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Propositions belonging to the thesis: 
Polarimetric Data for Tropical Forest Monitoring Studies at the 

Colombian Amazon 
by: Marcela Quinones Fernandez. 

1. People have the right to get accurate information about the condition of 
the land, the ocean and the atmosphere in order to make their political 
choice. 

2. The incidence angle effects on the radar return values are too important 
to be ignored in future studies. (This thesis, Chapter 3) 

3. The use of multi-frequency data contributes more to the classification 
accuracy of tropical forest than multi-temporal or polarimetric 
observations. (This thesis Chapters 2 and 6). 

4. The structure of tropical vegetation is too complex to be described 
accurate by remote sensing interaction models. (This thesis, Chapter 5) 

5. Multi-frequency polarimetric coherence signatures can be physically 
associated with forest types. (This thesis Chapter 3). 

6. Mapping of vegetation structure is required prior to mapping of 
biomass in the tropics. (This thesis, Chapter 4) 

7. I strongly believe that we must consciously develop a greater sense of 
universal responsibility, which is the best foundation both for our 
personal happiness, for world peace, the equitable use of our natural 
resource and the proper care for the environment (H.H. Dalai Lama). 

8. We must learn to work not just for our own individual self, family or 
nation, but for the benefit of all mankind (H.H. Dalai Lama). 

9. Scientists are very busy publishing articles to survive the competition 
rather than addressing the urgent needs of mankind. 

10. Dutch people like to eat 'frietjes' as much as Colombian people like to 
go 'salsa', that is once a week. 
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To the earth, 
For standing the impact of our presence, 

For maintaining the greenness of the forests 
And the creative force of the sea. 



ABSTRACT 

Polarimetric Data for Tropical Forest Monitoring. Studies at the Colombian 
Amazon. 
Doctoral Thesis, Wageningen University, The Netherlands. 

An urgent need exists for accurate data on the actual tropical forest extent, 
deforestation, forest structure, regeneration and diversity. The availability of 
accurate land cover maps and tropical forest type maps, and the possibility to update 
these maps frequently, is of great importance for the development and success of 
monitoring systems. For areas like the Amazon the use of optical remote sensing 
systems as the source of information, is impeded by the permanent presence of 
clouds that affect the interpretation and the accuracy of the algorithms for 
classification and map production. The capabilities of radar systems to acquire cloud 
free images and the penetration of the radar waves into the forest canopy make radar 
systems suitable for monitoring activities and provide additional and complementary 
data to optical remote sensing systems. Information regarding forest structure, forest 
biomass, and vegetation cover and flooding can be associated with radar images 
because of the typical wave-object interaction properties of the radar systems. 

In this thesis new algorithms for the classification of radar images and the 
production of accurate maps are presented. The production of specific maps is 
studied by applying the developed algorithms to two different study areas in the 
Colombian Amazon. The first site, San Jose del Guaviare, is a colonisation area with 
active deforestation activities and dynamic land cover change. The second area is a 
pristine natural forest with high diversity of landscapes. 

A detailed statistical description of the polarimetric AirSAR data is made in terms of 
backscatter (gamma values), polarimetric phase difference and polarimetric 
correlation. This approach allows a better interpretation of physical backscatter 
mechanisms important for interpretation of images in relation to ground parameters. 
Theoretical cumulative probability density distributions (pdf) are used to describe 
the mean field values and the standard deviation for a class. A Gausian distribution 
is used to describe the field average gamma values; a circular Gausian distribution is 
used to describe the field average HH-VV phase difference and a Beta distribution is 
used to described the field average HH-VV phase correlation. The accuracy of the 
estimation of the field-averaged values depends on the level of speckle, i.e. number 
of independent looks. This effect is included in the calculation of the pdf s and 
therefore can be simulated. 

For the Guaviare site the classification algorithm is used to assess the AirSAR data 
in the production of a land cover type map. Classification accuracies are calculated 
for different combinations of bands and level of speckle. An accuracy of 98.7% was 
calculated for a map when combining L-HV and P-RR polarisations. Confusion 
between classes are studied to evaluate the use of radar bands for monitoring 
activities, e.g. loss of forest or detection of new deforested areas. In addition a 
biomass map is created by using the empirical relationship between the combination 



of the same radar bands and the biomass estimations from 28 plots as measured in 
the field. The agreement of the biomass map with the land cover map is used to 
evaluate the biomass classification. 

For the Araracuara site the classification algorithm is used to assess the use of 
polarimetric data for forest structural type mapping and indirect forest biophysical 
characterisation. 23 field-measured plots used for forest structural characterisation 
are used to assess the accuracy of the classification. A new SAR derived legend is 
more suitable for the SAR map allowing better physical interpretation of results. A 
method based on iterated conditional modes is introduced to create maps from the 
classified radar images, increasing in most of the cases the accuracy of the 
classification. The structural type map with 15 classes can be classified with 
accuracies ranging from 68% to 94% depending on the classification and the 
mapping approach. The relationship between forest structure and polarimetric signal 
properties is studied in detail by using a new decomposition of polarimetric 
coherence, based on a simple physical description of the wave-object interactions. 
The accuracy of the complex coherence is described using the complex Wishart 
distribution. In addition for the same area, a biomass map is created using the 
previous structural type characterisation as the basis for the classification, 
overcoming problems as the well know radar signal saturation. 

The possibilities and restrictions of creating biomass maps with AirSAR 
polarimetric images are deeply investigated. Two different approaches are proposed 
depending on the terrain conditions. A theoretical exploration on the physical limits 
for radar biomass inversion is made by using a new interface model, called 
LIFEFORM that describes the layered tropical forest in terms of scatterers. The 
UTARTCAN scattering model is used to analyse the effect of flooding, forest 
structure and terrain roughness in the biomass inversion. 



FOREWORD 

I came to Holland to learn about applications of remote sensing and geographical 
information systems for forestry. My intention was specifically to learn vegetation 
mapping for further applications in the Colombian Amazon, territory that is being on 
my heart since the first time I saw the green immensity from the window of the 
plane that brought me to the middle Caqueta river in 1985. 

My initial works in tropical forest remote sensing interpretation were made as a 
student of ITC (International Institute for Aerospace Survey and Earth Sciences), 
where I learned to use optical and aerial photography for vegetation mapping. It 
didn't take to long to realise that image interpretation in this remote sensing images 
was affected by presence of clouds and therefore incomplete observations and 
inaccurate classifications were made. The problem was more pronounced in the 
tropical regions where it was very hard to get cloud free images. For that reason, I 
started to think about the possibility of learning about radar remote sensing and its 
applications in the tropical forest. In a coffee break at ITC, I met Wietske Wijker, at 
that time a Dutch PhD student who was working in the application of ERS-1 radar 
data for monitoring the Colombian Amazon. She introduced me to Dr. Dirk 
Hoekman of Wageningen University, who was working as one of NASA's principal 
investigators for AirSAR polarimetric data, being that my first acquaintance with 
one of the most complete sets of polarimetric data existing at that time. When I first 
saw the AirSAR images in 1994, as part of my MSc thesis at ITC, I thought that 
they were beautiful!, the colours and the texture were revealing the tropical forest as 
I had never seen before. I could almost "walk" through the images. Immediately lots 
of questions about their possible use and application arose in my mind and I started 
to study carefully the principles of radar, so different from the already learned 
optical systems. My first attempts to understand and use the images are consigned 
in my MSc thesis. But my work with the images was far from complete. 

The understanding of the radar principles allowed me to design an appropriate field 
methodology that could help me with the interpretation of the images. When I 
understood a little about them and realised the potential amount of information that 
they could contain it became a challenge for me to extract as much information as 
possible, in order to create accurate maps of the Amazon. Of course the job was not 
easy, because the interpretation, description, classification and mapping of radar 
images is not a straightforward process. It requires a precise understanding of the 
physics involved between the interactions of the radar waves and the forest and a 
complete new terminology in mathematics and physics had to be introduced and 
learned. My specific contribution to this kind of studies, as presented in this thesis, 
is precisely to assess polarimetric radar images of the AirSAR system in the 
production of specific maps for the management of the tropical forest, specifically 
the Amazon forest. 

During this work my expertise over tropical forest structure and ecosystems were 
complemented by the expertise in physics and efficient computing skills of Dirk 
Hoekman and Martin Vissers from whom I learned a lot about radar. The co-



ordinated efforts between us, from different disciplines, allowed the development of 
ideas and products that without joining our expertise could not have been done. At 
that respect I have to say that a PhD research was more than an interesting job, was 
to build a bridge between different branches of science, was to promote the use of a 
common language in the search of one objective, in this case accurate tropical forest 
mapping. 

I hope that this thesis will contribute in fulfilling the information needs, reducing our 
ignorance about the tropical forest and benefit the conservation and the management 
of the tropical forest. 
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Introduction 

INTRODUCTION 

1.1 PROBLEM DEFINITION 

Tropical rain forests cover, nowadays, six percent of the earth land surface (8.5 
million square kilometres) which is just over half of the cover existing not long ago 
(14 million square kilometres). The deforestation rate in the last few years is been 
calculated at around 142.000 square kilometres per year [FAO, 2001]. The rapid 
decrease of the tropical cover into secondary forest or pastures or into degraded 
forest is of great concern for environmentalist, for the countries and for the local 
inhabitants. The great extensions of tropical forest with high diversity of soils, 
landscapes, niches and biological species attacks the attention not only of 
naturalists, but also of logging and mining companies which extract resources, 
changing the cover and the soils forever. 

The tropical forest is an integral part of the Earth's life support system and plays an 
important role in the regulation of climate, hydrological and carbon cycles and in the 
maintenance and conservation of tropical soils. The rain forest with complex root 
and canopy structures is able to regulate water supplies and to regulate local and 
global climate. In addition, tropical rain forests are among the Earth's most complex 
ecosystems and have large bio-diversity. The functioning of this ecosystem and the 
significance of its genetic resources are still not well understood. In terms of bio­
diversity Latin America is perhaps the richest region in the world followed by 
Southeast Asia. For instance Colombia possesses an estimate of 25.000 plant 
species, which is the same number found in Southeast Asia in an area four times 
larger than the Colombian territory [Beazley, 1995]. The ecosystem is the result of 
the complex interactions of species occurring in different densities, creating a 
delicate balance that once broken can lead to extinction of many of the living links. 
Another important characteristic of the tropical rain forests is the large economic 
value as a major source of timber and non-timber products, and as a source of land. 
Large areas are converted into forest plantations, arable land and pastures or are part 
of transmigration programs of the tropical countries. In addition illegal and legal 
logging activities are far from being controlled despite the efforts of international 
agreements and environmental politics. 

The Amazon is the greatest extension of tropical forest existing on earth. Covering 
more than one third of the South American region (six million square kilometres) is 
crossed by the Amazon river with more than 1000 tributaries holding more than one 
fifth of the earth's fresh water. It is more than an immense tropical forest. It is a 
living entity that interacts with the atmosphere and has a very important role in the 
water and carbon cycles of the region. We know so little about the complex 
interactions going on in that immense biophysical net, that much more energy must 
be placed into the understanding of those processes and their relevance on global 
climate. In addition we know that at local and regional level the proper management 
of the Amazonian forest will assure the maintenance of the bio-diversity, of fresh 
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water supplies and of timber and non-timber forest products. The proper 
management of the area is of great importance in the economy of many local 
communities and in the economy and development of the Amazonian countries. 

Each Amazonian country faces different problems but in general all countries face 
colonisation-settlement processes accompanied by unsupervised cattle ranching and 
agricultural activities, in many cases of illegal crops. In the Colombian Amazon an 
annual deforestation rate of about 6000 km2 per year has been calculated, especially 
in the forest near to the Andes mountains, in general as a consequence of the 
increasing agriculture for illegal crops followed by extensive cattle ranching. 
Important world natural treasures like the Macarena Mountains or the Andean-
Amazonian forest at the foot slopes of the Andes are in permanent threat. The rapid 
change of forested lands into pastures and later into bare degraded soils is changing 
the ecosystems and loosing unspeakable biological resources that will be gone 
forever. Before we will understand the relevance and richness of the Amazon 
territories, it will be destroyed for the short-term profit of few, loosing the social 
benefits for the humanity and the balance of the earth ecosystems, forever. At 
present the conservation of pristine areas is happening only in the few Amazonian 
Natural Parks and hopefully will represent the vast bio-diversity in that land. 

Ignorance, over the land and the ecosystems, is one of the important causes for the 
bad management and mistreating of the forest, allowing people and governments to 
take sometimes very imprecise decisions. Areas so extensive and poorly accessible 
like the Amazon basin seem to be remote and inhabited for people at the central 
governments. They see that vastness as empty territories full of resources that can be 
the short-term solution for social problems like poverty and unequal land ownership 
that affects great part of the so called 'third world' countries. A direct consequence 
of these problems is the lack of agricultural land for great part of the population 
forcing people to move and colonise the forest, using, in most of the cases, 
inappropriate and unsustainable techniques that destroy the ecosystems forever. 
Once the trees have been cut down and the soil has been eroded there is little chance 
that the forest will regenerate satisfactory. Instead degradation processes start which 
are the beginning of extensive ranching activities that end up in desertification 
processes. 

In addition the increasing demand for tropical timber and the intensive demand for 
beef cattle, by industrialised countries, puts a lot of pressure and force the tropical 
countries to overexploit their natural resources in order to pay the increasing 
international debts. If countries, governments and local entities get more conscious 
of the importance of the tropical forest ecosystem and get to know more about its 
effect on global climate processes, diversity and fragility, perhaps in common 
accordance with the actual inhabitants, they will reach levels of understanding and 
make proper decisions over the management. 
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The lack of accurate updated spatial information over the extended territories is a 
cause for misinterpretation and bad management. Maps, if available, are usually two 
or three decades out of date and large changes in the land cover can hardly be 
detected on time. The permanent availability of spatial information regarding 
ecosystem distribution, bio-diversity distribution, seasonal flooding, areas of 
deforestation, areas of regeneration, extension of grassland boundaries, penetration 
roads, and mining activities for instance, can help in the development of 
management plans and can help the enforcement of laws and regulation over the 
forest. The importance of the establishment of monitoring systems at regional or 
national level could help the governments to take more rational and adequate actions 
and decisions over the ecosystems. 

Due to the actual deforestation and degradation occurring in the tropical forest, 
accurate updated data on the complexity, extent, and cover changes occurring is 
needed for several purposes: 

1) As an input for climate and water balance studies and modelling. 
2) For selection and monitoring of forest reserves and of environmentally sensitive 

areas, the latter related to mining and selective logging activities in areas under 
sustainable management. 

3) In new settlement or colonisation areas data on land cover (change) and land 
degradation processes are needed for land use planning and development of 
sustainable land use management. 

Hence, an urgent need exists for accurate data on the actual tropical forest extent, 
deforestation, forest structure, regeneration and diversity. The availability of 
accurate land cover maps and tropical forest types, and the possibility to update 
these maps frequently, is of great importance The development and success of 
monitoring systems will depend in great part on the accuracy and temporal 
resolution of the produced maps. For areas like the Amazon the use of optical 
remote sensing systems as the source of information is impeded by the permanent 
presence of clouds, which affect the interpretation and the accuracy of the 
algorithms for classification and map production. In recent years much research 
focused on the use of Synthetic Aperture Radar (SAR) to study tropical rain forest 
has been done. The capabilities of radar systems to acquire cloud free images and 
the penetration of the radar waves into the forest canopy make radar systems 
suitable for monitoring activities and provide additional and complementary data to 
optical remote sensing systems. Information regarding forest structure, forest 
biomass, vegetation cover and flooding can be associated with radar images because 
of the typical wave-object interaction properties of the radar systems. 

In this thesis new algorithms for the classification of radar images and the 
production of accurate maps are presented. The production of specific maps is 
studied by applying the developed algorithms to two different study areas in the 
Colombian Amazon. The first one is the area of San Jose del Guaviare, located at 
the boundary between the natural savannas and the Colombian Amazon. 

3 



Polarimetric Data for Tropical Forest Monitoring 

Colonisation processes had occurred in the area since the late 50's and changes in 
the land cover are very dynamic. The encroaching into the forestland is being 
promoted by the increasing cultivation of illegal crops followed by extensive 
ranching. The second area corresponds to a 'pristine' natural forest located in the 
middle Caqueta river, inhabited by indigenous tribes that since recent times have the 
legal control over their lands. The diversity of landscapes in this area makes it a 
very interesting one to study the variety of ecosystems possibly occurring in the 
Colombian Amazon. 

1.2 BASIC INFORMATION OVER RADAR SYSTEMS 

Radar is an active remote sensing system that transmits its own electromagnetic 
wave signal in a narrow beam in a direction of interest. Objects occurring in the area 
illuminated by the radar, depending on their size, shape and orientation relative to 
the wavelength and look direction of the beam, interact with the wave and produce 
multiple reflections, changing the properties of the incidence wave. Part of the 
incident energy, after interaction with the objects, returns to the system 
(backscattered waves) and is recorded. In that case the object of interaction is said to 
be detected. Table 1.1. shows technical specifications of the transmitted radio 
waves. 

Table 1.1: Radar bands for earth observation with corresponding wavelength and frequency. 

Band 
denomination 
X 
C 
L 
P 

Wavelength (cm) 

3.0 
5.6 
24 
65 

Frequency (Hz) 

10 GHz 
5.3 GHz 
1.25 GHz 
440 MHz 

A system can transmit and record single polarisation or can be a polarimetric 
system. Single polarised systems transmit and receive vertically (V) or horizontally 
(H) polarised electromagnetic energy and record the amplitude of the corresponding 
polarised component. Transmitted and received waves can be of the same or 
different type and then are referred to as a like or as a cross-polarised system. 
Conventionally a radar system transmitting V-polarisation and receiving H-
polarisation will be noted as radar with HV polarisation. Polarimetric radar systems 
transmit both H- and V- polarised waves and record the amplitude as well as the 
phase of the received H- and V- polarised component. 

As expected the resulting S AR data files are large sets of raw data, therefore special 
compact formats must be designed to transfer the information to the users. For 
instance the Jet Propulsion Laboratory (JPL) of NASA processes the polarimetric 
images in the so-called Stokes matrix format. Polarimetric properties of targets can 
be described in terms of parameters (or extractions) from the elements of that 
matrix. These parameters can be of two types. The incoherent parameters (power or 
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intensity measurements) and the coherent parameters (those that require information 
on the phase [Boerner et al, 1998]. 

The capacity of isolated objects to reflect radar waves is expressed by an incoherent 
parameter known as the radar cross section (sigma, a), which is a function of the 
radar wavelength and the object characteristics (size, shape, orientation and 
composition). For distributed objects (i.e. land surface), a depends on the resolution 
cell, larger cells may give more backscattered power. The parameter that describes 
the reflectivity of homogeneous land areas independent of the area of resolution is 
called the 'differential radar cross section' (sigma nought, a0). An associated 
measure is the 'radar cross section per unit projected area' (gamma, y). These are 
known as the intensity parameters [Hoekman, 1990]. 

The descriptions of the coherent parameters include information contained in the 
relative phase of the scattering matrix elements and in the correlation between the 
elements. A commonly used parameter is the complex co-polarised correlation 
coefficient (p HH-VV) from which two parameters can be derived: the coherence 
magnitude and the polarimetric phase difference. Detailed descriptions can be found 
in [Boerner et al, 1998]. 

Another important technical inherent characteristic of a radar system is the image 
speckle. Speckle is the result of the coherent illumination (transmission of 
electromagnetic waves with the same frequency and phase) of the SAR systems. 
Speckle gives the images the so-called 'salt and pepper' or 'grainy' appearance. 
Speckle is caused by the interference among backscatter waves of the individual 
scattering elements (scatterers) that are present within one resolution cell. 
Interference between echoes produced by the scatterers can be constructive or 
destructive depending on the phase and the amplitude and therefore result in a 
higher or lower overall backscatter. Speckle obstructs the measurements of a single 
resolution cell. In order to characterise objects with radar it is important that 
measurements are accurate estimates of either the mean power or the mean 
amplitude. The measurement of a single resolution cell is called a look. The 
accuracy of the radar measurements can be improved by the linear averaging of 
measurements corresponding to cells adjoining in the azimuth direction (direction of 
flight). An image with averaged adjoining cells is called a multi-look image. In 
general it can be said that multi-look images have less backscatter fluctuations and 
therefore the effect of speckle is less evident. The accuracy of the mean amplitude or 
power estimations will increase with an increase in the number of looks. A large 
number of looks reduces the fluctuations in the radar measurements and improves 
the radiometric resolution [Hoekman, 1990; 1991]. 

The interactions of the radar waves with the objects result in changes in the 
amplitude and/or phase of the returned waves and may be object specific. Therefore 
the study of the wave characteristics like power, amplitude and phase is of great 
importance in the interpretation of the radar images. The processes involved in the 
interactions of the waves with the object (i.e. forest) are mainly transmission, 
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reflection (scattering) and absorption. The reflection and the transmission of radar 
waves into a medium like the forest are repetitive and finite processes since there is 
a loss of power in the direction of propagation. The amount of power transmitted, 
reflected and absorbed is a function of the dielectric constant of the objects present 
in the media. Radar backscatter increases as a function of water content. Backscatter 
also depends on wave parameters such as wavelength, polarisation, incidence angle 
and orientation of the objects and on terrain parameters such as soil roughness, soil 
moisture content and vegetation structure. Within the parameters on the vegetation 
structure that affect the radar return one can consider the dielectric properties of 
individual components (i.e. leaves, trunks, branches), orientation distribution, shape, 
size and density of the individual components and the openness and thickness of the 
canopy. For more specific information see [Hoekman, 1990; Lillesand and Kiefer, 
1994; Van der Sanden, 1997]. 

Theoretical models describing the interactions of radar waves with the forest have 
been developed and are still a topic of research. These models consider the effects of 
general canopy characteristics, and terrain characteristics to predict radar return 
values. These models describe the forest as a set of continuous horizontal layers and 
a soil surface and model tree trunks and branches as dielectric cylinders and the 
needles and leaves as dielectric ellipsoids or discs. In this models the scattering 
behaviour of the waves is decomposed according to wave object interaction models. 
The most common interaction processes, according to [Ulaby et ah, 1990], are: 
1) Surface and volume scattering from the forest canopy. 
2) Surface scattering from the ground. 
3) Surface scattering from the tree trunks. 
4) Trunk to ground and ground to trunk interactions (double bounce) and 
5) Ground to crown and crown to ground interactions. 
Different types of models have been developed and validated using SAR data 
collected in different locations. But because of the high degree of complexity in the 
interaction, inversion of scattering models for estimations or predictions of specific 
forest parameters, such as biomass, is still not possible. Nevertheless models are 
interesting tools to enhance the understanding of the complex interactions occurring 
between the forest and the radar waves. A complete review on radar models can be 
found in [Simonett et ah, 1987; Richards, 1990]. Example of scattering models are 
e.g. the Michigan Microwave Canopy Scattering model (MIMICS) [Ulaby et al, 
1990] and the University of Texas at Arlington Radiative Transfer CANopy model 
(UTARTCAN) [Karame?a/., 1992]. 

1.3 REVIEW ON THE USE OF RADAR IN TROPICAL FOREST 
STUDIES 

Many studies have assessed the use of different systems for diverse applications for 
tropical forest management. A review on the use of radar for ecological applications 
presents specific algorithms and classification procedures for land cover 
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classification, measuring above ground biomass and delineation of wetlands and 
flooding, is given by [Kasischke, et al, 1997]. A detailed analysis of radar data to 
support tropical forest management in the Guyana forest, using polarimetric and 
textural information to assess images for specific information requirements at 
global, national and local scales is given by [Van der Sanden, 1997]. 

At continental scale, mosaics of tropical rain forests have been recently created 
using JERS-1 SAR images [De Grandi et al, 1999; Siqueira et al, 2000; Rosenqvist 
et al, 2000]. At a larger scale researchers have focused their studies on the 
development of inversion algorithms, segmentation and classification techniques for 
polarimetric and interferometric SAR images and created a variety of types of 
tropical rain forest maps [Oliver, 2000; Hoekman and Quinones, 2000; Hoekman 
and Varekamp, 2001; Varekamp and Hoekman, 2001]. In addition new models for 
the decomposition of polarimetric signals of forest vegetation were developed 
[Freeman and Durden, 1998]. An overview of decomposition theories was 
presented by [Cloude and Portier, 1996]. 

The use of radar images in the Colombian Amazon date from 1973 when the X-
band Synthetic Aperture Radar GEMS (Goodyear Electronic Mapping System) 
surveyed the extensive territory. The PRORADAM project created for the first time 
geological, soil and forest type maps, scale 1:500,000 of the Colombian Amazon. 
The extended legend and maps constituted one of the first sets of information ever 
available for the Colombian Amazon [PRORADAM, 1979]. In recent years images 
from the South American Radar Experiment (SAREX-92), the AirSAR South-
American deployment, the SIR-C Radar Shuttle Mission, and from the ERS-1 and 
JERS-1 systems have been taken over the Colombian Amazon. A systematic study 
on the use of ERS radar data for implementing a monitoring system shows that ERS 
data can be used to detect changes on vegetation cover types and to some extent 
mapping land cover types. Classification accuracies obtained in that study range 
from 40% for secondary vegetation to 80-90 % for pastures [Bijker, 1997]. 

At present, spaceborne SAR systems of different bands and polarisations like ERS-1 
(C-VV), ERS-2 (C-VV), JERS-1 (L-HH) and RADARS AT (C-HH) have been 
successfully deployed and have taken images over the globe. New additional 
satellite systems with new bands and polarisations are being developed and are 
expected to be operationally very soon like RadarSAT-2 (C-band polarimetric), 
ALOS-PALSAR (L-band polarimetric) and EnviSAT (C-band multi-polarisation). 
In addition a P-band satellite is being assessed for applications on biomass mapping 
and is still under assessment for future systems. Considering that new band and 
polarisations are entering the picture of the applications and that a large amount of 
data will be available in the future it is of great interest to continue the development 
of the radar decomposition and classification algorithms for specific applications. 

A multi-frequency polarimetric system like the AirSAR (C-, L- and P-band fully 
polarimetric), allows the evaluation of radar characteristics. Wavelength parameters, 
speckle and intrinsical polarimetric characteristics such as the polarimetric phase 

7 



Polarimetric Data for Tropical Forest Monitoring 

difference can be used as experimental data to assess the capabilities of the 
polarimetric radar for specific applications. In addition a system like AirSAR (with 
effectively 15 independent channels) is ideal to simulate results as produced by 
simpler systems. 

1.4 OBJECTIVES 

In the initial stages of this research existing decomposition algorithms were applied 
to the images to relate the information to available field data. In general the 
decomposition algorithms did not reflect all the variation observed in the field 
especially in the areas of pristine forest. Problems were specially related to the fact 
that display of decomposed images can not show all the available variation. It was 
necessary to have a classification algorithm to combine all the information existing 
in the 15 channels. Speckle was found in the literature as a factor affecting the 
classification. According to the characteristics of the speckle it is expected to be a 
relevant factor to consider in a classification algorithm. In addition the comparison 
of field derived vegetation structure data and the signatures of the polarimetric 
system was expected to give further insights in the wave-forest interaction models. 
The application of the developed algorithm to the AirSAR C, L P polarimetric 
images at two study sites in the Colombian Amazon would allow the assessment of 
the images for specific applications. 

1.4.1 General 
• Assessment of polarimetric C, L and P radar data to create accurate maps for 

monitoring and resources assessment of tropical rain forest.ln general new and 
robust decomposition, classification and mapping algorithms for radar systems 
are needed. 

1.4.2 Technical Aspects 
• Development of classification algorithms to classify polarimetric images The 

statistical description of polarimetric images in terms of backscatter y, 
polarimetric phase difference <fi, and polarimetric correlation |p|, allow better 
interpretation of the images in terms of backscatter physical mechanisms. A 
new classification algorithm that used the above mentioned polarimetric 
parameters is expected to combine the information contained in the available C, 
L and P polarimetric images and allow the maximum differentiation between 
classes. The effect of the speckle is included in the classification and its effect 
on the classification accuracy of images can be evaluated. 

• Development of mapping (image processing) algorithms to create maps of 
natural tropical forest, out of classified polarimetric images.In radar images 
the presence of speckle, texture, relief and drainage patterns may have a strong 
effect on the classification of an image. Including the effect of these parameters 
in the classification and mapping of the radar images can be one way of 
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overcoming the negative effects. Previous existing segmentation processes like 
the one proposed by [Oliver and Quegan, 1998] fail to generate appropriate 
boundaries in areas of natural tropical forest where transitions between two 
forest type are not very clear, which is a common natural state in regenerating 
forest. In addition texture analysis also does not seem to be appropriate in areas 
where texture is almost homogeneous, being the case of many natural tropical 
forest areas [Van der Sanden, 1997]. 

• Assessment of physical scattering models to explain classification capabilities 
based on theoretical scattering mechanisms So far an unsupervised 
classification of scattering behaviour in radar polarimetric data is being 
associated with certain vegetation structures [Van Zyl, 1989]. Information 
contained in the complex coherence has not been completely explored in 
relation to forest structure. In this study a detailed analysis of the complex 
coherence elements in relation to forest structural parameters and terrain 
conditions will be made. Conclusions are expected to bring new insights. The 
effect of speckle in the accuracy of the complex coherence parameters will also 
be studied. So far this characteristic has been ignored in the literature. 

1.4.3. Regarding Applications 
Tentatively, it may be assumed that the AirSAR system may fulfil information needs 
at a scale of 1:50,000. The usefulness of certain combinations of frequency bands 
and polarisation, polarimetry, the effect of incidence angle #, and the effect of 

speckle have to be evaluated for different types of information needs. Though 
spaceborne SAR may well be capable of providing relevant information in the near 
future, it is not yet clear how such a SAR should be designed in terms of, for 
example, wave parameters and resolutions. Clearly the optimal design will depend 
on specific priorities in information needs. AirSAR images acquired over two study 
sites at the Colombian Amazon were used to test the developed algorithms for 
different types of applications. 
• Application of developed algorithms for land cover types mapping and cover 

change monitoring. For the colonisation area of San Jose del Guaviare the 
classification algorithms differentiate four land cover classes. Classification 
accuracies using field observed plots are used to assess the performance of the 
algorithm. 

• Application of developed algorithms to map forest structural types, forest types 
and flooding conditions. Study the relation between forest structure and radar 
signals. For the pristine tropical forest area of Araracuara where there is a high 
diversity of forest types, the existing landscape ecological map [Duivenvoorden 
and Lips, 1991] is used for interpretation and study of radar images. Algorithms 
are tested in order to generate forest type and forest structural maps (units 
combining flooding, soil and forest structure). The capabilities of the radar can 
also be assessed to distinguish flooded areas from non-flooded areas. Field 
measured plots are used to assess the performance of the classification. 
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Application of developed algorithms for biomass classes mapping Direct 
inversion of radar data for biomass estimations is restricted to certain biomass 
levels due to saturation problems and is affected by terrain conditions and forest 
structure [Imhof, 1995]. In this thesis the effect of forest structure on the 
relationship between radar values and biomass is studied. Radar data 
corresponding to field-measured plots of different forest structure and terrain 
condition are analysed. For a systematic analysis of the effect of terrain 
conditions (flooding and terrain roughness) and forest structure on biomass 
estimations, use is made of the existing UTARTCAN (radiative transfer) 
scattering model [Karam et ai, 1992]. Results are expected to give alternatives 
for accurate biomass mapping. 
Assessment of existing radar spaceborne systems for specific applications and 
generation of insights on system characteristics required for the design of new 
SAR system according to information needs.The need to develop new dedicated 
spaceborne SAR systems will not be very high when sensors already planned 
for new spaceborne SAR missions, such as the C-band ASAR on ENVISAT, 
RADARSAT-2 or the polarimetric L-band 'ALOS PALSAR', can satisfy the 
information needs cost-effectively. 
Evaluation of the performance of P-band. The use of P-band SAR has been 
proposed for its supposedly superior capabilities for biomass assessment and 
deforestation mapping. Most study results to date indicate P-band's capability, 
notably the HV-polarisation, to estimate biomass levels up to 150-200 ton/ha 
(Le Toan et ai, 1992, Ranson and Sun, 1994; Kasischke et ai, 1995; Dobson et 
al., 1992; Ranson and Sun, 1997). By combining P-band data with L- and/or C-
band data even higher biomass levels may be reached for certain forests. The 
capabilities of P-band can also be evaluated for other applications considered in 
this study. 

1.5. AirSAR DATA ACQUISITION AND STUDY SITES 

In the period of 25 May until 17 June 1993 NASA executed an airborne radar data 
acquisition campaign in Central- and South-America with the AIRSAR system. This 
campaign was named the "AIRSAR South American Deployment".The AIRSAR is a 
C-, L- and P-band fully polarimetric system. It is operated from the NASA/Ames 
DC-8 aircraft at an altitude of roughly 8000 m. More detailed system specifications 
can be found in literature (e.g.: van Zyl et al., 1992). The main objectives of the 
AIRSAR deployment were, as in previous campaigns, the support of scientific 
research and, in particular, coverage of SIR-C/X-SAR sites. 

The campaign was executed in a large number of countries. In the original plan 
Brazil was included, however, necessary clearances could not be obtained in time. 
Since no data could be acquired over Brazil then the study sites of the TROPENBOS 
foundations in Colombia and Guyana were the only ones to represent the tropical 
rain forest of the Amazon basin. The present study makes use of the two selected 
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areas in the Colombian Amazon. Radar studies on the Guyana site can be found in 
previous research [Van der Sanden, 1997]. 

Out of 7 recorded tracks in the Colombian Amazon, five AirSAR images [Van Zyl 
et al, 1992] have been processed for each of the study sites. Scenes from three 
tracks were selected for processing. Table 1.2 shows the specific information over 
the tracks and the processed frames. The data were processed on the JPL frame 
processor version 3.56, which includes absolute calibration. The image frames were 
received in a 16-look compressed Stokes matrix format. Pixel spacing of the 
imagery is 6.66 m in range and around 8.20 m in azimuth. The incidence angle 

o o 

varies from about 20 to 60 . It is noted that the data quality and in particular the 
absolute calibration were not in accordance with well calibrated data. As an 
example of these problems backscatter levels for tropical rain forests in C-band with 
VV-polarisation are in the range of -3 to -5 dB for AirSAR, while the ERS-1 
windscatterometer, a well-calibrated instrument, shows a very stable level in the 
range of -8 to -9 dB for Amazonian rain forests for this incidence angle range 
(Wismannefa/., 1996). 

The first study site is San Jose del Guaviare, a colonisation area in the northern 
border of the Colombian Amazon forest with the natural savannahs (2.5° N, 
72.5°W), south of the Guaviare river. In this area the natural cover is a mosaic of 
tropical forest of intermediate biomass and natural edaphic savannahs. Continuous 
changes in the vegetation cover occur due to the colonisation process and to the 
increase in agricultural activities and extensive cattle ranching. Natural forest also 
suffers from degradation and decrease in standing biomass due to selective cutting 
activities. A more detailed description of the processes occurring in the area can be 
found in Chapter 2. 

The second study site corresponds to a pristine natural forest in the middldCaqueta 
river (0°40'S, 72°15 W). It is a region of high landscape diversity and therefore very 
rich in terms of species bio-diversity. In this area the forest is in relatively good 
condition with only few human activities mainly in areas near the river where 
traditional local indigenous communities practise shifting cultivation. Extensive 
description of the study area can be found in Chapter 3. 

In both study areas detailed field observations were made For the area of Guaviare 
field observations on vegetation and terrain characteristics were made at 123 
locations in the AirSAR images. With the help of the land cover map, aerial 
photography acquired in 1990, airborne radar data acquired during the SAREX 
campaign of ESA in 1992 [Hoekman and Van der Sanden, 1994; Wooding and 
Attema, 1994] and terrain knowledge, a total of 778 areas of at least 50 pixels could 
be delineated, covering the four main land cover classes. In addition detailed 
measurements of structural and physiognomic characteristics were made for 13 plots 
of primary forest and 10 plots of secondary forest, each 1,000 m2 in size. 
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Table 1.2 Overview of AirSAR recorded tracks in the Colombian Amazon, dates of acquisition and 
processed images. 

Flight date 

31may93 
31may93 

31may93 

31may93 
31may93 

31may93 
31may93 

Run name 

SJ-Guaviare-123-1 
SJ-Guaviare-303-1 

SJ-Guaviare-123-2 

Araracuara-156-1 
Araracuara-336-1 

Araracuara-048-1 
Araracuara-228-1 

HDDC number 

93018/3 
93018/3 

93018/3 

93018/3 
93018/3 

93018/3 
93018/3 

Location 

Guaviare 
Guaviare 

Guaviare 

Araracuara 
Araracuara 

Araracuara 
Araracuara 

Processed frames 

303-1(A) 
303-l(B) 
303-l(C) 
303-l(D) 
303-l(E) 

336-l(A) 
336-l(B) 
336-l(C) 
336-l(D) 
048-1(A) 

For the area of Araracuara the fieldwork was designed to capture the variation 
found in the landscape ecological map, existing for the area [Duivenvoorden and 
Lips, 1991], as well as in the radar data. Consequently, selected plot locations cover 
a wide range of forest structure and flooding conditions. Detailed field observations 
were made at 23 plots in the 27°-60° incidence angle range. With the help of the 
landscape ecological map, aerial photography acquired in 1987 and terrain 
knowledge, a total of 878 additional areas could be delineated, representing 15 
classes. These well represent all main forest types and the variation in flooding, 
drainage and soil characteristics in a 24°-61° range of incidence angles. Detailed 
measurements of structural and physiognomic characteristics were made at 23 plots 
of primary forest, each 1,000 m2 in size, using the same methodology as for the 
Guaviare site. A detailed description of that methodology can be found in Chapter 5. 

A database of averaged Stokes scattering elements was created from the radar data 
extractions from delineated areas over specific land cover and forest types classes. 
These areas can be grouped according the legend of the map to be produced. 

1.6 NEW DEVELOPMENTS INTRODUCED IN THIS THESIS 

In this thesis a new fully polarimetric multi-band approach for classification is 
introduced. The method introduces probability density functions (pdf) for multi-look 
samples of a certain class, for intensity, phase difference as well as coherence 
magnitude. The effect of speckle is introduced in the simulated classification by 
using the field averaged values and random derived samples from the theoretical 
distributions, increasing the number of samples to be classified and resulting in 
wider distributions. The Kolmogorov-Smirnov tests of fit can be used to test the 
deviations from the model of the new speckle included distributions. The likelihood 
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classification of an observation to be classified as a certain class is the product of the 
joint Gaussian distributions of the backscatter multiplied by the likelihood of the 
phase difference values and the likelihood of the correlation values. The confusion 
matrix, the overall classification accuracy and the confusion between pairs of classes 
can be calculated for each simulated classification. The evaluation of the simulated 
classifications is discussed in the context of the appropriateness of certain mission 
characteristics to meet current or foreseen information needs, considering the 
presently operational and proposed satellite radar systems. 

A new approach is proposed to interpret multi-frequency complex coherence 
numbers, how to link it with concepts of scattering mechanisms, physical 
backscatter models and number of independent samples. 

Problems related to radar data, such as speckle, texture and relief have to be 
considered in the radar classification and mapping. A new method based on iterated 
conditional modes (ICM) [Besag, 1986] is introduced to yield radar-derived maps 
The software developed to classify and create maps allows the user to change and 
adapt these variables according to the type of application and the system 
characteristics. 

The above mentioned new techniques are used in this thesis to assess theAirSAR 
images for different kinds ofapplications.The 15 channels of the polarimetric C-, L-
and P-band AirSAR images are used to assess the performance of different bands 
and polarisation combinations for the different applications. The calculation of the 
accuracy of the maps is considered of great importance for the establishment of a 
monitoring system. Each classification or map should be accompanied by an 
accuracy calculation in order to give a range of confidence, not only for scientific 
reasons but also for political and economical purposes. Global agreements like the 
Kyoto Protocol can benefit from accurate calculations or at least from results that 
can be handled with a certain level of accuracy. 

In this study four different types of maps are considered of importance for 
integrating in a monitoring system of the tropical forest A vegetation cover map, a 
flooding map, a forest structural map and a biomass map. Technical considerations 
and restrictions to create these maps, using radar images, are included. 

