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Abstract 

Primary goals of this thesis were to: 1) examine the in vivo digestion of 

macronutrients from conventional or alternative feed ingredients used in practical diets of 

juvenile gadoids (Atlantic cod and haddock), 2) document growth potential of fish at the 

juvenile grower phase given varying levels of dietary protein and energy and 3) assess the 

potential of in vitro pH-Stat methods for rapid screening protein quality of feed 

ingredients, specifically for gadoids. All primary research questions were linked to and 

built upon one another with the goal of gaining a better understanding of protein and 

energy utilization of juvenile grower phase gadoids. Studies showed that cod and 

haddock have a high capacity to utilize a wide range of dietary feed ingredients, such as 

fish meals, zooplankton meal, soybean products (meal, concentrate and isolate) and 

wheat gluten meal. New dietary formulations for gadoids may also utilize pulse meals, 

corn gluten meal, canola protein concentrate and crab meal. Digestibility data in this 

thesis is currently the only research that examined both in vivo and in vitro macronutrient 

digestibility of a large number and wide range of individual ingredients, specifically for 

gadoids. This is essential to gain new knowledge on protein and energy utilization as well 

as for least-cost ration formulations and effective substitution of ingredients into new 

formulations. Data has demonstrated a dietary digestible protein/digestible energy 

(DP/DE)
 
ratio of 30 g DP/MJ DE is required for gadoids during the juvenile phase (<100 

g) to ensure maximum somatic tissue growth, high digestibility, maximum nitrogen and 

energy retention efficiency and minimal excessive liver growth. Preliminary nutrient 

requirement studies together with an applied nutritional approach has identified that feeds 

for juveniles farmed in the Western North Atlantic should contain 50-55% crude protein, 

<12% fat and <17% carbohydrate. Data in this thesis is currently the first aimed at 

development and application of an in vitro closed-system pH-Stat assay for rapid 

screening protein quality of test ingredients that is ‘species-specific’ to gadoids. It is 

demonstrated that in vitro results generally reflected results obtained through 

conventional in vivo protein digestibility methods. Studies resulted in the first generation 

of a ‘gadoid-specific’ proteolytic enzyme extraction method and in vitro closed-system 

pH-Stat assay which may be useful to investigate protein digestion, absorption and 

metabolism of gadoids and further development of their feeds. 
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Aquaculture in the global seafood supply 

Aquaculture has become the world's fastest growing food production system over 

the past two decades (FAO 2009a; Subasinghe et al. 2009).  After the remarkable 

increase in capture of both wild marine and inland fish during the 1950s and 1960s, 

global fisheries production has leveled off since the 1970s.  It is estimated that 75% of 

the major marine fish stocks are either depleted, overexploited or being fished at their 

biological limit.  Moreover, rapid population growth, along with increases in the average 

amount of fish consumed in developing countries, has led to rapid increases in global fish 

demand.  It is widely recognized that expansion of aquaculture will fill this gap and 

relieve pressure on the already over-exploited wild-capture fisheries (Powell 2003; 

Pickova and Mørkøre 2007).  Since the traditional wild-capture fisheries can only provide 

a maximum of 100 mmt annually (Watanabe 2002, FAO 2009a); the world would face a 

global seafood shortage of 50–80 mmt by the year 2030, if it were not for aquaculture 

(Figure 1). 

 

 

 

Figure 1  Global seafood production (1950-2006) and predicted demand (FAO 2009a) 
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It is predicted that aquaculture will provide the most reliable supply of high quality 

protein for the world’s rapidly expanding population in the coming years (FAO 2009b) 

and is, for the first time, set to contribute half of the fish consumed by the human 

population worldwide (FAO 2009a). 

Fish and seafood provide the global population with about 6% of its total protein 

intake and about 16% of its total animal protein intake.  At an annual growth rate of more 

than 9%, aquaculture’s contribution to seafood supplies have grown from less than 4% in 

1970 to over 32% in 2006 with an economic value of nearly $80 billion (USD).  In 

Canada, total aquaculture production has risen from <40,000 tonnes to >140,000 tonnes 

in less than 20 years (1990-2008) contributing about $2 billion (CAD) into the Canadian 

economy from direct and indirect sales (DFO 2010; Grydeland 2008) and provided 

14,500 full-time equivalent jobs, many of which are located in rural, previously 

economically-depressed regions (DFO 2010). 

Protein sources derived from the ocean and aquaculture are increasingly replacing 

traditional food sources such as red meats and other saturated fat-rich meats.  Most 

fishery products provide high quality dietary protein with a nearly ideal balance of 

essential amino acids and typically contain lower levels of unhealthy saturated fats 

associated with many terrestrial proteins (Santerre 2010).  They are also rich in essential 

minerals (e.g. Ca, Cu, I, Fe, Zn, and Se) and vitamins (e.g. fat-soluble vitamins A, E and 

D and several water-soluble B vitamins) (Lall and Parazo 1995).  There is also new 

evidence that marine fish products may influence insulin metabolism (Lavigne et al. 

2001; Ruzzin et al. 2007), modulate type-2 diabetes and protect pancreatic and skeletal 

cells (Zhu et al. 2010) in humans.  Marine fish are also a rich source of omega-3 long-

chain polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) (Sargent 1997; Sargent and Tacon 1999) which are known 

to improve cardiac, vascular and brain functions, boost the immune response, support 

retinal development in the fetus and nursing infant and may also help increase life span 

by slowing the rate of telomere shortening (Ruxton et al. 2007; Farzaneh-Far et al. 2010; 

Farrell et al. 2010).  It is not surprising that the global demand for seafood products has 

doubled in less than 50 years (Brown et al. 1998) and annual per capita consumption is 
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expected to reach >20 kg by the year 2030 (FAO 2002; Watanabe 2002; Johnson 2008) 

representing a global demand of 150 million tonnes (mmt). 

 

The wild-capture gadoid fishery 

From the earliest days of human exploration and population expansion into North 

America, the fish known collectively as ‘gadoids’ have been the driving force behind the 

development of the New World (Kurlansky 1997; Fagen 2006; Rose 2007).  In the 

Western North Atlantic Ocean, Atlantic cod and haddock are considered the most prized 

of all gadoids and are the most valuable of all marine food fish (Scott and Scott 1988).  

Many North American economies have been dominated by their fisheries dating back to 

the arrival of John Cabot in 1497.  Historical catch rates in North Atlantic waters are 

likely higher than in any other fishery the world has ever known (Rose 2007).  The 

famous English biologist Thomas H. Huxley (1825-1895) once declared their stocks to be 

“inexhaustible” (Huxley 1884) and this was believed for many generations.  Of course, 

the gadoid fishery was not inexhaustible and eventually, through a combination of 

mismanagement, greed and overexploitation this lucrative industry was essentially shut 

down in 1992 when a moratorium was placed on all fishing activities.  Recently, it was 

reported that the North Atlantic spawning stock biomass of >250,000 tonnes in the early 

1970s had declined by almost 85% to only 39,000 tonnes by 2002 - about half of what 

scientists judge the stock as a high risk for collapse (Horwood et al. 2006) and the stocks 

continue to decline to levels far below the maximum sustainable yield (Hutchings et al. 

2010).  Yet, to this day, these gadoids remain in high demand on the North American 

seafood market. 

 

Gadoid aquaculture 

Development 

The market demand for Atlantic cod and haddock remains high in spite of the 

collapse of the gadoid fishery in the 1990s.  As such, there has been a renewed interest in 

fish farming as a means to meet the demand for this valued seafood and to ease the strain 

on wild populations that would have otherwise been fished into extinction.  Since the 

mid-1980s, development of gadoid farming has been a focus of governments and industry 
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in countries that border the North Atlantic.  Over the past 3 decades, advances have been 

made in hatchery technologies, larval development, health management and development 

of feeds; but commercial progress has been very slow due mainly to insufficient juvenile 

production.  In addition, the industry has been plagued with other problems including a 

poor understanding of larval, juvenile and broodstock nutrition, fish health and disease 

problems, early sexual maturation, low survival of larvae, skeletal deformities, limited 

research and development and capital investment and high operational and feed costs 

(Aiken 2003, Bricknell et al. 2006; Kjesbu et al. 2006; Rosenlund and Skretting 2006; 

Treasurer 2008).  Many of these problems are now being addressed, year-round annual 

production is rapidly increasing and predictive growth models for various geographical 

locations are being developed (Chambers and Howell 2006; Treasurer et al. 2006; 

Björnsson et al. 2007) for cod and haddock.  Estimated global production of farmed 

gadoids in the near future is as high as 200,000 tonnes (Kjesbu et al. 2006; Rosenlund 

and Skretting 2006).  However, due to high production costs and the recent global 

economic crisis, current commercial aquaculture production has been limited to Western 

Europe (>90% Norway and Iceland) (Hagen and Solberg 2010).  In the past few years 

(2002-2008), these two countries have established 536 cod farms (13 in Iceland and 523 

in Norway) and 14 haddock farms (all in Norway) and have increased the number of 

juveniles stocked into sea pens from 1.5 million to 21 million (Paisley et al. 2010).  This 

has resulted in increased production from less than 250 tonnes (approximate value of $1 

million USD) to more than 16,500 tonnes (approximate value of $55 million USD) 

(Norwegian Directorate of Fisheries 2010).  Although other North Atlantic countries have 

fallen far behind Norway and Iceland, industry experts still predict farmed gadoid 

production to surpass that of farmed salmonids within 2 decades (Standal and Utne 

2007). 

 

Culture of gadoids in Eastern Canada 

 Culture protocols developed over the past decade at the NRCC Institute for 

Marine Biosciences’ Marine Research Station (Ketch Harbour, Nova Scotia), Aquarium 

and Marine Centre (Shippagan, New Brunswick), the Fisheries and Oceans Canada – 

Biological Station (St. Andrews, New Brunswick) and Memorial University - Ocean 
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Sciences Centre (Logy Bay, Newfoundland and Labrador) have been successfully used to 

rear both Atlantic cod and haddock from egg to juvenile and provided experimental fish 

for the studies presented in this thesis.  Fertilized eggs (1.3-1.7 mm diameter) from 

naturally-spawning, mixed-sex wild broodstock held at 6-10°C are collected from the top 

40 cm surface of large (e.g. 45,000 L) broodstock tanks from late-December to mid-

January and are immediately surface-disinfected with 400 ppm of gluteraldehyde.  This 

spawning period is 3 months earlier than would occur in the wild and has been achieved 

through photoperiod manipulation.  Incubation occurs in either total darkness or very low 

light levels at 5-8ºC for 11-20 days in upwelling conical tanks (e.g. 100-250 L).  Hatched 

yolk-sac larvae are transferred to 3000-3500 L weaning tanks and are immediately 

offered live rotifers to supplement their yolf-sac reserves, which become depleted after 

only 5-9 days.  Over several weeks (typically 10-12), the water temperature is gradually 

increased to 10-12ºC (1ºC every couple days) to enhance feeding behaviour.  The tanks 

are equipped with mild aeration, low water velocity, protein skimmers and are exposed to 

continuous 24 h moderate light intensity.  Our lab has performed larval weaning in both 

dark bottom and bright bottom tanks and both with and without ‘green water’.  Newly 

stocked larvae are fed rotifers (cultured on marine algae and baker’s yeast) up to 7-10 day 

post-hatch (DPH) and then rotifers enriched with commercial high-DHA products until 

about 25-30 DPH.  Highly DHA-enriched Artemia nauplii are then fed until 37-52 DPH 

after which weaning is begun (12-15 mm fork length), which typically lasts for about 1-2 

weeks.  During this weaning period, the proportion of live Artemia nauplii is gradually 

reduced as various dry formulated microparticulate diets are introduced until feed 

particles can be observed in the stomachs of metamorphosed larvae.  We have used 

commercial weaning diets from Italy, Norway, Japan and Canada and also several 

experimental feeds produced in our laboratory and have seen specific growth rates in 

excess of 15%/day and >88% larval survival (unpublished data).  Although advances 

have been made and high larval survival (>80%) can be achieved in laboratory studies, 

the weaning period still remains one of the predominant bottlenecks for producing high 

numbers of juveniles for commercial culture.  Once weaned, the fish are cultured in the 

same or similar tanks or deep raceways and fed commercially manufactured extruded 

gadoids feeds based on recommended formulations (typically 50-60% crude protein and 
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12-16% lipid) until they reach 3-5 grams (3-4 months).  The juveniles are then transferred 

to modified salmon sea cages for on-growing to market weight of 2-3 kg in about 36 

months (Frantsi et al. 2002; Brown et al. 2003; Lanteigne and Leadbeater 2003). 

 

Gadoid nutrition 

The dietary nutrients required by fish are generally the same as those of terrestrial 

animals in that they all require sources of protein and amino acids, lipid and essential 

fatty acids, vitamins, minerals and energy for growth, reproduction and other normal 

physiological functions (Lall and Tibbetts 2009).  The major differences between fish and 

terrestrial animals include: (a) higher protein levels relative to non-protein macronutrients 

are required in the diet of fish (b) dietary energy requirements are lower for fish (e.g. 

aquatic mode of life, poikilothermy and ammoniotelism), resulting in higher dietary 

protein/energy ratios, (c) fish require some lipids that terrestrial animals typically do not, 

such as omega-3 series PUFA for several marine and salmonid species and sterols for 

crustaceans, (d) most fish (especially cold-water species) have a limited capacity to 

utilize carbohydrates, (e) fish have the ability to absorb soluble minerals from the water 

which minimizes the dietary need for certain elements and (f) fish have limited ability to 

synthesize ascorbic acid and must depend upon dietary sources (NRC 2011).  Information 

on dietary nutrient requirements and bioavailability of farmed gadoids are limited.  Initial 

studies show relatively high protein requirements of 45-60% for juveniles (Lall and 

Nanton 2002; Lall et al. 2003; Rosenlund et al. 2004; Árnason et al. 2010), a 

phosphorous requirement of 0.96% (Roy and Lall 2003) and a low tolerance (12-16% 

maxmum) for dietary lipid (Lie et al. 1988; Nanton et al. 2001). 

 

Dietary protein 

Proteins represent the largest components of fish at 65-75% of the total dry 

weight (Wilson 2002).  These proteins are the primary constituents of structural and 

protective tissues (e.g. bones, ligaments, scales and skin), soft tissues (e.g. organs and 

muscles) and body fluids (Lall and Anderson 2005).  As such, for most marine fish like 

gadoids, protein comprises the largest portion of the diet and is required for growth, 
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tissue repair and reproduction and as a source of dietary energy (Wilson 2002). An 

overview of the fate of ingested dietary protein in fish is presented in Figure 2. 

 

 

 

 

Figure 2  Fate of ingested dietary protein in fish (adapted from Rathmacher 2000; Sveier 

2004) 
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2001), protein digestion does not begin until it reaches the acidic (< pH 4) stomach.  In 

the stomach, ingested food particles encounter mucous secreted from the non-parietal 

cells that hydrate it and gastric fluids (e.g. HCl, KCl, NaCl) secreted by the parietal 
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(Wendelaar-Bonga 1993).  The acidic nature of the gastric fluids help denature (open) 

protein strands exposing peptide bonds to enzymatic attack and also activate pepsinogen 

(a zymogen produced by the stomach’s chief cells) into its active form, pepsin (Smith 

1989).  Pepsin then actively cleaves ingested proteins into smaller polypeptides prior to 

transit out of the stomach and into the alkaline pyloric caeca at which time the digesta pH 

is raised (~ pH 7) by mixing with bicarbonate excreted by the acinar cells (Rust 2002).  

Once in the pyloric caeca, proteins and polypeptides are further degraded into smaller 

peptides and free amino acids under the action of alkaline proteases and peptidases (e.g. 

trypsin, chymotrypsin, elastase, collagenase, aminopeptidases, carboxypeptidases, etc.) 

via extracellular, membrane-linked and intercellular digestion (Kuz'mina and Gelman 

1997).  It is from this point forward into the small intestine that ingested and digested 

proteins are absorbed through the brush-border of the enterocytes (intestinal cells) via 

pinocytosis (proteins and peptides), active H
+
 and/or Na

+
-assisted transport (peptides and 

free amino acids) and passive diffusion (free amino acids) for delivery into the blood 

stream and transport to the liver (Storelli and Verri 1993). 

Although the ‘digestive system’ prepares ingested protein for absorption, it is the 

role of the ‘endocrine system’ to regulate their metabolism in fish and mammals 

(Houlihan et al. 1995; Garlick et al. 1998).  As shown in Figure 2 above, these newly 

absorbed protein products (now in the intracellular pool) can either be used for protein 

biosynthesis (e.g. growth, tissue repair, reproduction) or broken down (deamination) for 

use as dietary energy.  Since dietary protein is the most expensive component of the diet, 

exceeding the levels needed to satisfy a particular species’ dietary requirements results in 

elevated nitrogenous waste (e.g. ammonia from the gills and urea in urine) excretion into 

the surrounding waters, which is both economically and environmentally undesirable 

(Lall and Tibbetts 2009).  The hormonal regulation of these pathways in fish is not fully 

understood but is likely through the action of glucose-uptake hormones (e.g. insulin, 

insulin-like growth factor (IGF-1) and growth hormone (GH)) that all play a role in 

promoting protein synthesis (Houlihan et al. 1995; Mommsen and Moon 2001) whereas 

glucose-liberation hormones (e.g. catecholamines, glucagon, glucagon-like peptides and 

glucocorticoids) promote protein catabolism for energy purposes (Maynard et al. 1975; 

Dabrowski and Guderley 2002).  With regard to protein sysnthesis, insulin, IGF-1 and 
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GH appear to function by increasing amino acid uptake, increasing ribosomal 

availability, increasing the numbers and types of messenger RNA (mRNA) and 

increasing the rate of protein transcription (Manchester 1977; Dabrowski and Guderley 

2002).  As for protein catabolism for energy puposes, catecholamines, glucagon, 

glucagon-like peptides and glucocorticoids function by increasing hepatic enzyme 

activities in the short-term and altering their gene expression over the longer term 

resulting in amino acid conversion to glucose (gluconeogenesis) in the liver (Mommsen 

and Plisetskaya 1991; Duguay and Mommsen 1994; Plisetskaya and Mommsen 1996). 

The primary goal of optimum diet formulation is to ensure that the highest 

possible proportion of ingested protein ends up as tissue growth (shown as solid lines in 

Figure 2) while minimizing the proportion that ends up being deaminated and catabolized 

for energy (shown as dotted lines in Figure 2).  The relative proportions of energy-

yielding nutrients in the diet (protein, lipid and carbohydrate) result in varying post-

prandial influxes of amino acids, fatty acids and sugars (Carter et al. 2001) which, in 

some species, have a large effect on whether ingested proteins becomes new tissue 

growth or get used as an energy source in the liver and ultimately excreted as nitrogenous 

waste (e.g. branchial and urinary excretions).  This will be discussed in more detail in the 

following sections on dietary energy and DP/DE ratio. 

The natural diet of wild gadoids off the coast of Eastern Canada is not only 

piscivorous (fish-consuming) but also high in crustaceans and echinoderms, so these 

species have an inherent capacity to utilize chitin- and ash-rich benthic foods, unlike that 

of more pelagic species like salmonids (Lall and Nanton 2002; Morris and Green 2002).  

The most commonly used sources of dietary protein for farmed gadoid are by-product 

meals made from fish, krill, crustacean, poultry, corn and soybean.  Dietary protein 

requirements have been established by many authors over the past century and compiled 

by Wilson (2002) for several fish including cold-water species farmed in Canada 

including: Atlantic halibut, Atlantic salmon, Chinook salmon, coho salmon, sockeye 

salmon, rainbow trout, brown trout, striped bass and plaice and are in the range of 40-

55% of the diet.  A more detailed review taking into account various growth phases (e.g. 

<20 g to >1.5 kg) has been compiled for Atlantic salmon, Pacific salmon and rainbow 

trout and indicate that dietary protein requirements general decrease from ~50% to ~35% 
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over this growth period (NRC 2011).  Initial studies with farmed gadoids show protein 

requirements of 45-60% of the diet for juveniles (Lall and Nanton 2002; Lall et al. 2003; 

Rosenlund et al. 2004; Árnason et al. 2010).  The protein requirement of gadoids appears 

higher than other species due to poorer protein retention efficiency (Lie et al. 1988) and 

this may be related to a lower tolerance for non-protein energy and less opportunity for 

protein sparing. 

Protein, a polymer of amino acids joined together by peptide bonds, when 

hydrolyzed in the gastrointestinal tract of an animal supply amino acids and peptides for 

tissue synthesis and repair and are also catabolized to provide energy.  Amino acid 

nutrition and metabolism in fish has been extensively reviewed (Wilson 2002; Lall and 

Anderson 2005; Kaushik and Seiliez 2010).  From a nutritional standpoint, the 20 known 

amino acids are considered as being either non-essential (dispensable) or essential 

(indispensable).  Non-essential amino acids are those that can be synthesized by the 

animal in quantities sufficient enough to support maximum growth.  Of the non-essential 

(dispensable) amino acids, two are particularly unique for their ability to partially replace 

two of the essential (indispensable) amino acids; tyrosine and cystine can spare ~50% of 

a fishes’ dietary requirement for phenylalanine and methionine, respectively.  Essential 

amino acids (EAAs) are those that the animal cannot synthesize in sufficient quantities to 

support maximum growth and, therefore, must be provided in the diet.  To better explain 

this, certain amino acids appear to be essential because the animal lacks the biochemical 

mechanisms required to synthesize the chemical configurations of the carbon chain 

skeletons of these amino acids (Jobling 1994).  Most monogastric animals, including fish, 

require the same 10 EAAs: arginine, histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, threonine, tryptophan and valine.  As stated, fish and other animals do not 

truly have a requirement for protein; rather it is a requirement for the EAAs contained 

within that protein.  When a protein requirement is stated for a certain organism, it should 

always be assumed that it is of high protein quality and adequately balanced in terms of 

its amino acids.  The ration which has the highest protein quality is typically the one 

which supplies all of the EAAs needed in proportions most similar to those in which they 

exist in the protein to be formed, plus an appropriate non-specific source of nitrogen to 

form the non-EAAs (Maynard et al. 1975).  Partial or complete EAA requirements of fish 
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established using chemically defined, purified and natural ingredient diets using dose-

response methodologies have been reviewed by NRC (2011).  Cold-water species farmed 

in Canada examined to date include: Atlantic salmon, Chinook salmon, chum salmon, 

coho salmon, sockeye salmon, rainbow trout, lake trout and Arctic char. Quantitative 

EAA requirements (as a % of dietary protein) of these species are in the following range: 

arginine (3.5-6.0%), histidine (1.0-1.8%), isoleucine (1.5-2.8%), leucine (2.7-9.2%), 

lysine (3.0-8.4%), methionine (0.7-1.9%), phenylalanine (2.0-4.4%), threonine (2.6-

3.0%), tryptophan (0.3-0.9%) and valine (1.7-3.4%).  Dietary EAA requirements for 

gadoids have not yet been studied and will not be addressed in this thesis; however, for 

experimental diet formulation, the EAA requirements of Atlantic salmon and rainbow 

trout were followed. 

 

Dietary energy 

Energy is not a nutrient but it is released in the body from food during metabolic 

oxidation of carbohydrates, fats and amino acids (NRC 2011).  Because it is not a 

physical organic or inorganic compound it cannot be quantified in the same manner as the 

macronutrients.  Energy is an abstraction that can only be measured in its transformation 

from one form to another (NRC 1981).  The most common method for determining the 

gross energy content of fish feeds and feed ingredients is bomb calorimetry.  This method 

involves completely oxidizing the compound to carbon dioxide, water and other gases in 

a bomb calorimeter and measuring the amount of heat that is released (e.g. heat of 

combustion).  Common units of measure for energy content of feeds is the calorie (equal 

to 4.184 joules) and is defined as the amount of heat required to raise the temperature of 1 

gram of water by 1ºC measured from 14.5ºC to 15.5ºC (Lovell 1989).  Since all organic 

compounds in fish feeds release heat upon combustion, thus are potential sources of 

dietary energy, the energy content of a diet will depend on its chemical composition, with 

the mean values of heat of combustion of protein, lipid and carbohydrate being 5.64, 9.44 

and 4.11 kcal/g, respectively (NRC 2011). 

Fish consume food to satisfy their energy requirement (NRC 2011).  This implies 

that the caloric density of a diet plays a large role in regulating feed intake, which directly 

affects the intake of other essential nutrients.  Bioenergetics is the study of the balance 
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between energy intake in the form of food and energy partitioning or utilization by 

animals for life-sustaining processes such as maintenance, activity and tissue synthesis.  

The partitioning of dietary or intake energy (IE) of feeds to that component retained (RE) 

for productive purposes in fish was first proposed by NRC (1981) and is depicted in 

Figure 3. 

 

 

 

Figure 3  Partitioning of dietary energy in food consumed by fish (adapted from NRC 

1981, 2011; Bureau et al. 2002) 
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nutritionist when formulating diets due to the fact that animals do not utilize 100% of the 

nutrients contained within a ration.  Invariably, there will always be inefficiencies 

resulting in nutrient losses in the form of faeces, urine and gill excretion.  Ideally, for fish 

production, it is necessary to minimize these losses in order to obtain maximum returns 

as marketable products.  The first task in evaluating the potential of any feedstuff for 

inclusion in the diet is the measurement of its digestibility (Cho et al. 1982).  This can be 

defined as the extent to which dietary nutrients are broken down and absorbed from the 

digestive tract.  In fish, it is difficult to separate faeces from the water, and to avoid 

contamination of the faeces with the uneaten food.  This problem has required several 

different approaches to those used in the measurement of digestibility for terrestrial 

farmed animals and birds.  Whereas total collection of faecal material from animals and 

birds can be achieved with little difficulty, it is not feasible with fish.  A method has been 

developed by Post et al. (1965) and Smith (1971) however, this direct method requires 

very specialized equipment, the necessity of force feeding and the physiological stress 

caused by confinement.  To overcome these shortcomings, indirect methods for 

quantifying faecal output have been developed.  These methods utilize inert markers such 

as chromium oxide, acid insoluble ash, yttrium oxide and various others and changes in 

the ratio of nutrient to marker between diet and faeces should reflect the extent to which 

the nutrients in the diet have been digested, on the assumption that the marker is not 

absorbed from the feed and is fully excreted in the faeces.  Some common methods of 

faecal collection in fish include manually stripping, anal suction, dissection, siphoning, 

filtration and sedimentation (Cho et al. 1982).  All methods have limitations and may 

lead to either under or over estimations of digestibility.  Once digestibility of a feedstuff 

or diet has been measured, digestible energy (DE) can be calculated from the IE value.  

DE is the IE content of the diet minus the energy loss in the faeces (DE = IE - FE).  

Faecal energy (FE) losses for farmed fish usually account for 5-30% of IE depending 

upon feed composition, processing and feeding rate (Jobling 1994).  The DE content of a 

well-digested food would approach its IE content.  The DE content of numerous 

commonly used practical fish feed ingredients are listed in Halver and Hardy (2002) for 

rainbow trout and channel catfish and range from 2-13 MJ/kg for high-fibre and high-

carbohydrate products like alfalfa, canola, wheat, cotton-seed, whey and un-processed 
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corn meals, 13-21 MJ/kg for processed corn and wheat, yeast, oilseed and animal, 

crustacean and fish by-product meals to over 33 MJ/kg for vegetable and fish oils and 

animal fats.  The DE content (MJ/kg) of some purified ingredients commonly used in 

experimental fish feeds were compiled by NRC (2011) and include casein (17), corn 

starch (17), gelatin (12), glucose monohydrate (14), lactose (15) and sucrose (16). 

Digestion of fats and carbohydrates yield fatty acids and simple sugars and, in 

turn, yield carbon dioxide, water and heat.  However, digestion of proteins yield amino 

acids which, in turn, yield ammonia (85-90%) and, to a lesser extent, urea (10-15%) as 

well as carbon dioxide, water and heat (Kaushik and Cowey 1991).  These products must 

be excreted via the gills (ZE) or by the kidney as urine (UE).  Quantifying ZE and UE 

can be difficult as measurements of these losses require respirometers where fish must be 

held under stressful conditions.  If these losses can be quantified, metabolizable energy 

(ME) value (ME = DE - (ZE + UE)) can be determined.  ME content of the diet is 

important as it accounts for these types of dietary energy losses and more closely reflects 

the food energy in feeds that the fish can use for productive purposes. 

 After digestion and absorption of nutrients from a feedstuff, they are metabolized 

for various biochemical functions including transfer of chemical energy from nutrients to 

energy-rich molecules such as ATP, transformation of nutrients into biologically 

important substances, ATP hydrolysis to perform physical or chemical work, 

maintenance of cellular homeostasis, biosynthesis and/or turnover of tissues and physical 

activity.  All these processes require energy and result in the liberation or release of heat 

by the animal.  The energy in the form of heat that is lost at this point is termed the heat 

increment (HiE) and can be subdivided into three components: waste formation energy 

(HwE), tissue biosynthesis energy (HrE) and digestion and absorption energy (HdE).  

Once these losses are quantified, they can be used to adjust the ME value to form the net 

energy (NE) value (NE = ME - (HwE + HrE + HdE)).  NE content of the diet is a better 

estimate than ME as it accounts for these energy losses but is more difficult to obtain on a 

routine basis. 

 Energy is also required by the animal for those functions of the body that are 

essential for sustaining life regardless of whether or not the animal is consuming food.  

The heat liberated at this point is termed maintenance energy (HmE) losses and are 
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comprised of two components: basal metabolism (HeE) and voluntary or resting activity 

(H
j
E) such as minor bodily movements.  If these losses can be quantified, they can be 

used to correct the NE value to form the recovered energy (RE) value (RE = NE - (HeE + 

HjE)).  RE is the final step in the partitioning of dietary energy and is the portion of the 

IE that is used by the fish for productive fish growth.  It is the RE value that the fish 

farmer and nutritionist should attempt to maximize by attempting to minimize the amount 

of energy losses in the forms of faeces, urine, gill excretion and heat.  RE content is the 

best estimate of the true value of the diet because it accounts for all energy that is lost in 

other forms than growth.  RE content cannot be economically or routinely measured in 

fish so the DE (and to a lesser extent the ME) is commonly used for practical fish feed 

formulations since the faecal losses represent the largest fraction of losses in the IE. 

