
Uncertainties in N and GHG fluxes from agro-ecosystems in Europe

Hans Kros, Gerard Heuvelink, Gert Jan Reinds, Jan Peter Lesschen, Vicky Ioanidi and Wim de Vries

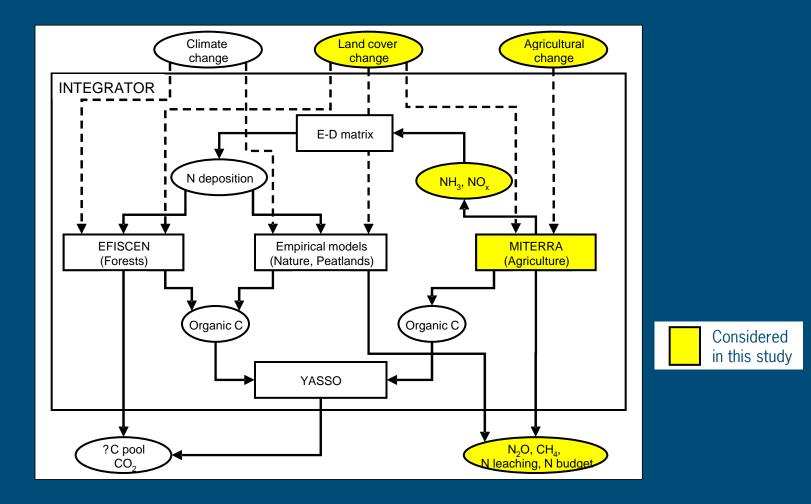
Introduction
The UQ/UA of INTEGRATOR
Results

- Uncertainty at European and National scale (UQ)
- Uncertainty contribution of parameter groups (UA)
- Robustness analysis
- Conclusions

Introduction

Aim INTEGRATOR

• The INTEGRATOR model predicts European wide high resolution estimate of N and GHG fluxes with the associated uncertainties.


Objective study

- Analyse how uncertainties in model inputs and model parameters propagate to model outputs, focusing on uncertainties in:
 - Continuous model inputs (livestock, N fertilizer, soil properties)
 - Model parameters
- Neglecting uncertainties in scenario related model inputs (climate and land cover) and in categorical data (e.g. soil type, drainage status)

The INTEGRATOR model and UQ/UA boundaries

Included uncertainty sources

Soil properties:

- soil physical data: texture
- soil chemical data: pH, carbon content and nitrogen content (C/N ratio).

Model parameters:

- Livestock excretion data: Animal nrs, Excretion fac, Housing fac
- Housing emission data: Emission frac (NH₃, N₂O, NO_x)
- Nitrogen input data: Manure/fert application data, Ndep, Nfix, Nmin
- Nitrogen uptake data: Yield, N contents, NUE
- Soil emission data: Emission frac (NH₃, N₂O, NO_x)
- Leaching and runoff data: leaching frac, runoff frac

Included uncertainty sources

Soil properties:

- soil physical data: texture
- soil chemical data: pH, carbon content and nitrogen content (C/N ratio).

Model parameters:

- Livestock excretion data: Animal nrs, Excretion fac, Housing fac
- Housing emission data: Emission frac (NH₃, N₂O, NO_x)
- Nitrogen input data: Manure/fert application data, Ndep, Nfix, Nmin
- Nitrogen uptake data: Yield, N contents, NUE
- Soil emission data: Emission frac (NH₃, N₂O, NO_x)
- Leaching and runoff data: leaching frac, runoff frac

Assignment of uncertainties

For each model parameter we define at NCU level:

- Distribution type (normal, lognormal)
- Coefficient of variation for normal distribution and standard deviation for lognormal distribution
- Minimum and maximum level
- Cross correlation between certain parameters (at NCU level) when they exist (limited)
- Spatial correlation ... If uncertainty assigned independently to each NCU it disappears completely at the European scale

Spatial correlation

Common geostatistical procedure: semi-variograms and cross variograms.

- Not an easy task since data are not available
- Chosen for a more pragmatic solution
- Assumption 1: parameters are constant within an aggregated spatial unit. In INTEGRATOR we distinguish:
 - NCU
 - NUTS2/3
 - Country
- Assumption 2: Degree of spatial correlation is determined by the correlation between parameters in different spatial units:
 - NCUs within the same NUTS2/3 region (ρ_{NCU})
 - NUTS2/3 regions within the same country (p_{NUTS2/3})
 - Countries within Europe (ρ_{Country})

Robustness analyses (CV)

Since the information on the assigned CVs are rather uncertain we also apply perform a robustness analysis by using three uncertainty scenarios (Optimistic (O), Reference (R) and Pessimistic (P)).