1.7. OUTLINE OF THIS THESIS 

This thesis is a compilation of articles published in, accepted by or submitted to high 
standard scientific journals. The first two articles contain the technical 
developments. Application of these developments can be seen in all the papers. Each 
paper includes a relevant introduction and background, depending on the specific 
subject and the corresponding conclusions. The different applications are expected 
to fulfil information needs over the Amazon and be useful for future applications. 
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In Chapter 2 a detailed description of the polarimetric classification algorithm is 
presented. A detailed study of the AirSAR images of the Guaviare site is made. 
Aspects like incidence angle dependence for each radar channel, considering the 
studied land cover types and the statistical description of the images according to the 
presented algorithm, are studied. The algorithm is applied to the Guaviare data and 
assesses the production of a land cover type map. Accuracies for this map are 
calculated for different combinations of bands and polarisations and different levels 
of speckle. In addition a biomass map is created by using the empirical relationship 
between radar values and biomass, and related to the land cover map to assess its 
accuracy. The section on application of results assesses the different combinations of 
bands for the distinctive pairs of land cover classes as examples of possible 
scenarios for land cover monitoring. This paper is already published [Hoekman and 
Quinones, 2000] 

In Chapter 3, the radar images of the Araracuara site are investigated. Incidence 
angle dependence of the backscatter parameters are studied for all classes, bands and 
polarisations. In addition the calculation of accuracies for complex coherence is 
introduced for different levels of speckle. A SAR derived legend for the structural 
forest type map is presented and explained in relation to the existing landscape 
ecological legend available for the area. The polarimetric algorithm is tested in the 
Araracuara site for the classification of structural types, flooding and forest structure 
according to the developed legend. Field observations and the available landscape 
ecological map for the area are used to simulate accuracies of classification. The 
Iterated Conditional Modes (ICM) method [Besag, 1986] is introduced as a 
mapping algorithm for radar images. Effects on the accuracy calculations after the 
application of the ICM method are presented. Also in Chapter 3 a new and complete 
description of the complex coherence is introduced. The new model describes the 
multi-frequency complex coherence making links with scattering mechanisms, 
physical backscatter models and number of independent samples (looks). This paper 
is already published [Hoekman and Quinones, 2002]. 

In Chapter 4 the possibilities and restrictions of creating biomass maps with AirSAR 
polarimetric images is investigated. Two approaches are proposed depending on the 
terrain conditions. For the Guaviare site an empirical relationship between biomass 
and radar data is presented. The second approach uses the already available forest 
type classification of the Araracuara site for the creation of a biomass map. 
Accuracies for different combinations of bands and polarisations are calculated for 
this new approach. The effects of flooding forest structure and biomass level are 
extensively analysed, using the complex multi-frequency coherence and the 
backscatter multi-frequency signature. This paper was presented at a conference 
[Quinones and Hoekman, 2002a] and submitted [Quinones and Hoekman, 2002b]. 

In Chapter 5 a theoretical and systematic study of the effects of flooding, terrain 
roughness and forest structure on biomass estimations is done using a scattering 
model (UTARTCAN). In order to evaluate the performance of the multi-layer 
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scattering model to predict backscatter values over tropical forest, use is made of the 
experimental data in both study sites. An interface model, called LIFEFORM is 
introduced for describing the layered tropical forest in terms of scatterers, as input 
for the UTARTCAN model. The analysis of the field data reveals some of the 
limitations of the scattering model to simulate radar values for the tropical forest. 
Nevertheless, despite the restrictions, simulations may still be used to evaluate 
systematically the effect of terrain conditions in biomass estimates. In order to 
evaluate the effect of terrain conditions on radar inversion for biomass estimations a 
theoretical inversion is done using the simulated radar data, including the effect of 
speckle. This paper is submitted [Quifiones and Hoekman, 2002c]. 

In Chapter 6, a comparison between the SAR derived map and existing maps for the 
Araracuara area is made. Accuracies for the forest structural, forest type and 
flooding maps are presented for different levels of speckle when using fully 
polarimetric data. Also data is presented before and after the application of the ICM 
method. In addition accuracies of the mentioned maps are presented for different 
bands and combinations of bands according to existing or coming radar systems. 
The effect of P-band is specially analysed. 
In Chapter 7 a summary of the thesis and general conclusions on the use of 
polarimetric radar for tropical forest classification and mapping are presented. 
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LAND COVER TYPE AND BIOMASS 
CLASSIFICATION USING AirSAR DATA FOR 
EVALUATION OF MONITORING SCENARIOS IN THE 
COLOMBIAN AMAZON. 

2. 1. INTRODUCTION 

Tropical rain forests cover large parts of the Earth's land surface. The significance of 
these forests, and the need for information, can be seen from several perspectives: 

(a) Tropical rain forests play an essential role in global hydrological, 
biochemical and energy cycles and, thus, in the Earth's climate; 

(b) Tropical rain forests are among the Earth's most complex ecosystems and 
have large biodiversity. The functioning of this ecosystem and the 
significance of its genetic resources are still not well understood; 

(c) Tropical rain forests are of large economic value as a major source of 
timber and other products, and as a source of land. Large areas are 
converted into forest plantations, arable land and pastures. 

An urgent need exists for accurate data on the actual forest extent, deforestation, 
forest structure and composition. These data serve several purposes. They are 
needed as input for climate studies, for selection and monitoring of forest reserves 
(with or without sustainable use) and monitoring of environmentally sensitive areas, 
the latter related to mining and selective logging activities in areas under sustainable 
management. In new settlement or colonisation areas data on land cover (change) 
and land degradation processes are needed for land use planning and development of 
sustainable land use management. Hence, the availability of accurate land cover 
maps, and the possibility to update these maps frequently, is of great importance. 

In this paper an attempt is made to assess the potential role of a spaceborne SAR 
component within a dedicated global forest monitoring system [Hoekman, 1997], by 
analysing experimental data from NASA's AirSAR airborne radar. Making an 
assessment of specific information needs that can be fulfilled by such a system is not 
a straightforward procedure in a period of time where the relevant technologies are 
advancing fast and new policies for sustainable forest management and nature 
conservation are under development. Tentatively, it may be assumed that, at map 
scales of 1:100,000 and smaller, accurate and up-to-date maps are required to fulfil 
several types of information needs. Processes of deforestation, conversion of forests 
to other types of land cover, secondary forest extent and land degradation will be 
some of the important types of land cover dynamics under consideration. Though 
spaceborne SAR may well be capable of providing relevant information in the near 
future, it is not yet clear how such a SAR should be designed in terms of, for 
example, wave parameters and resolutions. Clearly the optimal design will depend 
on specific priorities in information needs. On the other hand, the need to develop 
new dedicated spaceborne SAR systems will not be very high when sensors already 
planned for new spaceborne SAR missions, such as the C-band ASAR on 

17 



Polarimetric Data for Tropical Forest Monitoring 

ENVISAT, RADARSAT-2 or the proposed polarimetric L-band 'LightSAR' of 
NASA, can satisfy the information needs cost-effectively. The use of P-band SAR 
has been proposed for its supposedly superior capabilities for biomass assessment 
and deforestation mapping. Most study results to date relate to temperate forests and 
indicate P-band's capability, notably the HV-polarisation, to estimate biomass levels 
up to 150-200 ton/ha [Le Toan et al, 1992, Dobson et al, 1992, Ranson and Sun, 
1994, Kasischke et al., 1995, Ranson and Sun, 1997]. By combining P-band data 
with L- and/or C-band data even higher biomass levels may be reached for certain 
forest types [Ranson and Sun, 1994, Kasischke et al., 1995]. For tropical forests far 
less studies have been conducted. Imhoff [Imhoff, 1995], studied broadleaf 
evergreen forests in Hawaii and temperate coniferous forests and indicates saturation 
levels for biomass, for both types of forests, of 100 ton/ha in P-band and 40 ton/ha in 
L-band. Rignot et al. [Rignot et al., 1995] conducted a study in the Amazon forest of 
Peru and show P-band's capability to differentiate biomass classes in excess of 200 
ton/ha. 

Technical problems make the use of P-band questionable: P-band radiation is subject 
to Faraday rotation in the ionosphere, there is no International Telecommunications 
Union (ITU) frequency band allocation (as yet) for radar remote sensing at P-band 
and band width limitations will prevent acquisition of data with both high 
radiometric and spatial resolution. 

The results of research conducted at a well surveyed test site of the 'Tropenbos' 
foundation in Guaviare, a colonisation area at the edge of the Colombian Amazon, 
may provide some insight into the above issues. In May 1993, the AirSAR collected 
fully polarimetric C-, L- and P- band data [NASA, 1993] in this area, thus enabling 
evaluation of the utility of different wave parameters for different types of 
information needs. In this paper the results of an analysis of land cover type and 
biomass classification capabilities for a single frequency band (polarimetric or 
single/multi-polarisation) and for combinations of frequency-bands (polarimetric 
and/or single/multi-polarisation) are presented. Theoretical distributions describing 
single-point statistical polarimetric backscatter behaviour are proposed and fitted 
against experimental data using Kolmogorov-Smirnov tests of fit (section 2.4). The 
results are discussed in the context of an evaluation of the appropriateness of certain 
mission characteristics to meet current or foreseen information needs, considering 
the presently operational and proposed satellite radar systems. In this context the 
word scenario is adopted for a critical set of mission characteristics and approaches 
in relation to a set of predefined information needs to be met (section 2.5). Both as 
an example and as a validation of the overall approach, a land cover map resulting 
from AirSAR data classification is presented. In addition some direct applications of 
the results, such as a biomass class map, are discussed (section 2.6). 

2.2. BRIEF DESCRIPTION OF THE GUAVIARE TEST SITE 

The study area is located in the Colombian district of Guaviare (2.5°N, 72.5°W), 
south of the Guaviare river corresponding to the natural boundary between the 
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Amazon rain forest and the savannahs of the Llanos Orientales to the north (Fig.2.1). 
The total annual rainfall fluctuates around 2600 mm with a maximum in May and a 
dry period from December to March. The natural land cover mainly consisted of 
tropical rain forests and edaphic savannahs, but due to the process of colonisation, 
extensive parts of the primary forest have been cut and converted into cropland, 
pastures or secondary re-growth (fallow). Part of the remaining forest is affected by 
human influence, meaning that valuable trees have been extracted and that the 
original structure of some of the forest fragments has been affected. Pasture for 
cattle breeding is the dominant land use. After cutting and burning of primary or 
secondary forests, annual and perennial crops (mainly maize, cassava, plantain) and, 
subsequently, forage grasses (mainly Brachiaria decumbens) are grown. Pastures 
may seriously degrade and are sometimes left to bush fallow for a certain period. 
The processes of deforestation and land cover change are still going on, resulting in 
a continuous forest fragmentation, which makes this area very interesting for 
monitoring studies. 

The most important vegetation cover types in the study area are (1) primary forest, 
(2) secondary forest re-growth, (3) recently deforested (burnt) areas and (4) pastures. 
Recently deforested areas are areas where forest has been recently cut and the 
remnants have been burnt after a short period of drying. Usually crops are planted 
shortly after burning, while big branches, trunks and stumps of big trees remain 
present for some time. In addition some natural savannahs (5) and bush lands (6) 
occur in the westernmost part of the test area. The location and extent of these two 
classes are known, and are not subject to significant change over time. The latter two 
classes are excluded from the results presented in this paper since the first four 
classes mentioned above suffice to evaluate monitoring scenarios. 

2.3. DATABASE 

Five AirSAR images [van Zyl et al, 1992] have been processed, covering a strip of 
8 x 40 km of flat to gently undulating terrain. These are in 16-look Stokes scattering 
operator matrix format with a slant range pixel spacing of 6.66 m in range and 
around 8.20 m in azimuth. The incidence angle (#,) varies from about 20° to 60°. 
For the identification and description of the land cover types, field observations on 
vegetation and terrain characteristics were made at 123 locations 
in the 45°-60° incidence angle range. With the help of the land cover map [Andrade 
and Etter, 1987], aerial photography acquired in 1990, airborne radar data acquired 
during the SAREX campaign of ESA in 1992 [Hoekman and van der Sanden, 1993, 
Wooding and Attema, 1993] and terrain knowledge, a total of 778 areas of at least 
50 pixels could be delineated, covering the four land cover classes in a 25°-60° 
range of incidence angles. 
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2°34' N 

Figure 2.1 The study area is located near the town San Jose del Guaviare in the Colombian district 
Guaviare, south of the Guaviare river corresponding to the natural boundary between the Amazon rain 
forest to the south and the savannahs of the Llanos Orientales to the north 

Detailed measurements of structural and physiognomic characteristics were made 
for 13 plots of primary forest and 10 plots of secondary forest, each 1,000 m2 in size. 
In addition, vegetation characteristics were collected for 5 plots of grassland with 
varying degrees of bush invasion. An allometric equation calibrated for the 
(Colombian) Amazon [PRORADAM, 1979] was applied to estimate (total above-
ground wet) biomass of the plots of primary forest and secondary forest, using trunk 
diameter and height to the first living branch. The biomass of the pasture plots was 
estimated by cutting and weighing all vegetation within some small sample areas 
within these plots. 

A database of plot averaged Stokes scattering operator matrix elements was created, 
which forms the basis for the analysis in this paper. 
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2.4. APPROACH 

The usefulness of certain combinations of frequency bands and polarisation, 
polarimetry, the effect of incidence angle 6t and the effect of speckle have to be 

evaluated for different types of information needs. This was done in several steps, 
which will be described briefly. 

2.4.1. Variation with incidence angle 

In this data set the incidence angle dependence of the backscatter parameter y 

(y=(j /cos(6>;); a is the differential radar cross section) is low for the 35°-60° 

incidence angle range, for all land cover classes and frequency bands. It was 
decided, arbitrarily, to develop a classifier using field averaged radar data for all 
fields in the 45°-50° incidence angle range (table 2.1) and apply selected classifiers 
on AirSAR image data in the 35°-60° incidence angle for validation (section 2.6). 
Figure 2.2 shows the L-band HV-polarised backscatter as an example of the low 
incidence angle dependence. When, for example, the averaged backscatter in the 
50°-60° incidence angle range is subtracted from the 35°-45° range, the difference is 
less than 1 dB for all four main land cover types (of table 2.1) and all eleven 
backscatter channels (of table 2.2) used, with only three exceptions. These are all for 
P-band primary forest data: with HV-polarisation (-1.5 dB) and circular polarisation 
(-2 dB). 

Table 2. 1 Number of plots per vegetation cover class and selected incidence angle ranges . 

Cover type 
Primary Forest 
Secondary Forest 
Recently cut 
Pastures 
Total 

25°-60° 
233 
227 
93 
225 
778 

45°-50° 
34 
25 
24 
22 
105 

2.4.2. Statistical description of data 

A statistical description of full polarimetric data can be made in several ways. A 
mathematically straightforward approach would be to describe the cross-products of 
the elements of the scattering matrix S, i.e. the elements of the covariance matrix. 
Another way would be to describe the data in terms of backscatter y , polarimetric 

phase difference <fi and polarimetric correlation |p | . Though mathematically more 

complex, the latter approach was selected here because it allows better interpretation 
in terms of physical mechanisms of backscatter and, hence, physical understanding. 
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Figure 2.2 L-band HV-polarised field averaged backscatter levels as a function of incidence angle for the 
four main land cover types: primary forest (0), secondary forest ( • ) , recently cut forest (A) and pasture 
(*). 

The complex correlation between the HH- (i.e. horizontal linear receive and 
horizontal linear transmit) and VV-returns can be computed from elements of the 
Stokes scattering operator as: 

P = \P\ expO» = 
Shh^vv 

^hh^hh )\S,r,,Sv 

(2.1) 

For a homogeneous area /, characterised by a spatially uniform differential cross 
section, phase difference and correlation, and a Gaussian probability density 
function (pdf) for the complex electric field vector, as measured by both antennae, 
multi-look pdf s of the observation can be described by the number of looks N (per 
pixel) and the underlying values for backscatter /,-, phase difference fa and 

correlation | p , | . The theoretical pdf for multi-look backscatter intensity is the well-

known gamma function: 

PMriY- T(N) 
rN-\e-Nriri (2.2) 

For phase difference and correlation marginal distributions are given by [Tough et 
al.„ 1995]: 
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where the last term is 0 for N= 1 and /? = \pt | cos(^ - fa \ and 

^|(HHA|) = 2H(A' -1) ( I - |A | 2 ) " (l-H2)""2
 2F{N,N,l;\p\2\Pi\

2 

where 2^7i(.) is the Gaussian hypergeometric function. 

(2.3) 

(2.4) 

For a classification procedure statistical descriptions are needed for pixels belonging 
to a certain class, rather than belonging to a certain homogeneous area. Such 
distributions do not follow directly from theoretical considerations. Assumptions 
should be made, which have to be carefully verified with experimental data. Here, it 
is assumed that pdf s are well described by Gaussian distributions for the parameter 
r , ( indB), 

Hri\rc>°c)--
ac\2n: 

exP(-MA (2.5) 
2CT„ 

with yc (in dB) as the mean of the mean field values of class c and ac as the 

standard deviation of yc, and by circular Gaussian distributions for the phase 

differences: 

(2.6) 

with /? = |pc|cos(^,- -<pc), -7r<0j <n, where <pc = the "effective" mean phase 

difference for class c and | p c | is the "effective" mean correlation for class c. Note 

that (2.6) follows from (2.3) for N=l, but describes classes instead of single 
homogeneous areas. 

Gaussian distributions are 'natural' distributions, which follow from application of 
Jaynes' maximum entropy principle [Jaynes, 1957]. For a continuous random variate 
varying over the (0, 1) interval, application of this principle results in the Beta 
function. Hence, phase correlations may be assumed to be properly described by 
Beta distributions: 
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B\PMa,b)--j^)\Pir^-\pi\r\o<\Pi\<u (2.7) 

where a and b are regression parameters. 

The field averaged Stokes scattering element data of the database are used to 
calculate field averaged values for backscatter, phase differences and correlation. 
The accuracy of the estimation of field averaged values depends on the total number 
of independent looks. Inspection of the single-point statistics and the range and 
azimuth autocorrelation functions of large homogeneous pastures in these AirSAR 
images revealed an effective number of approximately 14 looks per pixel for all 
bands. Spatial correlation would decrease this number further by approximately 30% 
for C- and L-band and 60% for P-band. 

In the 45°-50° incidence angle range subset studied each field has at least 100 pixels, 
except for recently cut areas, which cover at least 60 pixels. This would result in a 
minimum of 588 (60 x 14 x 0.7) independent looks in C- and L- band and, in case 
some of the smaller recently cut areas are ignored, at least 560 (100 x 14 x 0.4) 
independent looks in P- band. For this large number of 560 independent looks N, for 
homogeneous fields these averages can be regarded as accurate estimations of the 
underlying values. The standard deviation of the backscatter follows from 
[Hoekman, 1991; eq.27] and is less than 0.184 dB for A/>560. The standard 
deviation of the phase difference depends on \pt\ and follows from [15;eq.69]. It is 

less than 2.97° for \pt\ = 0.5 and 7V>560. The standard deviation of the correlation 

follows from application of the Cramer-Rao bound [Seymour and Cumming 1994; 

eq.20] and is less than 0.022 for \pt\ = 0.5 and 7V>560. 

It is assumed that the objects display azimuthal symmetry and, consequently, that 
only the correlation and phase difference distributions for HH-VV polarisation is 
important, and that for HH-HV and HV-VV polarisation these can be ignored 
[Nghiem e* a/., 1992]. 

The appropriateness of the Gaussian distribution for field averaged gamma values in 
dB (2.5), the circular Gaussian distribution (2.6) for the field averaged HH-VV 
phase differences and the Beta distribution (2.7) for field averaged HH-VV phase 
correlation can be studied using these accurate estimations of field averaged values. 
This was done using a Kolmogorov-Smirnov (K-S) test of fit to determine the 
significance Q of the null hypothesis stating that the observed field averaged values 
are drawn from the corresponding theoretical distributions [Press et ai, 1994]. 
Results show that for all four cover types, for all three bands and for all five 
parameters tested (i.e. Ji f° r HH-, VV- and HV-polarisation and ^, and \p\ for 
the HH-VV polarimetric phase difference) the null hypothesis could not be rejected. 
Possible exceptions are only L-band yi values for primary forests and C-band phase 
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( $ and |p ; | ) values, also for primary forest. Some examples of cumulative pdfs 

showing the generally good correspondence between theory and data are shown in 
Fig. 2.3. It is noted that the Gaussian distribution gives a poor fit when yt is not 
expressed in dB's. 

L-band HH L-band PPD HH-W 

-16 -14 -12 -10 

Gamma [dB] [degrees] 

L-band COR HH-W 

Figure 2.3 Theoretical cumulative probability density distributions of L-band HH-polarised backscatter, 
HH-VV phase difference and correlation, respectively, compared with experimental observation (step-
functions). For recently cut areas the K-S fit significances Q are 0.9995, 0.81 and 0.85, respectively, and 
for pastures 0.96, 0.82 and 0.9996, respectively 

2.4.3. Simulation of pixel classification 

For classification several approaches can be followed. The most simple approach is 
to classify multi-look pixels. To reduce the effect of speckle box averaging or 
segmentation into homogeneous areas can be applied first. The resulting number of 
independent looks is usually too small to ignore the effect of speckle on the 
estimation of the underlying values of yi fy and |p,-| . The effect of speckle can be 

simulated by using these field-averaged values to draw randomly from the 
distributions given by (2.2), (2.3) and (2.4). Here this was done 100 times for each 
field, thus raising the number of samples to be classified from 105 (table 2.1) to 
10,500. The resulting distributions are wider because of the effect of speckle. The 
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shape of the resulting distributions can be modelled in two different ways. In case 
the distributions given by (2.5), (2.6) and (2.7) would have given a perfect match 
with the observed mean values, the result would follow by straightforward 
combination with (2.2), (2.3) and (2.4), respectively. However, the number of 
observed mean values per class is not large enough to be able to make such a 
decisive conclusion. The second approach would be to test whether (2.5), (2.6) and 
(2.7) still hold after adding speckle. Since the distributions become wider it simply 
means that the values of regression parameters yc,ac, (/>c,\pc|, a and b change. 

Since these distributions are 'natural' distributions, meaning they are a result of 
several independent processes, it is not a contradiction to assume they still may hold 
when including an additional independent process, i.e. speckle. K-S tests of fit 
confirm the validity of the second approach. In this case deviations from the model 
may be detected by evaluating the K-S statistic D, which is defined as the maximum 
distance between the cumulative pdf of theoretical functions and observations (see 
also Fig. 2.3) and [20]. At the '1 dB' level (i.e. N=20) for only a few of the 36 yi 

distributions tested D is larger than 0.03, and for only a few of the 24 $ and \pt\ 

distributions tested D is larger than 0.06. At the '2 dB' level (i.e. N=5) the fits are 
even slightly better. 

The likelihood for an (polarimetric) observation vector to be classified as class c is 
modelled as the product of the joint Gaussian distribution of the backscatter values 
multiplied by the likelihoods of the phase difference values and the likelihoods of 
the correlation values. It is assumed, therefore, that values for phase difference and 
correlation are independent from each other and independent from backscatter level. 
It is noted that this assumption is not well validated, and, consequently, 
classification results may be underestimated. 

A Kappa statistic (K ) can be computed to evaluate significant differences between 
any pair of classification results, cf. [Lillesand and Kiefer, 1994]. A test statistic 

AK can be introduced as: 

^ = / . 2 . 1 J h r (2-8) 

where a^ \KJ is the approximate large sample variance of K. At the 95% 

confidence level two results may be considered significantly different if AK > 1.96 
[Benson and DeGloria, 1985]. 

For clarity the approach introduced here may be summarised as follows. On the 
basis of experimental data and theoretical considerations probability density 
distributions of backscatter, polarimetric phase difference and polarimetric phase 
coherence can be simulated for a number of land cover types for three frequency 
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bands, polarisation and speckle level. These distributions can be used to simulate 
classification results, using the same experimental data extracted from 105 well 
defined training areas in the 45°-50° incidence angle range. Such an exercise is 
useful for comparison of capabilities of selected sensor parameters (see section 2.5), 
it is not meant to derive accurate quantitative predictions. As an example and as a 
validation of the overall approach a large area covering the 35°-60° incidence angle 
is classified using regression parameters for the selected speckle level (out of the set 
of yc,crc, (f>c,\pc\, a and b, for all classes c and all frequency bands) derived from 
the training areas (see section 2.6). 

2.5. RESULTS 

2.5.1. Land cover type classification 
In the Total Power C-, L- and P-band AirSAR image (Fig. 2.8a) grasslands show up 
in very dark tones, primary forest in bright tones, secondary vegetation in blue and 
green, depending on age, and recently cut areas in red. Recently cut areas, 
characterised here by the presence of some trunk remnants in a low biomass and 
mostly bare area, have high P-band backscatter levels, while for C-band the 
backscatter is low. Primary and secondary forests both have a high (saturated) level 
of backscatter in C-band, while for P-band the primary forest backscatter level is 
clearly higher. As a result these main four land cover types can be separated well 
(Fig. 2.4). 

-5 -4 -3 

C-VV Gamma [dB] 

i O Primary • Secondary A Recently Cut X Pastures , 

Figure 2.4. Scatter plot of the C-VV and P-RR field averaged backscatter levels for all 105 fields in the 
45°-50° incidence angle range, for the four main land cover types 

The simulated classification results for the four main land cover types using a single 
channel configuration are shown in Table 2.2 It also includes results for LL- (i.e. left 
circular receive and left circular transmit) and RR-circular polarisation since these 
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(and only these!) are not affected by Faraday rotation in P-band as can be deduced 
from [Bickle and Bates, 1965]. Note that in this case the circular polarisation would 
be provided by a circular antenna feed, not from polarisation synthesis. At the ' 1 dB' 
level (i.e. 20-look data) only L-band with HV-polarisation (Lhv) and P-band with 
HV-polarisation (Phv) show reasonable results (80%). 

Table 2.2. Overall Maximum Likelihood (ML) classification accuracy (expressed in percentages) at the 
95% level of confidence for the 45 °-50° incidence angle range using a single channel, for speckle levels 
of 0, 1 and 2 dB, (i.e. 7V>560, N=20, N=5, respectively) for all AirSAR channels studied and for 4 land 
cover types. The bold numbers indicate the best result plus the results that are not significantly different 
from the best result at the 95% level of confidence. The numbers in the shaded boxes indicate the worst 
result plus the results that are not significantly different from the worst result at the 95% level of 
confidence 

Channel 

Chh 
Chv 
Cw 
Lhh 
Lhv 
Lw 
Phh 
Phv 
Pvv 
Prr 
Pll 

'OdB' 
59.0 
71.4 
67.6 
69.5 
91.4 
82.9 
81.9 
88.6 
79.0 
81.0 
78.1 

' ldB' 
45.4 
56.7 
53.0 
60.1 
79.4 
66.2 
73.0 
80.3 
70.4 
74.0 
72.2 

'2dB' 
36.0 
42.3 
40.6 
52.8 
65.4 
53.0 
60.4 
67.5 
57.4 
62.5 
62.3 

Table 2.3 shows that at the '1 dB' level many combinations of 2 channels reach 
results over 90%. There are many combinations of Lhv with C- or P-band and 
combinations of C- and P-band that are successful. Single frequency combinations 
are inferior to many of the best double frequency combinations. The effect of 
speckle can be studied in many ways. Fig. 2.5 shows results for some combinations 
as a function of speckle level. It clearly illustrates that for some of the better 
combinations results do not improve considerably anymore after 20 looks. Using 
three or more channels does not improve results considerably as can be seen in table 
2.4. This table also includes results for polarimetric systems. Also fully polarimetric 
P-band (Ppol) systems are considered since these can be corrected for the effects of 
Faraday rotation relatively easily [Freeman et ah, sub]. It is noted that the simulated 
classification results given in tables 2.2, 2.3 and 2.4 and in Fig. 2.5 are generated at 
the 95% level of confidence. Consequently, roughly 5% of the data is expected to be 
classified as the class "unknown" and results in excess of 95% are unlikely. The 
bold numbers in these tables indicate the best result plus the results that are not 
significantly different from the best result at the 95% level of confidence, using the 
Kappa statistic (2.8). The numbers in the shaded boxes indicate the worst result plus 
the results that are not significantly different from the worst result at the 95% level 
of confidence. 
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Figure 2.5. Overall Maximum Likelihood (ML) classification accuracy (expressed in percentages) at the 
95% level of confidence for the 45 °-50c incidence angle range for several combinations as function of the 
speckle level expressed in number of looks . 

Table 2.3. Overall Maximum Likelihood (ML) classification accuracy (expressed in percentages) at the 
95% level of confidence for the 45 °-50° incidence angle range using 55 combinations of two channels, for 
a speckle level of' 1 dB' and for 4 land (vegetation) cover types. The bold numbers indicate the best result 
plus the results that are not significantly different from the best result at the 95% level of confidence. The 
numbers in the shaded boxes indicate the worst result plus the results that are not significantly different 
from the worst result at the 95% level of confidence 

Chh 
Chv 
Cw 
Lhh 
Lhv 
Lvv 
Phh 
Phv 
Pvv 
Prr 

Chv 
58.5 

Cw 
54.0 
61.0 

Lhh 
75.7 
81.7 
81.1 

Lhv 
83.7 
86.9 
86.1 
83.1 

Lvv 
74.8 
80.6 
78.7 
74.6 
80.4 

Phh 
85.3 
90.3 
90.3 
72.7 
91.4 
86.1 

Phv 
88.7 
92.9 

93.1 
78.8 
91.2 
85.3 
84.3 

Pvv 
83.6 
89.1 
89.1 
71.8 
87.5 
80.8 
80.1 
80.0 

Prr 
86.5 
92.2 
92.3 
73.3 
91.0 
84.3 
79.9 
80.8 
76.3 

Pll 
86.8 
92.0 
91.9 
72.5 
91.2 
84.7 
78.0 
81.3 
77.1 
76.4 

In table 2.5 the confusion between any pair of land cover classes for a number of 
wave parameter combinations is shown. Depending on specific application needs, 
certain combinations can be preferred, even when they yield lower overall results. 
For example, for monitoring the decrease of forest area it may be important to 
discriminate forest (primary and secondary) from pastures. L-band with HH-
polarisation would be well suitable. For this particular configuration the confusion 
with recently cut areas would be large and also primary and secondary forests would 
be confused to a large extent. 
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Table 2.4. Overall Maximum Likelihood (ML) classification accuracy (expressed in percentages) at the 
95% level of confidence for the 45 °-50° incidence angle range for a selection of combinations at the ' 1 dB 

speckle level', the statistic K and its large sample variance O ^ I / L I . The bold numbers indicate the best 

result plus the results that are not significantly different from the best result at the 95% level of 
confidence. The numbers in the shaded boxes indicate the worst result plus the results that are not 
significantly different from the worst result at the 95% level of confidence. 

Channel 

Cpol, Lpol, Ppol 
Chv, Phv, Prr 
Cpol, Prr 
Phv, C w 
Cvv, Chh, Chv, Prr 
Lpol, Prr 
Lhv, Prr 
Cpol, Lpol 
Lpol, C w 
Ppol 
Pw, Phh, Phv 
Lpol 
Lvv, Lhh, Lhv 
Lhh, C w 
Lhh, Prr 
Cpol 
C w , Chh, Chv 
Lhh 
Cvv, Chh 
Cvv 
Chh 

result 

94.7 
94.0 
93.1 
93.1 
92.6 
91.9 
91.2 
90.4 
89.5 
87.1 
86.1 
85.8 
85.0 
81.1 
73.3 
68.4 
61.9 
60.1 
54.0 
53.0 
45.4 

k 
0.931016 
0.921145 
0.909599 
0.908934 
0.902984 
0.893512 
0.883844 
0.873539 
0.862657 
0.829398 
0.816590 
0.813185 
0.803859 
0.751464 
0.647533 
0.581294 
0.497471 
0.465214 
0.393662 
0.373692 
0.275277 

P,1 k 
0.000768 
0.000885 
0.001018 
0.001032 
0.001077 
0.001174 
0.001275 
0.001365 
0.001479 
0.001803 
0.001904 
0.001926 
0.001996 
0.002492 
0.003142 
0.003612 
0.003859 
0.003928 
0.004008 
0.004144 
0.004154 

Some dual-frequency systems give excellent results, for example: a C-or L-band 
polarimetric system in combination with P-band in RR-polarisation. 

2.5.2. Biomass classes 
The potential for biomass class mapping was studied by evaluating the backscatter 
for all 5 fields of pasture, 10 fields of secondary forest re-growth and 13 fields of 
primary forest for which biomass (directly or indirectly) was estimated. For these 
fields the above ground fresh biomass was found to vary over the range of 2.9-10 ton 
per hectare (1 ton = 1,000 kg; 1 ha = 10,000 m2) for pastures, 6-159 ton/ha for 
secondary forest and 137-297 ton/ha for primary forest. Since biomass varies over 
several orders of magnitude yi values (in dB) were fitted to the logarithm of 
biomass (x) using a log-log functional relationship of the form yi [dB]= aexp(bx) + 
c. The main results are summarised in table2.6. 
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Table 2.5. Percentage of confusion between land cover type pairs for the 45 c-50° incidence angle range 
at the 1 dB speckle level (N=20) for a selection of combinations. Each entry gives the result as the 
percentage of the sum of class a samples classified as b and class b samples classified as a from the sum 
of class a and class b samples, in the absence of other classes (i.e. absence of class c, etc., and the absence 
of the class 'unknown'). The expected value for maximum confusion therefore is 50%. 

Bands and polarisation 

Loss of 
forests 
Newly 

deforest 
ed areas 
Forest 
stages 

Primary-Pastures 1-4 
Secondary-Pastures 2-4 

Primary-Recently cut 1-3 
Secondary-Recently cut 2-3 
Pastures - Recently cut 3-4 

Primary-Secondary 1-2 

Chh 

20.1 
18.6 
12.6 
11.3 
38.6 
46.0 

Cw 

10.6 
10.3 
3.3 
3.2 
32.3 
46.9 

Cw 
Chh 

9.1 
8.0 
1.8 
1.6 

32.2 
45.3 

Lhh 

0.5 
1.9 

40.9 
30.8 
1.1 

23.8 

Cw 
Chh 
Chv 
7.7 
7.5 
0.4 
0.3 
16.8 
43.1 

Lhh 
Cw 

0.4 
1.5 
3.0 
2.2 
0.8 
24.4 

Bands and 
polarisation 
(continued) 

1-4 
2-4 
1-3 
2-3 
3-4 
1-2 

Prr 
Lhv 

0.0 
0.3 
2.9 
4.6 
0.1 
4.3 

Cpo 
1 

4.0 
4.3 
0.5 
0.6 
12.3 
40.0 

Lpol 

0.0 
0.1 
2.2 
9.0 
0.9 
11.1 

Lpol 
Cw 

0.0 
0.0 
0.5 
1.4 
0.7 
10.8 

Lpol 
Prr 

0.0 
0.0 
2.2 
3.6 
0.1 
4.0 

Cpol 
Prr 

0.0 
0.5 
0.4 
0.2 
0.1 
5.8 

Ppol 

0.0 
0.6 
10.2 
9.3 
0.0 
2.0 

Cpol 
Lpol 

0.0 
0.1 
0.1 
0.1 
0.0 
10.1 

Cpol 
Lpol 
Ppol 
0.0 
0.0 
0.1 
0.1 
0.0 
1.2 

For the C-band the correlation is not very high. The maximum value for f is 0.66 
and was found for the VV-polarisation. For L-band with HV-polarisation and for P-
band high values are found (Fig. 2.6). However there are some differences: L-band 
with HV-polarisation has a high correlation but the signal tends to saturate at high 
biomass levels. For P-band the saturation appears at higher biomass levels, however 
the SEE (Standard Error of Estimate) is higher. The combination of these bands can 
be used to improve overall results for the whole biomass range under study. 
Averaging backscatter of P-band with RR-polarisation and L-band with HV-
polarisation, for example, results in a slightly higher correlation (r2 is 0.94) and a 
considerably lower SEE. The ratio of the total range of backscatter and the SEE for 
this particular combination is high, namely 13.2. This number may be interpreted as 
6.7 times 1.96 standard deviations or, in other words, at least 6 classes of biomass 
may be distinguished at the 95% confidence level (this should be interpreted as the 
confidence level for the real class being not more than one class away from the 
estimated class, see also next section). Also, since biomass values of the savannah, 
beyond the lower end of the range shown here, and biomass values of higher 
biomass primary forest (at other test sites) beyond the higher end of the range shown 
here, seem to obey this functional relationship well, it is believed that up to 8 
biomass classes may be discerned using this particular combination. Further 
analysis, of additional biomass values of other areas in the Amazon, may permit 
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further elaboration of such relationships and may yield more insight into the 
saturation effect found for higher biomass values. 

1.0 1.5 
oglO(Biomass) [ t on /ha ] 

P-HV 

og 10(Biomoss) [ t on /ho ] 

Figure. 2.6. L-and P-band backscatter with HV-polarisation as function of biomass. The biomass is the 
fresh weight above ground biomass (in ton/ha) on the logarithmic scale (i.e. 1.0 is 10 ton/ha, 1.5 is 31.6 
ton/ha, etc.). Experimental data for primary forest (0), secondary forest ( • ) and pasture (*) are fitted to a 
curve of the form y^ [dB]= aexp(far) + c, where x is the logarithm of the biomass. 

2.5.3. Comparison with other results 
Most studies of land cover and biomass in tropical forest areas to date relate to SIR-
C (L- and C-band) data of the Brazilian Amazon. The results seem to be fairly 
consistent with the findings presented in this paper for the C- and L-band AirSAR 
data of the Colombian Amazon. Luckman et al. [Luckman et al., 1997] conclude that 
L-band with HV polarisation is the best for biomass estimation and indicates a 
saturation level of 60 ton/ha. Foody et al. [Foody et al, 1997] do not find significant 
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correlation with biomass, however, when using the Cvv/Lvv ratio a fair correlation 
with biomass of Cecropia dominated re-growth was found up to the level of 120 
ton/ha. Yanasse et al. [Yanasse et al. 1997] also report the problem to separate 
regeneration stages: Lhv is the best channel, however, only useful up to an age of 9 
years. The lack of sensitivity to secondary re-growth biomass variation of C- and L-
band also affects classification results. Confusion between secondary re-growth of 5-
8 years, i.e. around 100 ton/ha, and primary forest [Rignot et al.,1997], confusion 
between old secondary forest and primary forest [Saatchi et al., 1997] and between 
pastures and young secondary forest [Saatchi et al., 1997] are reported as major 
problems. It is also noted that data of the wet season, i.e. during wet soil conditions, 
are less suitable for accurate classification [Rignot et al., 1997, Saatchi et al., 1997]. 

Table 2.6. Relationship between backscatter, expressed as yi [dB], a nd biomass expressed as loglO of 

the above ground fresh biomass in ton/ha, for several frequency and polarisation combinations. The 

correlation coefficient r2, the standard error of estimate ( SEE), the total range of Ji °f m e experimental 

data and the ratio of range and SEE are shown 

C-HH 
C-HV 
C-W 
L-HH 
L-HV 
L-W 
P-HH 
P-HV 
P-W 
P-RR 
L-HV+P-RR 

r2 

0.32 
0.62 
0.66 
0.81 
0.93 
0.78 
0.90 
0.94 
0.91 
0.93 
0.94 

SEE 
IdBl 
0.41 
0.33 
0.51 
1.07 
1.05 
0.83 
1.39 
1.70 
0.82 
1.23 
0.93 

range 
IdBl 
3.2 
3.2 
4.8 
9.3 
11.6 
7.7 
11.1 
16.1 
9.6 
13.2 
12.3 

range/ 
SEE |dB| 

8.0 
9.6 
9.5 
8.7 
11.0 
9.3 
8.0 
9.5 
11.6 
10.7 
13.2 

2.6. APPLICATION OF RESULTS 

On the basis of the previous results a system configuration may be selected. As an 
example the combination Lhv and Prr may be chosen since it shows good overall 
classification results (table 2.4), even for a low number of looks (Fig. 2.5), little 
confusion between any pair of land cover classes (table 2.5) and useful information 
on biomass over a large range of values (table 2.6). To validate the appropriateness 
of the selected configuration the AirSAR data are classified in the 35°-60° incidence 
angle range using the statistics derived for the 45°-50° incidence angle range 
(section 2.4). The pixels within the first angular range and within the 778 ground 
truth plots can be used for validation. The results are very good and are shown in 
table 2.7 and illustrated in Fig. 2.8b. It is noted that no confidence level for the 
classification was applied and, thus, all pixels are classified as one of the four land 
cover classes (i.e. there is no class 'unknown'). The resulting values thus can be 
better than the ones given in the previous section. In this case they appear to be 
considerably higher with an overall result of 98.6%. It is noted that the validation set 
is large but limited to areas delineated within fields. For the scene as a whole, border 
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effects, such as mixed pixels, shadowing and layover, may cause a considerable 
additional error, depending on the scale used. 

Table 7. Confusion matrix for the total sample area within the classified image, for the combination of 
Lhv with Prr. The results are expressed in % of pixels. The land cover types are encoded as: (1) Primary 
forest, (2) Secondary forest, (3) Recently cut areas, and (4) Pastures. 