 

Digestible protein/digestible energy (DP/DE) ratio 

The most abundant and expensive component of marine fish diets is protein, so 

maximizing its transformation into a marketable seafood product is always the ultimate 

goal even when discussing other dietary components, such as calories from fats and 

carbohydrates.  In coldwater fish, ingested protein and amino acids can only be 

efficiently converted into somatic tissue growth when there is a sufficient dietary non-

protein energy supply (Bureau et al. 2002).  In many fish, increasing the levels of 

digestible energy from non-protein energy sources can spare dietary protein for protein 

biosynthesis, with lipids being the most effective due to the relatively low utilization of 

glucose by coldwater species (Rychly 1980; Kaushik and de Oliva-Teles 1985; Médale et 

al. 1991).  To varying degrees, these non-protein energy sources have the ability to 

supply fatty acids (from ingested dietary lipids) and/or glucose (from ingested dietary 

carbohydrates) that can replace amino acids from entry into the tricarboxylic acid (TCA) 

cycle (also referred to as the Krebs or citric acid cycle) for energy production purposes, 

thereby ‘sparing’ them for protein synthesis.  This is possible because the primary 

metabolites that feed into the TCA cycle are acetyl CoA, acetoacetate, pyruvate, succinyl 

CoA, fumarate, oxaloacetate and glutamate, all of which can be produced either from 

fatty acids, glucose or amino acids (Maynard et al. 1975).  This scenario promotes the 

desired pathway shown in Figure 2 (solid lines).  Alternatively, when insufficient non-



29 

 

protein energy is provided in the diet, a higher proportion of digested protein (amino 

acids) is deaminated in the body’s cells to supply energy for metabolism a priori to 

protein synthesis and the less desirable pathway (shown in dotted lines in Figure 2) is 

followed.  This scenario not only results in less than optimal nitrogen retention efficiency 

and protein utilization, but also increased formation of nitrogenous waste products (e.g. 

mainly ammonia and urea) that must be voided into the marine environment (Kaushik 

and Cowey 1991).  Therefore, a proper balance of protein and non-protein energy is 

necessary to supply calories and amino acids for rapid growth, efficient feed utilization 

and nitrogen retention efficiency and also to minimize water pollution (Bureau 2004).  

Some of the metabolic consequences of lipid replacement of protein in marine fish diets 

include lower ammonia excretion rates (Van Warde 1983), decreased oxygen 

consumption (Cho 1987), inhibition of glycolysis (e.g. reduced conversion of ingested 

protein into glycogen reserves) and lipogenesis (e.g. reduced conversion of ingested 

protein into fat reserves) (Jürs et al. 1985) and increased amino acid utilization for 

protein retention and tissue biosynthesis (Suárez et al. 1991).  Peres and Oliva-Teles 

(2001) demonstrated that both ammonia excretion and oxygen consumption were 

inversely correlated to dietary non-protein energy levels and a decrease in the dietary 

DP/DE ratio spared protein for metabolism, essentially due to decreased non-fecal 

nitrogen and heat increment of feeding.  The role of dietary protein and energy balance 

on fish performance and the effects on the marine environment has been extensively 

reviewed (Kaushik 1998).  Since gadoids appear to have a low tolerance for dietary lipid 

(maximum 12-16% of the diet, Lie et al. 1988; Nanton et al. 2001), relative to other 

marine species like salmonids that are routinely fed diets containing 25-40% lipid, the 

potential to achieve this protein sparing effect may be rather limited in gadoid diets.  

However, determining the optimum DP/DE ratio is considered as one of the most 

important criteria to develop diets for new farmed species.  Both dietary protein and lipid 

supply highly bioavailable forms of digestible energy (DE) to gadoids.  However, the use 

of protein as a dietary source of energy is undesirable because of the high cost of protein 

relative to the cost of non-protein energy (Watanabe 2002).  A proper balance of 

digestible protein and digestible energy is necessary to maintain high growth rates and 

good feed conversion efficiency (Lee and Putnam 1973), improve protein utilization and 



30 

 

minimize excessive accumulation of lipid and glycogen in the somatic tissues and liver 

and minimize undesirable nitrogenous waste output into the marine environment (Cho 

and Kaushik 1985, 1990).  While the estimated optimum DP/DE ratio for coldwater 

species like rainbow trout and Atlantic salmon in the juvenile phase is 19–24 g DP/MJ 

DE
 
(Cowey 1992; Einen and Roem 1997; Storebakken 2002), the DP/DE ratio for larger 

salmon (>2.5 kg) decreases to 16–17 g DP/MJ DE (Einen and Roem 1997).  Information 

on protein and energy utilization by gadoids is limited and this problem is also 

confounded by the fact that the optimum DP/DE ratio changes with fish size, growth rate 

and feed intake (Lupatsch et al. 2001).  Given the marked differences in lipid tolerance 

between gadoids and salmonids, the established DP/DE ratios for salmonids and other 

species will not be suitable for use in feeds for farmed gadoids.  Initial dietary protein 

requirements of gadoids were estimated by feeding graded levels of dietary protein using 

isoenergetic (isocaloric) diets and provided a good starting point to estimate the optimum 

DP/DE ratio required for optimum growth of juvenile gadoids.  However, growth 

performance, feed conversion and nutrient retention efficiency of diets formulated with 

varying combinations of protein and non-protein energy is still required. 

 

Protein quality 

Fish, animal and plant by-products are widely available for use as major sources 

of dietary protein in marine fish feeds (Hardy 2010; Hardy and Barrows 2002).  These 

products can vary considerably in their protein quality and nutrient profile depending 

upon the freshness, origin, species/cultivar, season of harvest, presence of anti-nutritional 

factors (ANFs) and other factors associated with the raw material such as the drying 

process, processing temperatures, storage and transport conditions and exposure to 

humidity and ultraviolet light (Figure 4). 
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Figure 4  Factors affecting dietary protein quality and the levels of its assessment 

(adapted from Bender 1982; Pike 1991) 
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to the common and alternative feed ingredients and the complete diets used in the studies 

presented in this thesis, we will address several of these areas; in particular biochemical 

analysis, in vivo and in vitro protein hydrolysis and efficiency of protein utilization for 

growth.  After preliminary biochemical analyses, the major criterion for determining the 

nutritive value of a protein source is the apparent digestibility coefficient (ADC).  

Conventional biological methods for measuring protein ADC involves in vivo fish trials 

that are time-consuming, require expensive facilities and use large numbers of animals.  

In addition, total collection of faeces from fish is typically not possible, so indirect 

methods must be used that involve the addition of inert markers to the diet (e.g. chromic 

oxide, yttrium oxide, acid-insoluble ash, etc.) and then quantification in the diet and the 

collected dried faecal samples, which may be costly. 

Several in vitro protein digestibility methods have been developed over the past 

century.  These assays involve the use of various commercial enzymes like pepsin 

(Sheffner et al. 1956), bacterial proteases (Ford and Salter 1966), papain (Buchanan 

1969), trypsin (Maga et al. 1973), trypsin/chymotrypsin/aminopeptidase (Hsu et al. 1977) 

and trypsin/chymotrypsin/aminopeptidase/bacterial proteases (Satterlee et al. 1979).  

These methods are considered not suitable for fish assays because the enzymes are 

derived from homeothermic animals, plants and bacteria that are anatomically and 

physiologically different from ploikiothermic fish.  Dimes and Haard (1994) developed 

the first in vitro method that appears better-suited for use with fish.  They demonstrated 

that digestive proteases extracted from the pyloric caeca of rainbow trout used in a pH-

Stat assay correlated well (R
2
=0.82) with in vivo protein digestibility.  The pH-Stat assay 

has been used in human and farm animal nutrition research to estimate the in vitro protein 

digestibility of feed/food ingredients in the past but these authors were the first to 

introduce the method to aquafeeds.  Although the other in vitro protein digestion 

techniques discussed above have been investigated with aquatic animals, the pH-Stat 

method has shown the most encouraging results with finfish and shrimps (Dimes and 

Haard 1994; Alarcón et al. 2002; Lemos et al. 2009).  The assay involves the proteolytic 

enzyme hydrolysis of a test protein substrate at a target pH and directly measuring the 

breakage of peptide bonds.  When protein bonds are cleaved, free carboxyl (-COOH) 

residues are liberated which allows for the exchange of hydrogen (H
+
) protons (Wei et al. 
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2003).  This release of positively charged hydrogen ions causes the reaction mixture to 

become more acidic.  In order to counteract this decline of pH, the pH-Stat titration 

system accurately adds titrant (e.g. NaOH) to maintain the target pH, thereby eliminating 

the effects of changing pH on proteolytic activity and also the effects of buffering caused 

by the newly released amino groups (Wei and Zhimin 2006).  The pH-Stat system 

software accurately records the total volume of titrant required to maintain the target pH 

until protein hydrolysis is complete or the reaction is manually stopped.  This titrant 

volume, combined with various other data, is then used to calculate the degree of protein 

hydrolysis (DH), which is a direct measurement of the number of peptide bonds that have 

been cleaved during protein hydrolysis. 

In vitro pH-Stat methods have been used to predict animal performance when fed 

various feed formulations, to assess the effects of processing of plant protein 

supplements, to assist in designing new feed formulations as well as to produce novel 

feed/food hydrolysates (Adler-Nissen et al. 1983; Lemos et al. 2009; Lemos and Nunes 

2008).  Significant successes have been achieved with shrimps while most investigations 

with finfish have encountered technological problems and poor repeatability.  In vitro 

pH-Stat methods have yet to be applied commercially to aquafeeds due the lack of a 

standardized method, resulting in poor reproducibility within and between laboratories, 

unaccounted variations in batch-to-batch enzyme activities and a poor understanding of 

the effects of dietary history of the donor animals on enzyme profile and catalytic 

activity.  The major limitations for in vitro pH-Stat assays appear to be the need for 

complete knowledge of the origin of enzymes and their activities because variations in 

species, fish size/age and phenotype give results with poor reproducibility, pH-Stat 

assays give inaccurate results for ingredients that have been pre-hydrolysed and the 

digestive tissues must be extracted from live fish, thus a well-equipped analytical lab is 

required to produce to enzyme fractions (Savoie 1994). 

Under farmed conditions, food intake and digestion by fish are highly affected by 

numerous biotic and abiotic factors (e.g. culture conditions, water quality, presence of 

stressors, social interactions, changing feeding rhythms, nutritional and reproductive 

status (Lall and Tibbetts 2009) that can vary temporally and among stocks of fish.  All of 

these factors, together with the well documented effects of fish size/age, phenotype, 
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dietary protein level and seasonal variations on proteolytic capacity (Bassompierre et al. 

1998a,b; Einarsson et al. 1997; Førde-Skjærvik et al. 2006; Kofuji et al. 2005; Olsen and 

Ringø 1998) influence food digestion in fish in vivo, negatively affect the reproducibility 

of both in vivo and in vitro results and ultimately complicate the application of in vitro 

results to industrial conditions.  It is widely recognized by human and animal nutritionists 

that it is possible to make reasonable predictions in vitro for research and industrial use.  

As such, in vitro pH-Stat methods can provide an attractive complement to biochemical 

and in vivo biological methods as they are relatively inexpensive, require less animals and 

results can be rapidly obtained (hours vs. weeks) using very small quantities of test 

sample.  These characteristics could make in vitro pH-Stat methods more suitable for 

initial rapid screening under research and industrial conditions and certainly more 

acceptable from the stand-point of animal welfare (Alarcón et al. 2002; Fernández-Garcia 

et al. 2009).  In vitro pH-Stat protein hydrolysis data is rare in the published aquaculture 

literature with only rainbow trout (Dimes and Haard 1994) and white shrimp (Ezquerra et 

al. 1997, 1998; Lemos et al. 2009) represented.  From these publications, a small number 

of predictive equations exist but are lacking for all other farmed fish species, including 

gadoids. 

 

Nutritional challenges and opportunities 

The potential for gadoid aquaculture will not come without significant challenges.  

The single largest nutritional challenge appears to be the high cost and shortage of fish 

meal on the global market.  Gadoids are cold-water marine fish that are predominantly 

farmed in countries bordering the North Atlantic such as Canada, Norway, Scotland, 

England and Iceland where their preferred seawater temperatures of 8 to 17°C can be 

ensured (Bøhle 1974; Jobling 1988).  In these cold environments, feed represents the 

largest production cost of marine fish farming (>50%) and protein is the most expensive 

component of these feeds.  Since gadoids in the juvenile grower phase have relatively 

high protein requirements ranging from 45 to 60% of the diet (Lall and Nanton 2002; Lall 

et al. 2003; Rosenlund et al. 2004; Árnason et al. 2010), their diets constitute high 

proportions of fish meals (>65% of the diet), which are currently in high demand as the 

primary protein source in aquafeeds.  Fish meals have been the protein source of choice 
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for the aquaculture industry for several decades due to their superior essential amino acid 

profile, organoleptic properties, n-3 fatty acid content and favorable trace element content 

and high nutrient bioavailability (Kaushik and Seiliez 2010).  However, rising prices, 

dwindling availability and ecological and socio-economic concerns have meant that 

replacement of fish meal in marine fish feeds is now critical.  Approximately 87% of all 

small pelagic fish (e.g. anchovy, herring, mackerel, pilchard, sprat, menhaden, sardine 

and saury) that are captured globally are used to produce fish meal and fish oil that are 

used to feed farmed animals and pets.  A significant proportion (~40%) of these fish 

meals is used directly for the production of compound aquafeeds for fish farming even 

though half of these wild stocks are now deemed as fully exploited (Pauly et al. 2005; 

Tacon and Metian 2009).  Due to the high cost of fish meal ($1000-2000/tonne) and the 

negative impact of fish meal production on wild stocks of these small pelagic fish, 

current formulations used to feed farmed gadoids and other cold-water marine fish are no 

longer sustainable - economically or ecologically.  As such, gadoid farming makes a net 

negative contribution to global fish supplies (Naylor et al. 2000) as does the farming of 

salmonids which currently dominate the cold-water marine aquaculture sector.  

Significant reductions in the use of fish meal in the feeds for cold-water marine fish 

aquaculture is accepted within the aquaculture industry and has become a private and 

public-sector priority (Powell 2003; Gatlin et al. 2007; Lim et al. 2008; Tacon and 

Metian 2008; Koeleman 2009; Naylor et al. 2009; Hardy 2010).  In fact, there are now 

indications that due to the major efforts by the aquaculture industry, salmon farming is 

now approaching marine protein and oil neutrality (Crampton et al. 2010), but additional 

efforts are still needed as gadoid diets are developed. 

Reductions in fish meal use in aquafeeds will not only help marine fish farming 

become more ecologically sustainable but can also assist the global capture fisheries by 

reducing pressure on the already over-exploited wild populations.  In addition to over-

fishing pressures, there are real concerns about entire marine ecosystems collapsing due 

to climate change, ocean warming and increased ocean acidification (Boyce et al. 2010).  

These environmental issues threaten the very base of the marine food chain (e.g. low-

trophic phytoplankton and zooplankton) and it will, undoubtedly, add an additional strain 

on higher-trophic marine fisheries whose very existence depends on healthy ocean 
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ecosystems.  The simple fact is that consumer demand for seafood products like 

salmonids and gadoids continues to grow and the wild capture fishery cannot satisfy this 

demand.  It is noteworthy to point out that contrary to popular belief, the conversion 

efficiency of farmed marine fish is greater than that of their wild counterparts.  Pauly 

(1996) estimated that it takes 4.5 kg of wild small fish to produce 0.45 kg of wild large 

fish (10:1) while studies have shown that farmed marine fish only require 1.8 kg (less 

than 2:1).  This is due to the fact that farmed fish lines are selectively bred for high 

growth rate and good feed conversion efficiency, compound aquafeeds are formulated to 

precisely meet the nutritional needs of the target species with highly digestible, energy-

dense ingredients and farmed fish expend considerably less dietary energy searching for 

food.  The conversion by wild fish per unit of product actually reaching the consumer 

may be even lower than the value reported above given the high amount of wastage that 

is commonly thrown over-board as non-target species by-catch and/or culls from size 

grading that never reach the marketplace (Harrington et al. 2005), yet are killed none-the-

less. 

Regardless of the problems associated with inefficient capture fisheries practices, 

if the marine fish farming sector is to progress towards economic and ecological 

sustainability, fish meal usage must continue to decline through increased use of other 

marine, plant and terrestrial based ingredients (Tacon and Metian 2008).  To effectively 

achieve this goal in gadoid feeds, additional research is needed to gain a better 

understanding of the specific nutrient requirements and digestive capabilities of the major 

farmed gadoids (cod and haddock) during the juvenile grower phase.  This knowledge 

will be required for the further development of new compound feeds for gadoids that 

optimize their economic and environmental sustainability, ensure rapid growth and good 

feed efficiency and promote good fish health, immune response and disease resistance 

(Watanabe 2002; Farrell et al. 2010; Hardy 2010). 

As discussed previously, the culture of gadoids is poised to greatly expand in 

many countries that border the North Atlantic; in particular Canada, Norway, Scotland, 

England and Iceland where production tonnage is expected to equal or surpass that of 

salmonid farming within 2 decades (Rosenlund and Skretting 2006; Standal and Utne 

2007).  This significant production will be accomplished through infrastructure that 
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currently exists for salmonid farming (e.g. farms and feed companies).  Unfortunately, 

the current diet formulations and commercially available feeds for salmonids are not 

likely suitable for feeding gadoids.  As discussed before, gadoids are known to have 

higher protein requirements (45-60%), lower tolerance for dietary lipid (12-16%) and 

cannot utilize high levels of dietary carbohydrates (<17%) (Lall and Nanton 2002; Lall et 

al. 2003; Rosenlund et al. 2004; Árnason et al. 2010).  The most likely cause for the 

higher protein requirement of gadoids is related to the metabolism of dietary lipid.  

Unlike farmed salmonids, farmed gadoids store the major proportion of dietary lipid as 

triacylglycerol (TAG) in the liver (Lie et al. 1986; 1988; Jobling et al. 1991; Dos Santos 

et al. 1993; Morais et al. 2001; Nanton et al. 2001) due to a low lipid transport capability 

(in the form of very low density lipoprotein (VLDL)) from the liver to the muscle and 

other extra-hepatic tissues and low liver lipid catabolic activity (ß-oxidation) in gadoids 

(Nanton et al. 2003).  These concerns of higher protein requirements and lower tolerance 

for dietary lipid and carbohydrate pose considerable nutritional challenges for cost-

effective diet formulation for gadoids. 

 Nutritional development for gadoids does offer some distinct advantages over that 

of salmonids.  Firstly, salmonids must be fed supplemental dietary carotenoids (e.g. 

astaxanthin and canthaxanthin) to obtain the typical reddish pink flesh colour expected by 

the consumer (Choubert et al. 2009, 2010).  These carotenoids are expensive, accounting 

for up to 20% of feed costs or up to 8% of total production costs (Torrissen 1995; Baker 

et al. 2002) and is highly ineffiecient with only about 15% actually becoming deposited 

into the flesh (Buttle et al. 2001).  Since gadoids are white-fleshed fish, carotenoid 

supplementation to the diet is not required and thus represents a significant cost 

advantage.  Secondly, unlike salmonids, the gadoid digestive system shows high levels of 

β-D-N-acetylglucosaminidase activity (Danulat and Kausch 1984; Danulat 1986a,b; 

Gildberg 2004) which enable it to more efficiently break down and access the nutrients 

within benthic invertebrates like crustaceans and echinoderms (Lall and Nanton 2002; 

Morris and Green 2002).  As such, gadoids may effectively digest underutilized chitin-

rich and ash-rich marine proteins sources of lower trophic levels better than salmonids 

(Toppe et al. 2006), which could represent an additional cost advantage.  Moreover, in 

contrast to salmonids, gadoids do not develop intestinal enteritis when fed some 
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terrestrial plant protein sources at high levels in the diet (Refstie et al. 2006; Olsen et al. 

2007; Walker et al. 2010).  Recent data indicates that up to 75% of fish meal can 

effectively be replaced with plant proteins such as soy and wheat gluten with no negative 

effects on feed intake, growth rate, feed conversion efficiency or the expression of genes 

related to cellular stress, protein biosynthesis and energy metabolism (Lie et al. 2011).  

This indicates that the adverse effects of plant-based ANFs on digestion, nutrient 

absorption and fish health (Storebakken et al. 2000; Francis et al. 2001; Krogdahl et al. 

2010) are likely not as severe for gadoids and that these more environmentally 

sustainable ingredients with a lower cost may be used at higher levels than currently 

possible in salmonid feeds.  It is obvious that significant potential exists to reduce the use 

of high-cost fish meals in gadoid diets by replacing fish meal with other more 

economically cost-effective and more environmentally sustainable feed ingredients.  

Although not a nutritional issues per se, the farming of gadoids offers the distinct 

advantages for salmonid farmers that wish to expand their enterprises as production of 

gadoids does not require a freshwater larval/juvenile phase and gadoids possess 

physiological mechanisms (endogenous production of glycerol and anti-freeze 

glycoproteins) that may permit them to be farmed in marine sites not suitable for farming 

salmonids due to low winter water temperatures (Goddard and Fletcher 1994). 

 

Aims of this thesis 

Limited information exists on the nutrient requirements and the digestion, 

absorption and retention efficiencies of dietary protein and energy of various feed 

ingredients and compound feeds when fed to gadoids.  With the rapidly rising demand 

for, and price of, fish meals it is critical to gain a better understanding of how these 

species utilize dietary protein and energy to enable feeds to be formulated with higher 

levels of alternate protein sources to reduce the reliance on fish meals.  The increased use 

of alternate feed ingredients to fish meal can affect the nutrient balance of the finished 

product (Shearer 1994, Kora et al. 1995).  Therefore, this information is not only critical 

for the development of feed formulations that promote rapid growth, efficient nutrient 

utilization and are cost-effective, but also result in fish which have the desirable taste, 

appearance and texture expected by the consumer.  With fish meal supplies more limited 
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than ever before and with increasing environmental, social and market pressures, 

developing nutritionally complete diets for the ‘sustainable’ culture of gadoid fish must 

be done at an unprecedented rate in order to ensure success and achieve the ambitious 

production goals discussed above. 

This thesis presents several studies that were designed to examine the growth 

potential of gadoid fish at the juvenile grower phase fed practical diets, generate new data 

on the digestive capacity of juvenile gadoids fed conventional feed ingredients, 

compound feeds and alternative feed ingredients, build upon some of the known key 

macronutrient requirements of gadoid fish and establish protocols and predictive 

regression equations that can be used for in vitro rapid screening for protein quality of 

feed ingredients, specifically for gadoids.  The schematic below (Figure 5) shows the 

outline of this thesis and the relationships between the various studies and how they are 

linked to each other and build upon one another to address the ultimate research goal of 

gaining a better understanding of protein and energy nutrition of farmed gadoids during 

the juvenile grower phase. 

 

 

 

Figure 5  Thesis outline 

Chapter 1 

General introduction 

Chapters 2 and 3 

In vivo protein and energy digestion studies 

Chapter 4 

Digestible protein/digestible energy ratio study 

Chapters 5 and 6 

In vitro protein digestion studies 

Chapter 7 

General discussion 
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The first part of the thesis (Chapters 2 and 3) focuses on determining the protein 

and energy apparent digestibility coefficients (ADCs) for several feed ingredients fed to 

gadoid fish.  A wide range of feed ingredients including fish meals, zooplankton meals, 

crustacean by-product meals, animal by-product meals and protein meals, concentrates 

and isolates of plant origin (including oilseeds, pulses and grains) were tested.  The data 

from these chapters will provide new information on the digestive capacity of gadoids 

when fed both conventional and non-conventional (alternative) feed ingredients and also 

generated ‘gadoid-specific’ protein and energy ADCs that were not available in the 

published literature.  The ADC values from Chapter 2 were critical in order to formulate 

the experimental diets used to determine the optimum DP/DE ratio further in this thesis 

(Chapter 4).  The results of Chapters 2 and 3 were then further used when generating 

predictive regression equations in Chapter 6.  Lastly, the gadoid-specific protein and 

energy ADCs generated in Chapters 2 and 3 can be used by international aquafeed 

companies when formulating and producing new gadoid feeds and also by other 

researchers conducting nutritional development studies with gadoids. 

The major objective of Chapter 4 was to determine the optimum DP/DE ratio for 

hatchery-reared gadoids during the juvenile grower phase.  Both dietary protein and lipid 

are highly available sources of digestible energy (DE) for gadoids.  However, the use of 

protein as a dietary energy source is undesirable because of the high cost of protein 

relative to the lower cost of non-protein energy sources.  A proper balance of DP and DE 

(DP/DE ratio) is necessary to maintain high growth rates, good feed conversion 

efficiency, improve protein utilization, minimize excessive accumulation of lipid and 

glycogen in the somatic tissues and liver and minimize undesirable nitrogenous waste 

output in fish farm effluents.  Thus, the DP/DE ratio is one of the most important factors 

when defining macronutrient requirements for any farmed fish species and it is clear that 

the requirements for salmonids and other marine fish are not suitable for use in feeds for 

gadoids.  In order to properly examine the effects of feeding diets containing various 

combinations of protein and non-protein energy and to quantify the optimum DP/DE ratio 

for juvenile gadoids, the gadoid-specific protein and energy ADCs from Chapter 2 were 

necessary to precisely formulate the experimental diets used in Chapter 4. 
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Fish, animal and plant by-products are widely available for use as major sources 

of dietary protein in gadoid feeds.  Conventional in vivo methods for assessing their 

protein quality are based on determination of protein ADC as used in Chapters 2 and 3.  

In vitro methods may be more suitable for research and industrial applications as they are 

relatively inexpensive, require less animals and results can be rapidly obtained.  Chapter 

5 was aimed at the development of a working closed-system protocol for producing 

digestive enzyme fractions extracted from gadoid fish, characterization of the major 

serine proteolytic digestive enzyme activities and determination of the most suitable 

substrate concentration [S] to use to measure the in vitro degree of protein hydrolysis 

(DH) of test ingredients.  The methodology developed in Chapter 5 was then applied in 

Chapter 6 to measure the in vitro protein DH of the same test feed ingredients used to 

determine the in vivo protein ADCs in Chapters 2 and 3.  The data generated was then 

used to generate predictive regression equations that are ‘species-specific’ to gadoid fish 

and can be used for rapid screening of protein quality of existing and potentially new feed 

ingredients for the further development of cost-effective and more environmentally 

sustainable feeds for gadoid aquaculture. 
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Chapter 2 

 

 

 

 

 

 

 

 

 

 

Apparent digestibility of common feed ingredients by juvenile 

haddock, Melanogrammus aeglefinus L. 

 

 

 

 

 

 

 

 

 

 

This chapter was published as: 

Tibbetts, S.M., Lall, S.P., Milley, J.E. (2004) Apparent digestibility of common feed 

ingredients by juvenile haddock, Melanogrammus aeglefinus L. Aquaculture Research 

35, 643-651.
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Abstract 

The digestible energy (DE) content and the apparent digestibility coefficients 

(ADCs) of nutrients in common feed ingredients available in Atlantic Canada for 

haddock, Melanogrammus aeglefinus, feed formulations were determined.  Juvenile 

haddock (mean weight, 93.9±2.1g) were held in tanks equipped with fecal collection 

columns and fed practical fish meal-based diets for 5 weeks.  The experimental diets 

consisted of a reference diet and six test diets, each containing 30% test ingredient, with 

all diets being supplemented with chromic oxide (Cr2O3, 5 g/kg) as the inert digestion 

indicator.  Three marine fish by-products, herring meal (HM), shrimp meal (SM) and 

crab meal (CRM) and three plant protein supplements, dehulled soybean meal (SBM), 

canola meal (CAM) and corn gluten meal (CGM) were the test ingredients.  The DE 

content of HM, SBM, CGM, CRM, CAM and SM were 18.3, 17.9, 17.8, 12.4, 10.9 and 

8.3 MJ/kg; respectively.  Protein ADCs were 95.2, 92.4, 92.7, 83.6, 82.8 and 73.1%; 

respectively.  Organic matter ADCs were 96.5, 88.6, 72.5, 68.4, 59.0 and 54.8%; 

respectively.  Lipid ADCs were 97.9, 83.0, 57.4, 62.0, 87.2 and 55.8%; respectively.  

Based upon its high crude protein content and nutrient ADC and DE content, properly 

processed dehulled SBM was found to be a good plant protein supplement to partially 

replace HM in haddock feeds. 

 

Introduction 

Aquaculture of cold-water gadoids, like haddock, Melanogrammus aeglefinus, 

and cod, Gadus morhua, is currently expanding in Atlantic Canada.  Limited information 

exists on their nutrient requirements, digestion, absorption and retention of major 

nutrients and energy utilization from various feed ingredients and complete feeds (Lall 

and Nanton 2002).  In order to select potential feedstuffs for feed formulation for any fish 

species, apparent digestibility coefficients (ADCs) of energy-yielding nutrients (starch 

and sugars, fat, protein, non-starchy polysaccharides) must be measured (Cho and Slinger 

1979; Lall 1991).  Fish meal comprises the main source of protein in salmonid and 

marine fish diets and the nutritional value of various fish meals for salmonids has been 

investigated extensively (Anderson et al. 1993; 1997).  Several factors affect the 

utilization of fish meal and crustacean by-product meals, e.g. characteristics of the raw 
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material (species, freshness, whole fish or scraps, etc.), processing methods, lipid 

peroxidation and storage conditions of the meal (Tarr and Biely 1972; Pike et al. 1990). 

The major by-product of crab and shrimp processing is the shell which contains 

50-80% chitin, an amino polysaccharide (poly-ß-(1→4)-N-acetyl-glucosamine) 

(Muzzarelli 1977), which has almost the same chemical structure as cellulose (Kumar 

2000) and is often incorrectly measured as crude fibre (Calvo-Carrillo et al. 1995).  As a 

result, nitrogen from chitin accounts for 10-15% of the total nitrogen in crab and shrimp 

meals (Li et al. 2000).  Chitin is not digested by salmonids (Lindsay et al. 1984) but it 

appears to be highly digestible (>90%) by cod (Danulat 1987) and possibly haddock. 

Partial replacement of fish meal with plant protein supplements such as dehulled 

soybean meal (SBM), canola meal (CAM) and corn gluten meal (CGM) or complete 

replacement with concentrates from these products has been successful in several 

commercially important salmonid species (Higgs et al. 1995; Kaushik et al. 1995).  

Factors limiting the use of plant protein sources include low protein content, high fibre 

content, amino acid imbalance and the presence of toxins and anti-nutritional factors such 

as trypsin inhibitor in SBM and tannins, sinapin, phytic acid, urucic acid and 

glucosinolates in CAM (Krogdahl 1991).  These components in feed ingredients may 

reduce palatability, reduce protein, lipid and energy digestibility (Olli and Krogdahl 

1995; Van den Ingh et al. 1996) and cause several other undesirable effects when 

incorporated into fish feeds (see reviews of Storebakken et al. 2000; Francis et al. 2001).  

However, plant-based protein sources can provide high-quality protein in fish diets when 

properly incorporated into feed formulas, supplemented with purified amino acids and 

properly heated during feed processing. 

