expt. 3). cm was about four 

times higher in Expt. 4 than in Expt. 6. 
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0 50 100 150 200 250 300 350 
Day of year 

FIG. 4. Dynamics of dry mass production for glasshouse-grown cut chrysanthemum in six 
experiments (Expt. 1 (O), Expt. 2 ( • ) , Expt. 3 (A), Expt. 4 ( # ) , Expt. 5 (D) and Expt. 6 (A)) 
at three-plant densities (A: 32, B: 48 or C: 64 plants m"2). Lines represent fitted curves for the 
simple expolinear growth equation (equation 1, solid lines) and for the extended expolinear 
growth equation (equations 2 and 3), simultaneously fitting dry mass production and LAI 
(dashed lines). 

19 



CHAPTER II 

TABLE 3. Parameters for the simple expolinear growth equation (equation 1) obtained by fitting 
periodic dry mass production measurements for glasshouse-grown cut chrysanthemum. Values 
between brackets are means over three plant densities. 

Experiment Density (pi. m"2) rm' (d1) cm (g m"2 d"1) tb (d) 

1 

2 

3 

4 

5 

6 

Mean2 

LSD3 

F-probabilities 
Experiment 
Plant density 

Linear 
Quadratic 

32 
48 
64 

32 
48 
64 

32 
48 
64 

32 
48 
64 

32 
48 
64 

32 
48 
64 

32 
48 
64 

Experiment x Plant density 

0.062 

0.076 

0.087 

0.136 

0.169 

0.145 

10.6 
9.6 
8.2 

(9.5) 

10.7 
10.3 
9.5 

(10.2) 

8.4 
8.8 
8.7 

(8.6) 

13.6 
13.5 
16.0 

(14.3) 

9.8 
10.4 
11.1 

(10.5) 

3.1 
3.6 
4.2 

(3.6) 

9.6 
9.7 

10.0 

53.9 
45.1 
37.6 

(45.6) 

37.7 
32.3 
28.1 

(32.7) 

29.5 
25.1 
21.1 

(25.5) 

19.4 
13.5 
17.1 

(16.5) 

14.4 
12.9 
11.8 

(13.0) 

6.5 
3.6 
2.7 

(4.2) 

26.0 
21.5 
19.5 

0.018 1.8 4.9 

< 0.001 0.001 
0.685 
0.418 
0.767 
0.414 

< 0.001 
< 0.001 
< 0.001 

0.192 
0.083 

1 rm was assumed to be equal for all three plant densities 
2 Values averaged over the six experiments 
3 Least Significant Difference (P=0.05) for comparing experiment means. 
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LAI in time showed a sigmoid pattern in all experiments, its final value was highest for 

crops planted in May (Expt. 4) and June (Expt. 5) and it increased with plant density 

(Fig.5). 

50 100 150 200 250 300 350 

Day of year 

FIG. 5. Dynamics of LAI for glasshouse-grown cut chrysanthemum in six experiments (Expt. 1 
(O), Expt. 2 ( • ) , Expt. 3 (A), Expt. 4 ( # ) Expt. 5 ( • ) and Expt. 6 (A)) at three-plant 
densities (A: 32, B: 48 or C: 64 plants m"2). Lines represent curves calculated from the simple 
expolinear growth equation (equation 1) fitted for dry mass production (solid lines) and for the 
extended expolinear growth equation (equations 2 and 3), simultaneously fitting dry mass 
production and LAI (dashed lines). 
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TABLE 4. Parameters for the extended expolinear growth equation (equations 2 and 3) obtained 
by fitting simultaneously periodic dry mass production measurements and leaf area index of 
glasshouse-grown cut chrysanthemum. Values between brackets are means over three plant 
densities. 

Experiment Density (pi. m"2) r j (d1) cm* (gm2 d>) ft (d"1) LAIm 

1 

2 

3 

4 

5 

6 

Mean2 

LSD3 

F-probabilities 
Experiment 
Plant density 

Linear 
Quadratic 

32 
48 
64 

32 
48 
64 

32 
48 
64 

32 
48 
64 

32 
48 
64 

32 
48 
64 

32 
48 
64 

Experiment x Plant density 

0.078 

0.098 

0.106 

0.166 

0.168 

0.095 

0.009 

< 0.001 

5.8 
5.6 
5.2 

(5.5) 

5.7 
5.9 
5.6 

(5.8) 

6.7 
6.8 
6.5 

(6.7) 

13.4 
13.3 
14.7 

(13.8) 

10.3 
10.6 
10.7 

(10.5) 

4.2 
4.4 
4.9 

(4.5) 

8.1 
8.2 
8.4 
0.8 

< 0.001 
0.319 
0.139 
0.825 
0.135 

28.1 
20.4 
15.4 

19.0 
14.2 
10.6 

19.0 
14.0 
9.5 

18.2 
12.7 
13.8 

16.7 
13.4 
10.0 

18.2 
13.4 
10.1 

1.7 

< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 

3.4 
4.3 
4.7 

(4.2) 

3.5 
4.4 
4.7 

(4.2) 

3.8 
5.1 
5.7 

(4.9) 

6.1 
7.5 
7.6 

(7.1) 

7.2 
8.6 
9.7 

(8.5) 

3.7 
4.7 
5.8 

(4.8) 

4.8 
6.0 
6.7 
0.4 

< 0.001 
< 0.001 
< 0.001 

0.010 
0.075 

1 rm was assumed to be equal for all three plant densities 
2 Values averaged over the six experiments 
3 Least Significant Difference (P=0.05) for comparing experiment means; for tb LSD for 

comparing experiment x plant density interaction means is presented. 
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E 

100 200 300 100 200 300 

Intercepted PAR (MJ m"2) 

FIG. 6. Periodic measurements of dry mass production (O) at three plant densities plotted 
against cumulative intercepted PAR for glasshouse-grown cut chrysanthemum in six 
experiments (A, Expt. 1; B, Expt. 2; C, Expt. 3; D, Expt. 4; E, Expt. 5; F, Expt. 6). Lines 
represent linear regressions of which equations are shown in the graphs. R2 for each linear 
regression was larger than 0.98. 

Calculated LAI (Fig. 5 solid lines), based on the expolinear growth equation fitted for 

biomass production and measured maximum LAI, closely followed observed LAI for all 

plant densities in Expt. 4 and 5. In Expt. 1, 2 and 3 calculated LAI strongly 

underestimated observed LAI, whereas in Expt. 6 LAI was strongly overestimated. 

Hence, a simultaneous fitting of total dry mass production and LAI, using the extended 

expolinear growth equation (equations 2 and 3) was conducted. Estimation of LAI 

greatly improved in all experiments (Fig. 5 dashed lines and Table 4), but especially in 

Expt. 1 and 2 the description of dry mass production was less accurate (Fig. 4 dashed 

lines). 
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LIGHT USE EFFICIENCY 

Periodic measurements of dry mass production showed a strong linear relationship with 

accumulated intercepted PAR in all experiments (Fig. 6). However, the slope of the 

regression line, which represents LUE, was not the same for all experiments. The lowest 

value was observed for the crop planted in May (Expt. 4) and the highest value was 

observed for the crop planted at the end of September (Expt. 6). LUE showed a small 

linear increase with plant density (LUE = 3.75 + 0.0073 x plant density; P = 0.007, R2 

= 0.99). 

DISCUSSION 

PLANT BIOMASS 

Plant fresh mass is an important quality parameter for cut chrysanthemum. A fourfold 

variation in plant fresh mass, resulting from different planting dates and plant densities, 

was closely linearly related to available incident light per plant over the whole growing 

period (Fig. 2). Also Langton et al. (1999) reported a close relation between 

accumulated radiation per plant and plant fresh mass. However, their relationship 

contains three regression parameters (equation 4), whereas the present one has only two 

regression parameters. The relationship of Langton et al. (1999), with their parameter 

values (equation 4), gave in general a good prediction for plant fresh mass in the present 

experiments (Fig. 3), despite the use of a different cultivar and perhaps a different 

glasshouse transmissivity. However, at 32 plants m"2 in Expt. 1, 2, 3 and 6, equation 4 

overestimated plant fresh mass. This may be, because 32 plants m"2 is outside the 

density range (40 - 121 plants m"2) used by Langton et al. (1999) for determining the 

parameter values in equation 4. 

In the present experiments, all densities were harvested on one date, whereas it is 

commonly found that a higher density delays flowering (Langton et al., 1999). 

However, it is expected that the present procedure (harvest on one date) compared with 

harvest of each density plot 'when ready' will give almost identical results, as difference 

in harvest date between the lowest and the highest density would have been 3 to 5 days 

(Lee et al., unpublished data). 

The observed linear relationship (Fig. 2) between plant fresh mass (TFM) and 

incident PAR integral per plant over the whole growing period (£PAR/Pd) implies that, 
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when light integral is 1 % higher, a 1 % higher plant density (Pa) can be used, without 

effecting plant fresh mass, as the relationship in Figure 2 can be reformulated as Pd = 

SPAR x 16.7 / (TFM-28.9). According to equation 4, plant density could increase by 

0.90 % to 0.94 % (so also almost 1 %) as a result of a 1 % increase in total incident light 

integral in the range from 70 to 300 MJ m"2 incident PAR. This proportionality between 

incident PAR and plant density (at the same plant fresh mass) clearly shows that plant 

density effects in glasshouse-grown cut chrysanthemum are primarily mediated through 

competition for light. Hence, competition for water and nutrients is not or hardly 

playing a role, as one may expect for modern glasshouse cultivations. 

STEM LENGTH AND NUMBER OF FLOWERS PER PLANT 

A larger number of LDs will result in longer stems, as this results in a longer vegetative 

period and therefore the production of more leaves and internodes. Higher average day 

temperature increases stem elongation rate in chrysanthemum, resulting in taller plants 

(reviewed by Carvalho and Heuvelink, 2001) and hence the tallest plants were observed 

in Expt. 4 (longest duration of the LD period highest average temperature and). Expt. 3 

showed the shortest stems, in agreement with the shortest duration of the LD period and 

a low average glasshouse temperature (Table 1). Differences in stem length between 

experiments are also partly the result of cultivar differences. For example, Expt. 2 (cv. 

Reagan Improved) and Expt. 3 (cv. Vyking) have almost the same duration of the LD 

period and the same average temperature and light integral, whereas stem length was 27 

% higher in Expt. 2. This difference in stem length resulted from shorter internodes for 

'Vyking', as the number of leaves on the stem was almost the same in Expt. 2 and 3 (not 

shown). Despite the statistically significant effect of plant density on stem length, a 

doubling in plant density from 32 to 64 plants m"2 resulted in only 6 % increase in stem 

length. Also Van der Hoeven et al. (1975) reported only a small increase in stem length 

(9 %) with a doubling in plant density. 

The decrease in number of flowers per plant with increasing plant density (Fig. 1 A) 

agrees with observations of Van der Hoeven et al. (1975). They also observed a larger 

plant density effect on the number of flowers per plant for a summer crop than for a 

winter crop. These results also agree with Carvalho et al. (2002) who reported a positive 

relationship between biomass per plant and the number of flowers. However, also 

temperature influences flower initiation and development (e.g. Adams et al, 1998). A 

supra-optimal average 24 h temperature in Expt. 4 (24 °C during the last month of the 

experiment) may explain why the higher light sum (Table 1) and biomass production in 

this experiment compared to Expt. 2, did not result in more flowers per plant. This high 
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temperature may have delayed or even inhibited formation and development of second 

order flowers on the lower part of the axillary stems. 

EXPOLINEAR GROWTH FUNCTIONS 

Dynamics of dry mass production in time were accurately described by the simple 

expolinear growth equation (Fig. 4). The higher rm and cm in summer compared to 

winter (Table 3), is likely to be the result of higher light level and higher temperature in 

summer (Table 1). % corresponds to the reciprocal of rm with fixed initial fraction of 

light intercepted (Goudriaan, 1994) and hence an increase in rm by temperature 

(Monteith, 2000) or radiation (Hughes, 1973) will result in a decrease in h. This is not 

reflected in our results (Table 3), as for example in Expt. 6 % is extremely small due to 

the fact that daily radiation integral decreased drastically during the experiment, which 

resulted in a decrease in the growth rate of a closed canopy. However, the equation is 

based on the assumption of a constant growth rate when the canopy is closed and hence 

cm (fitted on the data for the whole growth period) will be an underestimation for the 

growth rate in the middle of the cultivation. As a result of this, h will be 

underestimated. Exactly the opposite holds for early spring crops: radiation level 

increases and therefore growth of a closed canopy increases and cm will be an 

overestimation of crop growth rate in the middle of the cultivation. As a result of this, tb 

will be overestimated. Increased plant density decreased tb (Table 3), since initial 

fraction of light intercepted is higher at higher plant density. 

When the dynamics of LAI were calculated, based on fitted parameters for the 

expolinear dry matter increase in time and a measured maximum LAI, as presented by 

Ishag and Dennett (1998), only in summer accurate descriptions of LAI in time were 

obtained (Fig. 5). This results from over- or underestimation of tb as explained above. In 

spring crops, tb is over-estimated and hence a delay in predicted LAI occurs, whereas in 

autumn tb is under-estimated, resulting in much faster predicted than observed LAI 

development. Simultaneous fitting of measured dry mass production and LAI 

development using equations 2 and 3 resulted in good predictions of LAI development 

in time in all experiments (Fig. 5). However, dry matter production was described 

accurately only in summer and a particularly poor fit was obtained in Expt. 1 and 2 

(early spring crops). The lower values of potential maximum growth rate (cm*) than 

actual maximum growth rate (cm) were not expected, because maximum fraction of 

intercepted radiation is always less than 1 at maximum LAI (Goudriaan, 1994) and 

hence cm* should be higher than cm (Table 3 and 4). For Expt. 1, 2 and 3, tb was on 

average about 50 % lower in the simultaneous fitting (Table 4) than in the fitting on dry 
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mass production alone (Table 3) and rm was higher in the simultaneous fitting. We 

conclude that fitting expolinear growth functions for dry mass production alone, or 

fitting on dry mass production and LAI development simultaneously, gave accurate 

descriptions only under more or less stable radiation levels (summer). Goudriaan and 

Monteith (1990) mention that their analysis, leading to the expolinear growth equation, 

is only valid when there is little change in the receipt of radiation on a weekly basis. 

They consider this condition satisfied, which is true for field crops, grown in a rather 

limited part of the year. However, this condition is certainly not satisfied for year-round 

greenhouse crops. 

RELATIONSHIP BETWEEN LIGHT INTERCEPTION AND DRY MASS PRODUCTION 

The observed linear relationship between crop growth and cumulative intercepted 

radiation (Fig. 6) has also been reported by others for many crops (Monteith, 1994). 

Theoretically, the regression line should go through the origin. However, for five of the 

six regressions, the intercept differed slightly, however statistically significant, from 

zero. As intercepts were not much different from zero, fitting without intercept would hardly 

change the slopes (LUE) and therefore our conclusions would be the same. Measurements 

clearly showed variation in LUE among experiments and even a slight increase in LUE 

with plant density. Kage et al. (2001b) observed a reduction in LUE with daily PAR for 

field-grown cauliflower crops. A reduction of LUE at high light intensities is to be 

expected, based on light saturation of photosynthesis at leaf level, which also occurs, 

although to a much lesser extent, at crop level (Heuvelink et al., 2002). Furthermore, 

increased light intensities result in a larger fraction of direct radiation, which is used less 

efficiently than diffuse radiation (Gijzen, 1992). The observed small increase in LUE 

with increased plant density may be explained by a reduced average light intensity per 

leaf at higher plant density. 

In a previous paper, we reported a LUE between 2.7 and 4.1 g MJ"1 for cut 

chrysanthemum in a shading experiment in summer, assuming a glasshouse 

transmissivity of 63 % (Heuvelink et al., 2002). However, measured glasshouse 

transmissivity was only 49 % for our glasshouses, resulting in a 30 % increase in 

calculated LUE values. Hence, using the measured instead of the estimated glasshouse 

transmissivity for the data of Heuvelink et al. (2002) results in a LUE range almost 

exactly equal to the one presented here (3.4 - 5.2 g MJ"1). 
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CONCLUSIONS 

The linear relationship between light integral per plant and plant fresh mass (Fig. 2), 

provides an accurate summary of the observations in our experiments, however, it can 

not be used as a generalisation. For example, plant fresh mass also depends on CO2 

concentration (Hughes and Cockshull, 1972) and temperature (Karlsson and Heins, 

1992) and hence these climatic factors will influence the relationship between light 

integral per plant and plant fresh mass. The same is true for LUE (Fig. 6), which 

appeared to be rather constant within an experiment, but showed a clear seasonal 

influence being much higher in winter than in summer. Fitting expolinear growth 

functions for dry mass production alone, or fitting on dry mass production and LAI 

development simultaneously, gave accurate descriptions only under more or less stable 

radiation levels (summer). For an accurate description and generalisation of the present 

data, the approaches tested here, though very valuable, are all too limited. Therefore, the 

present data will be used for development, calibration and validation of an explanatory 

crop growth model. Such a model is expected to be able to simulate observed growth 

patterns accurately under the wide range of glasshouse climatic conditions used. For 

chrysanthemum, such a model does not exist yet (Marcelis et al, 1998). 
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II-2. USING THE EXPOLINEAR GROWTH EQUATION FOR 
MODELLING CROP GROWTH IN YEAR-ROUND CUT 

CHRYSANTHEMUM 

Lee JH, Goudriaan J., Challa H. Effects of planting date and plant density on crop growth of cut 
chrysanthemum. (Submitted) 

ABSTRACT 

The aim of this study was to predict crop growth of year-round cut chrysanthemum 

{Chrysanthemum, Indicum group) based on a model of maximum crop growth rate as a 

function of daily incident photosynthetically active radiation (PAR, MJ m"2 d"1), using 

the expolinear growth equation. Four experiments for developing an empirical crop 

growth model and three experiments for validating the model were conducted in 

glasshouse compartments. In the four experiments for model development, 

chrysanthemum crops received different light regimes (natural light, shading to 66 % 

and 43 % of natural light, and supplementary assimilation light [HPS, 40-48 umol m"2 s" 

']), at different plant densities (32, 64 and 80 plants m"2), and seasons (planting in 

January, May-June and September). Greenhouse temperatures (19-21 °C) and CO2 

concentrations (349 - 432 jxmol mol"1) were similar between experiments. 

The fitted expolinear growth equation as a function of time (EXPOj) or as a function 

of incident PAR integral (EXPOPAR) effectively described periodically measured total 

dry mass (R2 > 0.98). However, growth parameter estimates for the fitted EXPOPAR 

were more suitable than EXPOT as they were not correlated to each other. Coefficients 

of EXPOPAR were the relative growth rate per incident PAR integral (RGRPAR, [MJ m"2]" 

') and light use efficiency (LUE, g MJ"1) at closed canopy. In all four experiments no 

interaction effects between treatments on crop growth parameters were found. RGRPAR 

and LUE were not different between HPS and natural light treatments, but were 

significantly increased when light levels were reduced by shading in the summer 

experiments. There was no consistent effect of plant density on growth parameters. 

RGRPAR and LUE showed hyperbolic relations with daily incident PAR averaged 

over 10 day periods after planting (RGRPAR) or before final harvest (LUE). Based on 

those relations, maximum relative growth rate (g g"1 d"1) and maximum crop growth rate 

(g m"2 d"1) were successfully described by rectangular hyperbolic relations to daily 

incident PAR integral. TDM simulated over time was in good agreement with TDM 
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measured in three independent experiments, using daily incident PAR integral and leaf 

area index as inputs. 

Based on these results it is concluded that the expolinear growth equation is a useful 

tool for quantifying cut chrysanthemum growth parameters and comparing growth 

parameters between different treatments, especially when light is the growth-limiting 

factor. Under controlled environmental conditions the regression model worked 

satisfactorily, hence the model may be applied as simple tool for understanding crop 

growth behaviour under seasonal variation in daily light integral, and for planning 

cropping systems of year-round cut chrysanthemum. However, further research on leaf 

area development in cut chrysanthemum is required to advance chrysanthemum crop 

growth prediction. 

INTRODUCTION 

Year-round cut chrysanthemum (a short-day plant) is grown in intensive industrialised 

cultivation systems, with scheduled planting and harvesting throughout the year. Hence, 

prediction of crop growth over time is important for maximizing cropping system 

efficiency. However, compared to greenhouse vegetable crops, growth prediction has 

yet to be established for cut chrysanthemum (Marcelis et al, 1998). Seasonal variation 

in daily light integral is a major limiting factor for dry-mass production and product 

quality in chrysanthemum (Hughes and Cockshull, 1971, 1972; Van der Hoeven et al., 

1975; Langton et al., 1999; Chapter II-1). Temperature strongly influences plant 

development (Karlsson and Heins, 1992; Adams et al, 1998), and is, in modern 

greenhouses, a factor that can be controlled reasonably well throughout the year. 

Physiological plant processes are too complex to be described by simple models, but 

simplifications are often useful for interpolating or extrapolating measured data. 

Theoretically, crop growth rate is approximately linearly related to daily light integral 

(Challa et al. 1994a, Challa and Bakker, 1999). Hence, a relative increase of light can 

result in proportional yield increases, but firm experimental proof for year-round 

greenhouse crops is lacking (Challa et al. 1994a, Challa and Bakker, 1999). When 

nutrients, water, pests and diseases are not limiting, maximum crop growth rate can be 

largely explained by the ability of the crop to intercept and utilise radiation at a closed 

canopy (De Wit et al, 1978). Crop light use efficiency (LUE, g MJ"1) has been defined 

as dry mass production per unit of intercepted photosynthetically active radiation (PAR, 

MJ m"2) (Monteith, 1977; 1994). The LUE concept has often been used for analysing 
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and modelling crop growth (Bonhomme, 2000), due to its simplicity and supporting 

experimental evidence (Kage et ah, 2001b). Bonhomme (2000) reported that variation 

in LUE is considered small if environmental conditions are not seriously growth 

limiting, such that crop growth rate is directly proportional to light interception. 