Lhv - Prr 

1 

2 

3 

4 

Total 

1 

98.6 

1.8 

0.5 

0.0 

2 

1.2 

97.2 

0.5 

0.1 

3 

0.2 

0.9 

99.0 

0.0 

4 

0.0 

0.0 

0.0 

99.9 

98.6 

It is noted that the previous classification was done on a 2 x 2 pixel averaged basis. 
High-resolution radar data can show single-point statistics that may deviate 
considerable from the gamma pdf (2) and equations (3) and (4) for multi-look phase 
difference and coherence [Oliver and Quegan, 1998]. The consequence is that 
classification results for high-resolution data, such as single pixel AirSAR data, may 
not be predicted well by the model introduced in section 4. Deviations from the 
model may be detected by evaluating the K-S statistic D. Here a comparison was 
made with the theoretical models describing 14-look data of extended homogeneous 
areas. The statistic D is relatively large (0.13) for backscatter in C-band of primary 
forests, and to a lesser extent for L-band and for secondary forests in C-band. This 
may be a result of the large size of trees resulting in image texture. The statistic D is 
also relatively large for backscatter of recently cut areas in C-band (0.14) and L-
band (0.12). This may be an effect of field heterogeneity. For pastures the statistic D 
is relatively large in P-band and to a lesser extent in L-band. This may be an effect 
of a relatively low number of scatterers causing a transition from a gamma 
distribution into a K-distribution [Oliver and Quegan, 1998, Quegan and Rhodes, 
1995]. No large deviations were found for the phase difference and coherence 
distributions. The first effect (i.e. texture) and third effect (i.e. non-Gaussian 
behaviour complex electric field vector) vanish when the spatial resolution gets 
smaller. The second effect, heterogeneity, may appear at several scales, depending 
on the scene's complexity. Averaging 2 x 2 pixels, as was done here, improves the 
classification result considerably, especially when C-band is used. This 
improvement is only partly a result of the reduced effect of speckle. It mainly 
appears to be a consequence of the strong reduction of image texture, and, of course, 
the fact that texture is not used as a classifier here. 

Using the functional relationships between biomass and the average backscatter of 
the Lhv and Prr bands a map of biomass classes can be created. This was done for 
eight arbitrarily chosen biomass classes, namely: (1) <3.42, (2) 3.42-4.72, (3) 4.72-
6.85, (4) 6.85-10.7, (5) 10.7-18.5, (6) 18.5-38.1, (7) 38.1-109 and (8) > 109 (in 
ton/ha). Classes 2 until 7 correspond to equidistant values of backscatter separated at 
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1.96 standard deviation intervals as indicated in Fig. 2.7. Since the relationship does 
not hold for the class of recently cut areas, these areas have been excluded from the 
biomass classification as illustrated in Fig. 2.8c. It is difficult to validate the 
accuracy of these results since acquiring a sufficient number of additional biomass 
values is a huge task. The consistency between biomass classification and land cover 
type classification can be checked, however. Table 2.8 shows for each land cover 
class (excluding recently cut areas) the distribution of biomass classes as a 
percentage of the total area. The agreement with expected biomass ranges is high for 
all three-land cover types. 

Table 2.8. Percentages of areas corresponding to the classification of the four main land cover types and 
the eight biomass classes. The land cover types are encoded as: (1) Primary forest, (2) Secondary forest, 
(3) Recently cut areas, and (4) Pastures. Shaded boxes in the first column may indicate areas of forest 
degradation, while shaded boxes in the last column may indicate areas of land degradation 

Biomass classes 
(ton/ha) 
Masked 

0-3.42 

3.42-4.72 

4.72-6.85 

6.85-10.7 

10.7-18.5 

18.5-38.1 

38.1-109. 

>109. 

1 

0 

0 

0 

0 

0 

1 

2 

12 

84 

2 

0 

0 

0 

1 

3 

12 

28 

40 

14 

3 

100 

0 

0 

0 

0 

0 

0 

0 

0 

4 

0 

16 

18 

23 

20 

12 

6 

3 

1 

Very low values of biomass (<3.42 ton/ha) were classified in areas corresponding to 
the natural savannahs (in the westernmost part of the area), which is in agreement 
with field observations. 

The same low range was found for some pasture areas (east of the savannahs), 
indicating low biomass values which may be associated with recent pasture burning 
or pasture land degradation. The first possibility is less likely since burning of the 
pastures usually takes place during the dry season while the images were recorded in 
the middle of the rainy period. However, though no degradation data are available to 
support such a hypothesis firmly, the tendency for more lower biomass pastures to 
be found in the older settlement areas corresponds with expectation. Pastures in the 
higher biomass range (3.42-10.7 ton/ha) were found to correspond to areas where 
tall grasses and a high proportion of bushes and small palms occurred, as recorded in 
the field. Both the secondary and primary forest classes show a distribution over 
several biomass classes in the middle and higher ranges. 
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Figure 2.7. Experimental relationship between biomass and the average backscatter of the Lhv and Prr 
channels. Eight arbitrarily chosen biomass classes are indicated corresponding to equidistant values of 
backscatter separated at 1.96 standard deviation intervals. 

It should be noted that the biomass class map shows broad biomass classes over 
several orders of magnitude and, thus, is useful for assessment of spatial patterns 
associated with land and forest degradation and secondary regrowth processes. It 
does not show accurate biomass value estimations and, thus, is of limited value for, 
say, foresters who want to assess parameters such as timber volume. 

2.7. CONCLUSIONS AND RECOMMENDATIONS 

A statistical description of full polarimetric data in terms of backscatter, polarimetric 
phase difference and polarimetric correlation was made. Theoretical distributions of 
field or segment averaged (multi-look) values for all four land cover' types and all 
three frequency bands were shown to be in good agreement with observation. 
Classification results could be simulated for certain combinations of frequency 
bands and polarisation as a function of speckle level. 
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The results presented in this paper give insight into the problem of optimum wave 
parameter selection for operational systems, the utility of polarimetry, how this 
relates to certain applications (in tropical rain forest areas) and to the accuracy that 
can be obtained. Different scenarios may be used to evaluate these results. Within 
each scenario the appropriateness of a certain system configuration for a certain 
application is investigated. 

Figure 2.8 (a) AirSAR Total Power image, (b) Land Cover map and (c) Biomass map for a 4 x 7 km2 area 
in Guaviare. In the biomass map the areas of recently cut forest are masked (black) .(see colour plate 1). 

The usefulness of these systems for land cover monitoring depend on, among other 
things, the type of information (land cover classes, biomass classes), the scale and 
accuracy of this information and the temporal frequency at which this information 
can be obtained. Depending on the specific information needs, land cover 
monitoring systems should have the capability to (1) differentiate between forested 
and non-forested areas, (2) to detect new areas of deforestation, (3) to differentiate 
between primary and secondary forest (e.g. to study regeneration), and/or (4) to 
provide some data on biomass (e.g. to study degradation or carbon budgets). Other 
issues such as costs and timeliness are beyond the scope of this paper. 

In summary one may conclude that C-band is useful for monitoring deforestation, 
especially when the observation frequency is high. The very poor capability to 
differentiate primary and secondary forest may pose problems since the latter may 
develop very fast after clearing, and sometimes even before clearing of the original 
forest is complete. In L-band with HH- or VV-polarisation monitoring deforestation 
is also not without problems since recently cut areas are not well differentiated from 
the forested areas. Adding HV-polarisation would solve this problem to a large 
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extent. P-band has the same problem to a larger extent and for all polarisations 
although P-band's capability in differentiating pastures, secondary forest and 
primary forest are superior. P-band and L-band with HV-polarisation are suitable for 
biomass mapping. P-band, however, saturates at a much higher level of biomass and 
seems to cover the 10-200 ton/ha range well, which is of special interest for forest 
secondary regrowth monitoring. 

Results would greatly improve if a dedicated system could be developed using two 
frequencies. Combinations of C- and L-band or C- and P-band would give good 
overall results, although there is still some confusion between primary, secondary 
and recently cut forest (table 2.5). The combination of L- and P-band would be even 
better. The combination of good land cover type and good biomass classification 
may be particularly useful, as was illustrated in section 2.6. Because the relation 
between backscatter and biomass depends on land cover type, it may even be a 
necessity for accurate biomass assessment to be preceded by a good land cover type 
classification. 

Accurate field observations and measurements play a crucial role in analysis and 
validation. Though an extensive good quality data set was available the importance 
of repeating the experiment in other areas of the Amazon, and in different seasons, 
should be emphasised. For example, soil moisture variation, depending on 
wavelength and polarisation, may have a significant effect on the results. Also local 
variation in physical characterisation of the land cover types, related to factors like 
variation in floristic composition, physiognomy, forest structure and management 
practice, may have important effects. 

From a practical point of view one may conclude that, as long as P-band with a 
reasonable bandwidth is not allowed for spaceborne SAR operation, the combination 
of C-and L-band is the best choice. Of course, high quality airborne inventory using 
P-band SAR may still be a viable option. Tables 2.4 and 2.5 show, for example, that 
C-band with VV-polarisation in combination with polarimetric L-band is a good 
choice. The only problem seems to be the relatively poor discrimination of primary 
forest and secondary forest. However, since primary forest can be differentiated well 
from pastures and recently cut areas, and the main problem is discrimination 
between primary and the older secondary forest, this problem may be circumvented 
in a monitoring system when using frequent observation and knowledge of 
deforestation in the past. The need for frequent observation (for timely detection of 
illegal clear-cut for example) and, likely, the need to cover different seasons 
(because results probably depend on season or can be improved by combining 
seasons) may translate into a maximum of 3 to 4 coverages per year. Hence, a swath 
width of 40 km could be sufficient. To achieve the same accuracy as indicated in 
tables 4 and 5 20-look data are required. For a scale of 1:100,000, pixels 
corresponding to a 20x20 m area would be required, which would translate into 
roughly 4-5 m resolution. Such a system is a technically viable option and may 
cover many information needs with high accuracy (monitoring land cover type 
change, deforestation and land degradation). The lack of P-band means that 
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applications like monitoring secondary re-growth (in the higher biomass range) and 
primary forest degradation could not be done accurate by spaceborne SAR. There 
may be no reason to assume that accuracy degrades significantly when observations 
at different bands are made a few days apart, except for incidental large soil moisture 
variations or flooding events. Hence, in the near future, combinations of single band 
SAR systems may appear to be a good alternative. 
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3. BIOPHYSICAL FOREST TYPE CHARACTERIZATION 
IN THE COLOMBIAN AMAZON BY AIRBORNE 
POLARIMETRIC SAR 

3.1. INTRODUCTION 

Primary and secondary tropical forests are on the agenda of scientists, politicians 
and land managers for different important reasons. (1) They comprise a major part 
of the planet's plant and animal biodiversity. (2) They have an important role in the 
global hydrological and biochemical cycles. (3) They are considered to be an 
important sink of atmospheric carbon. (4) They cover a large part of the tropical 
areas and are an important source of agricultural land. (5) The knowledge on the 
spatial distribution of its resources is limited. 

During the past decade research activities on the development of the application of 
synthetic aperture radar (SAR) for monitoring ecosystem processes has grown 
significantly. Its potential use can be categorised broadly as follows: (a) 
classification and detection of change in land cover; (b) estimation of woody 
biomass; (c) monitoring the extent and duration of inundation; and (d) monitoring 
other temporally-dynamic processes [Kasischke et al, 1997]. 

To fulfil information needs, accurate mapping and monitoring is required at different 
scales. Severe cloud cover often prevents the acquisition of optical remote sensing 
data, thus making the (additional) use of satellite radar remote sensing necessary for 
monitoring applications. At the other hand, radar data may provide different or 
additional information, thus making (the additional use of) radar data (both 
spaceborne and airborne) an interesting choice, also for less timeliness-demanding 
applications such as inventory [Hoekman, 2001]. 

In recent years many research activities focused on the use of SAR to study tropical 
rain forest. At continental scale mosaics of all tropical rain forests have been created 
using JERS-1 SAR images [Siqueira et al, 2000; Rosenqvist et al, 2000] and, for 
Africa, using ERS-1 [De Grandi et al, 1999]. At a larger scale researchers have 
focused their studies on the development of inversion algorithms, segmentation and 
classification techniques for polarimetric and interferometric SAR images and 
created a variety of types of tropical rain forest classifications [Oliver, 2000; 
Hoekman and Quinones, 2000; Hoekman and Varekamp, 2001; Varekamp and 
Hoekman, 2001]. In addition new models for the decomposition of polarimetric 
signals of forest vegetation were developed [Freeman and Durden, 1998]. An 
overview of decomposition theories was presented by [Cloude and Pottier, 1996]. 
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In this paper the utility of multi-band polarimetric airborne SAR for tropical forest 
inventory is evaluated by analysing experimental data collected by NASA's AirSAR 
airborne radar system. Tentatively, it may be assumed that such a system may fulfil 
information needs related to the mapping of forest types and the assessment of 
biophysical characteristics at a scale of 1: 50,000 or larger. 

Research conducted at the well-surveyed Araracuara test site of the 'Tropenbos1 

foundation, a forest reserve in the Colombian Amazon, may provide new insight into 
radar inventory methodologies and capabilities. The first maps of this area were 
made in 1979 using X-band radar data acquired during the PRO RAD AM campaign 
[PRORADAM, 1979]. ERS-1 SAR image time series (1992) and data of high 
resolution airborne SAR were collected during the ESA-SAREX (1992) campaign 
[Hoekman, 1997]. In May 1993, the AirSAR system collected fully polarimetric C-, 
L- and P- band data [NASA, 1993]. These studies were facilitated by detailed 
inventory and extensive field observations in the period 1986-1991 resulting in a 
very detailed ecological landscape unit map [Duivenvoorden and Lips, 1991], which 
is described in the next section. Moreover, additional experience with analysis of 
(1993) AirSAR data was obtained at another Tropenbos test site, a colonisation area 
at the border of Colombian Amazon in the district Guaviare [Hoekman and 
Quinones, 2000]. The methodology presented in this paper is largely based on the 
latter experience. 

In this paper the polarimetric classification technique introduced in [Hoekman and 
Quinones, 2000] is exploited to assess AirSAR's potential for forest structural type 
mapping, forest flooding mapping and forest biophysical characterisation. After the 
description of test site (section 3.2) and radar data acquisition experiment (section 
3.3), field observations are discussed (section 3.4). The latter observations were 
made to obtain additional quantitative descriptions on forest structure and ground 
surface conditions, but also for assessment of the suitability of map legends utilised 
in the landscape ecological map. It will be shown that for classifications produced 
with SAR a new type of legend, based on a physical description of the wave-object 
interaction, leads to better interpretable results in terms of biophysical 
characterisation (section 3.5). The next step is the step from legend to classification. 
Problems related to radar data, such as speckle, texture and relief, and to 
classification aggregation, including drainage patterns, forest gradients and 
complexes, are discussed. A method based on iterated conditional modes [Besag, 
1986] is introduced and is shown to yield radar-derived classifications with a high 
level of agreement with the landscape ecological map, as well as with ground 
observations (section 3.6). The third and final step discussed in this paper is the 
assessment of the relation between physical forest structure and polarimetric signal 
properties. Polarimetric decomposition techniques are briefly reviewed. A new 
method is introduced based on decomposition of polarimetric coherence, instead of 
power. It will be shown that various physical relations between polarimetric signal 
and forest structure can be revealed (section 3.7). 
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3.2. TEST SITE DESCRIPTION 

The Araracuara study area is located in the administrative districts Amazonas and 
Caqueta in the South East of Colombia. The centred co-ordinates of the study area 
are 0°40'S, 72°15'W (Figure 3.1). The general physiography of the region is fairly 
uniform with little variation in altitude (100 m - 300 m). Landscape-ecological maps 
of the area (scale 1:100.000), integrating geomorphologic, soil and vegetation 
characteristics, provide detailed information on the defined landscape units and on 
forest biophysical characteristics [Duivenvoorden and Lips, 1991]. 
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Figure 3.1. The study area is located in the Colombian Amazon, along the Caqueta river, downstream the 
village Araracuara. The position of this village is indicated. 

These maps indicate three main geomorphologic units; the alluvial plain of the 
Caqueta river, the alluvial plains of Amazonian rivers and sedimentary plains. These 
units are subdivided into land systems. For example, frequently inundated flood 
plains, rarely inundated flood plains, low terraces and high terraces are land systems 
of the alluvial plain of the Caqueta. These land systems are subdivided in land units 
which are characterised by flooding condition, soil type and forest type cover (Table 
3.1). Furthermore, the map summarises forest types with their structural and 
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physiognomic characterisation (Table 3.2). The vegetation is characterised as a 
tropical humid forest. High rain forests that can be found on the upland (or tierra 
firme) and on the alluvial terraces and floodplains have a complex structure with 
emergent trees exceeding 40 m in height and 40 cm in diameter. Terraces and 
floodplains comprise areas of permanent swampy forest types of varying height and 
structure and areas that are only seasonally inundated or never flooded. The 
maximum monthly precipitation occurs in April. The maximum height of the 
flooding occurs somewhat later, roughly coinciding with the time of image 
acquisition at the end of May 1993. Yearly river water level fluctuations are in the 
range of 6-9 m. 

Table 3.1. Geomorphological units (underlined), land systems (italic), landscape ecological units (bold) 
and vegetation types (in brackets). It is noted that treelets are defined as small trees, higher than 2 m, but 
with a dbh smaller than 10 cm. (source: [Duivenvoorden and Lips, 1991]). 

Alluvial plain of the Caqueta river 
Frequently inundated flood plain 

Ac Palm swamp forest of relatively low palm density (low parts) and (P1) 
High forest of high to intermediate biomass and low tree density (high parts) (H2) 

Rarely inundated flood plain 
Ec Palm swamp forest of relatively high palm density (low parts) and (P2) 

High forest of high biomass (high parts) (H1) 
Eb1 Palm Swamp forest of relatively high palm density (P2) 
Eb2 Very low forest of high treelet density (L3) 
Eb3 Open, very low forest with scattered palms (P4) 

Low terraces 
Tp High forest of high biomass and high forest of intermediate biomass (H1, H3) 
Tb1 Palm swamp forest of relatively high palm density (P2) 
Tb2 Very low forest of high treelet density (L3) 
Tb3 Open, very low forest with scattered palms (P4) 

High terraces 
Hp1 High forest of high biomass and high forest of intermediate biomass (H1, H3) 
Hp2 Very low forest of high treelet density (L3) 
Hp3 Very low forest of high treelet density (L3) 

Alluvial plain of Amazonian rivers 
Cc High forest of high biomass and high forest of intermediate biomass (H1, H3) 
Ce High forest of intermediate biomass (H3) 
Cm2 Low forest of very high tree density (L2) 
Dp High forest of high biomass (H1) 

Sedimentary plains 
Sv high forest of high biomass and high forest of intermediate biomass (H1, H3) 
Si high forest of high biomass (H1) 

3.3. RADAR EXPERIMENT 

Five AirSAR images [Van Zyl et ah, 1992] acquired at 31 May 1993 have been 
processed, covering an 8 km wide and 40 km long stretch along the Caqueta river. 
These are in 16-look Stokes scattering operator matrix format with a slant range 
pixel spacing of 6.66 m in range and around 8.20 m in azimuth. The incidence angle 
(et) varies from about 20° to 60°. 
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Detailed field observations were made at 23 plots in the 27°-60° incidence angle 
range. With the help of the landscape ecological map [Duivenvoorden and Lips, 
1991], aerial photography acquired in 1987 and terrain knowledge, a total of 878 
additional areas could be delineated, representing 15 classes (see table 3.3, last two 
columns). These well represent all main forest types and the variation in flooding, 
drainage and soil characteristics in a 24°-61° range of incidence angles. A database 
of plot averaged Stokes scattering operator matrix elements was created, which 
forms the basis for the analysis presented in section 5. 

Table 3.2. Biophysical and structural characteristics of vegetation types. H = high forest; L = low forest; 
P = palm forest. Biomass includes only individuals with a dbh >10 cm (source: [Duivenvoorden and 
Lips, 1991]). 

Height (m) 
upper canopy 

biomass 
(tons/ha) 

basal area 
(m2/ha) 

Density(no. / 0.1 ha) 

treelets trees palms | Species 
high forests 
(H1) 
(H2) 
(H3) 

26 
22 
20 

340 
240 
190 

36 
26 
25 

640 
570 
650 

71 
44 
71 

4 
3 
7 

39 
26 
32 

low forests 
(L1) 
(L3) 

14 
8 

130 
20 

27 
7 

680 
1700 

117 
40 

7 
3 

14 
10 

palm swamp forests 
(PD 
(P2) 
(P4) 

20 
21 
6 

250 
200 
50 

34 
29 
8 

620 
490 
1420 

92 
89 
12 

9 
27 
9 

17 
26 
4 

L-VV, class 3 L -W, class 13 L-VV. class 14 

ijf 

20 30 40 50 60 70 20 30 40 50 60 70 20 30 40 50 60 70 
Incidence angle [deg] Incidence angle [deg] Incidence angle [deg] 

Figure 3.2. L-band VV-polarized plot averaged backscatter as a function of incidence angle, for three 
examples.a) class 3, b) class 13 and c) class 14. 

The incidence angle dependence of the backscatter parameter y (y=o I cos(#,); 

G is the differential radar cross section) can not be studied well with this data set. 
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For the dominant forest class (H), a high dense forest on non-flooded terrain, the 
incidence angle dependence is low for the 25°-60° incidence angle range, for all 
frequency bands and for HH-, HV- and VV-polarisation When, for example, the 
averaged backscatter in the 50°-60° incidence angle range is subtracted from the 
averaged backscatter in the 25°-40° range, the difference is less than 0.6 dB in all 
cases. Figure 3.2 shows the L-band HH-polarised backscatter as an example of the 
low incidence angle dependence for this dominant class. For most of the other 
classes it is much harder to make firm statements since their areas do not cover a 
wide incidence angle range. The only exceptions are class 13 and 14 (see table 3.3) 
for which the backscatter parameter y decreases considerably in P-band, notably for 
HH- and VV-polarisation, while for class 14 this seems also the case in the L-band. 
In these cases, when subtracting the average backscatter of the 50°-60° range from 
the 25°-40° range the difference is 1.7 dB or more. These signatures are also shown 
in figure 3.2. 

Another point of concern has to be mentioned. For P-band the analysis has been 
done on modified data. The original data showed a range dependence of the intensity 
level, which may have resulted from poor calibration for antenna pattern. The same 
pattern showed up in the Guaviare forest data, collected nearby on the some day, but 
is far less pronounced. The strong increase of backscatter parameter y with 

incidence angle found in P-band Araracuara data, therefore, seems to be an artefact. 
A range dependent intensity correction function was derived from the angular 
dependency for the forest on average, excluding the river and some large areas of 
flooded forest with very high backscatter, thus flattening the P-band angular 
dependence for the dominant classes considerably. It is noted that this step does not 
affect polarimetric phase difference and coherence, or influences the classification 
results which are to be discussed later. 

The field averaged Stokes scattering element data of the database are used to 
calculate unbiased field averaged values for backscatter, phase differences 
and correlation. The complex correlation between the HH- and VV-returns 
can be computed from elements of the Stokes scattering operator as: 

\ShhSw , 
p = \p\ exp(i0 = K ' == (3.1) 

(ShhShh/\SvvSvvi 

This complex correlation (or coherence) p can be written as the sum of a real part 

and an imaginary part (e.g. see figure 3.6) or can be described with an amplitude \p\ 

and a phase </>, which are also known, respectively, as coherence magnitude and 

polarisation phase difference (PPD). For a homogeneous area i the averaged 

polarimetric (hh-vv phase difference) coherence magnitude is denoted here as | p , | . 
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The accuracy of the estimation of field averaged values depends on the total number 
of independent looks N. Inspection of the single-point statistics and the range and 
azimuth auto-correlation functions of large homogeneous pastures in AirSAR 
images (of the Guaviare site) revealed an effective number of approximately 14 
looks per pixel for all bands. Spatial correlation would decrease this number further 
by approximately 30% for C- and L-band and 60% for P-band. 

The number of pixels for plots in the Araracuara data set varies considerably as a 
result of the necessity to include a fair number of small plots to represent rare forest 
types adequately. For the 23 field-work plots, all are in excess of 50 pixels and 10 
are in excess of 100 pixels. For the 878 additional areas, 856 are in excess of 50 
pixels and 729 in excess of 100 pixels. For none of the classes a significant fraction 
of the plots is less than 50 pixels. For 100 pixels the number of independent looks N 
is 980 (100 x 14 x 0.7) in C- and L-band and 560 (100 x 14 x 0.4) in P-band. For 50 
pixels these numbers are 490 and 280, respectively. 

For such large numbers of independent looks N, for homogeneous fields these 
averages can be regarded as accurate estimations of the underlying values. The 
standard deviation of the backscatter follows from [Hoekman, 1991; eq.27] and is 
less than 0.260 dB for N>280. The standard deviation of the phase difference 
decreases with |p ( | and follows from [Tough et al., 1995; eq.69]. It is less than 

4.19° for \pi\ = 0.5 and N>2S0. The standard deviation of the coherence decreases 

with \pf\ and follows from [Touzi et al, 1999; eq.26]. It is less than 0.051 for \pt\ 

= 0.5 and N>280. The estimation of |/?,-| is biased, however is negligibly small for 

such large values of N. 

To the authors' best knowledge an analytical expression for the joint distribution of 
phase and coherence magnitude can not be found in literature. A numerical approach 
was taken to calculate confidence intervals for the complex coherence, based on the 
complex Wishart distribution. Confidence intervals of 50% and 90% are graphically 
shown in Figure 3.3 for 14-look and 280-look samples, for a phase difference of 45°, 
and \pt\ values of 0.1, 0.5 and 0.9. Note that this figure clearly illustrates the above-
mentioned: estimation of coherence magnitude and, notably, phase, is harder for low 
values of 1/7,1 . 

3.4. FIELDWORK AND LEGEND 

Additional fieldwork for this research was made in early 1998. Since the test area is 
primary forest in steady state, and no major disturbances occurred since 1993, 
changes can be assumed to be negligible in a statistical sense. The fieldwork was 
designed to capture the variation found in the landscape ecological map as well as in 
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the radar data. Consequently, selected plot locations cover a wide range of forest 
structure and flooding conditions. Detailed measurements of structural and 
physiognomic characteristics were made at 23 plots of primary forest, each 1,000 m2 

in size. In each plot two different transects were measured. Within the first transect 
of 100 m x 10 m all trees with a diameter at breast height (dbh) in excess of 10 cm 
were included, and measurements were made, among others, on the dbh, tree height, 
height to the first living branch, life form (tree, palm or liana), leaf size etc. Within 
the second transect, located inside the first transect and 50 m x 2 m in size, all plants 
with a dbh less than 10 cm and a height larger than 2 m were included. By 
measuring both types of transects the variation in the canopy as well as in the 
undergrowth is well sampled. Graphical illustrations are shown in Section 3.7. For 
each of these plots, but also along tracks from the river to the plots, observations 
were made of flooding condition, drainage and soil type. 

The radar images show a lot of thematic variation, however this variation is not 
always reflected well in the variation shown on the landscape ecological map. Partly 
this is a consequence of the aggregation level of the map. For example, small units 
(mostly units of rare types) are not shown and complexes of long small structures 
with different forest types in the floodplain, the so-called 'bar complexes' are shown 
as separate aggregated classes. Within a single mapping unit, differentiation in the 
radar image can occur because of flooding (at the time of image acquisition) or soil 
type. The latter, for example, related to the depth of the peat layer. On the other 
hand, mapping units, which are clearly distinct, floristically or geologically, but are 
not distinct in terms of biophysical characterization, are not discernible on the radar 
images. 

Eventually a new legend could be developed which appeared to be suitable for radar 
image classification and which can be linked to the units of the landscape ecological 
map. This legend is shown in table 3.3 and is a result of trial-and-error using the 
classification simulation technique introduced in [Hoekman and Quinones, 2000] as 
an exploratory tool. The proposed legend for AirSAR data derived classifications is 
divided in three parts. The central part is a column showing landscape ecological 
units (see also table 1). At the right the associated forest types (Classification level 
7) are shown (see also tables 3.1 and 3.2). The left part is a hierarchical division in 
associated biophysical parameters. In the legend proposed here the flooding state is 
the most dominant classification level (Level 1), followed by drainage type (Level 
2), soil type (Level 3), cover type (major vegetation type) and structural type (Level 
6) (refined level vegetation type). Though this hierarchical division is closely linked 
to the physics of radar scattering, this may not always be very obvious. To give an 
example. P-band backscatter level is related to biomass but relations are non-linear 
and big trees (i.e. large dbh) relatively contribute more. Thick peat layers are too soft 
to support big trees. Consequently there is a relation between peat layer thickness 
and backscatter level, even in case biomass levels not differ much, which is 
mediated by the absence of big trees. It is apparent from the table that there is no 
unique one-to-one relationship between the landscape units of the map and the 
'radar' legend. Levels 1, 2 and 3 can be aggregated from Level 6 or can be made 
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directly. Also Level 7 (the forest types: 8 classes) may be aggregated from Level 6 
(the 'radar' structural types: 15 classes), however some confusion between the high 
forest types (HI, H2 and H3) will remain. 

Figure 3.3. Confidence intervals for the complex coherence at 50% and 90% for (left) 14-look and (right) 

280-look samples, for a phase difference of 45°, and \pA values of 0.1, 0.5 and 0.9. The intervals are 

drawn within the unit circle of the complex plane 
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Table 3.3. Proposed legend for classification levels 1, 2, 3, 6 and 7 for classification of AirSAR 
polarimetric data in the study area, the number of training areas (N) for each of the classes of Level 6, and 
the class Code number .(see colour plate 6). 

Level 1 
2 classes 
Flooded 

Non-
flooded 

Flooding 

Level 2 
3 classes 
Permane 
ntly 
flooded 
or wet 

Sporadic 
ally 
flooded 

Never 
flooded 

Soil 

Level 3 
8 classes 
Peat 

Thin 
organic 
deposit 
Thin 
organic 
deposit 
and peat 
Thick H 
horizon 
Hydrous 
and thin 
organic 
deposits 

Hydrous 
organic 
deposits 

ThinH 
horizon 

Thin and 
thick H 
horizon 

Cover 
type 

Palm 
forest 
(peat) 

Low 
forest 
(peat) 
Palm 
forest 

Palm 
forest 

Low 
forest 
Palm 
forest 
(floode 
d) 
Palm 
forest 
(floode 
d) 
Low 
forest 
(floode 
d) 
High 
forest 
(floode 
d) 

Primar 
y high 
forest 

Structural 
type 

Level 6 
15 classes 
P2 (peat) 

P4 (peat) 

L3 (peat) 

P2 

P2 

L3 

P1 
(flooded) 

P4 
(flooded) 

L3 
(flooded) 
L2 
(flooded) 
H3 
(flooded) 
H2 
(flooded) 
H1.H3 
(flooded) 
H2, (or 
H1.H3) 
H3 
H1,(or 
H3) 

Land­
scape 
unit 

Ec, (Eb1) 

Tb3, 
(Eb3) 
Tb2, 
(Eb2) 

Cb1 

Tb1 

Hp2, Hp3 

Ac 

Eb3 

Eb2 

Cm2 

Ce 

Ac, Ec 

Cc 

Ac, Ec 

Ce 
Hp1,Tp, 
Dp, Sv 

Forest 
type 

Level 7 
8 classes 
P2 

P4 

L3 

P2 

P2 

L3 

P1 

P4 

L3 

L2 

H2, (H1, 
H3) 
H3 
H1,(H3) 

N 

36 

22 

89 

36 

36 

18 

10 

18 

9 

18 

10 

-

20 

114 

11 
431 

Code 

11 

12 

13 

14 

7 

15 

6 

8 

9 

10 

17 

16 

1 

2 
3 
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3.5. CLASSIFICATION SIMULATION 

The accuracy of classification results can be simulated as a function of the number 
of independent looks using the techniques introduced in a previous paper [Hoekman 
and Quinones, 2000]. This previous paper describes a fully polarimetric multi-band 
approach to classification and introduces probability density functions (pdf) for 
multi-look samples of a certain class, for intensity, phase difference as well as 
coherence magnitude. Since the theoretical pdf s introduced were shown to be in 
good agreement with the experimental data, and the same type of data is used here 
(same sensor, same flight and nearby forest), it is assumed that the same method can 
be applied without need for modification. 

The database of averaged Stokes scattering elements introduced in section 3 contains 
data for 878 delineated areas. These areas can be grouped according the legend 
introduced in section 3.4. In this way five levels are defined. Level 1 is the 
'flooding' level and has 2 classes, Level 2 is the 'drainage' level and has 3 classes, 
etc. When, for example, a classification simulation for the Level 6 legend is made 
for samples of 144 looks the confusion matrix given in table 3.4 results. The overall 
result is 71.8%. When this is done for all five classification levels, at speckle levels 
corresponding to 64 looks, 144 looks and a very large number of looks, the overall 
results given in the top section of table 5 are found. 

Table 3.4. Confusion matrix for classification of the Structural Type Classification (Level 6) using a 95% 
confidence interval for classification (class UC contains the unclassified pixels) and using the 144-looks 
simulated data set. Results are shown in percentages, and only in case these are larger than 2%. 

UC 
11 
12 
13 
14 
7 

15 
6 
8 
9 

10 
17 
16 
1 
2 
3 

11 
7.7 

57.2 

6.4 
4.7 

10.6 

4.2 

4.2 

2.2 

12 
10.9 
5.0 

44.5 
4.5 
13.6 
12.3 

2.3 

3.2 

13 
4.6 
5.1 

72.4 
4.3 

6.3 

14 
3.6 
5.6 
2.5 

58.6 

2.5 
2.8 

5.8 
2.2 
3.6 

7.8 

2.2 

7 
4.2 
11.9 

70.0 

3.3 

2.8 

15 
3.9 

2.8 

89.4 

6 
3.0 
8.0 

86.0 

2.0 

8 

5.6 

92.2 

9 
4.0 

89.0 

4.0 

10 
7.2 

88.3 

3.3 

17 
2.0 

6.0 

3.0 

10.0 
70.0 
7.0 

16 
4 

2.5 

88.0 

4.5 

1 
2.6 
2.2 

4.8 
10.9 

7.3 

64.9 
2.0 
4.6 

2 
3.6 

3.6 
83.6 
7.3 

3 
6.5 

7.1 
9.6 

73.4 

The overall classification result of 71.8% is shown in the top section of table 3.5, 
where it is compared with the overall values for the other classification levels. These 
values are often higher, which is not surprising considering the lower number of 
classes. Of course the results are better when no speckle is present and are worse for 
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the 64 looks case. Another way of looking at the results is shown in the middle 
section of this table. Here the averaged confusion between pairs of classes is shown. 
This measure is defined as (see also [Hoekman and Quinones, 2000]) the average 
confusion of all class pairs. The confusion of a class pair (a, b) is the number of 
samples of class a classified as class b plus the number of samples of class b 
classified as class a, classified in the absence of other classes, as a percentage of the 
total number of class a and b samples. The expected value for maximum confusion 
therefore is 50%. This measure is independent of the number of classes and gives a 
better impression of the suitability of a certain legend. For example, when there are 
100 samples of class a and 200 samples of class b this could result in 60 samples of 
class a classified as a and 40 wrongly classified as b. Of the 200 samples of class b, 
180 could be classified as b and 20 wrongly as a. In this numerical example the 
confusion of pair (a,b) would thus become (40+20)/( 100+200) or 20%. For Level 6 
the average confusion is clearly lower than for the other levels. Given the 
hierarchical structure of the levels it could be beneficial to aggregate all other 
classification levels from Level 6 instead of creating them directly. The lower 
section of the table illustrates this for the case of 144 looks data. In all cases the 
overall results improve, notably for Level 2 and 3. 

Table 3. 5. Simulated overall classification results in percentages for all classification levels using a 95% 
confidence interval. Results are shown at three speckle levels: 64-looks, 144-looks and 'no speckle' (top 
section of table). The average confusion between two classes is shown in the middle part of this table and 
the overall classification results after aggregation from Level 6 is shown in the lower part. 

Level 1 Level 2 Level 3 Level 6 Level 7 
Overall classification result 

64 looks 
144 looks 

no speckle 

84.3 
85.0 
84.2 

79.7 
81.2 
82.5 

72.6 
76.7 
82.9 

63.8 
71.8 
84.3 

66.0 
71.6 
81.3 

Average confusion in absence of other classes 
64 looks 

144 looks 
no speckle 

9.7 
8.2 
6.7 

9.1 
7.8 
6.4 

7.8 
6.1 
3.2 

4.5 
3.1 
1.2 

5.8 
4.3 
2.4 

[ Level 1 | Level 2 | Level 3 Level 6 Level 7 
Overall classification result aggregated from Level 6 

144 looks | 87.6 | 86.7 | 82.0 71.8 73.4 

3.6. IMAGE CLASSIFICATION, VALIDATION AND AGGREGATION 

The creation of a classified image as well as the evaluation of the classification 
results, in general, are not very straightforward tasks. This may be particularly true 
for the complex structure of the tropical rain forest. Some points of consideration are 
the occurrence of many rare types of forests (table 3.6), absence of well-defined 
boundaries and presence of gradients between forest types, presence of complexes of 
forest types (section 3.4) and presence of chagras, small areas of shifting cultivation 
along the river. In the previous two chapters it was shown that 15 classes can be 
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defined on the basis of carefully selected training areas. Moreover, theoretically, 
pure samples of these 15 classes can be differentiated well, even at speckle levels of 
144 looks (table 3.5). In real images the presence of speckle, texture, relief and 
drainage patterns may have a strong influence on the classification results. When not 
accounted for, the results can be significantly lower than for these theoretical cases. 
For example, when 3x3 pixels are aggregated to create samples of 95 (C- and L-
band) and 66 (P-band) looks the overall result is only 50.5%, while a simulated 
result of 63.8% for 64 looks was obtained (table 3.5). 

Table 3.6. The estimated relative occurrence of units in percentages of the total study area. These 
numbers can serve as an additional prior in the extended ICM method. 

Classes 
1-2 

3 
6-15 

16-17 

Rel. Occ. 
10% 
60% 

1% 
5% 

To mitigate such 'averse' conditions encountered in real images, or to utilize these 
as potential sources of additional information, image processing techniques can be 
applied. However, because of the complexity of the scene, it was found that many of 
the commonly applied techniques fail to a large extent. For example, image 
segmentation techniques [Oliver and Quegan, 1998] are not very appropriate 
because of the absence of well-defined boundaries between many forest types. 
Texture analysis seems only partly useful because of the limited image resolution of 
approximately 10 m. Almost all types have a 'medium' type of roughness, while 
only the high forest type H2 along the river (class 1) has a 'rougher' texture, most 
likely caused by the presence of chagras. Also the relief poses problems resulting in 
many classification errors in the sedimentary plain. Application of relief detecting 
algorithms such as the ones proposed by Shuler et al. [1996, 1998] seem to capture 
most of the relief, however, also confuse the rough forest structure caused by 
chagras in the flat floodplain with the strong relief areas of the sedimentary plain. 
In the next part of this section the Iterated Conditional Modes (ICM) method [Besag, 
1986] will be briefly introduced. It will be shown that a new approach, combining 
ICM with several types of a priori information, can yield very good classification 
results. 

In [Hoekman and Quinones, 2000] the likelihood of a pixel i belonging to class c, 
lij c , is based on the (multi-frequency) radar signal properties in terms of intensities, 

phases and coherences. The classification of a pixel simply is the selection of the 
class for which /;',- c is the highest (the Maximum Likelihood or ML solution). In the 

ICM method the likelihood liic is modified to mliic by multiplication with a 

conditional probability exp(j3uic), where uic is the current number of neighbours 

of pixel i having class c, and j3 is a parameter determining the relative importance 

of neighbourhood information. In the approach adopted here the eight surrounding 

pixels form the neighbourhood. Now the classification of a pixel is changed by 
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selecting the class for which the modified likelihood mliic is the highest (the 

ICM(l)-solution). Usually a number of cycles of ICM is required to reach a stable 
solution, and usually it is better to start with a lower value of J3. By relaxing the 
value of ji to the final value, more and more neighbourhood information is used. 
Note that the process is reversible, i.e. as soon as /? would be set to zero again the 
initial ML-solution is recovered. The logarithmic version of the modified likelihood 
mli; c for ICM-cycle n is denoted as 

ln{mlii,c,n )= ln{lii,c )+ Pui,c,n-\ (3-2) 

For appropriately chosen values of J3, the number of cycles and the relaxation 
scheme, usually determined by trial-and-error, this approach is found to yield major 
improvements for the classification results. Evaluation of the remaining 
misclassifications revealed that most of the remaining error is induced by the relief 
or can be related to the rough texture of the chagras. Moreover, the overall accuracy 
can be increased further by taking the dominance of certain cover types into account. 
This knowledge can be included by adding additional priors to the (logarithmic 
version of the) modified likelihood as 

ln(m//,-c>„)= ln(/«/iC)+ /?, u^n_x + fi2 \n(Pc) + /33 \n(Ric)-J34Ti>c (3 .3) 

with 

T:c = M/n V' c! ,pT 
2Tvn 

where Pc is the relative occurrence of class c (table 6), 

Ric is the relief factor for pixel i and class c, 

Tic is the texture factor for pixel i and class c, 

Pi,Pi,PA are factors defining the relative influence of a priori 

information, 
fSj is a factor defining a threshold for the influence of 

texture information, 
/, is the (logarithmic version of) the coefficient of variation 

(CV) and 
Tmc, Tvc are the mean and variance of the CV for class c. 