The objective of this study was to determine the ADCs of protein, organic matter 

and lipid and the digestible energy (DE) content of local marine by-products (herring, 

shrimp and crab meals) and plant protein supplements (dehulled SBM, CAM and CGM) 

when included at 30% of the diet for haddock. 
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Materials and methods 

Experimental conditions and fecal sampling 

Haddock juveniles hatched and reared to 275 days post hatch at the NRCC 

Aquaculture Research Station, Institute for Marine Biosciences (Halifax, NS, Canada) 

were used in this study.  One hundred and sixty-eight fish were randomly distributed into 

14, 100-L cylindro-conical fibreglass tanks, each equipped with a fecal collection column 

similar to the Guelph system (Guelph, Ont., Canada) (Cho et al. 1982) and to those used 

by Hajen et al. (1993a).  The fish were acclimated to the tanks and experimental diets for 

10 days prior to the trial.  The experiment was conducted according to a randomized 

block design and replicated twice.  Each of seven experimental diets was fed to two 

tanks, each containing 12 fish.  At the beginning of the experiment, the haddock had an 

initial mean weight of 93.9±2.1g and the biomass density in each tank was approximately 

7 kg/m
3
.  Filtered (60 mm), UV-treated seawater (salinity, 28-30 ppt) was supplied to 

each tank at a flow rate of 2 L/min in a flow-through system and continuously aerated 

(9.5±0.1 mg/L dissolved oxygen).  Water temperature was maintained thermostatically 

(11.5±0.1°C) and monitored every 4 min using a submersible Optic StowAway Temp
TM

 

data logger (Onset Computer Corporation, Bourne, model WTA08, MA, USA).  During 

the 5-week experimental period, fish were hand-fed to apparent satiety three times daily 

during the week (0900, 1300, 1600 hours) and twice daily on weekends (0900, 1300 

hours).  All mortalities were collected, weighed and recorded on a daily basis.  Each 

weekday, after the final feeding (1600 hours), the tanks and fecal collection columns 

were thoroughly cleaned with a brush to remove any residual particulate matter (feces 

and uneaten feed).  There were no fecal collections made on weekends.  Fecal samples 

were collected each morning (0830 hours) into 250 mL plastic bottles, centrifuged (2750 

× g for 35min at 5°C) and the supernatant discarded.  A minimum of 30 g of wet material 

was collected from each tank and each sample was stored in a sealed container at -20°C 

for the duration of the collection period.  Fecal samples were then lyophilized, finely 

ground and kept frozen at -20°C until further analyses. 
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Experimental diets 

A basal diet based on herring meal (HM) (Table1) was formulated according to 

digestible protein (DP) and DE values of feed ingredients for salmonids (NRC 1993).  

The test ingredients included HM, shrimp meal (SM), crab meal (CRM), dehulled 

soybean meal (SBM), canola meal (CAM) and corn gluten meal (CGM) and their 

proximate composition is given in Table 2.  Subsequently, one reference diet and six 

experimental diets (Table 3) were prepared using the basal diet and test ingredient in a 

70:30 percent ratio (w/w basis).  The ingredients of the basal diet and all test ingredients 

were finely ground (<500 µm) using a Fitz mill (Fitzpatrick, Elmhurst, IL, USA) before 

being combined with the remaining feed ingredients.  Micronutrients (vitamins and 

minerals) were pre-mixed with ground wheat as a base, using a twin-shell blender 

(Paterson-Kelly, East Stroudsburg, PA, USA) prior to being added to the main ingredient 

mixture.  All ingredients including the lipid supplement (herring oil) were mixed in a 

Hobart mixer (Model H600T, Rapids Machinery, Troy, OH, USA) and steam-pelleted 

into 3.5-mm pellets (California Pellet Mill, San Francisco, CA, USA).  The pellets were 

dried in an air-convection drier at 30°C to form dry, sinking pellets and stored in air-tight 

containers at -20°C until use.  Diets were screened to remove fines prior to feeding. 

 

Analytical techniques and statistical procedures 

Experimental diets, test ingredients and lyophilized fecal samples were analyzed 

in triplicate using the same procedures.  Moisture was determined by weight loss after 

drying for 24 h at 105°C, ash by incineration in a muffle furnace at 550°C for 24h, crude 

protein (% nitrogen × 6.25) using the Dumas method (Ebeling 1968) using a Leco 

nitrogen determinator (model FP-228, Leco, St. Joseph, MI, USA), gross energy using an 

adiabatic bomb calorimeter (Parr Instrument, Moline, IL, USA), total lipid by ether 

extraction (Tecator Soxtec System HT2 1045 extraction unit, Hoeganaes, Sweden) 

following acid (4 N HCl) hydrolysis (Tecator Soxtec System 1047 hydrolysis unit), 

chromic oxide by chlorine bleach digestion using a micromethod outlined by Suzuki and 

Early (1991), organic matter was calculated by difference (100 - [moisture + ash]) and 

carbohydrate was calculated by difference (100 - [moisture + ash + protein + lipid]). 
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Nutrient ADCs for the reference and test diets were then calculated according to 

Maynard and Loosli (1969).  Using these data, nutrient ADCs were then calculated for 

the test ingredients using the equation of Forster (1999).  Dry matter digestibility was not 

calculated because when feces are collected from fish held in seawater, there is a 

considerable amount of non-dietary ash within the dried feces.  This non-dietary ash 

dilutes the concentrations of all fecal constituents and leads to erroneous results for dry 

matter digestibility; however, its presence in the feces does not affect digestibility 

estimates of other organic nutrients (Grisdale-Helland and Helland 1998). 

Apparent digestibility coefficients were calculated from the average of two 

replicate tanks receiving each experimental diet.  Statistical analyses were performed 

using analysis of variance (ANOVA) and in the case of a significant difference, treatment 

means were differentiated using the Tukey’s multiple range test (SYSTAT
®

 8.0).  All 

data reported as a percentage (ADC data), was arcsine transformed prior to ANOVA.  A 

5% level of probability (P<0.05) was chosen in advance to sufficiently demonstrate a 

statistically significant difference. 

 

Results and discussion 

Apparent digestibility coefficient values (Table 4) and digestible nutrient levels 

(Table 5) of the marine byproducts and plant protein supplements were evaluated.  For 

fish species such as rainbow trout, Oncorhynchus mykiss, Atlantic salmon, Salmo salar, 

coho salmon, Oncorhynchus kisutch, Chinook salmon, Oncorhynchus tshawytscha, 

gilthead seabream, Sparus aurata, European sea bass, Dicentrarchus labrax, red drum, 

Sciaenops ocellatus, and Atlantic cod, protein digestibility in HM is high with ADC 

values ranging from 87 to 98% (Smith et al. 1980; Pfeffer 1982; Lie et al. 1988; Cho and 

Kaushik 1990; Anderson et al. 1992; Hajen et al. 1993b; McGoogan and Reigh 1996; 

Alexis 1997; Gomes da Silva and Oliva-Teles 1998; Sugiura et al. 1998).  Haddock was 

found to digest the protein in HM equally as well or better (95%) than these species.  

Likewise, the energy digestibility of HM determined in this study with haddock (93%) 

falls within the range of 84-98% reported for rainbow trout, Atlantic salmon, gilthead 

seabream and European sea bass (Smith et al. 1980; Cho and Kaushik 1990; Anderson et 

al. 1992; Hajen et al. 1993b; Alexis 1997; Gomes da Silva and Oliva-Teles 1998).  In 
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fact, the DE values for HM measured with rainbow trout (18-19 MJ/kg) (Cho and 

Kaushik 1990; Arzel et al. 1999) and with haddock (18.3 MJ/kg) were virtually the same.  

Our finding on the ADC of lipid in HM with haddock (98%) is in agreement with the 

high values (90-98%) reported for cold-water species like Atlantic salmon, Atlantic 

halibut, Hippoglossus hippoglossus, rainbow trout and Atlantic cod (Lie et al. 1988; Cho 

and Kaushik 1990; Sigurgisladottir et al. 1992; Grisdale-Helland and Helland 1998; 

Berge et al. 1999). 

Crab meal was more digestible than SM with ADC values for organic matter, 

protein, energy and lipid of 68, 84, 83 and 62%, respectively, whereas SM was digested 

at a lower rate in all cases with ADC values of 55, 73, 66 and 56%.  ADC for energy of 

CRM obtained with haddock (83%) was similar to rainbow trout (85%) (Smith et al. 

1980).  The ADC for energy in SM measured in haddock, however, was low at 66% (DE 

= 8 MJ/kg).  Information on energy ADC of SM measured in other fish species is scarce; 

however, similar DE values (9-10 MJ/kg) have been reported for shrimp (Somsueb 

1993).  The protein ADC for CRM was higher for haddock (84%) than rainbow trout 

(72%) (Smith et al. 1980) and may be due to a large difference in ash content of the CRM 

between the two studies.  Typical ash content of CRMs are as high as 41% (Tacon 1987; 

Johnson 1988; Van Lunen and Anderson 1990), whereas the CRM used in this study had 

much lower ash content (27%).  This higher protein ADC value obtained with haddock 

may also be due to the utilization of chitin.  Haddock, like cod, may indeed possess 

substantial chitinase activities in their stomach, pyloric caeca and intestine that are not 

present in other fish species (Danulat 1986a,b).  In the case of rainbow trout, chitin 

digestibility has been shown to be extremely poor (<5%) (Lindsay et al. 1984).  The 

apparent higher capacity of haddock to digest chitin compared with other fish species 

would support our previous observations (Unpublished results) of improved growth rate, 

feed efficiency and reduced hepatosomatic index in haddock with the addition of 4.7% 

dietary chitin. 

The plant protein supplements that were the most digestible were CGM and SBM 

with organic matter ADC values of 73 and 89%, respectively, and protein ADC values of 

93 and 92%, respectively.  Organic matter and protein ADCs for CAM were lower (59 

and 83% respectively).  The most digestible plant protein supplement, in terms of dietary 
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energy, was SBM (92%) followed by CGM (81%), whereas the energy in CAM was 

poorly digested (60%).  The ADC for CGM (81%) falls within the range reported for 

rainbow trout (72-87%) (Smith et al. 1980; Cho and Kaushik 1990) and is the same 

(80%) as that reported for gilthead seabream (Alexis 1997).  The value for SBM (92%) 

exceeds those reported for rainbow trout (66-82%), Atlantic salmon (72-80%), gilthead 

seabream (45%), European sea bass (69-70%), Murray cod, Maccullochella peeliii peelii 

(58%) and red drum (38%) (Smith et al. 1980; Cho and Kaushik 1990; McGoogan and 

Reigh 1996; Alexis 1997; Gomes da Silva and Oliva-Teles 1998; Storebakken et al. 

1998; De Silva et al. 2000; Refstie et al. 2000).  Lipid ADC in SBM and CAM were 83 

and 87%, respectively, which falls within the range reported for rainbow trout of 83-94% 

(Austreng et al. 1980; Cho et al. 1982; Hilton and Slinger 1986; Cho and Kaushik 1990) 

but are higher than reported for Atlantic salmon (71%) by Refstie et al. (2000).  Lipid 

content of CGM was low (<2%) and the ADC was also low (57%) compared with other 

test ingredients. 

Dehulled SBM and CGM were utilized significantly better than all other 

alternative ingredients tested in this study with average protein ADC and DE contents of 

92-93% and 18 MJ/kg, respectively.  These values are close to, or equal to, those of HM 

at 95% and 18 MJ/kg, respectively.  In comparison with rainbow trout (Cho and Kaushik 

1990), CGM is equally as good a source of DE for haddock (both at 18 MJ/kg) with ADC 

values of 81% reported for both species (Cho and Slinger 1979; Arzel et al. 1999).  On 

the other hand, SBM was a superior source of DE for haddock (18 MJ/kg) than for 

rainbow trout (13 MJ/kg) and other species (11-14 MJ/kg) (Smith et al. 1980; Cho and 

Kaushik 1990; Arzel et al. 1999; Hertrampf and Piedad-Pascual 2000).  In terms of 

dietary protein, these two ingredients were well utilized by haddock in comparison with 

other important fish species (salmonids, bass, rockfish, seabream) having a range of 

protein ADCs (with our value for haddock) for CGM and SBM of 82-97% (93%) and 75-

97% (92%) respectively (Cho and Slinger 1979; Smith et al. 1980; Pfeffer 1982; Cho and 

Kaushik 1990; Hajen et al. 1993b; Nengas et al. 1995; Alexis 1997; Lupatsch et al. 1997; 

Refstie et al. 1997; Gomes da Silva and Oliva-Teles 1998; Sugiura et al. 1998; 

Yamamoto et al. 1998; Lanari et al. 1999; Small et al. 1999; Refstie et al. 2000; 

Papatryphon and Soares Jr 2001; Lee 2002). 
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The results suggest that CAM was poorly utilized by haddock with an organic 

matter ADC of 59%, which was similar to values reported for Chinook salmon (54-59%) 

(Hajen et al. 1993b).  Protein ADC of CAM was also lower (83%) than the other plant 

ingredients and, in fact, the values reported for rainbow trout (Hilton and Slinger 1986), 

turbot (Burel et al. 2000) and haddock were the same at 83%.  Burel et al. (2000) also 

reported that heat-treating of CAM increased its protein ADC from 83 to 92% for turbot 

but this would increase the cost to the product.  It appears that haddock utilize the energy 

in CAM (11 MJ/kg) at the same rate as Chinook salmon and rainbow trout (11 MJ/kg) 

(Smith et al. 1980; Anderson et al. 1992).  This corresponds to a fairly low energy ADC 

value of about 60% for all three species.  Much discrepancy exists on energy ADC in 

CAM for rainbow trout with values ranging from very low to moderate (45-75%) (Cho et 

al. 1982; Hilton and Slinger 1986; Cho and Kaushik 1990).  Energy ADC for haddock 

and Australian silver perch, Bidyanus bidyanus, were also similar at 60 and 58% 

respectively (Allan et al. 2000).  Lipid ADC values reported for CAM in rainbow trout 

(92%) are high (Cho et al. 1982; Hilton and Slinger 1986) and similar to that reported 

here for haddock (87%).  Like SM, the CAM used in this study was high in ash (7%) and 

fibre (11%), compared with averages of 4% (ash) and 4% (fibre) for the other plant 

ingredients.  Mwachireya et al. (1999) concluded that high levels of fibre have the 

greatest adverse effects on digestibility of canola products for rainbow trout and this also 

seems to be the underlying reason for low digestibility in haddock, turbot and most other 

species examined. 

 

Conclusions 

Due to high crude protein content, nutrient ADC and DE content, properly 

processed dehulled SBM is a good plant protein supplement to partially replace HM in 

haddock feeds.  The relatively high DP and DE content, low ash content and good feed 

attractant properties makes properly processed CRM a good marine fish by-product 

alternative to partially replace HM in haddock diets.  Future research should be directed 

to verify the chitin digestibility and to determine the amino acid availability of CRM and 

to further improve the processing conditions that will retain free amino acids and their 

associated feed attractant properties.  SM and CAM have limited potential for use in 
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haddock diets due to their high ash and fibre contents, low DE content and poor organic 

matter and protein ADC values.  Additional effort is needed to improve the processing of 

these feed ingredients to increase the digestibility and nutritive value of these products. 
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Table 1 Composition of the basal diet (without oil) 

 

Ingredient    g/kg 

 

Herring meal (70% CP)
a
  460.0 

Wheat gluten meal
b
   50.0 

CPSP-G
c
    50.0 

Wheat middlings
b
   187.0 

Whey powder
d
    70.0 

Corn starch (pre-gel)
e
   61.0 

Vitamin pre-mix
f
   19.5 

Mineral pre-mix
g
   19.5 

Choline chloride
h
   3.0 

Total     920.0 

a
Corey Feed Mills (Fredericton, NB, Canada). 

b
Dover Mills (Halifax, NS, Canada). 

c
Concentre proteique soluble de poisson (soluble fish protein concentrate) (Sopropêche, France). 

d
Farmers Co-operative Dairy (Truro, NS, Canada). 

e
National Starch and Chemical (Bridgewater, NJ, USA). 

f
Vitamin A, 8000 IU; vitamin D3, 4500 IU; vitamin E, 300 IU; vitamin K3, 40 mg/kg; thiamin, 50mg/kg; 

riboflavin, 70 mg/kg; pantothenate, 200 mg/kg; biotin, 1.5 mg/kg; folic acid, 20 mg/kg; vitamin B12, 0.15 

mg/kg; niacin, 300 mg/kg; pyridoxine, 20 mg/kg; ascorbic acid, 300 mg/kg; inositol, 400 mg/kg; butylated 

hydroxy toluene, 15 mg/kg; butylated hydroxy anisole, 15 mg/kg. 

g
Manganous sulphate, 40 mg/kg; ferrous sulphate, 30 mg/kg; copper sulphate, 5 mg/kg; zinc sulphate, 75 

mg/kg; sodium selenite, 1 mg/kg; cobalt chloride, 2.5 mg/kg; sodium fluoride, 4 mg/kg. 

h
US Biochemical (Cleveland, OH, USA). 
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Table 2 Proximate composition of the six experimental feed ingredients 

 

Nutrient (as-fed basis)  Herring
 

Crab  Shrimp  Soybean
 

Canola  Corn gluten
 

    meal
a
  meal

b
  meal

c
  meal

a
  meal

d
  meal

a 

 

Moisture (%)     8.5    8.5    5.8    6.6  11.4    7.5 

Ash (%)   14.4  26.7  37.7    5.7    6.9    1.4 

Organic matter
e
 (%)  77.1  64.8  56.5  87.7  81.7  91.1 

Crude protein (%)  69.7  50.3  40.6  46.3  38.3  65.8 

Lipid (%)   10.2    7.1    4.5    5.5    3.8    1.8 

Carbohydrate
f
 (%)    0.0    7.4  11.4  35.9  39.6  23.5 

Gross energy (MJ/kg)  19.8  15.0  12.5  19.5  18.2  22.1 

 

a
Corey Feed Mills (Fredericton, NB, Canada). 

b
St Laurent Gulf Products (Caraquet, NB, Canada). 

c
Island Fisherman’s Co-op (Lemeque, NB, Canada). 

d
Canbra Foods (Lethbridge, AB, Canada). 

e
Organic matter = 100 - (moisture + ash). 

f
Carbohydrate = 100 - (moisture + protein + lipid + ash).
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Table 3 Formulation of the seven experimental diets 

 

Ingredient (g/kg)    Herring Crab  Shrimp  Soybean Canola  Corn gluten 

    Reference meal  meal  meal  meal  meal  meal 

 

Basal diet   915.4  615.4  615.4  615.4  615.4  615.4  615.4 

Test ingredient  0.0  300.0  300.0  300.0  300.0  300.0  300.0 

Herring oil   79.6  79.6  79.6  79.6  79.6  79.6  79.6 

Chromic oxide   5.0  5.0  5.0  5.0  5.0  5.0  5.0 

Total    1000.0  1000.0  1000.0  1000.0  1000.0  1000.0  1000.0 

 

Analysis (as-fed basis) 

Moisture (%)   10.3  9.5  8.3  7.7  9.3  9.0  8.8 

Ash (%)   9.1  10.5  13.3  16.3  8.2  8.2  6.6 

Crude protein (%)  44.2  51.1  46.5  42.4  43.7  41.0  49.6 

Lipid (%)   13.9  14.1  13.4  14.0  13.7  12.9  14.1 

Carbohydrate
a
 (%)  22.5  14.8  18.5  19.6  25.1  28.9  20.9 

Gross energy (MJ/kg)  20.6  20.9  19.9  19.0  20.8  20.5  21.7 

 

a
Carbohydrate = 100 - (moisture + protein + lipid + ash).
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Table 4 Apparent digestibility coefficients (%) of major nutrients in the six experimental 

feed ingredients
1 

 

Ingredient  Organic matter Energy  Protein  Lipid 

 

Herring meal  96.5±2.7
a
  92.6±3.8

a
 95.2±0.6

a
 97.9±1.3

a
 

Crab meal  68.4±4.9
bc

  82.7±0.8
b
 83.6±0.8

b
 62.0±4.6

b
 

Shrimp meal  54.8±7.4
d
  66.2±3.9

c
 73.1±1.7

c
 55.8±3.4

b
 

Soybean meal  88.6±3.4
a
  92.0±2.2

a
 92.4±1.6

a
 83.0±6.0

a
 

Canola meal  59.0±2.6
cd

  60.1±1.2
d
 82.8±1.7

b
 87.2±1.6

a
 

Corn gluten meal 72.5±0.6
b
  80.8±1.1

b
 92.7±0.3

a
 57.4±2.9

b 

1
Values within each column having different superscript letters are significantly different (P<0.05). 
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Table 5 Total and digestible contents
1
 of major nutrients in the six experimental feed 

ingredients (as-fed basis) 

   Organic  

Ingredient  matter (%) Energy (MJ/kg) Protein (%) Lipid (%) 

Herring meal 

Total   77.1  19.8   69.7  10.2 

Digestible  74.4  18.3   66.4  10.0 

 

Crab meal 

Total   64.8  15.0   50.3    7.1 

Digestible  44.3  12.4   42.0    4.4 

 

Shrimp meal 

Total   56.5  12.5   40.6    4.5 

Digestible  31.0    8.3   29.7    2.5 

 

Soybean meal 

Total   87.7  19.5   46.3    5.5 

Digestible  77.7  17.9   42.8    4.6 

 

Canola meal 

Total   81.7  18.2   38.3    3.8 

Digestible  48.2  10.9   31.7    3.3 

 

Corn gluten meal 

Total   91.1  22.1   65.8    1.8 

Digestible  66.0  17.8   61.0    1.0 

1
Digestible nutrient content = total nutrient content × ADC, where ADC is the apparent digestibility 

coefficient.
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Chapter 3 

 

 

 

 

 

 

 

 

Apparent protein and energy digestibility of common and 

alternative feed ingredients by Atlantic cod, Gadus morhua 

(Linnaeus, 1758). 

 

 

 

 

 

 

 

 

 

 

 

This chapter was published as: 

Tibbetts, S.M., Milley, J.E., Lall, S.P. (2006) Apparent protein and energy digestibility of 

common and alternative feed ingredients by Atlantic cod, Gadus morhua (Linnaeus, 

1758). Aquaculture 261, 1314-1327. 
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Abstract 

Studies were conducted with Atlantic cod, Gadus morhua (L.), to determine the 

apparent digestibility coefficients (ADCs) of protein and energy and the digestible energy 

(DE) content in feed ingredients widely available in Canada.  We also tested the 

assumption of “independency” used in digestibility studies.  The feed ingredients 

included two fish meals (herring, anchovy), one zooplankton meal (whole krill), two 

crustacean by-product meals (crab, shrimp), two animal by-product meals (poultry by-

product, hydrolyzed feather), six oilseed meals (soybean, soy protein concentrate, soy 

protein isolate, canola, canola protein concentrate, flaxseed), two pulse meals (white 

lupin, pea protein concentrate) and two cereal grain meals (corn gluten, wheat gluten).  

Protein ADCs were high for wheat gluten meal (99.9%), soy protein concentrate (98.6%), 

soy protein isolate (97.4%), whole krill meal (96.3%), herring meal (93.3%), soybean 

meal (92.3%), anchovy meal (92.2%), pea protein concentrate (89.8%), white lupin meal 

(89.7%), crab meal (89.4%), canola protein concentrate (88.8%) and corn gluten meal 

(86.3%); mid-range for poultry by-product meal (80.2%) and canola meal (76.0%); and 

low for shrimp meal (66.7%), hydrolyzed feather meal (62.4%) and flaxseed meal (50.2–

55.0%).  Energy ADC was high for whole krill meal (96.3%), wheat gluten meal 

(95.4%), soy protein concentrate (94.9%), herring meal (92.8%), soy protein isolate 

(92.1%), soybean meal (88.1%) and anchovy meal (86.4%); mid-range for canola protein 

concentrate (83.3%), corn gluten meal (82.7%), crab meal (82.4%), pea protein 

concentrate (76.7%) and white lupin meal (75.3%); and low for poultry by-product meal 

(71.0%), canola meal (60.6%), hydrolyzed feather meal (58.9%), shrimp meal (41.4%) 

and flaxseed meal (21.2–37.4%).  From the protein ADC data, results clearly showed that 

the basal diet and test feed ingredients were digested independently of one another in 

nearly all cases, the only exceptions being for those diets containing test ingredients of 

very high (>99%, wheat gluten) or very low (<67%, hydrolyzed feather and flaxseed) 

protein ADCs.  In the case of DE, the basal diet and test feed ingredients were digested 

independently in all test diets without exception. 
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Introduction 

In recent years, marine culture of gadoids has expanded in Eastern Canada and 

Western Europe.  The production of species like Atlantic cod is expected to reach 140–

180,000 tonnes by the year 2010 (Rosenlund and Skretting 2006).  These fish are known 

to have a high protein requirement (50–60%) (Lall et al. 2003; Rosenlund et al. 2004) but 

limited information is available on digestion of major nutrients and energy from various 

feed ingredients (Tibbetts et al. 2004; Kim et al. 2006).  Selection of potential ingredients 

for feed formulation for any fish species requires knowledge of the apparent digestibility 

coefficients (ADCs) of energy-yielding nutrients (starch and sugars, fat, protein, non-

starchy polysaccharides).  Fish meal provides the main source of protein in salmonid and 

marine fish diets.  The nutritional value of various fish meals for salmonids grown in 

Canada has been investigated extensively (Anderson et al. 1997; Lall and Anderson 

2005).  World-wide fish meal use for aquafeeds will reach 4 million tonnes by 2015, 

representing >66% of the expected global supply (New and Wijkström 2002). With this 

ever-growing demand for high-quality fish meals, fish feeds must increasingly be 

formulated with alternate protein sources from marine, animal or plant origin that are 

both economical and highly digestible (see review of Hardy 1996).  The use of these 

alternatives in on-growing diets must still be able to support similar fish performance 

and, concurrently, have little or no adverse effects upon fish health and the environment. 

Several factors can affect protein quality and the nutrient profile of fish, 

zooplankton, crustacean and animal by-product meals.  These include characteristics of 

the raw material (species, freshness, whole animal or scraps), processing of the raw 

ingredients such as the drying process and temperature, lipid peroxidation and storage 

conditions of the meal (Pike 1991).  The major by-product of crustacean processing is the 

shell which contains 50–80% chitin, an amino polysaccharide (poly-β-(1→4)-N-acetyl-

glucosamine).  The natural diet of cod consists of >37% chitin-rich crustaceans and 

echinoderms including crabs, shrimps and brittle stars (see Lall and Nanton 2002).  Cod 

naturally produce significant concentrations of the digestive enzyme chitinase (Danulat 

and Kausch 1984) and in vivo chitin digestibility may be as high as 90% for cod (Danulat 

1987).  Accordingly, crustacean by-products have been identified as good candidates to 
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replace fish meal in diets for Atlantic cod (Toppe et al. 2006).  At the same time, 

crustacean by-product meals are usually high in ash content (>20%), which can adversely 

affect digestibility of fish feeds (NRC 1993). 

Poultry by-product and hydrolyzed feather meals are produced from the wastes 

generated by the poultry processing industry.  Production processes are similar to that of 

fish meal with an extra Ca(OH)2 digestion in the production of hydrolyzed feather meal.  

These animal by-product meals are generally high in crude protein (60–80%); however, 

they tend to be methionine deficient.  Poultry by-product meal can also be high in ash 

(>15%) as a result of high bone content and is often variable in proximate composition.  

Protein digestibility can be quite low for hydrolyzed feather meal due to high levels of 

keratin (Dong et al. 1993; Hardy and Barrows 2002). 

Partial replacement of fish meal with plant protein supplements or complete 

replacement with concentrates from these products has been successful in several 

commercially important salmonid species (Higgs et al. 1995; Kaushik et al. 1995) and 

turbot (Regost et al. 1999).  Factors limiting the use of plant protein sources include low 

protein content, high fiber content, an amino acid imbalance, poor palatability and the 

presence of anti-nutritional factors or toxicants (e.g. protease inhibitors, lectins, phytic 

and/or erucic acid, sinapin, saponins, phytoestrogens, alkaloids, tannins, cyanogens, 

glucosinolates).  These factors adversely affect digestion, absorption, physiological 

utilization of protein and amino acids, lipids and fatty acids and minerals and cause 

several other undesirable effects when incorporated into fish feeds (see review of Francis 

et al. 2001).  Plant-based protein sources, however, can provide high nutritional value in 

fish diets when properly incorporated into feed formulations, supplemented with purified 

amino acids and feed attractants and properly heated during feed processing.  

Unfortunately, many of the modified plant-based feed ingredients (protein concentrates, 

isolates and glutens) become cost-prohibitive in least-cost ration formulations (Hardy 

1996). 

The objectives of the present study were to: (1) determine the apparent 

digestibility coefficients (ADCs) of protein and energy and the digestible energy (DE) 

content of a wide range of feed ingredients available in Canada including fish meals, 

zooplankton meals, crustacean by-product meals, animal by-product meals and plant-
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based meals when included at 30% in the diet for Atlantic cod and (2) test the assumption 

that the basal mix portion of the test diet (70%) and the test feed ingredient (30%) are 

digested independently of one another (Cho et al. 1982). 

 

Materials and methods 

Fish 

Atlantic cod juveniles were cultured at the NRCC Institute for Marine 

Biosciences, Marine Research Station (Halifax, Nova Scotia) for use in this study.  Three 

hundred and sixty of these fish (89.9±4.0 g average weight) were temperature acclimated 

in a single 2000 L circular fiberglass tank with flow-through (30 L/min), filtered (30 μm) 

seawater (salinity, 28–30 ppt).  Temperature acclimation involved a gradual increase in 

water temperature (0.5°C per day) from 4 to 12°C over a 3-week period.  During this 

period, the fish were hand-fed EWOS™ 5.0 mm Marine Feed (EWOS Canada, Surrey, 

BC, Canada) twice daily (0900 and 1600 h) to apparent satiation.  The proximate 

composition (as-fed basis) of this diet was: moisture 63 g/kg, crude protein 551 g/kg, 

lipid 119 g/kg, ash 106 g/kg, and gross energy 21 MJ/kg. 

 

Experimental diets 

A practical, fish meal-based basal diet (Table 1) was formulated according to 

digestible protein (DP) and digestible energy (DE) values of feed ingredients for haddock 

(Tibbetts et al. 2004).  Seventeen experimental diets were subsequently produced 

containing a mixing ratio (w/w basis) of basal diet (69.75%) and test feed ingredient 

(29.75%).  One additional diet containing 99.5% basal diet with no test feed ingredient 

was also produced and served as the reference diet.  All 18 experimental diets were 

supplemented with chromic oxide (Cr2O3, 5 g/kg) as the inert digestion indicator 

(Austreng 1978). 

The test feed ingredients consisted of two fish meals (herring, anchovy), one 

zooplankton meal (whole krill), two crustacean by-product meals (crab, shrimp), two 

animal by-product meals (poultry by-product, hydrolyzed feather), six oilseed meals 

(soybean, soy protein concentrate, soy protein isolate, canola, canola protein concentrate, 

flaxseed), two pulse meals (white lupin, pea protein concentrate) and two cereal grain 
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meals (corn gluten, wheat gluten).  Their international feed number, proximate 

composition, gross energy content and supplier are given in Table 2.  Dry ingredients of 

the basal diet and all test feed ingredients were finely ground (<800 μm) using a Perten 

Laboratory Mill (Model 3100, Perten Instruments, Huddinge, Sweden).  Micronutrients 

(vitamins and minerals) were pre-mixed with ground wheat as a base, using a twin-shell 

blender (Paterson-Kelly, East Stroudsburg, PA, USA) prior to being added to the main 

ingredient mixture.  All ingredients were mixed in a Hobart mixer (Model H600T, Rapids 

Machinery Co., Troy, OH, USA) and steam pelleted into 4.0 mm pellets (California 

Pellet Mill Co., San Francisco, CA, USA).  The pellets were dried in a forced-air drier at 

80°C for 90 min to form dry, sinking pellets and stored in air-tight containers at −20°C 

until use.  Diets were screened to remove fines prior to feeding. 