However Lee et ah (Chapter II-1) found that, despite adequate nutrients, water, and pest 

management, LUE varied widely between seasons, ranging from 3.4 to 5.3 g MJ"1 

intercepted PAR for glasshouse-grown cut chrysanthemum. Moreover, the seasonal 

variation in LUE raised doubts about the linear relationship between intercepted light 

integral and accumulated dry mass production in year-round cultivated crops, where 

growth periods include conditions of seasonally decreasing or increasing daily light 

integral. Therefore, LUE may use as an intermediate parameter for analysing and 

modelling crop growth in year-round cut chrysanthemum. 

Dry mass production of chrysanthemum over time follows a pattern of exponential 

growth followed by linear growth until reaching a commercial stage (Chapter II-1). The 

overall growth pattern of chrysanthemum, therefore, has been effectively described by 

the expolinear growth equation (Goudriaan and Monteith, 1990; Goudriaan, 1994), 

though with large seasonal variation in growth parameters (Chapter II-l). The 

expolinear growth equation has been used in many crops to describe crop growth 

dynamics and interpret measured data, as the equation contains biologically meaningful 

parameters, i.e. maximum relative growth rate (rm, g g"1 d"1), maximum absolute growth 

rate (cm, g m"2 d"1) and lost time (tb, d) (Goudriaan and Monteith, 1990; Goudriaan, 

1994; Tei et ah, 1996; Both et ah, 1997; Dennett and Ishag, 1998; Ishag and Dennett, 

1998; Monteith, 2000). rm characterizes the exponential growth phase and cm the linear 

growth phase at complete light interception by the canopy, while tb represents time lost 

before the linear growth phase is attained (Goudriaan and Monteith, 1990; Goudriaan, 

1994). Lee et ah (2002) reported that parameter estimation for the expolinear growth 

equation is problematic when daily light integral varies systematically during the crop 

growth period, and Goudriaan and Monteith (1990) have worried about using the 

expolinear model for such conditions. Since variation in crop growth is the final result 

of variations in environmental conditions throughout the crop growth period, Tei et ah 

(1996) proposed that fitting empirical models to measured dry-mass production could 

improve the accuracy of estimating dependent variables if the independent variable in 

the model is replaced by environmental time, that is, considering the interdependent 

variables daily light integral, temperature integral and CO2 concentration (Aikman and 

Scaife, 1993; Tei et ah, 1996). Therefore, in the case of modelling crop growth under 

temporally varying environmental conditions, the problem of estimating parameters for 
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the expolinear growth equation could be solved by considering environmental time 

instead of days after planting. 

The main objective of this study was to develop a regression model with biologically 

meaningful parameters, to model the effect of radiation and plant densities on crop 

growth rate for year-round cut chrysanthemum. Seven experiments were conducted in 

semi-commercial glasshouse compartments. For developing the model of crop growth 

rate as a function of daily incident photosynthetically active radiation integral (PAR, MJ 

m"2 d"1), four experiments were conducted under similar greenhouse temperatures and 

CO2 concentrations during the crop growth period. These experiments were conducted 

in three different seasons and treatments included supplementary assimilation light, 

natural light, shading and three plant densities. As greenhouse temperature and CO2 

concentration were similar between experiments, daily light integral was the major 

limiting factor for crop growth in these four experiments. Fitting of the expolinear 

growth equation, therefore, was implemented with the incident PAR integral 

(EXPOPAR) as only independent variable. In this approach, the growth parameters rm, cm 

and h of the expolinear growth equation can be replaced by the relative growth rate per 

incident PAR integral (RGRPAR, g g"1 [MJ m"2]"'), the maximum light use efficiency 

(LUE, g MJ"1) in the linear growth phase during full light interception by the crop, and 

lost incident PAR (Lb, MJ m"), respectively. To improve accuracy of estimated growth 

parameters, the growth equation was reformulated to reduce correlation between 

parameters. Based on those estimated parameters, an empirical model was developed 

for daily crop growth rate as a function of daily incident PAR integral. Finally, three 

independent experiments were conducted to generate input data (measured initial dry 

mass, daily incident PAR and leaf area index) for model validation. 

MODEL DESCRIPTION 

MODEL DESCRIPTION 

The expolinear growth model as a function of time (t) has three parameters, i.e. 

maximum relative growth rate (rm, g g"1 d"1) in the exponential phase, maximum growth 

rate (cm, g m"2 d"1) in the linear phase and lost time (tb, d) to indicate the apparent time 

lost during canopy development before all radiation is intercepted; it determines the 

position of the curve on the time-axis (Goudriaan and Monteith, 1990; Goudriaan, 

1994). 
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TDM=(cJrm)-ln[l + e^i'-"))] [1] 

A detailed formulation of expolinear growth (Eqn. [1]) has been presented by 

Goudriaan and Monteith (1990) and Goudriaan (1994), and this model has been applied 

with cut chrysanthemum Lee et al. (2002). Therefore, only the specific approach to 

estimate the regression coefficients is detailed here. Equation [1] can be rewritten by 

replacing the independent variable (time) with the accumulated daily incident PAR 

integral inside the greenhouse ( \PAR, MJ m"2), and by substituting the growth 

parameters rm, cm and h with their respective analogies. 

TDM = (LUE/RGRPAR)- ln[l + e™*™ < J"*"1™8] [2] 

where RGRPAR ([MJ m" ]"') is the relative growth rate per incident PAR integral in the 

exponential growth phase, LUE (g MJ"1) is light use efficiency in the linear growth 

phase, and LPAR is the lost daily incident PAR integral (MJ m"2). \PAR (MJ m2) is the 

accumulated daily incident PAR integral. In general, the parameters in equations [1] and 

[2] are strongly correlated (Goudriaan and Monteith, 1990; Goudriaan 1994). 

Particularly, the parameters tb and LPAR strongly correlate with rm and RGRPAR, 

respectively (Goudriaan and Monteith, 1990). Hence, LPAR in equation [2] can be 

decomposed as 

LpM=-WYzy]/*GRPM [3] 

where fa is the initial fraction of light interception by the initial leaf area index (LAIo), 

f0 = 1 - ekLA'°. Therefore equation [2] can be rewritten as 

TDM =(LUE/RGRPAR)-\n[l + -^-.e(RGR™ ^ ' ] [4] 
* Jo 

At the start, accumulated incident PAR is set to zero assuming no growth at planting 

date. Hence, initial total dry mass (TDMo) can be derived from equation [3] by 

TDM, = (LUE/RGRPAR) • ln[l + -&-] [5] 
1 Jo 

The fraction of light (fo) can be eliminated from equation [4] because 

J±_ = eTOM^/LUE_l [ 6 ] 

l - / o 
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Hence, equation [4] can be rewritten as 

TDM = (LUE/RGRPAR) • ln[l + (J™™"'/™'* -1). *<**«• •/"*> ] [ 7 ] 

Assuming a constant leaf area ratio (LAR, m2 g"1) throughout the crop growth period, 

RGRPAR /LUE=k-pr SLAn = k • LAR [8] 

where k is the light extinction coefficient, pi is the fraction of dry matter partitioned into 

new leaves and SLA„ is the specific leaf area of new leaves (m2 g"1). Hence, equation [7] 

can be rewritten as 

TDM = ( — — ) . l n [ i + (e<™»*"*> _ i ) . e
( i c»*U R )] [ 9] 

where \Cmxi is the accumulated maximum crop growth rate (Cmax, g m"2), Cmax is the 

maximum crop growth rate (g m2 d"1) at fully closed canopy, and k is assumed constant 

at 0.72 (Goudriaan and Van Laar, 1994). Cmax was estimated by multiplying the daily 

incident PAR (MJ m"2 d"') with LUE (see results). Actual crop growth rate (GR, g m"2 

d"1), therefore, can be calculated as 

GR = Cmax-(l-e
kuI) [10] 

Assuming a constant leaf area ratio (LAR) over time, the LAI growth rate can be 

calculated by multiplying GR with a constant LAR and hence it purely depends on GR. 

MATERIALS AND METHODS 

Seven experiments (Table 1) with different planting dates were conducted during two 

years using cut chrysanthemum (Chrysanthemum, Indicum group), cultivar Reagan 

Improved. Experiments were conducted in compartments (12.0 m x 12.8 m) that were 

part of a multispan Venlo-type glasshouse at Wageningen University, The Netherlands 

(lat. 52 °N). Experiments 1-4 were used for model development and experiments 5-7 

were used for model validation (Table 1). 

Block-rooted cuttings of cut chrysanthemum were obtained from a commercial 

propagator. Plants were grown as single stems on eight parallel soil beds (1.125 m x 

10.250 m each bed), separated by borders. All beds had a movable system consisting of 

a frame, which included heating pipes, and wire netting (mesh size: 0.125 m x 0.125 m) 
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to support the crop. Each experimental crop was exposed to a varying number of long 

days (LD) and short days (SD) (Table 1). LD was given at 16 h (Expt. 6) or 19 h (Expts. 

1, 2 and 7) for 7-22 days using control lighting by incandescent lamps (CON, 4-6 umol 

m~2 s"1) or high-pressure sodium lamps (HPS, 42-57 umol m"2 s"1, SON-T 400W, 

Philips, The Netherlands), whereas in experiments 3 and 4 LD was given by only 

natural light (about 15 h). SD's of 10 h (Expt. 6) and 11 h (Expts. 1-5, and 7) were 

implemented from day 17-21 onwards until ending the experiments, using blackout 

screens. Lamps were continuously turned on during day hours of LD and SD periods 

(Expts. 1, 2, 5 and 6) or were controlled based on outside global radiation (Exp. 7). In 

the latter case, lamps were turned on at less than 150 W m"2 and turned off at more than 

250 W m"2 global radiation intensity. For experiments 1, 2 5, and 6, compartments were 

installed with both HPS and incandescent lamps (3.5 m above soil surface), whereas 

experiment 7 had only HPS lamps. In experiments 3 and 4 (only natural light), two 

different white screens with different transmissivity were used for shading the crops. 

TABLE 1. Basic characteristics of the seven greenhouse experiments used for model 
development (D) and validation (V). Dates are expressed as day of year (day 1 = 1 January). N 
is the number of harvests during the experimental crop growth period. 

Expt. Year Planting Number of Number of Final Plant N 
date long days short days harvest density 

(LDs) (SDs) date (PI. m2) 

1 
2 
3 
4 

5 
6 
7 

2000 
1999 
1999 
2000 

2000 
1999 
2000 

12 
126 
273 
160 

12 
29 

250-264 

21 
22 
21 
21 

21 
17 

7-21 

58 
53 
60 

55-60 

58-61 
56 
63 

91 
201 
354 

236-241 

91-94 
102 
334 

32,48,64 
tl 

It 

32,64,80 

32,48,64 
It 

64 

14 
9 
13 
14 

14 
8 
12 

Expt. Global radiation3 Temperature [C02]
c Expt. goal 

(MJ m"2 d"1) (°C) (umol mol"1) 

1 
2 
3 
4 

5 
6 
7 

2-7 
17-19 
6-2 

22-15 

2-7 
4-9 
8-2 

21.0 
21.4 
19.2 
22.1 

17.2 
18.7 
19.8 

415 
407 
432 
349 

415 
447 
407 

D 
D 
D 
D 

V 
V 
V 

a Averaged over first two weeks and last two weeks of cultivation. 
b 24h average greenhouse temperature, averaged over the whole growing period. 
c Measured inside the greenhouse between 10:00 and 16:00 h, averaged over the whole growing 

period. 
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TABLE 2. Average daily incident photosynthetically active radiation integral (incident PAR 
integral) in the experiments used for developing the model. 

Experiment Day 
interval 

Average incident PAR 
(MJ m2 d1) 

Light intensity of lamps 
(umol m2 s"1) 

CON HPS SD CON HPS 
0-19 
20-39 
40-59 
60-end 
Average 

0-19 
20-39 
40-59 
60-end 
Average 

0-19 
20-39 
40-59 
60-end 
Average 

0-19 
20-39 
40-59 
60-end 
Average 

0.49 
0.93 
1.30 
1.47 
1.09 

1.49 
0.98 
0.69 
0.44 
0.89 

3.96 
3.92 
3.99 
4.22 
4.01 

4.81 
2.96 
3.52 
3.32 
3.64 

1.10 
1.31 
1.67 
1.84 
1.48 

1.99 
1.28 
0.98 
0.73 
1.24 

. 
-
-
-
-

-
-
-
-
-

0.23 
0.40 
0.46 
0.80 

-

0.47 
0.39 
0.26 
0.21 

-

1.34 
1.20 
1.52 
1.04 

-

1.58 
1.11 
0.84 
0.96 

-

3.5+0.4 

4.8±0.8 

48.1±3.2 

39.6+0.5 

1 HPS: assimilation lighting by high-pressure sodium lamps; CON: control lighting by 
incandescent lamps; SD: standard deviation. 

2 Light intensity from the lamps was measured inside the greenhouse during night conditions. 

Shading screens were placed 1.5 m above the soil surface on fixed rectangular frames, 

covering two soil beds each. An irrigation pipe was placed on the each soil bed (Expt. 

3), or both on soil beds and under the shading screens (Expt. 4), in each compartment. 

For each light treatment, intensity of supplementary lighting was measured by a 1 m 

line quantum sensor (LI-191 SA, LI-COR, USA) in 18 equally spaced places at crop 

level during late evening. Side effects from HPS assimilation lamps were minimised by 

installing the same light treatments in adjacent compartments. Side effects within 

compartments were minimised by attaching aluminium foil on half of the luminaries 

near the control treatments (day length provided by incandescent lighting). Adjusting 
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their position and distance to ensure homogeneous light distribution of assimilation light 

on the crops, light intensities were measured (Table 2). Above and below the shading 

screens light intensity was measured in 27 places (equally spaced) using a i m line 

quantum sensor (LI-191 SA, LI-COR, USA) in Expt. 3. In Expt. 4 two quantum sensors 

(LI-190S A, LI-COR, USA) were placed permanently under each type of screen and 

read every 5 min in one of the compartments. The shading ratio in Expts. 3 and 4 was 

calculated by linear regression of light intensity above and under the screen. The same 

screens were used in both experiments. Light transmission of the two shading screens 

were 65 % ± 3.4 % and 45 % ± 3.0 % for Expt. 3 and 66 % ± 1.6 % and 42 % ± 1.6 % 

for Expt 4. Since the difference between the transmissions found in two experiments 

was marginal the values 66 % ± 1.9 % and 43 % ± 1.9 % averaged over the two 

experiments were used. Daily incident PAR (MJ m"2 d1) inside the greenhouse 

compartment was calculated according to Bot (1983), Gijzen (1992), Heuvelink et al. 

(1995). More detailed information about the calculation of incident PAR in these 

greenhouse compartments has been described elsewhere (Lee et al, 2002). Additional 

light from the lamps and light reduction by SD treatments were included in the daily 

incident PAR integral. Daily incident PAR integral under shading screens is a 

proportion of daily light integral of non-shading treatment in Expts. 3 and 4. 

Day/night temperature set point was 21/20 °C for Expt. 1, 17/16 °C for Expt. 5 and 

18/19°C for other experiments. The ventilation temperature was 1 °C higher than the 

indicated day/night temperature set point. CO2 concentration in each compartment was 

measured by a CO2 analyser (URASG, Hartman & Braun, Germany) and remained at 

least 350 umol mol1 by pure C02 enrichment in all experiments except for Expt. 2, 

where CO2 concentration was maintained at 400 umol mol"1 in two compartments. 

Global radiation (assessed with Kipp and Zonen solarimeter, Delft, The Netherlands), 

greenhouse temperature (PT 500 element) and CO2 concentration was recorded every 5 

min by a commercial VitaCo climatic control system (Hoogendoorn, Vlaardingen, The 

Netherlands). 

EXPERIMENTAL TREATMENTS AND EXPERIMENTAL DESIGN 

Experiments 1, 2, 5 and 6 were conducted in two (Expts. 1, 2 and 5) or three (Expt. 6) 

compartments with two levels of control lighting (incandescent lamps for daylength, 

CON) and supplementary assimilation lighting (HPS) in each half of a compartment. 

Within each lighting plot three plant densities (32, 48 and 64 plants m"2) were randomly 

distributed on two soil beds in each half of a compartment according to a split plot 

design. Expts. 3 and 4 were conducted in three compartments with three light levels 
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(100 %, 66 % or 43 %) in each compartment and within each light level three plant 

densities (32, 48 and 64 plants m"2 for Expt. 3 and 32, 48 and 80 plants m"2 for Expt. 4) 

were randomly distributed on two soil beds according to a split-plot design. Expt. 7 was 

conducted in two compartments under HPS (56.6 ± 0.8 umol m"2 s"1) with three different 

durations of LD (experimental unit) obtained by three planting dates at one-week 

interval as a complete randomised design and plants were planted at 64 plants m"2. In 

Expts. 1, 2, 5 and 6 a border soil bed was present on both sides of the two experimental 

beds in each half of the compartments. In Expts. 3, 4 and 7 a border soil bed was present 

at each side of the compartment. 

PLANT MEASUREMENTS 

Destructive measurements were carried out every 3 to 12 days until final harvest. 

Samples were taken from 5 to 6 plants per experimental plot, excluding border plants in 

two rows on each side of a bed. Total leaf area per plant was measured (using a LI-COR 

Model 3100), as well as fresh and dry mass (dried at 105 °C for 14 h in a ventilated 

oven) of leaves (including petioles), stems and flowers (including buds). No 

measurements on roots were made. All measurements were recorded for individual 

plants, for each experimental plot and replication. 

MODEL VALIDATION 

Three independent experiments were used for crop growth model validation using 

measured initial total dry mass (TDMo, g m"2), leaf area index (LAI) and daily incident 

PAR (MJ m" d" ) inside greenhouse. As mentioned in the model description, leaf area 

ratio (LAR) is defined by specific leaf area (SLA„) and fraction of dry matter partitioned 

into leaves (Pi), but Pi strongly varies throughout plant development (Hughes and 

Cockshull, 1972; Karlsson and Heins, 1994) whereas SLA„ varies with temperature and 

incident PAR integral (Acock et ah, 1979). Therefore, it may not be feasible to ignore 

variation in LAR to calculate LAI dynamics for flowering cut chrysanthemum. To 

address this problem, total dry-mass production in time was calculated as accumulated 

GR (Eqn. [10]) with initial TDM and measured LAI as input. Excel software was used 

for model validation. In addition, Prism® (GraphPad Software Inc, San Diego, USA) 

was used to fit measured LAI by a cubic spline curve (Motulsky, 1999), in order to 

obtain the daily fraction of light intercepted by the crop for equation [10]. 

STATISTICAL ANALYSES OF MEASUREMENTS AND MODEL PARAMETERS 
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Regression coefficients for equations 1, 2, 4 and 7 were estimated by minimising the 

residual sum of squares (least squares method), using the non-linear fitting procedure of 

the SPSS software package (version 10, SPSS company, Chicago, USA). Using SPSS, 

Pearson correlation coefficients were estimated to select the best equation for estimating 

crop growth parameters, that is, the equation with no significant correlations between 

estimated parameters. Of the selected equation, estimated parameters RGRPAR and LUE 

were subjected to treatment effect tests. Effects of light regime, plant density and their 

interaction were tested by analysis of variance (ANOVA) based on the experimental 

design for experiments 1-4 using the Genstat software package (Genstat 5 Committee, 

1993). Light regime and plant density effects were separated in a linear and a quadratic 

component. For significant (P < 0.05) effects, means were separated by student t-tests 

(P = 0.05) using least significant differences (LSD). 

RESULTS 

GREENHOUSE CLIMATE 

Average daily greenhouse temperature (average over 24 h) and CO2 concentration 

(average between 10:00-16:00) and daily global radiation outside are presented in Table 

1 and average daily incident PAR integral in four experiments in Table 2. Daily incident 

PAR varied largely between experiments due to season and supplementary assimilation 

lighting, whereas average greenhouse temperature and CO2 concentration were rather 

constant during the growing period except for experiment 3, in which greenhouse 

temperature increased later in the growing period (Chapter II-1, Table 1 and 2). 

FITTING OF EXPOLINEAR GROWTH EQUATIONS 

Fitting of the expolinear equation as a function of time (Eqn. [1]) and as a function of 

incident PAR integral (Eqn. [2]) effectively described the observed TDM in all 

experiments. Although fitting of equation [1] to periodic measured TDM accounted for 

over 98 % of the variance, its estimated parameters were strongly correlated with each 

other (Table 3). Furthermore, these estimates were particularly biased when daily light 

integral drastically changed during the crop growth period in experiments 1 and 2. 

These problems can be solved by fitting the model as a function of incident PAR 

integral (Eqns [2], [4] and [7]). Although fitting of either equations [2] or [4] adequately 
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described T D M dynamics as a function of incident PAR integral, s trong correlations 

remained be tween R G R P A R and L P A R (Eqn. [2]) and R G R P A R a n d / 0 (Eqn. [4]) (Table 3). 

Therefore, measured T D M was fitted as function o f dai ly incident PAR b y equation [7] , 

to analyse and generalise est imated crop growth parameters without significant 

correlation be tween parameters (Table 3). 

T A B L E 3 . Correlation matrix for estimated parameters of equations 1, 2, 4, and 7. 