The (logarithm of the) relief factor is set to non-zero only for class 3 pixels in the 
sedimentary plain. The sedimentary plain (hilly area) was delineated on the radar 
images by a human interpreter. In future classification exercises this task may be 
easily automated when InSAR derived DEM's become available. The CV simply is 
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the standard deviation of the backscatter intensity (in dB) in the C-band Total Power 
image calculated over a 7x7 pixel window. The factor /?T was arbitrarily set at 1.5 
outside the sedimentary plain and at 0 within the sedimentary plain. 

Table 3.7a. Confusion matrix for the pixels of the training areas (in %) for the 15 classes of Level 6 after 
applying 30 cycles of the extended ICM approach. Only values larger than 2% are shown. 

11 
12 
13 
14 
7 

15 
6 
8 
9 

10 
17 
16 
1 
2 
3 

11 
70.1 
7.9 

2.6 
5.8 

7.5 

3.7 

12 

81.9 

7.9 

13 
3.4 

92.2 
2.5 

14 
4.8 
9.7 
5.4 

63.5 

2.7 
2.2 
3.7 

7.0 

7 
10.5 
2.2 
2.8 

82.4 

15 

3.7 

89.3 

5.9 

6 
65.1 

4.6 

19.3 

5.5 
3.7 

8 
4.7 
2.7 

91.0 

9 

30.9 
14.5 

20.9 

32.7 

10 

79.4 

20.6 

17 
3.5 

2.7 
77.0 
13.3 

3.5 

16 

96.9 

3.1 

1 
3.5 

21.6 

72.8 

2 
2.1 

32.4 

5.5 
28.3 
31.0 

3 

3.0 

2.9 

93.7 

Table 3.7b. Confusion matrix for the pixels of the validation (fieldwork) areas (in %) for the 15 classes 
of Level 6 after applying 30 cycles of the extended ICM approach. Only values larger than 2% are shown. 

11 12 13 14 15 8 9 10 17 16 1 
11 
12 
13 
14 
7 

15 
6 
8 
9 

10 
17 
16 
1 
2 
3 

12.8 

7.7 
23.1 

23.1 
20.5 

12.8 

100. 
100. 

12.9 
29.0 

50.0 3.2 
0.0 

45.2 

50.0 

3.2 

6.5 

— 
— 
— 
— 
— 

— 

— 
— 

— 
— 
— 
— 

— 
— 
— 
— 
— 

— 100. 
— 
— 

— 
— 
— 
— 

— 
— — 
— — 

— 
— — 

— 
.... 100. —-

— 100. 
— — 
— — 

— 

13.6 3.7 

9.1 

77.3 13.4 
0.0 

100. 82.9 

It may be concluded that the approach chosen is highly heuristic. Moreover, as yet, it 
is not clear how the values for the influence factors (/?i, Pi, /?3 , /?4), their 
relaxation schemes and other factors can be optimised. However, it can be shown 
that this approach yields major improvements in classification. Because of the 
limited ground truth available this is done in two ways. First the large set of 878 
training areas is used to check the classification results, secondly the small set of 23 
fieldwork plots is used for validation. With a set of empirically derived suitable 
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values for factors (of eq.3.3) and relaxation schemes, the following results were 
obtained. Table 3.7a is the confusion matrix in percentages resulting after 
completion of 30 cycles of the extended ICM method. In general good results are 
obtained, superior to the ones presented for simulation with 144-look data (table 3.5) 
and with a larger overall result, namely 88.8% (table 3.8) versus 71.8% for the 
simulation case (table 3.5). Figure 3.4 shows how results develop from cycle to 

Table 3.8. Overall classification results for training areas and validation areas for Level 6, and for the 
other classification levels after aggregation from Level 6, after applying 30 cycles of the extended ICM 
approach. 

| Level 1 | Level 2 | Level 3 | Level 6 | Level 7 
Overall classification result aggregated from Level 6 
training areas 

validation 
areas 

93.6% 
94.1% 

93.2% 
92.6% 

88.8% 
76.3% 

88.8% 
68.9% 

89.0% 
73.7% 

Classification by ICM cycle 

10 15 20 25 
Iteration number 

Figure 3.4. Evolution of the percentage well-classified pixels of the training areas for all 30 cycles of the 
extended ICM approach. The starting value is the ML-solution (denoted as cycle 0). 

cycle for each individual class. The starting value is the ML-solution (denoted as 
cycle 0), with an overall accuracy of 50.5%. For most classes the results improve 
significantly during the first 10-15 cycles. Table 3.7b is the confusion matrix for the 
23 validation areas. Out of the 11 classes 7 show good results (> 77%). Class 2 is 
completely misclassify as class 3, which has a very similar biophysical 
characterization. It should also be noted that the landscape ecological map is not free 
of error and that forest areas which can be very distinct in biophysical 
characterization are sometimes mapped in the same legend unit. For example for the 
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plots 14, 15 and 16, all belonging to the class of palm forest on peat soil (class 11) 
according the landscape ecological map, forest heights of 23, 28 and 28 m and 
biomass levels of 84, 133 and 172 ton/ha were found, respectively. The overall 
accuracy is 68.9% (table 3.8). The latter table also shows figures for other 
classification levels, aggregated from Level 6. These other levels have less classes 
and, consequently, higher accuracy. As an illustration Figure 3.5 shows a small 
section of the area as total power image, training areas derived from the landscape 
ecological map, the ML-classification and the ICM-classification. 
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Figure 3.5. A 4.4 km x 5.8 km section of the Araracuara test area showing: (a) total power C-band (blue), 
L-band (green) and P-band (red), (b) training areas derived from [Duivenvoorden and Lips, 1991], (c) 
ML-classification and (d) ICM(30)-classification. The Level 6 colour-codes for (b), (c) and (d) are shown 
in the legend.(see colour plate 3). 

3.7. POLARIMETRIC MODELLING 

The frequency dependence of the complex coherence shows some characteristic 
features which may be strongly related to forest structure and which may be 
described well with existing physical backscatter models. To illustrate this, the 
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complex coherence values of a selection of the 23 field plots are divided in three 
groups as shown in Figures 3.6a-c. The curves connect the C-band coherence (in 
these examples always the right-most point), with the L-band and the P-band value 
(at the other end of the curve). Figure 3.6a shows high forests on flooded and non-
flooded terrain. For the non-flooded cases, with increasing wavelength, the 
coherence magnitude decreases and the polarisation phase difference (PPD) 
increases from low values to values typically around 45°. For the two flooded cases 
the coherence magnitude increases again when moving to P-band and the phase 
increases to values around 120°. The second set of curves, shown in figure 3.6b, 
shows the behaviour of flooded palm forests. There is a clear distinction between the 
palm forest types P2 and P4. In all cases the coherence magnitude increases again 
when moving to P-band and the phase in P-band is always larger than 90°. The third 
set of curves, shown in figure 3.6c, shows the behaviour of low forest. Again the 
flooded and non-flooded behave differently and the coherence magnitude for the 
flooded plots increase when moving from L- to P-band. 
a 
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Figure 3.6. Multi-frequency complex coherence curves for (a) high forest, (b) flooded palm forest, (c) 
low forest and (d) different forest types (see also Figure 7). The curves connect the C-band coherence (in 
these examples always the right-most point), with the L-band and the P-band value (at the other end of the 
curve). In the legends plot numbers are shown within brackets, furthermore, H= High forest, P= Palm 
forest, L= Low forest, Flo= flooded, Non= non-flooded. 

The non-flooded low forests, in contrast to the non-flooded high forests, show a 
general decrease of the phase difference with wavelength. This behavior, given in 
these examples, is not well described in literature. Figure 3.6d gives an overview for 
different forest types and Figure 3.7 shows structural drawings for these types. 

Ulaby et al. (1987) describes the behaviour of the polarisation phase difference in L-
band for several agricultural crops. It is hypothesised that the phase difference 
results from a combination of (1) propagation delay, (2) forward scatter by the soil 
surface and (3) specular bistatic reflection by the stalks (of corn). Ulaby et al. (1987) 
show that the (phase of the) second term is negligibly small. The first and third term 
are modelled for a layer of vertical stalks. Rao et al. (1995) discuss a very similar 
model, also for corn, and describe its frequency behaviour for P-, L- and C-band 
AirSAR data. Neither of these studies includes a description of the coherence of the 
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phase difference and simply model the total PPD as the sum of the PPD of these 
three components. A more complete description of the complex coherence will be 
introduced next. 

.•HHHF'wIfw 
Figure 3.7. Transect drawing of primary forest plot in Araracuara, using a symbolic representation for the 
structural elements. The spatial units are in meters. Examples are given for plot 7 (H non-flooded), 19 (P2 
flooded), 5 (P4 flooded), 2 (L2 flooded), 9 (L3 peat) and 12 (L3 flooded), respectively (compare with 
Figure 3.6d). 

In many backscatter models, notably radiative transfer models, the backscatter is 
thought of as composed of three incoherent contributions [Ulaby et al. 1986, Fung, 
1994]. These are (1) the direct backscattering from the vegetation layer, (2) the 
direct backscattering from the ground attenuated by the vegetation cover and (3) the 
backscattering originating from the ground-trunk interaction attenuated by the 
vegetation cover. These are sometimes referred to as the diffuse term, the single-
bounce term and the double-bounce term, respectively [Van Zyl, 1989]. 

Suppose the received electric field can be thought of as composed of these three 
incoherent terms. Then, for H-polarisation: 

'hAot = Eh = EhA + Eh,2+Eh,3 (3.4) 

and the estimation of the HV cross-product follows as: 

(Eh E*v) = ((Eh,\ + Eh,2 + Eh>3 )(E*VA + E*v<2 + < 3 ) 

= {Ei,iE.,\ ) + {Eh 7E -hA^vA •'h,2r'v,2 +(Eh,E h^vl (3.5) 
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Similarly, 

Jh^h EhEh)-\Eu\Eh\ ) + {EujEi,j) + lEi,-iEi 'h,2^h,2 Jh^h,l (3.6) 

The following (power or backscatter) fractions can be introduced 

and A3 Ai = 

Eh\Eh\ 

EhEh 

hh,\ 

, h2 = 
Eh,2Eh,2 Eh,3Eh,3 

EhEh EhEh 

.(3.7a,b,c) 

Note that hy =—;r~and that similar expressions can be given for h2 and h^ and 
'hh 

for the V polarisation as vj, v2 and v3. The polarimetric coherence pnnvv of the 
HH and VV signals follows as: 

EnEv lh,!^v,l Ei,iE,,i ) + (Eh 1E..7 ) + (EL,->,E h,2^v,2 ^,3^,3 

I (EhEhj(EvEv 

which will be denoted as 

Phhvv = Phhvv,\ + Phhvv,2 + Phhvv,3 

EuEi, ){EVE 
hah c v c v 

, (3.8) 

(3.9) 

The first component can be written as 

Phhvv,\ j ( £ » X i X * ' X i ) (g*. i<i) = firlexp(ifa) (3 .10) 

/ l = the relative strength of the vegetation layer. Note that 

"~3 To 
"hh,! aw,\ 

where 

„ f, hh,! w. 

°hh °w 

Similarly 

= the HHVV coherence magnitude of the vegetation layer 

= the HHVV coherence phase of the vegetation layer 

Phhvv,2=af2r2exP(ih) 
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Figure 4.2. Multi-frequency complex coherence signatures and intensity signatures for low biomass non-
flooded secondary forest plots (Gua 10s and Gua 04s) and low biomass flooded palm forest P4 (Ara 10 
and Ara 14). The table in the figure presents information on the plot number, forest type, flooding 
condition=Flo (F = Flooded, N = Non-flooded, P = Peat), biomass estimated from field data, polarimetric 
phase difference (PPD) and polarimetric coherence magnitude |p| of C, L and P-bands. Structural profiles 
illustrate the forest types. Vertical scale of the profiles is 0 to 40 m. Horizontal scale is 0 to 100 m. 

Another example of plots with similar structure and flooding conditions are 
presented in Figure 4.2. In this case the plots of Guaviare correspond to non-flooded 
low-biomass secondary re-growth areas and the Araracuara plots correspond to 
flooded palm low-biomass forest (P4). The signatures of the plots of similar 
structure have the same pattern. The biomass levels between the sites are not exactly 
the same but it is noticeable that, as expected, the intensity signatures of the 
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Araracuara flooded plots for the L and P-band are much higher than the signatures 
registered for the non-flooded plots of Guaviare. In the Guaviare plots PPD 
increases with the wavelength but not exceeds 60° and the \p\ values are below 0.5. 
For the Araracuara plots the PPD increases with the wavelength and \p\ is much 
higher for P band. 

For an effective comparison between the complex coherence signatures between 
plots and sites, it would be ideal to calculate the confidence interval of the complex 
coherence of the three bands for each plot for a certain number of independent looks 
as explained in Section 3.3 of [Hoekman and Quinones, 2001]. Such calculations are 
out of the scope of this paper. Here it is intended to analyse tendencies and not to 
prove differences between classes. It is expected to derive some preliminary 
conclusions that will serve in the future as the base for a more detailed study, 
especially concerning the physical explanation of the different interactions. 

4.5. RESULTS 

4.5.1. Direct approach using empirical relationship with backscatter 
The potential for biomass class mapping was studied by evaluating the backscatter 
for 5 fields of pasture, 10 fields of secondary forest re-growth and 13 fields of 
primary forest for which biomass was estimated. For these fields the above ground 
fresh biomass was found to vary over the range of 2.9-10 ton per hectare (1 ton = 
1,000 kg; 1 ha = 10,000 m2) for pastures, 6-159 ton/ha for secondary forest and 137-
297 ton/ha for primary forest. Since biomass varies over several orders of 
magnitude, radar intensity values yt (in dB) were fitted to the logarithm of biomass 
(x) using a log-log functional relationship of the form yt [dB]= aexp(fox) + c. The 

main results are summarised in Table 4.2. For the C-band the correlation is not very 
high. The maximum value for r2 is 0.66 and was found for the VV-polarisation. For 
L-band with HV-polarisation and for P-band high values are found. However there 
are some differences: L-band with HV-polarisation has a high correlation but the 
signal tends to saturate at high biomass levels. For P-band the saturation appears at 
higher biomass levels, however the SEE (Standard Error of Estimate) is higher. The 
combination of these bands can be used to improve overall results for the whole 
biomass range under study. Averaging backscatter of P-band with RR-polarisation 
and L-band with HV-polarisation, for example, results in a slightly higher 
correlation (r2 is 0.94) and a considerably lower SEE. The ratio of the total range of 
backscatter and the SEE for this particular combination is high, namely 13.2. This 
number may be interpreted as 6.7 times 1.96 standard deviations or, in other words, 
at least 6 classes of biomass may be distinguished at the 95% confidence level. 
(This should be interpreted as the confidence level for the real class being not more 
than one class away from the estimated class). Also, since biomass values of the 
savannah, beyond the lower end of the range shown here, and biomass values of 
higher biomass primary forest (at other test sites) beyond the higher end of the 
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range shown here, seem to obey this functional relationship well, it is believed that 
up to 8 biomass classes may be discerned using this particular approach. 

Table 4.2. Relationship between backscatter, expressed as y,- [dB], and biomass expressed as loglO of 

the above ground fresh biomass in ton/ha, for several frequency and polarisation combinations. The 

correlation coefficient r2, the standard error of estimate (SEE), the total range of y,- of the experimental 

data and the ratio of range and SEE are shown for the field measured plots in the two study sites. 

Guaviare 
C-HH 
C-HV 
C-W 
L-HH 
L-HV 
L-W 
P-HH 
P-HV 
P-W 
P-RR 

(L-HV+P-RR)/2 
Araracuara 

C-HH 
C-HV 
C-W 
L-HH 
L-HV 
L-W 
P-HH 
P-HV 
P-W 

(LHV+PRR)/2 

f* 

0.32 
0.62 
0.66 
0.81 
0.93 
0.78 
0.90 
0.94 
0.91 
0.93 
0.94 

0.07 
0.09 
0.03 
0.20 
0.60 
0.16 
0.25 
0.69 
0.19 
0.36 

SEE [dB] 
0.41 
0.33 
0.51 
1.07 
1.05 
0.83 
1.39 
1.70 
0.82 
1.23 
0.93 

1.21 
0.92 
1.06 
1.92 
1.04 
1.67 
2.98 
1.53 
2.20 
1.67 

range [dB] 
3.2 
3.2 
4.8 
9.3 
11.6 
7.7 
11.1 
16.1 
9.6 
13.2 
12.3 

7.4 
3.6 
5.0 
13.8 
10.3 
11.9 
20.3 
13.9 
14.2 
13.2 

Range [dB]/S££ [dB] 
8.0 
9.6 
9.5 
8.7 
11.0 
9.3 
8.0 
9.5 
11.6 
10.7 
13.2 

6.1 
3.9 
4.7 
7.2 
9.8 
7.2 
6.8 
9.1 
6.5 
7.9 

Using the functional relationships between biomass and the average backscatter of 
the L-HV and P-RR bands a map of biomass classes can be created. This was done 
for eight arbitrarily chosen biomass classes, namely: (1) <3.42, (2) 3.42-4.72, (3) 
4.72-6.85, (4) 6.85-10.7, (5) 10.7-18.5, (6) 18.5-38.1, (7) 38.1-109 and (8) > 109 (in 
ton/ha). Classes 2 until 7 correspond to equidistant values of backscatter separated at 
1.96 standard deviation intervals as indicated in Figure 4.3. 

It is difficult to validate the accuracy of these results since acquiring a sufficient 
number of additional biomass values is a huge task. The consistency between 
biomass classification and land cover type classification can be checked, however. 
Table 4.3 shows for each land cover class (excluding recently cut areas) the 
distribution of biomass classes as a percentage of the total area. The agreement with 
expected biomass ranges is high for all three land cover types. 

For the Araracuara site the correlation coefficients are much lower in general than 
for Guaviare (Table 4.2). The maximum value of r is only 0.69 and is found for P-

78 



Biomass Mapping Using Biophysical Forest Type Characterization Derived from SAR Images 

HV. All other values are lower than 0.6, including the (L-HV + P-RR) sum which 
was the best for the Guaviare site and was used for biomass mapping of this site 
[Hoekman and Quinones, 2000]. 

(L-HV + P - R R ) / 2 

1 1.5 
loglO(Biomass) [ton/ha] 

Figure 4.3. (PRR+L HV/2)-polarisation average as function of biomass for the Guaviare site. The 
biomass is the fresh weight above ground biomass (in tons/ha) at the logarithmic scale (i.e. 1.0 is 10 
tor^a, 1.5 is 31.6 ton/ha, etc.). Experimental data for primary forest ( 0), secondary forest (D) and pasture 
(*) are fitted to a curve of the form ?{dB]= a + b(l-exp(-cx)), where x is the logarithm of the biomass. 

In addition the range/SEE ratio values for Araracuara are much lower than for 
Guaviare. Apparently this approach, which was successful for the Guaviare site, 
leads to poor results for the Araracuara site. Scatter plots for Araracuara showing 
the relation between biomass, radar signal (for several bands and polarisation) and 
main cover type reveal the underlying causes for these poor results (Figure 4.4). 

Figures 4.4a-d show results for C-VV, L-HH, P-VV and P-HV, respectively. A 
distinction is made between high non-flooded forests (HI, H3), high flooded forests 
(H2), palm flooded forests (PI, P2, P4) and low flooded peat forests (L2, L3). For 
C-VV (Figure 4a) the correlation and the range/SEE ratio are very low (see Table 2). 
Not any clear relationship can be observed. For L-HH (Figure 4.4b) these numbers 
are higher: the ratio is 7.2 and the correlation is 0.20. In this case there is a slight 
relation with biomass, however there is also a clear dispersion between samples of 
different forest types and flooding conditions. For the P-VV (Figure 4.4c) the ratio is 
6.5 and the correlation is 0.19. In this case the dispersion between samples of 
different forest types and flooding conditions is even higher than for the L-HH case. 
For P-HV (Figure 4.4d) the best results are found with a ratio of 9.1 and a 
correlation of 0.69. Although less dispersion of the data is observed, the saturation is 
reached very early, around 1.5 (or 31.6 ton /ha). 
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Table 4.3. Percentages of areas corresponding to the classification of the four main land cover types and 
the eight biomass classes. The land cover types are encoded as: (1) Primary forest, (2) Secondary forest, 
and (3) Pastures. 

Biomass 
(ton/ha) 

0-3.42 
3.42-4.72 
4.72-6.85 
6.85-10.7 
10.7-18.5 
18.5-38.1 
38.1-109. 

>109. 

Cover types 

1 
0 
0 
0 
0 
1 
2 
12 
84 

2 
0 
0 
1 
3 
12 
28 
40 
14 

3 
16 
18 
23 
20 
12 
6 
3 
1 
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Figure 4.4: Scatter plots between the estimated biomass in plots of different structure and the 
corresponding intensity value expressed in Gamma (dB), The biomass is the fresh weight above ground 
biomass (in ton/ha) at the logarithmic scale (i.e. 1.0 is 10 ton/ha, 1.5 is 31.6 ton/ha, etc.). Experimental 
data for different forest structures according to Table 1: High N= High non flooded forest (H1, H3), High 
F = High flooded forest (H2), Palm F= Palm flooded forest (PI, P2, P3, P4), Low F = Low flooded or 
peat forest ( L2, L3). 

The fact that different forest types of very low biomass (P4 and L3) can be confused 
with high biomass forest types due to the early saturation of the backscatter intensity 
level will certainly have large effects on the accuracy of the biomass map, in case 
such a simple relation is applied. For that reason the possibility of using the 
structural forest type map, already available for the Araracuara site [Hoekman and 
Quinones, 2001], to create a biomass map, was considered as a possible solution to 
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overcome the saturation and the confusion produced by the effect of forest structure 
and flooding condition. 

4.5.2. Indirect approach using forest structural type classification 
In the previous paper [Hoekman and Quinones, 2001] it was shown that the radar 
classification of 15 structural forest type classes has a high level of agreement with 
the landscape ecological map [Duivenvoorden and Lips, 1991] maps and the ground 
data. When the 878 reference areas from the landscape ecological map are used for 
deriving training samples and a fully polarimetric maximum likelihood classification 
(of the C, L and P-band data) is followed by the technique of iterated conditional 
modes [Besag, 1986] an accuracy of 88.8 % is obtained. An independent validation 
for the 23 ground data collection areas yielded an accuracy of 68.9%, which is still 
very high for 15 classes. Of course, when these 15 forest structural classes are 
aggregated into 8 biomass classes even higher accuracy can be expected. The C, L 
and P-band total power image, the forest structural type map and the resulting 
biomass map and the legends were produced for the 5 scenes available for the 
Araracuara site. 

In this paper an analysis is made of the possibilities for biomass mapping for 
reduced radar data sets, for example for single frequency band data. To this aim the 
technique of classification simulation is used as introduced in [Hoekman and 
Quinones, 2000]. This technique predicts classification accuracy as a function of 
combinations of frequency bands, polarisation and speckle level. From the analysis 
presented in [Hoekman and Quinones, 2001] it can be concluded that realistic 
predictions can be made solely on the basis of the averaged values of the elements of 
the Stokes scattering operator for these 878 reference areas. 

Table 4.4. Defined biomass classes in ton/ ha for the area of Araracuara (see also Table 1) 

Biomass class 
[ton/ha] 

20 
50 
140 
190 
200 
240 
250 
340 

Forest Type 

L3 
P4 
L2 
H3 
P2 
H2 
P1 
H1 
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Through re-labelling and aggregation of the 15 forest structural type classes into 8 
biomass classes (Table 4.1 and 4.4) and by comparing the thus predicted biomass 
level with the biomass level shown on the landscape ecological map a confusion 
matrix results. Such a confusion matrix is shown in graphical form in Figure 6a. 
Here each column shows the relative confusion (in %) of one biomass class (or 
level) with the other 7 classes (or levels). Classifications percentages are 
represented in the figure by the surface size of the circles. The average value for 
results on the diagonal (the correct classifications) is 94.6% (Table 5). 
Consequently, the simulated accuracy for biomass mapping using the complete full 
polarimetric C, L and P-band data set is very high, and higher, as expected, than the 
number of 88.8% found for the mapping of the 15 forest structural classes (of 
[Hoekman and Quinones, 2001]). In this case the SEE between the estimated and the 
real biomass class of the training areas is calculated to be 32.6 tons (Table 4.5). 

Table 4.5. Overall accuracy of biomass classification for different combinations of bands and 
polarisation. Results are presented as the averaged percentage of correct classification of a biomass class. 
The standard error of estimate (SEE) is calculated as the estimated biomass level and the biomass level as 
shown on the landscape ecological map. Using Kappa statistics and stating that combination (2) is the 
best spaceborne option for forest structural type classification, then only combination (3) is not 
significantly worse at the 95% level of confidence than combination (2). Stating that combination (12) is 
the worst spaceborne option for forest structural type classification, then only combination (11) is not 
significantly better at the 95% level of confidence than combination (12). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Bands 

C pol, L pol, P pol 

C pol, P pol 

L pol, P pol 

C pol, L pol 

C intensity, L pol 

Ppol 

P intensity 

Lpol 

L intensity 

Cpol 

L-HH 

C intensity 

Radar System 

AirSAR 

RADARSAT-2 + P pol 

ALOS PALSAR + P pol 

RADARSAT -2 +ALOS PALSAR 

ENVISAT+ALOS PALSAR 

Ppol 

ALOS PALSAR 

RADARSAT -2 

JERS-1 

ENVISAT 

Biomass Map 

% of well 
classified 
classes 

94.6 

84.7 

79.0 

82.0 

78.7 

75.4 

78.9 

60.5 

59.9 

52.3 

37.0 

39.5 

SEE (ton/ha) 

32.6 

53.0 

62.7 

67.7 

73.3 

68.0 

70.9 

91.7 

92.1 

119.1 

121.4 

126.4 

These figures can be computed for any subset of the radar data in terms of frequency 
band and polarisation. Table 4.5 gives an overview of the results. The central 
column links the result with spaceborne radar systems and combinations of systems. 
Of course this link should be interpreted with care because of differences in spatial 
resolution, incidence angle or other system or terrain related characteristics. 
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Figure 4.5: Confusion in percentages between biomass levels derived from landscape ecological map and 
the estimated biomass from the structural classification. Percentages in the diagonal correspond to 
samples classified in the correst biomass class. Grphs presented for different polarisation-band 
combinations. C pol = C-band polarimetric data, C intensity = C-HH, C-HV and C -W intensities. 
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Excluding the C, L and P-band polarimetric combination (of the AirSAR), the best 
combinations are C and P- band polarimetric (Figure 4.5.f) and L and P-band 
polarimetric with results of 84.7% and 79.0% accuracy, and SEE values of 53.0 
ton/ha and 62.7 ton/ha, respectively. For the underlying forest structural type 
classification (from which the presented results are aggregated) these results are not 
significantly different at the 95% level of confidence (using Kappa statistics, see 
also [Hoekman and Quinones, 2000]). The worst combinations are C band 
intensities (i.e. for HH, VV and HV polarisation) (Figure 4.5b) and L-HH (Figure 
4.5c) with results of 39.5% and 37.0% accuracy, and SEE values of 126.4 and 121.4 
ton/ha, respectively. For the underlying forest structural type classification these 
results are not significantly different at the 95% level of confidence. 

Figure 4.6. AirSAR 336-b scene covering a 5 x 8 km along the Caqueta river in the Araracuara study 
area, (left) Total power C, L, P-band image, (middle) Forest structural type map (15 classes) and (right) 
Biomass map (8 classes) (see colour plate 4) 
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Figures 4.5d and 4.5e illustrate the confusion that could exist if only using L-band 
polarimetric (ALOS PALSAR) or P-band polarimetric data (recently proposed to 
ESA for an EEOM biomass monitoring mission). The P-band would perform much 
better than the L-band. However, combining the P-band with either C or L-band 
(polarimetric) would even give a still better performance. The classified forest 
structural map using C L and P band polarimetric data and the corresponding 
reclassified biomass map is shown in figure 4.6 for one of the scenes of the 
Araracuara area. 

4.5.3. Field data analysis 
For better physical understanding of the effects of some terrain characteristics (such 
as flooding, forest structure and biomass level) on the radar return the multi-
frequency linear polarisation signature and the multi-frequency complex coherence 
signature of the field plot areas were studied. Several specific cases are considered 
in order to elucidate the direct effect of the parameter on the radar return signal. The 
effect of flooding is analysed by comparing plots of the same biomass levels and 
canopy structural conditions in flooded and non-flooded areas (namely plots 11,7, 4, 
21 for high biomass levels and plots 8, 9, 12, 14 for low biomass level). The effect 
of canopy structure was analysed by studying plots with the same biomass level and 
flooding conditions with different canopy structure (plots 19, 2, 3, 4 for flooded high 
biomass areas and plots 12, 14 for flooded low biomass areas). The effect of 
biomass was studied by analysing plots with similar structure and flooding 
conditions but with different biomass levels (plots 6, 11, 7, 20 for close canopy high 
non-flooded forest and 19, 10, 14, 13 for open canopy palm flooded forest). 

Changes in intensity are expected to occur as described in the literature, i.e. higher 
backscatter values where more scatterers of certain size (in relation to wavelength) 
occur, and higher backscatter in flooded terrain [Hess et al., 1995; Pope et al, 1997]. 
For the physical understanding of the interaction between the forest and the radar 
waves, a model of scattering mechanisms (single bounce, double bounce and diffuse 
scattering) was introduced in the past and image classification of the dominant 
scattering mechanisms were made [Van Zyl, 1989]. The dominance of a certain 
scattering mechanism could in some case be related to certain vegetation structures. 
In a previous paper [Hoekman and Quinones, 2001 ] a model is introduced in which 
values of complex coherence are described as the combined effect of such scattering 
mechanisms. Pure scattering mechanisms as described by [Van Zyl, 1989] can be 
located in the complex coherence plane as points or, when including the effect of 
speckle, as small areas (see also [Hoekman and Quinones, 2001]). For the complex 
structure of the tropical forest, pure scattering mechanisms are not expected to occur 
but it is expected that some patterns in the signatures can be related to specific forest 
structural characteristics. The intention of this analysis is not to derive definite 
conclusions but to relate qualitatively the changes in the radar signatures to the 
influence of specific terrain characteristics. 
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Effect of flooding 
To analyse the effect of flooding two different cases are analysed. The first one 
compares high mature forest plots (HI, H2, H3) with a similar biomass level that are 
either flooded or non-flooded (Figure 4.7). In this case the intensity of the flooded 
plots is 2 dB higher for the L-HH and L-VV intensity and 3 dB higher for the P-HH 
and P-VV intensity. The PPD for flooded and non-flooded plots show an increase 
with the wavelength that is stronger for the flooded plots. Consequently it is shown 
that the signatures of forests with the same biomass level and the same structure can 
be significantly affected by the flooding of the terrain. Another example is given in 
Figure 4.8. In this case the same type of forest (L3) is under different terrain 
conditions. Plots 8 and 9 are located in areas with peat and plot 12 is flooded. In 
these three plots there is a high density of treelets of small diameter at breast height 
(dbh). In plot 12 there are some larger trees than in the other two plots but 
statistically and ecologically is still considered a low forest (L3). 

The two plots with peat show lower radar intensity values, especially in the L-HH (3 
dB lower) and P-HH channels (5 dB lower). An increase of the PPD for plot 12 can 
be noticed for all three radar bands and may be related to the flooding condition. It is 
interesting to note that for the plots with peat there is a decrease of the PPD with 
increasing wavelength, thus leading to a very characteristic signature. This particular 
behaviour of the complex coherence signature has never been reported in literature 
and may be of great importance for mapping and monitoring of tropical peat swamp 
forest areas, which, even on a global level, are known as important carbon sinks. 

Effect of forest structure 
To analyse the effect of forest structure for identical biomass levels and flooding 
conditions two different cases are analysed. Plots 19 (P2) and 2 (L2) both have high 
biomass levels and are located in flooded terrain (Figure 4.9). Plot 19 has an open 
discontinuous canopy and many palm trees, which contrasts with the continuous 
closed canopy without palms of plot 2. The C-HH and C-VV intensities of the open 
canopy are higher than for the closed canopy forest. The PPD also differs between 
these plots. For plot 19 the PPD is low for C and L-Band (3° and 2°, respectively) 
and increased for P band (to 127°). For plot 2 the PPD increases from 0° in the C 
band to 90° in the L and P-band. It is interesting to notice that for this low forest 
(plot 2), mainly composed of small dbh trees, when changing from L to P-band, the 
PPD stays the same while the coherence magnitude \p\ increases. This may indicate 
that probably both L and P-band penetrate to the forest floor. 

Plots 3 and 4 can also be used to study the effect of structure (Figure 4.9). Both areas 
have the same biomass level and are flooded. Plot 3 corresponds to a palm forest 
(P2) with an open discontinuous canopy and plot 4 to a high forest (H3). In the 
intensity signature the values of both forests are very similar with the exception of 
the P-HH intensity for which the palm forest exceeds the high forest with roughly 2 
dB. In all bands the PPD of the palm forest exceeds the PPD of the high forest. For 
the C and L-band these almost have the double value, while for the P-band also the 
palm forest has a much higher PPD value. This may be related to differences in 
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penetration depth depending on the structural differences of the canopy. In both 
cases scatter mechanisms like the double bounce are likely to occur. The \p\ values 
for L and P-band are low in both cases, which may indicate that diffuse scattering is 
also an important constituent of the return signal for these bands. 
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Figure 4.7. Multi-frequency complex coherence signatures and intensity signatures for high forest (HI, 
H3) in non-flooded terrain (Ara 11 and Ara 07) and flooded terrain (Ara 04 and Ara 21). The table in the 
figure presents information on the plot number, forest type, flooding condition (F = Flooded, N = Non-
flooded), biomass estimated from field data, polarimetric phase difference (PPD) and polarimetric 
coherence magnitude \p\ of C, L and P-bands. Structural profiles illustrate the forest types. Vertical scale 
of the profiles is 0 to 40 m. Horizontal scale is 0 to 100 m. 
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Figure 4.8: Multi-frequency complex coherence signatures and intensity signatures for low forest (L3) on 
peat (Ara 08, Ara 09), low forest (L3), flooded forest (Ara 12) and flooded palm forest (P2) (Ara 14). The 
table in the figure presents information on the plot number, forest type, flooding condition (F = Flooded, 
N = Non-flooded, P = Peat), biomass estimated from field data, polarimetric phase difference (PPD) and 
polarimetric coherence magnitude |p| of C, L and P-bands. Structural profiles illustrate the forest types. 
Vertical scale of the profiles is 0 to 40 m. Horizontal scale is 0 to 100 m. 
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Figure 4.9. Multi-frequency complex coherence signatures and intensity signature for flooded palm forest 
(P2) in plots Ara 19 and Ara 03, low forest (L2) in plot Ara 02 and high flooded forest (HI, H3) in plot 
Ara 04. The table in the figure presents information on the plot number, forest type, flooding condition (F 
= Flooded, N = Non-flooded, P = Peat), biomass estimated from field data, polarimetric phase difference 
(PPD) and polarimetric coherence magnitude \p\ of C, L and P-bands. Structural profiles illustrate the 
forest types. Vertical scale of the profiles is 0 to 40 m. Horizontal scale is 0 to 100 m 
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Figure 4.10. Multi-frequency complex coherence signature and intensity signature for high non-flooded 
forest (HI, H2 H3) in plots Ara 06, Ara 11, Ara 07 and Ara 20. The table in the figure presents 
information on the plot number, forest type, flooding condition (F = Flooded, N = Non-flooded), biomass 
estimated from field data, polarimetric phase difference (PPD) and polarimetric coherence magnitude \p\ 
of C, L and P-bands. Structural profiles illustrate the forest types. Vertical scale of the profiles is 0 to 40 
m. Horizontal scale is 0 to 100 m. 

Effect of biomass 
The effect of the different biomass levels for similar forest types under identical 
flooding conditions is evaluated with two cases. In the first case four plots of high 
forest (H1-H3) with closed canopy on non-flooded terrain and with different 
biomass levels are compared (Figure 4.10). Differences in the L and P-band 
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intensities are not significant for the studied levels of biomass (i.e. in the 171-341 
ton/ha range). The PPD increases with the wavelength for all the plots and no 
significant differences between these four plots can be noticed. 

The second case studies the effect of the biomass level in open palm flooded forest 
(Figure 4.11). The relative biomass range in this case is much higher than for the 
previous case (i.e. 40-232 ton/ha) and the effects are noticeable. In the intensity 
signature the differences in the different band-polarisation combinations are not 
clearly associated with the biomass level. In the complex coherence plane it is 
clearly noticeable that the PPD increases with wavelength for all four plots. Also 
biomass effects are noticeable. In C-band the plot with the lowest biomass has a 
much larger PPD. In L-band the plot with the highest biomass has a much lower 
PPD. And in P-band the plot with the highest biomass has a much lower coherence 
magnitude. 

As can be seen from these two examples the effect of biomass on the radar return 
signal varies with the structure. In a closed canopy forest biomass levels do not seem 
to have an effect on the signatures, at least within the studied biomass range. For 
open canopy forest the PDD and coherence magnitude of C, and P band are affected 
and related to biomass changes. 

4.6. CONCLUSIONS AND RECOMMENDATIONS 

Two algorithms for biomass mapping have been presented in this paper. In both 
cases the actual estimation of biomass is preceded by a classification step. There are 
fundamental differences though. The first algorithm, applied on the Guaviare test 
site, is a maximum likelihood classification followed by application of a single and 
relatively simple empirical relationship between biomass and backscatter intensity. 
In this case only two (P-RR and L-HV) band-polarisation combinations are used, 
which give a high correlation of 0.94, and the relation is applied on three of the four 
land cover classes (the recently cut areas are excluded). 

The use of empirical relationships is constrained by the effect of radar saturation at a 
certain biomass level, limiting the number of biomass mapping classes. In this case 8 
biomass classes could be mapped at a high level of confidence. To check the 
consistency of the results biomass classes were related to land cover classes. A good 
agreement was found between the biomass range measured in the field and the 
estimated biomass ranges for the three land cover classes (i.e. pasture, secondary re-
growth, degraded primary forest). 

The second algorithm, applied on the Araracuara test site, also includes 
classifications as a first step. In this case the full polarimetric data set was used for 
classification resulting in a forest structural type classification with 15 classes. 
Subsequently biomass levels were associated to each structural class, thus allowing 
estimation of biomass levels beyond the saturation level. 
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It should be noted that both biomass maps show broad biomass classes over several 
orders of magnitude and, thus, are useful for assessment of spatial patterns 
associated with land and forest degradation and secondary re-growth processes or 
variation in natural forests. 
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Figure 4.11. Multi-frequency complex coherence signatures and intensity signatures for flooded palm 
forest (P2, P3, P4) for plots Ara 19, Ara 10, Ara 14 and Ara 13. The table in the figure presents 
information on the plot number, forest type, flooding condition (F = Flooded, N = Non-flooded), biomass 
estimated from field data, polarimetric phase difference (PPD) and polarimetric coherence magnitude |p| 
of C, L and P-bands. Structural profiles illustrate the forest types. Vertical scale of the profiles is 0 to 40 
m. Horizontal scale is 0 to 100 m. 
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To study the relative influence of different bands and polarisation classification 
simulation were made for a number of sub-sets of the radar data set. The best overall 
accuracy for the biomass map using a sub-set was obtained when using C-band 
polarimetric data combined with P-band polarimetric data. For this combination the 
percentages of well-classified classes was the highest. The combination of L-band 
polarimetric and P-band polarimetric data resulted in a lower percentage of well 
classified classes. In addition for the L and P-band combination the SEE in ton/ha 
increased with 10 ton/ha with respect to the C and P-band combination. These 
combinations may be relevant in the near future since they apply to RADARSAT-2 
(C-band), ALOS PALSAR (L-band) and the recently proposed ESA EEOM P-band 
mission. 

An analysis of field data appeared useful to increase understanding of specific 
effects of forest structure, flooding and biomass levels on the physical interaction 
with the waves. It was shown that forests with similar structures and biomass levels 
under identical flooding conditions generate similar radar signatures. (1) The effect 
of flooding depends on canopy structure and biomass level. Closed canopy forests 
have higher intensity values for HH and VV polarisation for L and P-band when 
flooded. Flooding also increases the PPD in all the bands but especially in L and P-
band. The effect of flooding in open canopy forest strongly depends on biomass 
level. At lower biomass levels there is a considerable increase in the PPD in the L-
band. Another important result is the specific coherence polarimetric signature 
produced by forest on peat terrain. The negative PPD values for L and P-band 
distinguishes this type of forest from all other forest types studied. (2) For closed 
canopy forest, flooded or non-flooded, the biomass level does not affect the radar 
signatures in a significant way, at least not for the biomass levels studied. For open 
canopy forest in flooded terrain changes in the complex coherence signature due to 
changes in biomass level are significant. The PPD increases with the wavelength and 
with the biomass level for C, L and P- band. For lower biomass levels, the increase 
in PPD from C to L-band was almost 100°, while for high biomass levels a 
significant increase of the PPD occurred from L to P-band. This may indicate large 
differences in canopy penetration depth, especially for the L-band, related to the 
biomass level. 