 

Digestibility system and fecal collection 

After the 3-week temperature acclimation, the fish were randomly distributed into 

a digestibility system consisting of 12 tanks (120 L capacity) each equipped with a fecal 

collection column (Figure 1), which was a modification of the Guelph system (Cho et al. 

1982).  The modifications were made in order to (1) utilize a single, circular fiberglass 

tank as the experimental unit rather than triple, grouped rectangular tanks and (2) increase 

the rate and quantity of fecal recovery by repositioning the fecal collection column 

directly below the drain at the bottom of the tank.  This modification increased the 

efficiency of fecal settlement by eliminating any requirement for horizontal flow.  A gate 

valve was installed at the connection between the tank and the fecal collection column so 

that the column could be isolated from the effluent water and removed from the system 

for cleaning at the end of each day without any disruption in water flow to the fish. 

The fish were acclimated to these tanks and the experimental diets for 2 weeks 

prior to beginning the trial.  The experiment was conducted according to a randomized 

block design and replicated twice.  Each of the 18 experimental diets was fed to two 

tanks, each containing 30 fish with an initial mean weight of 89.9±4.0 g.  Filtered (30 

μm), UV-treated seawater (salinity, 28–30 ppt) was supplied to each tank at a flow rate of 

3 L/min in a flow through system and continuously aerated (8.6±0.8 mg/L dissolved 

oxygen; 91±6% gas saturation).  The water temperature was maintained thermostatically 
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(11.9±0.2 °C) and monitored daily.  The rearing temperature of 12°C is within the 

preferred zone of 9–17°C for Atlantic cod where gastric evacuation rate, appetite and 

feeding rates are maximized (Jobling 1988).  During the 10-week experimental period, 

fish were hand-fed to apparent satiety 3 times daily during the week (0900, 1300, 1600 h) 

and twice daily on weekends (0900, 1300 h).  Any dead or moribund fish were collected, 

weighed and recorded on a daily basis.  Each week-day, after the final feeding (1600 h), 

the tanks and fecal collection columns were thoroughly cleaned with a brush to remove 

any residual particulate matter (feces and uneaten feed).  There were no fecal collections 

made on weekends.  Fecal samples were collected each morning (0830 h) into 250 mL 

plastic bottles, centrifuged (4000 rpm [2750 × g] for 20 min at 4°C) and the supernatant 

carefully decanted and discarded.  Approximately 17–18 h elapsed between the last 

feeding and the fecal collection.  A minimum of 40 g of wet material was collected from 

each tank (20 g at each of 2 consecutive collection periods) and each sample was stored 

in a sealed container at −20°C for the duration of the collection period.  Fecal samples 

were lyophilized, finely ground and stored at −20°C until further analyses. 

 

Analytical techniques, calculations and data analyses 

Test feed ingredients, experimental diets and lyophilized fecal samples were 

analyzed in duplicate using the same procedures.  Moisture was determined by drying in 

an oven at 105°C for 18 h and ash by incineration in a muffle furnace at 550°C for 18 h 

(Woyewoda et al. 1986).  Crude protein (% nitrogen × 6.25) was measured by the Dumas 

method (Ebeling 1968) using a Leco nitrogen determinator (Model FP-528, Leco 

Corporation, St. Joseph, MI, USA).  Total lipid was determined using a modified Bligh 

and Dyer (1959) method.  Organic matter was calculated by difference (100 − [moisture 

+ ash]) and carbohydrate was calculated by difference (100 − [moisture + ash + protein +  

lipid]).  Gross energy was measured using an isoperibol oxygen bomb calorimeter (model 

6200, Parr Instrument Company, Moline, IL, USA) equipped with a Parr 6510 water 

handling system for closed-loop operation.  Chromic oxide content of experimental diets 

and fecal samples was determined by flame atomic absorption spectrophotometry using 

an AAnalyst 300 atomic absorption spectrophotometer (Perkin-Elmer, Norwalk, CT, 
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USA) following a microwave acid digestion procedure as described by Peach (2005, pp. 

52–54) using a Multiwave sample preparation platform system (Perkin-Elmer, Norwalk, 

CT, USA). 

Diet digestibility (% dry matter digestibility) for the reference and test diets was 

calculated as follows: 

Diet digestibility (%) = 100 − (100 × [Cr2O3 diet/Cr2O3 feces]) 

 

Apparent digestibility coefficients (ADCs) of protein and energy for the reference 

and test diets were calculated according to Maynard et al. (1979 p. 41) as follows: 

% ADC = 100 − (100 × [Cr2O3 diet/Cr2O3 feces] × [nutrient feces/nutrient diet]) 

 

Using these data, protein and energy ADCs for the single test feed ingredients 

were calculated according to Forster (1999). 

% ADC = ([a + b] × ADC test diet − [a] × ADC reference diet) × b
−1

 

a = nutrient contribution of reference diet to nutrient content of test diet 

b = nutrient contribution of test ingredient to nutrient content of test diet 

 

To calculate the predicted test diet ADC, the following formula was used: 

Test diet protein ADC or DE = ([0.7 × reference diet protein ADC or DE] 

+ [0.3 × test ingredient protein ADC or DE]) 

 

Mean protein and energy ADC (or DE) ± standard error (SE) were calculated 

from the average of 2 replicate tanks receiving each experimental diet.  Statistical 

analyses were performed using analysis of variance, ANOVA (SYSTAT
®

 8.0) with a 5% 

level of probability (P<0.05) selected in advance to sufficiently demonstrate a statistically 

significant difference. 

 

Results and discussion 

Composition of test feed ingredients 

The proximate composition and gross energy content of the 17 test feed 

ingredients are reported in Table 2 along with their international feed numbers.  The 
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moisture content of the feed ingredients ranged between 5 and 12%.  The crude protein 

(68 and 75%) and lipid (10%) content of the fish meals are in the typical range of 55– 

75% and 5–10%, respectively (Hardy 1996).  The ash values were as expected with 

herring meal at 10% and anchovy meal at 16% (NRC 1993).  Since herring meal contains 

higher protein and lower ash than anchovy meal, the gross energy content of the herring 

meal was about 2 MJ/kg higher than anchovy meal (21 vs. 19 MJ/kg).  The krill meal 

used in this study was produced by finely grinding (<800 μm) whole freeze-dried krill 

(Euphausia superba) and thus the proximate composition was quite different from that 

found in commercially produced krill meals.  The earlier work of Storebakken (1988) 

reported a proximate composition of 62% crude protein, 12% lipid, 16% ash and 5% 

chitin in krill.  Typically, krill meals produced from various species contain in the range 

of 33–55% protein, 15–20% lipid and 15–28% ash (Hardy and Barrows 2002).  The 

whole krill meal used here contained considerably higher protein (72%), lower lipid (5%) 

and had an ash content within the range reported (17%).  The crab meal used in this study 

was provided by a local company that has made significant improvements in processing 

of Atlantic snow crab (Chionoecetes opilio) over the years.  Crab meals typically contain 

32% protein and 41% ash (NRC 1993) while the crab meal used in this study had a much 

higher protein (54%) and lower ash (23%) content.  The crude protein (37%) and lipid 

(3.5%) contents of the shrimp meal were close to expected (Hardy 1996; NRC 1993), 

whereas the ash content was very high (38%).  Most shrimp meals typically contain 18–

27% ash (Hardy 1996; NRC 1993).  The poultry by-product meal used in this study 

contained 15% lipid, 11% ash and 66% crude protein.  Typically, poultry by-product 

meals contain 58–60% protein and 14–16% ash (Hardy 1996; Hardy and Barrows 2002).  

The hydrolyzed feather meal contained the expected (80–85%) protein level (83%) but 

higher levels of lipid (8%) and ash (4%) where typical levels are 5 and 3%, respectively 

(NRC 1993; Hardy and Barrows 2002).  The composition of soybean meal and canola 

meal were as expected at 47 and 39% protein, 2 and 3% lipid and 6 and 7% ash, 

respectively (Hardy 1996).  Canola and soy protein concentrates are typically high (55–

80%) in protein (Hardy 1996) and the products used in this study were in that range (61 

and 69%, respectively).  As expected, the protein content of the soy protein isolate was 

much higher at 86%.  Further processing of these plant-based ingredients increased the 
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gross energy (MJ/kg) contents (soybean meal [17], soy protein concentrate [19], soy 

protein isolate [21] and canola meal [18], canola protein concentrate [19]).  The pea 

protein concentrate used in this study was an air-classified protein concentrate and 

contained higher protein (49%) than regular pea meals which contain <25% protein 

(Hardy 1996).  The white lupin meal contained 38% protein, which is in the typical range 

(35–43%) for dehulled lupin seeds (Hardy 1996).  Both pulse meals contained relatively 

high lipid (4 and 6%), low ash (3 and 5%) and high gross energy (19 MJ/kg), which is 

comparable to some fish meals and other plant protein concentrates.  Crude protein and 

lipid content of the corn gluten meal were slightly higher than typically reported (62 and 

4%) and may be the result of the slightly lower ash (1%) content (NRC 1993).  The wheat 

gluten meal used in this study was typically high (79%) in protein (Hardy 1996) and very 

low in lipid (2%) and ash (0.5%).  The flaxseed meal was produced by finely grinding 

(<800 μm) flaxseed press-cake and it contained relatively low amounts of protein (<31%) 

and high carbohydrate (43%), which was similar to canola meal (45%).  It should be 

noted that differences in proximate composition of test feed ingredients do exist from 

batch to batch given the variations in the season of harvest/catch of the raw materials and 

processing conditions used by various production plants.  In addition to differences in 

their proximate composition, differences in digestibility also occur in feed ingredients 

that appear to be the same.  These effects and also the effect of fecal collection method on 

ADC values will be discussed further. 

 

Survival and feed acceptance 

Over the 10-week experimental period, fish survival was high on all diets (96–

100% survival).  It was observed that all diets were accepted equally well by the fish with 

the exception of diets containing zooplankton meals, crustacean by-product meals and 

pea protein concentrate.  The zooplankton and crustacean meals induced a positive 

feeding response.  The diet containing pea protein concentrate was not readily accepted 

by the fish.  This can likely be attributed to the presence of soyasaponin 1 which occurs 

naturally in peas and is described as having a bitter, astringent and metallic flavor (Price 

et al. 1985). 
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Test diet composition and digestibility 

The proximate composition, gross energy content and dry matter diet digestibility 

of the experimental diets are shown in Table 3.  All diets had moisture contents in the 

range of 8 to 10%.  Protein and energy content ranged from 44 to 61% and from 18 to 21 

MJ/kg, respectively and reflected the protein and energy contents of the test ingredients.  

The ash content was in the range of 5 to 11% for the experimental diets with the 

exception of the diet containing shrimp meal (15%).  Digestibility of the reference diet 

was 76% and most test diets were similar to or higher than that value (range, 73–81%), 

with the exceptions of test diets containing white lupin meal, hydrolyzed feather meal, 

canola meal, shrimp meal and flaxseed meal (range, 53–71%).  This is likely due to high 

levels of ash (>38%) in shrimp meal, carbohydrate (>40%) in canola, flaxseed and white 

lupin meals and keratin protein in hydrolyzed feather meal.  There were 2 consecutive 

fecal collection periods for fish fed all experimental diets and ADCs of each diet at the 2 

collection periods were compared by ANOVA.  No significant differences (P>0.05) 

between collection periods, with the exception of the diet containing flaxseed meal were 

observed; accordingly, data for periods 1 and 2 were pooled for the remaining 17 

experimental diets.  For the diet containing flaxseed meal, there was a significant period 

effect (P<0.05) where the diet ADC for period 1 was 53% but had significantly improved 

to 59% by period 2.  As a result, all further data analysis for this diet was treated 

separately and denoted as flaxseed meal (period 1) and flaxseed meal (period 2), 

respectively.  The flaxseed meal used in this study was not a commercial product, rather 

it was prepared in our lab by finely grinding press cake after oil extraction and was not 

dehulled.  This product likely was quite high in indigestible fiber (essentially “bulk”), 

which promoted a laxative effect and had a pronounced effect on fecal output, as has 

been observed with European seabass (Dias et al. 1998).  Thus, it is not surprising that 

diet digestibility was low.  The significant increase in diet ADC from 53% in period 1 to 

59% in period 2 indicates that the fish gut microflora may have adapted to this dietary 

stressor by increasing in population in the presence of the elevated level of dietary fiber, 

however, there is no evidence in the literature to support this claim.  If these fish were 

kept on this diet for a longer period of time, it is doubtful that the diet ADC would 
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continue to improve significantly given the cold-water, carnivorous nature of Atlantic 

cod. 

 

Fish meals 

Protein ADCs for the fish meals were high (Table 4).  The value for herring meal 

(93%) is similar to that previously reported for haddock (Melanogrammus aeglefinus) 

(95–96%) (Tibbetts et al. 2004; Kim et al. 2006) and salmonids such as rainbow trout 

(Oncorhynchus mykiss), Atlantic salmon (Salmo salar), coho salmon (Oncorhynchus 

kisutch) and Chinook salmon at 89–96% (Anderson et al. 1997; Hajen et al. 1993; 

Sugiura et al. 1998; Burel et al. 2000; Cheng and Hardy 2002).  The value for anchovy 

meal (92%) is similar to those reported for salmonid species, which is in the range of 86–

94% (Anderson et al. 1995; Hajen et al. 1993; Sugiura et al. 1998, 2000; Thiessen et al. 

2004; Glencross et al. 2005).  Protein ADCs of fish meals measured with cod are also 

similar to those reported for turbot (Psetta maxima), seabass (Dicentrarchus labrax) and 

Atlantic halibut (Hippoglossus hippoglossus) at 91–96% (Gomes da Silva and Oliva-

Teles 1998; Burel et al. 2000; Peach 2005).  Energy ADCs for the fish meals were also 

high (herring meal, 93% and anchovy meal, 86%) and are in the same range as those 

reported for the species mentioned above (88–99%).  As noted previously, differences in 

ADC values of feed ingredients do occur frequently and are usually the result of species 

differences, variations in the season of harvest/catch of the raw materials and processing 

conditions used by various production plants.  We have no control over these factors in 

the present study as only one sample of each feed ingredient was used.  In addition, 

differences can occur due to procedures used by various laboratories including fecal 

collection method, ADC equation used and variations in the formulation of the reference 

diet.  With regard to the fecal collection method and ADC equation used, it is well 

documented that procedures involving manually stripping, anal suction or dissection 

cause significant stress to the animal and likely result in fecal samples contaminated with 

non-fecal nutrients (digestive enzymes, bodily fluids, sloughed epithelial cells, etc.).  

Fecal samples obtained by these methods tend to underestimate ADC while methods 

involving settlement, siphoning or screening may overestimate ADC due to leaching 

losses.  The method we chose to use involved the use of a settlement column like the one 



71 

 

used on the original Guelph system where Cho et al. (1982) reported no significant losses 

due to leaching.  In addition, our modified tank design further reduced the likelihood of 

leaching losses by increasing fecal recovery time.  Variability in ADC values is also due 

to the use of different equations to calculate ADC.  Recently, Forster (1999) concluded 

that the traditional equation used to calculate ADC (Cho et al. 1982) is flawed and, thus, 

the ADC literature for fish contains values calculated by various equations.  In a 

preliminary work, we have confirmed the use of Forster's equation for our work with cod 

(Tibbetts et al. 2006).  While much of the data cited in this paper for comparison would 

likely have been calculated using the traditional equation, the differences are typically 

very small and not significant, but may partly explain some of the variation presented 

especially for feed ingredients of low digestibility. 

 

Zooplankton and crustacean by-product meals 

Protein ADCs were high for whole krill (96%) and crab (89%) meals and low for 

shrimp meal (67%).  Although little published information exists for krill meal 

digestibility in fish, a lower value (87%) has been reported for rainbow trout (Vens-Capel 

and Horstmann 1978 in Storebakken 1988) and is likely due to differences in product 

quality.  Although a different product, the protein ADC of krill hydrolysate was found to 

be almost the same (98%) in Atlantic halibut (Peach 2005).  The 2% higher protein ADC 

observed in halibut may be due to the lack of chitin present in krill hydrolysates, 

regardless, the protein ADC of whole krill meal by cod is very high.  Protein ADC of 

crab meal measured in this study with cod (89%) is similar to that of Atlantic halibut 

(88%) and both are higher than reported previously in our lab with haddock (84%) 

(Tibbetts et al. 2004).  This is likely the result of improved production protocols now 

employed by the crab meal manufacturer as mentioned earlier.  The low protein ADC 

reported here for shrimp meal (67%) is similar to our previous report with haddock (73%) 

and both are lower (82%) than that reported for Atlantic halibut (Tibbetts et al. 2004; 

Peach 2005).  The discrepancy between haddock/cod and other species may be due to the 

unusually high ash content of the shrimp meal sample used in these studies.  As such, 

digestibility of shrimp meal by gadoids may have to be re-examined with alternate 

shrimp meal sources.  Energy ADC was high for whole krill meal (96%), mid-range for 
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crab meal (82%) and low for shrimp meal (41%).  The value reported for whole krill 

meal (96%) is consistent with that reported for krill hydrolysate (97%) by Atlantic halibut 

(Peach 2005).  The energy ADC for crab meal in cod fully agrees with that reported for 

haddock (83%) but the value for shrimp meal (41%) is significantly lower than those 

reported for haddock and halibut at 66–75% (Tibbetts et al. 2004; Peach 2005). 

 

Animal by-product meals 

Protein ADCs were mid-range for poultry by-product meal (80%) and low for 

hydrolyzed feather meal (62%).  Animal by-product meals are highly variable in 

proximate composition based upon several factors (raw material source and freshness, 

production processes and storage) and, as such, the reported values for protein ADC are 

also highly variable in fish studies.  Protein ADC values reported for poultry by-product 

meal for salmonids (Hajen et al. 1993; Sugiura et al. 1998; Bureau et al. 1999; Cheng 

and Hardy 2002; Cheng et al. 2004) and Atlantic halibut (Peach 2005) are in a wide 

range of 74–96%.  Our value reported for cod (80%) is within this range and also 

consistent with that reported (80%) for gilthead seabream (Sparus aurata) (Lupatsch et 

al. 1997).  Protein ADC of hydrolyzed feather meal is higher for salmonids at 71–87% 

(Hajen et al. 1993; Sugiura et al. 1998, 2000; Bureau et al. 1999; Cheng et al. 2004) than 

that reported here for cod (62%) but similar to that reported for Atlantic halibut (58%) 

(Peach 2005).  The highly variable nature of animal by-product meals is also reflected in 

energy ADC where the values reported for the species listed above are also highly 

variable for poultry by-product meal (65–91%) and hydrolyzed feather meal (57–85%).  

Our values for poultry by-product meal (71.0%) and hydrolyzed feather meal (58.9%) are 

consistent with those reported for Chinook salmon at 72% and 57%, respectively (Hajen 

et al. 1993).  The energy ADC of hydrolyzed feather meal is also similar to that of 

Atlantic halibut at 62% (Peach 2005). 

 

Oilseed meals 

Protein ADC was high for soybean meal (92%), soy protein concentrate (99%) 

and soy protein isolate (97%).  Digestibility of soybean meal has been extensively studied 

with various fish species and although there is a broad range reported on the protein ADC 
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(76–98%), the value found here for cod (92%) is consistent with those reported for 

rainbow trout (92%), coho salmon (93%) and haddock (92%) (Glencross et al. 2005; 

Sugiura et al. 1998; Tibbetts et al. 2004).  Similarly, there is a wide range of values (61–

92%) reported for energy ADC for the above species (Hajen et al. 1993; Lupatsch et al. 

1997; Gomes da Silva and Oliva-Teles 1998; Morales et al. 1999; Lee 2002; Cheng and 

Hardy 2003; Peach 2005; Glencross et al. 2005; Tibbetts et al. 2004) although the value 

found for cod (88%) agrees with haddock (88%) (Kim et al. 2006).  The protein ADC of 

soy protein concentrate for cod (99%) is consistent with those reported for rainbow trout 

(98%) and Atlantic halibut (100%) while the energy ADC (95%) is slightly higher than 

those of rainbow trout (87%) and Atlantic halibut (92%) (Glencross et al. 2005; Peach 

2005).  The protein ADC of soy protein isolate for cod (97%) is close to that reported for 

rainbow trout (98%) while the energy ADC (92%) is slightly lower than that of rainbow 

trout (96%) (Glencross et al. 2005).  Clearly, concentrating soybean meal into 

concentrates/isolates has a positive effect on digestibility and may be attributed to a 

reduction in anti-nutritional factors associated with raw soybean meal.  This has been 

confirmed with rainbow trout, Atlantic salmon and Atlantic halibut where no negative 

effects on fish growth performance were observed with diets containing relatively high 

levels of soy protein concentrate (Kaushik et al. 1995; Storebakken et al. 1998a, 1998b; 

Berge et al. 1999).  However, given that protein and energy digestibility of soybean meal 

is already high for cod (92 and 88%, respectively), further processing significantly 

increases cost of the products and therefore may not provide any additional benefit on a 

price per digestible nutrient basis.  The use of these ingredients in commercial cod feeds 

will require growth studies and a full economic evaluation in a least-cost ration 

formulation.  Interestingly, it was recently found that, in contrast to salmon, cod do not 

develop enteritis when soybean meal is included at high levels in the feed, which is very 

promising, given the high dietary protein requirement of cod (Rosenlund and Skretting 

2006). 

Protein ADC was mid-range for canola meal (76%) and high for canola protein 

concentrate (89%).  For canola meal, this value is lower than other fish species which are 

in the range of 83–95% (Hajen et al. 1993; Mwachireya et al. 1999; Burel et al. 2000; 

Cheng and Hardy 2002; Tibbetts et al. 2004; Peach 2005) but the value for canola protein 
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concentrate (89%) is consistent with rainbow trout (90%) reported by Thiessen et al. 

(2004).  The energy ADC of canola meal for cod (61%) is in the range (52–76%) 

reported for salmonids and halibut (Anderson et al. 1992; Hajen et al. 1993; Mwachireya 

et al. 1999; Burel et al. 2000; Cheng and Hardy 2002; Peach 2005) and was similar 

(60%) to haddock (Tibbetts et al. 2004).  The energy ADC for canola protein concentrate 

is relatively unknown for most fish species with the exception of rainbow trout (reported 

value of 86%, Thiessen et al. 2004), which is higher than the value obtained for cod 

(83%).  Like soybean meal, further processing of canola meal to produce canola protein 

concentrate had a positive effect on both protein ADC (canola protein concentrate 89% > 

canola meal 76%) and energy ADC (canola protein concentrate 83% > canola meal 61%).  

However, it appears that ash is also concentrated to a relatively high level (>10%) which 

is roughly double that of the soy products and, hence, the digestibility of energy of canola 

protein concentrate is marginal.  The use of canola products in cod and haddock (Tibbetts 

et al. 2004) diets agrees with those of Burel et al. (2000) on rainbow trout and turbot, that 

despite much progress in genetic engineering and processing technologies, the potential 

use of rapeseed and canola-derived meals at higher levels in carnivorous fish feeds may 

not be feasible.  Protein and energy ADCs of flaxseed meal by cod were low.  Although 

there is little data for comparison among cold-water fish species, the values are better for 

protein (81%) and energy (63%) for rohu (Labeo rohita) (Hossain et al. 1997), which is 

not surprising given the warm water preference of that species.  The product used in that 

study was a commercial product with a higher protein and lower fiber and carbohydrate 

content, while the flaxseed meal we used was produced in our lab by finely grinding 

flaxseed press-cake after oil extraction.  This product contained seed hulls which 

contributed high levels of indigestible fiber to the experimental diet.  When incorporated 

at 30% of the diet, it likely increased the dietary fiber (bulk) concentration to a level that 

induced a laxative effect.  As a result of the increased gut transition rate, a pronounced 

effect on fecal output was observed with the flaxseed diet.  Increased dietary “bulk” 

content caused a significantly increased fecal egestion time in European seabass as well 

(Dias et al. 1998).  Undoubtedly, this was the cause of poor digestibility of other nutrients 

and energy, an observation supported by Mwachireya et al. (1999) who found that high 

levels of dietary fiber had an adverse effect on nutrient digestibility. 
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Pulse meals 

Protein ADC was high for pulse meals (90% for both) and mid-range for energy 

ADC (pea protein concentrate, 77% and white lupin meal, 75%).  The protein ADCs of 

the pulse meals (90%) are consistent with those reported for rainbow trout (Morales et al. 

1999; Burel et al. 2000; Glencross et al. 2003, 2005; Thiessen et al. 2003).  The protein 

ADC of pea protein concentrate is also similar to turbot (93%) but lower for white lupin 

meal where a higher value (98%) has been reported (Burel et al. 2000).  The higher 

protein digestibility is likely due to the fact that the lupin meal used by Burel et al. (2000) 

was finely ground and then extruded, whereas, lupin meal used here was finely ground 

but not processed.  Energy ADC of pea protein concentrate was highly variable (54–87%) 

for rainbow trout (Burel et al. 2000; Thiessen et al. 2003) but there is good agreement 

between the value for cod (77%) and that of turbot (78%) by Burel et al. (2000).  Like 

pea protein concentrate, the reported energy ADC values for white lupin meal are highly 

variable (52–77%) for rainbow trout (Morales et al. 1999; Burel et al. 2000; Glencross et 

al. 2003, 2005) but the value for cod (75%) falls within this range.  The extruded lupin 

meal used by Burel et al. (2000) also led to higher energy ADC by turbot (85%) as 

compared to cod (75%).  There appears to be some potential for the use of pulse meals in 

marine fish diets, but they should be pre-extruded to increase the digestibility of non-

protein components and, in the case of pea protein concentrate, should be produced by 

wet-milling to reduce the levels of soyasaponin 1 that may present off-flavors in the diet. 

In a comprehensive review of pea proteins, Owusu-Ansah and McCurdy (1991) noted 

that the major drawback of pea protein supplemented products was the objectionable 

flavor and that further investigation was needed, especially with the concentrates.  Since 

feed intake was reduced in fish receiving the pea protein concentrate diet and it is well 

known that a reduction in feed intake can elevate the level of metabolic fecal nitrogen, 

overcoming the palatability problems may reveal the protein ADC to be even higher than 

reported here (90%). 

 

Cereal grain meals 

Protein ADC was high for corn gluten meal (86%) and mid-range for energy 

ADC (83%).  The reported protein ADC values for salmonids (87–97%) are slightly 
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higher than our value (86%) for cod (Anderson et al. 1992; Yamamoto et al. 1997, 1998; 

Sugiura et al. 1998; Morales et al. 1999; Cheng and Hardy 2003; Thiessen et al. 2004) 

while it was similar to those reported for other marine fish (79–93%) like haddock, 

seabream and Atlantic halibut (Yamamoto et al. 1998; Tibbetts et al. 2004; Peach 2005).  

Although there is some variation in the reported energy ADC values (76–91%) for 

rainbow trout (Morales et al. 1999; Cheng and Hardy 2003; Thiessen et al. 2004), our 

value for cod (83%) was within that range and similar to those recently reported for 

haddock (81%) and Atlantic halibut (85%) (Tibbetts et al. 2004; Peach 2005).  It has 

been reported that corn gluten meal can effectively replace up to one-third of the fish 

meal in diets for turbot (Regost et al. 1999) and there is good potential for its use in cod 

diets, provided there are no adverse effects of xanthophylls present to pigment the flesh.  

Protein ADC was high for wheat gluten meal (100%) as was energy ADC (95%).  These 

values are consistent with those reported for Atlantic salmon, coho salmon, rainbow trout 

and European seabass with protein ADC of 100–101% and energy ADC of 98% (Sugiura 

et al. 1998; Robaina et al. 1999; Storebakken et al. 2000).  The use of wheat gluten meal 

in the diet for Atlantic salmon has proven, not only to be equal to that of fish meal, but in 

many cases, superior to using fish meal alone.  In a comprehensive study with Atlantic 

salmon, Storebakken et al. (2000) found no differences in growth of fish fed diets 

containing 17% wheat gluten meal (35% of total dietary protein) compared to a diet 

containing fish meal as the only protein source.  They showed that partial replacement of 

fish meal with wheat gluten meal led to increased protein, fat and energy ADCs as well 

as availability of amino acids (except alanine and lysine).  With such high digestibility, 

lack of anti-nutritional factors and no offensive taste, wheat gluten meal, properly 

supplemented with certain amino acids, shows significant potential as a fish meal 

replacement in cod diets.  However, like all plant protein concentrates, economics of feed 

production will need to be considered. 

 

Test diet independency 

For digestibility data of single feed ingredients to be useful in least-cost ration 

formulations, it is assumed that the protein ADC or DE content of the single feed 

ingredient and the protein ADC or DE content of the basal mix portion of the diet are 
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independent of one another (Cho et al. 1982).  If this assumption is true, then the 

calculated (or predicted) protein ADC or DE content of a test diet and the actual 

measured protein ADC or DE content of the test diet would always be the same.  This 

assumption has been tested and validated for other species like rainbow trout, channel 

catfish, carp, tilapia, ayu, seabass, Australian silver perch and Australian shortfinned eel 

(Cho et al. 1982; Wilson and Poe 1985; Cho and Kaushik 1990; Watanabe et al. 1996a, 

1996b; da Silva and Oliva-Teles 1998; Allan et al. 1999; Engin and Carter 2002) but yet 

to be validated for Atlantic cod.  We compared the predicted and measured values in 

order to test this assumption using a wide range of test feed ingredients (Tables 5 and 6). 

For the protein ADC data, our results clearly show that this assumption was true for 

virtually all test diets, with the only exceptions being for those diets containing test 

ingredients of very high (>99%, wheat gluten) or very low (<67%, hydrolyzed feather 

and flaxseed) protein ADCs.  In terms of DE, the assumption was true for all test diets 

without exception.  The correlation between measured and predicted values was very 

high (Pearson correlations of 0.95 for protein ADC and 0.99 for DE).  It would appear 

that for the rare feed ingredient where independency does not hold true, the poor 

digestibility of that particular ingredient would warrant its exclusion from diet 

formulation. 