Equation Parameters RGRPAR LUE rm cm 

1 Cm 

tb 

LUE 
LpAR 

LUE 
Fo 

LUE 
TDM0 

-
-

0.043 
-0.811" 

0.043 
0.711" 

0.065 
-0.139 

-
-

1.000 
-0.235* 

1.000 
-0.023 

1.000 
0.176 

-0.222* 
-0.770" 

-
-
-
-
_ 
-

1.000 
0.313" 

-
-
-
-
— 
-

** Correlation is significant at the 0.01 level (2-tailed) 
* Correlation is significant at the 0.05 level (2-tailed). 

ESTIMATED GROWTH PARAMETERS 

Using the fitted EXPOPAR (Eqn. [7]), TDM dynamics as function of incident PAR 

integral showed a pattern of exponential growth followed by linear growth, which was 

in good agreement with measured TDM in all experiments (Figs. 1-2). Estimated initial 

TDM was identical to measured initial TDM in all experiments. Since there were no 

significant correlations between parameters of equation [7] (Table 3), treatment effects 

on estimated parameters could be unambiguously determined (Table 4 and 5). In all four 

experiments, no interaction effects between treatments were observed. In experiments 1 

and 2 there was no significant effect of assimilation lighting and plant density on crop 

growth parameters (Table 4). However, the overall average of RGRPAR appeared to be 

higher in experiment 1 than in experiment 2, whereas LUE was higher in experiment 2 

than experiment 1 (Table 4), indicating a seasonal effect on crop growth parameters. In 

experiments 3 and 4, RGRPAR and LUE were significantly different between light 

levels, and increased linearly with decreasing light level (Table 5). No plant density 

effects on growth parameters were detected in experiment 3, whereas RGRPAR and LUE 

at 32 plants m" were significantly different from the highest plant densities in 

experiment 4 (Table 5). In the latter experiment, crop growth parameters appeared to 

show a linear trend to plant density (Table 5). 
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FIG. 1. Dynamics of total dry mass production (TDM) of cut chrysanthemum as a function of 
daily incident PAR integral. Graphs are separated by effects of light (A, C) and plant density (B, 
D) on dry-mass production for crops planted in January (A, B) and September (C, D). Vertical 
bars indicate standard errors of mean measured TDM. 
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FIG. 2. Dynamics of total dry mass production (TDM) of cut chrysanthemum as a function of 
daily incident PAR integral under different shading treatments in two summer experiments (A, 
B: Expt. 3, C, D: Expt. 4). Graphs are separated by effects of light levels (A, C) and plant 
density (B, D) on dry-mass production for crops planted in May (A, B) and June (C, D). 
Vertical bars indicate standard errors of mean measured TDM. 
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TABLE 4. Effects of supplementary lighting and plant density on relative growth rate per 
incident PAR integral (RGRPAR) in the exponential growth phase, and on light use efficiency 
(LUE) in the linear growth phase at closed canopy, estimated by the expolinear growth equation 
as a function of accumulated incident PAR integral for crops planted in January 2000 (Expt. 1) 
and September 1999 (Expt. 2). 

Treatment 

Light1 

Density 

CON 
HPS 

32 
48 
64 

LSD2 

F-probabilities 
Light 
Density 

Linear 
Quadratic 

LightxDensity 

LUE 
(gMJ1) 

4.33 
4.72 

AAA 
4.62 
4.51 
0.55 

0.149 
0.703 
0.734 
0.470 
0.098 

Expt 1 

RGRPAR 
(MJ m2y' 

0.1176 
0.1169 

0.1104 
0.1165 
0.1249 
0.0532 

0.497 
0.691 
0.421 
0.936 
0.623 

LUE 
(gMJ'1) 

6.66 
6.72 

6.50 
6.67 
6.91 
0.72 

0.926 
0.368 
0.184 
0.872 
0.063 

Expt 2 

RGRPAR 
(MJ m"2)"1 

0.0620 
0.0629 

0.0626 
0.0622 
0.0626 
0.0079 

0.857 
0.877 
0.830 
0.664 
0.056 

1 HPS: assimilation lighting by high-pressure sodium lamps, CON: control lighting by 
incandescent lamps. 

2 Least significant difference (P = 0.05) for comparing means. 

GENERALISATION OF R G R P A R AND LUE PARAMETERS 

As mentioned before, RGRPAR defines the exponential growth phase and LUE the linear 

growth phase at closed canopy. Estimated RGRPAR and LUE were plotted against daily 

incident PAR in the period after planting (RGRPAR) or before final harvest (LUE), using 

daily incident PAR averaged over 10 day periods instead of over the whole growing 

period (Fig. 3) because of large seasonal variation in daily incident PAR integral 

throughout the crop growth period (Table 2). Using this approach, RGRPAR and LUE 

showed hyperbolic relations to averaged daily incident PAR integral (Fig. 3), which 

accounted for 52 % and 66 % of variance in RGRPAR and LUE, respectively. 

Furthermore the ratio between the regression of RGRPAR and LUE in Figure 3 is 

identical to the product of k-LAR0 as mentioned before (Goudriaan and Monteith, 

1990). 
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TABLE 5. Effects of supplementary lighting and plant density on relative growth rate per 
incident PAR integral (RGRPAR) in the exponential growth phase, and on light use efficiency 
(LUE) in the linear growth phase at closed canopy, estimated by the expolinear growth equation 
as a function of accumulated incident PAR integral for crops planted in May 1999 (Expt. 3) and 
June 2000 (Expt. 4). 

T . . 1 

Light1 

Density 

Treat 

F-probabilities 
Light 

Density 

LightxDensity 

ment 

100% 
66% 
43% 
LSD 

32 
48 
64 
80 

LSD2 

Linear 
Quadratic 

Linear 
Quadratic 

LUE 

(g MJ-1 

3.63 
4.34 
5.23 
0.50 

4.22 
4.68 
4.30 

-
0.55 

<0.001 
<0.001 
0.212 
0.196 
0.751 
0.081 
0.055 

Expt 3 

RGRPAR 

) (MJ m"2)-1 

0.0344 
0.0497 
0.0694 
0.0064 

0.0517 
0.0511 
0.0507 

-
0.0072 

<0.001 
O.001 
0.053 
0.959 
0.781 
0.961 
0.130 

LUE 
(g MJ"1 

3.47 
4.23 
5.44 
0.54 

3.85 
-

4.55 
4.74 
0.52 

<0.001 
<0.001 
0.076 
0.008 
0.002 
0.639 
0.155 

Expt 4 

RGRPAR 

) (MJ nf2)-' 
0.0401 
0.0520 
0.0639 
0.0093 

0.0652 
-

0.0479 
0.0429 
0.0075 

0.002 
O.001 
0.509 

<0.001 
<0.001 
0.442 
0.742 

1 Light level created by two white shading screens. Percentage 
transmitted by shading screens (100% light level for non-shadinj 

2 Least significant difference (P=0.05) for comparing means. 

indicates proportion of light 
; treatments). 

Therefore, the initial LAR of 0.0327 m2 g"1 can be derived from the ratio between the 

two non-linear regressions when daily incident PAR equals zero. As daily light integral 

largely varies with season in Northern Europe, seasonal variation in LARo for year-

round cut chrysanthemum might be described by a rectangular hyperbola as function of 

daily incident PAR integral (MJ irf2 d"1): 

LARn =a+bA [11] \\ + d-PAR) 

where a = 0.0109 m2 g 1 , b =0.0218 m2 g ' and d= 0.9186 [MJ m"2 d"1]"1. Hence seasonal 

variation in initial LAR can be described as a function of incident PAR throughout the 

year. 
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0 1 2 3 4 5 6 

Daily incident PAR (MJ m"2 d"1) 

FIG. 3. Correlations between average daily incident PAR and relative growth rate per incident 
PAR integral (RGRPAR, A) and light use efficiency (LUE, B). Vertical bars indicate standard 
deviation of parameter estimates. Daily incident PAR in the period after planting (RGRPAR) or 
before final harvest (LUE) is averaged over 10 day periods. Regressions are, A: 1/RGRPAR = 
5.5172(±1.344) + 5.0679(±0.505) x PAR, R2= 0.52, n = 78 and B: 1/LUE = 0.1299(10.008) + 
0.0397(10.003) x PAR, R2=0.66, n=78. 

The maximum relative growth rate (RGRmax, d" ) at early growth phase and maximum 

crop growth rate (Cmax, g m"2 d"1) at fully intercepted incident PAR can be extrapolated 

from the regressions of RGRPAR and LUE (Fig. 3) by multiplying with daily incident 

PAR integral (PAR, MJ m"2 d"1). In figure 3, regressions of RGRPAR and LUE are 

therefore identical to the ratios RGRmax/PAR and Cmax/PAR, respectively. Maximum 

relative growth rate (RGRmax) as a function of daily incident PAR integral (PAR, MJ m" 
2 d"1) can be formulated as 

RGR^ = RGRPAR0 • RGR, • PAR/iRGR, + RGRPAR0 • PAR) [12] 
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o 1 
Daily incident PAR (MJ ml d"1) 

FIG. 4. Maximum relative growth rate (RGRmaX, d"
1) and maximum crop growth rate (Cm 

m"2 d"1) derived from the hyperbolic relation to incident PAR described in Fig. 3. 

where RGRPARO is initial relative growth rate per incident PAR integral, equal to 0.1813 

g g"1 [MJ m"2]"1, and RGRj is the intrinsic maximum relative growth rate (d1), equal to 

0.1973 gg- 'd 1 (Fig. 4). 

Using the same approach as with RGRmaX, maximum crop growth rate (Cmax) as a 

function of daily incident PAR integral (PAR, MJ m"2 d"1) can be formulated as 

Cmax = LUE, • C, • PAR/(C, +LUE0- PAR) [13] 

where LUEo is initial LUE, equal to 7.70 g MJ"1, and C, is the intrinsic maximum crop 

growth rate, equal to 25.18 g m"2 d"1, which can be limited by factors other than 

radiation, i.e. CO2 concentration at high daily light integral and temperature (Fig. 4). 

Based on the theoretical relationship between RGRPAR and LUE, equation [9] may be 

derived from equation [7]. Assuming a constant LAR, growth rate of LAI is 

proportional to crop growth rate. Hence TDM calculated from equation [9] provides an 

accurate value, as accumulated crop growth rate of equation [10] is based on simulated 

LAI, at constant LAR over growth period (Eqn. [11]) (data not shown). 

MODEL VALIDATION 

In flowering chrysanthemum, fraction Pi decreased systematically with increased TDM 

(Hughes and Cockshull, 1972), whereas in vegetatively grown chrysanthemum SLAn 
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varied with temperature and incident PAR under closed canopy (Acock et al., 1979). 

Therefore, Pi and SLA„ were not suitable to use as constant values for model validation 

in this study. Alternatively, measured LAI was used as input for validating the 

generalised model for crop growth rate formulated by equation [10]. Three independent 

experiments (Expts. 5-7 in Table 1) were used to simulate TDM dynamics over time, 

using daily incident PAR and leaf area index as input data. Simulated crop growth 

patterns adequately described measured TDM in all independent experiments (Fig. 5). 

For experiment 5, simulated TDM overestimated measured TDM for the crop grown at 

17 °C under natural light conditions, whereas they were almost identical for the crop 

grown at same temperature under assimilation lighting. 

0 20 40 60 
Days after planting 

FIG. 5. Simulated dynamics of total dry mass production (TDM) over time using three 
independent experiments (A, B: Expt. 5; C, D: Expt. 6; E: Expt. 7). Graphs are separated by 
light treatment (open symbols: HPS lighting, closed symbols: control lighting) with three plant 
densities in experiment 5 and 6 and three long day (LD) periods in experiment 7. Vertical bars 
indicate standard errors of mean measured TDM. 
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DISCUSSION 

The fitted expolinear growth equation as a function of incident PAR integral (EXPOPAR) 

described periodically measured TDM significantly better than the equation as a 

function of time (EXPOT), for all experiments particularly experiment 2 (data not 

shown). A similar approach of fitting empirical models has been used for describing 

TDM dynamics of lettuce, onion and red beet (Tei et al. 1996). Using equation [7], 

TDM dynamics as related to accumulated daily incident PAR integral were effectively 

described, and crop growth parameters were successfully estimated without significant 

correlations between parameters. Therefore treatment effects on estimated parameters 

could be unambiguously tested in this study. 

Relative growth rate per incident PAR integral in the exponential growth phase 

(RGRPAR) and light use efficiency in the linear growth phase of the crop (LUE) were 

effectively explained by hyperbolic relationships to averaged daily incident PAR (Fig. 

3). It is worthwhile to compare LUE as estimated by EXPOPAR with LUE estimated by 

the slope of the linear relationship between accumulated light integral and accumulated 

dry mass production (LUEIN). For the summer experiment, LUE estimated by EXPOPAR 

(3.6 g MJ"') in the present study was almost consistent with LUEIN (3.4 g MJ"1) in 

Chapter II-1. However, in the control treatment of experiment 2 in the present study, 

LUE estimated by EXPOPAR (6.7 g MJ"1) (Table 5) was higher than LUEm (5.3 g MJ"1). 

Based on the overall relation between LUE and daily incident PAR in this study and 

evidence of variation in LUE in a range of incident PAR of 2-5 MJ m"2 d"1 for 

cauliflower (Kage et al. 2001b), linear regression may underestimate LUEIN at closed 

canopy, when the daily light integral drastically decreases such as in experiment 2 

(Table 2). When daily incident PAR drastically increases such as in experiment 1, 

LUEIN may be overestimated Therefore LUE can have non-linear relationships with 

intercepted PAR integral and accumulated dry mass production when daily light integral 

systematically varies during the crop growth period (Table 2). 

Because of the hyperbolic relations of RGRPAR and LUE to daily incident PAR 

integral, maximum relative growth rate (RGRmax) and maximum crop growth rate (Cmax) 

have a rectangular hyperbolic relation to daily incident PAR. A similar response of 

RGR to daily incident PAR was found for young tomato plants, cucumber and sweet 

pepper (Nilwik, 1981; Bruggink and Heuvelink, 1987; Bruggink, 1992; Challa et al, 

1994a). From those studies, it was concluded that variation in RGR was mainly due to 

variation in LAR. Moreover, based on results of the present study and work by other 

authors (Challa and Schapendonk, 1984; Karlsson et al, 1987; Cockshull et al, 1992; 

Olesen and Grevsen, 1997; Kage et al, 2001b), it can be concluded that crop growth rate 
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is dependent on daily incident PAR and not proportional to light. The saturation 

response to incident PAR of maximum crop growth rate at closed canopy is to be 

expected, as light saturation of photosynthesis at leaf level is reflected at crop level. 

Furthermore, at increased light level in summer the fraction of direct light is higher, but 

used less efficiently compared to winter season's diffuse radiation (Gijzen, 1992). 

Moreover, at low daily PAR integral in low light regions, the role of maintenance 

respiration (Rm) relative to crop gross assimilation rate (Pgc,d) should be considered 

(Heuvelink et al, 2002). Rm is not affected by assimilation light (Heuvelink et al, 

2002). If Rm uses a large part (> 50 %) of PgCjd, a proportional increase in PgCid will result 

in a more than proportional increase in growth, which is proportional to Pgc,d minus Rm 

(Heuvelink et al, 2002). Cockshull et al, (1992) found for tomato crops that loss of dry 

mass was less than relative loss of light by shading. In the present study, a similar 

response to reduced light level by shading screens was found in the summer 

experiments (Fig. 2). This response could be due to improved LUE when shading 

reduces daily light integral. 

Based on the rectangular hyperbolic relation to daily incident PAR, crop growth rate 

can be used to simulate dry mass production of year-round cut chrysanthemum crops. 

Although many authors have found effects of temperature and CO2 concentration on 

crop growth, the model developed in the present study is a function of light only. In 

addition, this model assumes that the light compensation point is zero. According to 

Penning de Vries and Van Laar (1982), it may be assumed that maintenance respiration 

equals 1.5 % of dry mass per day. When LAR and LUE considered as the value of 

LARo and LUEo in the present study, light compensation point calculated as 0.08 MJ m" 
2 d"1 (Bruggink and Heuvelink, 1987). Because this value is negligible compared to 

daily incident PAR integral in the present study, the model assumption of a light 

compensation point of zero appears acceptable. Model validation using independent 

experiments was satisfactory, as the model effectively simulated dry-mass production 

using measured LAI, initial dry mass and daily incident PAR integral as input data. The 

only overestimation of dry-mass production occurred when the model was applied to the 

crop grown at lower temperature and lower daily incident PAR (Expt. 5). This 

discrepancy may be due to erratic generalisation of LUE through extrapolation of the 

hyperbolic relation in the lower light range, particularly as LUE varied largely in this 

range (Expt. 2). In addition, it may be due to possible variation in the light extinction 

coefficient between seasons or during the crop growth period. 

Equation [9] may be used as a simple method for calculating dry-mass production 

under the assumption that LAR is constant throughout crop growth. Under the same 
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assumption, the growth rate of LAI may be simulated by the variation in crop growth 

rate. In fact, results of simulating TDM assuming a constant LAR were not different 

from simulating TDM with input of LAI (data not shown). LAR is strongly correlated to 

light as well as crop growth stage, due to the variation in SLAn and dry matter 

partitioning into leaves. Dry mass partitioning into leaves has been found to greatly vary 

with plant dry mass in flowering chrysanthemum (Hughes and Cockshull, 1972), 

whereas it was shown to remain almost constant under large variation in temperature 

and daily light integral in vegetatively grown chrysanthemum (Acock et al, 1979). 

Furthermore, SLAn is strongly correlated with light and temperature (Acock et al, 

1979). Prediction of LAI is a crucial subject in crop growth modelling, as the accurate 

estimation of crop growth rate depends on it. Further research on leaf area development 

in cut chrysanthemum is required to enable development of an LAI model for this crop. 

Given these considerations, the expolinear growth equation proved to be a useful tool 

for analysing measured TDM of cut chrysanthemum. In the present work cut 

chrysanthemum was harvested before senescence and was measured in terms of total 

plant dry mass. Hence, growth components of relative growth rate and crop growth rate 

could easily be assessed by fitting the equation to periodically measured TDM under 

constant light conditions during crop growth. However, if systematic variation in 

environmental factors occurs, growth parameters may be estimated using environmental 

time as independent variable. 

CONCLUSIONS 

In this study LUE was successfully modelled by fitting an expolinear growth equation 

as a function of incident PAR integral to periodic measured TDM. Model coefficients 

were related to relative growth rate per incident PAR integral in the exponential growth 

phase, and to LUE during the linear growth phase at closed canopy. Based on 

generalisation of LUE, maximum crop growth rate as a function of daily incident PAR 

could be modelled for cut chrysanthemum. This is a significant result, considering that 

previous studies on crop growth rate are mostly limited to theoretical analysis. 

Furthermore, this study provides a first thorough study of maximum crop growth of cut 

chrysanthemum based on experimental evidence. Therefore the collected data and 

presented modelling approach may serve as a reference in the field of crop growth 

models for cut chrysanthemum. 
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III. LEAF AREA DEVELOPMENT 

SIMULATION OF LEAF AREA DEVELOPMENT BASED ON DRY 
MATTER PARTITIONING AND SPECIFIC LEAF AREA FOR CUT 
CHRYSANTHEMUM 

Lee JH, Heuvelink E. Simulation of leaf area development based on dry matter partitioning and specific 
leaf area for cut chrysanthemum. Annals of Botany, (in press) 

ABSTRACT 

This work aims at predicting time courses of leaf area index (LAI) based on dry matter 

partitioning into the leaves and on specific leaf area of newly-formed leaf biomass 

(SLAn) for year-round cut chrysanthemum. In five greenhouse experiments, each 

consisting of several plant densities and planted throughout the year, periodic 

destructive measurements were conducted to develop empirical models for partitioning 

and SLAn. Dry matter partitioning into the leaves, calculated as incremental leaf dry 

mass divided by incremental shoot dry mass between two destructive harvests, could be 

described accurately (R2 = 0.93) by a Gompertz function of relative time Rt. Rt is 0 at 

planting date, 1 at the start of short-day and 2 at final harvest. SLAn, calculated as the 

slope of a linear regression between periodic measurements of leaf dry mass (LDM) and 

LAI, showed a significant linear increase with the inverse of the daily incident 

photosynthetic active radiation (incident PAR, MJ m"2 d"1), averaged over the whole 

growing period, the average greenhouse temperature and plant density (R = 0.74). 

The models were validated for two independent experiments and with data from three 

commercial growers, each with four planting dates. Measured shoot dry mass increase, 

initial LAI and LDM, plant density, daily temperature and incident PAR were input in 

the model. Dynamics of LDM and LAI were predicted accurately by the model, 

although in the last part of the cultivation LAI was often overestimated. The slope of the 

linear regression of simulated against measured LDM varied between 0.95 and 1.09. For 

LAI this slope varied between 1.01 and 1.12. The models presented in this study are 

important for the development of a photosynthesis-driven crop growth model for cut 

chrysanthemum. 
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INTRODUCTION 

Explanatory models have an open modular character, which enables integration of 

knowledge at the level of underlying processes and transfer to other crops as only a part 

of the modules may need adaptation rather than the complete model (Heuvelink, 1996). 

For greenhouse fruit vegetables, explanatory photosynthesis-driven models have been 

developed and thoroughly validated for the dynamics of dry mass production and dry 

mass partitioning by several workers (De Koning, 1994; Marcelis, 1994; Heuvelink, 

1996). Contrary to vegetable crops, the number of photosynthesis-driven models for 

ornamental crops is very limited (Marcelis et al., 1998). 

The accuracy of photosynthesis-driven models greatly depends on an accurate 

prediction of leaf area, as intercepted light largely determines crop growth (Heuvelink, 

1999). However, prediction of leaf area index (LAI) is still a weak part of these models. 

Two approaches of simulating plant leaf area development are predominantly used: (1) 

leaf area is described as a function of plant developmental stage, or (2) leaf area is 

predicted from simulated leaf dry mass (Marcelis et al., 1998). The former approach is 

often inaccurate for greenhouse crops, because of a large fluctuation in radiation (almost 

year around cultivation), whereas leaf area development is often strongly influenced by 

radiation (Marcelis et al., 1998). Simulation of leaf area based on simulated leaf dry 

mass and specific leaf area (SLA) is a more flexible approach and it has been applied 

for several crops, e.g. lettuce (Van Henten, 1994), tomato (Heuvelink 1999) and rose 

(Lieth and Pasian, 1991). A module for partitioning to the leaves and a module 

predicting SLA are needed for prediction of LAI dynamics in this way. In such an 

approach, SLA is assumed to be constant, or simulated as a function of plant age, 

physiological age, season, developmental stage and plant density or environmental 

conditions (Marcelis et al., 1998). Gary et al. (1995) calculated leaf area mainly as a 

function of temperature and physiological age. These authors distinguished between 

storage and structural leaf dry mass and allowed structural SLA to vary between a 

minimum (full satisfaction of growth demand) and a maximum (minimum leaf 

thickness) value. This may be a promising way for the mechanistic simulation of SLA 

and thus leaf area expansion; however, in this approach a lot of parameters have to be 

estimated and Gary et al. (1995) did not validate this part of their model. 