The effect of forest structure on the radar signature depends on many factors like the 
height and openness of the canopy, the dbh distribution of the trees, the size of the 
crowns, the leaves, the distribution and size of the branches etc. These forest 
parameters determine the size and type of scatterers for the radar interaction. In this 
study forest types of open and closed canopy were compared under the same 
biomass level and flooding conditions. Other forest parameters are difficult to study 
experimentally simply because they can not be controlled at the moment of radar 
acquisition over natural areas. To study such parameters it is necessary to use a more 
theoretical approach like using backscattering models for specific and controlled 
forest conditions. This kind of research is being conducted at the moment by the 
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authors and it is expected to generate more specific data on the effect of the canopy 
structure, soil moisture and terrain roughness on the signatures of the radar data. 

As shown in this paper the sensitivity of radar to forest structure and flooding 
conditions is large and allows the characterisation of vegetation in two different 
ways i.e. as vegetation cover types (Guaviare site: 4 classes) and as more detailed 
forest structural types (Araracuara site: 15 classes). Information needed nowadays 
for carbon dynamics and climate change studies can benefit from forest structural 
maps and flooding and peat maps, in which forest dynamics can be recorded. 
Biomass maps in addition can be created in association with these maps. 

The study of the polarimetric radar signatures of different structural forest types in 
other study sites around the world may contribute to a knowledge based 
classification system, facilitating mapping of vegetation structures without 
additional field information. Extension of the actual database of tropical forest 
including areas in South-east Asia, Africa or Australia will be of great help in 
understanding the variations of radar signatures with structure and biomass. The 
creation of forest structural maps and flooding condition maps will be the first 
product in the classification procedure. Re-classification of the structural types will 
result in accurate biomass maps. 

Biomass mapping may also benefit from additional information supplied by 
interferometric systems. Topographic mapping and possible forest height 
estimations will further increase the accuracy in biophysical characterisation. 
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THEORETICAL EXPLORATION OF PHYSICAL 
LIMITS FOR RADAR BIOMASS INVERSION 

5.1. INTRODUCTION 

Scientists and policy makers developed a strong interest in data on the amount and 
distribution of biomass over the earth surface. Most of the currently existing biomass 
maps may be of very poor quality, however [Houghton et ah, 2001]. At present, the 
largest single source of uncertainty in the global carbon budget, amounting to 1.3 
Gigaton carbon per year, is due to terrestrial ecosystems [IPCC, 2001]. The study of 
the carbon cycle and its influence on processes related to climate change requires 
different sorts of earth surface observation (monitoring) in order to supply the 
necessary information on carbon flow dynamics [Quegan and Le Toan, 2002]. 

In many recent studies the use of radar for biomass mapping and estimation is 
investigated by applying direct empirical relationships between biomass and radar 
backscatter signal. However, in general, inversion of radar data for biomass 
estimation is limited by the variations of backscatter produced by vegetation canopy 
structural parameters and soil moisture (and terrain flooding) and limited to a certain 
maximum biomass level dependent on the structural class. Two main conclusions 
result from previous research. (1) The biomass dependency on radar backscatter 
varies with radar wavelength and polarisation. (2) The sensitivity of radar return 
values to biomass change saturates at certain biomass levels. In general it can be said 
that saturation points increase with wavelength and that HV polarisation is more 
sensitive to biomass changes [Kasischke et ah, 1995; Ranson and Sun, 1994; Rignot 
et ah, 1994]. Saturation level figures of up to 150 ton/ha for P-band and up to 100 
ton/ha for L-band are mentioned. In addition theoretical studies have revealed that 
forest structure and soil moisture conditions affect the radar backscatter giving 
constraints for direct biomass estimations [Imhoff, 1995]. 

This paper focuses on the theoretical limits of biomass mapping and is a follow-on 
paper of three earlier publications focusing on land cover and forest type mapping in 
the Colombian Amazon [Hoekman and Quinones, 2000, 2002] and experimental 
biomass mapping [Quinones and Hoekman, 2002]. Experimental field and radar data 
were collected in the framework of NASA's 1993 South American Deployment 
[NASA, 1993; Van Zyl et ah, 1992] at two test sites, namely Guaviare and 
Araracuara. These test sites, radar data and field data collections were described 
extensively in these previous papers. 

The development of robust radar inversion algorithms for biomass estimations, 
independent from study site, is still under investigation. Good theoretical modelling 
and good sets of ground observations are indispensable to further the understanding 
of the target-wave interaction Radar is sensitive to the density, size and orientation 
of the wet above-ground components in a forest (leaves, branches, trunks and root 
parts). Attenuation along the paths of propagation in the forest canopy diminishes 
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the influence of components in lower layers (notably trunks) and the influence of the 
ground surface (notably its roughness and wetness). Furthermore, these effects are 
strongly dependent on wave parameters such as frequency and polarisation [Le Toan 
et al, 2002], It may be obvious from such theoretical considerations that the 
relationships between radar signals and above ground biomass are not direct. Most 
approaches developed to date inherently assume such a relationship exists however. 
An alternative approach, as proposed in [Quinones and Hoekman, 2002] assumes 
that in case forest structure can be mapped accurately, as shown [Hoekman and 
Quinones, 2000, 2002], an accurate biomass level can be deduced from this structure 
on the basis of (local) ecological knowledge. It was shown experimentally that all 
biomass levels present, for the Araracuara site up to 340 ton/ha, could be mapped 
accurately, and that the so-called 'saturation level' not poses a problem for this 
inversion approach. 

In this paper the latter approach is studied in more depth using the UTARTCAN 
theoretical backscatter model [Karam et al, 1992] by systematically examining the 
influence of forest structure, terrain roughness and wetness. This is done in three 
steps. Firstly, field observations are transformed into a structural description of the 
canopy using scatterer types, with different dimensions, orientations and densities, 
for several horizontal layers. A new approach is presented utilising the structural 
characteristics of different life forms (such as broad-leaved trees, palms, stem forbs, 
lianas, etc). For this purpose the so-called LIFEFORM interface model was 
developed, which achieves a fully automated transform (which is based on a large 
set of assumptions and rules) of field observation data into UTARTCAN input files 
(section 5.2 A, B, C). Secondly, the UTARCAN model is validated, for all three-
frequency bands of the AirSAR, both for intensity and the HH-VV coherence, using 
the experimental field data of all 45 plots available. This step will reveal certain 
weaknesses and limitations of the model, notably for heterogeneous palm swamp 
forests and certain types of young secondary forests (Section 5.3). For the theoretical 
exploration of biomass inversion limits only those structures that can be modelled 
well (by UTARTCAN) have been selected (Section 5.4). The third step is the 
systematic analysis of the multi-frequency polarimetric radar signatures simulated 
for a wide range of forest structures, terrain roughness and soil moisture level. 
Results are discussed in Section 5.5. 

5.2. APPROACH 

5.2.1. The UTARTCAN Backscatter Model 

A polarimetric scattering model for layered vegetation, developed at the University 
of Texas at Arlington and known as UTARTCAN, was used to describe the 
microwave backscatter properties [Karam et al, 1992]. This model is based on an 
iterative solution of the radiative transfer equation up to the second order for 
multiple scattering within the canopy and between the ground and the canopy. It 
covers a wide range of frequencies and is applicable to the C-, L- and P-band data of 
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the AirSAR. The model computes the full polarimetric backscatter coefficients 
(Mueller matrix), as well as the direct contributions of all scatter classes (branches, 
leaves and ground surface) and the canopy-ground interaction component to the total 
backscatter. 

The vegetation canopy is described as a layered (up to three layers) random medium 
of discrete scatterers. Trunks and branches are modelled as cylinders, leaves as 
circular discs. Each layer contains a number of scatterer types and for each type a 
density, dielectric constant, dimensions and orientation distribution is specified. Tree 
trunks are represented as large cylinders with a preferred (vertical) orientation, 
branches of tree crowns or shrubs are mimicked as a collection of cylindrical shaped 
scatterer types (e.g. seven types) with different dimensions, densities and orientation 
distributions. The soil is described as a random rough surface. The soil backscatter 
properties are modelled using the Integral Equation Method [Fung et al., 1992] and 
is also applicable over a wide range of frequencies. Soil and vegetation dielectric 
properties are described through dielectric mixing models [Wang and Schmugge, 
1980; Ulaby and El-Rayes, 1987] which require data on soil texture, soil moisture 
and plant moisture as main input parameters. 

For the purpose of this research the UTARTCAN model had to be adapted 
somewhat to be capable to properly describe the structural complexity of the 
vegetation for all AirSAR frequency bands. The allowed maximum number of 
scatterer types was increased from 1 to 10 for leaf type scatterers and from 7 to 20 
for branch and trunk type scatterers. The LIFEFORM interface model developed at 
Wageningen University takes care of a proper translation of the ground truth into 
input files for the UTARTCAN model [Hoekman et al, 1996]. To get an insight into 
the assumptions that have to be made in the LIFEFORM interface model the input 
data required for the UTARTCAN backscatter model will be discussed first in more 
detail. 

The UTARTCAN model requires several types of input data. These are wave 
parameters, soil surface parameters and vegetation parameters. The soil surface is 
characterised by 5 parameters. These are, respectively, the rms height variation, the 
surface auto-correlation length, the volumetric soil moisture content fraction and the 
sand and clay fractions. The vegetation layer is determined by a number of scatterer 
classes, which can be distributed over three horizontal layers maximally. The 
scatterer classes are divided into two main categories: (1) the leaves (up to 10 
classes) and (2) the branches and trunks (up to 20 classes). For each leaf scatterer 
class, information is provided on leaf radius (assuming circular elliptical shape), leaf 
half-height (a value that is around 1.5e-3 m, typically), leaf moisture content (a 
value that is around 0.55 for tropical trees, and up to 0.7 for green crops), the 
scatterer density per cubic meter, and the orientation distribution. Several standard 
distributions were used [Goel and Strebel, 1984; Karam et al, 1992]. Branch and 
trunk structure is modelled in the same way. For branch and trunk (skin) moisture 
content, typical values of 0.50 and 0.48 are used, respectively. 
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5.2.2. Field data for model validation 

At the two study sites a total of 45 plots were available, with vegetation structures 
ranging from pastures to different types of tropical primary forest with different 
types of flooding condition. Slopes in the plots never exceeded 8%. These study 
sites and the ground data have been described in previous papers [Hoekman and 
Quinones, 2000, 2002]. 

For each individual plant the height, the height of the first living branch, diameter at 
breast height (dbh), life form and leave size were recorded. The life form description 
as proposed by Kuchler [1988] was adapted for this study as shown in table 5.1. The 
leaf size was classified according the Raunkiaer-Webb [Webb, 1968] categories as 
presented by Givnish [1984], with a few minor adaptations in the area limits, as can 
be seen in table 5.2. Givnish follows Webb in the assumption that leaves are about 
twice as long as wide and have an area of roughly two-thirds of leaf length times 
width. In this study it is assumed that leaves have this length width ratio and an 
elliptical shape. In case of composite leaves (e.g. palms) the area of the leaflets is 
taken. It is not yet clear whether, in the description of the backscattering process, 
this is the best approach, and how this depends on radar wavelengths used. 

A stratified sampling procedure was developed [Quinones, 1995]. For most plots of 
primary forest three types of transects were defined as follows: 

Transect A: An area of 100 m x 10 m in size. In this area all trees with a diameter 
at breast-height (dbh) of at least 10 cm are measured. 

Transect B: An area of 50 m x 2 m in size, centred along the first half of the main 
axis of transect A. In this area all individuals with a dbh less than 10 
cm and a height exceeding m are included. 

Transect C: An area of 20 m x 2 m in size, centred along the first 20 m of the main 
axis of transect A. In this area all individuals with a height less then 2 
m are included. Measurements in this transect are limited to life form 
and leaf size class only. 

For secondary forests and low biomass primary forest plots the procedure deviated 
somewhat. Transect A was not measured because of the low density or absence of 
trees with large trunk diameter. In case some large trunk diameter trees were present 
they were simply included in transect B. The size of transect B was changed from 50 
m x 2 m into 33 m x 3 m. 

To visualise these measurements a symbolic representation scheme was developed. 
It deviates considerably from the conventional approach to transect drawing as 
adopted by authors describing forest structure for other purposes [e.g. Oldeman, 
1983] but serve the purposes of this study. Table 5.1 shows the symbols used to 
represent each life form. In the drawing all symbols have a variable height 
coinciding with the measured total height. The tree crown is drawn between the 
measured height of the first living branch and the total height. Crown width was 
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drawn proportional to dbh. The shades of grey used to fill the crowns and/or leaves 
correspond to leaf size class, i.e. the darker the shade of grey the larger the leaf size 

Table 5.1. Life form classes adapted from Kiichler [1988] with local names and symbolic graphical 
representation as used in the profile drawings generated by the LIFEFORM interface program. The gray 
level of the canopy component is an illustration of the corresponding leaf size for each life form , i.e. 
darker grey levels correspond to larger leaf sizes. 

Table 5.2. Original Raunkiaer-Webb categories of leaf size [from Givnish, 1984] and the adapted limits 
used in this study assuming elliptical shape. 

Leaf Raunkiaer-
Webb category 
(code) 

Nanophyll (1) 
Microphyll (2) 
Notophyll (3) 
Mesophyll (4) 
Macrophyll (5) 
Megaphyll (6) 

Adapted 
max surface 

area (cm2) 
2.26 

20.36 
45.80 
183.22 
1684.68 

none 

Max 
length 
(cm) 

2.4 
7.2 
10.8 
21.6 
64.6 
none 

Max 
width 
(cm) 

1.2 
3.6 
5.4 
10.8 
32.3 
none 

The diameter of trunks is indicated by line thickness. With the symbols introduced 
here transect drawings can be made, as shown in table 5.4. 

Forest structural types were defined according to Duivenvoorden and Lips [1991]. 
Table 5.4 presents a summary of forest structural parameters, flooding conditions 
and examples of symbolic transect drawings for each forest type. Such drawings 
illustrate the differences in structure well and can give an indication of horizontal 
layering and the degree of (in-) homogeneity, in terms of parameters relevant to 
backscatter modelling. 

Table 5.4. Forest types recorded for the measured plots of the studied areas according to the classification 
given by [Duivenvoorden and Lips, 1991]. An example of a symbolic forest profile as created by the 
LIFEFORM interface model is shown for each forest type. Treelets are trees with DBH <10 cm and 
height above 2m. 
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5.2.3. The LIFEFORM interface model 

To collect data for backscatter modelling three approaches may be followed. The 
classical approach is the most straightforward one and simply consists of 
measurements of all parameters used in the description of the microwave interaction 
process with sufficient statistical accuracy. This approach is common to modelling 
work of, for example, cultivated crops. For forest plantations this would be far more 
complicated because of the length of the growing cycle and management practices 
such as thinning. A practical solution is the use of a tree growth model. The model 
uses a description of the process of tree growth, under varying conditions, and a 
description of the tree architecture to generate automatically certain parameters 
relevant for backscatter modelling such as branch size and orientation distribution as 
a function of age [e.g. Woodhouse and Hoekman, 2000]. Such a model requires 
calibration for a certain tree species and climate zone. 

For tropical rain forests neither of these two methods is practical. In the first place 
the complexity is too large. Secondly, i.e. in a statistical sense, the natural forest 
does not grow but is in a steady state on the scale of forest structural units [Oldeman, 
1983]. This also implies that relevant structural information (including biomass) is 
not related to age. Hence, extraction of meaningful physical parameters for tropical 
forest characterization, additional to a qualitative classification of forest types, 
would require an appropriate description of this complex structure. In this study an 
attempt was made to group measurements in classes that are meaningful in 
backscatter models. The basic grouping is based on physiognomic appearance of 
plants in so-called life forms. This approach will be referred to as the LIFEFORM 
approach. In addition to classification of field measurements in life form classes it 
requires classification of leaf size and leaf orientation distribution, measurement of 
cover percentages for (horizontally layered) strata that can be recognised and 
measurement of trunk diameters. It also requires availability of a structural 
description of vegetation at the life form level. Of course these data should be 
collected with a sufficient statistical accuracy at representative plots of sufficient 
size and care should be taken to rule out the influence of possibly disturbing factors, 
such as relief, soil type and terrain drainage. 

The LIFEFORM interface model uses tables of measured field data, as described in 
the previous sub-section, as input to generate four types of output: 1) biomass and 
basal area figures, 2) transect drawings, 3) vegetation statistics and 4) UTARTCAN 
model input files. To estimate (total aboveground wet) biomass, an allometric 
equation was applied, resulting in estimations for the biomass per plot. The equation 
uses the trunk diameter and total tree height as measured in the field and was 
calibrated with data from tropical rain forests in Central- and South-America, Africa 
and South-East. Asia [Brown et al, 1989]. 

The transect symbolic drawings, as introduced in the previous chapter, are used to 
make a horizontal stratification of the canopy. UTARTCAN allows a maximum of 
three layers. This stratification is made by visual interpretation of the drawings. The 
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drawings also give an insight in the degree of spatial (horizontal) heterogeneity. 
UTARTCAN, like most other backscatter models, assumes a high degree of 
homogeneity. The effects of heterogeneity have been omitted in the present study. 

The main task of the LIFEFORM interface is to solve the problem how scatterers 
should be divided over a limited number of scatterer classes for each of the layers. 
The approach is based on a set of assumptions, many of them being introduced in 
the remaining parts of this section. For leaves the approach is based on the 
rearrangement of the estimated cover percentages per stratum to cover percentages 
per layer. The first step is to relate cover to Leaf Area Index (LAI). This LAI is 
considered to be related to leaves uniformly distributed in the stratum. Then the LAI 
of a certain stratum can be divided proportionally to layers corresponding with the 
height range of this stratum. This can be done for all strata and these numbers can be 
added to determine a LAI figure per layer. 

Biomass data for mixed forests in French Guiana, Guyana and Surinam indicate that 
the contributions of trunks, branches and leaves to the total amount of above ground 
dry biomass are in the order of, respectively 69%, 29.6% and 1.4%, with a moisture 
content of 39%, 41% and 55% [cited in: Van der Sanden, 1997]. For Colombian 
forests a figure for trunk moisture content of 25% is given [PRORADAM, 1979]. 

For the UTARTCAN model the trunks are always placed in the lower layer. The 
branches are placed in the layer which contains the center position of the crown, i.e. 
half-way the total height and the height of the first living branch. Also all leaves of 
an individual are assigned to this layer. The total branch biomass of a tree is divided 
over three to four branch classes with different scatterer dimensions and different 
orientation distributions, depending on its life form. The sizes of these scatterers are 
related to trunk diameter. The total LAI of a layer is divided over the individuals, 
which have its crown center position in that layer. For some life forms (notably 
broad-leaved trees and lianas) the division is proportional to the basal area of the 
individual, for other life forms fixed amounts per individual are taken. Also, 
different life forms have different leaf orientation distributions. Consequently, the 
LAI per layer can be subdivided in leaf size classes and orientation classes. 

For the orientation distributions of trunk, leaf and branch type scatters a choice was 
made from a limited number of pre-defined standard probability density functions 
(pdf), depending on life form [Goel and Strebel,1984; Karam et al, 1992]. 

The LIFEFORM interface generates statistics. Trunk statistics are compiled into four 
diameter classes. Branch statistics are generated for three layers and for six size-
orientation combination classes (i.e. 18 types of scatterers). Leaf statistics are 
generated for three layers, for six size classes and four orientation classes (i.e. 72 
types of scatterers). Within each class the number density and (for branches and 
trunks) the weighed-mean dimensions can be computed. 
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The final step is the generation of the UTARTCAN input files. Almost all 
information is available at this stage. Some parameter values are considered to be 
constant in this area, such as the leaf thickness (0.3 mm), leaf, branch and trunk 
moisture contents (0.55, 0.50 and 048), soil surface roughness (rms height is 1.2 cm, 
auto-correlation length is 24 cm) and the soil texture. Though the total number of 
branch plus trunk scatter classes is 22, in no case more than the maximum number of 
20 occurred. For the leaves, omitting classes with a negligible amount of scatterers, 
the number of classes was often in excess of 10. To select the most important 
classes, for each class the fractional LAI (i.e. per layer, per orientation class and per 
size class) was computed and the 10 largest cases were retained. 

5.2.4. Biomass inversion algorithm 

In previous papers [Hoekman and Quinones, 2002; Quinones and Hoekman, 2002] 
biomass estimations were made on the basis of forest type classification. This 
indirect approach was shown to be appropriate for the Araracuara site where the 
natural vegetation types are in a steady-state and the relation between structure and 
biomass is known from empirical landscape-ecological data [Duivenvoorden and 
Lips, 1991]. Consequently, the ability to differentiate forest structures yields the 
capability to estimate biomass since biomass can be computed from structure in a 
straightforward way. Field experiments like the one described in this paper and the 
previous papers necessarily are limited to a certain number of classes under a limited 
range of environmental conditions. A model such as UTARTCAN, when valid, 
enables extrapolation of the empirical results to a wider range of structures and 
environmental conditions and thus, possibly, giving a better insight in the physical 
limitations of SAR biomass inversion. 

The approach is straightforward. A wide range of 7structures is chosen. The 
LIFEFORM interface is used to generate input files for UTARTCAN. For various 
levels of soil moisture and soil roughness the Mueller matrix is computed for all 
forest structure cases. Subsequently, speckle is added randomly a large number of 
times [cf. Hoekman and Quinones, 2000], all simulated data are classified [also cf. 
Hoekman and Quinones, 2000] and a large confusion matrix results. As a final step 
this large confusion matrix is aggregated to a limited number of classes, e.g. several 
biomass classes or several biomass and soil moisture combination classes. The 
results of different types of aggregation then can be evaluated and should give 
insight in the theoretical possibilities or limitations of biomass inversion. 

5.3. UTARTCAN VALIDATION 

To evaluate the performance of the UTARTCAN model with the LIFEFORM 
interface model, comparisons were made between the experimental AirSAR 
polarimetric data and the UTARTCAN simulated polarimetric data for all three 
frequency bands and all 45 plots measured in the field. For these plots the Stokes 
scattering operator (or, alternatively, the Mueller matrix) is averaged and unbiased 
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plot-averaged values for the HH-, HV- and VV-backscatter and the complex 
polarimetric HH-VV coherence pt are derived. The plots vary in size but the 

number of independent looks N always exceeds 280 [Hoekman and Quinones, 2000, 
2002]. For homogeneous fields these averages can be regarded as accurate 
estimations of the underlying values. For N > 280 the standard deviation of the 
backscatter is less than 0.260 dB, the standard deviation of the (HH-VV) 
polarisation phase difference (the PPD or Arg(p ()) depends on the coherence 

magnitude (\p{\ ) and is less than 4.19° for a coherence magnitude \p(\ = 0.5, and 

the standard deviation of the coherence depends on the coherence magnitude and is 

less than 0.051 for |p,-1 = 0.5. For further details see [Hoekman and Quinones, 2000, 

2002]. 

These accurate plot averaged values can be compared, in several ways, with the 
corresponding values simulated by UTARTCAN. The results of this validation are 
shown in Fig. 5.1 and table 5.3. 

Fig. 5.1 shows the multi-frequency coherence signatures for experimental (M) and 
simulated (S) radar data for a selection of the field plots. Figs. 5.1a and 5.1b show 
signatures for high non-flooded forest (H2) (plot 07) and old secondary non-flooded 
forest (plot sec 07). In both cases the correspondence is good, notably for C- and P-
band. For high flooded forest (H2) (plot 04) and forest with low palm density (PI) 
(plot 15) the simulated and the experimental coherence signatures are very similar 
(Figs, lc and Id). For flooded palm forests (P3) and (P4) (plots 14 and 18) the 
simulated and experimental signatures are very different (Figs, le and If). It can be 
noticed that in the first 4 cases the dominant life form in the plot is the broad-leaved 
tree while in the last two plots the palms are dominant and emergent, thus 
constituting the most important scatterers for these plots. 

In table 5.3 section (a) the correlation coefficient (r) and standard error of estimate 
(SEE) are shown for the comparison of the individual band-polarisation 
combinations of the intensity measured experimentally with AirSAR data and the 
intensity simulated with UTARTCAN. Besides showing these numbers for all 45 
plots, they are also shown for sub-sets of the data set namely for the plots of high 
forest in dry terrain (29 plots), plots of high forest in flooded terrain (3 plots), plots 
of palm forest in flooded terrain (9 plots) and plots of low forest on peat (4 plots). 

In table 5.3 section (b) the experimental and simulated complex HH-VV coherences 
are compared for the same set and sub-sets of the data set using a complex 
correlation coefficient defined as: 
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^Pi,mPi,p 
i=\ (5.1) 

NF NF 

\J^(Pi,m plmJ^iPi.p Php) 
1=1 

Table 3: Validation of UTARTCAN with 45 field plots, (a) Correlation coefficient (r) and standard error 
of estimate (SEE) calculated for the intensity data of the experimental AirSAR data and the UTARTCAN 
simulated radar intensity data for the field plots. Data is presented for all plots (All), plots of high forest in 
dry terrain (N), plots of high forest in flooded terrain (HF), plots of palm forest in flooded terrain (P) plots 
of low forest in peat terrain (L). Bold figures indicate values significantly different from the null-
hypothesis at the 0.01 level of significance (b) Complex correlation coefficient (between measured and 
simulated values) for the HH-W complex coherence for the same categories, expressed in magnitude \r\ 
and phase arg(r) (degrees), (c) Results for a selection of individual plots: biophysical characterization, 
correlation coefficient (r) and SEE for intensity values, complex correlation coefficient for the HH-VV 
complex coherence values expressed in magnitude |r| and phase arg(r) (degrees). The best 5 results and 
the worst 4 results are shown (see text for details). 

(a) 
type 
n 
Intensity 

All 
45 
r SEE 

N 
29 
r SEE 

HF 
3 
r SEE 

P 
9 
r SEE 

L 
4 
r SEE 

HH-C 
HV-C 
W - C 
HH-L 
HV-L 
W-L 
HH-P 
HV-P 
W-P 

-0.27 
-0.08 
-0.06 
0.53 
0.72 
0.52 
0.75 
0.80 
0.71 

1.19 
0.97 
1.07 
1.94 
1.24 
1.65 
2.43 
1.65 
1.81 

-0.25 
0.01 
0.05 
0.30 
0.83 
-0.17 
0.86 
0.90 
0.65 

0.81 
0.90 
0.96 
1.47 
1.12 
1.14 
1.32 
1.44 
1.36 

-0.93 
-0.88 
-0.98 
0.83 
1.00 
0.99 
-0.95 
-0.38 
-0.90 

0.99 
0.98 
0.40 
0.56 
0.08 
0.13 
0.52 
0.20 
0.39 

-0.25 
-0.27 
-0.19 
0.41 
-0.09 
0.62 
0.49 
0.03 
0.70 

1.93 
0.95 
1.24 
2.92 
0.84 
2.26 
3.34 
1.09 
2.59 

0.90 
1.00 
0.95 
-0.07 
0.52 
-0.63 
0.01 
-0.76 
0.61 

0.43 
0.02 
0.41 
1.83 
0.67 
0.30 
3.61 
0.96 
1.87 

(b) 
Coherence 
C-band 
L-band 
P-band 

\r\ Arg (r) 
0.53 7 
0.60 -23 
0.72 -24 

M Arg(r) \r\ Arg (A) 
0.70 7 0.96 14 
0.62 -28 0.83 9 
0.69 -21 0.91 -8 

|r| Arg(r) |r| Arg (r) 
0.26 -150 0.95 16 
0.62 -9 0.43 -25 
0.80 -19 0.92 -58 

(C) 

plot forest type 

'besf5oM5' 

flooding biomass r intensity 

[ton/ha] 

SEE complex 
intensity correlation 

magnitude phase 
M Arg (r) 

arat23 
ara04 
ara22 
ara07 
ara21 

H1-H3 
H1-H3 
H1-H3 
H1-H3 

H2 

No 
Yes 
No 
No 
Yes 

311.4 
205.1 
289.8 
227.7 
192.1 

0.90 
0.88 
0.87 
0.86 
0.83 

1.39 
1.69 
1.67 
1.78 
2.08 

0.90 
0.97 
0.93 
0.98 
0.92 

4 
4 
5 
4 
3 

'worst 4 of 45' 
sec08 
ara18 
sec04 
plo02 

sec 
P4 
sec 
H2 

No 
Yes 
No 
No 

13.6 
68.2 
20.1 
89.2 

0.80 
0.75 
0.74 
0.72 

3.41 
2.79 
3.10 
2.70 

0.60 
0.52 
0.44 
0.58 

-63 
-93 
-42 
-22 
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with * the complex conjugate operator 
NF the number of fields 
pt m the measured complex coherence of field i and 

Pip the UTARTCAN predicted complex coherence of field i 

In the table the amplitude |r| and argument arg(r) (in degrees) of the results are 

shown. It is noted that when \r\ is close to unity and arg(r) close to zero the result is 

good. Further, the value of arg(r) is the mean offset in degrees between the 

measured PPD and the simulated PPD for a particular set of data. 

In table 5.3 section (c) results are presented for individual plots using the correlation 
coefficient and the SEE of all nine band-polarisation combination intensity values 
and using the complex correlation coefficient for the HH-VV coherence of all three 
bands. The table shows the best 5 plots, which are the ones that have values for r, 
SEE, |r| and arg(r) that are all within the best 50%. Also the worst 4 cases are 
shown, which are the ones for which all of these values fall within the worst 50%. 

These results may be interpreted as follows. From the results shown in Fig. 1 it may 
be concluded that plots with a dominance of broad-leaved trees give much better 
results than plots dominated by palms. This notion is confirmed by the results given 
in table 3. When all plots are considered, or the sub-sets of high forest in dry or 
flooded terrain, then better results are obtained then for the sub-plots of palm forests 
or low forest on peat. Because of the lower number of plots this interpretation should 
be made with care. Two physical considerations may support this notion however. In 
the first place the UTARTCAN model was developed for broad-leaved plants. The 
completely different structure of palm leaves may not be accounted for well. 
Secondly the palm forests are very heterogeneous and have an open canopy, while 
UTARCAN assumes homogeneous horizontal layers. The large phase errors shown 
in table 5.3-section (b), notably in C-band for palm forests, may be a consequence. 
Double-bounce occurs in reality through the large gaps, while the homogeneous 
layering does not allow the C-band signal to penetrate unto the ground surface. It is 
noted that negative values for arg(r) reveal an underestimation of the phase 

difference, meaning an underestimation of the double-bounce effect. The results of 
table 5.3 section (c) confirm this notion in a different way. The best individual cases 
are all for high forests, the worst cases are for a palm forest and some low biomass 
(secondary) plots which have a large fraction of large leaf size individuals such as 
palm species, Cecropia species and stem forbs. 
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Plot 
name 

07 
sec 07 

04 
15 

14 
18 

Forest 
type 
H2 

Old sec 
H3 
P1 

P3 
P4 

Flooding 
condition 

No 
No 
Yes 
Yes 

Yes 
Yes 

Biomass 
[ton/ha] 
227.7 
88.4 
205.1 
200.1 

125.8 
68.2 

Incidence 
angle 
40.2 
52.7 
40.4 
40.9 

37.5 
50.7 

Terrain 
roughness 

F 
F 
F 
F 

F 
F 

Soil 
moisture 

0.2 
0.2 
0.9 
0.9 

0.9 
0.9 

Figure 5.1. Polarimetric coherence signatures for experimental (M) and simulated (S) radar data for a 
selection of field plots. The corresponding symbolical forest structure drawings as created by the 
LIFEFORM interface model are also shown. The table shows some forest type characteristics. Further, 
values for incidence angle, terrain roughness (see table 6), and volumetric soil moisture as used for the 
simulation are shown. 
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Therefore, for the analysis with UTARTCAN in the remaining part of this paper, 
simulated forest plots consist solely of broad-leaved individuals, for which it is 
assumed that the simulations will yield fairly realistic results. 

5.4. HYPOTHETICAL FOREST PLOTS 

Hypothetical forest plots with varying density, height and biomass levels were 
created as the basis for the analysis of the effect of terrain conditions, such as soil 
surface roughness and moisture, on the radar signatures. For each hypothetical plot 
of 0.1 ha the life form, height, DBH and leaf size of the individuals were defined. To 
avoid variations due to life form and leaf size, only broad-leaved trees with leaf size 
3 (Notophyll) were included. Structural variations between the plots were created in 
order to study the effects of DBH, tree density, height and layering. 

Two different types of data sets were created. In the first set of data the density of 
trees is varied from 200 to 5 individuals per 0.1 ha and the height and DBH are kept 
at a constant level of 30 m and 15 cm, respectively. This data set will be referred to 
as the density data set (DD). In the second data set the height of the trees is varied 
from 50 to 2 m and the density and DBH are kept at a constant level of 100 
individuals per 0.1 ha and 15 cm, respectively. This data set will be referred to as the 
height data set (HD-15). For these first two types of data sets input files for 
UTARTCAN and the biomass levels are computed by the LIFEFORM interface. 

Table 5.5. Structural parameters calculated for the hypothetical plots: (a) Density Data set (DD) and (b) 
Height Data set (HD). Leaf size class is according table 2.DBH is the diameter at breast height. 

a)DD 
plots 

Plot 01 
Plot 02 
Plot 03 
Plot 04 
Plot 05 

density 
[ind/0.1 ha] 

200 
100 
50 
20 
5 

height 
[m] 

30 
30 
30 
30 
30 

leaf 
size 
class 
3 
3 
3 
3 
3 

biomass 
[ton/ha] 
DBH=15cm 
236.1 
118.0 
59.0 
24.0 
6.0 

b)HD 
plots 

Data set 
name 
Plot 01 
Plot 02 
Plot 03 
Plot 04 
Plot 05 
Plot 06 

density 
[ind/0.1 
ha] 

100 
100 
100 
100 
100 
100 

height 
[m] 

50 
35 
25 
15 
6 
2 

leaf 
size 
class 

3 
3 
3 
3 
3 
3 

biomass 
[ton/ha] 
DBH=15 

HD-15 

245.5 
175.3 
127.6 
78.8 
63.8 
33.1 

biomass 
[ton/ha] 
DBH=40 

HD-40 

1564.3 
1117.2 
813.2 
502.1 
406.7 
211.4 

biomass 
[ton/ha] 
DBH=70 

HD-70 

4499.3 
3213.1 
2338.8 
1444.1 
1169.8 
608.1 

biomass 
[ton/ha] 
DBH=15 

HD-L 

223.2 
152.6 
104.3 
54.7 
39.3 
16.1 

Three additional types of data sets were created by slight modifications of the 
UTARTCAN input files of the HD-15 data set. To analyse the effect of trunk DBH 
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in isolation the trunk diameter was changed from 15 cm to 40 cm and 70 cm, thus 
creating the data sets HD-40 and HD-70, respectively, out of the HD-15 data set. In 
this way the scatterer types and densities of leaves and branches and the density of 
trunks are kept constant and only the diameter of the trunk of the trees is changed. 
Furthermore, to study the effect of vegetation layering in isolation, 90% of the trees 
of the HD-15 data were re-located in a lower layer. In this way most trunk type 
scatterers were shortened and re-located in a lower vertical stratum, together with 
most of the branch and leaf type scatterers. This data set is called HD-L. A summary 
of these data set types is shown in table 5.5. All biomass levels were calculated 
using the allometric equation of [Brown et al, 1989]. 

For all data sets shown in table 5.5 the soil moisture and terrain roughness 
parameters were varied in the corresponding UTARTCAN input files. The 
volumetric soil moisture fraction was varied from 0.1 to 0.9 in 0.1 intervals (9 
classes). The soil surface roughness state is described using the rms height and auto­
correlation length for three cases: flat (F), medium rough (M) and rough (R) (table 
5.6). For soil texture a constant level of 0.15 and 0.6 for the sand and clay fractions, 
respectively, were selected. 

Table 5.6: Terrain roughness parameters used for the tree terrain roughness cases selected for the analysis. 
RMS is the surface height variation and ACL is the surface auto-correlation length. 

Terrain roughness 
Flat (F) 
Medium rough (M) 
Rough (R) 

RMS (m) 
1.2 e-3 
1.2 e-2 
5.0 e-2 

ACL (m) 
2.4 e-1 
2.4 e-1 
1.0 

Thus, for each vegetation structure, 3x9=27 soil moisture and terrain roughness 
cases were generated. This was done for the DD and HD-15 sets only. For the HD-
40, HD-70 and HD-L data sets the soil surface roughness was not varied but fixed as 
flat terrain (F), thus generating only 9 cases for each vegetation structure. Since only 
plots with biomass levels not exceeding 1000 ton/ha were analysed the total number 
of cases (see also table 5.5), therefore, is 11x27 + 11x9 = 396 (table 5.7). The 
incidence angle used for all the simulations is 45°. UTARTCAN was applied to 
generate Mueller matrices for each of these cases for C-, L- and P-band. Next, the 
intensities for HH-, W - and HV-polarisation and the HH-VV polarimetric 
coherence data (PPD and |p|) were derived, which serve as the basis fur further 
analysis. A detailed discussion of the statistical properties and physical information 
content of this coherence can be found in [Hoekman and Quinones, 2002]. 

5.5. RESULTS 

5.5.1. Effect of tree density 
To evaluate the effect of tree density, plots of similar biomass level but with 
different tree densities were compared. Plots 1, 3 and 4 of the DD data sets were 
compared with plots 1, 5 and 6 of the HD-15 data sets to evaluate the effect on high, 
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intermediate and low biomass levels, respectively. In the DD data set the density of 
trees was changed and the height was kept at a constant level while in the HD data 
set the density was kept the same and the height of the trees was reduced in order to 
achieve similar biomass levels (table 5.4). For this first comparison plots with flat 
terrain (roughness case F) and a volumetric soil moisture fraction of 0.3 were used. 
The signatures are shown in figure 5.2. 

Table 5.7. Description of the hypothetical forest data sets: DD= Density plots, HD= Height Plots. The 
table shows for each set the number of biomass classes (or plots), the terrain roughness classes (table 5), 
the number of moisture classes and the number of plots used for signature analysis and biomass inversion. 

Data set 
name 

DD 
HD-15 
HD-40 
HD-70 
HD-L 

#Of 
biomas 
s 
classes 
5 
6 
6 
6 
6 

terrain 
roughness 
type 

F, M &R (3) 
F, M &R (3) 
F (D 
F (D 
F (D 

# of soil 
moisture 
classes 

9 
9 
9 
9 
9 

Total 

total number of 
plots for 
signature analysis 

135 
162 
54 
54 
54 
459 

total number of 
plots used for 
biomass 
inversion 
135 
162 
36 
9 
54 
396 

In general, it can be observed that there are differences in the signatures for the two 
types of plots at the same biomass level. For the high biomass level the intensity and 
the polarimetric coherence signatures are almost identical, except for P-HH, for 
which the high-density plot (plot 1 of the DD set) is 2 dB higher. The phase 
difference (PPD) and coherence magnitude (|p|) values are only slightly different for 
these two plots. For the intermediate biomass level the intensity signature of the DD 
case (plot 3) is about 1-3 dB higher for L- and P-band, for HH- and VV-polarisation. 
The coherence signatures are only slightly different except for the C-band coherence 
magnitude. For the low biomass level the HD case (plot 6) is 2-5 dB lower for all the 
C-, L- and P-band polarisation. The polarimetric coherence signatures are different, 
notably for the C-band PPD. 

When analysing the intensity signatures, for decreasing biomass, and for decreasing 
density or height, respectively, some interesting features can be observed. The C-HH 
and C-VV intensities increase noticeably with decreasing density, but not with 
decreasing height. The L-HH, L-VV, P-HH and P-VV intensities also increase 
noticeably with decreasing density, but decrease with decreasing height. L-HV and 
P-HV both decrease with lower biomass, either caused by decreasing density or 
decreasing height. The C-PPD is not affected much by decreasing density but 
increases with lower height. L-PPD and P-PPD increase both with decreasing 
density and decreasing height. 

As can be seen from these results the same biomass level with the same soil 
moisture and terrain roughness conditions but with different structural parameters, in 
this case different density and different height, produces different signatures, 
especially at lower biomass levels. 
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Figure 5.2. Comparison of signatures for two plots of similar biomass level from the DD (D) and the HD-
15 (H) data sets, for three different biomass levels. For the high biomass level plot 1 from the DD and the 
HD-15 sets are compared. For the intermediate biomass level plot 3 (DD) and plot 5 (HD-15) and for the 
low biomass level plot 4 (DD) and plot 6 (HD-15) are compared. Profiles illustrating the structure of the 
compared plots are shown above the signature graphs. Biomass levels can be found in table 5. 
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5.5.2. Effect of soil surface roughness and moisture 
Soil surface roughness and moisture can be expected to have a significant influence 
on the signatures of the L- and P-band since the radar waves, as often is presumed, 
may reach the forest floor even under a closed canopy. To study such influences 3 

plots (i.e. plot 1, 3 and 6) of the HD-15 data set are selected, which have biomass 
levels of 246, 127 and 33 ton/ha, respectively. For each plot the influence of the 
three terrain roughness cases and the nine soil moisture cases defined in section 5.4 
were analysed. Results, sorted in nine graphs by increasing biomass and roughness 
levels, are shown in Figures 5.3 and 5.4. 