 

Conclusions 

This study has identified several highly digestible (>92% protein ADC and >85% 

energy ADC) feed ingredients for Atlantic cod on-growing diets, including fish meals, 

soy-based products, whole krill and wheat gluten meal.  Other ingredients with some 

potential include pulse meals, crab meal, corn gluten meal and canola protein concentrate 

(85–90% protein ADC and 75–85% energy ADC).  Due to high levels of poorly 

digestible components (ash, fiber, carbohydrate and keratin), poultry and feather by-

products, canola, shrimp and flaxseed meals may have limited value as feed ingredients 

for Atlantic cod diets. 
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Table 1 Formulation and proximate composition of the basal diet (as-fed basis) 

 

Ingredient    g/kg 

 

Herring meal (76.9% CP)
a
  480.0 

Wheat gluten meal (80.1% CP)
b
 50.0 

CPSP-G (73.2% CP)
c
   50.0 

Wheat middlings (17.9% CP)
d
 168.0 

Whey powder (10.4% CP)
e
  70.0 

Krill hydrolysate (57.7% CP)
f
 20.0 

Corn starch (pre-gel)
g
   56.0 

Vitamin mixture
h
   19.5 

Mineral mixture
h
   19.5 

Choline chloride
i
   3.0 

Herring oil
j
    64.0 

 

Proximate composition (n=2) 

Moisture (g/kg)   100.5 

Crude protein (g/kg)   487.5 

Lipid (g/kg)    120.6 

Ash (g/kg)    63.1 

Carbohydrate
k
 (g/kg)   228.3 

Gross energy (MJ/kg)   20.5 
 

a
 St. Laurent Gulf Products Limited (Caraquet, NB, Canada). 

b
 Roquette UK Limited (Northants, UK). 

c
 Concentre proteique soluble de poisson (soluble fish protein concentrate) (Sopropêche, France). 

d
 Dover Mills Limited (Halifax, NS, Canada). 

e
 Farmers Co-operative Dairy (Truro, NS, Canada). 

f
 SD-KH2, MaraVision Marine Products (Vancouver, BC, Canada). 

g
 National Starch and Chemical Company (Bridgewater, NJ, USA). 

h
 Vitamin and mineral premixes according to Tibbetts et al. (2004). 

i
 USB Corporation (Cleveland, OH, USA). 

j
 Corey Feed Mills Limited (Fredericton, NB, Canada). 

k
 Calculated as 1000 − (moisture + crude protein + lipid + ash).
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Table 2 Proximate composition and gross energy content (as-fed basis) of the test feed ingredients (n=2) 

 

   International feed  Moisture Crude protein Lipid Ash Carbohydrate
a
 Gross energy  

    number   (g/kg)  (g/kg)  (g/kg) (g/kg) (g/kg)  (MJ/kg) 

 

Fish meals 

Herring meal
b  

5-02-000  70.8  745.4  101.3 104.4 0.0  20.8 

Anchovy meal
c  

5-01-985  77.8  683.2  95.8 157.6 0.0  19.1 

 

Zooplankton and crustacean by-product meals 

Whole krill meal
d  

5-16-423  47.7  723.9  52.9 175.5 0.0  18.8 

Crab meal
e  

5-01-663  91.3  540.4  57.1 227.3 83.9  15.8 

Shrimp meal
f  

5-04-226  62.3  372.3  34.8 383.8 146.8  12.4 

 

Animal by-product meals 

Poultry by-product meal
g 

5-03-798  50.2  663.4  145.7 107.6 33.1  22.0 

Hydrolyzed feather meal
g 

5-03-795  58.0  835.0  79.4 38.1 0.0  22.7 

 

Oilseed meals 

Soybean meal
h  

5-04-612  113.7  473.1  20.4 59.8 333.0  17.4 

Soy protein concentrate
i 

5-08-038  79.0  686.6  3.1 51.1 180.2  19.0 

Soy protein isolate
i  

–   76.4  855.7  44.0 44.7 0.0  21.2 

Canola meal
j  

5-06-145  63.1  389.1  26.5 71.0 450.3  18.2 

Canola protein concentrate
j 

–   47.5  614.5  27.3 103.5 207.2  19.4 

Flaxseed meal
k  

–   120.5  309.9  95.1 46.3 428.2  18.8 
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Table 2 (continued) Proximate composition and gross energy content (as-fed basis) of the test feed ingredients (n=2) 

 

   International feed  Moisture Crude protein Lipid Ash Carbohydrate
a
 Gross energy  

    number   (g/kg)  (g/kg)  (g/kg) (g/kg) (g/kg)  (MJ/kg) 

 

Pulse meals 

Pea protein concentrate
l 

–   72.1  489.8  40.7 49.0 348.4  18.5 

White lupin meal
m  

–   74.5  384.9  62.1 34.2 444.3  18.9 

 

Cereal grain meals 

Corn gluten meal
h  

5-28-242  110.1  616.2  42.6 9.9 221.2  20.9 

Wheat gluten meal
n  

–   73.9  793.1  19.0 5.0 109.0  22.6 

 
a
 Calculated as 1000 − (moisture + crude protein + lipid + ash). 

b
 Scotia Garden Seafood Incorporated (Yarmouth, NS, Canada). 

c
 Sindicato SA, Grupo Sipesa (Lima, Peru). 

d
 Aqion (Colorado Springs, CO, USA). 

e
 St. Laurent Gulf Products Limited (Caraquet, NB, Canada). 

f
 Island Fisherman's Co-Op (Lemeque, NB, Canada). 

g
 Rothsay (Dundas, ON, Canada). 

h
 Bunge Canada (Oakville, ON, Canada). 

i
 Soycomil

®
 and Pro-Fam

®
, respectively; Archer Daniels Midland (Decatur, IL, USA). 

j
 MCN BioProducts Incorporated (Saskatoon, SK, Canada). 

k
 Bioriginal Food and Science Corporation (Saskatoon, SK, Canada). 

l
 Parrheim Foods (Portage La Prairie, MB, Canada). 

m
 Alberta Department of Agriculture (AB, Canada). 

n
 Roquette UK Limited (Northants, UK).
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Figure 1 Modified digestibility system used in this study (GV = gate valve; FCC = fecal collection column; EW = effluent water). 
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Table 3 Proximate composition, gross energy content (as-fed basis, n=2) and diet digestibility (mean ± SE, n=4, ranked highest to 

lowest) of the reference and test diets 

 

Moisture Crude protein  Ash  Gross energy  Diet ADC 

(g/kg)  (g/kg)   (g/kg)  (MJ/kg)  (%) 

Wheat gluten meal   90.7  595.3   50.1  21.1   81.1±0.5 

Whole krill meal   89.3  560.8   98.4  20.0   80.2±0.4 

Soy protein isolate   94.2  611.2   63.9  20.6   79.8±1.1 

Herring meal    91.7  570.9   80.4  20.5   79.0±0.1 

Soy protein concentrate  91.1  559.6   65.3  20.0   77.4±0.4 

Anchovy meal    94.4  566.9   95.2  19.8   77.3±0.6 

Corn gluten meal   100.2  535.6   53.1  20.5   77.0±0.4 

Reference    100.1  493.9   69.7  20.4   76.0±0.7 

Soybean meal    100.4  483.7   68.5  19.6   75.5±0.6 

Canola protein concentrate  83.5  542.2   80.8  20.0   74.9±0.4 

Crab meal    94.8  507.8   109.3  19.2   74.5±0.2 

Poultry byproduct meal  81.8  548.5   82.9  20.8   73.3±1.2 

Pea protein concentrate  87.9  495.1   65.9  19.9   72.7±0.3 

White lupin meal   89.6  456.0   60.1  20.0   70.8±0.6 

Hydrolyzed feather meal  83.0  599.3   60.4  21.1   68.4±0.7 

Canola meal    88.4  468.6   70.7  19.8   66.8±0.6 

Shrimp meal    85.4  463.3   154.1  18.2   60.9±0.5 

Flaxseed meal (period 2)  102.7  439.5   63.2  19.9   58.8±0.1 

Flaxseed meal (period 1)            52.7±0.3
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Table 4 Apparent digestibility coefficients (%) for protein and energy and the DE content 

(MJ/kg) of 17 common and alternate test feed ingredients and the reference diet for 

Atlantic cod 

 

Ingredient   Protein ADC  Energy ADC  DE
a
 

 

Reference diet   91.2   80.7   16.5 

 

Fish meals 

Herring meal   93.3±0.6  92.8±0.1  19.3±0.0 

Anchovy meal   92.2±0.5  86.4±0.7  16.5±0.1 

 

Zooplankton and crustacean by-product meals 

Whole krill meal  96.3±0.6  96.3±0.6  18.1±0.1 

Crab meal   89.4±0.7  82.4±0.7  13.0±0.1 

Shrimp meal   66.7±1.4  41.4±4.0  5.1±0.5 

 

Animal by-product meals 

Poultry by-product meal 80.2±0.7  71.0±1.1  15.6±0.2 

Hydrolyzed feather meal 62.4±0.3  58.9±0.3  13.3±0.1 

 

Oilseed meals 

Soybean meal   92.3±1.5  88.1±0.3  15.3±0.1 

Soy protein concentrate 98.6±0.6  94.9±0.3  18.0±0.1 

Soy protein isolate  97.4±0.6  92.1±0.8  19.5±0.2 

Canola meal   76.0±1.6  60.6±1.7  11.0±0.3 

Canola protein concentrate 88.8±0.4  83.3±0.3  16.1±0.1 

Flaxseed meal (period 1) 50.2±1.6  21.2±0.3  4.0±0.1 

Flaxseed meal (period 2) 55.0±1.1  37.4±0.1  7.0±0.0 

 

Pulse meals 

Pea protein concentrate 89.8±0.8  76.7±0.3  14.2±0.1 

White lupin meal  89.7±3.8  75.3±1.3  14.3±0.2 

 

Cereal grain meals 

Corn gluten meal  86.3±1.0  82.7±0.7  17.2±0.1 

Wheat gluten meal  99.9±0.3  95.4±0.7  21.5±0.2 

 

Values are mean ± SE (n=4 except for flaxseed meal where n=2). 
a
 As-fed basis. 
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Table 5 Apparent digestibility coefficients (ADC) for protein of the test diets—

comparison of measured vs. predicted values for determination of independency 

 

Test diet   Diet protein ADC 

Measured Predicted  P-value 

 

Fish meal diets 

Herring meal   92.0±0.2 91.8±0.2  0.55 

Anchovy meal   91.6±0.2 91.5±0.2  0.79 

 

Zooplankton and crustacean by-product meal diets 

Whole krill meal  93.2±0.2 92.7±0.2  0.20 

Crab meal   90.6±0.2 90.7±0.2  0.90 

Shrimp meal   85.2±0.3 83.9±0.4  0.05 

 

Animal by-product meal diets 

Poultry by-product meal 87.8±0.7 88.4±0.6  0.51 

Hydrolyzed feather meal 78.2±0.8
a
 82.0±0.6

b
  0.01 

 

Oilseed meal diets 

Soybean meal   91.5±0.4 91.5±0.4  0.99 

Soy protein concentrate 94.0±0.2 93.4±0.2  0.08 

Soy protein isolate  92.8±1.1 92.3±0.8  0.74 

Canola meal   87.3±0.4 86.6±0.5  0.32 

Canola protein concentrate 89.9±0.5 90.1±0.4  0.77 

Flaxseed meal (period 1) 79.7±1.7
a
 75.1±2.4

b
  0.03 

Flaxseed meal (period 2) 83.5±0.2
a
 80.4±0.3

b
  0.02 

 

Pulse meal diets 

Pea protein concentrate 90.3±0.6 90.3±0.6  1.00 

White lupin meal  90.8±1.0 90.8±1.1  0.96 

 

Cereal grain meal diets 

Corn gluten meal  89.5±0.4 89.8±0.3  0.62 

Wheat gluten meal  94.8±0.1
a
 93.8±0.1

b
  0.00 

 

Values are mean ± SE (n=4 except for flaxseed meal where n=2); values within same row having 

different superscript letters are significantly different (P<0.05). 
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Table 6 Digestible energy (DE) content of the test diets — comparison of measured vs. 

predicted values for determination of independency 

 

Test diet    Diet DE 

Measured Predicted  P-value 

 

Fish meals 

Herring meal    19.0±0.0 19.0±0.0  0.34 

Anchovy meal    18.1±0.1 18.2±0.0  0.79 

 

Zooplankton and crustacean by-product meals 

Whole krill meal   18.6±0.1 18.5±0.0  0.28 

Crab meal    17.2±0.0 17.1±0.0  0.38 

Shrimp meal    14.5±0.2 14.4±0.2  0.88 

 

Animal by-product meals 

Poultry by-product meal  17.8±0.2 17.7±0.1  0.63 

Hydrolyzed feather meal  16.8±0.1 17.0±0.0  0.21 

 

Oilseed meals 

Soybean meal    17.8±0.1 18.0±0.0  0.20 

Soy protein concentrate  18.6±0.0 18.7±0.0  0.63 

Soy protein isolate   19.2±0.2 19.1±0.1  0.80 

Canola meal    16.3±0.1 16.3±0.1  0.89 

Canola protein concentrate  17.7±0.1 17.9±0.0  0.13 

Flaxseed meal (period 1)  14.2±0.0 14.1±0.0  0.74 

Flaxseed meal (period 2)  15.2±0.0 15.2±0.0  0.21 

 

Pulse meals 

Pea protein concentrate  17.3±0.1 17.4±0.0  0.34 

White lupin meal   17.3±0.1 17.4±0.1  0.42 

Cereal grain meals 

Corn gluten meal   18.6±0.1 18.6±0.0  0.74 

Wheat gluten meal   19.9±0.1 19.8±0.1  0.33 

 

Values are mean ± SE (n=4 except for flaxseed meal where n=2). 
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Chapter 4 

 

 

 

 

 

 

 

Effects of dietary protein and lipid levels and DP/DE
 
ratio on 

growth, feed utilization and hepatosomatic index of juvenile 

haddock, Melanogrammus aeglefinus L. 
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Abstract 

Juvenile haddock, Melanogrammus aeglefinus L. (initial weight, 13.5 ± 0.1 g) 

were fed practical diets containing digestible protein to digestible energy (DP/DE) ratios 

of 25–30 g DP/MJ DE as-fed using three protein levels (450, 500 and 550 g/kg) each at 

two lipid levels (110 and 160 g/kg) for 63 days.  The results showed mean weight gain 

and feed conversion ratio were highest for diets containing 28.5 and 30.2 g DP/MJ DE.  

DP/DE ratio had no significant effect on protein efficiency ratio except at the lowest level 

(24.7 g DP/MJ DE) indicating a protein sparing effect of higher lipid when dietary 

protein is below the requirement.  Haddock appears to preferentially use protein as the 

prime source of DE.  DP/DE ratio had little effect on apparent digestibility (AD) of 

protein while AD of lipid was significantly affected.  Significant differences in AD of 

energy and organic matter were found to be inversely related to the carbohydrate level of 

the diet.  DP/DE ratios of 28.5 g DP/MJ DE or lower resulted in significantly higher 

hepatosomatic indexes.  The highest whole-body nitrogen gains and energy retention 

efficiencies were achieved at 28.5 and 30.2 g DP/MJ DE, whereas only slight differences 

in nitrogen retention efficiencies were observed.  The highest levels of energy retained in 

the form of protein were achieved at 28.5 and 30.2 g DP/MJ DE.  The diet that provided 

the best growth, feed utilization and digestibility with minimal HSI contained 546 g/kg 

protein (513 g/kg DP), 114 g/kg lipid, 164 g/kg carbohydrate, 17.0 MJ/kg DE and a 

DP/DE ratio of 30.2 g DP/MJ DE. 

 

Introduction 

Haddock aquaculture is a relatively new industry in Atlantic Canada and Europe 

and information on nutrient utilization and dietary requirements are limited (Lall et al. 

2003).  Initial studies with haddock show a protein requirement of 500–540 g/kg on a dry 

matter basis for juveniles (Kim and Lall 2001; Kim et al. 2001), a phosphorous 

requirement of 9.6 g/kg on an as-fed basis (Roy and Lall 2003) and that haddock 

efficiently utilize nutrients from common feed ingredients available in Atlantic Canada 

(fish meals, plant protein supplements, crustacean by-product meals) (Tibbetts et al. 

2004).  Unlike salmonids, gadoids like haddock store the major proportion of dietary 

lipid as triacylglycerol in the liver with the lipid content of the muscle tissue rarely 
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exceeding 10 g/kg (Nanton et al. 2001).  A direct linear relationship between lipid 

consumption and liver size (HSI) has been demonstrated in gadoid fishes like Atlantic 

cod (Gadus morhua) (Lie et al. 1988; Jobling et al. 1991; Morais et al. 2001) and the 

same has been observed in haddock when fed high amounts of dietary lipid (>120 g/kg 

as-fed basis) (Nanton et al. 2001, 2003).  Lie et al. (1988) has suggested that a reduced 

feeding frequency (feeding ad libitum every third day versus every day) can reduce liver 

indexes in Atlantic cod through a reduction in overall fat intake, however, growth rate is 

significantly compromised.  Both protein and lipid are highly available sources of energy 

for fish (National Research Council 1993), however, DE content of carbohydrate may 

vary among fish species (Wilson 1994).  The use of protein as a dietary source of energy 

is undesirable because of the high cost of protein relative to the cost of non-protein 

energy (Watanabe 2002).  A proper balance of digestible protein (DP) and digestible 

energy (DE) (DP/DE
 
ratio) is necessary to maintain high growth rates and good feed 

conversion efficiency (Lee and Putnam 1973), improve protein utilization and minimize 

excessive accumulation of lipid and glycogen in the somatic tissues and liver (Cho and 

Kaushik 1985, 1990) and minimize undesirable nitrogenous waste output and improve 

the quality of fish farm effluents.  While the estimated optimum DP/DE ratio for 

coldwater rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, reared 

in freshwater is 20–24 g DP/MJ DE
 
(Cowey 1992; Storebakken 2002), DP/DE ratio for 

large salmon (>2.5 kg) decreases to 16–17 g DP/MJ DE.  Information on protein and 

energy utilization for most coldwater marine fishes is limited.  Studies conducted on 

gilthead seabream, Sparus aurata L., a warm water marine fish, show that optimum 

DP/DE ratio changes with fish size, growth and feed intake (FI) (Lupatsch et al. 2001).  It 

appears that haddock diets must be low in lipid (<140 g/kg, DM-basis) and available 

carbohydrate (<14 g/kg, DM-basis) to prevent excessive lipid and glycogen deposition in 

the liver (Lall et al. 2003).  Our initial studies (Kim and Lall 2001; Kim et al. 2001) were 

designed to determine the dietary protein requirement of fish fed isoenergetic diets (~16.6 

MJ DE/kg).  The primary objective of this study was to examine the effects of feeding 

juvenile haddock with diets containing various combinations of dietary protein and non-

protein energy on growth performance, feed conversion efficiency, HSI, diet digestibility 
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and nutrient retention efficiency to find the optimum dietary DP/DE
 
ratio for on-growing 

fish. 

 

Materials and methods 

Rearing systems and experimental design 

Haddock juveniles (mean initial weight, 13.5 ± 0.1 g) hatched and reared at the 

NRCC Institute for Marine Biosciences, Marine Research Station (Halifax, Nova Scotia) 

were used in this study.  Seven hundred and twenty fish were randomly distributed into 

18 cylindrical fibreglass tanks (350 L capacity) at 40 fish per tank and acclimated to the 

tanks for 10 days prior to the trial.  During the acclimation period, the fish were fed 

Zeigler
TM

 Haddock Ration (Zeigler Bros, Inc., Gardners, PA, USA) twice daily (0900 

and 1600 h).  The proximate composition (as-fed basis) of this diet was: crude protein 

520 g/kg, lipid 160 g/kg, nitrogen-free extract 95 g/kg, gross energy 23 MJ/kg, moisture 

90 g/kg, ash 110 g/kg and fibre 25 g/kg.  The DP and DE of this diet were measured 

using fish weighing 94 g in the same manner as described by Tibbetts et al. (2004) and 

were 480 g/kg
 
and 20 MJ/kg, respectively.  The experiment was conducted as a 3 × 2 

factorial design (three protein levels × two lipid levels) and each of six experimental diets 

was fed to three replicate tanks (initial biomass density, 2 kg/m
3
). Filtered (60 µm), UV-

treated sea water (salinity, 28–30 g/L) was supplied to each tank at a flow-rate of 4 L/min 

in a flow-through system.  The water was continuously aerated in each tank (11 mg/L 

dissolved oxygen) and maintained thermostatically at 12°C.  The rearing temperature of 

12°C was selected because it is within the preferendum zone of 9–17°C for Atlantic cod 

where gastric evacuation rate, appetite and feeding metabolic rates are maximized (Bøhle 

1974; Jobling 1988).  Photoperiod was controlled automatically (12-h light : 12-h dark) 

with a light intensity at the water surface of 60 lux.  During the feeding trial, fish were 

hand-fed three times daily during the week (0900, 1300, 1600 h) and twice daily on 

weekends (0900, 1300 h) to apparent satiation to avoid any uneaten feed.  Weekly FI per 

individual tank was recorded by weighing feed containers at the beginning of each week 

and ensuring that all feed offered during the week was consumed by the fish.  Any dead 

or moribund fish were collected, weighed and recorded on a daily basis.  Fish from each 

tank were batch weighed and counted on days 0, 21, 42 and 63 after a 24 h fast and the 
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mean weight (MW) was calculated.  Specific growth rate (SGR) was calculated using the 

equation of Ricker (1979).  Feed conversion ratio (FCR) was calculated from weight of 

feed consumed (grams of apparent dry matter FI) divided by wet weight gain (g).  Protein 

efficiency ratio (PER) was calculated from the wet weight gain (g) divided by the weight 

of protein intake (grams of apparent protein intake).  At the beginning of the trial, 10 fish 

were randomly sampled after 24 h food deprivation and killed with an overdose of 

tricaine methanesulphonate (TMS).  At the end of the trial, four fish from each tank (72 

in total) were randomly sampled in the same manner.  These fish were weighed, the liver 

removed and weighed (for calculation of HSI), the liver put back with the carcass, frozen 

on dry ice and stored at -80°C until further analyzes. 

 

Experimental diets 

Six experimental diets (Table 1) were formulated to contain DP/DE ratios in the 

range of 25–30 g DP/MJ DE as-fed using three protein levels (450, 500 and 550 g/kg) 

each at two lipid levels (110 and 160 g/kg).  Diets were formulated according to DP and 

DE values of common feed ingredients for juvenile haddock (Tibbetts et al. 2004).  Dry 

ingredients were finely ground (<500 µm) in a Fitz mill (Fitzpatrick Co., Elmhurst, IL, 

USA) before being combined with the wet ingredients (choline chloride and herring oil). 

Micronutrients (vitamins and minerals) were pre-mixed with ground wheat as a base, 

using a twin-shell blender (Paterson-Kelly, East Stroudsburg, PA, USA) prior to being 

added to the main ingredient mixture.  All ingredients were mixed in a Hobart mixer 

(Model H600T; Rapids Machinery Co., Troy, OH, USA) and steam-pelleted into 2.5 and 

3.0 mm pellets (California Pellet Mill Co., San Francisco, CA, USA).  The pellets were 

dried in an air-convection drier at 30°C to form dry, sinking pellets and stored in air-tight 

containers at -20°C until use.  Diets were screened to remove fines prior to feeding.  For 

determination of nutrient digestibility, the same diets were supplemented with chromic 

oxide (Cr2O3, 5 g/kg) and steam-pelleted into 4.0 mm pellets. 

 

Nutrient digestibility 

To measure the apparent digestibility (AD) of organic matter, protein, energy and 

lipid of the experimental diets used during the growth study, a second experiment was 
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performed using 12 specially designed tanks.  These were cylindro-conical fibreglass 

tanks (100 L capacity), each equipped with a faecal collection column similar to the 

Guelph system (Cho et al. 1982) and those used by Hajen et al. (1993).  The 

measurements were made using 156 haddock with a mean initial weight of 105.2 ± 2.1 g 

and a biomass density in each tank of approximately 14 kg/m
3
.  The collection period 

lasted until 30 g of wet faecal material was collected from each tank (33 days).  The fish 

were acclimated to the tanks and experimental diets for 10 days prior to the trial.  The 

experiment was conducted according to a randomized block design and replicated twice.  

Each of the six experimental digestibility diets was fed to two tanks, each containing 13 

fish.  Filtered (60 µm), UV-treated sea water (salinity, 28–30 g/L) was supplied to each 

tank at a flow rate of 2 L/min in a flow-through system and continuously aerated to 

maintain dissolved oxygen levels (10 mg/L).  Water temperature was maintained 

thermostatically (12°C) and monitored daily.  During the experimental period, fish were 

hand-fed to apparent satiety three times daily during the week (0900, 1300, 1600 h) and 

twice daily on weekends (0900, 1300 h).  All mortalities were collected, weighed and 

recorded on a daily basis.  Each week-day, after the final feeding (1600 h), the tanks and 

faecal collection columns were thoroughly cleaned with a brush to remove any residual 

particulate matter (faeces and uneaten feed).  There were no faecal collections made on 

weekends.  Faecal samples were collected each morning (0830 h) into 250 mL plastic 

bottles, centrifuged (2750 × g for 35 min at 5°C) and the supernatant discarded.  The 

faecal samples were stored in a sealed container at -20°C for the duration of the 

collection period.  Faecal samples were then lyophilized, finely ground and kept frozen at 

-20°C until further analyzes. 

 

Analytical techniques 

In preparation for analyzes, the frozen fish carcasses (including all viscera and 

liver) were lyophilized and finely ground.  These samples were stored in air-tight 

containers at -80°C until analysis.  Lyophilized fish carcasses, diets and faecal samples 

were analysed using the same procedures.  Moisture was determined by weight loss after 

drying for 24 h at 105°C, ash by incineration in a muffle furnace at 550°C for 24 h, crude 

protein (% nitrogen × 6.25) by the Dumas method (Ebeling 1968) using a Leco nitrogen 
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determinator (model FP-228; Leco Corporation, St Joseph, MI, USA), gross energy by a 

Parr Adiabatic oxygen bomb calorimeter (model 1241; Parr Instrument Company, 

Moline, IL, USA), total lipid by ether extraction (Tecator Soxtec System HT2 1045 

extraction unit, Hoeganaes, Sweden) following acid (4 N HCl) hydrolysis (Tecator 

Soxtec System 1047 hydrolysis unit) and chromic oxide content of digestibility diets and 

faeces was measured by spectrophotometric micro-method outlined by Suzuki and Early 

(1991). 

 

Statistical procedures 

Statistical analysis was performed according to Steel and Torrie (1960) using 

analysis of variance (ANOVA) in accordance with a 3 × 2 factorial design to test the 

influence of the main effects (dietary protein and lipid levels) and the interaction between 

the two main effects (protein × lipid).  Treatment means were differentiated using a-

posteriorly hypothesis testing with specified contrasts (SYSTAT v. 8.0).  All data 

reported as a percentage, was arcsine transformed prior to ANOVA and a 5% level of 

probability (P<0.05) was chosen in advance to sufficiently demonstrate a statistically 

significant difference.  All correlations made between response variables were calculated 

in SYSTAT by simple Pearson correlation matrix (SYSTAT v. 8.0).  Estimation of the 

DE requirement for maintenance (DEm) of juvenile haddock was determined by linear 

regression analysis of DE retention and DE intake using Microsoft Excel. 

 

Results and discussion 

Survival, growth and feed efficiency 

Proximate analyses of the experimental diets confirmed that the intended protein 

levels (450, 500, 550 g/kg), lipid levels (110, 160 g/kg) and DP/DE ratios (25, 26, 27, 28, 

29, 30 g DP/MJ DE) were achieved (Table 1).  These DP/DE
 
values fall within the range 

(22–33 g DP/MJ DE) reported to promote high protein gains in other juvenile fish species 

like rainbow trout, Atlantic halibut (Hippoglossus hippoglossus), Atlantic cod and 

gilthead seabream (Lie et al. 1988; Cowey 1992; Aksnes et al. 1996; Lupatsch et al. 

2001).  After 63 days of feeding, fish receiving all experimental diets had achieved over 

400% (401–470%) growth and survival of the fish throughout the growth trial was high 
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(98–100%).  All diets were accepted equally well by the fish as there were no significant 

differences in FI among experimental diets (Table 2).  Final mean weight gain (Table 2) 

of fish fed diets containing 28.5, 29.3 and 30.2 g DP/MJ DE were significantly higher 

than diets containing 24.7, 26.7 and 27.5 g DP/MJ DE.  Weight gain was regulated solely 

by increasing dietary protein level linearly and it was independent of dietary lipid level or 

DP/DE ratio.  Similarly, SGR of fish fed diets containing 28.5, 29.3 and 30.2 g DP/MJ 

DE were significantly higher than all other diets.  The average SGR obtained for haddock 

in this study (2.34%/day) is the same as those reported for juvenile European sea bass, 

Dicentrarchus labrax (2.3%/day) of similar size (Peres and Oliva-Teles 1999). 

Like weight gain, FCR in this experiment was solely affected by protein content 

of the diet rather than lipid level or DP/DE ratio as FCR significantly improved with 

increasing protein level but lipid level within each protein level had no significant effect. 

FCR improved linearly with increasing dietary protein level (y = -0.0089x + 1.179, R
2
 = 

0.76, n = 18, P<0.05).  This indicates that the best FCR was achieved at the highest 

protein level (550 g/kg) but the additional 50 g/kg lipid was not beneficial.  Unlike 

haddock, feed efficiency of juvenile sablefish, Anoplopoma fimbria, was significantly 

improved by higher levels of both protein and lipid (Clarke et al. 2000).  This difference 

is likely due to haddock’s lower tolerance for dietary lipid.  The range of FCR data in this 

study (0.7–0.8 g feed per g gain) is consistent with previous reports with juvenile 

haddock (0.6–0.9 g feed per g gain) (Kim and Lall 2001; Kim et al. 2001; Nanton et al. 

2001, 2003; Roy and Lall 2003), Atlantic cod (0.7 g feed per g gain) (Morais et al. 2001) 

and European sea bass (0.6–0.9 g feed per g gain) (Peres and Oliva-Teles 1999).  Since 

protein efficiency is generally regulated by the non-protein energy input of the diet, PER 

is a good measure of the ‘protein-sparing effect’ of lipid and/or carbohydrate (Lie et al. 

1988).  By the end of the 63-day feeding trial, there were no significant differences in 

PER between the experimental diets with the exception of the lowest DP/DE ratio (24.7 g 

DP/MJ DE) which was significantly higher than all other diets.  Therefore, at the higher 

protein levels (500 and 550 g/kg), the 50 g/kg additional lipid had no effect on PER and 

thus provided no protein sparing effect but it had a significant effect on PER at the lower 

protein level (450 g/kg).  The apparent protein sparing effect of higher lipid within the 

450 g/kg protein level (450/110 versus 450/160) translated into significantly higher final 
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weight gain, SGR, lipid gain and energy retention efficiency.  This indicates that when 

dietary protein is adequate, haddock preferentially use protein as the prime dietary energy 

source, which is also the case for Atlantic cod (Lie et al. 1988).  However, when dietary 

protein is limited (i.e. below requirement), dietary lipid has the ability to spare protein in 

haddock diets.  This is also the case for European sea bass where the beneficial effects of 

protein sparing occurred only with a low protein diet (400 g/kg) and not with a higher 

protein diet (500 g/kg) (Dias et al. 1998).  Likewise, in Atlantic cod, the beneficial effects 

of protein sparing has been reported in lower protein diet (480 g/kg) and not at a higher 

protein level (580 g/kg) (Morais et al. 2001).  The PER values obtained in this 

experiment (2.5–2.8 g gain/g protein intake) are similar to previous reports on haddock 

(Kim and Lall 2001) and Atlantic cod studies (average, 2.3 g gain/g protein intake) of Lie 

et al. (1988). 