In contrast to a tomato crop, which showed a constant partitioning to the leaves as a 

fraction of the total growth of the vegetative parts (Heuvelink, 1999), for 

chrysanthemum this fraction was constant during the vegetative phase only (Acock et 

al., 1979). Partitioning to the leaves strongly declined as fraction of total plant growth 

and total vegetative growth during the generative phase of chrysanthemum (Hughes and 
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Cockshull, 1971; Karlsson and Heins, 1992). SLA of new leaf biomass (SLAn, increase 

of LAI divided by increase of leaf mass) for chrysanthemum has been described as a 

function of average daily radiation integral and temperature by Acock et al. (1979). 

However, for chrysanthemum, to the best of our knowledge, no attempt has been made 

to predict LAI during growth, although it looks promising to do this based on dry matter 

partitioning into the leaves and SLA„ based on Acock et al. (1979). Such a module for 

prediction of LAI would strongly contribute to the applicability of photosynthesis-

driven crop growth models for cut chrysanthemum (Heuvelink et al., 2001). 

Unfortunately, there is not only a lack of quantitative data on dry matter partitioning 

into the leaves and SLA„ throughout the growing period of cut chrysanthemum, but also 

the empirical module for SLAn (Acock et al., 1979) is based on measurements in the 

vegetative phase and at high LAI only. 

In this study we aim at the prediction of LAI development for cut chrysanthemum 

based on dry matter partitioning into the leaves and SLA„. An accurate prediction of dry 

matter partitioning into the leaves and SLAn is needed, as both have a strong positive 

feedback on LAI and total biomass production (e.g. Heuvelink, 1999). Five greenhouse 

experiments were conducted with different planting dates combined with several plant 

densities. These experiments were used for determining the general pattern of dry mass 

partitioning towards the leaves, calibrating an existing empirical module for SLA„ 

(Acock et al, 1979) and for the development of a new module predicting SLA„. 

Moreover, the model for LAI prediction is validated with two independent experiments 

and with several data collected from commercial growers. 

MATERIALS AND METHODS 

GENERAL EXPERIMENTAL SET UP 

Seven experiments were conducted in greenhouse compartments (12 m x 12.8 m) of a 

multispan Venlo-type glasshouse at Wageningen University, The Netherlands (lat. 52 

°N) in different seasons in 1999 and 2000 (Table 1). Block-rooted cuttings of cut 

chrysanthemum (Chrysanthemum, Indicum group), cultivar Reagan Improved (CBA, 

Aalsmeer, The Netherlands) were obtained from a commercial propagator. Crops were 

planted on four or eight parallel soil beds (1.125 m x 10.25 m per bed, a border soil bed 

was always present on both sides of the experimental soil beds) at three plant densities 
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TABLE 1. Basic information on seven greenhouse experiments with cut chrysanthemum 
'Reagan Improved' for development (D), calibration (C) and validation (V) of the models. 
Dates are expressed as day of year (day 1 = 1 January). N is number of destructive 
measurements per treatment. 

Expt Year Planting Number of Number of End day 
day long-days short-days 

Plant density N 

(pl- m2) 
1 
2 
3 
4 
5 
6 
7 

2000 
1999 
1999 
1999 
2000 
1999 
2000 

12 
29 

273 
126 
160 
22 

250-264 

21 
17 
21 
22 
21 
22 

7-21 

58 
56 
60 
53 
55 
56 
63 

91 
102 
354 
201 
236 
102 
334 

32,48,64 
32,48,64 
32,48,64 
32,48,64 

32,64 
32,48,64 

64 

14 
8 

13 
9 

14 
8 

12 

Expt Global radiation3 

(MJm-2d"') 
Temperature 

(°C) 
[C02]

c 

(umol mol"1) 
Expt for 

2-7 
4-9 
6-2 

17-19 
22-15 
4-9 
8-2 

21.0 
18.7 
19.2 
21.4 
22.1 
18.7 
19.8 

415 
447 
432 
407 
349 
447 
407 

D,C 
D,C 
D,C 
D,C 
D,C 

V 
V 

a Average over first two weeks of cultivation and last two weeks of cultivation. 
b 24 h average greenhouse temperature, averaged over the whole growing period. 
c Between 10:00 and 16:00 hours inside greenhouse and averaged over the whole growing 

period. 

(32, 48 or 64 plants m") in two or three compartments. Five experiments were used for 

developing and calibrating the models for dry matter partitioning into leaves and SLA„ 

and two experiments were used for model validation (Table 1). 

The general crop management has been described previously (Lee et al, 2002). 

Experiments were conducted in two (Expts 1, 3 and 7) or three (Expts 2, 4, 5 and 6) 

compartments with three plant densities except for Expt 7 (Table 1). Expts 2, 3 and 4 in 

this study are the same as Expts 2, 6 and 4 described by Lee et al. (2002). Expt 1 was 

conducted parallel to Expt 1 of Lee et al. (2002); however, in two other greenhouse 

compartments heated to a higher greenhouse temperature of 21 °C. In Expt 5 the crop 

was planted at 32, 64 and 80 plants m"2, but measurements at 80 plants m 2 were not 

used so as to keep plant densities the same for all experiments. In Expt 6 each 

compartment half received supplementary lighting, provided by either incandescent 

lamps (4.8 ± 0.8 umol m"2 s"1) or high-pressure sodium lamps (HPS, 39.6 ± 0.5 umol m" 
2 s"1, SON-T 400W, Philips, The Netherlands). In Expt 7 three planting dates, with one-
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week intervals, were applied to obtain 3, 2 or 1 week of long-day (LD) period. The crop 

was planted at 64 plants m2 and received supplementary assimilation light (HPS, 57.6 ± 

0.8 nmol m"2 s"1). 

LD was given at 16 h for 17-22 d after planting (Expts 2 and 6) and at 19 h for 7-21 d 

(Expts 1, 3 and 7) by incandescent lamps or HPS lamps and natural day length (about 

15 h) was applied in Expt 4 and 5 for 21-22 d after planting (Table 1). Short day (SD) 

was given at 10 h (Expts 2 and 6) or at 11 h (Expts 1, 3, 4, 5 and 7) using a black out 

screen until the end of an experiment. Lamps were continuously turned on during day 

hours of the LD and SD period except for Expt 7, where the lamps were turned on at 

less than 150 W m"2 and turned off at more than 250 W m"2 global radiation outside the 

greenhouse. 

GREENHOUSE CLIMATE 

Greenhouse temperature set point for heating was 18 °C for day and 19 °C for night 

except for the Expt 1, where day/night temperature set points were 20 °C/21 °C. Set-

point temperature for ventilation was always 1 °C higher than for heating. Measuring 

and recording of greenhouse climate data has been described previously (Lee et al., 

2002). CO2 concentration in each compartment was maintained between 350 and 400 

umol mol"1 by enriching with pure CO2. Average daily greenhouse temperature 

(averaged over 24 h) and CO2 concentration (averaged between 10:00-16:00) and daily 

global radiation outside are presented in Table 1. 

Daily photosynthetic active radiation inside the greenhouse compartment (incident 

PAR, MJ m"2 d1) was calculated according to Lee et al. (2002), applying a greenhouse 

transmisivity for diffuse radiation of 0.49, measured on a cloudy day. Supplementary 

light (assumed to be 100 % diffuse) and light reduction by blackout screens in the SD 

period were taken into account in the calculation of daily incident PAR. 

PLANT MEASUREMENTS 

Destructive measurements were carried out every 3 to 12 days until final harvest in all 

experiments. Samples were taken from 5 or 6 plants per experimental plot, excluding 

border plants in two rows on each side of a bed. Total leaf area (LI-COR Model 3100) 

and fresh and dry (105 °C for 14 h in a ventilated oven) mass of leaves (including 

petioles), stems and flowers were measured. No measurements on roots were conducted. 
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DRY MATTER PARTITIONING INTO THE LEAVES 

The fraction of shoot dry mass partitioned to the leaves was calculated as the increment 

of leaf dry mass divided by the increment of shoot dry mass between two adjacent 

destructive measurements and negative values were assumed to be zero (Kropff and 

Van Laar, 1993). The relationship between this fraction and relative time (R,) (Karlsson 

and Heins, 1992) was described with a Gompertz curve: 

F = C-exp(-^(R'-M)1) (1) 

where F is the fraction of dry mass partitioned to the leaves, C represents the maximum 

fraction, B represents the steepness and direction of the curve and M represents Rt for 

the inflection point of the curve. For B > 0, the value of F will increase from zero to C 

with increasing Rt, whereas for B < 0 F decreases from C to zero. Rt was scaled from 0 

to 2: Rt is 0 at planting date, Rt is 1 at the start of SD and 2 at final harvest and R, in 

between 0-1 and 1-2 is obtained by linear interpolation of days after planting or start of 

SD. Parameters in Eqn. 1 were determined by the non-linear fitting procedure in SPSS 

software package (version 10, SPSS company, Chicago, USA), applied to all 

partitioning data from Expts 1 to 5. 

SPECIFIC LEAF AREA OF NEW LEAVES 

Specific leaf area of new leaves (SLAn, m
2 g"1) is difficult to derive for each interval 

between two destructive measurements and hence the slope of the linear relationship 

between leaf dry mass (g m"2) and LAI (m2 m"2) was used for estimating SLAn (Kropff 

and Van Laar, 1993). This implies the assumption of a constant SLAn during each 

cultivation of chrysanthemum. An existing empirical model of SLAA (Eqn. 2) of new 

leaves (Acock et al., 1979) was validated with estimated SLA„: 

SLAA=a+b-T + c/I (2) 

where / represents average daily incident photosynthetic active radiation (400-700 nm; 

MJ m"2 d"1) and T average greenhouse temperature (°C), both averaged over the whole 

growing period. Regression coefficients a, b and c, have been estimated by Acock et al. 

(1979) as 5.23 m2 kg"1, 0.617 m2 kg"1 °C"' and 43.74 m2 kg"1 MJ m"2 d"1, respectively. As 

conditions in the present experiments, including the cultivar, were quite different from 

those of Acock et al. (1979) we also calibrated the regression parameters in Eqn. 2 

using the non-linear fitting procedure in SPSS. Furthermore, SLAn was predicted 

according to Eqn. 2, but extended with a linear term for plant density and with 

parameters calibrated on the SLA„ values from Expts. 1 to 5. 
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TABLE 2. Basic information on the commercially-grown crops used for model validation. Dates 
are expressed as day of year (day 1 = 1 January). For each crop 4 destructive measurements 
were conducted in 2001. 

Season Growera Cultivar Planting 
day 

Number of 
long-days 

Number of 
short-days 

End day 
Plant density 

(PI. m-2) 

Winter 

Spring 

Summer 

Autumn 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

S 
W 
W 

s 
w 
w 
s 
w 
w 
s 
w 
w 

31 
364 

9 
106 
90 
92 

171 
171 
153 
239 
250 
244 

15 
28 
28 
10 
16 
10 
13 
13 
11 
15 
24 
20 

55 
57 
50 
55 
50 
48 
55 
58 
54 
62 
50 
55 

101 
82 
87 

171 
156 
150 
239 
242 
218 
316 
324 
319 

57 
40 
44 
62 
60 
58 
60 
55 
58 
53 
48 
45 

Season Grower3 Global radiation0 

(MJ m'2 d1) 
Temperature 

(°C) 
[co2f 

(nmol mol"1) 

Winter 2 
3 
1 
2 
3 

Spring 

Summer 

Autumn 

8-11 
3-6 
2-5 

15-22 
11-20 
8-17 

23-16 
23-16 
21-20 

10-3 
10-3 
11-3 

20.3 
18.6 
18.9 
21.7 
20.4 
21.1 

23.0 
22.5 
23.3 

20.6 
20.1 
20.4 

1241 
957 

1065 

526 
405 
544 

438 
420 
432 

546 
412 
380 

" Grower 1 applied supplementary lighting (high pressure sodium lamps; 52.4 umol m"2 s"1) for 
293 h during LD period and 221 h during SD period for winter crop, for 79 h only during LD 
period in spring crop and for 150 h only during SD period in Autumn. Other growers used 
incandescent lamps with cyclic lighting during LD period for winter crops. 

b S = Reagan Elite Sunny, W = Reagan Elite White. 
0 Average over first two weeks of cultivation and last two weeks of cultivation. 
d 24h average greenhouse temperature, averaged over the whole growing period. 
e Between 10:00 and 16:00 hours inside greenhouse and averaged over the whole growing 

period. 

VALIDATION OF THE MODELS 

Periodic measurements of total dry mass (TDM, g m"2) from independent experiments 

(Expts 6 and 7 in Table 1) and from crops of commercial growers (Table 2) were fitted 

with a cubic spline function by Prism® (GraphPad Software Inc, San Diego, USA) in 
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order to obtain daily crop growth rates (g m"2 d"1). Leaf growth rate (LGR, g m"2 d"1), 

was calculated by multiplying the partitioning to the leaves calculated with Eqn. 1 with 

this daily crop growth rate. Leaf dry mass (LDM; g m"2) resulted from initial LDM and 

the cumulative LGR. The daily increase in LAI (m2 m"2 d"1) was calculated by 

multiplying predicted LGR (g m"2 d"1) with predicted SLAn (m
2 g"1). LAI resulted from 

initial LAI and the cumulative daily increase in LAI. Initial values were input to the 

model and originated from destructive measurements at planting date. 

COMMERCIAL CROPS FOR VALIDATION 

Plant measurements were conducted in four seasons in 2001, at three growers and 

measurements were conducted four times during a cultivation, i.e. at planting, at start of 

SD, halfway the SD period and at commercial harvest stage (anthesis). Commercial 

crops were planted at densities between 40 and 62 plants m"2 and were grown at 

temperatures between 18 and 23 °C and CO2 concentrations varied between 380 and 

1200 umol mol"1 depending on the season (Table 2). The commercial greenhouses were 

Venlo-type glasshouses, however, with a much higher greenhouse transmissivity of 68-

70 % (measured on a cloudy day) and much bigger cultivation area (more than 1 ha) 

compared to the compartments in which the experiments were conducted. Cultivars 

Reagan Elite White and Reagan Elite Sunny, used by the commercial growers, are very 

similar to "Reagan Improved" used in the experiments, however, the duration from start 

of SD to final harvest is about 4 days shorter than for "Reagan Improved" (CBA, 

Aalsmeer, The Netherlands). 

RESULTS 

MODEL DEVELOPMENT 

One Gompertz curve (Eqn. 1) could well describe (R2 = 0.93) the relationship between 

dry mass partitioned to the leaves and relative time for all five experiments (Fig. 1A). In 

the early growth stages, dry mass partitioned towards the leaves was 65 % of the total 

amount of the dry-mass produced and this fraction was (almost) zero at anthesis. No 

statistically significant interaction effect between experiment and plant density and no 

effect of plant density alone (Fig. IB) on any of the three parameters of the Gompertz 
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FIG. 1. Fraction of the dry mass partitioned to the leaves as a function of relative time (0, 
planting date; 1, start of SD; 2, commercial harvest date) for glasshouse-grown cut 
chrysanthemum planted in January (Expts 1 and 2), May or June (Expts 4 and 5), or September 
(Expt 3) (A; symbols represent values averaged over plant densities) and the effect of plant 
density on this fraction in Expts 1 (closed symbols) and 4 (open symbols) (B). Bars indicate 
standard error of means when larger than symbols. A Gompertz curve (Eqn 1) was fitted to the 
data (parameter values: C = 0.649 ± 0.008, B = -3.65 ± 0.17 and M = 1.565 + 0.010; R2 = 0.93). 
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curve was observed. However, all three parameters were significantly affected by 

experiment (season). This effect can be seen in Figure 1A, as in general measured 

fractions in Expt 4 and 5 (open symbols) are below the curve, whereas fractions for 

Expts 1,2 and 3 (closed symbols) are above the Gompertz curve. 

A very close linear relationship (R2 > 0.98) between measured LDM (g m"2) and LAI 

during crop growth was observed in each of the five experiments. The slope of these 

lines was taken as an estimate for SLAn. Applying Eqn. 2 with the parameter values 

determined by Acock et al. (1979) and the daily incident PAR and greenhouse 
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FIG. 2. Specific leaf area of new leaves (SLA„) calculated as: the slope of a linear relationship 
between LDM (g m"2) and LAI (m2 m'2) for five experiments (SLA); the values calculated with 
Eqn 2 using parameter values of Acock et al. (1979) (ACOCK; a = 5.23 m2 kg"1, b = 0.617 m2 

kg"1 °C"' and c = 43.74 m2 kg"1 MJ m"2 d"1); and values calculated with Eqn 2 with calibrated 
parameters (CAL; a = 8.85 + 5.73 m2 kg"1, b = 0.961 ± 0.615 m2 kg"1 °C"' and c = 12.60 ± 1.86 
m2 kg"1 MJ m"2 d'1). Averaged daily incident PAR and temperature over the whole growing 
period were input in Eqn 2. Vertical bars indicate standard error. 

temperature averaged over the whole growing period for each experiment, resulted in a 

strong overestimation of SLA„ for Expts 1, 2 and 3 (Fig. 2). For Expts 4 and 5, predicted 

SLAn was almost equal to the measured values. With Eqn. 2, after calibrating the 

regression parameters for the present experiments, a better prediction (Fig. 2) was 

obtained. The slope of the regression line (no intercept) relating predicted to measured 

SLAn was 0.995 (R2 = 0.51), indicating on average a perfect agreement, but with much 

scatter. By adding a term for plant density (Pd) to Eqn. 2, predictions were hardly 

changed, but scatter was much reduced (Eqn. 3; slope of regression line = 0.996; R2 = 

0.67). Therefore, SLAn (m
2 kg"1) was calculated by 

SLA=a + b-T + clI + d-P, (3) 

with a = 3.99 ± 8.59, b = 0.989 ± 0.383, c=12.76 ± 1.5 and d = 0.0873 + 0.0262, and the 

variance accounted for being 74 %. 

VALIDATION OF LEAF DRY-MASS PRODUCTION AND LAI 

Observed leaf dry mass (LDM, g m"2) production patterns in time in Expts 6 and 7 could 

be predicted well (Fig. 3), based on the partitioning function from figure 1. Moreover, 

simulated dynamics of LAI in time also agreed well with measured patterns, although 
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some overestimation at high density occurred in Expt. 6 (Fig. 4). The slope of the linear 

relationship (no intercept) between measured and simulated LDM was 0.98 for Expt. 6 

and 1.06 for Expt. 7, whereas for LAI these values were 1.12 for Expt. 6 and 1.01 for 

Expt. 7 (Table 3). Furthermore, by applying the simple relationship describing dry mass 

partitioning into the leaves as a function of relative time (Fig. 1) and the function 

describing SLA„ as function of daily incident PAR, temperature and plant density (Eqn. 

3), observed and predicted LDM and LAI in 12 commercial crops (3 growers times 4 

planting dates) showed very good agreement (Fig. 5 and Table 4). 

TABLE 3. The coefficients of the linear relationship (without intercept) between measured and 
predicted leaf dry mass (LDM) and measured and predicted leaf area index (LAI) for two 
independent validation experiments. 

Experiment Slope S.E. 

LDM 

LAI 

6 

7 

6 

7 

0.975 

1.063 

1.119 

1.007 

0.010 

0.007 

0.012 

0.010 

0.984 

0.994 

0.983 

0.987 

TABLE 4. The coefficients of the linear relationship (without intercepts) between measured and 
predicted values of leaf dry mass (LDM) and leaf area index (LAI) for the commercially-grown 
crops for model validation in 4 seasons. 

LDM 

LAI 

Season 

Winter 

Spring 

Summer 

Autumn 

Overall 

Winter 

Spring 

Summer 

Autumn 

Overall 

Slope 

0.949 

1.019 

1.062 

1.085 

1.037 

1.010 

1.041 

1.097 

1.112 

1.068 

S.E. 

0.012 

0.023 

0.018 

0.036 

0.013 

0.016 

0.016 

0.024 

0.038 

0.013 

R2 

0.995 

0.986 

0.992 

0.967 

0.981 

0.992 

0.993 

0.987 

0.965 

0.981 
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FIG. 3. Simulated dynamics of leaf dry mass 
accumulation (LDM) over time for two 
independent experiments (Expt 6, A and B; 
Expt 7, C). Crops were planted in winter (A 
and B) or autumn (C) at three plant densities 
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FlG.4 Simulated dynamics of leaf area index 
(LAI) in time for two independent 
experiments (Expt 6, A and B; Expt 7, C). 
See caption of Fig. 3 for further details. 
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FIG. 5. The relationship between measured leaf dry mass (LDM) and simulated LDM (A) and 
between measured leaf area index (LAI) and simulated LAI (B), using independent data for 
model validation from 3 commercial growers during four seasons. Lines represent 1:1 
relationship. Coefficients of the linear relationship for each season are presented in Table 4. 

The slopes of the linear relationship between predicted and observed LDM varied 

between 0.95 and 1.09, whereas for LAI this slope varied between 1.01 and 1.11 (Table 

4). Some overestimation of LDM and LAI was observed in summer and autumn, at the 

end of the cultivation (Fig. 5). 

DISCUSSION 

DRY-MASS PARTITIONING INTO THE LEAVES 

The fraction of the dry mass partitioned to leaves has been reported to be constant 

during the early, vegetative phase (Hughes and Cockshull, 1971; Acock et al., 1979), 

whereas this fraction decreases rapidly with flower developed in chrysanthemum 

(Hughes and Cockshull, 1971). Our results also show such a pattern, which could be 

described accurately as a function of relative time by a Gompertz curve (Fig. 1). A 

similar approach describing dry mass partitioning into the leaves was used by De Visser 

(1994) as a function of the developmental stage of onion and by Tei et al. (1996) as a 

function of the day after emergence for onion and red beet. 
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Only a few studies report on dry mass partitioning into leaves in chrysanthemum. 

Acock et al. (1979) observed almost no influence of temperature (10-30 °C) or daily 

incident PAR (1.9-9.2 MJ m"2 d"1) on dry mass partitioning into the leaves for a 

vegetative crop. However, Hughes and Cockshull (1971) and Karlsson and Heins 

(1992) reported that the fraction of dry mass partitioned into leaves increased with 

decreased light intensity, whereas the effect of CO2 concentration (Hughes and 

Cocksull, 1971) and day and night temperature (Karlsson and Heins, 1992) on this 

fraction seemed to be small. 