The intensity signatures (Fig. 5.3) at a high biomass level (246 ton/ha) are saturated 
for the nine different soil moistures cases except for P-HH, for which there is a small 
range of 2 dB between the driest and the wettest soil. Hardly any differences can be 
observed between the three different roughness cases. When the biomass level 
decreases the effects of surface moisture content and roughness are more evident. At 
the intermediate biomass level (127 ton/ha), the intensity signal saturates for C-band, 
but large variation caused by soil moisture is present in L-HH, L-VV, P-HH and P-
VV intensities for the flat surface. Differences for HH-polarisation (up to 5 dB) are 
larger than for VV-polarisation (2 dB) and disappear as terrain roughness increases. 
For rough terrain only a slight influence of soil moisture can be observed for P-HH 
(2 dB). For the low biomass level (33 ton/ha) and the flat surface the effect of soil 
moisture is evident for all bands and polarizations. In this case the difference 
between the driest and the wettest soil is the highest for the L-HH, L-VV, P-HH and 
P-VV intensities (up to 6 dB). With increasing terrain roughness the C-band 
saturates for the effect of soil moisture and for L-HH, L-VV and P-HH and P-VV 
the effect reduces slightly (up to 4 dB). 

L-HV and P-HV levels are not affected much by soil moisture or roughness (up to 2 
dB) and increase from the low to intermediate biomass level with approximately 5 
dB for all cases while staying at the same level (i.e. saturates) for the high biomass 
level for all cases. 

The polarimetric coherence signatures (Fig. 5.4) for the high biomass level (246 
ton/ha) are almost identical for all terrain roughness and soil moisture cases. For the 
intermediate biomass level (127 ton/ha) and the low biomass level (33 ton/ha) the 
coherence signatures are strongly influenced by moisture level, notably for flat and 
medium rough terrain, and for L- and P-band. In general, for these levels of biomass 
and frequency bands, the coherence magnitude increases substantially with soil 
moisture content. For L-band, at the intermediate biomass level, there is a clear soil 
moisture dependent increase of the PPD with decreasing terrain roughness. For P-
band, at the low biomass level, there is a clear decrease of the PPD with decreasing 
terrain roughness, however far less soil moisture dependent. 
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Theoretical Exporation of Physical Limits for Radar Biomass Inversion 

In summary it may be concluded that at high biomass levels intensity and 
polarimetric coherence signatures tend to saturate with soil moisture and terrain 
roughness, except for the P-HH intensity. At intermediate biomass levels all L- and 
P-band signatures, except for the L-HV and P-HV intensity, are affected by terrain 
roughness and/or soil moisture, while at low biomass levels all signatures are 
affected by terrain roughness and/or soil moisture levels. The lowest influence is 
always found for the HV-polarisation intensity. It may be noted that in general when 
a signal is sensitive to biomass level it is also sensitive to terrain roughness and/or 
soil moisture. 

5.5.3. Effect of DBH 
To evaluate the isolated effect of DBH plots 1, 3 and 6 of the HD-15, HD-40 and 
HD-70 data sets are compared. For these plots the biomass levels change for the 
different data sets, as a consequence of the increase in DBH only, as can be seen in 
table 5.4. The density and type of the scatterers in the canopy stays the same for a 
certain plot number, only the scatterers representing the trunk have a different radius 
in the different sets. Results are shown in Figs. 5.5 and 5.6. Graphs are sorted by 
increasing biomass level and increasing DBH. 

For high biomass level the intensity signal is saturated and no distinctions can be 
made between different soil moisture conditions except for the P-HH intensity (a 3 
dB range of variation), in the HD-15 data set (i.e. DBH = 15 cm). For intermediate 
biomass levels the effect of DBH is more evident. For L- and P-band the HH and 
VV intensities decrease with increasing DBH, while the HV intensities are not 
affected. For low biomass levels the effect of the increasing DBH is opposite, i.e. for 
all bands the HH and VV intensities increase with increasing DBH, while the HV 
intensities are not affected. When studying the differences in the intensity signatures 
of the HD-70 set (i.e. DBH = 70 cm) an increase of HV and decrease of HH 
intensities with increasing biomass shows up. In all sets the intensities increase for 
the lower biomass values with the soil moisture and the sensitivity to soil moisture is 
much higher than for higher biomass values. This fact is particularly noteworthy 
because, for example, the low biomass level of the HD-70 set (608 ton/ha) is much 
higher than the high biomass level of the HD-15 set (246 ton/ha). 

The polarimetric coherence signatures also change with increasing biomass and 
DBH. For high biomass levels there is hardly any influence of variation in soil 
moisture and DBH. For an intermediate biomass level the PPD for L- and P band 
decreases with increasing DBH. For the lower biomass levels there is an increase in 
the PPD with increasing DBH for P band. 

5.5.4. Effect of layering 

The effect of a different vertical distribution of the scatterers, by introducing a new 
layer in the forest canopy (see Fig. 5.7 and section 5.4), can be studied by comparing 
the signatures of the HD-15 (plots 1, 3 and 6) and HD-L (plots 1, 3 and 5) data sets. 
Note that the biomass levels differ slightly for these two sets and are 246, 127 and 
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33 ton/ha for the first and 223, 104 and 39 ton/ha for the latter set. The results for the 
intensity and coherence signatures are shown in Figs. 5.7 and 5.8, respectively. For a 
high biomass level, the intensity signatures are saturated, except for P-HH which 
shows sensitivity to soil moisture. For intermediate biomass levels the intensities for 
the L- and P-band are affected, in different ways for different polarizations. For the 
two-layer case the HH-polarized intensities are higher, the HV intensities seem 
hardly affected and the VV intensities show a soil moisture dependent increase or 
decrease. For low biomass level the C-band are not affected much but for L- and P-
band intensities much lower levels are found in the two-layer case. 

Figure 5.7. Effect of layering on the intensity signatures of plots with different soil moisture conditions 
for high, medium and low biomass levels selected from the HD-15 and HD-L data sets. 
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Figure 5.8. As figure 5.7, for the polarimetric coherence signatures. 

The polarimetric coherence signature is also affected by the presence of layers in a 
forest (Fig. 5.8). For high biomass levels the signatures do not change much. For 
intermediate biomass levels the L- and P-band signatures change considerably, while 
for low biomass levels all signatures change. 

5.5.5. Theoretical inversion results 
The theoretical inversion of the radar data was done using the available hypothetical 
data sets (see section 5.2 D). Overall classification accuracy for different numbers of 
looks, as an indication of speckle level, are given in table 5.8. 

The first inversion result is for all hypothetical plots, i.e. under 1000 ton/ha and 
including all terrain roughness and soil moisture cases. The overall accuracy for low 
numbers of looks is below 80%. For 64 and 100 looks 82.0% and 86.6% of accuracy 
are calculated, respectively. The confusion occurred mainly between the high 
biomass classes of the DD and HD data sets, which may be a logical consequence of 
the fact that the different soil moisture and terrain roughness cases can not be 
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separated (as was shown in section 5.5 B). To analyse the inversion result for the 
biomass level itself, all plots with the same biomass level, despite soil moisture or 
terrain roughness differences, were aggregated into the same class, resulting in 22 
biomass classes. In this case an overall classification accuracy of 87.9% was 
obtained already for 16 looks. This case is very important because it shows that high 
percentages of biomass level accuracy can be reached even for a low number of 
looks and even when high biomass levels (up to 813 ton/ha, see table 5.4) are 
present. 

Table 5.8. Overall classification accuracy after inversion of selected number of cases of the DD and HD 
data sets for different numbers of looks, as an indication of the speckle level. 

Data 
sets 
DD+HD 

DD+HD 
DD 
DD 
DD 
DD 

roughnes 
s classes 
F, M, R 

F, M, R 
F, M, R 
F, R 
R 
F 

# of 
cases 
396 

22*) 
135 
90 
45 
45 

4 
looks 
25.4 

56.9 
36.2 
41.4 
38.7 
49.4 

16 
looks 
57.0 

87.9 
63.6 
71.4 
68.9 
75.5 

32 
looks 
71.2 

95.8 
75.3 
83.2 
81.8 
85.9 

64 
looks 
82.0 

99.0 
84.8 
91.9 
90.6 
93.5 

100 
looks 
86.6 

99.7 
89.3 
95.5 
94.6 
96.8 

*) aggregated to biomass levels 

To avoid the confusion produced by the similarity in the biomass levels of the DD 
and HD data sets, the plots of the DD data set were inverted separately. The DD data 
set included plots of 5 biomass levels with tree different terrain roughness conditions 
and 9 soil moisture conditions (i.e. 135 cases). The overall classification accuracy 
increases to 84.8% and 89.3% for 64 and 100 looks, respectively. In this case most 
of the confusion occurred between the plots of the flat terrain (F) and the plots of the 
medium rough terrain (M). When leaving only extreme terrain conditions like flat 
and (F) and rough (R), then a classification accuracy of 83.2% is reached already for 
32 looks. In this case most of the confusion between the classes occurred between 
the different soil moisture cases in terrain of similar roughness at high biomass 
levels and also between the high biomass plots of both terrain roughness cases. The 
inversion of the data set including only one terrain roughness state (i.e. either F or R) 
gives similar results. In general the overall classification is higher when including 
flat terrain roughness cases only. 

5.6. CONCLUSIONS AND RECOMMENDATIONS 

In this paper the LIFEFORM interface model is introduced as an innovative method 
to model the complex tropical forest structure for radar backscatter models through 
life form (table 5.1) dependent structural descriptions. For each individual plant, 
depending on its life form and other characteristics measured in the field, this model 
determines scatterer types and quantities and distributes them over vertically 
stratified layers. The output of this interface model comprises input files for the 
radar backscatter model and symbolic transect drawings for each plot measured in 
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the field. The latter drawings visualise structural differences between plots (as 
relevant for radar), vertical stratification (when present) and horizontal heterogeneity 
(which is not accounted for in most backscatter models). This refined description 
allows for better evaluation of the performance and possible limitations of current 
backscatter models for application in tropical forests. 

Differences between radar signatures measured by the AirSAR and those predicted 
by the UTARTCAN backscatter model were studied for all 45 plots measured in the 
field (section 5.3). The results, evaluated both for intensity and HH-VV coherence, 
for all frequency bands, show that the model performs fairly well for high forests (on 
dry and flooded terrain), which have a dominance of broad-leaved tree species. The 
worst results are obtained for some (flooded) palm forests and some low biomass 
secondary forest plots which have a large fraction of large leaf size individuals, such 
as palm species, Cecropia species and stem forbs. Since the UTARTCAN model 
was developed for broad-leaved tree species and assumes horizontal uniformity such 
results may not come a surprise. Apparently the large leaves are not described well, 
either by LIFEFORM or by UTARTCAN. Secondly, UTARTCAN cannot account 
for the open structure (i.e. the horizontal heterogeneity) of the palm forests. The 
large HH-VV coherence phase difference errors, even in C-band, are a clear 
indication that UTARCAN underestimates the relative importance of the double 
bounce interaction in this case. 

Due to the limitation observed in UTARTCAN to describe the interaction with life 
forms such as palms, or open (i.e. horizontally heterogeneous) structures, like palm 
forests, hypothetical forest plots were designed with broad-leaved trees only. 
UTARTCAN input files were generated by the LIFEFORM model for a range of 
forest structures (from which the biomass level directly follows) with different soil 
surface roughness and soil moisture states. An extensive evaluation of the simulated 
radar signatures given in section 5.5 reveals complex relationships with forest 
structural parameters, including biomass, and the terrain conditions. Though results 
are hard to generalise it may be noted that, in general, when the radar is sensitive to 
biomass variation it is also sensitive to terrain roughness and soil moisture, and that 
this sensitivity is the lowest for the HV-polarisation. Further, large differences for 
forests with the same biomass level, and with the same terrain roughness and soil 
moisture level, may occur solely because of structural differences, such as 
differences in height versus density or differences caused by the presence or absence 
of layers. And, usually, these effects are much stronger for low biomass levels. 
When the radar backscatter intensity is sensitive for one or more of these 
parameters, the HH-VV coherence also shows large variation as a function of one or 
more parameters. It was noted though that these variations can be very different 
between L-band and P-band, suggesting these bands are both very important for 
forest observation. 

The graphs of Fig. 5.9 may help to illustrate the most important differences between 
simulated signatures of the same biomass level, for different terrain roughness and 
soil moisture conditions. Signatures of six terrain roughness and soil moisture 
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condition combinations are shown for 3 different biomass levels. At low biomass 
levels differences in the intensity signatures can be very large, even up to 8 dB for 
L-HH. Also the coherence signatures vary a lot with soil moisture and terrain 
roughness for low and intermediate levels of biomass. 
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Figure 5.9. Intensity signatures and polarimetric coherence signatures for selected plots of the HD-15 data 
set, for high, intermediate and low biomass levels. Each plot presents signatures for 3 terrain roughness 
conditions (F, M, R) and two different extreme soil moisture conditions (0.2 and 0.9). 

Since the radar signatures of (tropical) forests are influenced by many parameters 
and not only by the total volume of the scatterers (i.e. the biomass level) a direct 
inversion of the radar data into biomass values will result in a very inaccurate 
estimation. To study the effect of soil moisture, terrain roughness and forest 
structure on the classification of biomass levels, a theoretical inversion of different 
sets of plots was made for different levels of speckle. The results showed that the 
largest part of the confusion between classes was found for the high biomass levels, 
a logical consequence of the saturation of the radar signature levels for differences in 
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soil moisture and terrain roughness conditions. On the other hand low confusion 
occurred between low biomass plots with different soil moisture and terrain 
roughness conditions. This suggests that the application of direct inversion 
algorithms for biomass estimations can lead to large inaccuracies at low biomass 
levels. 

Alternatively, the overall accuracy for the classifications were high for all of the 
inverted data sets. All overall accuracies were above 50% for 16 looks (1.1 dB of 
speckle) and above 70% for 32 looks. The high inversion results using the 
polarimetric inversion algorithm developed indicate that the polarimetric 
classification as presented by [Hoekman and Quinones, 2000] is a powerful method 
able to combine the information contained in the different bands. As an example the 
radar data extracted from the AirSAR image for the field-measured plots was 
inverted using the same algorithm, for different levels of speckle (table 9). All the 
measured plots had a different structure that statistically could be grouped and used 
for the definition of the forest types, as presented in table 4. When assuming that all 
the 45 field plots were different the overall classification accuracy for 16 looks was 
87.4% ! Furthermore, when the data of the plots are aggregated into forest types (as 
shown in table 4) the overall accuracy increases to 93.7% for the same number of 
looks. This means that the potential of multi-band full-polarimetric classification of 
tropical forest types is large and can be a good basis for accurate biomass 
classification. 

Table 5.9. Overall classification accuracy in percentages after inversion of field plots for different number 
of looks, as an indication of the level of speckle. Results are presented (a) for all 45 plots individually and 
(b) after aggregation to forest types. 

Data set 

All 
By forest 
types 

# 
classes 
45 
12 

2 looks 

28.9 
44.9 

4 looks 

47.8 
62.4 

16 looks 

87.4 
93.7 

32 looks 

96.6 
99.0 

64 looks 

99.3 
99.9 

In summary, theoretically, direct biomass inversion is not accurate at low biomass 
levels because of many disturbing effects and is not accurate at high biomass levels 
because of saturation. The latter is reported in many papers (at levels up to 150 
ton/ha for P-band) such as summarised in [Le Toan and Quegan, 2002; Quinones 
and Hoekman, 2002]. The classification approach suggested in this paper, 
theoretically, can classify biomass levels accurately both at low and high biomass 
levels, even up to 800 ton/ha. The latter was experimentally confirmed by 
classification of the Araracuara forest test site biomass classes [Quinones and 
Hoekman, 2002], which had levels up to 340 ton/ha. The latter level is much higher 
than the so-called saturation level for P-band. 

In the future polarimetric data from different forest types all around the world could 
be compiled and used as the basis for the classification of new radar images by 
comparing the patterns of the new signatures with the available polarimetric 
database. In this way a biomass level could be assigned by relating it to a 
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corresponding forest type. Further research should focus on the possibilities of using 
this biomass classification algorithm when restricting the number of bands and 
polarisations, thus matching those available in the current and proposed satellite 
radar systems. 

Regarding the development of theoretical backscatter modelling, it could be useful 
to use data from more test sites, pay more attention to absolute calibration issues, 
use several theoretical models instead of UTARTCAN only, and extend such models 
to include the effects of horizontal heterogeneity. 
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ASSESSMENT OF SUITABLE RADAR PARAMETERS 
FOR TROPICAL FOREST MAPPING APPLICATIONS. 

6.1 INTRODUCTION 

In the last ten years concern is growing over the state and changes in the tropical 
forest. Changes in cover are known to have an effect on the hydrological and bio-
geo-chemical cycles and a significant impact on climate change and bio-diversity. 
Of special importance is the actual uncertainty in the carbon cycle, specially related 
to the differences on the biospheric sink calculations, which urged for the production 
of systematic accurate and consistent measurements of forest functions and structure 
and associated factors such as biomass [IPCC, 2000]. Some of the required 
systematic earth observations, can be obtained by remote sensing systems which, so 
far, have only been achieved by some optical remote sensing sensors (NOAA 
AVHRR, LANDSAT and MODIS), which are able to provide large regional 
coverage and acquisitions over long time. Nevertheless for tropical forest areas, 
optical remote sensing sensors are affected by cloud cover, influencing the temporal 
resolution, the accuracies of the products and the application of inversion algorithms 
for specific applications (i.e. for biomass assessment). Radar remote sensing on the 
other hand is free of the effect of clouds and the use of long wavelengths (P- and L-
band) offers unique canopy penetrating observation capabilities that can be directly 
related to forest structure and biomass levels. 

In these years, radar scientists have focused on the development of algorithms for 
the application of existing radar systems in different fields [Kasischke et al, 1997]. 
In general it can be concluded that different bands and polarizations are sensitive to 
different parameters. For instance HH polarisation is more sensitive to flooding 
conditions [Hess et al, 1990; 1995; Pope et al, 1994, 1997] while HV polarisation 
is sensitive to biomass levels [Ranson et al, 1997, Rignot et al, 1994, 1995]. This 
implies that not all-available or coming radar systems are capable of producing 
accurate maps for all sort of applications. For instance the penetration and sensitivity 
of HH polarisation allowed the JERS L-HH to map flooding conditions in the 
Amazon basin [Hess et al., 1995] while it was found to underestimate deforestation 
in the same region [Rignot et al, 1997]. 

In addition the use of P-band for specific applications is still under investigation. 
The possibilities of a P-band satellite are being assessed specially in relation to 
biomass remote sensing. At that respect P-band is interesting because of the higher 
sensitivity to high biomass ranges, saturating at levels near 150-200 ton/ha while the 
saturation for L-band is being calculated at 50-100 ton/ha. [le Toan et. al, 1992; 
Dobson et al., 1992; Beaudoin et al, 1994; Israelsson et al, 1994; Ranson et al, 
1994; Rignot et al, 1994, 1995; Imhoff, 1995; Kasischke et al, 1995; Hoekman 
and Quinones, 2000]. The higher penetration capabilities of P-band into the forest 
canopy compared with C- and L-band are due to the larger wavelength allowing P-
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band to "observe " big scatterers, related to forest structure and even to penetrate 
onto the forest floor to detect terrain characteristics. 

An important technical inherent characteristic of a radar system is the image speckle. 
Speckle gives the images the so-called 'salt and pepper' or 'grainy' appearance and 
is caused by the interference among backscatter waves of the individual scattering 
elements (scatterers) that are present within one resolution cell. Interference 
between echoes produced by the scatterers can be constructive or destructive 
depending on the phase and the amplitude and therefore result in a higher or lower 
overall backscatter. In order to characterise objects with radar it is important that 
measurements are accurate estimates of either the mean power or the mean 
amplitude but the effect of speckle obstructs the measurements of a single resolution 
cell. The measurement of a single resolution cell is called a look. The accuracy of 
the radar measurements can be improved by the linear averaging of measurements 
corresponding to cells adjoining in the azimuth direction (direction of flight) which 
constitute a multi-look image. In general it can be said that multi-look images have 
less backscatter fluctuations and therefore the effect of speckle is less evident. The 
accuracy of the mean amplitude or power estimations will increase with an increase 
in the number of looks. A large number of looks reduce the fluctuations in the radar 
measurements and improves the radiometric resolution [Hoekman, 1990, 1991]. 
Speckle levels (i.e. different number of looks) is expected to have strong influences 
in classification accuracies, so far specific investigations on the effect of speckle on 
the accuracy of the classification for different types of applications has not been 
done. In this paper this specific issue is addressed. 

In this paper we present a forest structural map, a flooding map and a forest type 
map created for a highly diverse area in the Colombian Amazon forest, using a 
polarimetric maximum likelihood classification algorithm developed for 
experimental AirSAR C-, L- P-band fully polarimetric data [Hoekman and 
Quinones, 2000]. These maps bring insights into the forest structure, the bio­
diversity, the biomass levels and the flooding conditions and can be used as an 
example of the types of maps necessary to cover the information needs about the 
tropical forest. Overall accuracies of the resultant maps are presented before and 
after the application of a mapping algorithm, already introduced [Hoekman and 
Quinones, 2002], to overcome the effect of speckle in the classification. In addition 
overall accuracies and confusion matrices can be simulated, for these three maps, 
when using only one or a combination of the available radar data bands as a function 
of the number of looks. That allows the partial assessment of new radar systems 
soon operational, like ENVISAT ASAR, (C-intensity satellite), the ALOS PALSAR 
(L-band polarimetric) and the RADARSAT-2 (C-band polarimetric), for the 
production of such maps. Simulation results are presented for the available systems 
and combination of them. The effect of P-band in the classification is evaluated. A 
comparison between legends of maps created for the same study area, in the past 
using other remote sensing techniques, is of interest to evaluate the new 
contributions of the actual systems. 
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6.2 STUDY AREA 

The Araracuara area corresponds to a pristine natural forest located in the Amazonas 
and Caqueta administrative districts of the Colombian Amazon (0°40', 72° 15')- High 
diversity of landscapes, according to the Landscape Ecological Unit map (scale 
1:100,000) are present in the area [Duivenvoorden and Lips, 1991]. 

Table 6.1. Legend of the Landscape Ecological Unit Map available for the Araracuara study site. 
Landscape ecological units (bold) and vegetation types (in brackets). Source: [Duivenvoorden and Lips, 
1991]. Height above the Caqueta river level is indicated for each geomorphological unit in italic 
numbers. Note: Only landscape units occurring in the map in the area covered by the images are shown in 
this table. 

Geomorphology 
Alluvial plain of the 
Caaueta river 

Alluvial Dlain of 
Amazonian rivers 

Sedimentary plains 

Frequently inundated 
floodplains 
0-6 
Rarely inundated flood plain 
6-10 

Low terraces 
10-15 

High terraces 
25-55 

Flood plains of clear water 
rivers 
3-10 

Terraces of Amazonian rivers 
10-30 

40-70 

Landscape unit 
Ac 

Ec 
Eb1 
Eb2 
Eb3 
Tp 
Tb1 
Tb2 
Tb3 
Hp1 
Hp2 
Hp3 
Cc 
Ce 
Cm2 
Cb1 
Dp 

Sv 

Forest type 
(P1)(H2) 

(P2)(H1) 
(P2) 
(L3) 
(P4) 
(H1.H3) 
(P2) 
(L3) 
(P4) 
(H1, H3) 
(L3) 
(L3) 
(H1,H3) 
(H3) 
(L2) 
(P2) 
(H1) 

(H1,H3) 

The first geomorphology, soil and forest types maps of the Colombian Amazon 
region were published in 1979, as the result of the manual interpretation of the 
1:200,000 images of the RAD AM X-Band images (PRORADAM campaign, 1973). 
In 1991 the landscape ecological map (scale 1:100,000), based on interpretation of 
aerial photos was published for three areas of the Caqueta river [Duivenvoorden and 
Lips, 1991]. This map integrates information on geomorphology, flooding 
conditions, soil and vegetation structure, to characterise in detail each landscape 
unit. The hierarchical legend of the map divides the area in geomorphological units 
like the alluvial plains of the Caqueta river and the Amazonian rivers and the 
sedimentary plains of the Amazon basin. Each of these units is subdivided into land 
systems, which are defined according to the height relative to the Caqueta river and 
the frequency of inundation. Furthermore, each land system is divided into 
landscape units, which are characterised by a flooding condition, soil type and forest 
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Table 6.2. Forest types structural characteristics. Forest profiles as measured in the field to illustrate the 
structure (scale vertical axis 30 m, horizontal axis 100 m). Biomass estimation done including only 
individuals with diameter at breast height (dbh) >10 cm. Treelets are trees with dbh < 10 cm and higher 
than 2 m. 

Forest 
types 

Forest 
description 

Forest profile Floo­
ding 

condi­
tion 

Height 
upper 

canopy 
(m) 

Bio­
mass 

(ton/ha) 

Basal 
area 

(m2/ha) 

Density 
(no. / 0.1 ha) 

treelet 
s 

trees 

High 
Forest 

(H1)High 
density, 
high 
biomass 

Flooded 
and non-
flooded 

26 340 36 640 71 

(H2) Low 
tree density, 
intermediate 
biomass 

Flooded 
and non-
flooded 

22 240 26 570 44 

(H3) High 
tree density, 
intermediate 
biomass. 

Flooded 
and non-
flooded 

20 190 25 650 71 

Low 
Forest 

(L2) High 
tree density 

•HHIII l f 

Flooded 
and 
Peat 

11 140 39 2100 246 

(L3) High 
treelet 
density 

Peat 20 1700 40 

Palm 
Swamp 
Forest 

(P1)Low 
palm density 

Flooded 20 250 34 620 92 

(P2) High 
palm density 

Flooded 21 200 29 490 89 

(P3) High 
treelet 
density 

Flooded 16 15 25 1280 99 

(P4) Very 
high treelet 
density and 
scattered 
palms 

Flooded 50 1420 12 

hl^ulklwftl 
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type (table 6.1) [Duivenvoorden and Lips, 1991]. The predominant life form, the 
biomass level, the density of the individuals and the height defines the forest types 
(table 6.2) [Duivenvoorden and Lips, 1991]. Forest profiles as measured in the field, 
are shown to illustrate the different forest structures. Maps like that can provide 
very relevant information on bio-diversity, and can be the base map to start 
monitoring activities on biomass changes and flooding condition variations. 

6.3 DATABASE AND APPROACH 

Five AirSAR fully polarimetric scenes were processed for the study site covering the 
same area as the landscape ecological map of 1991 [Duivenvoorden and Lips, 1991]. 
Images were acquired during high flood period (May 1993), covering a strip of 40 x 
8 km, over the Caqueta river. Data is in 16-look, Stokes scattering operator format 
with a slant range pixel spacing of 6.66 m in range and about 8.2 m in azimuth [Van 
Zyl et ah, 1992]. Incidence angle (# , ) varies from 20° to 60°. In this range the 
incidence angle dependence of the backscatter intensity parameter y 

(y=a I cos(0j); a is the differential radar cross section) can be ignored 

[Hoekman and Quinones, 2000, 2002]. 

When comparing the Total Power image of the AirSAR data with the existing 
landscape ecological map, it was evident that the polarimetric images have a great 
potential to generate a similar map. For that reason this map was selected as the 
basis for the interpretation of the images and for delineation of sample areas over the 
images. Each digitised polygon was labelled with the corresponding landscape 
ecological unit, the forest type and the flooding condition according to the landscape 
ecological map legend. In that way the same database could be sorted according to 
the desired parameter and used to study the classification capabilities of the 
polarimetric radar for flooding conditions (3 classes) and forest types (8 classes) 
independently from the landscape units (18 classes). The averaged Stokes 
parameters were extracted from the delineated areas and a data base was created 
from the extractions made over 878 sample areas. The averaged Stokes scattering 
element data of the database are used to calculate unbiased field averaged values for 
backscatter, phase differences and correlation from the delineated areas. Extractions 
cover at least 50 pixels, resulting in very accurate estimations of intensity, phase and 
coherence. The accuracy of the estimation of field averaged values depends on the 
total number of independent looks [Hoekman and Quinones, 2000, 2002]. 

Classification results can be simulated as a function of independent looks using a 
technique introduced in a previous paper [Hoekman and Quinones, 2000]. This 
previous paper describes a fully polarimetric multi-band approach to classification 
and introduces probability density functions (pdf) for multi-look samples of a certain 
class, for intensity, phase difference as well as coherence magnitude. Classification 
results could be simulated for a certain combination of frequency bands and 
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polarizations as a function of the speckle level, to give an insight into the optimum 
wave parameters for the different applications. The Kappa statistic is used to 
evaluate differences between any pair of classification results. A more detail 
explanation on this statistic can be found in [Hoekman and Quinones, 2000]. 

The creation of a classified radar image and the evaluation of the results is not a 
straightforward process and can only be done properly after introducing the effect of 
the speckle, texture and relief into the classification and mapping procedure. A post­
processing technique introduced in a previous paper [Hoekman and Quinones, 2002] 
was used to mitigate those effects in the final result. The technique is a modification 
of the Iterated Conditional Modes (ICM) technique introduced by [Besag, 1986] by 
introducing new terms into the likelihood of the ICM method. The number of ICM 
cycles applied after the classification of the image has an effect on the overall 
classification result An extensive and detailed explanation can be found in 
[Hoekman and Quinones, 2002]. 

6.4. RESULTS 

6.4.1. Maps and Legend 

In this study three different types of maps could be created from the polarimetric 
classifications of the radar images with a relatively high overall accuracy. The radar 
data extracted from the 878 delineated areas over the images was used to investigate 
the capabilities of polarimetric radar to create a similar map. Initially all samples 
from the radar images were grouped in landscape units according to the existing map 
and assumed to be different. Some units could not be differentiated with the radar 
and therefore confusion between classes were found between them, forcing to derive 
a new legend appropriate to the differentiation capabilities of the radar. A SAR 
derived legend was created after a process of trial and error, using the classification 
simulation technique introduced by [Hoekman and Quinones, 2000] as an 
exploratory tool. 

In the original legend of the map, 18 landscape units occurred in the study area 
corresponding to 3 geomorphological units (Table 6.1). In the SAR derived legend 
units were grouped according to soil and flooding conditions which were parameters 
influencing the radar. In that way a new map with 15 different classes was created. 
Each class of the SAR derived map is a unique combination of soil and forest 
structure conditions and was named the structural type map. Table 6.3 presents the 
hierarchical SAR derived legend. The legend is divided in three parts. In the central 
grey column the landscape ecological units from the existing landscape map are 
shown. In that column the units that were not possible to be differentiated well can 
be observed, i.e., Hpl, Tp, Dp, Sv. At the right the corresponding forest types (8 
classes) of the forest type map are shown. The left part is a hierarchical division of 
the units, according to the biophysical parameters associated to each unit. The main 
division is the flooding condition is which units under the same flooding regimes are 
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grouped (3 classes). Each flooding condition is subdivided into soil types and forest 
type as described in the map. This subdivision leads to the structural type map, in 
which 15 classes are separated. The flooding map and the forest type map can be 
created by class aggregation of the structural type map or by direct classification of 
the images using the radar averaged values associated with forest type and flooding 
[Hoekman and Quinones, 2002]. For the calculation of the accuracies in this paper 
the database corresponding to each map was used in the simulation procedure. 

Table 6.3. SAR derived legend for the flooding map, forest structural type map and forest type map, after 
the classification of AirSAR polarimetric data in the study area. N = number of training areas for each of 
the classes of the structural type map. The grey column corresponds to the land units as presented in the 
landscape ecological map. See Table 6.1. (see colour plate 6). 

SAR 
derived 
Maps 
2 classes 
Flooded 

Non-
flooded 

Flooding 
Map 

3 classes 
Permane 
ntly 
flooded 
or wet 

Sporadic 
ally 
flooded 

Never 
flooded 

Peat 

Thin 
organic 
deposit 
and peat 

Thick H 
horizon 

Hydrous 
and thin 
organic 
deposits 

ThinH 
horizon 

Thin and 
thick H 
horizon 

Cover type 

Palm 
forest 
(peat) 

Low forest 
(peat) 
Palm 
forest 
Palm 
forest 
(Peat) 

Low forest 

Palm 
forest 
(flooded) 

Palm 
forest 
(flooded) 
Low forest 
(flooded) 

High forest 
(flooded) 

Primary 
high forest 

Structural 
type map 

15 classes 
P2 

P4 

L3 

P2 

P2 

L3 

P1 

P4 

L3 
L2 
H3 

H2 

H1.H3 

H2, (or 
H1.H3) 

H3 
H1,(or 
H3) 

Land­
scape 
unit 

Ec, 
(Eb1) 
Tb3, 
(Eb3) 
Tb2, 
(Eb2) 
Cb1 

Tb1 

Hp2, 
Hp3 

Ac 

Eb3 

Eb2 
Cm2 
Ce 

Ac, Ec 

Cc 

Ac, Ec 

Ce 
Hp1, 
Tp, 
Dp, Sv 

Forest type 
Map 

8 classes 

P2 

P4 

L3 

P2 

P2 

L3 

-* 
P1 

P4 

L3 
L2 
H3 

H1.H2 

H2, (H1, 
H3) 

H3 
H1,(H3) 

N 
36 

22 

89 

36 

36 

18 

10 

18 

9 
18 
10 

-
20 

114 

11 
431 
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The overall classification accuracy was calculated independently for each of the 
maps using a 95% confidence interval for classification. Results were calculated 
using C-, L- and P- band fully polarimetric information (15 channels), as a function 
of the number of independent looks. The number of looks is an expression of the 
speckle level (i.e. 0.44-dB speckle level corresponds to 144 looks and 1 dB 
corresponds to 20 looks) [Hoekman, 1991]. Table 6.4 shows the overall 
classification in percentages and the average confusion between classes for different 
levels of speckle. In general the overall accuracy increased with the number of 
looks for the three maps. The simulation with an infinite number of looks (i.e. 0 dB 
level of speckle or absence of speckle) gave the best classification accuracy for all 
the maps. Percentages were higher than 80% and the confusion between classes was 
the lowest recorded for each map. 

Table 6.4. Overall maximum likelihood classification accuracy (Over), expressed in percentages at the 
95% level of confidence and the average confusion between classes ( Conf) expressed in percentages. The 
confusion between classes is the percentage of the sum of class a samples classified as b and b samples 
classified as a from the sum of class b samples in the absence of other classes (i.e. absence of class c etc. 
and in the absence of class unknown). The expected value for maximum confusion therefore is 50%. 

Type of data 

# 
looks 

64 
95 
144 
256 
No 
144 

ICM 

No 
No 
No 
No 
No-
Yes 

Forest structural 
map 

Over 
% 

64.5 
69.2 
73.0 
77.4 
86.0 
88.8 

Conf 
% 

4.6 
3.8 
3.1 
2.5 
1.0 
2.1 

Flooding map 

Over 
% 

80.4 
81.8 
81.7 
82.9 
82.0 
93.2 

Conf 
% 
9.0 
8.5 
7.9 
7.3 
6.4 
3.4 

Forest type 
map 

Over 
% 

67.1 
70.4 
72.5 
74.9 
80.3 
89.0 

Conf 
% 
7.8 
7.1 
6.3 
5.6 
3.6 
4.1 

When applying the ICM mapping technique to a classified image, the accuracy of 
the maps increase. For instance for 144 looks (corresponding to 9 uncorrected 
pixels of 16 independent looks, window of 3 x 3 pixels), the accuracy of the 
structural type map was calculated at 88.8% and the confusion between classes at 
2.1%. These values are higher than the 73.0% and 3.1% calculated, respectively, for 
the same number of looks with no ICM. Furthermore the calculated overall accuracy 
with ICM is higher than the one calculated for no speckle level (Table 6.4). 

To illustrate the effect of the post-processing ICM cycles, the classified scene of the 
study area, 336-b, is presented in figure 6.1, just after classification, and after 5,10, 
15 and 20 ICM cycles. The calculated overall accuracies and confusion between 
classes, after the application of the ICM cycles are also shown. After 20 cycles the 
accuracy and the confusion between classes did not improve further, in that case the 
map was supposed to achieve the maximum level of accuracy. 
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The final maps after 20 ICM cycles for the three SAR classified images can be seen 
in figure 6.2.. Colours of the maps correspond to the colours presented for the SAR 
derived legend of table 6.3.. For the mapping procedure of the flooding map and 
forest type map the classes from the structural type map were aggregated, saving a 
lot of computing time. 

Figure 6.1. Effect of the ICM postprocessing algorithm over the scene 336-b of the Araracuara study site 
after the application of increasing number of post processing cycles. The classified image is the result of 
the classification algorithm (ML). For each example, the overall accuracy (expressed in percentages), and 
average confusion between classes (expressed in percentages). ( see colour plate 8). 

6.4.2. Simulation of map accuracy for different band and polarisation 
combinations. 

Classification simulations were made as a function of the number of looks for 
different band and polarisation combinations corresponding to actual and soon 
available radar systems. In figure 6.3 the percentages of correctly classified samples 
as a function of number of looks, when using different band combinations, can be 
seen for each of the three maps. Classification clearly increases with the number of 
effective looks for all combinations and some combinations produce better results 
than others. For the tree maps the higher accuracies where achieved when using the 
combination of C-band polarimetric (C-pol), L-band polarimetric (L-pol) and P-
band polarimetric (P-pol) data and the combination of C-band intensity (C-int), L-
band intensity (L-int) and P-band intensity (P-int) data. The worst results for the 
three maps were found when using C-pol or C-int data alone. For L-pol and L-int 
results were higher than for C-band but much lower then when using only P-pol or 
P-int data. The combination of either C-pol or L-pol with P-pol results in higher 
accuracies, showing that the information contained in P-band has an important 
contribution to the classification. 

In Table 6.5 the overall classification results, for each of the maps, using different 
combinations of bands can be seen for 64, 256 and an infinite number of looks as 
indicator of different levels of speckle (0.54 dB, 0.27 dB and 0 dB, respectively). 
For each map the accuracies coloured in light grey correspond to the best 
combinations within the three-selected speckle levels and are not significantly 
different from the best at the 95% level of confidence. The accuracies coloured with 
dark grey correspond to the worst result not significantly different from the worst 
result at the 95% level of confidence. The accuracies indicated in bold correspond to 
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the accuracies not significantly different from the best and the worst results within 
the same speckle level. In general the best results for the three maps are found when 
combining C-pol, L-pol and P-pol data or C-int, L-int and P-int data. The 
combination of C-pol with P-pol data also produces high non-significantly different 
accuracies. 

it,, • IA. . rti. -"''•:•• .ML lA* -K- T 

Figure 6.2: a) Total power image of AirSAR polarimetric System (C-band - blue, L-band - green and P-
band -red), b) Flooding map, c) Structural type map and d) Forest type map. Colours of the maps 
correspond to the colours in legend (table6.3). ( see colour plates 5, 9, 10, 11 respectively). 

The relevance of P-band in the classification accuracy of the maps will be evaluated 
using the data for an infinite number of looks (0 dB speckle level). For the structural 
type map the use of C-pol or L-pol alone results in low accuracies (42.7% and 
59.9%, respectively) while P-pol gives better results (69.7%). The combination of C-
pol or L-pol with P-pol improves the accuracy to (81.8% and 79.5% respectively). 
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Figure 6.3. Overall maximum likelihood (ML) classification accuracy (expressed in percentages) at the 
95% level of confidence for several combination of bands, as a function of the speckle level, expressed in 
number of looks for a) Structural Type Map, b) Flooding Map and c) Forest Type Map. 
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The combination of C-pol and L-pol data corresponding to the combination of actual 
systems results in a simulated accuracy of 76.6%. For the flooding map the 
accuracies produced by using a C-pol, L-pol or P-pol alone are relatively high 
(69.6%, 73.3% and 80.9%). Combining C-pol or L-pol with P-pol increases the 
accuracies to 85.1% and 78.3%, respectively. 

It is interesting to notice that the accuracy of the combination of L-pol and P-pol is 
lower than the accuracy found when using only P-band. For the forest type map the 
accuracies of C-pol and L-pol are increased by adding P-pol data from 46.7% to 
77.6% and from 61.8% to 76.5% respectively. The combination of C-pol and L-pol 
(72.7%) is similar to the results by using only P-pol data (72.0%). 