 

Nutrient digestibility 

Although small (<2.5%) differences were found with respect to AD of protein, it 

was consistently high (average, 92.7%) across all dietary treatment (Table 3).  These 

values are similar to those reported for Atlantic cod (91.2%) (Jobling et al. 1991) and 

rockfish, Sebastes schegeli (91.8%) (Lee et al. 2002) fed similar diets. Although the 

carbohydrate content of the diets varied from 117 to 278 g/kg, increasing carbohydrate 

content had only a slight effect on protein AD, which is in agreement with reports on 

Atlantic halibut (Grisdale-Helland and Helland 1998), Atlantic cod (Hemre et al. 1989), 

Atlantic salmon (Aksnes 1995; Hemre et al. 1995; Grisdale-Helland and Helland 1997) 

and European sea bass (Peres and Oliva-Teles 1999).  Differences were observed in lipid 

AD where diets containing 24.7, 27.5 and 29.3 g DP/MJ DE were significantly lower 

than diets containing 26.7, 28.5 and 30.2 g DP/MJ DE.  Results of the ANOVA indicated 

the effect was from protein (P = 0.000) and not from lipid (P = 0.176), which is 

consistent with Takeuchi et al. (1978) who reported AD of lipid in rainbow trout diets 

was independent of dietary lipid level.  Thus, varying the dietary protein and non-protein 

energy levels has little effect on protein AD but has a strong effect on lipid AD for 

haddock which is also the case for Atlantic halibut (Berge and Storebakken 1991).  

Energy and organic matter AD were low for the diet containing the lowest levels of 
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protein and lipid (450/110) (27.5 g DP/MJ DE) but increased significantly for the diet 

with the highest levels of protein and lipid (550/160) (28.5 g DP/MJ DE).  Since the 

energy content of the diet is supplied by protein, lipid and carbohydrate and differences 

in protein AD were negligible while there were large differences in lipid AD, the 

significant differences in energy AD is attributed to either lipid or carbohydrate content, 

or a combination of both.  In the experimental diets, with a decrease in protein from 550 

to 450 g/kg and lipid from 160 to 110 g/kg, the dietary carbohydrate content increases 

from 117 to 278 g/kg.  It is well known that increasing dietary carbohydrate in 

carnivorous fish diets has a negative impact on diet digestibility (Sullivan and Reigh 

1995; McGoogan and Reigh 1996; Sugiura et al. 1998).  In this study, energy and organic 

matter AD were inversely correlated to increasing dietary carbohydrate content (Pearson 

correlation coefficients of -0.90 for energy and -0.92 for organic matter).  The linear 

relationship between increasing dietary carbohydrate level and declining organic matter 

and energy AD is characterized by the following linear relationships: organic matter (y = 

-0.6969x + 90.192, R
2
 = 0.86, n = 24, P<0.05) and energy (y = -0.5318x + 93.018, R

2
 = 

0.80, n = 24, P<0.05).  Grisdale-Helland and Helland (1998) reported in Atlantic halibut a 

7–10% reduction in organic matter AD at the highest level of carbohydrate.  This is 

consistent with our findings with haddock where we observed a 7.1–10.7% reduction in 

organic matter AD at the highest dietary level of carbohydrate.  Lie et al. (1988) 

suggested that carbohydrate should not exceed 170 g/kg of the diet for Atlantic cod and 

we confirm that organic matter and energy AD are significantly reduced for haddock in 

all diets containing high levels of carbohydrate (>170 g/kg). 

 

Hepatosomatic index, nutrient retention & maintenance energy requirement 

Over the course of the 63-day feeding trial, the HSI of fish significantly increased 

for all diets (Table 4) and both dietary protein and lipid levels had significant effects.  As 

dietary protein increased from 450 to 550 g/kg, HSI decreased accordingly and, similarly, 

as dietary lipid level increased, HSI increased.  Haddock accumulate dietary lipid in the 

liver (Nanton et al. 2001) and biochemical studies show that transport of lipid as 

lipoprotein from the liver to the muscle is low in haddock (Lall et al. 2003) and that there 

is limited catabolic activity (ß-oxidation) of lipid in the liver (Nanton et al. 2003). These 
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factors can lead to the development of the ‘fatty liver’ condition in cultured haddock 

which is undesirable because these fish inefficiently utilize dietary energy.  However, 

when juvenile haddock were fed up to 220 g/kg
 
dietary lipid, although the HSI values 

were high (>12%), the histological examination of the livers did not reveal any overt 

pathologies or impaired liver function (Nanton 2002).  This was also the case for Atlantic 

cod where fish fed 160 g/kg
 
lipid had large livers but there was no evidence of impaired 

liver function (Morais et al. 2001).  Nonetheless, fish with enlarged livers have lower 

somatic tissue growth (as a % of whole-body weight) than fish with smaller livers so 

minimizing the HSI in cultured haddock is of economic importance.  A strong inverse 

correlation between DP/DE ratio and HSI (Pearson correlation coefficient, -0.79) was 

observed where the HSI values increased as DP/DE ratio decreased.  The same effect has 

been observed in sharpsnout seabream, Diplodus puntazzo, where fish on low DP/DE 

diets had significantly higher HSI and, conversely, fish on high DP/DE diets had 

significantly lower HSI (Hernández et al. 2001).  Our results indicate that DP/DE ratios 

less than 29.3 g DP/MJ DE will produce haddock with HSI values greater than 9% and 

that haddock diets must contain at least 500 g/kg protein and 110 g/kg lipid to reduce the 

HSI.  These results are in agreement with our earlier studies (Kim and Lall 2001; Kim et 

al. 2001; Nanton et al. 2001) that reported that good growth and minimal HSI can be 

achieved in juvenile haddock fed high levels of protein (500–550 g/kg) and low levels of 

lipid (<120 g/kg).  The fact that HSI in haddock was regulated not only by dietary protein 

and lipid levels alone, but also by the combined effects of the DP/DE ratio has been 

observed in Atlantic cod where Jobling et al. (1991) suggested that accumulation of liver 

lipid was dependent not only upon total lipid content of the diet but also upon the 

relationship between the dietary nutrients.  Whole-body moisture content (Table 4) of 

fish sampled after the 63-day growth period was significantly influenced by the dietary 

lipid content but unaffected by either DP/DE
 
ratio or protein level.  Although the range is 

small, it clearly shows that all diets containing higher lipid (160 g/kg), regardless of the 

level of other dietary nutrients, resulted in fish with lower moisture content than fish fed 

diets with lower lipid (110 g/kg).  As there were no significant differences in whole-body 

ash and virtually no differences in whole-body protein content of the fish in this study, it 

can be concluded that the lower moisture content of the fish fed 160 g/kg
 
lipid was as a 
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result of higher whole-body lipid gain in fish fed the higher lipid level which was indeed 

the case (Tables 4 and 5).  Lipid, being high in energy (39.0 kJ/g), is translated into 

significantly higher whole-body energy gains (Table 5) in fish fed 160 g/kg lipid, which 

will be discussed further.  The observation that whole-body ash and protein contents of 

the fish in this experiment were virtually unaffected by varying DP/DE ratio is consistent 

with the results for European sea bass where whole-body crude protein and ash contents 

were not affected by varying the levels of dietary protein, lipid and nitrogen-free extract 

(Lanari et al. 1999).  The various levels of protein and lipid in the diets had highly 

significant effects on energy gains (Table 5).  Within each dietary lipid level, increasing 

dietary protein from 450 to 550 g/kg, led to significant increases in energy gain.  

Similarly, within each dietary protein level, increasing dietary lipid from 110 to 160 g/kg 

led to significantly higher energy gains as well.  Thus, the diet containing the highest 

levels of protein and lipid (28.5 g DP/MJ DE) resulted in the highest energy gain which 

was also the case for European sea bass (Lanari et al. 1999).  However, we cannot 

conclude that this DP/DE ratio is the optimum because the goal of raising these fish is to 

produce marketable fish protein, which is in the form of the fillet flesh and not other 

components like viscera and liver.  It has already been demonstrated that the diets with 

high dietary lipid (160 g/kg) all produced fish with enlarged livers (>11%).  These 

enlarged livers, being high in lipid, contribute considerable amounts of energy to the 

whole-body energy content.  It is better to examine whole-body nitrogen gain to have a 

better indication of production of the marketable product.  The highest nitrogen gains 

(1.22–1.24 g/fish) were achieved when the DP/DE ratio was 28.5 and 30.2 g DP/MJ DE 

indicating that high nitrogen gains can be achieved with 550 g/kg protein, even at the 

lower lipid level (110 g/kg). However, these results were not reflected in nitrogen 

retention efficiency as the differences were not as pronounced.  The nitrogen retention 

efficiency value (average, 40.7%) in this study is consistent with that reported previously 

for juvenile haddock (41%), while our value for energy retention efficiency (45.6%) is 

better than that reported previously for juvenile haddock (43%) (Kim and Lall 2001) and 

is as a result of a more appropriate DP/DE ratio.  The best performance of haddock in this 

study was obtained with diets containing 28.5 and 30.2 g DP/MJ DE.  However, 30.2 g 

DP/MJ DE is more appropriate than 28.5 g DP/MJ DE due to a build-up of energy in the 
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fish body which is not desirable if the energy retained is in the form of lipid, particularly 

liver lipid.  Liver lipid is of no commercial value because it will ultimately be discarded 

with the liver during processing.  Our recommendation of a diet containing 30.2 g DP/MJ 

DE rather than 28.5 g DP/MJ DE for juvenile haddock is supported by a significantly 

lower lipid gain observed in fish consuming the higher DP/DE ratio diet.  To further 

confirm this fact, energy retention by the fish as ‘lipid energy’ or as ‘protein energy’ 

(Table 6) was calculated based on the work of Rodehutscord and Pfeffer (1999).  These 

data clearly show that the fish fed diets containing 28.5 and 30.2 g DP/MJ DE had the 

highest amounts of energy retained as protein but the 30.2 g DP/MJ DE diet had a much 

lower and more acceptable level of energy retained as lipid.  Energy retained as protein 

was highly regulated by dietary protein content (Pearson correlation coefficient = 0.86) 

whereas energy retained as lipid was highly regulated by both dietary lipid and DE levels 

(Pearson correlation coefficients = 0.94 and 0.70, respectively).  Finally, a preliminary 

estimation of the maintenance energy requirement (DEm) was made by plotting the 

energy intake (kJ DE intake/fish/day) against the retained energy (kJ DE retained/fish/ 

day) and regressing the curve back to neutral retained energy according to Rodehutscord 

and Pfeffer (1999).  The relationship was characterized by the equation: DE retained = 

[(0.5621 × DE intake) - 1.1231], R
2
 = 0.53, n = 18, P<0.05.  Thus, the DEm for juvenile 

haddock (13–60 g body weight) is 2.0 kJ DE intake/fish/day.  Although additional data 

must be collected with larger samples sizes, different sized fish and under various water 

temperatures, this value is similar to the values reported for gilthead seabream (10–100 g 

body weight) of 1.2–8.2 kJ DE intake/fish/day (Lupatsch et al. 1998) and rainbow trout 

(1 g body weight) of 1.3 kJ DE intake/fish/day (Rodehutscord and Pfeffer 1999).  It 

provides a good initial estimate of DEm for juvenile haddock diets for further nutrition 

research. 

 

Conclusions 

All measured growth responses were lower when DP/DE
 
ratio was 27.5 g DP/MJ 

DE or less.  The diet containing 29.3 g DP/MJ DE produced fish with rapid growth, high 

nitrogen retention and reasonable HSI but digestibility, feed efficiency and nutrient gains 

were comparatively low.  Diets containing 28.5 and 30.2 g DP/MJ DE performed the best 
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in virtually all cases, however, given the importance of producing haddock without 

enlarged fatty livers, a diet containing 30.2 g DP/MJ DE is recommended for juvenile 

haddock.  This DP/DE ratio was achieved in a practical fish meal-based diet containing 

548 g/kg protein, 114 g/kg
 
lipid and 164 g/kg carbohydrate.  This agrees with the 

previous recommendations for Atlantic cod (540 g/kg
 

protein and >170 g/kg 

carbohydrate) and haddock (500–540 g/kg protein and >120 g/kg lipid). 
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Table 1 Composition of experimental diets with varying DP/DE
 
ratios fed to juvenile 

haddock (as-fed basis) 

 

DP/DE ratio   27 25 29 26 30 28 

Protein (g/kg)   450 450 500 500 550 550 

Lipid (g/kg)   110 160 110 160 110 160 

 

Ingredients (g/kg) 

Herring meal
1   

453 470 545 560 635 640 

Crab meal
2   

50 50 50 50 50 50 

Corn gluten meal
1  

100 100 100 100 100 100 

Wheat middlings
3  

281 214 193 127 125 70 

Celufil
4   

50 50 50 50 35 35 

Choline chloride
4  

6 6 6 6 6 6 

Vitamin mixture
5  

10 10 10 10 10 10 

Mineral mixture
6  

10 10 10 10 10 10 

Herring oil
7   

40 90 36 87 29 79 

 

Analysis 

Moisture (g/kg)  69 64 64 59 62 66 

Crude protein (g/kg)  455 446 499 496 548 543 

Lipid (g/kg)   106 150 112 157 114 165 

Ash (g/kg)   92 90 101 99 112 109 

Carbohydrate
8
 (g/kg)  278 250 224 189 164 117 

Energy (MJ/kg)  19.6 20.6 19.6 20.7 19.9 20.7 

Measured 

DP (g/kg)   415 412 464 461 513 506 

DE (MJ/kg)   15.1 16.6 15.8 17.2 17.0 17.7 

g DP/MJ DE
   

27.5 24.7 29.3 26.7 30.2 28.5 

 
1
 Corey Feed Mills Ltd (Fredericton, NB, Canada). 

2
 St Laurent Gulf Products Ltd (Caraquet, NB, Canada). 

3
 Dover Mills Ltd (Halifax, NS, Canada). 

4
 United States Biochemical (Cleveland, OH, USA). 

5
 Vitamin A, 8000 IU/kg; vitamin D3, 4500 IU/kg; vitamin E, 300 IU/kg; vitamin K, 40 mg/kg; thiamin, 50 

mg/kg; riboflavin, 70 mg/kg; pantothenate, 200 mg/kg; biotin, 1.5 mg/kg; folic acid, 20 mg/kg; vitamin 

B12, 0.15 mg/kg; niacin, 300 mg/kg; pyridoxine, 20 mg/kg; ascorbic acid, 300 mg/kg; inositol, 400 mg/kg; 

butylated hydroxy toluene, 15 mg/kg; butylated hydroxy anisole, 15 mg/kg; ground wheat. 
6
 Manganous sulphate, 40 mg/kg; ferrous sulphate, 30 mg/kg; copper sulphate, 5 mg/kg; zinc sulphate, 75 

mg/kg; sodium selenite, 1 mg/kg; cobalt chloride, 2.5 mg/kg; sodium fluoride, 4 mg/kg; ground wheat. 
7
 Shur-Gain Feeds (Truro, NS, Canada). 

8
 Calculated as 1000 - (moisture + protein + lipid + ash).



 

102 

 

Table 2 Growth performance and feed utilization efficiency of haddock fed diets with varying DP/DE ratio for 63 days
1
 

 

       Specific   Feed   Protein
 

Initial  Final  Weight
  

growth  Feed
  

conversion  efficiency 

DP/DE (P/L)  weight
2
 weight

2
 gain

2
  rate

3  
intake

2  
ratio

4   
ratio

5 

 

27.5 (450/110)  13.7 ± 0.2
nd

 55.0 ± 0.5
a
 41.4 ± 0.7

a
 2.21 ± 0.03

a
 32.6 ± 0.2

nd
 0.79 ± 0.01

a  
2.59 ± 0.02

a
 

24.7 (450/160)  13.4 ± 0.3 57.6 ± 0.8
b
 44.1 ± 0.5

b
 2.31 ± 0.02

b
 33.5 ± 0.1 0.76 ± 0.01

ab
  2.76 ± 0.03

b
 

29.3 (500/110)  13.6 ± 0.0 60.0 ± 0.5
bc

 46.4 ± 0.5
bc

 2.36 ± 0.02
bc

 34.7 ± 0.7 0.75 ± 0.01
b  

2.51 ± 0.02
a
 

26.7 (500/160)  13.3 ± 0.2 57.7 ± 0.2
b
 44.4 ± 0.4

b
 2.33 ± 0.03

b
 32.9 ± 0.2 0.74 ± 0.00

b
  2.57 ± 0.01

a
 

30.2 (550/110)  13.8 ± 0.0 61.5 ± 1.2
cd

 47.7 ± 1.2
cd

 2.37 ± 0.03
c
 32.4 ± 0.6 0.68 ± 0.01

c  
2.51 ± 0.04

a
 

28.5 (550/160)  13.2 ± 0.2 62.0 ± 0.8
d
 48.8 ± 0.7

d
 2.45 ± 0.00

c
 33.7 ± 1.4 0.69 ± 0.02

c
  2.58 ± 0.00

a 

 

1
 Mean ± SE (n = 3). Values within the same column with different superscripts are significantly different (P<0.05). 

2
 g/fish

 

3
 %/day

 

4
 g feed/g gain

 

5
 g gain/g protein intake 

nd
 No significant differences detected. 
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Table 3 Apparent digestibility coefficients
1
 (%) of organic matter, energy, protein and 

lipid in diets containing varying DP/DE ratios 

 

Organic 

DP/DE (P/L)  matter  Energy  Protein  Lipid 

 

27.5 (450/110)  69.1 ± 0.1
a
 77.0 ± 0.5

a
 91.2 ± 0.1

a
 81.5 ± 1.8

a
 

24.7 (450/160)  73.0 ± 0.0
b
 80.9 ± 0.1

b
 92.4 ± 0.2

b
 80.4 ± 1.6

a
 

29.3 (500/110)  76.2 ± 0.3
c
 80.9 ± 0.9

b
 93.1 ± 0.3

bc
 82.4 ± 0.7

ab
 

26.7 (500/160)  77.3 ± 1.2
c
 83.1 ± 1.0

c
 92.9 ± 0.5

bc
 88.7 ± 0.9

c
 

30.2 (550/110)  79.8 ± 0.2
d
 85.6 ± 0.7

d
 93.6 ± 0.4

c
 86.2 ± 1.6

c
 

28.5 (550/160)  80.5 ± 0.5
d
 85.7 ± 0.7

d
 93.0 ± 0.3

bc
 85.0 ± 0.4

bc 

 

1
 Mean ± SE (n = 2). Values within the same column with different superscripts are significantly different 

(P<0.05). 
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Table 4 Whole-body composition (wet-weight basis) and HSI of haddock fed diets with varying DP/DE ratios for 63 days
1 

 

DP/DE (P/L)  Moisture (g/kg) Ash (g/kg) Protein (g/kg) Lipid (g/kg) Energy (kJ/100 g) HSI
2
 (%) 

 

Initial   815.0 ± 2.5
a
  26.7 ± 1.4

nd
 128.5 ± 3.0

a
 18.2 ± 0.6

a
 374.0 ± 5.0

a
  5.3 ± 0.2

a
 

 

27.5 (450/110)  756.2 ± 2.5
b
  26.6 ± 0.8 151.9 ± 2.0

c
 37.4 ± 0.4

c
 602.5 ± 11.3

b
  10.9 ± 0.2

d
 

24.7 (450/160)  742.4 ± 3.8
c
  26.1 ± 0.5 146.3 ± 1.4

b
 52.8 ± 0.3

e
 656.9 ± 15.5

c
  12.6 ± 0.3

c
 

29.3 (500/110)  760.6 ± 2.5
b
  26.3 ± 0.4 152.1 ± 1.6

c
 32.4 ± 0.8

b
 580.3 ± 9.6

b
  9.3 ± 0.2

b
 

26.7 (500/160)  738.4 ± 3.2
c
  26.0 ± 0.6 152.1 ± 1.2

c
 48.8 ± 0.3

d
 659.4 ± 13.8

c
  11.9 ± 0.2

c
 

30.2 (550/110)  754.7 ± 3.2
b
  25.2 ± 0.7 151.3 ± 1.4

bc
 35.1 ± 0.8

c
 603.3 ± 12.1

b
  9.3 ± 0.2

b
 

28.5 (550/160)  740.7 ± 4.7
c
  25.7 ± 0.8 154.2 ± 2.2

c
 38.2 ± 1.5

c
 652.3 ± 17.1

c
  11.0 ± 0.4

d
 

 

1
 Mean ± SE (n = 3). Values within the same column with different superscripts are significantly different (P<0.05). 

2
 HSI (%) = (liver weight/total fish body weight) × 100. 

nd
 No significant differences detected. 
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Table 5 Nitrogen, lipid and energy intake, gain (g or kJ per fish) and retention efficiency (%) of haddock fed diets with varying 

DP/DE ratios for 63 days
1 

 

Nitrogen     Lipid     Energy 

DP/DE (P/L) Intake           Gain  RE2  Intake           Gain  RE2  Intake           Gain  RE2 

 

27.5 (450/110) 2.55±0.01a           1.06±0.01a 41.6±0.5b  3.72±0.01a           1.81±0.01b 48.7±0.5c  564.9±3.8a            231.1±1.5a 40.5±0.3a 

24.7 (450/160) 2.56±0.00a           1.07±0.01a 41.9±0.6b  5.37±0.01d           2.80±0.00e 52.0±0.2c  606.8±1.6bc           270.0±0.7bc 44.3±0.1b 

29.3 (500/110) 2.96±0.03c                1.18±0.02c 40.0±0.5a  4.15±0.04c           1.70±0.04a 41.1±1.3b  596.6±12.0abc           244.6±4.9a 40.6±0.8a 

26.7 (500/160) 2.77±0.01b               1.13±0.01b 40.8±0.4ab  5.48±0.01d           2.58±0.01d 47.0±0.3c  594.2±3.6abc              271.5±1.6bc 45.2±0.3b 

30.2 (550/110) 3.03±0.02c          1.22±0.01cd 40.1±0.5a  3.94±0.03b           1.91±0.04b 48.5±1.3c  565.5±10.0ab         263.0±4.6b 45.9±0.3b 

28.5 (550/160) 3.14±0.06d          1.24±0.01d 39.7±0.5a  5.96±0.11e           2.13±0.09c 36.1±2.1a  614.4±24.8c          286.3±11.6c 45.4±0.7b 

 

1 Mean ± SE (n = 3). Values within the same column with different superscripts are significantly different (P<0.05). 

2 Retention (%) = (gain/intake) × 100. 



 

106 

 

Table 6 Energy retention (kJ/fish) as either protein energy or lipid energy in haddock fed 

diets with varying DP/DE ratios for 63 days
1
 

 

Total retained  Retained as  Retained as 

DP/DE (P/L)  Energy   protein energy
2
 lipid energy

3 

 

27.5 (450/110)  231.1 ± 1.5
a
  157.9 ± 1.1

a
  73.1 ± 0.5

a
 

24.7 (450/160)  270.0 ± 0.7
bc

  159.5 ± 0.4
a
  110.5 ± 0.3

d
 

29.3 (500/110)  244.6 ± 4.9
a
  175.9 ± 3.5

bc
  68.8 ± 1.4

a
 

26.7 (500/160)  271.5 ± 1.6
bc

  168.1 ± 1.0
abc

  103.5 ± 0.6
c
 

30.2 (550/110)  263.0 ± 4.6
b
  180.9 ± 3.2

cd
  82.0 ± 1.4

b
 

28.5 (550/160)  286.3 ± 11.6
c
  185.3 ± 7.5

d
  101.0 ± 4.1

c
 

 

1
 Mean ± SE (n = 3). Values within the same column with different superscripts are significantly different 

(P<0.05). 

2
 Energy retention for protein was calculated for protein retention assuming 23.8 kJ/g

 
retained protein. 

3
 Energy retention for lipid was calculated for lipid retention assuming 39.0 kJ/g

 
retained lipid. 
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Chapter 5 

 

 

 

 

 

 

 

 

In vitro pH-Stat protein hydrolysis of feed ingredients for 

Atlantic cod, Gadus morhua.   1. Development of the method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published as: 

Tibbetts, S.M., Milley, J.E., Ross, N.W., Verreth, J.A.J., Lall, S.P. (2011) In vitro pH-

Stat protein hydrolysis of feed ingredients for Atlantic cod, Gadus morhua. 1. 

Development of the method. Aquaculture 319, 398-406. 
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Abstract 

The method described here involves the extraction and partial purification of an 

enzyme fraction from the dissected pyloric caeca of commercially farmed Atlantic cod, 

Gadus morhua (1 kg fish) and the development of a pH-Stat method to predict protein 

digestibility.  The various extraction and partial purification steps successfully 

concentrated the alkaline serine protease enzymes, trypsin (>4-fold) and chymotrypsin 

(>12-fold).  It was found that the enzyme fractions produced in the manner described in 

this study were completely stable for up to 8 months when stored at -20ºC and at least 10 

months when stored -80°C after which significant loss of enzyme activity can occur, 

although the degree of protein hydrolysis (DH) of casein was unaffected after 12 months.  

It is recommended that enzyme fractions produced in a similar manner should be stored 

at -80ºC and used within 8-10 months.  The most suitable substrate concentration [S] to 

use for closed-system in vitro pH-Stat DH assays was established using a standard 

purified protein source (vitamin-free casein) with four [S] (0.25, 0.5, 0.75 and 1 mg 

N/mL protein suspension solution).  No significant differences (P>0.05) were found in 

the DH values between the [S] tested.  The DH curve for casein at a [S] of 0.5 mg N/mL 

showed a rapid increase initially before leveling off at maximum DH (26%) which was 

achieved within a moderate duration of the assay (5-6 hours).  The closed-system pH-Stat 

assay with a [S] of 0.5 mg N/mL and minimum assay duration of 8 hours is 

recommended for further investigation of conventional and novel feed ingredients for 

gadoid diets. 

 

Introduction 

The pH-Stat assay has been used in human and animal nutrition research to 

estimate the in vitro protein digestibility of feed/food ingredients.  The assay involves the 

proteolytic enzyme hydrolysis of a test protein substrate and directly measuring the 

breaking of peptide bonds.  When protein bonds are cleaved, free carboxyl (-COOH) 

residues are liberated which allows for the exchange of hydrogen (H
+
) protons (Wei et 

al., 2003).  This release of positively charged hydrogen ions causes the reaction mixture 

to become more acidic.  To counteract this decrease in pH, the pH-Stat titration system 

accurately adds titrant to maintain the target pH thereby eliminating the effects of 
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changing pH on proteolytic activity and also the effects of buffering caused by the newly 

released amino groups (Wei and Zhimin 2006).  The pH-Stat system software accurately 

records the total volume of titrant required to maintain the target pH until protein 

hydrolysis is complete or the reaction is manually stopped.  This titrant volume, 

combined with various other data, is then used to calculate the degree of protein 

hydrolysis (DH), which is a direct measurement of the number of peptide bonds that have 

been cleaved during protein hydrolysis. 

Although several in vitro protein digestion techniques have been investigated with 

aquatic animals, pH-Stat methods have shown the most encouraging results with various 

species of finfish and shrimps (Alarcón et al., 2002; Lemos et al., 2009).  In addition, 

some in vitro methods have been used to study larval nutrition that has been difficult to 

conduct in vivo due to their small size and alternatively with tuna and whales because of 

their large size (Carter et al., 1999; Hansen et al., 2009; Nordøy et al., 1993).  In vitro 

pH-Stat methods have also been used to predict performance of animals fed various feed 

formulations, to assess the effects of processing of plant protein supplements, to assist in 

designing new feed formulations and for producing novel feed/food hydrolysates (Adler-

Nissen et al., 1983; Lemos et al., 2009; Lemos and Nunes, 2008).  Significant success 

has been achieved with shrimps (Ezquerra et al., 1997; 1998; Lemos et al., 2009) while 

many investigations with finfish have encountered technological problems and poor 

repeatability (Dimes et al., 1994a,b; Bassompierre, 1997; El-Mowafi et al., 2000).  In 

vitro pH-Stat methods have yet to be applied commercially to aquafeeds due the lack of a 

standardized method which result in poor reproducibility within and between laboratories 

and unaccounted variations in batch-to-batch enzyme activities.  In addition, a poor 

understanding of the effects of dietary history of the donor animals on enzyme profile and 

catalytic activity may also lead to variations.  The major limitations for in vitro pH-Stat 

assays appear to be the need for complete knowledge of enzyme origin and activity 

because variations in species, fish size/age and phenotype may give results with poor 

reproducibility and pH-Stat assays have also been found to give inaccurate results for 

ingredients that have been pre-hydrolysed.  In addition, digestive tissues must be 

extracted from donor fish, necessitating a well-equipped analytical lab to produce enzyme 

fractions (Savoie, 1994). 
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Most in vitro pH-Stat protein hydrolysis studies with finfish and shellfish have 

used a finely ground test sample added to the reaction mixture at a substrate 

concentration [S] of 1-2 mg of N per mL of solution (Alarcón et al., 1998; Carter et al., 

1999; Córdova-Murueta and García-Carreno, 2002; Dimes and Haard, 1994; Dimes et 

al., 1994b; Ezquerra et al., 1997; 1998; García-Carreño et al., 1997; Lan and Pan, 1993; 

Shipton and Britz, 2002).  However, the published literature does not appear to state the 

reason for these chosen values.  From the stand-point of method development, the [S] is 

important because even small variations in the substrate protein concentration relative to 

the amount of enzyme present can have large effects on in vitro DH results (Alarcón et 

al., 2002; Rothenbuhler and Kinsella, 1985; Wei and Zhimin, 2006).  For example, 

Stinson and Snyder (1980) observed a significant decrease in the protein hydrolysis rate 

of soy protein (SP) and bovine serum albumin (BSA) when the [S] was increased from 

0.8 to 1.1 mg N/mL (SP) and 0.8-3.2 mg N/mL (BSA).  In addition, a wide range of 

hydrolysis duration times (less than 1 hour to over 48 hours) and hydrolysis temperatures 

(15-37ºC) have been reported in the literature.  These long duration times may be 

problematic.  In an attempt to reduce the time required to achieve maximum degree of 

protein hydrolysis (DH), four substrate concentrations [S] were examined in this study 

(0.25, 0.5, 0.75 and 1 mg N/mL) under the hypothesis that food proteins have an inherent 

capacity for digestion and that all test [S] would eventually result in a similar DH. 

If research and industry laboratories are to adopt a standardized in vitro technique 

for the rapid screening of protein quality of feeds and feed ingredients, a large supply of 

enzyme fractions stable over weeks or months is needed.  Since stored enzymes can lose 

significant activity as a result of autohydrolysis, aggregation, protein unfolding and/or 

suboptimal buffering and storage conditions (Xi et al., 2005), it is critical to assess the 

stability or ‘usable shelf-life’ of enzyme fractions over time and under typical laboratory 

storage temperatures.  This quality-control aspect has received little attention previously.  

It has not been reported for studies on in vitro protein digestion using digestive enzymes 

extracted from fish or shellfish. 

The present studies were designed to develop an enzyme extraction method and 

closed-system in vitro pH-Stat protein hydrolysis protocol that is relatively inexpensive 

and can be used to rapidly measure the degree of protein hydrolysis (DH) of feed 
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ingredients for gadoid fish.  Particular aims were:  1) to monitor the relative activity of 

the two major serine protease enzymes (trypsin, chymotrypsin) extracted from farmed 

Atlantic cod pyloric caeca, 2) determine the stability, in terms of protein concentration 

and proteolytic activity, of the enzyme fractions stored at -20ºC and -80ºC over a period 

of 12 months and 3) determine the influence of the [S] on pH-Stat hydrolysis assays 

using a standard purified protein substrate. 