In the present study, we found no significant effect of plant density on the 

partitioning to the leaves (Fig. IB). This agrees with observations of Reuben and 

Mnzava (1982) in Amaranihus cruentus. However, an effect of experiment (season) on 

all three parameters of the Gompertz curve was observed (Fig. 1A). This seasonal effect 

was not taken into account as it was preferred to keep the model simple. Furthermore, 

our greenhouse experiments do not allow a sound separation of the seasonal effect in a 

light and a temperature component, which would be needed for a generalisation. Using 

a generalized pattern may lead to over- or underestimation of LDM and hence LAI. 

Overestimation of LAI was observed at the end of Expts 4 and 5 (data not shown). 

Since at the end of the cropping period LAI is high, resulting in interception of almost 

all light (closed canopy), overestimation of LAI hardly influences light interception and 

hence simulated crop growth rate. Therefore we accepted the general pattern for 

partitioning to the leaves, without adding specific effects of e.g. light, temperature or 

plant density which would have resulted in a more accurate prediction of LAI in the last 

weeks of cultivation. This general pattern of partitioning into the leaves was validated 

with independent experiments and data from several commercial growers. Even though 

there were large differences in crop management and environmental conditions between 

our experiments and the commercially-grown crops, predicted leaf growth based on 

measured shoot dry mass agreed very well with measured leaf growth (Fig. 5). Possible 

specific cultivar effects have not been investigated here. However, the ratio between 

LDM and shoot dry mass has been reported to vary between 0.59 and 0.77 for 15 

cultivars at a shoot dry mass of 1 g (De Jong and Jansen, 1992). Hence, the parameters 

of the partitioning curve (Fig. 1) are likely to be cultivar specific. 

It may be that partitioning into the leaves can be described even more accurately by 

determination of a real developmental stage x-axis for figure 1. So far, only a rather 

rough linear interpolation of relative time between planting date, start of SD and final 

harvest date was applied. The model for dry-mass partitioning into the leaves is 

incomplete, as it needs final harvest date (anthesis) as input. Time from start of SD until 

anthesis primarily is a cultivar characteristic. A study on predicting the time to 
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flowering from the start of SD has been reported by Larson and Persson (1999). They 

discussed the lack of information from the breeders as one of the main problems, since 

at least 25 new chrysanthemum cultivars become available every year. For known 

cultivars, one can also apply reference schedules, i.e. planting date, number of long 

days, expected final harvest date (e.g. Roelofs et al., 2001; Spaargaren, 2002) to obtain 

the time axis for partitioning. 

SPECIFIC LEAF AREA 

Specific leaf area of newly formed leaf dry mass (SLAn) has been predicted as a linear 

function of temperature and the inverse of daily light integral (Eqn. 2) by Acock et al. 

(1979). However, Eqn. 2 with the parameter values of Acock et al. (1979), showed a 

large overestimation of SLAn for the present crops (Expts 1, 2 and 3; Fig. 2). This 

discrepancy could be explained, since Acock et al. (1979) derived their equation for 

vegetative chrysanthemums only, under limited crop size (LAI > 2.2) and for relatively 

high incident PAR (1.9-9.2 MJ m"2 d"1). The latter may explain why predictions for the 

summer experiments (Expt 4 and 5) were quite accurate as PAR levels were within the 

range of Acock et al. (1979). Since Acock et al. (1979) did use a different cultivar than 

the one used in the present experiments, this may also explain differences in SLAn. 

Eqn. 2 with calibrated parameters showed good agreement with measured SLAn, and 

adding a positive linear relationship with plant density (Eqn. 3) improved prediction of 

SLAn even more. The variation in SLA depends on the light intensity or season, which 

agrees with the literature (Hughes and Cockshull, 1972; Nederhoff, et al., 1992; 

Heuvelink and Marcelis, 1996; Heuvelink, 1999). In addition, in chrysanthemum a 

small effect of temperature was found (Hughes and Cockshull, 1972). A positive effect 

of plant density on SLA was also found for other crops, e.g. potato (Vos, 1995), tomato 

(Heuvelink and Marcelis, 1996) and Impatiens capensis (Maliakal et al, 1999), which 

might be explained by the lower average light level on the leaves at higher plant 

densities. Furthermore, SLA decreases with increasing CO2 concentration (325-1500 

umol mol"1; Hughes and Cockshull 1972), but CO2 concentration is not represented in 

Eqn. 3. However, using Eqn. 1 and Eqn. 3 for simulating LAI, with total crop growth 

rate, initial LDM and intitial LAI, temperature, incident PAR and plant density as input, 

gave accurate predictions for crops grown in commercial greenhouses. Apparently CO2 

effects in SLA„ are not very large, as commercial crops received much higher CO2 

concentrations (especially in winter), compared to our experiments used for model 

development. The parameter values in Eqn. 3 are likely to be cultivar specific. De Jong 

and Jansen (1992) observed for 15 cut chrysanthemum cultivars a variation in the ratio 
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between leaf area and LDM between 0.0344 and 0.0468 m2 g"1 at a shoot dry mass of 1 

g for plants grown in the same environmental conditions. 

Many authors have attempted to predict LAI using a constant SLA, SLA as a function 

of developmental stage and day of year or sink/source relationship e.g for tomato or 

rose (Marcelis et ah, 1998). Often LAI is largely overestimated before canopy closure 

(Heuvelink 1999; Lieth and Pasian, 1991). In this study, prediction of LAI before 

canopy closure (LAI « 3) agreed very well with measurements (Fig. 4 and 5B), using a 

simple approach based on dry mass partitioning into the leaves as a function of relative 

time and SLA„ as a function of daily incident PAR, temperature and plant density. This 

approach is valuable for photosynthesis-driven crop growth models, as their accuracy 

strongly depends on prediction of light interception. 

CONCLUSIONS 

Predicted LAI based on dry-mass partitioning into the leaves and SLA of new leaf 

biomass agreed well with measurements in validation experiments and for data from 

commercial growers. This approach, though demonstrated here for cut chrysanthemum, 

seems applicable for many other crops as well. Since no models for prediction of LAI 

dynamics in cut chrysanthemum were available, this work could be a valuable 

contribution towards a mechanistic photosynthesis-driven crop growth model for this 

crop. Heuvelink et al. (2001) introduced such a model, and the present results provide a 

possibility to adjust and improve this existing model. 
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DRY MASS PRODUCTION IN CUT CHRYSANTHEMUM: MODEL 

VALIDATION 

Lee JH, Bakker M, Heuvelink E, Challa H. Dry mass production in cut chrysanthemum: model validation. 
(Submitted) 

ABSTRACT 

The objective of the present study was to validate a photosynthesis-driven model 

(CHRYSIMvl.O) for dry mass production in year-round cut chrysanthemum. Based on 

cultivation methods for this crop, options for management improvement include the 

duration of long and short day period and its daylength control and adjustment of 

supplementary lighting and plant density. Therefore, greenhouse experiments were 

conducted with different combinations of natural light, supplementary assimilation 

light, shading and plant densities, during different seasons. The model was applied to 

compute daily crop growth rate (g m"2), based on daily crop gross assimilation rate (Pgd) 

and maintenance respiration (Rm). In the standard model, Pgd depends on crop leaf area 

and radiation, while Rm is a function of temperature and plant organ biomass. In the 

adjusted model (Heuvelink, 1995b) a reduction factor for Rm is included, which is a 

negative exponential function of simulated relative growth rate (RGR). Initial organ dry 

mass, leaf area index (LAI), dry matter partitioning into different plant organs, daily 

global radiation, and hourly greenhouse temperature and C02-concentration were model 

inputs. 

Dynamics of aboveground total dry mass (TDM, g m"2) were similar between 

measured and predicted values during the summer period (natural light), whereas the 

model largely underestimated TDM in winter and for (constantly) shaded conditions. 

Underestimation was more apparent at higher levels of shading, and occurred in both 

standard and adjusted models. Even when daily gross assimilation was converted to dry 

mass at an Rm equal to zero, model simulations still underestimated measured dry mass 

for the winter period and heavily shaded conditions. The discrepancies between 

measurement and simulation were summarised by light use efficiency (LUE, g MX"1). 

Simulated LUE at\closed canopy largely underestimated the measured LUE at lower 

light conditions, whereas for crops grown under natural light conditions in the summer 
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simulated and measured LUE were almost similar. Although LUE simulated by the 

adjusted model showed a strong improvement compared to LUE simulated by the 

standard model, it did not solve the large underestimation at lower light conditions. 

Therefore, the adjusted model was calibrated by changing the conversion efficiency 

from assimilates to dry mass, specific maintenance respiration coefficients and 

parameters in the leaf photosynthesis response curve, i.e. initial light use efficiency (s) 

and maximum gross photosynthetic rate (Pgmax) on the basis of an experiment, which 

was conducted with shading screens and three plant densities in summer. 

Changing conversion efficiency (inverse of assimilate requirement for production of 

dry mass) and specific maintenance coefficients was not satisfactory for heavily shaded 

condition, whereas the discrepancies between measured and simulated TDM were 

largely reduced in all experiments by applying a high value of e combined with a low 

Pgmax- Although this calibration resulted in a satisfactory prediction of TDM, the 

calibrated value of e was extremely high compared to literature values, and the 

calibrated value of Pgmax was relatively low. This suggests that optimisation of model 

parameters should not be restricted to e and Pgmax but should also include other 

parameters such as the conversion efficiency and specific maintenance respiration 

coefficients. Moreover, such calibrated parameters should be supported by direct 

measurements for year-round cut chrysanthemum. 

INTRODUCTION 

Crop growth models are important tools to understand the complexity of crop growth 

under variable environmental conditions. In the greenhouse horticultural sector models 

have a wide range of potential applications, e.g. for research, planning, greenhouse 

climatic control, decision support and education (Challa, 1985, 1988, 1990; Jones et al., 

1991; Seginer, 1993; Heuvelink, 1995ab; Gary et al, 1998). The application of crop 

growth models in horticulture has been thoroughly reviewed and discussed by Lentz 

(1998), Gary et al. (1998) and Marcelis et al. (1998). 

In a previous study by Lee et al. (Chapter II-2), chrysanthemum crop growth rate 

throughout the year was effectively described by rectangular hyperbolic relations to 

daily incident photosynthetically active radiation (PAR, MJ m"2 d"1). Although this 

regression model accurately predicted crop growth rate for the limited range of 

environmental conditions evaluated in the corresponding experiments (temperature, 
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C02-concentration), the model is not applicable to a wider range of crop growth 

conditions or to other crops. In contrast to descriptive (regression) models, explanatory 

models have a much larger potential to generalize crop growth for a wide range of 

greenhouse crops and growth conditions, due to their open modular structure 

(Heuvelink, 1996). Most explanatory crop models are photosynthesis-driven (Marcelis 

et al, 1998). For vegetables and fruits many explanatory models have been developed 

and put into practice, but for the large group of ornamental crops only few models are 

available (De Koning, 1994; Marcelis, 1994; Heuvelink, 1995abc, 1999; Marcelis et al, 

1998; Marcelis and Gijzen, 1998). 

TOMSIM (Bertin and Heuvelink, 1993; Heuvelink, 1995b), an explanatory 

photosynthesis-driven model based on SUCROS87 (Spitters et al, 1989) and the 

greenhouse crop model of Gijzen (1992), has successfully been applied for greenhouse 

tomato crops. Since the photosynthesis module of TOMSIM is not specific to tomato 

(Heuvelink, 1996), it may be applied to other greenhouse crop species. TOMSIM 

computes daily crop growth rate (g m~2 d"1) based on daily crop gross assimilation rate 

(Pgd, g CH2O m"2 d"1) and maintenance respiration (Rm, g CH2O m"2 d'1), converting 

assimilate to dry mass using a conversion efficiency factor. Pgd depends on crop leaf 

area and radiation, while Rm depends on temperature and plant organ biomass (in the 

standard model). The model has been developed, validated, and calibrated based on 

series of experiments during several years (Bertin and Heuvelink, 1993; Heuvelink, 

1995b; 1999). According to Heuvelink (1995b), the standard model tends to 

underestimate crop growth rate when crop biomass is high and light conditions are low. 

Therefore, Heuvelink (1995b) proposed an adjusted model in which Rm is reduced at 

low relative growth rate. 

The objective of the present work was to validate, calibrate and evaluate an 

explanatory model for the prediction of dry matter production in year-round cut 

chrysanthemum. Year-around cut chrysanthemum was chosen as a model crop for 

validating an existing photosynthesis-driven model (TOMSIM), because the production 

of cut chrysanthemum is one of the most intensive cultivation systems among 

floricultural greenhouse crops and the crop is successfully grown in winter season 

(Machin, 1996). Furthermore, optimising such dynamic and intensive cultivation 

systems is extremely difficult. A generic model can be a useful tool to understand and 

control these systems, as well as assist the grower in making complex decisions. 

In the present work, model validation was based on greenhouse experiments 

investigating the growth of cut chrysanthemum at different planting dates (seasons), 

light intensities (fixed shading, assimilation lighting), plant densities and at somewhat 
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different CO2 concentration between experiments. In this study, model validation was 

limited to predicting dry mass production. Measured initial plant organ dry mass and 

leaf area, plant density and dry mass partitioning into leaves, stems, flowers and roots 

were used as model input. Measured hourly greenhouse temperature and CO2-

concentration, and daily global radiation were additional input data. Although it is 

possible to compute LAI dynamics by combining simulated dry matter partitioning into 

leaves with specific leaf area of new leaves (Chapter III), the module for predicting LAI 

was not included in this study in order to concentrate on possible errors in crop 

photosynthesis, Rm and dry mass conversion. 

Using the standard version of the model TOMSIM (Heuvelink, 1995b), a discrepancy 

between measured and simulated dry mass production of year-round cut 

chrysanthemum may be expected at lower light conditions, because in winter dry mass 

production is much higher than for tomato while the duration of the cultivation periods 

was similar (Chapter II; Heuvelink, 1995ab). Since the adjusted version of TOMSIM, in 

which the effect of relative growth rate on maintenance respiration is included, has been 

simulate effectively the dynamics of crop growth for tomato dry mass production 

throughout the year, the adjusted version may provide better predictions for 

chrysanthemum dry mass production under low light conditions than the standard 

model. This hypothesis was tested in the present study. Where the adjusted model did 

not adequately predict chrysanthemum dry mass production, model parameters such as 

the conversion efficiency from assimilate to dry mass, maintenance respiration rate, and 

parameters of the leaf photosynthetic response curve, were calibrated to the 

experimental chrysanthemum data. Furthermore, model behavior was analyzed at low 

and high dry mass at closed canopy under different light intensity and two slightly 

different CO2 concentrations. Calculated LUE at closed canopy from both standard and 

adjusted model was compared to a regression model to incident PAR based on 

measurement (Chapter II-2). 

GENERAL MODEL DESCRIPTION 

For the present study, a photosynthesis-driven crop growth model for cut 

chrysanthemum, CHRYSIMvl.O was derived from the tomato model TOMSIM (Bertin 

and Heuvelink, 1993; Heuvelink, 1995b). Dry mass production in CHRYSIMvl.O is 

modeled similarly as in TOMSIM. Daily crop growth rate may be computed using the 
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standard model or the adjusted version (Heuvelink, 1995b). In the standard model, daily 

crop growth rate (dW/dt, g m2 d"1) is calculated as: 

dW/dt = Cf-(Pgd-Rm) [1] 

where Pgd is daily crop gross assimilation rate (g CH2O m"2 d"1), Rm is daily 

maintenance respiration rate (g CH2O m"2 d"1) and Cf is an efficiency factor for the 

conversion of assimilate to dry mass. Pgd depends on canopy light absorption, and is 

mainly determined by crop leaf area and incoming radiation. Pg(j is derived from 

integration of the instantaneous value of crop gross photosynthesis, which is computed 

by integrating leaf photosynthesis rates at various leaf layers over the entire canopy 

using Gaussian integration (Goudriaan, 1986; Gijzen, 1992; Goudriaan and Van Laar 

1994). Rm depends on temperature and plant organ biomass with specific maintenance 

respiration coefficients for each plant organ. According to Heuvelink (1995b), the 

standard model tends to underestimate crop growth rate for tomato when the relative 

growth rate (RGR) is low (i.e. at low radiation and/or high biomass). Therefore, 

Heuvelink (1995b) proposed an adjusted form of TOMSIM in which maintenance 

respiration is reduced during periods of lower relative growth rate: 

dW/dt = Cf • {Pgd -Rm-{\- e-pRGR)) [2] 

where p is a regression parameter (d) and RGR is relative growth rate (d"1). Heuvelink 

(1995b) estimated a value of 33 for (3, based on results of a winter experiment. The 

value of RGR is obtained by averaging simulated RGR over the five days directly 

preceding the present date, or, when less than five days preceded this date, by averaging 

over the actual number of preceding days (Heuvelink, 1995b). 

Leaf gross photosynthesis is determined by a negative exponential light-response 

curve to absorbed PAR (Spitters, 1986; Gijzen, 1992; Goudriaan and Van Laar, 1994): 

P =P 
f , - . W ^ 
l-e 

\ 

[3] 

where Pg is instantaneous leaf gross photosynthetic rate (mg CO2 m"2 s"1), Pgmax is 

maximum leaf gross photosynthetic rate at light saturation (mg CO2 m"2 s"1), £ is the leaf 

initial light use efficiency (mg CO2 J"1) and IabS is the absorbed light by leaves (J m"2 

s"1). Pgmax and fare affected by leaf temperature and CO2 concentration (Appendix). 

Incoming radiation is calculated from daily outside global radiation according to 

Spitters (1986), Bot (1983), Gijzen (1992) and Heuvelink et al. (1995). In this approach, 

transmissivity of direct radiation is predicted based on solar position, greenhouse roof 
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angle, dimensions of the roof construction, transmissivity of the glass panes and 

orientation of the greenhouse. For the greenhouse described by Heuvelink et al. (1995) 

measured and simulated transmissivity for diffuse radiation was 0.62, whereas in the 

present study measured greenhouse transmissivity was 0.49 (averaged over 42 positions 

measured on a cloudy day). Therefore, instantaneous greenhouse transmissivity was 

calculated as in Heuvelink et al. (1995), divided by 0.62 and multiplied by 0.49. This 

simplified approach was followed because otherwise the transmission model (Bot, 

1983) would have to be partially redesigned for the specific situation of a Venlo 

greenhouse with all kind of extra provisions such as screens etc. 

Shading screens inside the greenhouse were open or closed depending on outside 

radiation intensity, while darkening screens were open or closed depending on time of 

day. The timing of these 'open' and 'closed' periods was taken into account in the 

model. Modules for controlling day length and supplementary assimilation light 

(switched on or off depending on time of day and outside radiation intensity) were 

added to the model. Supplementary assimilation light was assumed to be 100 % diffuse. 

Contrary to TOMSIM, a time step of 30 minutes was used for calculating crop 

growth, in order to adequately deal with discontinuities caused by assimilation lighting 

and darkening screens. 

MATERIALS AND METHODS 

EXPERIMENTAL SET UP 

Five greenhouse experiments with different combinations of natural light, 

supplementary assimilation light, shading and plant densities were conducted during 

two years using cut chrysanthemum {Chrysanthemum, Indicum group), cultivar Reagan 

Improved. Whereas detailed information on these experiments is provided in Chapter II-

2, only a general outline of the experimental treatments is presented here. Experiments 

1, 2, 3, 4 and 5 in the present paper are equivalent to experiments 1, 2, 7, 3, and 4, 

respectively, in Chapter II-2. 

In experiments 1 and 2, chrysanthemum was grown at control lighting (CON, 

incandescent lighting for day length) and supplementary assimilation lighting (HPS, 

high pressure sodium lamps). Within each light treatment, crops were planted at three 

plant densities (32, 48 and 64 plants m2). In experiment 3, crops were exposed to a 
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different number of long days (LDs). Three LD treatments were established by choosing 

three planting dates separated by one-week intervals. In all LD treatments, planting 

density was 64 plants m"2. Experiments 4 and 5 were conducted at three light levels 

(100%, 66% or 43%). Within each light level, crops were planted at three plant densities 

(32, 48 and 64 plants m"2 in experiment 4, and 32, 64 and 80 plants m"2 in experiment 5). 

In experiments 1-3, LDs of 19 h were implemented for 7-22 days after planting, using 

control lighting by incandescent lamps (CON, 4-6 umol m"2 s"1) or high-pressure 

sodium lamps (HPS, 42-57 umol m"2 s"1, SON-T 400W, Philips, The Netherlands). In 

experiments 4 and 5, LDs were established by natural light only (about 15 h light per 

day). Following the LD period, short days (SDs) of 11 h were implemented until the end 

of the experiments, using blackout screens. Final harvest occurred when flowering 

reached commercial stage (Chapters II-1, II-2), which could differ between treatments. 

In experiments 1 and 2, lamps were continuously turned on during day hours of LD and 

SD periods, whereas in experiment 3 lamps were controlled based on outside global 

radiation. In the latter case, lamps were turned on at less than 150 W m"2 outside global 

radiation and turned off at more than 250 W m"2 radiation intensity. 

The day/night temperature set point was 21/20°C for experiment 1 and 18/19°C for 

all other experiments. Ventilation temperature was 1°C higher than the day/night 

temperature set point. CC>2-concentration, measured with a CCvanalyser (URASG, 

Hartman & Braun, Germany), was maintained by pure CCh-enrichment at 350 umol 

mol"1 (experiments 1, 3, 4 and 5) or 400 umol mol-1 (experiment 2). Global radiation 

(assessed with a Kipp and Zonen solarimeter, Delft, The Netherlands), greenhouse 

temperature (measured using a PT-500 element) and C02-concentration were recorded 

every 5 minutes by a commercial VitaCo climatic control system (Hoogendoorn, 

Vlaardingen, The Netherlands). 

MODEL INPUT 

Daily outside global radiation (MJ m"2 d"1) is used as input in the model to generate the 

daily irradiance patterns based on the sine of the elevation of the sun above the horizon 

(Berlin and Heuvelink, 1993). Averaged hourly temperature (°C) and CO2 concentration 

(umol mol"1) derived from the measured values in every 5 minutes was used as input. 