For mapping purposes aggregations of pixels could be done in order to obtain a 
certain level of speckle (certain number of looks). If a map of a certain scale is 
necessary, the suitable combinations of bands for a specific number of looks must be 
analysed. For instance the best combination to create a flooding map scale 1:240,000 
must be selected from the 64 looks column. In this case the accuracies in bold italic 
numbers are not significantly better. For this example the C-pol, L-pol and P-pol 
combination is the best but the accuracy produced by the combination of L-pol with 
P-pol is not significantly different from the best at 95% confidence level). With a 
radar system with one effective look per pixel and a spatial resolution of 12.5 m, 
maps at scales 1:240.000 and 1:600.000 can be created with 64 and 256 looks, 
respectively. Maps at those scales are supposed to fulfil the actual information 
needs. 

To select the best combination of bands in order to create a map with a certain level 
of accuracy one can select the best overall accuracy and use that combination for the 
classification. Then the scale of the map can be calculated according to the final 
number of independent looks. The used number of ICM post-processing cycles 
improves the results to accuracies similar to the ones calculated for 0 dB of speckle. 

6.5 CONCLUSIONS 

The polarimetric classification of the AirSAR images, using a previously developed 
classification and mapping algorithm, allowed the creation of a new SAR derived 
legend. Three different maps were classified from AirSAR polarimetric images with 
a relatively high accuracy. The structural type map presents 15 classes defined 
according to the forest structure, soil and flooding conditions as presented in the 
existing landscape ecological map of the area. In the flooding map three flooding 
conditions can be distinguished and in the forest type map 8 different forest 
structures can be differentiated. The simulated accuracies for these maps when using 
the combination of C-pol, L-pol and P-pol data, in absence of speckle, are 86.0%, 
82.0% and 80.3%, respectively. 
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Table 6.5. Overall maximum likelihood classification accuracy (expressed in percentages) at the 95% 
level of confidence for a selection of band combinations for different levels of speckle (0.54 dB = 64 
looks, 0.27dB = 256 looks, 0 dB = oo, infinite number of looks. Number under light grey shade indicate 
the best results plus the results that are not significantly different from the best at the 95% level of 
confidence, for the three levels of speckle per map. Numbers under dark grey shade indicate the worst 
results plus the results that are not significantly different from the worst at the 95% level of confidence, 
for the three levels of speckle per map. Bold italic numbers indicate the best and worst results and the 
numbers that are not significantly different from the best and worst result respectively , at the 95% level 
of confidence, for each level of speckle, for each map. 

Bands 

P-
C-pol, L-pol, 

P-pol 
C-int, L-int, 

P-int 
C-pol, P-pol 

L-pol, P-pol 

C-pol, L-pol 

C-int, L-pol 

P-pol 

P-int 

L-pol 

L-int 

C-pol 

L-HH 

C-int 

Radar system 

# of looks 

AirSAR 

RADARSAT-2 
+ Ppol 

ALOS PALSAR 
+ 

Ppol 
RADARSAT-2 

+ALOS 
PALSAR 

ENVISAT+ 
ALOS PALSAR 

Ppol 

ALOS PALSAR 

RADARSAT-2 

JERS-1 

ENVISAT 

Structural types 

64 

64.5 

617 

58.8 

55.2 

42 

40.3 

47.5 

44.4 

33.3 

32.7 

m 
•i 

256 

77.4 

75.2 

72.1 

68.6 

60.7 

58.0 

60.3 

54.5 

46 

44 

26.7 

31.5 

00 

U § 

•» 
81.8 

79.5 

76.6 

75.6 

69.7 

67.2 

59.9 

55.4 

42.7 

39.0 

30.6 

Flooding 

64 

80.4 

79.6 

79.1 

77.9 

73.7 

76.5 

75.9 

75 

68.8 

65.3 

• 1 
62.5 

256 

82.9 

81.4 

82.4 

78 

77.5 

76.5 

79.2 

77.5 

71.2 

70.1 

63.4 

66.6 

00 

82.0 

80.3 

85.1 

78.3 

79.1 

79.6 

80.9 

78.7 

73.3 

72.2 

69.6 

68.5 

62.4 

Forest type 

64 

67.1 

66.7 

64.2 

63.6 

49.4 

48.9 

60.8 

60.3 

44.7 

42.4 

• i 
34.8 

256 

74.9 

73.9 

71.8 

70.6 

61.7 

60.8 

67.4 

67.4 

54.6 

51.7 

36.0 

41.6 

00 

80.3 

78.8 

77.6 

76.5 

72.7 

72.3 

72 

72.4 

61.8 

59.4 

46.7 

49.3 

The new SAR derived legend of this map compiles information that can be 
compared to the landscape ecological map legend. The main difference between the 
legends is the main division of the geomorphological units. For the SAR derived 
map the main division is the flooding condition that is one of the parameters to 
which radar is sensitive and that compiles a large number of classes, allowing the 
development of a hierarchical legend. Geomorphological units can not be 
automatically classified with this specific sensor. One of the characteristics of the 
geomorphological units in the Amazon basin, besides the parental material and the 
geological age, is the height relative to the river basin. Differences in height can be 
from 3 to 50 m, which are possible to be mapped with interferometric radar. 
Nowadays many sensors are capable of creating digital elevation models with high 
level of accuracy such as the Dornier SAR, Aerosensing SAR and AirSAR 
TOPSAR. Some sensors can differentiate height differences in the terrain with an 
accuracy better than 3 m. The use of such a sensor in the study area will allow the 
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initial geomorphological mapping of the terrain previous to the polarimetric radar 
classification for structural types. If that will be the case a new and more detailed 
SAR derived legend could be created. Table 6.6 presents one possible legend that 
can be created when using interferometric and polarimetric data combined. This new 
possible legend is very similar to the landscape ecological unit map legend. In this 
case some landscape units that are not possible to be differentiated with polarimetric 
data can be first separated with interferometric data (i.e. Peat Eb3 and Tb3). 

A comparison between all available maps for the study area is presented in Table 
6.7, the area corresponding to the scene 336-b of the AirSAR data is selected to 
illustrate the differences. The first column refers to the first RADAR experiment in 
the Amazon basin, the PRORADAM campaign in 1973. These X-band images, scale 
1:200,000, allowed the mapping of the whole Colombian Amazon for the first time. 
The images allow the manual interpretation of geomorphology, soil types and forest 
types at scale 1:500,000. For the same area covered by the scene 336-b the 
PRORADAM forest type map has only 3 different classes (column 2). The 
landscape ecological map, created from visual interpretation from aerial photos, 
scale 1:33,000, is shown in the third column. Fourteen classes were interpreted 
visually for the same area. The AirSAR total power image and the SAR derived 
structural types map can be seen in column 4 and 5. The classification of the map 
was done automatically using the classification and the mapping algorithm and 
allows the differentiation of 8 classes for the same scene. For this area the additional 
use of interferometric data will allow the differentiation of all landscape units with 
different flooding, soil and forest structure occurring at the same relative height (i.e. 
same geomorphological unit) for instance units like Hpl and Dp or Eb2 and Tb2 
will be possible to distinguish. 

In this work it is shown that the developed algorithms can be used to produce 
accurate maps that can provide the information required for different applications. 
For instance the application of a system like the AirSAR to the Colombian Amazon 
will allow to map in a detail, similar to the landscape ecological map, the landscape 
units and therefore information on bio-diversity, flooding conditions and forest 
structure can be obtained with high accuracy. When biomass levels can be assigned 
to the mapped forest types a biomass map can also be created [Quinones and 
Hoekman, 2002]. The analysis of radar data on the dry period will allow a more 
detailed study of the variations of the radar signature with the season and then the 
appropriate time for acquiring images in the future can be established. The algorithm 
developed to create these maps is now being tested in Indonesian tropical forest and 
in temperate forest, with satisfactory results [Rodriguez, 2002]. 

The analysis of the simulated accuracies produced by the combination of different 
bands and polarisations for the three produced maps, shows that in all cases the 
combination of C-pol, L-pol and P-pol data results in the best accuracies. In general 
the presence of P-pol data in the classification improved the accuracies. The 
importance of P-band in the classification of the images can be evaluated looking at 
the column of 'no speckle' level for the 3 maps (Table 6.5). For instance using only 
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C-pol data the simulated accuracy for the structural map is 42.7%. When adding the 
information contained in the P-band the classification in the structural map increases 
to 81.8%. The same occurs for the flooding and forests type maps 

Table 6.6. Tentative SAR derived legend when integrating geomorphological information derived from 
interferometric systems. 

Geomorphology 

Alluvial Dlain 

Sedimentary plain 

Frequently and 
rarely inundated 

flood plains 

Low terraces 

High terraces 

Flooding 
condition 
Flooded 

Non-flooded 

Peat 

Flooded 
Non-flooded 

Peat 

Non-flooded 
Peat 

Non-flooded 

Landscape 
unit 

Ac-Ec 
Ce 
Cc 

Cm2 
Eb2 
Cb1 

Ac-Ec 
Ce 
Eb1 
Eb2 
Eb3 
Tb1 j 
Tp 

Tb2 
Tb3 

Hp1-Dp 
Hp2-Hp3 

Sv 

Forest type 

(P1)(P2) 
(H3) 

(H1.H3) 
(L2) 
(L3) 
P2 

(H2)(H1) 
(H3) 
(P2) 
(L3) 
(P4) 
(P2) 

(H1.H3) 
(L3) 
(P4) 

(H1.H3) 
(L3) 

(H1.H3) 

Simulated data indicated that the L-pol system already planned for the coming 
ALOS PALSAR satellite radar when combined to the C-pol data of the 
RADARSAT-2 system can tentatively produce maps with high accuracy. In general 
it can be seen that this combination produced results higher than 75% for the three 
maps for 0 dB of speckle. Since these systems are not free from the effect of 
speckle, reduction of the accuracies can be expected. The application of post 
processing techniques, in this case the modified ICM algorithm, show to be very 
relevant in the mapping procedure after the classification of the image, to overcome 
the effect of the speckle in the classification. 

One interesting aspect when comparing the accuracies of the maps with respect to 
the number of possible classified classes is that the accuracy of the structural type 
map (15 classes) is higher than the accuracy of the forest type map (8 classes). This 
can indicate that whenever the information concerning the soil and the flooding 
conditions is included in the definition of the classes, then the classes are better 
defined and can be separated with higher accuracy than when only structural 
parameters are defined. This implies that radar data (specially L-band and P-band) 
are sensitive to soil and terrain conditions and that indeed can be of great help in the 
definition of ecological units which are more specifically defined than a forest type 
unit in which only forest structure is considered. 
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Table 6.7. Maps and images available for the study area. ( see colour plate 7) 

PRORADAM 
Radar Image, 
1973 

1 :200,000 
X-Band 

Forest Type 
Map, 
1979 

1 : 500,000 
PRORADAM 
Radar Image as 
source 
Visual 
interpretation 
Geomorphology 
in interpretation 

3 classes in this 
area 

Landscape 
Ecological Map, 
1991 

1:100,000 
Aerial Photos as 
source 

Visual 
interpretation 
Geomorphology 
in interpretation 

13 classes in this 
area 

AirSAR 
Polarimetric 
Radar, 
1993 
1:25,000 
C- L- and P-bands 
polarimetric 

Total Power 
Image 

Forest Structural 
Types Map, 
2002 

1:50,000 
AirSAR radar image 
as source 

Automatic 
classification 
Geomorphology not 
included in 
interpretation 
8 classes in this area 

%Hfct-"*:-i **Tf*T" 
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GENERAL DISCUSSION AND RECOMMENDATIONS 

In this chapter an analysis of the previous 5 chapters is presented projected into the 
problems of using radar remote sensing for tropical forest monitoring. The 
evaluation is framed on technical and application aspects trying to answer some 
specific questions related to these issues and can be used as recommendations for 
the users and for future developments. 

7.1 TECHNICAL DEVELOPMENTS 

7.1.1. New developed classification algorithms 
In the past decomposition algorithms for radar data have been related to specific 
wave-object interaction mechanisms and have been used for the unsupervised 
classification of the images. Algorithms are applied and the dominant scattering 
mechanism can be revealed in such a way that (vegetation) structures can associated 
to specific mechanisms. Algorithms are in general applied per frequency band and 
therefore there is always the impossibility of combining the information contained in 
the 3 bands The Total Power data is a good exemption of combining multi-
frequency incoherent data, but still coherent information is not incorporated. In this 
study the use of the total power image was essential for the initial interpretation of 
the images, but even the total power image was not able to reflect the structural 
variations as recorded in existing maps. Therefore deeper exploration of the 
polarimetric data was needed. The combination of the coherent information of the 
images was necessary for a complete assessment. 

The classification algorithm developed in this thesis allows the combination of 15 
channels of the AirSAR polarimetric system (C- L- and P-band with HH, HV and 
VV polarisations, polarimetric phase difference and polarimetric correlation for each 
band). The description of the radar data in terms of backscatter y , polarimetric 

phase difference (f> and polarimetric correlation \p\ was selected because it allows 

better interpretation in terms of physical mechanisms of backscatter and, hence, 
better physical understanding. The relevance of polarimetry and the effect of speckle 
level are studied by incorporating the (multi-look) pdf s of polarimetric phase 
differences and the polarimetric correlations. Kolmogorov-Smirnov tests of fit well 
confirm the agreement of theoretical pdf s used with experimental observations. The 
likelihood for an (polarimetric) observation vector to be classified as class c is 
modelled as the product of the joint distribution of the backscatter values multiplied 
by the likelihoods of the phase difference values and the likelihoods of the 
correlation values (Chapter 2). 

The importance of combining the information contained in three bands i.e. on the 
three wavelengths lies in the differential detection of the forest elements relative to 
the size of the wavelength. In that way every band detects different scatterers. For 
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instance C- band can detect leaves and twigs that are transparent to P- band which 
interacts with bigger scatterers like trunks and branches. In addition the occurrence 
of dominant scattering mechanisms between the forest and the waves changes with 
the wavelength. For instance, in an open canopy double bounce can occur for the 
three bands while in a close canopy a double bounce will probably occur only for P-
band that penetrates in the forest floor while C-band interactions will be basically of 
the single bounce or diffuse scattering type. In that way the combination of the three 
bands is complementary and give better insights into the interaction mechanisms 
that can be related to forest structure, flooding conditions or biomass levels. 

In this study the selection of classes was done on the basis of field information and 
existing maps. Field campaigns were oriented to measure parameters to which radar 
could be sensitive. Forest structure, biomass, flooding conditions, terrain roughness 
and soil type were recorded in the two study sites. This procedure allowed the 
detailed study of the radar signatures for each class, i.e. different vegetation 
structures (Chapters 3 and 4). This step is considered of great importance for the 
evaluation of the data in these initial stages of the radar data analysis, because it 
helped to make the direct link between the radar data and the field parameters. 
Without the field information the interpretation of the signatures could not have 
been done properly or would have been incomplete. Features observed and 
measured in the field allowed the understanding of the separation capabilities of 
different classes by different bands. For instance, at the Araracuara site the presence 
of low backscatter values and low polarimetric phase differences in the P-band was 
associated with the presence of peat soil layers in the field. In this case the use of P-
band was necessary for the differentiation of this specific class. This illustrates that 
observations on the field can be integrated into a knowledge based classifier in 
which all the special cases can be incorporated and used for the accurate 
classification of images under supervised or unsupervised regimes. 

Another important aspect of this new classification algorithm is that it integrates the 
effect of speckle in the classification allowing the study of the effect of speckle in 
the accuracy of the classification. This aspect is considered of great importance in 
the assessment of a radar image. 

The classification algorithm was also used to simulate classification accuracies for 
the different maps, when using only a combination of channels (Chapters, 2, 4 and 
6). This capability allowed studying the use of simpler radar systems for classifying 
certain classes and creating different maps. This aspect is very relevant at this 
moment when many spaceborne radar systems are or will be taking images over the 
earth surface. It is important that the users assess the use of the different systems for 
the specific application needed. Not all the systems are useful for all sort of 
applications. In this thesis some examples of band combinations are studied for the 
created maps, this information can be used as a guide for the users to assess the 
actual systems. Nevertheless it is advised that before investing in a big mapping 
project the source images should be carefully assessed. 
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In this thesis the classification algorithm was used to create different types of maps. 
For the Guaviare site (Chapter 2), a land cover map (4 classes) was created with 
high accuracy (98.6%). In addition a biomass map (8 classes) could be derived using 
the empirical relationship between field biomass estimations and the radar values. 
For the Araracuara site (Chapter 3) a structural map (15 classes) was created with an 
accuracy of 82%. For this map the classification algorithm was used as an 
exploratory tool that allowed the study of the confusion between the classes for the 
definition of the final SAR derived legend. This is a very important aspect in the 
process of creating maps with radar images. An appropriate legend should present 
classes that are possible to distinguish with a certain level of accuracy. The overall 
accuracy of the classification will depend on the possibility of distinguishing the 
classes. This is an aspect that the users should consider carefully when assessing 
images for a specific product. 

In the future the further developments of new decompositions based on 
interferometric-polarimetry and interferometry for forest structure may allow better 
structural classifications of the images. These new developments will probably bring 
new insights into the capabilities of radar systems for land survey applications. 

7.1.2. New decomposition of polarimetric radar coherent elements in relation 
with forest structure 

The tropical forest has a complex and variable structure. On one hand different 
forest types in general have different structure, resulting in different heights, canopy 
closure, DBH distributions, etc. On the other hand dynamical processes, like 
regeneration after gap formation or the floodplain dynamics or secondary re-growths 
after agricultural activities, create structural mosaics within the forest in which not 
well defined boundaries can be delineated. 

The description of homogeneous areas within a radar image and the link with a 
specific forest structure could be made using for instance the decomposition of 
scattering mechanisms introduced in the past. Nevertheless for the Araracuara study 
site this decompositions were not sufficient to classify the vegetation structures 
occurring in the area. It is believed that the interactions of the radar with the forest is 
a combination of scattering mechanisms occurring at the same time and that that 
combination serves to characterise the structure of the forest instead of the dominant 
scattering mechanisms. In that way a new model based on the decomposition of the 
polarimetric coherence, instead of the power, is introduced in this thesis (Chapter 3). 

The new approach is proposed to interpret multi-frequency coherence numbers in 
which the polarimetric coherence of the HH and VV signals for the three bands are 
decomposed. The attenuation, relative power, phase shift and coherence magnitude 
of the ground-surface interaction, the trunk- ground interaction, the vegetation layer 
interaction and the attenuation and phase shift due to the propagation through the 
vegetation layer are taken into account. In general it can be said that this 
decomposition gives insights into the scattering mechanisms occurring in a 
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homogenous area of an image. A detailed study of the multi-frequency polarimetric 
coherence in relation to field measured characteristics, allows the direct link of a 
certain signature to specific forest structures and terrain conditions. The effect of 
speckle is also considered, a large number of looks is required to enable a useful 
interpretation of the multi-frequency coherence. The accuracy of the complex 
coherence is made using the Wishart distribution 

This new decomposition can be related to forest structural characteristics and terrain 
conditions and can be used for future applications on unsupervised forest type 
classifications. Still detailed analysis of this decomposition needs to be made for 
other study areas and forest types. Detailed study of these decompositions for 
polarimetric data sets all over the world can allow the study of the signatures in 
relation to forest structure and be useful to make interpretation of images that lack 
field information 

7.1.3. Assessment of scattering models as tool for inversion 
The scattering models are able to simulate radar values according to well-described 
wave-object interaction mechanisms. The description of the vegetation is made in 
terms of scatterers of different dimensions, orientation and water content. In this 
thesis the performance of the UTARTCAN scattering model is evaluated by 
comparing the simulated data versus experimental data of 45 field measured plots 
(Chapter 5). The new developed LIFEFORM interface model is being use to make a 
description of the tropical forest in terms of scatterer types, representing the 
structural characteristics of some of the life forms occurring in the tropical forest. As 
a conclusion of the analysis UTARTCAN performed fairly well for plots of high 
biomass where broad-leaved trees were the dominant life form. UTARTCAN failed 
to simulate radar signatures for forest types of low biomass where high proportions 
of palms occurred. Two main explanations can be given for such result. The first one 
is that UTARTCAN was developed for broad-leaved trees and the second reason is 
that it assumes horizontal uniformity, which is not the case for the open canopy 
structure of the palm forest. 

From these observations it can be concluded that better descriptions of the wave-
forest interactions need to be integrated to the scattering models. Perhaps the 
description of the life forms occurring in the tropical forest will give modellers a 
better idea of the type of scatterers that have to be modelled in the interactions. In 
addition the heterogeneity of the tropical forest canopy has to be included somehow 
into the models. Perhaps scatterers do not have to be distributed randomly into the 
layers allowing the possibilities of layers without scatterers, or perhaps the vertical 
distribution of scatterers can be modified according to the specific forest structures if 
a certain life form is dominant within one layer. The application of scattering models 
for the application of inversion algorithms for estimation of vegetation parameters is 
still not possible or applicable for tropical forest with diverse structure and terrain 
conditions. 

146 



Considering the limitations found for the UTARTCAN model, radar data was 
simulated for hypothetical forest plots of only broad-leaved trees as an exploratory 
tool. A systematic study of the effect of terrain and forest structure into the biomass 
estimations was made for high, intermediate and low biomass levels. In this case the 
use of UTARTCAN gave new interesting insights into the radar inversion for 
biomass estimation problems (Chapter 5). 

With no doubt the use of models is of great importance in the study of the radar 
wave-object interactions, and it is expected that future improvements to actual 
models will be made. In addition it will be of interest to do the same type of analysis 
as made in Chapter 5 of this thesis, using other scattering models for comparisons, 
for deeper evaluation of the models. 

7.1.4. New mapping techniques 
The effect of texture, relief and speckle, typical of radar images, was observed to 
have a have strong effect on the classification. To mitigate this adverse effect image-
processing techniques could be used. In general traditional techniques such as image 
segmentation or texture and relief analysis algorithms fail to overcome these effects 
for different reasons as exposed in Chapter 3. 

A new method based on Iterated Conditional Modes (ICM) is introduced in this 
thesis in order to yield radar-derived classifications with a high level of agreement 
with existing maps, as well as with the ground observations. In this new method the 
likelihood of a pixel is modified by a conditional probability on which the number of 
neighbours of a certain class determine the relative importance of the neighbourhood 
information for the classification. 

This technique proved to have an important effect on the accuracy of the 
classification of the images in the Araracuara site (Chapters 3 and 6). The number of 
ICM cycles applied to a classified imaged increased the classification accuracy until 
reaching a maximum, in which a stable solution is found. Nevertheless research still 
needs to be done in order to optimise the use of the algorithm in other study areas. 
The appropriate selection of the parameters used in the neighbourhood operations 
and the number of appropriate cycles still has to be studied for different applications. 
Variations in the confusion between classes has to be carefully studied when 
applying this algorithm since classes occurring in small areas can easily disappear 
under the presence of more extended classes. In conclusion, the application of the 
ICM method is critical and detailed analysis of the classification results has to be 
done. 

7.2 APPLICATIONS 

7.2.1. Monitoring system 
The usefulness of a radar system in a monitoring system will depend on the 
capacities of the system to create certain types of products that fulfil the information 
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needs. The type of information required, the scale and the accuracy required, and the 
temporal resolution, are important aspects to consider. 

To monitor changes in the tropical forest a radar system should have the capacity for 
instance to: 

1) Differentiate forest from non- forested land 
2) Detect new deforested areas 
3) Detect areas of secondary re-growth 
4) Detect degradation processes 
5) Detect flooding regimes 
6) Detect differences in vegetation types 

Some specific products, i.e. maps can be integrated in a monitoring system and be 
able to answer specific questions regarding the forest. For instance a land cover 
map of high accuracy can give information on the actual extension of the forested 
land. The information of this map when combined with multi-temporal biomass 
maps can give information on degradation or regeneration processes. Or when 
combined with flooding maps can give information for land use planning. For bio­
diversity assessment, for example, a map of vegetation types can be used as a base 
for the study of the spatial patters of species distribution or when combinations with 
a flooding and biomass map can be used for the study of the ecosystems. 

In this thesis some specific types of maps where selected to be relevant for the 
monitoring of the tropical forest. Of course these maps are not the only ones that are 
possible to create using radar images, but for the purpose of this study were 
considered relevant for the establishment of a monitoring system. In the following 
section the feasibility of creating some maps with polarimetric radar images is 
summarised. For each map the accuracy when using the AirSAR system and actual 
radar systems is compared to accuracies simulated for other combinations of 
channels, the most suitable combination of bands for the map can be chosen 
according to the scale or speckle level of the maps. Limitations and problems 
encounter in the creation of these maps will be also discussed. The importance of P-
band to increase the classification accuracy will be discussed. 

7.2.2. Land cover map 
A land cover type map was created for the Guaviare site, a colonisation area located 
at the edge of the Colombian Amazon. A map like this can be the base for 
monitoring deforestation activities, regeneration and degradation processes. Four 
land cover classes were selected to be interesting to monitor such changes. 
Classification accuracy for primary forest, secondary forest, recently deforested 
areas and pastures were studied to determine optimal wave parameter combinations, 
using an extensive database of 778 plots digitised over the AirSAR radar images. 
Kappa statistics were used to compare results for different combinations (Chapter 2). 
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In summary one may conclude that for instance for monitoring of deforestation 
using a single band system, the use of only C-band is useful especially when the 
observation frequency is high, nevertheless, the very poor capability to differentiate 
primary and secondary forest may pose problems. L-band with HH- or VV-
polarisation for monitoring deforestation also has some problems since recently cut 
areas are not well differentiated from the forested areas. Adding HV-polarisation 
would solve this problem to a large extent. P-band has the same problem for all 
polarisations although P-band's capability in differentiating pastures, secondary 
forest and primary forest are superior. 

Results would greatly improve by using a system using two frequencies. 
Combinations of C- and L-band or C- and P-band would give good overall results, 
although there is still some confusion between primary, secondary and recently cut 
forest (table 5, Chapter 2). The combination of L- and P-band would be even better. 
From a practical point of view one may conclude that, as long as P-band with a 
reasonable bandwidth is not allowed for spaceborne SAR operation, the combination 
of C-and L-band is the best choice. Tables 4 and 5 (Chapter 2) show, for example, 
that C-band with VV-polarisation in combination with polarimetric L-band is a good 
choice. The only problem seems to be the relatively poor discrimination of primary 
forest and secondary forest. However, since primary forest can be differentiated well 
from pastures and recently cut areas, and the main problem is discrimination 
between primary and the older secondary forest, this problem may be circumvented 
in a monitoring system when using frequent observation and knowledge of 
deforestation in the past. 

Actual radar systems like JERS-1 (L-HH) will certainly not be able to distinguish all 
the possible classes. Primary and secondary forest could not be differentiated and 
both of them can not be distinguished from recently cut areas. New systems like 
RADARSAT-2 (C-polarimetric) will also have problems to differentiate primary 
from secondary forest and pastures from recently cut areas. L-polarimetric systems 
like the ALOS-PALSAR can improve results but still will give troubles to 
differentiate primary from secondary and secondary from recently cut. The 
combination of these two systems will increase the overall accuracy and increase the 
capacity to differentiate primary from secondary forest. 

7.2.3. Structural type map: 
The Araracuara site, a well-surveyed forest reserve in the centre of the Colombian 
Amazon, is characterised by a high diversity of forest types, soil types and flooding 
conditions. A landscape ecological map existing for the area was used for the 
definition of the classes. 878 delineated areas in the AirSAR mages were used as the 
basis for the classification. Field observations were made at 23 0.1 ha plots to obtain 
additional quantitative descriptions on forest structure and ground surface 
conditions. The polarimetric classification algorithm was used to assess AirSAR's 
potential for landscape unit mapping as on the landscape ecological map, existing 
for the area. A map like this can be used as a base for bio-diversity assessment and 
for the study of the ecosystem dynamics. The suitability of the existing legend was 

149 



Polarimetric Data for Tropical Forest Monitoring 

assessed for the SAR mapping process. It could be shown that a new type of legend 
should be derived from the SAR classification capabilities, that leads to physically 
better interpretable results (Chapter 3). 

From this legend, the structural map (15 classes) combines information from 
flooding conditions, soil type and forest structure. In fact the aggregation of the 
structural map into different classes can lead to any of the other maps with high 
accuracy. C-, L- and P-band fully polarimetric data of the AirSAR system was 
necessary to create this map with low confusion between the classes. For a map like 
this the overall accuracy of the classification is very affected by the level of speckle 
(table 5, Chapter 6). Different levels of speckle are calculated when aggregating 
certain numbers of pixels in a classification procedure. For instance an aggregation 
of 2x2 pixels, with 16 independent looks per pixels, leads to a window with 64 
independent looks (0.54 dB level of speckle). Classification accuracies can be 
simulated for different numbers of looks. Data is presented for different levels of 
speckle. In general classification accuracy increases with increasing number of 
looks, i.e. for the structural type map overall accuracy increases from 64.5% for 64 
looks to 86.0% for an infinite number of looks (i.e. no speckle). 

The effect of speckle can be overcome by reducing the scales in which the level of 
speckle can be increased by aggregating more pixels to increase the number of looks 
or by the application of post classification processing techniques, ICM (Chapters 3 
and 6). The accuracy of the classification for each of the classes changes throughout 
the application of the ICM cycles. It is very important to analyse these changes to 
assess the accuracy of the map. 

The overall classification accuracy was also simulated for other combination of 
channels. When considering the selected mapping process similar as a case free of 
speckle, then the best accuracy will be reach by the combination of C-pol 
(RADARSAT-2) with P-pol data (81.1%). The combination of L-pol (ALOS 
PALSAR) with P-band polarimetric (P-pol) also give good results 79.5%, affecting 
specially the differentiation of the high forest types. The combination of C-pol with 
L-pol can produce a map with 76.6 % of accuracy, but high degree of confusion 
occurs between the classes. This classification can be improved to a maximum of 
86.0% when including P-pol data. C-pol or L-pol alone results in very low 
classification accuracies and high levels of confusion exist between many of the 
classes. The capabilities of that system to differentiate specific classes was not 
included in this study but can be studied in the future. In general it can be said that 
P-band is necessary to create a structural map with high level of accuracy, the 
classification accuracy when using only P-pol data is 69.7%. For C-pol data or L-pol 
data alone the simulated accuracies were of 42.7%) and 59.9%, respectively, and is 
increased to 79.5% and 81.8% when adding P-pol data, respectively (Chapter 6). 
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7.2.4. Flooding map and forest type map 
A flooding map and a forest type map are of great importance in the monitoring of a 
tropical forest. Water levels are related to the ecosystems and are of great 
importance in the maintenance of the water balance and biodiversity, in addition 
forest types are defined by structure, biomass levels and biodiversity. 

For the Araracuara site the 878 delineated areas were also labelled according to the 
information on flooding condition (3 classes) and forest structure (8 classes), as 
defined by the landscape ecological map. The classification algorithm was used to 
simulate classification accuracies for this type of maps when using the AirSAR data 
or a combination of channels. A flooding map and forest type map were produced 
with high level of accuracy when using C,- L- and P-band polarimetric data without 
considering the effect of speckle (82.0% and 80.3%, respectively), (Chapter 6). 

For the flooding map the simulated accuracies when using a single polarised band 
were calculated as 69.6%, 73.3% and 80.9% for C-, L- and P-band polarimetric, 
respectively. A very good classification is found when combining C-pol with P-pol 
data: 85.1%, indeed the best combination for this map. The combination of C-pol 
with L-pol will lead to a 79.1%, which is not significantly different from 80.9% 
calculated when using P-pol data alone. In this case P-band data can be important to 
improve the accuracy of the classification, but it is not necessary. 

For the forest type map a high classification accuracy can be found when combining 
C-pol data with P-pol data, namely 77.6%, which is not significantly different from 
80.3%o calculated when using the combination of C-pol, L-pol and P-pol data. In this 
case the additional information given by P-band increases the accuracy calculated 
for L-pol alone from 61.8 % to 76.5%. 

The use of RADARSAT-2 combined with ALOS PALSAR will result in accurate 
flooding and forest types maps, namely 79.1% and 72.7% respectively, which are 
high values considering the fact that they could be created with systems already 
available or soon available. 

The designed hierarchical legend, derived from SAR classification capabilities, 
allows the creation of flooding and forest type maps by aggregation of classes from 
the forest structural map. This is a very important result since two new products can 
be created using the classification and computing time invested in only one map. 
The accuracies of the flooding map and forest type map after aggregation from the 
structural type map can be seen in table 5 of Chapter 3. In general accuracies are 
similar than the ones found for the map when no aggregation is made. The flooding 
map and the forest type map presented in this thesis are the result of the aggregation 
from the structural type map. In future mapping exercises the flooding and forest 
type maps will be created independently and the resultant maps could be compared. 
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7.2.5. Biomass map 
The possibility to create biomass maps with multi-frequency polarimetric data was 
deeply investigated in this thesis. Chapters 2, 4 and 5 present different analysis into 
the problem. A biomass map is considered of great importance in a monitoring 
system. Biomass levels can be associated with forest types and variation throughout 
time can be an indicator of degradation and regeneration processes. In addition 
biomass is an important variable in the carbon cycle and plays an important role in 
the water cycle and in bio-geo-chemical processes. The distribution of biomass on 
the earth surface is being considered as an important question in the last years and is 
being one of the most important research subject for remote sensing scientists. 

Studies on the relationship between biomass and radar backscatter have relied on 
field data to construct empirical relationships with radar backscatter that can be used 
for biomass estimations and mapping. In general inversion of radar data for biomass 
estimation is limited by the variation of backscatter caused by vegetation structural 
parameters and soil moisture or terrain flooding and limited to a certain maximum 
biomass level (roughly 150 ton/ha for P-band) dependent on the structural class. 

In this thesis biomass maps are created for two study sites at the Colombian Amazon 
(Guaviare and Araracuara) by using results from a fully polarimetric classification 
algorithm that combines power, phase and coherence of C-, L- and P-band AirSAR 
data. Two different approaches are followed. For the Guaviare site, which is a flat 
and non-flooded area, land cover type classification is followed by application of an 
empirical relationship between biomass and backscatter intensity (using L-band HV 
and P-band RR polarisation) (Chapter 2). High consistency between biomass levels 
and land cover types are found. Saturation is around 150 ton/ha. For the Araracuara 
site (hilly and partly flooded) a biomass map is created by reclassifying an accurate 
biophysical forest structural map (15 classes) derived from a fully polarimetric SAR 
image classification. Each of these forest structural classes can be uniquely linked to 
a certain biomass level (8 classes) known from a landscape ecological map. In this 
case the saturation problem is avoided and biomass levels up to 340 ton/ha could be 
mapped accurately (Chapter 4). 

Accuracy for the biomass maps are determined for subsets of the total radar data set 
available (Chapter 4). The best overall accuracy and the least confusion between 
classes are found when combining C-band polarimetric data with P-band 
polarimetric data (correlation 84.7%, SEE 53 ton/ha). Field data is used to validate 
maps and to study the behaviour of radar signatures in relation to different forest 
structures, flooding conditions and biomass levels. Relating the wave-object 
interaction to multi-frequency polarimetric coherence facilitates deeper physical 
understanding (Chapter 4). In addition hypothetical forest plots were created to 
simulate radar data using the UTARTCAN scattering model. The effect of soil 
moisture, terrain roughness and forest structure on the radar inversion for biomass 
estimations was investigated using simulated data (Chapter 5). 
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The simulated UTARTCAN radar data is used as input for an inversion algorithm 
which classified the samples after adding a certain level of speckle (expressed as 
number of looks) as belonging to a certain class. Results indicate that confusion 
between high biomass level plots of identical biomass is higher than between low 
biomass level plots, which means that at high biomass levels plots under different 
terrain roughness and soil moisture can not be differentiated. At low biomass level 
confusion is lower indicating that for a certain number of looks plots of different 
terrain and forest structure are classified as different classes. 

These results indicate that direct biomass estimations from radar inversion will 
result in inaccuracies, but the approach proposed in this thesis allows accurate 
mapping of biomass, overcoming the limits imposed by the saturation effect. Multi-
frequency polarimetric data can assess forest structure accurately and ecological 
relationships can link structures with biomass even for high biomass levels. In that 
way the effect of forest structure, flooding conditions and terrain roughness will 
have no effect on the biomass mapping accuracy. 

A multi-frequency C-, L- and P-band polarimetric system like the AirSAR produces 
the biomass maps with higher accuracy (94.6%) with an SEE of 32 ton/ha. In the 
absence of this system, a combination of C-pol and P-pol data also results in 
accurate biomass classification (84.7%) with an SEE of 53 ton/ha and can be the 
most appropriate band combination since the combination of C-pol and L-pol 
results in 82% of accuracy but the SEE will increase to 67.7 ton/ha, almost twice the 
value calculated when using the AirSAR system.. 

7.3. AN IDEAL SYSTEM FOR TROPICAL FOREST MONITORING? 

At this point of the research is still valid to ask if there is an ideal radar system 
configuration that can address the information needs. The need to P-band of course 
is always an important question since it has been widely discussed for the problems 
given by the band allocation and the inherent effect of Faraday rotation on the radar 
data. 

In this thesis the potential role of a spaceborne SAR component within a dedicated 
global monitoring system for tropical rain forest areas was investigated. The need 
for frequent observation (for timely detection of illegal clear-cut for example) and, 
likely, the need to cover different seasons (because results probably depend on 
season or can be improved by combining seasons) may translate into a maximum of 
3 to 4 coverages per year. Hence, a swath width of 40 km could be sufficient. To 
achieve accurate products it was shown that the radiometric resolution, i.e. number 
of looks, is an important factor. 20-look data (1 dB of speckle) can be suitable for 
mapping at scale of 1:100,000 for land cover maps. For structural types map, 
biomass map, flooding map and forest type map, a scale of 1:300,000 or 1:600,000 
can be suitable. Pixels corresponding to a 30x30 m area would be required, which 
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would translate into roughly 6-8 m spatial resolution. Such a system is a technically 
viable option and may cover many information needs with high accuracy. 

The possibilities of a P-band spaceborne system are still under investigation. If that 
system could be operational one day, the accuracy of the maps will certainly 
increase. In the mean time the synergism of the C-pol and L-pol systems has to be 
carefully investigated for the creation of the maps. The classification simulations 
that were done in this work indicate that multi-frequency C-, L- P-band polarimetric 
system is the best option to create accurate products. In the absence of such a system 
the combination of C-pol and P-pol data is the most suitable one to obtain accurate 
products. 

7.4. FUTURE CAMPAINGNS? 

After studying the AirSAR system, and observing that the classification of the multi-
frequency polarimetric data results in the best accuracies for all the products created 
in this thesis, it is still a question of why not to make an extensive campaign 
covering the Amazon tropical forest using the AirSAR system? Very accurate 
airborne base maps could be created and further updating, for monitoring purposes, 
could be done using simpler spaceborne radar systems. 

In addition new systems, like the AirSAR TOPSAR, will allow the integration of 
interferometric data into the classification benefiting the accuracy of, for example, 
biomass maps. At the moment very specific research on this system is being 
conducted at the Wageningen University and with no doubt results will have a big 
influence on the resolution, accuracy and type of information that can be derived 
from radar data. This thesis was a good exercise into the problem of using 
polarimetric radar for tropical forest monitoring, but certainly this is a science that is 
still new and innovative developments should be expected. 

The PRORADAM campaigns over the Brazilian Amazon and the Colombian 
Amazon are good examples of the type of work that can be done for the mapping 
and investigation of the Amazon tropical forest. With the joint efforts of scientists, 
managers and policy makers the lack of information of the tropical forest can be a 
matter of the past and wise-appropriate decisions based on knowledge over the 
Amazon forest could be taken. 

New research into the use of radar remote sensing in combination with optical 
systems in the monitoring of bio-diversity can be of great use in the design of 
natural parks for conservation purposes. As is presented in this thesis, multi-
frequency polarimetric radar is well capable of landscape unit mapping, which can 
be a first step into the assessment of bio-diversity. New future radar campaigns the 
Colombian Amazon are expected to give 
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Summary 

SUMMARY 

An urgent need exists for accurate data on the actual tropical forest extent, 
deforestation, forest structure, regeneration and diversity. The availability of 
accurate land cover maps and tropical forest type maps, and the possibility to update 
these maps frequently, is of great importance for the development and success of 
monitoring systems. For areas like the Amazon the use of optical remote sensing 
systems as the source of information, is impeded by the permanent presence of 
clouds that affects the interpretation and the accuracy of the algorithms for 
classification and map production. The capabilities of radar systems to acquire cloud 
free images and the penetration of the radar waves into the forest canopy make radar 
systems suitable for monitoring activities and provide additional and complementary 
data to optical remote sensing systems. Information regarding forest structure, forest 
biomass, vegetation cover and flooding can be associated with radar images because 
of the typical wave-object interaction properties of the radar systems. 

In this thesis new algorithms for the classification of radar images and the 
production of accurate maps are presented. The production of specific maps is 
studied by applying the developed algorithms to two different study areas in the 
Colombian Amazon. The first site, San Jose del Guaviare, is a colonisation area with 
active deforestation activities and dynamic land cover change. The second, 
Araracuara, is a pristine natural forest with high diversity of landscapes. 