 

Materials and methods 

Fish 

 Twenty Atlantic cod (Gadus morhua L.) with an average weight of 1.2±0.1 kg 

were purchased from a commercial marine fish farm (Cooke Aquaculture Ltd., St. 

George, NB).  The fish were cultured in Back Bay, NB in a standard floating marine sea 

cage and fed once daily (1200 h) with a commercial marine fish diet (‘Europa 15’, 4.0 

mm Extruded Cod and Haddock Feed, Skretting Canada, St. Andrews, NB).  The 

composition (as-fed basis) of this diet was: crude protein 55%, crude fat 15% and crude 

fibre 1.5%.  The fish were fasted for 46 h before being removed from the sea cage and 

euthanized with an overdose (>100 mg/L) of tricaine methane sulfonate (AquaLife TMS, 

Syndel Laboratories Ltd., Vancouver, BC, Canada). 

To assess the fish health status, several physical and physiological measurements 

were taken.  Each fish was weighed (g) and measured for fork length (cm) to calculate 

their condition factor (k).  Duplicate blood samples were collected with needle (18 gauge) 

and syringe (5 mL) from the dorsal caudal vein for determination of the packed red blood 

cell volume (hematocrit value, Hct).  The blood was drawn into heparinized micro-

hematocrit capillary tubes (Fisher Scientific Ltd., Pittsburgh, PA, USA) and centrifuged 

at 19,200 × g for 2 minutes in an IECMicro-MB centrifuge (International Equipment 

Company, Needham, MA, USA).  Hct values were determined on a Lancer Critocap
™

 

micro-hematocrit capillary tube reader (Sherwood Medical, St. Louis, MO, USA).  The 

liver and pyloric caeca were dissected and visceral fatty tissues were removed.  The 

tissues were rinsed with copious amounts of saline solution (0.9% NaCl) to remove 

contaminants (blood, urine, mucous, feed, feces, etc.) and then weighed to determine 

hepatosomatic index (HSI) and the pylorosomatic index (PSI).  The liver and pyloric 
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caeca were quick frozen on dry ice, individually bagged and transferred to the National 

Research Council’s Institute for Marine Biosciences, Marine Research Station (Ketch 

Harbour, NS) and stored at -80°C until further processing. 

 

pH measurement of pyloric caeca homogenate 

 Three frozen pyloric caeca were roughly chopped individually in a high-speed 

Bead-Beater (Biospec Products, Bartlesville, OK, USA) and transferred to 15 mL Falcon 

tubes where they were finely minced to a slurry with a PowerGen 700 homogenizer 

equipped with a 7 mm × 195 mm homogenizing probe (Fisher Scientific Canada, Ottawa, 

ON, Canada).  The pH of each slurry was measured (in triplicate) with an Accumet
®
 

pH/Conductivity meter (model 20, Denver Instrument Company, Denver, CO, USA) 

 

Protease enzyme extraction of pyloric caeca 

 To ensure that the pyloric caeca used for enzyme preparation were from healthy 

and uniform fish, tissue from any animal displaying one or more of the following 

conditions was excluded: large (>1.3 kg) or small (<0.9 kg) body weight, obvious sexual 

maturation (as indicated by discrete, engorged gonads), high (>1.4) or low (<1.2) k 

factor, noticeable spinal and/or jaw deformity, caecal haemorrhaging and/or green liver.  

The extraction procedure was modeled after Dimes and Haard (1994) with modifications 

(Figure 1) and involved four steps: 1) crude enzyme extraction, 2) de-fatting, 3) enzyme 

stabilization and 4) enzyme concentration.  All solutions used for enzyme extraction 

procedures were prepared fresh using Milli-Q water (Millipore Systems, Billerica, MA, 

USA) and kept at 4°C.  In addition, all enzyme extraction procedures were carried out in 

a room at 4°C.  The frozen pyloric caeca from eight fish were allowed to partially thaw 

for 80 minutes at 4°C before being finely chopped.  A known weight (110 g) of finely 

chopped material was placed in a plastic beaker on ice and 3× the volume of extraction 

solution (0.05 M Tris, 0.2 M NaCl at pH 8.0) was added.  It was then covered with 

aluminum foil and gently stirred for 5 hours at 4°C.  The slurry (~330 mL) was 

centrifuged at 3200 × g for 10 minutes at 4°C and the supernatant (S1 fraction) was 

removed and held on ice.  Triplicate 0.5 mL aliquots of S1 were taken, immediately 
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frozen on dry ice and transferred to -80°C for subsequent determination of protein 

concentration and proteolytic enzyme activity of the crude extract. 

The pellet was re-suspended with 3× the volume of extraction solution (0.05 M 

Tris, 0.2 M NaCl at pH 8.0) and an equal volume of ice-cold reagent-grade chloroform.  

It was vigorously shaken by hand before centrifuging again as above.  The chloroform 

layer was discarded and the enzyme layer was pooled with the S1 fraction.  Twenty % (by 

volume) of ice-cold reagent-grade chloroform was added to the S1 fraction, vigorously 

shaken and centrifuged as above.  The enzyme layer was removed and the chloroform 

layer was discarded.  Two % (by volume) of Brij
®

 35 was added to the enzyme solution 

(~650 mL) and it was gently stirred for 12 hours at 4°C before centrifuging.  Triplicate 

0.5 mL aliquots of the de-fatted extract were collected as described above.  The de-fatted 

extract had 7.5% (by volume) 0.2 M CaCl2 added and it was stirred gently for an 

additional 17 hours at 4°C.  The solution was centrifuged as above, the pellet discarded 

and ~645 mL of stabilized enzyme extract was produced. Triplicate 0.5 mL aliquots of 

the stabilized extract were collected as described above. 

The enzyme solution was dialyzed using Specta/Por
®
 cellulose dialysis 

membrane, mean weight cut-off (MWCO): 12,000-14,000 Daltons (flat width 45 mm; 

diameter 28.6 mm; Cole-Palmer).  It was cut into 22 cm strips and soaked in Milli-Q 

water for 20 minutes and thoroughly rinsed with copious amounts of fresh Milli-Q water.  

The enzyme solution was transferred equally to five dialysis tubes and dialyzed for 24 

hours at 4°C against 4 L of 0.01 M sodium phosphate (pH 7.8) while being gently stirred.  

Sodium phosphate was replaced with fresh solution after 8 hours and again after 16 

hours.  This step was performed to concentrate the target enzymes by the selective 

removal of non-target molecules such as peptides and smaller molecular weight proteins 

(<12 kDa).  After 24 hours of dialysis, the solution was centrifuged as described above 

and the pellet discarded.  A blank fraction was prepared by carrying out the same steps in 

the absence of pyloric caeca tissues. 

 The pH of enzyme and blank fractions was adjusted to pH 8.0 using 0.2 N NaOH 

prior to freezing at -80°C according to Rothenbuhler and Kinsella (1985).  The enzyme 

fraction (643.5 mL) required 1.5 mL of 0.2 N NaOH to bring it to pH 8.02 and the blank 

fraction (643.5 mL) required 1.4 mL to bring it to pH 8.03.  Triplicate 0.5 mL aliquots 
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were collected as described above.  The remainder was transferred (in 5.5 mL aliquots) to 

polypropylene cryogenic vials (80 vials for each fraction) and immediately frozen on dry 

ice and stored at either -20 or -80°C until required. 

 

Measurement of protein concentration and protease activity 

 Protein concentration of the enzyme fractions was measured by protein-dye 

binding according to Bradford (1976) with lyophilized bovine plasma gamma globulin 

(Bio-Rad Laboratories, Hercules, CA) as the standard.  The measurement of activity was 

a modification of Gawlicka et al. (2000) and Laine et al. (1993).  L-BAPNA (N -

benzoyl-L-arginine 4-nitroanilide hydrochloride, Sigma-Aldrich, St. Louis, MO) and Suc-

AAPF-pNA (N-succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide, Sigma-

Aldrich, St. Louis, MO) were used to measure the activities of trypsin and chymotrypsin, 

respectively.  Fresh stock solutions of 1 mM L-BAPNA and 0.7 mM Suc-AAPF-pNA 

were prepared by dissolving the substrates in 1% anhydrous dimethyl sulfoxide (DMSO 

99.9% pure, Sigma-Aldrich, St. Louis, MO) and making up to concentration in 0.1 M 

Tris-HCl, 0.02 M CaCl2 at pH 7.9.  Samples were thawed on ice, diluted (1:1 v/v) with 

0.01 M sodium phosphate at pH 7.8 and kept on ice.  Using a standard 96-well, flat-

bottom plate, 10 L of diluted sample was placed in triplicate wells along with 200 L of 

either L-BAPNA substrate solution (for trypsin determination) or Suc-AAPF-pNA 

substrate solution (for chymotrypsin determination).  The blank consisted of 10 µL of 

0.01 M sodium phosphate at pH 7.8 and 200 µL of 0.1 M Tris-HCl, 0.02 M CaCl2 at pH 

7.9.  The optical density (OD) at 405 nm was measured at 15 second intervals over a 30 

minute period using a microplate reader in kinetic mode at 25°C.  The linear portion of 

the curve that produced an R
2
 value of >0.99 was selected to calculate the enzyme rate.  

Total activity of trypsin and chymotrypsin was calculated as follows: 

 

Total activity (U/µL) = [∆OD ÷ (ε × l)] × [Vt ÷ Vs] × DF 

 

where:  U = amount of enzyme activity to produce 1 μmol of product per minute 

  ∆OD = change in optical density per minute 

ε = extinction coefficient for p-nitroanilide at 405 nm (8800/M cm) 
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l = light path in each well (0.623 cm) 

Vt = total assay volume (210 µL) 

Vs = sample volume (10 µL) 

DF = dilution factor (2) 

 

Specific activity was calculated as: 

 

Specific activity (U/µg protein) = (total activity in U/µL ÷ protein content in µg/µL) 

 

In vitro degree of protein hydrolysis (protein DH) 

 The closed-system pH-Stat hydrolysis assay procedure was conducted using 

equipment from Radiometer Analytical SAS (Lyon, France) and included an ABU901 

autoburette connected to a PHM290 pH-Stat controller feeding data to MS-Excel-based 

PHM290_E software.  A hydrolysis temperature of 25°C was maintained with a Neslab 

RTE-111 heating/chilling recirculating waterbath and jacketed 100 mL capacity 

hydrolysis vessel.  Prior to running a hydrolysis assay, a vial of enzyme fraction (or blank 

fraction) was thawed at room temperature for 15-30 minutes.  The amount of vitamin-free 

casein required to produce 0.25, 0.5, 0.75 or 1 mg N per mL was placed directly into a 

100 mL hydrolysis vessel with 50 mL of 0.02 M CaCl2 with 0.01% NaN3 and a magnetic 

stir bar.  The suspension was gently stirred for 59 minutes to dissolve the soluble protein 

fraction and to stabilize the pH.  This solution mixture was used because supplemental 

calcium helps stabilize the enzymes by reducing enzyme autohydrolysis throughout the 

assay and sodium azide (NaN3) acts as an effective antimicrobial agent to inhibit bacterial 

growth over the assay duration.  The initial pH was adjusted to 8.0 using 0.2 N NaOH 

(pH 12.7).  The assay pH of 8.0 was selected given the overwhelming body of knowledge 

showing that slightly alkaline pH promotes optimum catalytic activity of proteolytic 

enzymes extracted from pyloric caeca of cold-water marine fish and hepatopancreas of 

shrimps, crayfish and prawns and in particular for Atlantic cod Ásgeirsson et al., 1989; 

Ásgeirsson and Bjarnason, 1991; Raae and Walther, 1989).  This pH is also a 

requirement of the pH-Stat principle to function in alkaline medium with alkaline 

enzymes (>7.8, Adler-Nissen, 1986).  Five mL of the thawed, vortexed enzyme fraction 
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(or blank fraction) were added to the hydrolysis vessel to initiate the pH-Stat assay.  The 

volume of NaOH required to maintain the suspension at pH 8.0 over the hydrolysis 

duration (10 hours) was automatically logged in the software at 5 minute intervals and 

was used to calculate the degree of protein hydrolysis (DH).  Each pH-stat assay was 

performed in duplicate on each test [S] for both the enzyme and blank fractions.  Initial 

tests revealed that the pH electrode became unstable after several assays, presumably due 

to a build-up of protein and/or lipid.  Soaking in acidic buffer (pH 4), washing with 

acetone followed by a distilled water rinse and then calibrating with pH 7.0 and 10.0 

buffers (Caledon Laboratories Ltd., Georgetown, ON, Canada) prior to each DH assay 

resolved this problem.  The procedure used a ‘blank’ prepared in the identical manner as 

the enzyme fraction except without any pyloric caeca.  All enzyme fractions used for pH-

Stat assays in this study had protein concentration and enzyme activities measured by the 

methods described above. 

 

Calculation of degree of protein hydrolysis (DH) 

The titrant used in this procedure was sodium hydroxide (NaOH) and the exact 

normality of every fresh batch of ~0.02 N NaOH was standardized (in triplicate) against a 

known concentration of hydrochloric acid (HCl).  The degree of protein hydrolysis (DH) 

was calculated according to Adler-Nissen, et al. (1983), Adler-Nissen, (1986) and Lemos, 

et al. (2009) as follows: 

 

%DH = (B × Nb × 1/α × 1/Mp ×1/htot) × 100 

where: 

B = consumption of NaOH for hydrolysis (mL) – consumption of NaOH for blank (mL) 

Nb = normality of NaOH titrant (meqv/mL) 

α = average degree of dissociation of the α – NH groups 

  1/α = 1.5 at 25°C and pH 8.0 (Adler-Nissen et al., 1983) 

Mp = total mass of protein (g) in the reaction mixture 

(e.g. protein contributed from test ingredient and added enzyme) 

htot = total number of peptide bonds in casein (8.2 meqv/g protein, Adler-Nissen, 1986) 
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The DH data calculated every 5 minutes over the 600 minute (10 hour) hydrolysis assay 

was fitted to a best-fit regression curve (minimum R
2 

values of 0.99) according to 

Alarcon et al. (2007). 

 

Statistical procedures 

Statistical analyses were performed according to Steel and Torrie (1960) using 

one-way analysis of variance (ANOVA), repeated measures analysis of variance (RM-

ANOVA) and treatment means were differentiated using the pairwise multiple 

comparison procedures (Tukey multiple range test) using SigmaStat
®
 v.3.5 software.  A 

5% level of probability (P<0.05) was chosen in advance to sufficiently demonstrate a 

statistically significant difference.  All raw data was confirmed to have a normal 

distribution and constant variance using the Kolmogorov-Smirnov test (SigmaStat
®
 v. 

3.5). 

 

Results and discussion 

Fish 

The fish were starved for 46 hours prior to sampling the pyloric tissues.  This was 

done according to Lemieux, et al. (1999) working with similar sized Atlantic cod (40-50 

cm vs. 44 cm average in this study) who found that after 2 days of feed withdrawal, less 

than 0.5% of the body weight consisted of food remaining in the gut.  Dimes and Haard 

(1994) also used a 48 hour fast prior to collection of digestive enzymes from pyloric 

caeca of large rainbow trout (250-500 g).  Gildberg (2004) has shown that the activities 

of digestive enzymes (particularly trypsin and chymotrypsin) remain at high levels in 

farmed cod over long (>10 days) starvation periods.  The fish used for preparation of 

enzyme fractions (n=8) were of uniform size and body condition with average body 

weight of 1.1±0.03 kg, fork length of 43.7±0.7 cm, condition factor, k of 1.3±0.0, 

hepatosomatic index, HSI of 10.0±0.6%, hematocrit value, Hct of 26.5±0.9%, 

pylorosomatic index, PSI of 1.4±0.1%, pyloric caeca pH of 6.84±0.08 and had no 

indication of sexual maturation, skeletal deformities, caecal haemorrhaging or green 

liver.  The k factor reported here for commercially farmed cod in Atlantic Canada (1.3) is 
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similar (1.0-1.3) to that reported for commercially farmed cod in Norway and Iceland 

(Árnason et al., 2010; Gildberg, 2004).  In addition, the fish had a liver size index (HSI, 

10%) which is typical of farmed gadoids in Atlantic Canada.  Gildberg (2004) reported 

an HSI value of 14.4% but used fish fed a commercial feed (BioMar Ecolife 20% fat) that 

was 5% higher in lipid than the one fed to the cod in this study (Skretting Europa 15% 

fat).  The 10% HSI value of the farmed cod used in this study is consistent with Árnason 

et al. (2010) who reported HSI values of 10-12% in similar sized cod fed diets containing 

43-57% crude protein and 10-16% crude fat.  The PSI of fish used in this study (1.4%) is 

in the same range (average, 1.1%, range 0.7-2.5%) as those measured previously in our 

lab with gadoids fed similar commercial gadoid feeds (unpublished results) and also 

commercially farmed cod in Norway (Gildberg, 2004).  A schematic of the entire 

digestive tract of Atlantic cod is shown in Figure 2.  The pyloric caeca in gadoids is 

relatively small compared to other species, representing only about ~5% of the total 

digestive tract length, ~12% of the fork length and ~1.5% of the fish body weight.  For 

example, the PSI reported for farm-raised Atlantic cod in this study (1.4%) is much lower 

than that of rainbow trout which is 2.8-3.8% (Bassompierre et al., 1998).  Some 

morphological properties of Atlantic cod pyloric caeca have previously been reported by 

Buddington and Diamond (1986; 1987) and include the number of blind diverticula or 

caecal ‘fingers’ (222), average caecal diameter (1.2 mm), caecal length (2.5 cm) and 

caecal wall thickness (0.8 mm) and they also determined that the pyloric caeca of cod 

likely accounts for >70% of total enzymatic digestion, making it the most suitable 

digestive tissue for in vitro protein hydrolysis studies.  The average packed red blood cell 

volume (Hct; 26.5%) and pH of the pyloric caeca homogenate (6.8) of the fish used in 

this study are within the typical ranges of 20-41% and pH 6.8-7.1, respectively reported 

for farmed marine fish (Hansen et al., 2007; Lie et al., 1990; Sandnes et al., 1988; 

Danulat and Kausch (1984). 

 

Protease enzymes 

The de-fatting steps used here were performed to reduce the amount of lipids in 

the mixture.  Ezquerra et al. (1997, 1998) have shown that they can interfere with 

subsequent purification steps and that these particular solvents (chloroform and Brij
®

 35) 
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would be gentle enough so as to not cause protein damage and reduced enzyme activity.  

The calcium chloride (CaCl2) stabilization step was performed to provide the extract with 

supplemental calcium.  This has been shown to favor the extraction of proteins 

(Bassompierre, 1997) and to help stabilize the enzyme extracts during frozen storage by 

reducing enzyme autohydrolysis (Kristjánsson, 1991).  During enzyme activity assays, 

sodium phosphate was chosen as the diluent because of its very low buffering capacity 

(pKa = 6.8) and, as such, it has virtually no interference with the enzymatic hydrolysis of 

the purified substrates (Treimo et al., 2008) 

The ‘marker enzymes’ were trypsin and chymotrypsin because they have been 

clearly shown to make up the major enzymes produced by the pancreatic cells for 

proteolytic function in the pyloric caeca of cold-water fish including Atlantic cod.  These 

enzymes have been well characterized in terms of structure, function and stability 

(Ásgeirsson et al., 1989; Ásgeirsson and Bjarnason, 1991; Raae and Walther, 1989).  

They were tracked as marker enzymes since it is not possible (or useful) to track all 

enzymes present in a pyloric caeca-derived enzyme cocktail even though other important 

proteases (e.g. elastase, collagenase, aminopeptidases, etc.) likely play a role in 

conjunction with trypsin and chymotrypsin.  Since their molecular weights are in the 

range of 24-26 kDa, the cellulose membrane used for dialysis (MWCO 12-14 kDa) was 

specifically selected to promote their retention along with other similar sized proteases. 

The protein concentration and specific activities of the enzyme fractions 

throughout the various extraction steps along with the final blank fraction are shown in 

Table 1.  Each extraction step reduced the total amounts of other components (e.g. other 

proteins, enzymes and lipids) resulting in an overall reduction in the total protein 

concentration from 5.02±0.43 µg/µL to 0.98±0.06 µg/µL.  The protein concentration of 

the blank fraction was below the detection limit.  The 80% decrease in protein 

concentration is less than previous reports (99%) with rainbow trout (Bassompierre et al., 

1993; Kristjánnson, 1991).  This study was aimed at producing species-specific enzyme 

fractions easily and inexpensively.  As stated by García-Carreño et al. (1993), full 

purification is time-consuming and expensive and not of value in an applied study such as 

this.  Thus, we did not attempt to purify the fractions to the same extent as was reported 

in the previously mentioned studies where a final purification was performed by gel 
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permeation chromatography.  The intent was to enrich a mixture of various proteases 

rather than isolation of single enzymes.  If we compare our decreased protein 

concentration to that of rainbow trout to the point just prior to gel permeation 

chromatography (Kristjánnson, 1991), the results are the same (80.5 and 80.4%, 

respectively).  Each extraction step was performed to enrich the total concentration of 

proteases and, in particular, the marker enzymes trypsin and chymotrypsin.  

Chymotrypsin is reported be the most highly active protease enzyme in marine fish like 

Atlantic cod and Senegalese sole (Gildberg 2004; Gamboa-Delgado et al. 2011).  Large 

increases in enzyme activities (trypsin, >4-fold, chymotrypsin, >12-fold) were measured 

throughout the extraction steps indicating that the extraction procedure was successful in 

concentrating these enzymes.  The specific trypsin and chymotrypsin activity levels in the 

final extract were 0.50±0.01 and 3.05±0.15 U/µg protein, respectively, while the final 

blank fraction was confirmed to have no proteolytic activity (Table 1).  Making enzyme 

activity comparisons with published literature is difficult.  Reported values for fish 

pyloric caeca enzyme extracts processed at similar levels are highly variable due to 

species differences, nutritional history, culture conditions of donor fish used, 

extraction/purification techniques and different activity assay conditions (e.g. different 

substrates, incubation temperature and/or pH, method of calculation, reporting units, etc.) 

(Alarcón et al., 1995; Hidalgo et al., 1999; Pérez-Jiménez et al., 2009). 

 

Enzyme storage time and temperature 

One of the primary goals of this study was to assess the stability, in terms of 

protein concentration and proteolytic activity, of the enzyme fractions stored at -20ºC and 

-80ºC over a period of 12 months.  The results provide very important quality-control 

information for this study and also for future studies with respect to the thermal stability 

or usable “shelf-life” of enzyme fractions produced in the manner described in this paper.  

It has been suggested that protein extracts stored in adequate buffer solutions in sterile 

glassware or polypropylene tubes maintain their shelf-life stability for ‘years’ when 

frozen at -20 or -80°C without an anti-microbial additive, although repeated freeze-thaw 

cycles can rapidly degrade them (Pierce Biotechnology Inc. 2010).  The enzyme fractions 

produced for this study were extracted and stored frozen in Tris/NaCl and sodium 



 

121 

 

 

phosphate solutions in polypropylene cryogenic vials without an anti-microbial additive 

and were only thawed once.  Measurement of the enzyme activity showed that under 

these conditions, the enzymes are indeed stable (Figure 3).  Protein content of the enzyme 

fractions remained relatively constant over 12 months at storage temperatures of -20 and 

-80°C and the trypsin activity showed no significant change over 10 months, having 

retained over 94% of their initial activity.  Although there was a significant activity loss 

by 12 months (83% of initial activity) when stored at -80ºC, there was no significant 

difference relative to those stored at -20ºC over the same period of time.  At -80°C, the 

chymotrypsin after 12 months storage showed no significant loss of activity and retained 

88% of its initial activity.  However, when stored at -20ºC, chymotrypsin showed a 

significant loss of activity after 8 months (70% of initial activity) and this may be related 

to the formation of protein damaging ice crystals that can form at -20°C when no 

cryoprotectant (e.g. glycerol, ethylene glycol, etc.) is used.  This rarely occurs at -80°C 

provided there are not multiple freeze-thaw cycles (Pierce Biotechnology Inc., 2010).  A 

similar study with Atlantic salmon showed that the pyloric caeca enzyme extracts 

exhibited good stability at -70°C having retained full activity for 3 months (Kristinsson 

and Rasco, 2000).  However, the activity decreased to 80% of its initial activity after 4 

months compared to 8-10 months for the cod enzyme extracts in this study.  Given that 

pyloric caeca of cod is virtually free of visceral fatty tissues whereas salmon is 

completely engulfed in fatty tissues and together with the de-fatting steps in the present 

method, it is possible that the enzymes fractions produced in this study may have been 

less susceptible to degradation.  As a final quality control check, the results of degree of 

protein hydrolysis (DH) of vitamin-free casein was compared using fresh enzyme 

fractions (T0 months) versus ones stored for 12 months at -80ºC (T12 months).  The DH was 

statistically the same (P=0.839) with values of 23.5±1.8% and 23.3±0.5%, respectively.  

It is recommended that enzyme fractions produced by these methods be stored at -80ºC 

and be used within 8-10 months. 

 

Effect of varying substrate concentrations 

The pH-Stat assay temperature of 25°C is within the range of temperatures used 

in previous studies with finfish and shellfish (15-37°C).  A temperature of 25°C was 
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selected in this study based on work with rainbow trout (Dimes et al., 1994b) and also 

because it has been shown specifically for Atlantic cod pyloric caeca enzymes that the 

catalytic efficiency of trypsin-like enzymes is 17 times higher than that of bovine trypsin 

at 25°C (Ásgeirsson and Bjarnason, 1991).  Bjarnason (2001) also reported the optimum 

catalytic temperature range for gadoid trypsin and chymotrypsin to be 20-40°C.  The 

blanks run in these studies were used to account for background protein hydrolysis that 

occurs for non-enzymatic reasons (eg. stirring motion, hydration, atmospheric gases, pH-

probe fluctuations, etc.).  During early studies, Pedersen and Eggum (1983) assumed that 

measuring non-enzymatic hydrolysis was not necessary and would not increase the 

agreement between in vitro and in vivo results, while Alarcón et al. (2002) proved that 

this assumption was incorrect by demonstrating that non-enzymatic hydrolysis is highly 

variable between samples and can account for >35% of total protein hydrolysis.  Pedersen 

and Eggum (1983) pointed out that in vivo digestion is a combination of both enzymatic 

hydrolysis and non-enzymatic hydrolysis, however, several authors have demonstrated 

better agreement between in vivo and in vitro results when non-enzymatic hydrolysis was 

accounted for.  The research presented in this study is the first time a procedural blank 

has been used to account for pH-change that occurs from non-enzymatic hydrolysis, 

whereas previous studies with salmonids, other marine fish and shellfish have either used 

distilled water or no blank at all. 

In previous pH-Stat studies with aquatic animals, protein substrate concentrations 

[S] in the range of 1-2 mg of N per mL of solution were used.  The reason for this range 

is not clear and it is troubling from the stand-point of method development.  Under 

highly-controlled conditions using purified trypsin as the enzyme and bovine serum 

albumin (BSA) as the protein substrate, Wei and Zhimin (2006) demonstrated a large 

effect of varying [S] (0.3-2.4 mg/mL) on protein hydrolysis rate and final DH.  Use of 1-

2 mg N/mL [S] may have originated from the original work of Hsu et al. (1977) and 

Maga et al. (1973) using an in vitro pH-Shift method with laboratory rats.  In these 

studies, a high correlation between in vitro DH and in vivo protein digestibility was 

achieved within 3-10 minutes using 1-2 mg N/mL solution.  Subsequent studies with 

aquatic animals appear to have adopted these [S] as the standard.  Researchers working 

with salmonids, sparids, tuna, shrimps and abalone have used [S] in the range of 0.7 to 
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1.6 mg N/mL with differences in protein content and proteolytic activity of the enzyme 

fractions (Alarcón et al., 1998; Carter et al., 1999; Córdova-Murueta and García-Carreno, 

2002; Dimes and Haard, 1994; Dimes et al., 1994b; Ezquerra et al., 1997; 1998; García-

Carreño et al., 1997; Lan and Pan, 1993; Shipton and Britz, 2002).  However, these 

studies did not attempt to optimize the [S] for the assay.  Only Alarcón et al., (1999, 

2002) working with seabream assessed the effect of varying [S] on DH.   

Enzymatic assays of this type typically never reach a true plateau, rather they 

exhibit an initial rapid hydrolysis rate and then a much slower rate that is generally 

insignificant, making pH-Stat-generated curves difficult to model (Wei and Zhimin, 

2006).  A typical example with rainbow trout and carp shows that after about one-third of 

an 11.5 hour assay, the process of hydrolysis significantly slows down to what appears to 

be a plateau, but still rises slightly (Grabner, 1985).  This is thought to be due to the ever-

decreasingly available hydrolysis sites, enzyme exhaustion and enzyme autodigestion or 

activity inhibition by hydrolysis products, metal ions and/or indigestible residues and 

several other exogenous factors (Quaglia and Orban, 1987; Wei and Zhimin, 2006).  The 

use of best-fit curve modeling allows for determination of the theoretical maximum DH 

and time required to achieve it as opposed to selection of arbitrary assay durations.  The 

study results were also verified by comparing the linear slopes (R
2
>0.99) of each 

hydrolysis curve over the first 90 minutes of the assay. 

For each pH-Stat assay conducted to determine the optimum [S], duplicate 

samples of each enzyme fraction were analyzed in triplicate to measure their enzyme 

activity levels (Table 2).  There were no significant (P>0.05) differences in trypsin and 

chymotrypsin activities at 0.44-0.47 and 3.2-3.7 U/µL, respectively.  Our results for the 

casein DH using Atlantic cod enzymes are in agreement with the relevant literature for 

salmonids.  The maximum DH values were in a tight range of 23.0-25.6% (see Table 2 

and Figure 4) with no significant (P>0.05) difference between the [S] tested.  The casein 

DH achieved in this study (23-26%) is similar to the range reported for salmonids (23-

27%; Dimes et al., 1994a, Dimes and Haard, 1994) upon which this work was based.  