Initial plant organ dry mass per ground area (g m"), periodically measured leaf area 

index (LAI) and dry matter partitioning into leaves, stems, flowers and roots were input 

data for the model. 
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Fractions of total dry mass partitioned into leaves, stems, and flowers were calculated 

as the increment of individual plant organ dry mass divided by the increment of total 

dry mass between two successive destructive measurements (Kropff and Van Laar, 

1993). On rare occasions negative increments were found, and then partitioning fraction 

was assumed to be zero. Calculated fractions were entered into the model, using those 

values as step functions for distributing assimilates to each plant organ. Based on 

experiments with plants grown in expanded clay grit, it was assumed that a constant 

fraction (0.1) of total crop growth was partitioned to the roots. Using averaged plant leaf 

area (m2 plant") from 5-6 plants, leaf area index values were obtained as the product of 

plant leaf area and number of plants m"2. Daily LAI was obtained by linear interpolation 

between two successively measured values. 

COMPARISON OF MODEL OUTPUT 

In addition to comparing measured and simulated total dry mass production, measured 

and simulated crop light use efficiency (LUE, g MJ"1 of intercepted photosynthetically 

active radiation) were evaluated. The LUE concept has often been used for analysing 

crop growth (Bonhomme, 2000), due to its simplicity and supporting experimental 

evidence (Kage et al., 2001ab). The linear relationship between intercepted daily light 

integral and total dry mass production is biased when daily light integral significantly 

changes during the crop growth period. Therefore, LUE was estimated by fitting an 

expolinear growth equation (Goudriaan and Monteith, 1990; Goudriaan and Van Laar, 

1994) to simulated or measured TDM against accumulated daily incident PAR inside 

greenhouse from planting to final harvest (Chapter II-2). 

CALIBRATION OF THE MODEL PARAMETERS 

In addition to the reduction of maintenance respiration at low RGR (equation [2]), 

conversion efficiency, specific maintenance respiration coefficients and parameters of 

the leaf photosynthetic response curve were considered for model calibration (equations 

[2] and [3], Appendix). 

P =CORpPgmsx 
l _ e /CORrp

s™J [4] 

where CORp is a correction factor for Pgmax and CORe is a correction factor for 8. 
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ANALYSIS OF THE MODEL BEHAVIOUR 

In order to analyse the general behaviour for the standard, adjusted and calibrated model 

the simulated LUE was compared with a reference LUE for a closed canopy derived 

from the experiments 1, 2, 4 and 5 (Chapter II-2). Comparing actual LUE values with 

simulated ones gives a narrow a view of model behaviour. A generalised LUE at closed 

canopy as a function of daily incident PAR were effectively described the dynamics of 

crop growth from planting to final harvest in year-round cut chrysanthemum as 

inputting measured LAI and daily incident PAR inside greenhouse (Chapter II-2). 

Therefore, the generalised LUE was used as a reference LUE to compare with simulated 

LUE from the simulated crop growth rate in this study. The reference LUE (LUER, g 

MJ1) showed a hyperbolic relation to daily incident PAR (/, MJ m"2 d"'). 

LUER = , R2 =0.66 [5] 
R 0.1299 + 0.0397-/ 

Total crop growth rate (g m"2 d"1) was simulated by the standard, adjusted, and 

calibrated models using fixed values for crop parameters, i.e. total dry mass, LAI, dry 

mass partitioning into plant organs and for day length (11 h as short day condition). The 

models set to simulate a daily total crop growth rate with fixed total dry mass and LAI 

at each day of a year. Fixed crop parameters entered into the model were TDM = 300 g 

m"2 or 600 g m"2 (root dry mass set to 10 % of TDM), LAI = 5, and fractions of 

partitioned dry mass = 0.5:0.5:0.0 or 0.0:0.5:0.5 for leaves: stem: flowers, with 10 % of 

total crop growth rate allocated to roots. The values of TDM and LAI were chosen as an 

approximation of measured TDM at closed canopy in this study and fractions of 

partitioned dry mass for leaves: stem: flowers were an approximation at the stage of 

flower initiation (0.5:0.5:0.0) or at the stage to final harvest (0.0:0.5:0.5) in this study. 

Daily global radiation data of selected months from the 1971-1980 weather records of 

De Bilt, The Netherlands (Breuer and Van de Braak, 1989) were used as model input. 

Furthermore, a temperature of 21.7 °C (averaged over five experiments) and a CO2 

concentration of 349 umol mol"1 (average of experiment 5) or 415 umol mol"1 (averaged 

over experiments 1-4) were set as constants in the model. The simulation period started 

at day 1(1 January) and finished at day 365 (31 December). 

Simulated LUE (g MJ"1) was calculated as the ratio between simulated aboveground 

crop growth rate (g m"2 d"1) divided by the product of a calculated daily incident PAR 

(MJ m"2 d"1) from the model and the fraction of light intercepted (0.97) at LAI = 5. The 

reference LUE (LUER) was calculated according the equation [5] as inputting the daily 

incident PAR inside greenhouse from the model output. 
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RESULTS 

MODEL VALIDATION WITH STANDARD AND ADJUSTED MODEL 

There were large discrepancies between measured and simulated above ground total dry 

mass (TDM, g m"2) in three different seasonal experiments using the standard model 

(Eqn.. 1) (Fig. 1 dashed lines). The standard model, in general, underestimated final 

TDM with 12 % (100 % light level in Expt. 5) upto 39 % (HPS in Expt. 2 and 43 % 

light level in Expt. 5). As mentioned before, reducing maintenance respiration (Rm) in 

dependence of the relative growth rate, using the adjusted model (Eqn. 2) resulted in 

increased total daily crop growth rate and hence it is not surprising that the results 

obtained with the adjusted model were better than with the standard model. Simulated 

TDM, however, did not reach the observed TDM except for the non-shaded crop in the 

summer experiment (Fig. 1, solid lines). In particular, TDM was relatively more 

underestimated with increasing shading in summer (Fig. IB and Table 1). Furthermore, 

in Expts. 3 and 4 simulated TDM showed the same tendency as in Expts. 2 and 5 in 

different years (Table 1). When the regression parameter p in Eqn. (2) is set to 0, the 

simulated daily gross amount of gross photosynthesis (Pgd, g CHO2 m"2 d"1) is directly 

converted to crop growth (Rm = 0). 

30 50 70 

Day of year 

175 200 225 

Day of year 

250 260 285 310 335 360 

Day of year 

FIG. 1. Comparison between measured (symbols) and simulated (lines) total dry mass (TDM) 
for the crop growing from winter till spring (A, Expt. 1), in summer (B, Expt. 5) and from 
autumn till winter (C, Expt. 2) under natural light with incandescent light (CON), 
supplementary assimilation light (HPS) (A, C) and shading (B, 100 %: non shading, 66 %: 34 % 
shaded and 43 %: 57 % shaded by white shading screens above the crop). Vertical bars indicate 
standard error of means of measurements. standard model, adjusted model. 
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TABLE 1. The coefficients of the linear relationship (without intercept) between measured and 
simulated total dry mass using the adjusted model in five experiments. SE is standard error of 
coefficients. 

Experiments 

1 

2 

3 

4 

5 

Treatments1 

CON 
HPC 

Overall2 

CON 
HPC 

Overall 

3wkLD 
2wkLD 
lwkLD 
Overall 

100% 
66% 
43% 

100% 
66% 
43% 

Slope 
0.886 
0.819 
0.836 

0.857 
0.765 
0.790 

0.802 
0.864 
0.922 
0.839 

1.023 
0.878 
0.746 

1.029 
0.886 
0.759 

SE 
0.008 
0.010 
0.008 

0.015 
0.012 
0.010 

0.011 
0.017 
0.016 
0.011 

0.014 
0.016 
0.011 

0.009 
0.009 
0.009 

R2 

0.994 
0.987 
0.988 

0.968 
0.975 
0.967 

0.993 
0.984 
0.989 
0.981 

0.989 
0.979 
0.985 

0.994 
0.991 
0.988 

1 Linear regression for all plant densities in each light condition. 
'' Overall coefficients of linear regression between all measured and simulated values 

I 

CON HPS 

SLUES 

Experiment 

SLUE . QLUEm 

FIG 2. Light use efficiency (LUE, g MJ"1) of the standard model (LUES), the adjusted model 
(LEUa) and observed (LUEm) at different light conditions in three experiments. See caption 
of Fig. 1 for further details. 
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Even with this theoretical assumption, however, TDM was underestimated in Expts. 2 

and 3 and for the crop grown under heavy shading in Expts. 4 and 5, whereas TDM was 

overestimated for the crops grown without shading in Expts. 4 and 5 and in Expt. 1 (not 

shown). This proves that maintenance respiration alone cannot be responsible for the 

discrepancies observed and that other parameters also may need calibration. 

Although the comparison of measured and simulated TDM over time (Fig. 1) is 

useful to evaluate the performance of the model, a comparison of measured and 

simulated LUE provides more detailed information for the analysis of the cause of the 

observed discrepancies. When comparing with both standard and adjusted models there 

were large discrepancies in LUE, particularly in Expt. 2 and under shading screens in 

Expt. 5 (Fig. 2), but not with the adjusted model for the crop grown without shading in 

Expt. 5 (Fig. 2). Furthermore, simulated LUE for Expt 5 was equal for both light levels, 

whereas the measured LUE increased with decreased light level (Fig. 2). 

CALIBRATION OF THE MODEL 

Experiment 5 was used to calibrate the adjusted model, because in this experiment there 

was a large variation in plant densities and light levels and furthermore there were 

frequent destructive measurements. The slope of the linear relationship without 

intercept between measured and simulated TDM defines the goodness of fit. In the ideal 

case it should attain the value 1. The slope was almost 1.0 at 100 % light, 0.89 at 66 % 

light, 0.76 at 43 % light without calibration of the adjusted model in Expt. 5 (Table 1). 

To improve model performance the conversion efficiency from assimilate to dry mass 

(inverse of assimilate requirement; Appendix) and specific maintenance respiration 

coefficient were varied (Fig. 3). Changing assimilate requirement to obtain a good fit, 

no correction was needed with 100 % light, but a correction factor of 0.8 was needed for 

the 66 % light treatment and 0.6 for the 43 % light treatment (Fig. 3A). However, since 

the value of assimilate requirement is 1.37-1.49 g CH2O g"1 of dry mass for different 

organs (Appendix), a correction factor of 0.6 would lead to the unlikely outcome that 

less assimilate would be needed than the amount produced, which is unlikely to occur. 

The correction factor for the specific maintenance respiration coefficients was 0.2 for 

the 66 % light treatment, whereas no satisfactory value was obtained for the 43 % light 

treatment (Fig. 3B). Because calibration of the model along these lines was not 

successful calibration was focused on the parameters of the photosynthesis light 

response curve of individual leaves (Eqn. 4). 
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1.8 

1.6 

1.4 

1.2 

- 1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Correction factor 

FIG 3. Effect of changing (through a 
multiplication factor varying from 0 - 1.5) 
assimilate requirement (A) and the specific 
maintenance respiration coefficient (B) on 
the slope of the linear relationship (no 
intercept) between measured and simulated 
(adjusted model) total dry mass at three 
different light levels for Expt. 5. 

B ^^ooooo 

- j r^ 

1 ' 

0100% 
G 66% 
• 43% 

1.2 

1.0 

u 0.8 
& o 

53 0.6 

0.4 

0.2 

0.0 

0.0 0.5 1.0 1.5 2.0 

Correction factor 

FIG 4. Effect of changing (through a 
multiplication factor varying from 0 - 2.0) 
E (A) and Pg^x (B) on the slope of the 
linear relationship (no intercept) between 
measured and simulated (adjusted model) 
total dry mass at three different light levels 
for Expt. 5. 

When changing only e (through CORe), different correction factors were found at 

different light levels (Fig. 4A). CORe was 1.2 at 66 % light and 1.4 at 43 % light, but no 

correction was needed for the 100 % light treatment (Fig. 4A). When Pgmax was 

changed, the effect on the slope of linear relationship between measured and simulated 

dry mass production diminished with increasing CORP (Fig. 4B). 

For good fit of the model e had to be increased and Pgmax had to be decreased. By 

iteration, a combination of CORe = 2.0 and CORp = 0.29 for Pgmax proved to 

satisfactorily describe the results of Expt. 5 (Fig. 5), corresponding to the simulated s = 

25 |ag CO2 J"1 and Pgmax = 359 ug CO2 m"2 s"1 and those are lower than the values in the 

other experiments (Table 2). The variations in e and Pgmax through experiments were 
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mainly caused by different CO2 concentrations; the effect of temperature on e and Pgmax 

in the range of 19-22 °C is small (Appendix). 

The calibrated model was applied to the other experiments (Expts. 1-4). Compared to 

the adjusted model the calibrated model was far better able to describe the dynamics of 

dry mass production at different plant densities and light conditions (Figs. 1, 6 and 7). 

200 400 600 800 

Measured TDM (g m"2) 

- B 

-

jTf 

or 1 1 1 

0 100% 
® 66% 
• 43% 

200 400 600 800 

Measured TDM (g m~2) 

FIG 5. Measured versus simulated total dry mass (TDM) at three different light levels in Expt 5. 
(A) adjusted model (B) calibrated model. 

TABLE 2. Calibrated initial light use efficiency (e) (correction factor = 2) and maximum leaf 
photosynthesis (Pgmax) (correction factor = 0.29) in leaf photosynthesis light response curve 
(Eqn. 3 in text) based on average greenhouse temperature (24 h) and C02 concentration 
(between 10:00-16:00). 

Temperature (°C) 

C02 (umol mol1) 

e (ug C02 J
1) 

Pgmax (Ug C 0 2 m'2 S"1) 

1 

21.0 

415.0 

26.4 

429.8 

2 

19.2 

432.0 

27.2 

452.1 

Experiment 

3 

19.8 

407.0 

26.6 

424.2 

4 

21.4 

407.0 

26.2 

423.0 

5 

22.1 

349.0 

24.9 

358.6 
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0 20 40 60 80 

Days after planting 

FIG 6. Dynamics of total dry mass (TDM) of measurements (symbols) and simulations 
according to the calibrated model (lines) for experiments 1 (A, B), 2 (C, D) and 3 (E), provided 
with a combination of natural light with supplementary assimilation light (HPS: A, C) and 
incandescent light (CON: B, D), at three plant densities and three different long-day periods for 
the crop grown at 64 plants m"2 (E). 
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20 40 60 80 o 

Days after planting 

20 40 60 80 

Days after planting 

FIG 7. Dynamics of total dry mass (TDM) of measurements (symbols) and simulations 
according to the calibrated model (lines) for experiment 4 (A, C, E) and 5 (B, D, F) with the 
combination of 100 % (A, B), 66 % (C, D), and 43 % (E, F) light levels and three plant 
densities. 
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TABLE 3. The coefficients of the linear relationship (without intercept) between measured and 
simulated total dry mass using the calibrated adjusted model in five experiments. SE is standard 
error of coefficients. 

Experiments 

1 

2 

3 

4 

5 

Treatments1 

CON 
HPC 

Overall2 

CON 
HPC 

Overall 

3wkLD 
2wkLD 
lwkLD 
Overall 

100% 
66% 
43% 

Overall 

100% 
66% 
43% 

Overall 

Slope 

1.105 
1.084 
1.090 

1.105 
1.022 
1.045 

1.046 
1.120 
1.206 
1.093 

0.961 
0.979 
0.945 
0.964 

1.027 
1.013 
0.979 
1.013 

SE 

0.010 
0.013 
0.009 

0.010 
0.010 
0.008 

0.012 
0.016 
0.023 
0.013 

0.012 
0.017 
0.013 
0.008 

0.005 
0.006 
0.008 
0.004 

R2 

0.995 
0.988 
0.990 

0.992 
0.991 
0.989 

0.995 
0.993 
0.989 
0.986 

0.991 
0.982 
0.989 
0.988 

0.998 
0.997 
0.994 
0.996 

1 Linear regression for all plant densities in each light condition. 
2 Overall coefficients of linear regression between all measured and simulated values 

The slope of the linear relation between measured and simulated TDM was between 

0.96 and 1.09. However, the calibrated model overestimated measured TDM of the crop 

that received 1 week LD (Expt. 3), by as much as 21 % (Table 3). 

ANALYSIS OF MODEL BEHAVIOUR 

The performance of three different versions of the model, i.e. standard, adjusted and 

calibrated was compared with LUER values obtained from Eqn. (5). The comparison 

was made at fixed TDM 300 g m"2 (open symbols in Fig. 8) and 600 g m"2 (closed 

symbols in Fig. 8) assuming a closed canopy and CO2 concentration of 349 |xmol mol-1 

(Fig. 8A) and 415 umol mol"1 (Fig. 8B). LUE (g MJ"1) was calculated as the ratio 

between simulated above ground crop growth rate (g m"2 d"1) divided by the intercepted 

incident PAR at LAI = 5. Simulated crop growth rate was hardly changed by changing 

the fractions of dry mass partitioned between aboveground plant organs (not shown). 
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o • Standard 
• • Adjusted 
& * Calibrated 

0 1 2 3 4 5 0 1 2 3 4 5 

Daily incident PAR (MJ m"2 d'1) Daily incident PAR (MJ m"2 d"') 

FIG 8. Light use efficiency (LUE g MJ"1) according to the standard, the adjusted and the 
calibrated model with fixed total dry mass of 300 g m"2 (open symbols) and 600 g m"2 (closed 
symbols) at C02 concentration of 349 (xmol mol"1 (A) and 415 umol mol"1 (B). LUER 
(reference LUE). 

Simulated LUE was similar for the three models at high light, independent of dry 

mass and CO2 concentration (Fig. 8). The standard and the adjusted model, however, 

showed a large systematic underestimation of LUE at low light. The standard model 

was much more sensitive to dry mass than the adjusted and calibrated model (Fig. 8). 

With the standard model growth was zero at daily light integral < 0.26 MJ m"2 d"1 at 

300 g m"2 of TDM (Fig. 8A), and < 0.8 MJ m"2 d"1 at 600 g m-2 of TDM (Fig. 8). With 

the standard model there was often no growth at low light conditions prevailing at the 

end of the crop growth period in Expts. 2 and 3 and a too low crop growth rate with 

shading screens in summer experiments. 

Taking the effect of RGR on Rm into account (Eqn. 2), LUE obtained with the 

adjusted model still deviated considerably from the reference LUER, in particular, at low 

light up to daily incident PAR of 2.0 MJ m"2 d"1 (Fig. 8). As consequence of that, 

simulated TDM was underestimated for the crop grown in winter and under shade 

screens in summer, whereas reasonable results were obtained with the non-shaded crop 

in summer (Fig. 1 and Table 1). 

Changing s resulted in a proportional change in LUE at all light regimes, whereas 

changing Pgmax resulted in asymmetric change in LUE at different light integrals. 

Combination of 8 and Pgmax, therefore, will regulate the shape of the LUE response to 

incident PAR. After calibration of 8 and Pgmax increasing LUE at low light regimes and 
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diminishing LUE with increasing daily incident PAR was simulated, in accordance with 

LUER. Simulated LUE was increased by 10 % as CO2 concentration increased by 19 % 

(Fig. 8). While the model was calibrated with only one experiment (Expt 5), the 

differences in TDM and CO2 concentration between experiments could partly explain 

inconsistencies in the relationship between measured and simulated TDM. 

DISCUSSION 

The experimental data set represents conditions with largely differing light levels and 

associated differences in dry mass production (Fig. 1). Furthermore, temperature and 

CO2 concentration were rather stable compared to daily global radiation through the 

crop growth period. These data are therefore very useful for model validation, when 

focus on radiation influences on crop growth. 

In general the standard model underestimated dynamics of dry mass production, in 

particular at low light (Fig. 1). Similar problems under winter conditions, using the 

same leaf photosynthesis module, have been observed with rose (Kool and De Koning, 

1995) and tomato (Heuvelink, 1995b). In contrast, the model overestimated dry mass 

production of rose in summer (Kool and De Koning, 1995), but underestimated dry 

mass production of tomato in summer (Heuvelink, 1995b). Overestimation of dry mass 

production in summer with rose has been explained by an overestimation of the leaf 

photosynthetic rate by the model (Kool and De Koning, 1995). Underestimation of dry 

mass production has been mainly attributed to an overestimation of maintenance 

respiration at high biomass under low light (Heuvelink, 1995b). In the standard model 

maintenance respiration is calculated by multiplying the dry mass of the plant parts with 

specific maintenance coefficients of individual organs that are only dependent on 

temperature. Hence maintenance respiration increases with plant mass. Many authors 

(Penning de Vries, 1975; McCree, 1982; Amthor, 1989; Gijzen, 1992), however, 

suggested that specific maintenance respiration coefficients also should depend on the 

metabolic activity of the crop. Therefore, Heuvelink (1995b) multiplied maintenance 

respiration with a relative growth rate dependent factor, mimicking the metabolic 

activity of the crop (Eqn. 2). In this way the dynamics of dry mass production of 

tomato could successfully be described for several seasonal experiments and grower's 

data sets (Heuvelink, 1995b). However, this adjusted model that worked well with 

tomato did not work well with chrysanthemum. It may be expected that the parameter (3 

in Eqn. 2 would be dependent on crop species. However, if p would be much less than 
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the current value (P = 33) the maintenance respiration would become almost zero at 

high biomass and low light. For example, simulated RGR at the end of Expt. 2 was 

0.008 d"' reducing maintenance respiration by 77 % in the adjusted model, compared to 

the standard model. Even when p = 0 and hence Rm = 0, the adjusted model 

underestimated TDM in Expt. 2 and 3 and the heavy shaded crops in Expts. 4 and 5, 

whereas the reverse was true in Expt. 1 and for the crop grown under 100 % and 66 % 

light in Expts. 4 and 5 (not shown). Underestimation of dry mass production in this 

study cannot only be explained by overestimation of maintenance respiration, but more 

likely underestimation of leaf photosynthetic rate at low light should play a role. 

Therefore calibration of P was not considered an option in this study. 