In Chapter 2 the potential role of a spaceborne Synthetic Aperture Radar (SAR) 
component within a dedicated global monitoring system for tropical rain forest areas 
is investigated. Use is made of NASA's airborne radar system AirSAR, which 
acquired C-, L- and P-band polarimetric data of the study sites at the Colombian 
Amazon. Classification accuracy for primary forest, secondary forest, recently 
deforested areas and pastures are studied to determine optimal wave parameter 
combinations, using an extensive database of 778 plots. Kappa statistics are used to 
compare results for different combinations. The relevance of polarimetry and the 
effect of speckle level are studied by incorporating the (multi-look) pdf s 
(probability density functions) of polarimetric phase differences and the polarimetric 
correlations. Kolmogorov-Smirnov tests of fit well confirm the agreement of 
theoretical pdf s used and experimental observations. In addition possibilities for 
biomass estimation are studied using detailed vegetation structure measurements of 
bush invaded grasslands (5 plots), secondary forest (10 plots) and primary forest (13 
plots). Accuracy for land cover type classification over 90% can only be obtained 
when two frequency bands are combined. L-band with HV polarisation and P-band 
showed the best possibilities for biomass estimation. After land cover type 
classification eight biomass classes can be differentiated at a high level of 
confidence. The results clearly indicate how SAR systems may be designed to 
accurately monitor processes of deforestation, land and forest degradation and 
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secondary forest re-growth. The effect of Faraday rotation on P-band data collected 
from spaceborne SAR is also taken into consideration. 

In Chapter 3 a biophysical forest type characterisation is made by using fully 
polarimetric C-, L- and P- band AirSAR data of the Araracuara test site, a well-
surveyed forest reserve in the centre of the Colombian Amazon. The area is 
characterised by a high diversity of forest types, soil types and flooding conditions. 
In this chapter a polarimetric classification technique is used to assess AirSAR's 
potential for forest structural type mapping and, indirectly, forest biophysical 
characterisation. Field observations were made at 23 0.1 ha plots to obtain additional 
quantitative descriptions on forest structure and ground surface conditions, but also 
to assess the suitability of existing map legends for SAR mapping. It could be shown 
that a new type of legend leads to physically better interpretable results. A method 
based on iterated conditional modes is introduced and is shown to yield radar-
derived classifications with a high level of agreement with the landscape ecological 
map, as well as with the ground observations. The following results may indicate the 
high level of accuracy obtained: 15 classes can be differentiated, the average radar 
classification agreement ranges from 68-94% (depending on the type of 
classification and approach) and for only a few classes the agreement is less than 
70%. The relation between physical forest structure and polarimetric signal 
properties is studied explicitly using polarimetric decomposition. A new method is 
introduced based on the decomposition of polarimetric coherence, instead of power. 
It is based on simple physical descriptions of the wave-object interaction. The 
accuracy of the complex coherence estimation is described using the complex 
Wishart distribution. Thus several interesting physical relations between 
polarimetric signal and forest structure can be revealed. The physical limitations of 
this technique and its relation with sample size are indicated. 

In Chapter 4 biomass mapping using biophysical vegetation characterisation derived 
from SAR images is made by using results from a fully polarimetric classification 
algorithm that combines power, phase and coherence of C, L and P-band AirSAR 
data. For the two study sites Guaviare and Araracuara two different approaches are 
followed. For the Guaviare site, which is a flat and non-flooded area, land cover 
type classification is followed by application of an empirical relationship between 
biomass and backscatter intensity (using L-band HV and P-band RR polarisation). 
High consistency between biomass levels and land cover types are found. Saturation 
is around 150 ton/ha. For the Araracuara site (hilly and partly flooded) a biomass 
map is created by reclassifying an accurate biophysical forest structural map (15 
classes) derived from a fully polarimetric SAR image classification. Each of these 
forest structural classes can be uniquely linked to a certain biomass level (8 classes) 
known from a landscape ecological map. In this case the saturation problem is 
avoided and biomass levels up to 340 ton/ha could be mapped accurately. Accuracy 
for the biomass maps are determined for subsets of the total radar data set available. 
The best overall accuracy and the least confusion between classes is found when 
combining C-band polarimetric data with P-band polarimetric data (correlation 
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84.7%, SEE 53 ton/ha). Field data is used to validate maps and to study the 
behaviour of radar signatures in relation to different forest structures, flooding 
conditions and biomass levels. Relating the wave-object interaction to multi-
frequency polarimetric coherence facilitates deeper physical understanding. 

In Chapter 5 a new and indirect radar inversion for biomass estimation is proposed. 
This new method may circumvent the problems given by signal saturation at 
medium biomass levels (roughly 150 ton/ha for P-band) and the effect forest 
structural differences, terrain roughness and soil moisture variation on the direct 
inversion of radar backscatter signals for forest biomass estimation. Using multi-
frequency polarimetric radar the forest structure can be assessed accurately. 
Ecological relationships link these structures with biomass levels, even for high 
biomass levels. The LIFEFORM model is introduced as a new approach to 
transform field observations of the complex tropical forest into input files for the 
theoretical UTARTCAN polarimetric backscatter model. The validity of 
UTARTCAN for a wide range of forest structures is shown. UTARTCAN did not 
simulate correctly radar data of field plots with a high proportion of palms. In 
addition plots with discontinuous open canopy were also not well simulated, 
indicating that an horizontal variation in terms of scatters distribution should be 
included in scattering models. The systematic effect of the terrain conditions (forest 
structure, soil moisture and terrain roughness) on the radar signatures (backscatter 
and complex coherence signatures) for high, medium and low biomass levels is 
evaluated using simulated data of the UTARTCAN scattering model using 459 
hypothetical forest plots. The results indicate that the mentioned parameters have an 
effect on the radar signatures, especially at low and intermediate biomass levels. At 
high biomass levels the signal seems to be saturated by the amount of forest 
scatterers and not very affected by the structural and terrain parameters. The 
variations on the low and intermediate biomass levels give restrictions to the direct 
biomass inversion. The simulated UTARTCAN radar data is used as input for an 
inversion algorithm, which classified the samples after adding certain levels of 
speckle (expressed as number of looks) as belonging to a certain class. Results 
indicate that confusion between high biomass level plots is higher than low biomass 
level plots, which means that at high biomass levels plots under different terrain 
roughness and soil moisture can not be differentiated. At low biomass level 
confusion is lower indicating that for a certain number of looks plots of different 
terrain and forest structure are classified as different classes. When inverting 
experimental field radar data, high classification accuracy (87.4%) can be found 
already for 16 looks when assuming that all plots have different structure and when 
aggregating plots by forest types according to existing forest type description, results 
increase to 93.7% for the same number of looks. This result indicates that structural 
grouping of the fields increases the classification accuracy of data. Backscatter 
simulations for a wide range of forest structures, terrain roughness and soil moisture 
clearly show the limitations of the direct inversion approach and the validity of the 
proposed indirect approach up to very high levels of biomass. 
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In Chapter 6 an assessment of suitable radar parameters is done for tropical forest 
mapping applications. AirSAR data is classified using the maximum likelihood 
polarimetric classification algorithm introduced in chapter 2. A forest structural 
map, flooding map and forest type map are produced with high level of accuracy 
when using C-, L- and P- band polarimetric data (86.0%, 82.0% and 80.3%, 
respectively). Different levels of speckle are calculated when aggregating certain 
numbers of pixels in a classification procedure. For instance an aggregation of 2 x 2 
pixels, with 16 independent looks per pixel, leads to a window with 64 independent 
looks (0.54-dB level of speckle). Classification accuracies can be simulated for 
different numbers of looks. Data is presented for the three maps for different levels 
of speckle. In general classification accuracy increases with increasing number of 
looks, i.e. for the structural type map overall accuracy increases from 64.5% for 64 
looks to 86.0% for an infinite number of looks (i.e. no speckle). Band combinations 
corresponding to actual or coming radar systems are assessed for the classification 
of the three maps. Kappa statistics are used to indicate accuracies not significantly 
different from others. The application of a mapping algorithm, introduced in chapter 
3, to classified radar images has an effect on the overall accuracy reaching values 
similar as the ones calculated for data free of speckle. P-band polarimetric (P-pol) 
increases the overall classification of all maps, i.e. for the forest structural map (map 
that combines flooding and forest structure with 15 classes) the classification 
accuracy when using only C-pol and L-pol is increased from 76.6% to 86.0% when 
including P-pol data. For that same map the classification accuracy when using only 
P-pol data is 69.7% and is increased to 79.5% and 81.8% when adding L-pol and C-
pol data, respectively. Combination of information of actual or to come radar 
systems will allow the creation of such maps, i.e. RADARSAT-2 or ENVISAT 
combined with ALOS PALSAR. If available, a P-band SAR system is expected to 
improve the accuracy. 

The designed hierarchical legend, that includes the three maps, derived from SAR 
classification capabilities, allows the creation of maps by aggregation of classes. A 
SAR derived legend is expected to become very similar to the landscape ecological 
map existing for the Araracuara study area, when SAR interferometric data can be 
integrated. Interferometric data is expected to provide information of geomorphology 
for further classification of classes per gel. 
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RESUMEN 

En la actualidad existe una urgente necesidad de information confiable y precisa 
sobre la extension del bosque tropical, los procesos de deforestation y regeneration, 
la estructura del bosque y la distribution de la biodiversidad. La disponibilidad de 
mapas de cobertura de vegetation, de mapas de tipos de bosque y la posibilidad de 
actualizarlos es de gran importancia en el desarrollo de sistemas de monitoreo para 
el estudio continuo de los bosques. Para areas como la Amazonia el uso de sistemas 
opticos de sensores remotos como fuente de information es obstruido por la 
presencia casi permanente de nubes, afectando la interpretation, clasificacion de las 
imagenes y asi mismo la production de mapas de alta confiabilidad. Por otro lado 
los sistemas de radar tienen la capacidad de adquirir imagenes libres de nubes y 
tambien pueden penetrar el dosel del bosque haciendo de estos dos tipos de 
sistemas, herramientas necesarias y complementarias en los procesos de mapeo y 
observation continua del bosque tropical. Information concerniente a estructura del 
bosque, biomasa, cobertura de vegetacion e inundaciones puede ser asociada con los 
valores de las imagenes de radas debido a las propiedades de interaction de las 
ondas de radar y los objetos. 

En esta tesis se presentan nuevos algoritmos para la clasificacion de imagenes de 
radar y la production de mapas de alta precision. La production de diversos tipos de 
mapas es estudiada a traves de la aplicacion de los algoritmos desarrollados en dos 
areas de estudio en la Amazonia Colombiana. El primer sitio es San Jose del 
Guaviare un frente de colonization en el norte de la Amazonia en donde existe una 
dinamica de cambio en la cobertura de vegetacion y ocurren procesos de 
deforestation. La segunda zona es el area de Araracuara donde hay una gran 
diversidad de unidades de paisaje y el bosque ha sido poco intervenido. 

En el Capitulo 2 se investiga el uso potencial de un sistema de radar satelital de 
apertura sintetica (SAR) en el marco de un sistema de monitoreo global del bosque 
humedo tropical. Se hace uso del sistema aereo experimental de la NASA, AirSAR, 
que adquirio imagenes polarimetricas, bandas C-, L- y P- sobre las areas de estudio 
en 1993. La precision en la clasificacion de bosque primario, bosque secundario, 
pastos y zonas recien deforestadas, es estudiada para determinar la combination 
apropiada de bandas y polarizaciones para un sistema de radar satelital optimo. Para 
este proposito se utiliza una base de datos de 778 areas de muestra. El estadistico 
Kappa, se utiliza para comparar los resultados de las diferentes clasificaciones. La 
importancia del uso de datos polarimetricos y el efecto del speckle en la precision de 
la clasificacion de las imagenes, son estudiados al introducir en la clasificacion 
funciones de probabilidad (de varias observaciones) de la diferencia de fase 
polarimetrica y la correlation polarimetrica. El estadistico Kolmogorov-Smirnov es 
utilizado para confirmar la correspondencia de las funciones de probabilidad 
teoreticas con las observadas en las imagenes. Adicionalmente se estudia la 
posibilidad de hacer estimativos de biomasa usando descripciones estructurales 
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detalladas de areas de pastos (5 parcelas), bosque secundario (10 parcelas) y bosque 
primario (13 parcela). Precisiones de clasificacion por encima de 90 % pueden ser 
obtenidas solo cuando se combinan dos o mas bandas y polarizaciones. La banda L-
HV combinada con las polarizaciones de la banda P mostraron las mejores 
posibilidades para la clasificaron de tipos de cobertura y para realizar estimaciones 
de biomasa. La clasificacion de ocho niveles de biomasa puede ser realizada con alta 
precision al asociarlos con el mapa de cobertura de vegetation. Despues de realizar 
una clasificacion de los tipos de cobertura. Los resultados presentados en este 
capitulo ilustran claramente como un sistema SAR debe ser disenado para lograr un 
monitoreo preciso y confiable de procesos de deforestation, degradation de bosques 
y regeneration de bosques secundarios. Tambien es considerado el efecto Faraday 
de rotation, que afecta a las ondas de la banda P, si fueran emitidas desde el espacio. 

En el capitulo 3 se hace una caracterizacion biofisica de tipos de bosque utilizando 
datos polarimetricos de las bandas C-, L- y P- del area de Araracuara. El area esta 
caracterizada por una alta diversidad de tipos de bosque, tipos de suelo y 
condiciones de inundation. En este capitulo la tecnica de clasificacion polarimetrica, 
desarrollada en el capitulo 2, es usada para evaluar el potencial de las imagenes 
AirSAR en la clasificacion de tipos estructurales de bosque y la caracterizacion 
biofisica del bosque. Observaciones de campo, fueron realizadas sobre 23 parcelas 
de 0.1 ha, no solo con el proposito de obtener descripciones cuantitativas de la 
estructura del bosque y de hacer observaciones del terreno sino tambien para evaluar 
la aplicacion de la leyenda del mapa de ecologia de paisaje disponible para el area 
de estudio, en el mapa resultado de la clasificacion de las imagenes de radar. Se 
pudo comprobar que el desarrollo de una nueva leyenda es necesario para una mejor 
interpretation en terminos fisicos de los resultados de clasificacion. Adicionalmente, 
un nuevo metodo de post-procesamiento de las imagenes clasificadas es introducido 
en este capitulo y se muestra que este post-procesamiento es relevante y necesario 
para lograr precision y un alto nivel de correspondencia tanto con el mapa de 
ecologia de paisaje como con las observaciones de campo. Los siguientes resultados 
son un indicativo del nivel de precision encontrada: 15 tipos estructurales de bosque 
pueden ser diferenciados con niveles de precision que van desde 68% hasta 94% 
(dependiendo del tipo de clasificacion y de la metodologia), menos clases pueden 
ser diferenciadas con un 70% de correspondencia. De gran importancia en el 
proceso de mapeo es el estudio de la relation entre las caracteristicas estructurales 
del bosque y las propiedades polarimetricas de las ondas de radar que en este 
capitulo es estudiada explicitamente usando una nueva descomposicion fisica de la 
information polarimetrica. Un nuevo metodo de descomposicion de la senal se 
presenta, basado en la descomposicion de la coherencia polarimetrica enves de la 
normalmente utilizada descomposicion del poder (nivel de energia) de la serial. La 
coherencia compleja esta basada en una description fisica simple entre la 
interaction de las ondas de radar y los objetos. La precision de esta nueva 
descomposicion se puede realizar utilizando la distribution de Wishart. De esta 
manera diversas relaciones fisicas entre las senales polarimetricas y la estructura del 
bosque pueden ser observadas. Las limitaciones fisicas en la aplicacion de esta 
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nueva tecnica y su relation con el tamafio de la muestra (numero de observaciones 
del radar) son indicadas. 

En el capitulo 4 mapas de biomasa para las areas de estudio se realizan utilizando la 
description biofisica estructural de la vegetation, derivada de la clasificacion de las 
imagenes de radar. La clasificacion se realiza utilizando el algoritmo de clasificacion 
que combina la information de poder y la information polarimetrica de las bandas 
C-, L- y P- del sistema AirSAR. Para cada sitio de estudio se siguen diferentes 
metodologias. Para el area de Guaviare, cuyo terreno es piano y no-inundado, la 
clasificacion de los tipos de cobertura es seguida por la aplicacion de una relation 
empirica entre los valores de radar y su correspondiente valor de biomasa, segiin 
registros de campo (utilizando la combination de polarizaciones L-HV y P-RR). Un 
alto nivel de consistencia es encontrado entre los niveles de biomasa y los tipos de 
cobertura. La saturation de la serial de radar esta alrededor de 150 Ton/ha de 
biomasa. Para el area de Araracuara (terreno ondulado y parcialmente inundado) el 
mapa de biomasa es creado a partir de la re-clasificacion del mapa de tipos 
estructurales (15 clases) creado con la clasificacion polarimetrica de las imagenes de 
radar. Cada una de estas clases estructurales puede ser ligada con un nivel especifico 
de biomasa (8 niveles en este caso) segiin el mapa de ecologia de paisaje. En este 
caso el efecto de saturation de la senal de radar no es relevante y se pueden lograr 
mapas de alta precision, derivados de imagenes de radar con niveles de biomasa 
hasta de 340 Ton/ha. El mejor valor de clasificacion con la menor confusion entre 
clases es obtenido cuando se combinan la information polarimetrica de la banda C 
con la information polarimetrica de la banda P (correlation de 84.7%, SEE 53 
ton/ha). Los datos de campo son utilizados para validar los mapas y para estudiar las 
senales de poder y polarimetricas del radar en relation con la estructura de bosque y 
el nivel de inundation y su influencia en las estimaciones de biomasa. Al relacionar 
el tipo de interaction entre la onda de radar y los objetos con la descomposicion 
polarimetrica se llega a una mayor comprension fisica. 

En el capitulo 5 se propone un nuevo metodo de inversion para estimaciones de 
biomasa. Este nuevo metodo evita los problemas dados por la saturation de la senal 
de radar en valores medios de biomasa (cerca de 150 Ton/ha para la banda P) y por 
el efecto de la estructura del bosque, las diferencias del terreno y las condiciones de 
inundation del suelo sobre la inversion directa de los valores de radar, para la 
estimation de valores de biomasa. Usando la clasificacion polarimetrica la 
estructura el bosque puede ser mapeada con precision. Relaciones ecologicas pueden 
ligar valores de biomasa con ciertos tipos estructurales hasta alto niveles de 
biomasa. El modelo LIFEFORM es introducido como un nuevo metodo para 
transformar las observaciones de campo de la compleja estructura del bosque 
tropical en archivos de entrada para modelos teoreticos de simulation de datos de 
radar polarimetrico, tal como el modelo UTARTCAN. La validez de los resultados 
producidos por UTARTCAN se ilustra para una gama diversa de tipos estructurales 
de bosque, segiin los datos de campo. UTARTCAN simulo incorrectamente valores 
de radar para las parcelas con un alto porcentaje de palmas. Adicionalmente valores 
de radar para parcelas con un dosel discontinuo tampoco fueron simulados 
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correctamente, indicando que la variation horizontal en la distribution de los objetos 
de interaction con el radar es importante y debe ser incluida en los modelos de 
simulation. Adicionalmente se estudia el efecto sistematico de las condiciones del 
terreno (estructura de bosque, humedad de suelo y ondulacion del terreno) en las 
senales del radar (senal de poder y senal polarimetrica) para valores de biomasa 
alta, media y baja. Para esto se hace uso del modelo UTARTCAN usando 459 
parcelas hipoteticas de bosque en las que la estructura y las condiciones del terreno 
variaban. Los resultados indican que los parametros arriba mencionados tienen un 
efecto sobre los valores de radar y por ende tienen un efecto en las estimaciones de 
biomasa a traves de una inversion directa de los valores de radar, especialmente en 
los valores intermedios y bajos de biomasa. A niveles altos de biomasa la serial se 
satura y el efecto de la estructura y el terreno son imperceptibles. Las variaciones 
producidas por las caracteristicas del terreno y la estructura en los valores simulados 
de radar, producidos por el modelo UTARTCAN, para diferentes tipos hipoteticos 
de estructura de bosques bajo diferentes regimenes de inundation y ondulacion del 
terreno, son utilizados como entrada en un algoritmo de inversion que clasifica cada 
muestra despues de agregar diferentes niveles de ruido (speckle), de acuerdo a una 
clase especifica. Los resultados indican que la confusion entre clases es mayor entre 
parcelas de alta biomasa, lo cual significa que debido a la saturation, parcelas de 
vegetation de alta biomasa, localizadas bajo diferente terreno y bajo diferentes 
regimenes de inundation, no pueden ser diferenciadas con el radar. A niveles bajos 
de biomasa la confusion entre clases es menor, indicando que a estos niveles tipos 
de bosque con diferente estructura y condiciones de terreno pueden ser clasificados 
con diferentes niveles de precision, dependiendo de la resolution radiometria del 
radar (numero de observaciones del radar). Para 16 observaciones de radar (looks) 
se puede obtener una precision del 87.4% para parcelas de diferente estructura y 
terreno. Cuando las parcelas se agregan de acuerdo con el tipo de estructura la 
clasificacion mejora hasta un 93.7 % para ese mismo numero de observaciones. 
Estos resultados indican que la nueva metodologia de inversion de las imagenes de 
radar propuesta en este capitulo es la mas apropiada para las imagenes de radar hasta 
la fecha. 

En el Capitulo 6 se hace una evaluation de las diferentes caracteristicas de los 
sistemas de radar para las diversas aplicaciones en el bosque humedo tropical. Las 
imagenes AirSAR disponibles para el area de Araracuara son clasificadas utilizando 
el algoritmo introducido en el capitulo 2. Usando la combination de las bandas C-, 
L-, y P- se clasificaron las imagenes de acuerdo a tipos estructurales, condiciones de 
inundation y tipos de bosque, produciendo mapas con 86 %, 82.0% y 80.3 % de 
precision respectivamente. Diferentes niveles de speckle (expresado en numero de 
observaciones de radar) fueron calculados agregando diferente numero de pixeles en 
un proceso de clasificacion. Por ejemplo la agregacion de 2x2 pixeles con 16 
observaciones independientes por pixel, resulta en una ventana de 64 observaciones 
independientes (que es lo mismo que decir un nivel de speckle de 0.54 dB). 
Precisiones de clasificacion pueden de esa manera ser simuladas para diferentes 
numero de observaciones (looks). En general la precision de la clasificacion 
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incremento con el numero de observaciones. En este capitulo se presentan resultados 
de clasificacion para los tres mapas, con diferentes niveles de speckle y diferentes 
combinaciones de bandas. Por ejemplo para el mapa de tipos estructurales la 
precision varia de 64.5% para 64 observaciones hasta 86.0% para un numero infinite 
de observaciones. Las combinaciones de bandas, correspondientes a sistemas de 
radar que actualmente son operativos o que seran en un futuro proximo operativos, 
son evaluadas para los mapas aqui producidos. El estadistico Kappa es utilizado para 
identificar diferencias significativas entre los resultados de clasificacion. La 
aplicacion del algoritmo de mapeo, introducido en el capitulo 3, para las imagenes 
de radar clasificadas, tiene un efecto positivo, sobre los estimativos de precision de 
la clasificacion: la precision de clasificacion aumenta hasta niveles semejantes a los 
simulados para imagenes sin speckle. Considerando este efecto se puede decir que la 
aplicacion en la clasificacion, de banda P polarimetrica (P-pol) aumenta la precision 
de la clasificacion. Por ejemplo para el mapa de tipos estructurales la precision de 
clasificacion usando solo P-pol combinado con L-pol aumenta de 76.6% a 86% si 
se incluye la informacion de P-pol. Para el mismo mapa la precision de la 
clasificacion usando solo P-pol es de 69.7% y aumenta a 79.5% y 81.8% si se 
combina con L-pol o con C-pol respectivamente. Combination de sistemas de radar 
actuales con sistemas futuros permitira la creation de mapas de alta precision a 
niveles regionales a incluso globales. Los sistemas RADARSAT-2 o ENVISAT 
combinados con el futuro sistema ALOS PALSAR pueden generar la informacion 
requerida sobre el bosque humedo tropical. En un futuro es probable que el satelite 
de banda P, hasta ahora no autorizado, pueda, mejorar la precision de los mapas 
producidos por otros radares. 

El desarrollo de tecnologia tal y como la interferometria, podra en un futuro ser 
aplicada en temas como el mapeo de las zonas de bosque tropical. Sin lugar a dudas 
la interferometria integraria un nuevo tipo de datos que podrian mejorar aun mas la 
precision de los mapas aqui creados. 
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SAMENVATTING 

Er is een urgente behoefte aan een nauwkeurig bepaling van het huidige areaal 
tropisch bos, de ontbossing, de structuur van het bos, de regeneratie en de 
biodiversiteit. De beschikbaarheid van nauwkeurige kaarten van landbedekking en 
de soorten tropisch bos, en de mogelijkheid om deze kaarten regelmatig te 
actualiseren, is van groot belang voor de succesvolle ontwikkeling van 
monitoringsystemen. Voor gebieden zoals het Amazone gebied is het gebruik van 
optische remote sensing systemen als informatiebron sterk gelimiteerd door de bijna 
permanente aanwezige bewolking die de interpretatie bemoeilijkt en de 
nauwkeurigheid van de classificatie algoritmen negatief be'invloed. De mogelijkheid 
om onder alle omstandigheden bewolkingsloze opnamen te maken en de 
mogelijkheid om met radargolven in de vegetatie door te dringen bewerkstelliggen 
dat radarsystemen, in relatie tot optische remote sensing systemen, aanvullende en 
complementaire informatie kunnen leveren. Informatie betreffende de vegetatie 
structuur, biomassa, bedekking en overstromingscondities kan worden bepaald met 
behulp van radarbeelden door de specifieke eigenschappen van de interacties russen 
radargolven en het meetobject. 

In dit proefschrift worden nieuwe algoritmes voor de classificatie van radarbeelden 
en het maken van nauwkeurige kaarten gepresenteerd. Het maken van specifieke 
kaarten is bestudeerd door gebruik te maken van nieuw ontwikkelde algoritmes voor 
twee verschillende onderzoekslocaties in het Colombiaanse Amazone gebied. De 
eerste locatie, San Jose del Guaviare, is een gekoloniseerd gebied waar actieve 
ontbossing en dynamische landbedekkingsveranderingen plaatsvinden. De tweede 
locatie, Araracuara, is een ongerept natuurlijk bos met een grote diversiteit in 
landschapseenheden. 

In Hoofdstuk 2 wordt de mogelijke rol van een in de ruimte gestationeerd SAR 
instrument binnen het kader van een mondiaal monitoringsysteem voor tropische 
regenwoud gebieden bestudeerd. Hier is gebruik gemaakt van C-, L- en P-band 
polarimetrische opnamen met het NASA vliegtuigradarsysteem AirSAR van een 
gekoloniseerd gebied aan de rand van het Colombiaanse Amazone gebied. De 
classificatie nauwkeurigheid voor primair bos, regeneratie bos, recent ontboste 
gebieden en grasvelden is bestudeerd om optimale combinaties van 
radargolfparameters te bepalen. Hierbij is gebruik gemaakt van een uitgebreide 
database met 778 meetlocaties. Een Kappa-statistiek analyse is gebruikt om de 
resultaten voor verschillende combinaties te vergelijken. Het belang van 
polarimetrie en het effect van het speckle niveau worden bestudeerd door de multi-
look kansdichtheidsfuncties (pdf) van de polarimetrische faseverschillen en 
correlaties mee te nemen in de analyse. Kolmogorov-Smirnov tests bevestigen de 
overeenkomst tussen de theoretische pdfs en experimentele metingen. Bovendien 
worden de mogelijkheden voor biomassa schattingen bestudeerd door gebruik te 
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maken van gedetailleerde vegetatiestructuurmetingen van grasvelden overwoekerd 
met struiken (5 plots), regeneratie bos (10 plots) en primair bos (13 plots). Een 
nauwkeurigheid voor de landbedekkingsclassificatie groter dan 90% kan alleen 
worden bereikt door het combineren van twee frequentiebanden. De L-band met HV 
polarisatie en P-band leverden de beste mogelijkheden op voor biomassa 
schattingen. Na de classificatie van de landbedekking kunnen acht biomassa klassen 
met een grote mate van zekerheid worden onderscheiden. De resultaten geven 
duidelijk aan hoe SAR systemen kunnen worden ontwikkeld om nauwkeurig 
ontbossingsprocessen, land- en bosdegradatie en de hergroei van regeneratie bos te 
meten. Het effect van de Faraday rotatie op de P-band data gemeten met een 
satelliet SAR systeem is ook meegenomen in de analyse. 

In Hoofdstuk 3 wordt de biofysische karakterisering van bostypen afgeleid uit 
volledig polarimetrische C-, L-, en P-band AirSAR metingen van het Araracuara 
proefgebied, een goed onderzocht bosreservaat in het midden van het Colombiaanse 
Amazone gebied. Het gebied wordt gekenschetst door een grote diversiteit van bos-
en bodemsoorten en overstromingscondities. In dit Hoofdstuk wordt een 
polarimetrische classificatietechniek gebruikt om de potentie van AirSAR data voor 
het bepalen van structuureigenschappen en, indirect, de biofysische karakterisering. 
Er zijn metingen van 23 0.1 ha locaties gemaakt voor het verkrijgen van extra 
kwantitatieve beschrijvingen van de bosstructuur en bodemcondities, maar ook om 
de geschiktheid van bestaande legenda eenheden voor van SAR afgeleide kaarten 
vast te stellen. Het kon worden aangetoond dat een nieuwe soort legenda leidt tot 
een resultaat dat beter fysisch gei'nterpreteerd kan worden. 
Een methode gebaseerd op iteratieve conditionele toestanden (iterative conditional 
modes, ICM) is geintroduceerd en het wordt aangetoond dat dit een op radar 
gebaseerde classificatie oplevert die goed overeenkomt met de bestaande landschap-
ecologische kaart en tevens met de eigen veldwaarnemingen. De hierna volgende 
resultaten geven de hoge mate van nauwkeurigheid aan die bereikt is: 15 klassen 
kunnen worden onderscheiden, de gemiddelde overeenkomst tussen de bestaande 
kaart en de radarclassificatie varieert tussen 68-94% (afhankelijk van het 
vegetatietype en de benaderingsmethode). Slechts voor een klein aantal klassen is 
de overeenkomst minder dan 70%. De relatie tussen de fysische bosstructuur en de 
polarimetrische radarsignaaleigenschappen is expliciet bestudeerd door gebruik te 
maken van polarimetrische decompositie. Een nieuwe methode gebaseerd op de 
decompositie van polarimetrische coherentie in plaats van de Total Power wordt 
geintroduceerd. Dit is gebaseerd op eenvoudige fysische beschrijvingen van de 
interactie tussen de radargolf en het meetobject. De nauwkeurigheid van de 
complexe coherentie schatting is beschreven door middel van de complexe Wishart 
verdeling. Hierdoor kunnen enkele interessante fysische relaties tussen het 
polarimetrische signaal en de bosstructuur worden aangetoond. De fysische 
beperkingen van deze techniek en de afhankelijkheid met het aantal radar looks 
worden aangegeven. 
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In Hoofdstuk 4 wordt de kartering van biomassa, gebaseerd op de biofysische 
vegetatiekarakterisering en afgeleid van SAR beelden, uitgevoerd door gebruik te 
maken van de resultaten van een volledig polarimetrische classificatiealgoritme dat 
de intensiteit, faseverschil en coherentie van de C-, L-, en P-band AirSAR metingen 
combineert. Voor de twee proefgebieden Guaviare en Araracuara worden twee 
verschillende benaderingen toegepast. Voor de Guaviare locatie, een vlak en niet 
gei'nundeerd terrein, wordt de toepassing van een empirische vergelijking tussen 
biomassa en de radarintensiteit (door gebruik te maken van L-band HV en P-band 
RR polarisatie) voorafgegaan door een classificatie van het landbedekkingstypen. 
Dit resulteert in een goede overeenkomst tussen de hoeveelheid biomassa en 
landbedekkingsklassen en het verzadigingsniveau ligt rond de 150 ton/ha. Een 
biomassakaart is gemaakt voor de Araracuara locatie (heuvelig en gedeeltelijk 
overstroomd) door een herclassificatie van een nauwkeurige kaart van de 
biofysische bosstructuur (15 klassen), afgeleid van een classificatie van een volledig 
polarimetrische SAR opname. Elk van deze bosstructuurklassen kunnen 
ondubbelzinnig worden gerelateerd aan een specifieke hoeveelheid biomassa (8 
klassen) bepaald uit een landschap-ecologische kaart. OP deze wijze wordt het 
verzadigingsprobleem voorkomen en hoeveelheden biomassa tot 340 ton/ha kunnen 
nauwkeurig worden gekarteerd. De nauwkeurigheid van de biomassa kaarten wordt 
bepaald aan de hand van een deel van de beschikbare radardataset. De beste 
nauwkeurigheid en de laagste verwarring tussen klassen wordt bereikt door het 
combineren van C-band met P-band polarimetrische data (correlatie 84.7%, SEE 
53ton/ha). Veldmetingen worden gebruikt om kaarten te valideren en om de 
veranderingen in radarsignalen als functie van verschillende bosstructuren, 
overstromingscondities en hoeveelheden biomassa te bestuderen. Het relateren van 
interacties tussen de radargolf en het meetobject en de multi-frequente 
polarimetrische coherentie verschaft een beter fysisch begrip. 

In Hoofdstuk 5 wordt een nieuwe en indirecte afleiding van schattingen van 
biomassa met behulp van radar voorgesteld. Deze nieuwe methode kan de 
problemen van signaalverzadiging bij 'gemiddelde' biomassaniveaus (ongeveer 150 
ton/ha voor de P-band) vermijden ongeacht het effect van de verschillen in 
boomstructuur, terreinruwheid en variaties in bodemvocht op het 
radarbackscattersignaal.. De boomstructuur kan nauwkeurig wordt bepaald door 
gebruik te maken van multi-frequente polarimetrische radarbeelden. Ecologische 
relaties koppelen deze structuren aan de hoeveelheden biomassa, zelfs voor grote 
hoeveelheden. Het LIFEFORM model wordt geintroduceerd als een nieuwe 
benadering voor het aanmaken van de invoergegevens voor het theoretische 
UTARTCAN polarimetrische backscatter model, gebaseerd op veldmetingen in 
tropisch bos. De toepasbaarheid van UTARTCAN voor een grote variatie van 
bosstructuren wordt gedemonstreerd. UTARTCAN is niet in staat om de radar data 
voor terrein met een hoge dichtheid van palmen realistisch te simuleren. Bovendien, 
locaties met een onderbroken open kronendak kunnen ook niet goed worden 
gesimuleerd wat aangeeft dat de horizontale variatie, uitgedrukt in de verdeling van 
de scatterers moet worden opgenomen in de verstrooiingsmodellen. Het 
systematische effect van de terreincondities (bosstructuur, bodemvocht en 
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terreinruwheid) op de radarsignatuur (intensiteit en complexe coherentie kenmerken) 
voor grote, gemiddelde en kleine hoeveelheden biomassa wordt geevalueerd op 
basis van simulaties met het UTARTCAN verstrooiingsmodel dat 459 hypothetische 
bosstructuren gebruikt. De resultaten geven aan dat genoemde parameters een effect 
hebben op de radarkenmerken, speciaal voor lage en gemiddelde hoeveelheden 
biomassa. Voor grote hoeveelheden biomassa lijkt het signaal lijkt te verzadigen ten 
gevolge van het grote aantal verstrooiingselementen en wordt niet sterk beinvloed 
door de bosstructuur- en terreinkarakteristieken. De variaties voor kleine en 
gemiddelde hoeveelheden biomassa beperkt de directe afleiding van hoeveelheden 
biomassa. De radar data gesimuleerd met UTARTCAN worden gebruikt als invoer 
voor een inversie-algoritme dat de hypothetische bosstructuren classificeert, na het 
toevoegen van een specifiek .specA:/e-niveau (uitgedrukt in het aantal looks). De 
resultaten geven aan dat de verwarring tussen structuren met grote hoeveelheden 
biomassa groter is dan die voor kleine hoeveelheden biomassa. Dit betekent dat voor 
grote hoeveelheden biomassa er geen onderscheid kan worden gemaakt tussen 
locaties met verschillende terreinruwheden of bodemvochtniveaus. Voor kleine 
hoeveelheden biomassa is de verwarring kleiner wat aangeeft dat onder bepaalde 
omstandigheden verschillende terrein- en boomstructuren worden geclassificeerd. 
Met het inverteren van radarsimulaties van experimentele veldwaarnemingen wordt 
een hoge classificatienauwkeurigheid (87.4%) al bereikt voor 16 looks als wordt 
aangenomen dat alle locaties een verschillende structuur hebben. Aggregatie van de 
resultaten, afhankelijk van het type bos en gebaseerd op de bestaande beschrijving 
van het bos, resulteert in een toename van de nauwkeurigheid tot 93.7% voor 
hetzelfde aantal radar looks. De resultaten geven aan dat een structurele groepering 
van de locaties de classificatienauwkeurigheid vergroot. Simulaties van 
radarbackscatter voor een veelvoud aan bosstructuren, terreinruwheids- en 
bodemvochtklassen later duidelijk de beperkingen en de toepasbaarheid van de 
directe inversie benadering zien voor grote hoeveelheden biomassa. 

In Hoofdstuk 6 wordt een studie uitgevoerd naar de geschiktheid van 
radarparameters voor de kartering van tropisch bossen. AirSAR data worden 
geclassificeerd gebruik makend van het maximum likelihood polarimetrische 
classificatie algoritme, beschreven in Hoofdstuk 2. Kaarten van de bosstructuur, 
overstromingscondities en type bos worden gemaakt met een hoge mate van 
nauwkeurigheid door verwerking van de C-, L- and P-band polarimetrische data 
(respectievelijk 86.0%, 82.0% and 80.3%). Aggregatie van specifieke aantallen 
pixels in de classificatieprocedure resulteert in verschillende niveaus van speckle. 
Bijvoorbeeld, aggregatie van 2 x 2 pixels met 16 onafhankelijke looks per pixel, 
resulteert in een venster met 64 onafhankelijke looks (0.54 dB speckle niveau). De 
classificatienauwkeurigheid kan worden gesimuleerd voor het verschillende 
aantallen looks te varieren. De resultaten worden beschreven voor de drie kaarten 
voor verschillende speckle niveaus. In het algemeen neemt de 
classificatienauwkeurigheid toe met het aantal looks. De totale nauwkeurigheid van 
de kaart van bosstructuur neemt bijvoorbeeld toe van 64.5% voor 64 opnames tot 
86.0% voor een oneindig aantal looks (d.w.z. geen speckle). De combinaties van 
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golflengtes, die overeenkomen met de actuele of de nog te ontwikkelen radar 
systemen, worden voor de classificatie van de objecvten op deze drie kaarten 
geevalueerd. Aan de hand van Kappa-statistieken worden niet significante 
verschillen in de nauwkeurigheden vastgesteld. Het gebruik van het ICM 
nabewerkings-algoritme, zoals beschreven in Hoofdstuk 3, op de geclassificeerde 
radarbeelden heeft een effect op de totale nauwkeurigheid zodanig dat de hoge 
waarden berekend voor data zonder speckle worden bereikt. Het toepassen van P-
band polarimetrische data leidt tot een toename in de totale nauwkeurigheid van de 
classificatie voor alle kaarten. Bijvoorbeeld, de nauwkeurigheid van de 
bosstructuurkaart (waarin de overstromingscondities en bosstructuren in 15 klassen 
worden gecombineerd) neemt toe van 76.6%, wanneer alleen C- en L-band 
polarimetrische data worden gebruikt, tot 86.0%, als tevens P-band polarimetrische 
data worden gebruikt. Voor dezelfde kaart neemt de classificatienauwkeurigheid toe 
van 69.7%, wanneer alleen P-band polarimetrische data worden gebruikt, tot 
respectievelijk 79.5% en 81.8% als L-band of C-band polarimetrische data worden 
toegevoegd. Het combineren van de informatie van de huidige of toekomstige 
radarsystemen, zoals RADARSAT-2 of ENVISAT gecombineerd met ALOS 
PALSAR, maakt het mogelijk om dergelijke kaarten te produceren. Een eventueel 
beschikbaar P-band SAR systeem zal mogelijkerwijs een verbetering van de 
nauwkeurigheid opleveren. 

De hier ontwikkelde hierarchische legenda, die is gebaseerd op de mogelijkheden 
van classificatie met SAR, maakt het aanmaken van minder gedetailleerde kaarten 
door middel van aggregatie triviaal. De verwachting is dat, als SAR 
interferometrische data kunnen worden geintegreerd met de polarimetrische, een 
legenda gebaseerd op SAR classificatiemogelijkheden zal ontstaan die vergelijkbaar 
is met die van de landschap-ecologische kaart van het Araracuara studiegebied. 
Interferometrische data kunnen informatie opleveren betreffende de geomorfologie 
en, aldus, verdere classificatie door opdeling in geomorfologische eenheden.. 
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