Class of CV or SD	O pt (0)	Ref (R)	Pes (P)
Low (L)	0.05	0.10	0.15
Moderate (M)	0.10	0.25	0.30
H igh (H)	0.40	0.50	0.60

¹⁾ Only in case of parameters which are defined as fraction

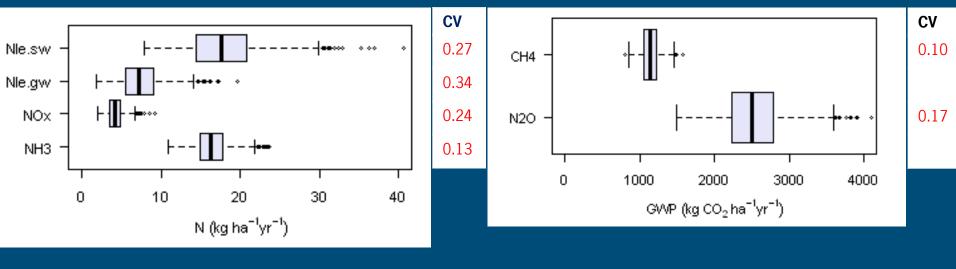
Robustness analyses (spatial correlation)

Class of correlation	O pt (O)	Ref (R)	Pes (P)
Perfect (P)	1	1	1
H igh (H)	0.8	0.85	0.9
Moderate (M)	0.3	0.5	0.7
Low (L)	0.1	0.2	0.3
None (N)	0	0	0

Example of uncertainty assigment

Parameter	Code ¹⁾	Distribution ²	CV	SD	Min	Max	Unit	ρ_{NCU}	ρ_{NUTS}	ρ _{country}
Livestock excretion data										
 N excretion rates, dairy cattle 	Nexf_ca	Normal	М		0	inf	kg N / head	Р	Н	М
Housing emission data										
 – NH₃ emission fraction from housing systems 	fNemhs_NH3	Normal	М		0	1	-	Р	Н	М
 N₂O emission fraction from housing systems (liquid) 	fNemhsl_N20	Lognormal		М	-inf	0	-	Р	Н	М
Nitrogen input data										
 National fertilizer N inputs 	tNfe	Normal	L		0	inf	ton N / countr y	Р	Р	М
Soil emission data			М		0	inf				
 — NH₃ emission factors from soil systems for all manure types 	fNemap_NH3	Normal	М		0	1	-	М	М	L
 N₂O emission fractions from soil inputs ⁴⁾ 	fNemsi_N20	Normal	М		0	1	-	L	L	L
 Ratio between NO_x and N₂O emission fractions ⁵⁾ 	rNON20	Lognormal		0.75	-inf	0	-	М	L	L
Leaching and runoff data							-			
 N leaching fractions from the soil 	fNle	Normal	М		0	1	-	М	М	L
 N leaching fractions from stored manure 	flems	Normal	Н		0	1	-	Р	Н	М