Instead an analysis of the model behaviour was made by using LUE as a criterion. In 

Chapter II-2 a consistent description of LUE as a function of daily incident PAR inside 

greenhouse could be obtained for all experiments and treatments. This function was 

therefore used as a reference for comparison with different model configurations. It was 

observed that the discrepancy between reference and simulation was large at low daily 

light integral (Fig. 2). Therefore the leaf photosynthesis light response module was the 

first candidate for calibrating the adjusted model in this study. The parameters of the 

leaf photosynthesis light response curve are the initial light use efficiency (e, mg CO2 J" 

') and maximum leaf gross photosynthetic rate (Pgmax)- Using one experiment (Expt 5) 

for calibration values for s of 25 ug C02 J"
1 and 359 ug C02 m"2 s"1 for Pgmax were 

obtained. The calibrated model described the dynamics of dry mass production for most 

experiments within 10 % discrepancy (Table 3 and Figs. 3, 5 and 6). The calibrated 

model could be considered suitable for prediction of dry mass production in cut 

chrysanthemum, especially if we were able to calibrate the model with more 

experiments. 

However, E and Pgmax represent crop physiological parameters that have not been 

measured directly in our experiments. The calibrated value of e is much higher than the 

theoretical value of 17 ug CO2 J"1 at high CO2 concentration (Goudriaan and Van Laar, 

1994) and a measured value of 9.9 ug CO2 J"1 (Acock et al, 1978a). Moreover, the 

calibrated values of Pgmax (Table 2) are much lower than the measured value of about 

732 ug C02 m"2 s"1 at 400 umol mol"1 and 20 °C (Acock et al, 1978a). 

There is a large discrepancy between calibrated, measured and theoretical values of s, 

although e is a stable parameter under different light and temperature conditions, 

whereas it varies with CO2 concentration (Acock et al, 1978ab; Warren Wilson et al, 

1992; Goudriaan and Van Laar, 1994; Kage et al, 2001a). 
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These considerations, however, only will lead to lowering of the parameter 8 and 

therefore do not contribute to the solution of the large underestimation of the dynamics 

of dry mass production under low light observed in this study. Alternatively, the 

standard or the adjusted model could be calibrated considering combinations of 

assimilate requirements, specific maintenance respiration coefficients and Pgmax without 

calibration of 8. When the assimilate requirement for all organs would be reduced by 10 

%, overall crop growth in Expt 5 would increase by 9 %. The sensitivity of the model 

outcome to this parameter is comparable to that of s with the adjusted model (Fig. 3A). 

When specific maintenance respiration was decreased by 10 % overall crop growth in 

Expt. 5 increased by 2 % at all light levels using the adjusted model (Fig. 3B). A 

combination of four parameters, e and Pgmax, specific maintenance coefficients and 

assimilate requirements and perhaps other parameters could possibly provide a solution 

to improve the simulation results in this study. It was not feasible to optimise all 

parameters manually in this study. Moreover, none of these parameters has been 

measured experimentally in this study. Therefore, the parameter values of TOMSIM 

(Heuvelink, 1995b) were used, though they are not necessarily correct for 

chrysanthemum growing under low light. 

Another possible source of error could be the estimation of light transmission by the 

greenhouse cover. Although the value of greenhouse transmissivity (Heuvelink et dl., 

1995) was adjusted as a measured one in a cloudy day (0.49) in this study, this 

simplified approach may cause errors. 

In our experiments only global radiation was measured and converted to 

photosynthetically active radiation (PAR) assuming a constant percentage of PAR (400-

700nm) of 47 % for direct and diffuse radiation. In reality this percentage varies 

between 40 % for clear days to 60 % for very cloudy days and the monthly percentage 

PAR varied from 41 % in November and December to 49 % in July (Gijzen, 1992). 

Although the monthly percentage PAR in winter is lower than used in the model, the 

variation between clear and cloudy days was larger and this variation may have a direct 

effect on simulated instantaneous crop growth rate. Therefore it would be better to 

compare simulated light conditions inside the greenhouse and within the crop with 

measured values. 

According to Karlsson and Heins (1992), dry mass partitioning to the root varies with 

developmental stage, light intensity and day and night temperature. A constant ratio (10 

%) of dry mass partitioning to root, however, was assumed in this study. Although 

changing dry mass partitioning to the root would hardly change the shape of LUE (not 

shown), systematic variation in the dry mass partitioning to root in time or 
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developmental stage (Karlsson and Heins, 1992) may cause errors in simulated above 

ground growth rate. 

From the previous discussion it is clear that there are many possible solutions to solve 

the discrepancy between measured and simulated dry mass production. It is therefore 

important to measure the parameters involved directly under various conditions. 

However, it is not easy to approach them all, in terms of time, cost, space, and labour. 

Measurements on leaf and crop photosynthesis, nevertheless, seem to be a first step 

towards progress in this matter. 

CONCLUSION 

Because CHRYSIMvl.O is based on generic, non crop-specific concepts good 

agreement between measured and predicted TDM could be obtained under suitable light 

conditions. Severe underestimation was observed at low light conditions. A good fit 

between predictions and observations could be obtained by increasing the light use 

efficiency in the leaf photosynthesis light response curve and simultaneously reducing 

the maximum leaf photosynthesis rate. It is quite unlikely that this adaptation of the 

model represents the real situation. On the basis of available evidence it is not possible 

to draw hard conclusions about the cause of these discrepancies, but there is some 

evidence that it concerns a general phenomenon that needs further investigation, 

especially in relation to greenhouse cultivation where low light conditions are common 

and relevant in year around cultivation. 

Model validation is needed not only for dry mass production but also with regard to 

individual modules and related parameters. Without such a validation extrapolation to 

year-round cut chrysanthemum and other crops seems difficult, because it is impossible 

to ignore possible errors in the model. Especially validation and parameterisation under 

low light conditions is needed, together with detailed observations on climatic 

conditions, i.e. light, CO2 concentration and temperatures within the crop, inside the 

greenhouse and over time. 
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APPENDIX 

FUNCTIONS RELATED TO RESPIRATION 

Maintenance respiration (Rm, g CH2O m"2 d"1) for the whole crop is a function of organ 

dry mass DMj at actual temperature Tact (°C): 

Rm = (M, • DM, + Ms • DMS + Mr • DMr + Mf • DM,) • C ^ " " M 

where Mj is the specific maintenance coefficient at reference temperature (Tref, 25 °C) 

for leaves (/, 0.03 g CH20 g1 DM d"1), stem (s, 0.015 g CH20 g1 DM d1), roots (r, 0.01 

g CH20 g"1 DM d"1) and flowers (f, 0.01 g CH20 g"1 DM d"1). DM; is the organ dry mass 

per unit of greenhouse area (g m"2) for leaves (/), stem (s), roots (r) and flowers (/). Qioc 

= 2 and represents the sensitivity of Rm to temperature (Spitters et al., 1989). 

Overall assimilate requirement (ASR, g CH20 g"1 dry mass) is calculated for all plant 

parts separately and results in a conversion efficiency for assimilates to dry mass (Cf) 

according the Spitters et al., (1989): 

Cf = /{ASR, • F, + ASRS • Fs + ASRr • Fr + ASRf • Ff )
 [ 7 ] 

where the assimilation requirement coefficients are 1.39 for leaves (ASRj), 1.45 for 

stem (ASRS), 1.37 for root (ASRr) and 1.39 for flowers (ASRf) and Fj is the fraction of 

dry mass distributed to organ for for leaves (/), stem (s), roots (r) and flowers (/). 

FUNCTIONS RELATED TO LEAF GROSS PHOTOSYNTHESIS 

The negative exponential response curve (Eqn. 3) is defined by two parameters Pgmax 

and s modeled according to Goudriaan et al., (1985). 

The function Pgmax (mg C02 m"2 s"1) is described by 

Pgmax=mm(Pnc,Pmm)+Rd [8] 

where Pnc is the maximum net photosynthetic rate (mg C02 m"2 s"1), Pmm is the 

maximum endogenous photosynthetic capacity (mg C02 m"2 s"1) and Rd is dark 

respiration (mg C02 m"2 s"1). In the model Pmm increases linearly from 0 to 2 mg C02 

m"2 s"1 with temperature from 5 to 15 °C, equals 2 mg C02 m"2 s"1 between 15 °C and 25 

°C and decreases linearly from 2 to 0 mg C02 m"2 s"1 until 40 °C. 
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Pnc is calculated by 

1.83-(C -T ) 
P = ^ '-— T91 

\31-rb+\.6-rs+rm 

where Ca is ambient CO2 concentration (umol mol"'), rm is the mesophyll resistance to 

CO2 transport (s m"1), rb and rs are the boundary layer resistance (s m"1) and the stomatal 

resistance for water vapour diffusion (s m"1) respectively. In the model mesophyll 

conductance (l/rm) increases linearly from 0 to 0.004 m s"1 with temperature from 5 to 

15 °C, remains constant between 15 °C and 25 °C and decreases linearly from 0.004 to 

0 until 40 °C (Bertin and Heuvelink, 1993). temperature dependence of mesophyll 

conductance 

Initial light use efficiency of leaf photosynthesis is described by 

s = sa.
 ( C « - r ) 

(Ca+2-T) 
[10] 

where Ca is the ambient CO2 concentration and T is the CO2 compensation 

concentration according to Brooks and Farquhar (1985) 

T = 42.7 +1.68-(7)-25) +0.012 (r ,-25)2 [11] 

where Ti is leaf temperature which is assumed to be equal to the ambient temperature. 

Dark respiration is formulated by: 

where Rd,2o is a constant dark respiration rate of the leaf (mg m"2 s"1) at leaf temperature 

Ti (°C) and 20 °C respectively and Q10 the ratio between dark respiration at Ti+10°C 

and T. The value of Q10 used 2. 
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V. GENERAL DISCUSSION 

The objectives of this study were to quantify and generalise crop growth dynamics of 

year-round cut chrysanthemum, and to apply an existing explanatory model to 

investigate the influence of daily light integral and crop management (specifically 

planting density) on the performance of this ornamental crop (Chapter I). These 

objectives were addressed by describing and analysing the dynamics of chrysanthemum 

growth and yield throughout the year (Chapter II-1), developing a regression model for 

chrysanthemum crop growth rate as influenced by daily light integral and plant density 

(Chapter II-2), and predicting leaf area development based on simulating dry mass 

partitioning into leaves and modelling specific leaf area of new leaves (Chapter III). 

These generalised relationships successfully predicted dynamics of chrysanthemum 

crop growth performances, i.e. dry mass production and leaf area index, as measured in 

independent experiments (Chapter II) and at commercial holdings (Chapter III). 

However, these models are likely to be insufficient for application to crops grown at 

climatic conditions different from those evaluated in the experiments on which the 

descriptive models are based. For example, the commercial chrysanthemum crops are 

usually exposed to higher CC^-concentrations in winter than in summer by CO2 

enrichment (Lee et al., 2002; Chapter III), which together with increased use of 

supplementary assimilation light enhanced plant growth and quality. 

To circumvent the limitations of these descriptive models, an explanatory model was 

explored for predicting chrysanthemum crop growth under a wider range of climatic 

conditions. An existing model, TOMSIM (Heuvelink, 1995b) was adapted for 

chrysanthemum, resulting in the model CHRYSIMvl.O (Chapter IV). This 

photosynthesis-driven model takes into account fundamental physiological processes 

and may adequately describe crop growth even for highly variable climatic conditions 

(light, temperature and C02-concentration). Hence, with CHRYSIMvl.O the complex 

relationships between environmental factors and crop growth could be investigated 

more easily than based on descriptive models alone. Using comprehensive experimental 

data sets (Chapter II-2), CHRYSIMvl.O was effectively validated for dry mass 

production of year-round cut chrysanthemum (Chapter IV). However, some 

discrepancies between measurements and simulations remained, particularly for winter 

and low light conditions. Similar model behaviour, of the same photosynthesis-driven 

model, has been reported for tomato (Heuvelink, 1995b) and rose (Kool and De Koning, 

1996). In the case of tomato, reducing maintenance respiration, as a function of relative 

growth rate, was sufficient to remove discrepancies between simulated and measured 

91 



CHAPTER V 

crop growth (Heuvelink, 1995b). However, for chrysanthemum this was not effective 

(Chapter IV). Possible underlying problems with the experimental measurements and 

modelling of chrysanthemum are discussed in Chapter IV. 

Nevertheless, the question remains why the adjusted model worked adequately for 

tomato but not for chrysanthemum, despite the fact that the TOMSIM model was built 

as general greenhouse (C3) crop model. The main difference between tomato and cut 

chrysanthemum is that the former is an indeterminate crop while the latter is a 

determinate crop. Furthermore, tomato crops are tied up, trained and pruned, whereas 

cut chrysanthemum is grown without any manipulation of the crop structure. Therefore 

the light profile of the tomato canopy is optimised for an LAI of about 3 during the 

entire crop growth period, whereas the bottom layers of the chrysanthemum canopy, 

where LAI is often more than 3, receive only very low light intensity. 

Calibration of the leaf photosynthetic response curve effectively removed 

discrepancies between measurements and simulations in this study (Chapter IV). 

However, uncertainties remain in estimating model parameters for assimilate 

requirements, specific maintenance respiration, light reduction within the canopy and 

leaf photosynthetic response (Chapter IV). Furthermore, validation and calibration of 

the explanatory model suggested some interesting areas for further exploration and 

model improvement. In particular, dynamics of crop growth performance at low light 

conditions and the effects of systematic variation in daily light integral due to seasonal 

changes should be focus of further study. In addition, the model has been validated only 

for average greenhouse climates (Heuvelink, 1995b; Chapter IV), while it was built to 

work for a wide range of climatic conditions. Validation of the model using data from 

crops grown at extreme (low and high) light intensities and temperatures could be an 

important exercise to further investigate and clarify discrepancies between 

measurements and simulations. 

Despite these unsolved problems, the model may be applied to address some practical 

questions (Chapter I). Lee et at. (2002) applied the same photosynthesis-driven model, 

with only limited validation for dry mass production, to calculate economic optimum 

intensity for supplementary light, and to determine which plant densities generate the 

plant quality (fresh mass) required by flower markets during different seasons. 

Heuvelink et al. (2001) used this model to simulate the interaction effect between the 

duration of the long-day period and plant fresh mass. Hence, even with its shortcomings 

the explanatory model appears to be useful for calculating optimal production 

conditions quickly and effectively, at least when the input data to the model are 

reasonable values in practice. 
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GENERAL DISCUSSION 

Besides plant fresh mass, the number of flowers, stem length and plant shape of cut 

chrysanthemum are important aspects of plant quality. In fact, visual appearance of the 

flower bouquet has a much greater influence on final market price than plant fresh mass. 

Since chrysanthemum management practices not only influence physical yield but also 

plant quality development, the crop growth model would be more useful if output 

includes (quantified) visible plant qualities such as number of flowers, flower size, 

number of flower branches, stem length and plant shape. Although some progress has 

been made in predicting the number of flowers in cut chrysanthemum, showing a strong 

linear relationship between plant dry mass and number of flowers, further data are 

needed because of apparent seasonal effects on regression parameters (Heuvelink et al., 

2001; Carvalho et al, 2002). In addition, there is some evidence that the number of 

flowers is related to the number of lateral stems and the light regime during the short-

day period, specifically the duration of the night break, as has been found for spray 

chrysanthemum grown with cyclic lighting (Van Veen, 1969). In a recent review of the 

effects of greenhouse climate and plant density on chrysanthemum visual qualities, 

Carvalho and Heuvelink (2001) suggested that increased assimilate availability (brought 

about by higher light intensity, higher CCvconcentrations and/or lower plant density) 

positively affects several visual quality aspects of chrysanthemum. In addition, light 

quality appears to influence visual characteristics. 

Prediction of internode length and number of internodes and leaves has been 

investigated and discussed by several authors, and an empirical model has been 

developed (Jacobson and Willits, 1998; Langton and Cockshull, 1997). However, for 

cut chrysanthemum a model for stem length control is hardly used in practice, whereas 

for pot chrysanthemum internode length control by manipulating day and night 

temperature is more common. Recently, Schouten (2002) proposed a general model to 

predict temperature effects on internode length in cut chrysanthemum but an integrated 

approach to stem length was lacking. Although effects of daily temperature and 

day/night temperature cycles on stem length and internode length have been 

investigated for several cut flower species including chrysanthemum, developed models 

have been translated only limited greenhouse crop species for practical applications. 

Instead of predicting stem length based on internode length and number of leaves, that 

is independent of photosynthesis process, an approach would be to predict stem length 

based on photosynthesis and dry mass partitioning into stems, applying the concept of 

specific stem length (average stem length per g of stem dry mass, cm g"1) (Kropf and 

Van Laar, 1993). The great advantage of this approach is that it could be built into a 

photosynthesis-driven model. 

93 



Finally, development and validation of the regression model (Chapter II) and 

CHRYSIMvl.O (Chapter IV) was implemented for one chrysanthemum cultivar only. A 

further limitation is that the length of time between start of the short-day period and 

anthesis, which is primarily a cultivar characteristic, has not been predicted in this study 

(Larsen and Persson, 1999). Clearly, in addition to solving the modelling problems 

mentioned in Chapter IV, much more work needs to be done to modelling cut 

chrysanthemum. Ultimately, good teamwork between growers, breeders, advisors, 

automation companies and scientists is needed to bridge the gap between models 

developed by scientists and practical model application (Van den Bosch, 1998). 
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SUMMARY 

Today, greenhouse cultivation is approaching more and more an industrial process, like 

a factory producing living products through all seasons. Like in a conventional factory, 

the production systems have a computerized environmental control system for 

controlling the crop growth process. Vast knowledge is required for optimising this 

complex production system. Moreover, a large variation of species and cultivars are 

grown with different properties and requirements in different cultivation systems 

making it is even more complicated to optimise the production system as a whole. 

Hence the use of models has been advocated for solving this type of problems in 

practice. Models are powerful tools for research, education, decision support, 

greenhouse climate control and prediction and planning of production and policy 

analysis. Although the predictive capability of descriptive models is high, explanatory 

models have much greater potentials for application in year-round crop production 

system, in terms of the dynamics of climatic control, production planning, crop 

management and economical aspects. These models had been applied for prediction of 

dry mass as indicator for physical yield of greenhouse crops as related to the 

environmental conditions in the greenhouse. Although explanatory models have been 

developed on a generic basis they have mainly been applied with greenhouse fruit 

vegetable crops. 

The aim of this study was to apply an existing generic explanatory crop growth model 

for cut chrysanthemum in particular with respect to its response to radiation and crop 

management. This aim was approached by: (1) describing and analysing the dynamics 

of growth and yield (2) generalising the dynamics of dry mass production (3) predicting 

leaf area development based on dry matter partitioning into the leaves and specific leaf 

area of new leaves (4) adaptation of a well developed and validated explanatory model 

(TOMSIM) for use with chrysanthemum under conditions of controlled daylength and 

supplementary assimilation lighting (CHRYSIMvl.O.) and validation, calibration and 

evaluation of this model. 

Dynamics of dry mass, leaf area index and final plants characteristics of six 

experiments were presented (Chapter II-1). Crops were grown at three plant densities 

and six planting dates during three consecutive years in semi-commercial size green­

house compartments. Final number of flowers per plant, plant fresh mass and plant dry 
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mass decreased with plant density, this decrease being larger in summer than in winter. 

Final plant fresh mass at 48 plants m"2 was 2.7 times higher in summer than winter (for 

plant dry mass this factor was 3.2). Plant dry matter content between summer and winter 

varied between about 11-13 %. Stem length hardly responded to plant density and total 

dry mass production per m2 linearly increased with plant density. Final plant fresh mass 

(y; g) showed a linear relationship with cumulative incident photosynthetically active 

radiation (PAR) per plant (x; MJ plant"1) (y = 16.7x + 28.0, R2 = 0.97). Dry mass 

production in time could accurately be described by the expolinear growth equation 

with three regression parameters: maximum relative growth rate (rm; assumed to be 

independent of plant density), maximum absolute growth rate (cm) and lost time (t/,). rm 

was 2.4 times higher and cm was 4.1 times higher in summer than in winter and no 

effect of plant density on cm was observed, whereas tb decreased linearly with increasing 

plant density. Using these parameters and measured maximum leaf area index (LAI) for 

calculating dynamic growth patterns of LAI, resulted in large over- or under-

estimations, except for summer-grown crops. When an extended expolinear growth 

function was fitted simultaneously on dry mass production and LAI in time, accurate 

time curves for LAI were obtained, whereas dry mass production was only accurately 

described for the summer crops. Light use efficiency (LUE), the slope of the linear 

relationship between crop dry mass and cumulative intercepted PAR, varied between 

3.4 g MJ"1 in summer and 5.3 g MJ"1 in winter and LUE showed a slightly linear 

increase with plant density (LUE = 3.75 + 0.0073 x plant density; P = 0.007, R2 = 

0.99). 

The aim of Chapter II-2 was to predict crop growth of year-round cut chrysanthemum 

(Chrysanthemum, Indicum group) based on a regression model of maximum crop 

growth rate as a function of daily incident PAR (MJ m"2 d"1), using generalised 

parameters of the expolinear growth equation. Four experiments for developing an 

empirical crop growth model and three experiments for validating the model were 

conducted in glasshouse compartments. In the four experiments for model development, 

chrysanthemum crops were grown at different plant densities (32, 64 and 80 plants m"2), 

and seasons (planting in January, May-June and September) under shading screens (66 

% and 43 % of natural light) or supplementary assimilation light (HPS, 40-48 (xmol m"2 

s"1). Greenhouse temperatures (19-21°C) and CO2 concentrations (349 - 432 umol mol"1) 

were similar between experiments. The fitted expolinear growth equation as a function 

of time (EXPOT) or as a function of incident PAR integral (EXPOPAR) effectively 

described periodically measured total dry mass (R2 > 0.98). However, growth parameter 

estimates for the fitted EXPOPAR were more suitable as they were not correlated to each 

other. Coefficients of EXPOPAR characterised the relative growth rate per incident PAR 
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integral (RGRPAR, [MJ m"2]"1) and light use efficiency (LUE, g MJ"1) at closed canopy. 