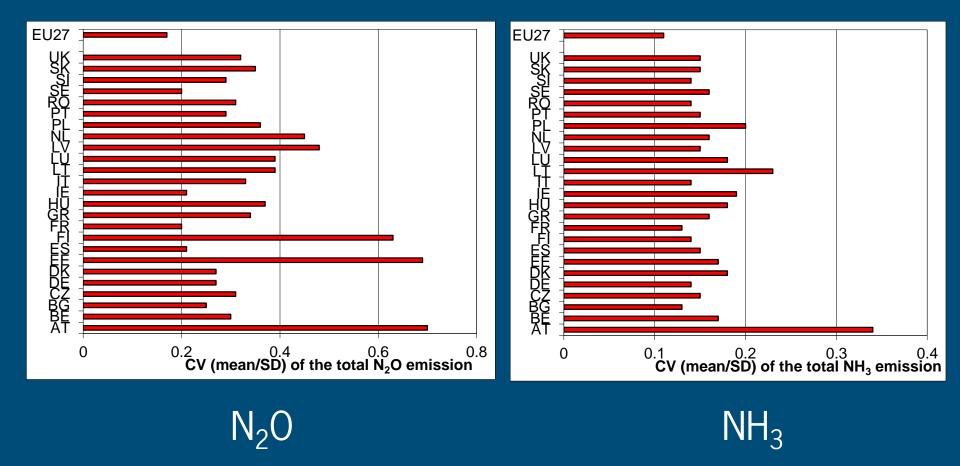
In total 57 parameters


Application of the UQ/UA procedure

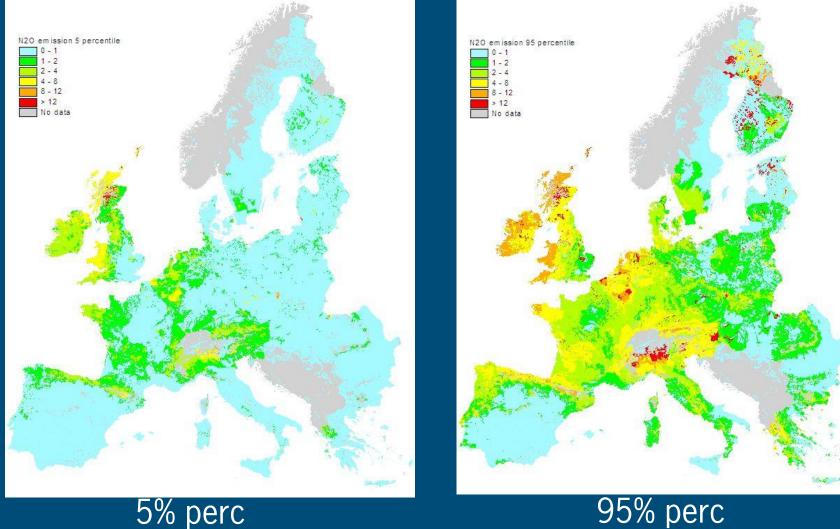
- Perform *1000* drawings from the (multivariate) normally distributed or log-transformed process parameters while taking into account cross-correlations and spatial correlations
- Back-transform simulated values for log-transformed process parameters (e.g. those that are log normally distributed)
- Read realizations by INTEGRATOR and perform MC runs
- Analyse results

Uncertainty in N and GHG fluxes for the EU-27

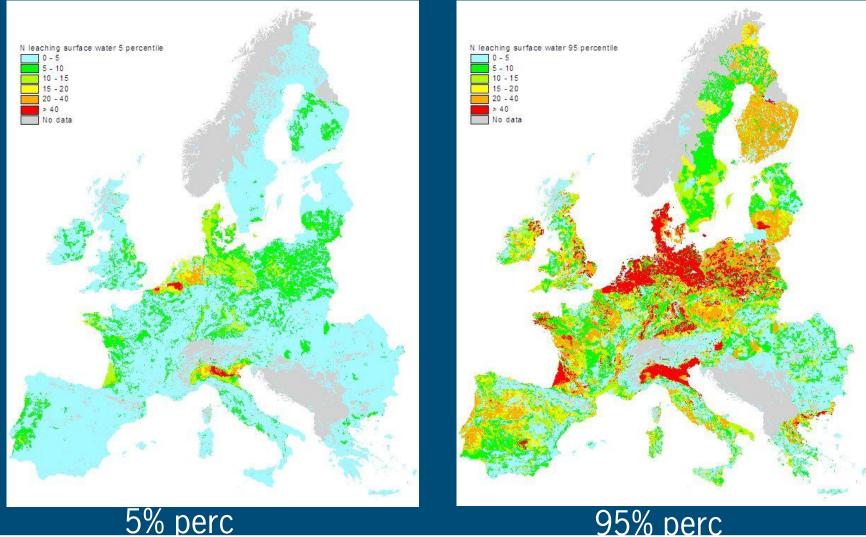
N fluxes


GHG fluxes

Uncertainty in the European averaged outputs for the year 2000

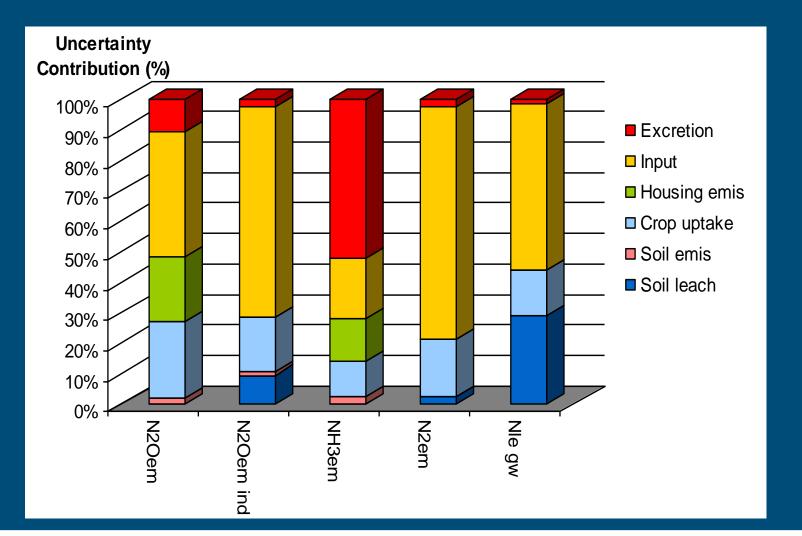

Uncertainty in N₂O and NH₃ emission per country

The 90% prediction of the N₂O emission per NCU in 2000



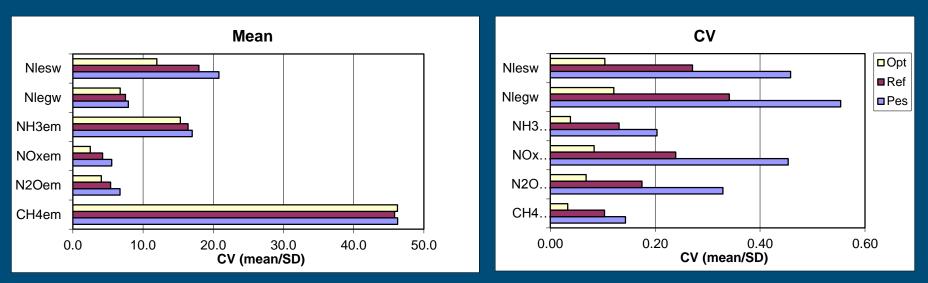
95% perc

The 90% prediction of the N_{le sw} per NCU in 2000



95% perc

Uncertainty contribution of various inputs

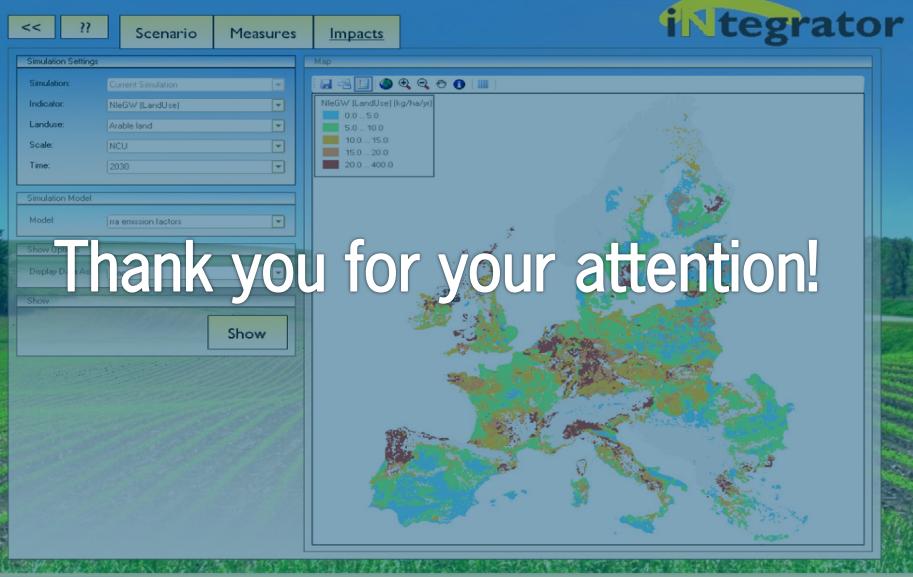


Robustness Analysis

- Effect of scenarios:
 - optimistic (Opt)
 - reference (Ref)
 - pessimistic (Pes)

• on the overall mean and CV in the European average

CV: ~ 0.5



Conclusions

- Uncertainty varies from 10-35% and increases in direction: CH_{4em} , $NH_{3em} < N_2O_{em}$, $NO_{xem} < N_{le gw/sw}$, N_{2em}
- Uncertainty for Europe as a whole is smaller as per country
- Uncertainty contribution is mainly determined by:
 NH_{3, em}
 N₂O_{em}
 inputs, housing emission fractions
 inputs, leaching fractions
- Robustness analysis shows a significant uncertainty in the uncertainty assessment (~50% vs ~30%)

Application Ready