In all four experiments no interaction effects between treatments on crop growth 

parameters were found. RGRpAR and LUE were not different between HPS and natural 

light treatments, but significantly increased when light levels were reduced by shading 

in the summer experiments. There was no consistent effect of plant density on growth 

parameters. RGRPAR and LUE showed hyperbolic relations to average daily incident 

PAR averaged over 10 day periods after planting (RGRPAR) or before final harvest 

(LUE). Based on those relations, maximum relative growth rate (g g"1 d"1) and 

maximum crop growth rate (g m"2 d"1) were successfully described by rectangular 

hyperbolic relations to daily incident PAR integral. Aboveground total dry mass (TDM, 

g m"2) simulated over time was in good agreement with measured TDM in three 

independent experiments, using daily incident PAR integral and leaf area index as 

inputs. Based on these results it is concluded that the expolinear growth equation is a 

useful tool for quantifying cut chrysanthemum growth parameters and comparing 

growth parameters between different treatments, especially when light is the growth-

limiting factor. Under moderate environmental conditions the regression model worked 

satisfactorily, hence the model may be applied as a simple tool for understanding crop 

response to seasonal variations in daily light integral, and for planning cropping systems 

of year-round cut chrysanthemum. However, information on leaf area development in 

cut chrysanthemum is required for crop growth prediction of chrysanthemum. 

This problem was tackled in Chapter III, where leaf area index (LAI) was described 

on the basis of dry matter partitioning into the leaves and on specific leaf area of newly-

formed leaf biomass (SLAn) for year-round cut chrysanthemum. In five greenhouse 

experiments, at several plant densities and planting dates, periodic destructive 

measurements were conducted to develop empirical models for partitioning and SLA„. 

The fraction of dry matter partitioned to the leaves, calculated as the increase in leaf dry 

mass divided by the increase in shoot dry mass between two destructive harvests, could 

be described accurately (R2 = 0.93) by a Gompertz function of relative time Rt. R, is 0 at 

planting date, 1 at the start of short-day and 2 at final harvest. SLA„, calculated as the 

slope of a linear regression between periodic measurements of leaf dry mass (LDM) and 

LAI, showed a significant linear increase with the inverse of the daily incident PAR (MJ 

m"2 d"1), averaged over the whole growing period, the average greenhouse temperature 

and plant density (R2 = 0.74). The models were validated for two independent 

experiments and with data from three commercial growers, each with four planting 

dates. Measured TDM over time, initial LAI and LDM, plant density, daily temperature 

and incident PAR were input in the model. Dynamics of LDM and LAI were predicted 

accurately by the model, although in the last part of the cultivation LAI was often 
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overestimated. The slope of the linear regression of simulated against measured LDM 

varied between 0.95 and 1.09. For LAI this slope varied between 1.01 and 1.12. 

The objective of Chapter IV was to apply and validate an existing photosynthesis-

driven model (TOMSIM) for dry mass production in year-round cut chrysanthemum. 

Two versions were compared, a standard version and an adjusted version, where 

maintenance respiration was made dependent on the relative growth rate of the crop 

(metabolic activity of the crop). Based on cultivation methods for this crop, options for 

management improvement include day length control, and adjustment of supplementary 

lighting and plant density. Therefore, greenhouse experiments were conducted with 

different combinations of natural light, supplementary assimilation light, shading and 

plant densities, during different seasons. The model was applied to compute daily crop 

growth rate (g m"2), based on daily crop gross assimilation rate (Pgd) and maintenance 

respiration (Rm). In the standard model, Pgd depends on crop leaf area and radiation, 

while Rm is a function of temperature and plant organ biomass. In the adjusted model a 

reduction factor for Rm is included, which is a negative exponential function of 

simulated relative growth rate (RGR). Initial organ dry mass, leaf area index (LAI), dry 

matter partitioning into different plant organs, daily global radiation, and hourly 

greenhouse temperature and CO2 concentration were model inputs. Dynamics of 

measured and predicted TDM (g m"2) were similar during the summer period (natural 

light), whereas the model largely underestimated TDM in winter and under (constantly) 

shaded conditions. Underestimation was more apparent at higher levels of shading, and 

occurred in both standard and adjusted models. Even when Rm was completely set to 

zero, model simulations still underestimated measured dry mass for the winter period 

and heavily shaded conditions. 

Comparing simulated and measured light use efficiency (LUE, g MJ"1) provided 

better insight into model behaviour than comparing crop growth rates. Simulated LUE 

at closed canopy largely underestimated measured LUE at lower light conditions, but 

not for crops grown under natural light conditions in the summer period. The standard 

model often predicted no growth at low daily light integrals, whereas increased light 

resulted in higher TDM and maintenance respiration. For all experiments, discrepancies 

of TDM between measured and simulated by the adjusted model were largely reduced 

by calibration of the parameters of the leaf photosynthesis response curve, i.e. initial 

light use efficiency (e) and maximum gross photosynthetic rate (Pgmax)- Although this 

calibration resulted in satisfactory prediction of TDM, the calibrated value of E was 

much higher than values from literature, and the calibrated value of Pgmax was relatively 

low. This suggests that optimisation of model parameters should not be restricted to e 
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and PgmaX but should also include other parameters such as the assimilation requirement 

and specific maintenance respiration. 

The objectives of this study, quantifying and generalising crop growth dynamics of 

year-round cut chrysanthemum, and validating and calibrating an explanatory model, 

CHRYSIMvl.O to investigate the influence of daily light integral and crop management 

(specifically planting density) on the performance of this ornamental crop, were 

satisfied. Furthermore, validation and calibration of the explanatory model suggested 

some interesting areas for further exploration and model improvement (Chapter IV). 

Moreover the model does not directly cover certain aspects that are relevant to the 

growers, i.e. external quality of the final product. The crop growth model, therefore, 

would be more useful if output would include (quantified) visible plant quality such as 

number of flowers, flower size, number of flower branches, stem length and plant 

shape. Some progress on predicting stem length and number of flowers has been made, 

but there is still a gap between application into practice and the performance of a 

photosynthesis-driven model. Finally, development and validation of the regression 

model (Chapter II) and CHRYSIMvl.O (Chapter IV) was valid for one chrysanthemum 

cultivar only. Clearly, in addition to solving the modelling problems mentioned in 

Chapter IV, much more work needs to be done to modelling cut chrysanthemum. 

Ultimately, good teamwork between growers, breeders, advisors, automation companies 

and scientists is needed to bridge the gap between models developed by (and for) 

scientists and practical model applications for year-round cut chrysanthemum. 
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Het productieproces in de kasteelt lijkt tegenwoordig steeds meer op een industrieel 

proces. Het glastuinbouwbedrijf van nu lijkt op een fabriek die het hele jaar door 

levende producten maakt. Net als in een gewone fabriek is het productiesysteem 

voorzien van een computergestuurd klimaatbesturingssysteem om het groeiproces te 

sturen. Er is veel kennis nodig om dit complexe productiesysteem te optimaliseren. 

Bovendien wordt een grote verscheidenheid aan soorten en cultivars met verschillende 

eigenschappen geteeld, waarbij van uiteenlopende teeltsystemen gebruik wordt 

gemaakt. Dit maakt het nog gecompliceerder om het productiesysteem als geheel te 

optimaliseren. Vandaar dat het gebruik van modellen wordt bepleit om dit type 

problemen in de praktijk op te lossen. Modellen zijn een krachtig hulpmiddel voor 

onderzoek, onderwijs, ondersteuning van beslissingen, kasklimaat besturing, voor het 

voorspellen en plannen van productie en voor beleidsanalyses. Beschrijvende modellen 

zijn in het algemeen goed in staat om productie te voorspellen, maar verklarende 

modellen bieden veel grotere mogelijkheden voor gebruik in jaarrond 

productiesystemen, in termen van dynamiek van klimaatregeling, productieplanning, 

teeltsturing en economische aspecten. Verklarende modellen worden gebruikt om 

drogestofproductie te voorspellen, als maatstaf voor de fysieke opbrengst van gewassen 

in relatie tot het kasklimaat. Hoewel ze op generieke basis zijn ontwikkeld, worden 

verklarende modellen op dit moment hoofdzakelijk toegepast ten behoeve van de teelt 

van vruchtgroenten. 

Het doel van deze studie was het modelleren van groei en productie van snijchrysant 

met behulp van een bestaand, generiek verklarend groeimodel, in relatie tot, met name, 

straling en teeltmaatregelen. Dit doel werd benaderd door: (1) beschrijven en analyseren 

van de dynamiek van groei en opbrengst, (2) generaliseren van de dynamiek van droge­

stofproductie, (3) voorspellen van de groei van bladoppervlak op basis van de droge-

stoftoedeling naar de bladeren en van de SLA van nieuw gevormde bladeren, (4) 

aanpassen, valideren, calibreren en evalueren van een verklarend model ten behoeve 

van chrysant (CHRYSIMvl.O). Een reeds ontwikkeld en goed gevalideerd verklarend 

model voor de tomaat (TOMSIM) werd hiertoe aangepast, rekening houdende met het 

gebruik van daglengtesturing en assimilatiebelichting bij chrysant. 

De dynamiek van de drogestofproductie en van de bladoppervlakte-index (leaf area 

index;LAI) en plantkarakteristieken bij de eindoogst werd in 6 experimenten onderzocht 
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(Hoofdstuk II-1). Het gewas werd geteeld bij drie verschillende plantdichtheden in 

semi-commerciele schaal kascompartimenten met zes verschillende planttijdstippen 

gedurende drie jaren. Dynamische groeiparameters werden onderzocht door middel van 

de expolineaire groeifunctie. Het uiteindelijke aantal bloemen per plant, 

plantversgewicht en plantdrooggewicht daalden met toenemende plantdichtheid; deze 

daling was groter in de zomer dan in de winter. Bij 48 planten m"2 was het uiteindelijke 

plant versgewicht 2,7 maal hoger in de zomer dan in de winter (voor plant drooggewicht 

was deze factor 3,2). De drogestofgehaltes van de planten in de zomer en in de winter 

verschilden ongeveer fluctueerden tussen 11% en 13%. De stengellengte reageerde 

bijna niet op plantdichtheid en de totale drogestofproductie per m2 nam lineair toe met 

de plantdichtheid. Het versgewicht van de plant bij de eindoogst (y; g) vertoonde een 

lineaire relatie met de totale hoeveelheid geaccumuleerde fotosynthetisch actieve 

stealing (PAR) per plant (x; MJ plant"1) (y = 16,7x + 28,0, R2 = 0,97). De 

drogestofproductie kon nauwkeurig worden beschreven als functie van de tijd door de 

expolineaire groeicurve met drie regressieparameters: maximum relatieve groeisnelheid 

(rm; er werd aangenomen dat deze onafhankelijk is van de plantdichtheid), maximum 

absolute groeisnelheid (cm) en de vertraging (fe). In de zomer was rm 2,4 keer zo hoog en 

cm 4,1 keer zo hoog als in de winter; er werd geen effect van plantdichtheid op cm 

gevonden; th nam lineair af met toenemende plantdichtheid. Gebruik van deze 

parameters en de gemeten maximum LAI voor het berekenen van de dynamiek van de 

LAI, resulteerde in grote over- of onderschattingen, behalve voor het zomergewas. Als 

de uitgebreide expolineaire groeifunctie tegelijkertijd werd gefit op drogestofproductie 

en LAI, werd de groei van LAI wel nauwkeurige beschreven, maar drogestofproductie 

alleen bij het zomergewas. De efficientie waarmee licht gebruikt wordt (light use 

efficiency; LUE), de helling van de lineaire relatie tussen gewasgroei en de totale 

hoeveelheid onderschepte PAR, varieerde tussen de 3,4 g MJ"1 in de zomer en 5,3 g 

MJ"1 in de winter en LUE vertoonde een geringe lineaire toename met de plantdichtheid. 

In Hoofdstuk II-2 werd de gewasgroei van jaarrondsnijchrysant veralgemeniseerd op 

basis van een empirisch model waarbij gewasgroei als functie van de dagelijkse 

inkomende fotosynthetisch actieve staling (PAR, MJ m"2 d"1) beschreven werd. Hierbij 

werden parameters van de expolineaire groeicurve gebruikt. Om dit empirische 

gewasgroeimodel te ontwikkelen werden vier experimenten uitgevoerd in 

kascompartimenten; daarnaast werden nog 3 experimenten uitgevoerd om dit model te 

valideren. In de eerst genoemde vier experimenten werd snijchrysant geteeld bij 

verschillende lichtniveaus (ongeschermd en beschaduwing tot 66% en 43% lichtniveau 

door middel van schermdoek; daarnaast daglicht met of zonder 40-48 umol m"2 s"1 

assimilatiebelichting door middel van hogedruknatriumlampen), verschillende 
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plantdichtheden (32, 64 en 80 planten per m2) en verschillende seizoenen (planten in 

januari, mei-juni en September). Kastemperaturen (19-21°C) en CO2 concentraties (349-

432 umol mol"1) waren in deze experimenten nauwelijks verschillend. De expo-lineaire 

groeicurve, hetzij gefit als functie van de tijd (EXPOT) of als functie van de op het 

gewas vallende PAR integraal (EXPOPAR), gaf een goede beschrijving van het periodiek 

gemeten totaal drooggewicht (R2 > 0.98). EXPOPAR leek beter bruikbaar dan EXPOT, 

omdat de geschatte groeiparameters niet gecorreleerd waren. Coefficienten voor 

EXPOPAR waren de relatieve groeisnelheid per eenheid opvallende PAR (RGRPAR [MJ 

m"2]"1) en de lichtbenuttingsefficientie (LUE, g MJ"1) voor een gesloten gewas. In alle 

vier experimenten werd voor deze parameters geen interactie aangetoond tussen de 

verschillende factoren die onderzocht werden. RGRPAR en LUE verschilden niet 

significant voor de teelt met en zonder assimilatiebelichting, maar namen significant toe 

bij laag licht onder schermdoek in de zomerteelten. Er was geen consistente invloed van 

plantdichtheid op de modelparameters. RGRPAR en LUE vertoonden een hyperbolische 

relatie met de gemiddelde dagelijkse hoeveelheid PAR, gemiddeld over 10-daagse 

perioden vanaf planten (RGRPAR) of juist voor de eindoogst (LUE). Gebaseerd op deze 

relaties werden potentiele relatieve groeisnelheid (g g"1 d"1) en potentiele gewasgroei-

snelheid (g m"2 d"1) met succes beschreven als rechthoekige hyperbolische functie van 

de dagelijkse hoeveelheid PAR. 

Het gesimuleerde verloop van totaaldrooggewicht in de tijd vertoonde een goede 

overeenkomst met de metingen in drie onafhankelijke experimenten, waarbij de 

dagelijkse invallende PAR integraal en de LAI modelinput waren. Op grond van deze 

resultaten kan worden geconcludeerd dat de expo-lineaire groeicurve bruikbaar is om de 

groeiparameters van snijchrysant te quantificeren en om behandelingen te vergelijken, 

in het bijzonder wanneer licht de limiterende factor is. Onder gecontroleerde 

klimaatscondities werkte dit empirische model naar behoren. Derhalve kan dit model 

toegepast worden als een simpel hulpmiddel om het gedrag van het gewas te begrijpen 

in relatie tot seizoensvariaties in dagelijkse stralingssom en voor het plannen van de 

jaarrondteelt van snijchrysant. Echter, informatie omtrent bladoppervlakteontwikkeling 

in snijchrysant is noodzakelijk om tot een voorspelling van gewasgroei te kunnen 

komen. 

Het voorspellen van het verloop van de LAI, gebaseerd op drogestof toedeling naar 

de bladeren en het specifiek bladoppervlak van de nieuw gevormde bladbiomassa 

(SLAn) was het onderwerp van hoofdstuk III. In vijf kas experimenten, met 

verschillende plantdichtheden en planttijdstippen, werden periodieke destructieve 

waarnemingen uitgevoerd om empirische modellen voor stofverdeling en SLA„ te 
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ontwikkelen. De drogestoftoedeling naar de bladeren, d.w.z. de toename van het 

bladdrooggewicht ten opzichte van de totale drooggewichttoename tussen twee 

destructieve oogsten, kon goed beschreven worden (R2 = 0.93) door een Gompertz 

functie van relatieve tijd. SLA„, berekend als de helling van de lineaire relatie tussen 

blad drooggewicht (leaf dry mass; LDM) en LAI, vertoonde een significante lineaire 

toename met de inverse van de dagelijkse hoeveelheid fotosynthetisch actieve staling 

(PAR, MJ m"2 d"1), gemiddeld over de gehele groeiperiode, de gemiddelde 

kastemperatuur en plant dichtheid (R2 = 0.74). De geldigheid van het ontworpen model 

werd bevestigd met twee onafhankelijke experimenten en met data van drie 

commerciele telers, elk met vier planttijdstippen. Gebruik makend van de gemeten 

totale drogestoftoename, LAI en LDM aan het begin, plantdichtheid, dagelijkse 

temperatuur en PAR als invoer, kon de dynamiek van LDM en LAI nauwkeurig worden 

voorspeld. De helling van de lineaire regressie van de gesimuleerde versus de gemeten 

LDM varieerde tussen de 0,95 en 1,09. Voor de LAI varieerde deze helling tussen de 

1,01 en 1,12. 

Doelstelling van Hoofdstuk IV was het valideren van een bestaand, op fotosynthese 

gebaseerd, model voor drogestofproductie van tomaat (TOMSIM), ten behoeve van de 

jaarrond teelt van chrysant. Twee versies werden vergeleken: een standaard versie en 

een aangepaste versie, waarbij de onderhoudsademhaling afhankelijk werd gesteld van 

de relatieve groeisnelheid (metabolische activiteit) van het gewas. Mogelijkheden voor 

verbetering van de teelt zijn: optimaliseren van daglengte, bijbelichting en 

plantdichtheid. Daarom werden experimenten in de kas uitgevoerd met verschillende 

combinaties van natuurlijk licht, kunstlicht, beschaduwing en plantdichtheden en 

teeltseizoen. Het model werd gebruikt voor het berekenen van de dagelijkse 

groeisnelheid (g m"2), gebaseerd op bruto assimilatie (Pgd) en onderhoudsademhaling 

van het gewas (Rm)- In het standaard model hangt Pgd af van bladoppervlak en staling, 

terwijl Rm een functie is van temperatuur en biomassa van het gewas. In het aangepaste 

model is een reductie-factor voor Rm opgenomen. Deze reductie-factor is een negatief 

exponentiele functie van de gesimuleerde relatieve groeisnelheid (RGR). 

Het drooggewicht van de organen en de LAI bij de aanvang van het experiment, de 

drogestoftoedeling naar de verschillende organen van de plant, de dagelijkse globale 

stralingssom en uurlijkse waarden van luchttemperatuur en CC>2-concentratie in de kas 

waren invoerparameters van het model. Het verloop van gemeten en voorspelde totale 

hoeveelheid bovengrondse drogestof (TDM, g m"2) kwamen voor de 

zomerexperimenten (natuurlijk licht) goed overeen, daarentegen onderschatte het model 

TDM in de winterperiode en onder (constante) beschaduwing aanzienlijk. Deze 

onderschatting was sterker bij toenemende beschaduwing, en trad op bij het standaard 
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zowel als het aangepaste model. Zelfs wanneer Rm volledig op 0 werd gesteld 

onderschatten modelsimulaties de drogestofproductie nog steeds, in vergelijking met 

metingen tijdens de winterperiode en bij intensieve beschaduwing. Het vergelijken van 

gesimuleerde en gemeten 'light use efficiency' (LUE, g MJ"1) leverde een beter inzicht 

op in het gedrag van het model dan het vergelijken van gewasgroeisnelheden. 

Gesimuleerde LUE leidde, bij gesloten gewas en onder lagere lichtniveaus, tot een 

aanzienlijke onderschatting vergeleken met gemeten LUE. Dit gold echter niet voor 

gewas geteeld onder natuurlijk licht in de zomerperiode. Bij een geringe dagelijkse 

lichtintegraal voorspelde het standaard model vaak een groeisnelheid van nul. Toename 

van de dagelijkse hoeveelheid licht leidde tot een hogere TDM en 

onderhoudsademhaling. Verschillen tussen gemeten en gesimuleerde TDM in alle 

experimenten konden grotendeels worden weggenomen door kalibreren van parameters 

voor de fotosynthese-licht respons curve van het blad, zoals initiele 

lichtbenuttingsefficientie (e) en maximale fotosynthesesnelheid (Pgmax)- Alhoewel 

TDM na deze kalibratie bevredigend kon worden voorspeld, was de gekalibreerde 

waarde van e veel hoger dan in de literatuur, en de gekalibreerde waarde van Pgmax 

relatief laag. Dit suggereert dat optimalisatie van modelparameters niet beperkt zou 

moeten blijven tot 6 en Pgmax, maar dat hierin ook andere parameters zouden moeten 

worden betrokken, zoals assimilatenbehoefte en specifieke onderhoudsademhaling. 

Aan de doelstellingen van deze studie, kwantificeren en generaliseren van de 

dynamiek van de gewasgroei van jaarrond snijchrysant en valideren en calibreren van 

een verklarend model, CHRYSIMvl.O om de invloed van dagelijkse stealing en 

teeltmaatregelen (in het bijzonder plantdichtheid) op het gedrag van dit siergewas te 

onderzoeken, is voldaan. Bovendien geeft validatie en calibratie van het verklarende 

model enige interessante gebieden voor verder onderzoek en verbetering van het model 

aan (Hoofdstuk IV). Verder bestrijkt het model niet alle gebieden die van belang zijn 

voor telers, o.a. uitwendige kwaliteit van het product. Het gewasgroeimodel zou daarom 

bruikbaarder zijn als de output ook (gekwantificeerde) uitwendige kwaliteit zoals aantal 

bloemen, bloemgrootte, aantal bloeiende takken, stengellengte en vorm van de plant zou 

omvatten. Er is enige vooruitgang geboekt bij het voorspellen van stengellengte en 

aantal bloemen, maar er is nog steeds een discrepantie tussen toepassing in de praktijk 

en de resultaten van een door fotosynthese gestuurd model. Tenslotte, ontwikkeling en 

validatie van het regressie model (Hoofdstuk II) en CHRYSIMvl.O (Hoofdstuk IV) was 

alleen geldig voor een cultivar. Het is duidelijk, dat voor het oplossen van de 

problemen, genoemd in Hoofdstuk IV, er veel meer werk moet worden verricht om de 

snijchrysant goed te kunnen modeleren. Uiteindelijk is een goede samenwerking nodig 

tussen telers, veredelaars, voorlichters, automatiser ingsbedrij ven en wetenschappers 
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om het gat tussen modellen ontwikkeld door (en voor) wetenschappers en een in de 

praktijk bruikbaar model voor de jaarrond teelt van chrysant te dichten. 
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