The assay duration time and volume of NaOH titrant required to achieve maximum DH 

was, however, proportionally affected by the [S] ranging from less than 5 hours to 

approximately 8 hours and less than 6 mL to greater than 21 mL, respectively.  This 
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result demonstrates that the same DH can be achieved in a shorter period of time with 

less use of NaOH titrant, supporting our hypothesis that food proteins may have an 

inherent capacity for digestion and that the same maximum DH can be obtained using the 

pH-Stat assay regardless of [S].  Plots of [S] versus assay duration and titrant volume 

required shows significant linear relationships (Minutes = {262.9 × [S]} + 209.3, R
2
=0.85 

and mL NaOH = {21.4 × [S]} + 0.72, R
2
=0.99) demonstrating the high proportionality 

between [S] and both assay duration and titrant consumption.  A [S] of 0.5 mg N/mL was 

used for subsequent DH studies based on the curve progression over 10 hours having a 

rapid increase initially and then leveling off at maximum DH (26%) in a moderate assay 

duration (~6 hours) with minimal use of titrant (<12 mL).  In addition, by comparing 

slopes of the linear portion (R
2
>0.99) of each hydrolysis curve over the first 90 minutes, 

the most rapid proteolysis clearly occurred at a [S] of 0.5 mg N/mL (>0.18).  Thereafter, 

the rates fell to <0.12 at [S] of 0.75 and 1 mg N/mL.  The use of 0.5 mg N/mL is also 

supported by non-linear regression analysis (Figure 5) that suggest the optimum [S] (DH 

= {-12.4 × [S]}
2
 + {14.0 × [S]} + 21.3, R

2
=0.93) to be 0.56 mg N/mL.  This result closely 

supports that of Rothenbuhler and Kinsella (1985) working at 37°C with purified 

enzymes and various protein substrates (sodium caseinate, bovine serum albumin and 

defatted soy protein).  They found the optimum [S] to be 3 mg protein/mL, when 

expressed in terms of nitrogen (N/P conversion factors of 6.38 for sodium caseinate and 

6.25 for bovine serum albumin and defatted soy protein) equals 0.47 and 0.48 mg N/mL, 

respectively. 

 

Conclusions 

These studies have demonstrated that the various extraction and partial 

purification steps successfully concentrated the alkaline serine protease enzymes, trypsin 

and chymotrypsin.  Close agreement was found with published in vitro casein DH values 

for salmonids and Atlantic cod.  The closed-system in vitro pH-Stat assay with a [S] of 

0.5 mg N/mL and minimum assay duration of 8 hours is recommended for further 

investigation of conventional and novel feed ingredients for gadoid diets.  It was also 

found that the enzyme fractions produced under the present extraction protocol were 

completely stable for up to 8 months when stored at -20ºC and at least 10 months when 
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stored -80°C after which significant loss of enzyme activity losses can occur, although 

casein DH was unaffected after 12 months.  As such, we recommend that enzyme 

fractions produced in a similar manner should be stored at -80ºC and used within 8-10 

months. 
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Table 1 

Protein concentration and specific activity of enzyme fractions
a
 extracted from Atlantic 

cod pyloric caeca 

        Specific activity 

 Protein concentration  (U/µg protein)   

Extraction step  (µg/µL)   Trypsin Chymotrypsin 

Crude extract   5.02±0.43   0.12±0.01 0.25±0.03
 

De-fatted extract  2.02±0.03   0.29±0.00 0.95±0.02
 

CaCl2 stabilized extract 1.69±0.02   0.33±0.01 1.42±0.01
 

Final extract after dialysis 0.98±0.06   0.50±0.01 3.05±0.15
 

Final blank fraction  -0.10±0.06   0.00±0.01 -0.01±0.02 

a 
Mean ± SE (n=3) 
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Figure 1 

Flow diagram of the preparation of Atlantic cod proteolytic enzyme fractions

Pyloric caeca 
110 g 

Crude extract 

S1 Residue 

S1 
Pooled 

S1 

Organic layer and 
residue discarded 

Aqueous 
layer 

Organic layer 
discarded 

De-fatted extract 

Stabilized extract 

Final extract 

Aliquoted in 5.5 mL in polypropylene cryovials, immediately 
frozen on dry ice and stored at -20 and -80°C 

Homogenized (1:3 w/v) with cold extraction solution (0.05 
M Tris, 0.2 M NaCl at pH 8.0) for 5 hours at 4°C 

Centrifuged (10 min., 4°C, 3200 × g) 

Partitioned with 20% (v/v) cold chloroform and 

centrifuged (10 min., 4°C, 3200 × g)  

Gently stirred with 2% (v/v) Brij
®
 for 12 hours at 4°C and 

centrifuged (10 min., 4°C, 3200 × g) and pellet discarded  

Gently stirred with 7.5% (v/v) 0.2 M CaCl2 for 17 hours at 4°C 

and centrifuged (10 min., 4°C, 3200 × g) and pellet discarded  

Extracted with same solution (1:3 v/v) and an equal volume of cold 
chloroform and centrifuged (10 min., 4°C, 3200 × g)  

Dialyzed against 0.01 M sodium phosphate (pH 7.8) solution (1:100 v/v) for 24 hours at 4°C (fresh 
solution replaced every 8 hours) and centrifuged (10 min., 4°C, 3200 × g) and pellet discarded. 

Extract adjusted to pH 8.0 with small amount (<2 mL) of 0.2 M NaOH 
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Figure 2 Digestive tract of Atlantic cod, Gadus morhua (Linnaeus, 1758) with the liver 

removed.  Measurements of the fish pictured above: fork length = 47.5 cm; entire 

digestive tract length (oesophagus to anus) = 101.0 cm (212.6% of fork length); pyloric 

caeca length = 5.5 cm (5.4% of intestinal length, 11.6% of fork length); stomach length = 

3.0 cm (3.0% of intestinal length, 6.3% of fork length). 
* 
Pancreatic cells diffused 

throughout the caecal tissues.

Buccal cavity & 

pharynx 

Stomach 

Pyloric caeca with 

diffuse pancreas
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Table 2 

Effect of substrate concentration [S] on pH-Stat degree of protein hydrolysis (DH)
a
 of vitamin-free casein

b
 using enzymes from 

Atlantic cod pyloric caeca
 

Substrate   Enzyme activity
c
   Maximum   Assay time Titrant    

concentration  (U/µL)     DH
d
 (%)   required required 

(mg N/mL)  Trypsin Chymotrypsin  Observed Predicted (minutes) (mL) 

1    0.46±0.01
ns 

3.7±0.01
ns  

23.6±0.2
ns 

23.0±0.2
ns

 463±9
a 
 21.6±0.2

a 

0.75    0.45±0.02 3.5±0.13  24.9±0.2 24.5±0.4 433±36
ab 

17.2±0.2
b 

0.5    0.44±0.02 3.4±0.02  25.0±0.5 25.6±0.8 316±33
bc

 11.8±0.7
c 

0.25   0.47±0.01 3.2±0.01  23.4±0.1 23.9±0.2 282±1
c
    5.6±0.1

d 

 

a 
Mean ± SE (n=2); values within the same column with different superscript letters are significantly different (P<0.05) 

b 
Casein - Vitamin-free (International Feed Number 5-01-162, analyzed nitrogen content of 13.475% (as-fed basis) 

c 
Measured enzyme activity of pyloric caeca-derived enzyme fractions

  

d 
DH = degree of protein hydrolysis 

ns
 = no significant differences (P>0.05) within column 
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Figure 3 

Stability of protein and enzyme activity of enzymes extracted from Atlantic cod pyloric caeca held at two storage temperatures for 12 months 

(mean ± SE, n=3).  Different superscript letters indicate a significant difference (P<0.05) between storage temperatures and an asterisk (*) 

indicates a significant difference (P<0.05) within the same storage temperature at different storage times.  pH-Stat degree of protein hydrolysis 

(DH) of vitamin-free casein at T0 months (23.5±1.8%) was statistically the same (P=0.839) as T12 months at -80°C (23.3±0.5%). 
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Figure 4 

Effect of substrate concentration [S] on pH-Stat degree of protein hydrolysis (DH) of vitamin-free casein over 10 hours using enzymes 

from Atlantic cod pyloric caeca. 
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Figure 5 

Effect of substrate concentration [S] on maximum in vitro degree of protein hydrolysis (DH) of vitamin-free casein using enzymes 

from Atlantic cod pyloric caeca. 
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In vitro pH-Stat protein hydrolysis of feed ingredients for 

Atlantic cod, Gadus morhua.   2. In vitro protein digestibility of 

common and alternative feed ingredients. 
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Abstract 

Using enzyme fractions isolated from the pyloric caeca of farmed Atlantic cod, 

the in vitro degree of protein hydrolysis (DH) of numerous conventional and novel feed 

ingredients were measured by a closed-system pH-Stat assay.  Regression equations 

describing the relationship between in vivo apparent protein digestibility (ADC) and in 

vitro protein DH were used to predict in vitro protein ADC.  The equations resulted in 

good correlation (<4 percentage points difference) between ‘measured’ and ‘predicted’ 

protein ADC in the majority of cases (r = 0.90-0.99; R
2 

= 0.88-0.99), while some 

ingredients were either over- or under-estimated (6-7 percentage points) which appears 

related to high ash or chitin content (r = 0.75; R
2 

= 0.61) and may indicate the need for an 

acid pre-hydrolysis phase and full account of non-protein nitrogen (NPN) content.  The 

‘predicted’ in vitro protein ADC were above 95% for wheat gluten meal, soy protein 

concentrate, soy protein isolate and whole krill meal; relatively high (85-95%) for 

soybean meal, white lupin meal, herring meal, anchovy meal, canola protein concentrate, 

pea protein concentrate and poultry by-product meal; mid-range (75-85%) for crab meal, 

shrimp meal and canola meal; and low (<75%) for hydrolyzed feather meal and flaxseed 

meal.  Further research is needed on the development of a two-stage hydrolysis assay for 

gadoids involving an acid (gastric) pre-digestion step prior to this assay to further 

increase agreement between in vivo protein ADC and in vitro protein DH. 

 

Introduction 

Fish, animal and plant by-products are widely available for use as major sources 

of dietary protein in fish feeds (Hardy, 2010; Hardy and Barrows, 2002).  These products 

can vary considerably in their protein quality and nutrient profile depending upon the 

freshness, origin, species/cultivar, season of harvest and other factors associated with the 

raw material, particularly the drying process and temperatures used during processing 

(Pike, 1991; Lemos and Tacon, 2011).  After preliminary chemical analyses, the major 

criterion for determining the nutritional value of a protein source is the measurement of 

its apparent digestibility coefficient (ADC) (Cho et al., 1982).  Conventional biological 

methods for measuring protein ADC involve in vivo fish trials that are time-consuming, 

require expensive facilities and use large numbers of animals.  In addition, total 
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collection of feces from fish is typically not possible, so indirect methods must be used 

that involve the addition of inert markers to the diet (e.g. yttrium and chromic oxide) and 

then quantification in the diet and the dried fecal samples, which are costly.  As such, in 

vitro methods such as the pH-Stat assay have been proposed to provide estimates of the 

protein digestibility of feed ingredients.  The assay involves proteolytic enzymatic 

hydrolysis of peptide bonds in a test protein substrate and measurement of protein 

breakdown.  When peptide bonds are cleaved, free carboxyl (-COOH) residues are 

liberated which allows for the exchange of hydrogen (H
+
) protons (Wei et al., 2003).  

This release of positively charged hydrogen ions causes the reaction mixture to become 

more acidic.  To counteract declining pH, the pH-Stat titration system accurately adds 

titrant to maintain the target pH thereby eliminating the effects of changing pH on 

proteolytic activity and also the effects of buffering caused by the newly released amino 

groups (Wei and Zhimin, 2006).  The pH-Stat system software accurately records the 

total volume of titrant required to maintain the target pH until protein hydrolysis is 

complete or the reaction is manually stopped.  This titrant volume, combined with 

various other data, is then used to calculate the degree of protein hydrolysis (DH), which 

is a direct measurement of the number of peptide bonds that have been cleaved during 

protein hydrolysis. 

Under practical fish farming conditions, food intake and digestion are affected by 

numerous biotic and abiotic factors (e.g. culture conditions, water quality, presence of 

stressors, social interactions, changing feeding rhythms, nutritional and reproductive 

status (Lall and Tibbetts, 2009)) that can vary temporally and among stocks of fish.  

These factors, together with the documented effects of fish size/age, phenotype, dietary 

protein level and seasonal variations on proteolytic capacity (Bassompierre et al., 

1998b,c; Einarsson et al., 1997; Førde-Skjærvik et al., 2006; Kofuji et al., 2005; Olsen 

and Ringø, 1998) influence food digestion in fish in vivo, negatively affect the 

reproducibility of both in vivo and in vitro results and ultimately complicate the 

application of in vitro results for use by the feed industry.  Knowledge gaps will likely 

always exist; yet, it is recognized by human and animal nutritionists that it is possible to 

make reasonable predictions in vitro for research and industrial use (Fuller, 1991).  In 

vitro methods can provide a complementary method to biochemical and in vivo biological 
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methods as they are relatively inexpensive, require less animals and results can be 

obtained rapidly (hours vs. weeks) using very small quantities of test sample.  These 

characteristics could make in vitro methods more suitable for initial rapid-screening of 

protein quality and certainly more acceptable from the stand-point of animal welfare 

(Alarcón et al., 2002 and Fernández-Garcia et al., 2009). 

A small number of in vitro predictive equations currently exist in the literature for 

rainbow trout, Salmo gairdneri (Dimes and Haard, 1994) and white shrimp, Litopenaeus 

vannamei (Ezquerra et al., 1997, 1998; Lemos et al., 2009) but are lacking for all other 

farmed aquatic species.  The objectives of this study were to: 1) measure the in vivo 

apparent protein digestibility (protein ADC) of a large number of conventional and 

alternative feed ingredients of fish, animal and plant-origin having a wide range of 

proximate composition using two related gadoid fish, Atlantic cod and haddock; 2) use 

our established protocol for enzyme extraction from Atlantic cod pyloric caeca and 

closed-system pH-Stat hydrolysis to measure the in vitro degree of protein hydrolysis 

(protein DH) of the same feed ingredients and 3) combine in vivo protein ADC and in 

vitro protein DH results to generate gadoid-specific predictive equations. 

 

Materials and methods 

In vivo apparent protein digestibility (protein ADC) 

The in vivo protein ADC studies were conducted according to Tibbetts et al. 

(2004, 2006) with juvenile cod and haddock (90-94 g) that had been previously 

maintained in the lab and fed twice daily (0900 and 1600 h) a commercial extruded 

marine gadoid diet (EWOS™ 5.0 mm Marine Feed, EWOS Canada, Surrey, BC, 

Canada).  The composition (as-fed basis) of this diet was: crude protein 55%, crude fat 

12%, ash 11% and gross energy 21 MJ/kg.  During a 2 week acclimation period (and for 

the duration of the study) the fish were fed experimental diets three times daily (0900, 

1300 and 1600 h) that contained a 70:30 ratio (w/w basis) of basal diet (Table 1) and one 

of seventeen conventional or novel test feed ingredients.  The reference diet and all 

experimental diets contained chromic oxide (Cr2O3, 0.5%) as the inert digestion indicator 

(Austreng, 1978) and the final proximate composition, gross energy content and in vivo 

protein digestibility (ADC) of the reference diet and experimental diets is shown in Table 
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2.  The test ingredients were from a wide range of sources including fish meals, 

zooplankton meals, crustacean by-product meals, animal by-product meals and meals, 

concentrates and isolates of plant origin (including oilseeds, pulses and grains) and 

represented a wide range in proximate composition (31-86% crude protein, 0.3-15% 

lipid, 0.5-38% ash, 0-45% carbohydrate, 12-23 MJ/kg gross energy) and in vivo protein 

ADC (50-100%) (Table 3).  Survival was high (>96%) for fish fed all experimental diets 

and feed intake exceeded 2% of body weight per day for all diets, with exception of the 

one containing pea protein concentrate. 

The fish were housed in tanks (120 L capacity) equipped with fecal collection 

columns specifically designed to allow for daily collection of fecal samples from fish fed 

the various experimental diets (Tibbetts et al., 2006).  Filtered (<60 μm), de-gassed and 

UV-treated seawater (salinity, 28–30 ppt) was supplied to each tank at flow rates of 2-3 

L/min in a flow-through system and continuously aerated (>9 mg/L dissolved oxygen; 

>90% gas saturation).  The water temperature was maintained thermostatically (12°C) 

and monitored daily.  Each week-day, after the final feeding (1600 h), the tanks and fecal 

collection columns were thoroughly cleaned with a brush to remove any residual 

particulate matter (feces and uneaten feed).  Fecal samples were collected each morning 

(0830 h) into 250 mL plastic bottles, centrifuged (4000 rpm [2750 ×g] for 20 min at 4 °C) 

and the supernatant carefully decanted and discarded.  Approximately 17–18 h elapsed 

between the last feeding of the day and fecal collection the following morning.  Wet fecal 

material (minimum 40 g) was collected and pooled for 15-20 days for each experimental 

diet.  Frozen (-20°C) fecal samples were lyophilized, finely ground using mortar and 

pestle and stored at -20°C until further analyses. 

 

Analytical techniques and calculation of in vivo apparent protein 

digestibility (ADC)  

Test feed ingredients, experimental diets and lyophilized fecal samples were 

analyzed using the same procedures.  Moisture was determined by drying in an oven at 

105°C for 18 h and ash by incineration in a muffle furnace at 550°C for 18 h (Woyewoda 

et al., 1986).  Crude protein (% nitrogen × 6.25) was measured by the Dumas method 

(Ebeling, 1968) using a Leco nitrogen determinator (Model FP-528, Leco Corporation, 
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St. Joseph, MI, USA).  Total lipid was determined using a modified Bligh and Dyer 

(1959) method.  Organic matter was calculated by difference (100 − [moisture + ash]) 

and carbohydrate was calculated by difference (100 − [moisture + ash + protein + lipid]).  

Gross energy was measured using an isoperibol oxygen bomb calorimeter (model 6200, 

Parr Instrument Company, Moline, IL, USA) equipped with a Parr 6510 water handling 

system for closed-loop operation.  Chromic oxide content of experimental diets and fecal 

samples was determined by flame atomic absorption spectrophotometry using an 

AAnalyst 300 atomic absorption spectrophotometer (Perkin-Elmer, Norwalk, CT, USA) 

following a microwave acid digestion procedure as described by Peach (2005, pp. 52–54) 

using a Multiwave sample preparation platform system (Perkin-Elmer, Norwalk, CT, 

USA).  In vivo protein ADC of the reference diet and experimental diets were calculated 

using the equation of Maynard et al. (1979 p. 41) and in vivo protein ADC for the single 

test feed ingredients was calculated according to Forster (1999). 

 

Production of protease enzyme fractions 

 Production of the enzyme fractions used in this study was described in detail in 

the previous method development studies (Tibbetts et al., 2011).  Briefly, the pyloric 

caeca tissues were removed from farmed Atlantic cod, Gadus morhua L. (1.2±0.1 kg) 

from a commercial marine fish farm (Cooke Aquaculture Ltd., St. George, NB) that had 

been fed with a commercial marine fish diet (‘Europa 15’ 4.0 mm Extruded Cod and 

Haddock Feed, Skretting Canada, St. Andrews, NB) after a 46 hour fasting period.  The 

composition (as-fed basis) of this diet was: crude protein 55%, crude fat 15% and crude 

fibre 1.5%.  The pyloric caeca used were from healthy and uniform fish with 0.9-1.3 kg 

body weight, no obvious sexual maturation and 1.2-1.4 conditional factor (k).  The 

enzyme extraction procedure was modeled after Dimes and Haard (1994) with 

modifications and involved four steps: 1) crude enzyme extraction, 2) de-fatting, 3) 

enzyme stabilization and 4) enzyme concentration.  Procedural blank fractions were also 

prepared by carrying out the same steps in the absence of pyloric caeca tissues.  

Measurement of the trypsin and chymotrypsin enzyme activities was as previously 

described (Tibbetts et al., 2011). 
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In vitro degree of protein hydrolysis (protein DH) 

 The closed-system pH-Stat hydrolysis assay procedure was conducted as 

previously described (Tibbetts et al., 2011).  Prior to conducting a hydrolysis assay, a vial 

of enzyme fraction (or blank fraction) was thawed at room temperature for 15-30 

minutes.  The amount of test feed ingredient (passed through an 850 µm screen) required 

to produce 0.5 mg N per mL was placed directly into a 100 mL hydrolysis vessel with 50 

mL of 0.02 M CaCl2 with 0.01% NaN3 and a magnetic stir bar.  The suspension was 

gently stirred for 59 minutes to dissolve the soluble protein fraction and to stabilize the 

pH.  The initial pH was adjusted to 8.0 using either 0.2 N NaOH (pH 12.7) or 0.2 M HCl 

(pH 1.9).  Five mL of the thawed, vortexed enzyme fraction (or blank fraction) were 

added to the hydrolysis vessel to initiate the pH-Stat assay.  The enzyme (or blank) 

fractions remaining in the tubes were subsequently analyzed for trypsin and 

chymotrypsin enzyme activities as previously mentioned to confirm enzyme activity 

uniformity across all pH-Stat assays.  The volume of NaOH titrant required to maintain 

the suspension at pH 8.0 over the hydrolysis assay was automatically logged in the 

software at 5 minute intervals and was used to calculate the degree of protein hydrolysis 

(DH).  Each pH-stat assay was performed in duplicate on each test ingredient for both the 

enzyme and blank fractions. 

 

Calculation of degree of protein hydrolysis (DH) 

The titrant used in this procedure was sodium hydroxide (NaOH) and the exact 

normality of every fresh batch of ~0.02 N NaOH was standardized in triplicate against a 

known concentration of hydrochloric acid (HCl).  The degree of protein hydrolysis (DH) 

was calculated according to Adler-Nissen, et al. (1983), Adler-Nissen, (1986) and Lemos, 

et al. (2009) as follows: 

 

%DH = (B × Nb × 1/α × 1/Mp ×1/htot) × 100 

where: 

B = consumption of NaOH for hydrolysis (mL) – consumption of NaOH for blank (mL) 

Nb = normality of NaOH titrant (meqv/mL) 

α = average degree of dissociation of the α – NH groups 
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  1/α = 1.5 at 25°C and pH 8.0 (Adler-Nissen et al., 1983) 

Mp = total mass of protein (g) in the reaction mixture 

(e.g. protein contributed from test ingredient and added enzyme) 

htot = total number of peptide bonds in the test protein substrate (meqv/g protein)   

where htot was 7.8 (soy proteins), 8.3 (wheat gluten proteins) and 8.35 (other 

proteins) (Adler-Nissen, 1986) 

 

The hydrolysis equivalent (htot) is dependent upon the amino acid composition of the 

specific protein being tested and when this is unknown, as in the majority of the cases in 

this study, an average value of 8.0 meqv/g protein for htot can be assumed (Adler-Nissen 

et al., 1983).  As such, other authors working with shrimps, salmonids and marine fish 

have used similar values in the range of 7.8-8.6 meqv/g protein.  We chose to use 8.35 

meqv/g protein for all unknown ingredients because it is the average value (excluding 

gelatin) of various food proteins recommended by Adler-Nissen (1986, Table 1, page 17). 

 

Statistical procedures 

Statistical analyses were performed according to Steel and Torrie (1960) using 

one-way analysis of variance (ANOVA) and treatment means were differentiated using 

the pairwise multiple comparison procedures (Tukey multiple range test) using 

SigmaStat
®
 v.3.5 software.  Predictive regression equations were generated by regressing 

in vivo measured protein ADC against the corresponding in vitro protein DH using linear, 

log, power and exponential models using SigmaStat
®
 v.3.5.  Statistical significance of the 

correlations that best described the relationships were confirmed using Pearson 

correlation analysis (r) and the coefficient of determination (R2) for each model.  A 5% 

level of probability (P<0.05) was selected in advance to sufficiently demonstrate a 

statistically significant difference.  All raw data was confirmed to have a normal 

distribution and constant variance using the Kolmogorov-Smirnov test (SigmaStat
®
 v. 

3.5). 

 

Results and discussion 

Composition of the test feed ingredients 
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The proximate composition and gross energy content of the test feed ingredients 

are reported in Table 3 and have been previously discussed (Tibbetts et al., 2004, 2006).  

The proximate composition rarely correlates well with ultimate nutrient availability 

(Hardy and Masumoto, 1991), thus it is generally accepted that the first step in assessing 

the nutritional value of fish feed ingredients is to measure their digestibility (Cho et al., 

1982).  Indeed, the proximate composition of the test ingredients was poorly correlated 

with in vivo protein ADC and in vitro DH with correlation coefficients (r) of -0.15 to 0.43 

(in vivo protein ADC) and 0 to 0.45 (in vitro protein DH) for crude protein, lipid, ash, 

carbohydrate and gross energy, respectively.  These results are in agreement with those 

for salmonids (Bassompierre, 1997), with corresponding r values of -0.06 to 0.47 (in vivo 

protein ADC) and -0.24 to 0.3 (in vitro protein DH). 

 

DH of animal-origin feed ingredients 

In vitro DH of the animal-origin feed ingredients is presented in Table 5.  DH 

values were highest (11-12%) for poultry by-product meal, herring meal and anchovy 

meal, mid-range (7%) for whole krill meal; and lowest (3-4%) for crab meal, shrimp meal 

and hydrolyzed feather meal.  The in vitro DH results for fish meals and poultry meals 

are in good agreement with conventional in vivo protein ADC results that also show 

relatively high protein digestibility for herring, anchovy and poultry by-product meals 

and low protein digestibility for hydrolyzed feather meal.  The in vitro DH results for fish 

meals (12%) are in close agreement with Dimes et al. (1994a) and Kristinsson and Rasco 

(2000) who reported DH values of 10-14% for the hydrolysis of salmon muscle protein, 

ocean perch muscle protein and herring meal using rainbow trout and Atlantic salmon 

pyloric caeca enzymes. 

The in vitro DH results for zooplankton and crustacean meals indicated lower 

digestibility than those using in vivo protein ADC methods and there are a couple of 

possible explanations.  Firstly, the amount of each of these ingredient used in each DH 

assay was calculated based upon its total protein content using a nitrogen (N) analyzer 

and a general protein conversion factor of N × 6.25, since no specific conversion factor is 

available for these ingredients.  This 6.25 conversion factor is the most widely used value 

for feed protein sources of plant and animal origin (Tacon et al., 2009) and were applied 
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in the original in vivo protein ADC studies to ingredients and complete diets.  However, 

use of this conversion factor is based on the assumptions that the protein source contains 

16% nitrogen, which is not always the case, and that the content of non-protein nitrogen 

(NPN) such as free amino acids, nucleic acids, ammonia and nitrogenous glycosides, etc. 

is negligible.  When these assumptions are not met, an over-estimation of true protein 

content results (Fujihara et al., 2008).  For the zooplankton and crustacean meals, the 

total amount of intact protein was likely over-estimated because of a relatively higher 

proportion of N in the form of NPN.  Zooplankton and crustacean feed ingredients may 

contain significant levels of chitin (10-20%) and free amino acids (>2%) (Hertrampf and 

Piedad-Pascual 2000; Heu et al. 2003).  In addition, it is possible that the krill and 

crustacean products used in this study may have retained some endogenous enzyme 

activity that may be rapidly triggered causing partial post-mortem protein hydrolysis after 

capture at sea (within 6-8 hours) prior to final processing (Kolakowski 1986) resulting in 

elevated levels of NPN (e.g. volatile bases, trimethylamine, free amino acids, peptides, 

ammonia).  Various authors have reported that freshly harvested krill and crustaceans 

with NPN levels of less than 10 g N/100 g can exceed 50 g N/100 g within 24 hours 

(Kolakowski 1986; Fagbenro and Bello-Olusoji 1997; Heu et al. 2003).  If this were the 

case, these ingredients would have a comparatively high content of NPN that may not 

affect apparent in vivo protein ADC (since it is based on N ratios between diet and 

faeces) but could influence in vitro protein DH if the specific enzyme cleavage sites 

along those polypeptides (during in vitro protein hydrolysis) have previously been 

cleaved (Córdova-Murueta and García-Carreno, 2002).  A similar situation was 

documented by Ezquerra et al. (1997) while measuring the in vitro DH of langostilla crab 

meal using shrimp hepatopancreas-derived enzymes.  The implication of these scenarios 

is an altered ratio of enzyme to intact protein substrate and this may have artificially 

resulted in lower in vitro DH than anticipated.  Secondly, and likely the major cause for 

the lower in vitro DH results, involves the method used in this study that used enzymes 

extracted from the pyloric caeca of gadoid fish which function at a pH of 7 or higher 

(Danulat and Kausch, 1984).  Unlike other animal and plant protein sources, the major 

by-product of zooplankton and crustacean processing is the carapace or shell which may 

contain 50–80% chitin (poly-β-(1→4)-N-acetyl-glucosamine) and relatively high levels 
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of ash (>15%) which have both shown high digestibility in gadoids measured in vivo 

(Danulat, 1987; Danulat and Kausch, 1984; Toppe et al., 2006).  The problem is that 

under the in vivo conditions, these ingredients are exposed to an environment of acidic 

pH (3.8-6.5) and endogenous chitinase enzymes in the stomach ‘prior to’ entry into the 

alkaline (>pH 7) pyloric caeca (Danulat and Kausch 1984; Grabner 1985; Jeuniaux 

1966).  This in vivo ‘preparatory’ gastric phase is unavailable in a pH-Stat assay using 

digestive enzyme from the pyloric caeca only.  In fact, Danulat and Kausch (1984) 

demonstrated that the activity of chitinase enzyme in the gadoid pyloric caeca is lower 

than that of the stomach and what little chitinolytic activity does exist in the pyloric caeca 

is not optimized at pH levels above 6.5.  This is in agreement with other monogastric 

animals like poultry that showed that the acid (gastric) phase was critical for chitin and 

chitosan digestion because it provides a preparatory phase whereby acidic gastric juices 

dissolve and swell the molecules, thus permitting higher substrate availability for 

chitinase enzyme activity (Hirano et al., 1990) and subsequent alkaline protease activity.  

Since the enzyme fractions used in these in vitro studies were extracted only from the 

pyloric caeca at pH 7, these particular test ingredients lacked the benefit of a preparatory 

low gastric pH and chitinase pre-exposure phase that they would have had during in vivo 

digestion and not as important for the other low-chitin, low-ash feed ingredients.  Thus, it 

is not surprising that the ash and chitin-rich crustacean meals could be less digested under 

these specific in vitro conditions and especially for the particular sample of shrimp meal 

used in these studies which contained an unusually high level of ash (38%).  

Bassompierre et al. (1998a) found improved agreement between in vivo protein 

utilization (measured in rats) and in vitro protein DH (measured in rainbow trout) when 

an in vitro acidic (pH 3.8) gastric phase was implemented prior to the in vitro alkaline 

(pH 7.8) intestinal digestion phase.  Similar increases in in vitro DH following an acid 

pre-step have been demonstrated using rainbow trout pyloric caeca enzymes (Grabner 

and Hofer, 1985) and purified mammalian enzymes (Rothenbuhler and Kinsella, 1985).  

However, many authors concluded that the improvement was only marginal and resulted 

in a more complex and time-consuming assay, which may not be practical for use by the 

feed industry.  Alarcón et al. (2002) also found higher DH values with seabream after an 

acid pre-digestion, although the improvement was only observed for some ingredients 
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(corn gluten meal, meat and bone meal, fish meal, soybean meal and blood meal) but not 

others (squid meal, lupin meal and green pea meal).  Similarly, Rothenbuhler and 

Kinsella (1985) observed that an acid pre-treatment greatly enhanced the in vitro DH of 

soy protein and casein but reduced it for bovine serum albumin.  Recent work with other 

fish species on the development of a gastrointestinal model (GIM) that incorporates both 

the gastric acidic and intestinal alkaline phase, the use of bile salts and also a pH 

‘transition’ phase (Hamdan et al., 2009; Morales and Moyano, 2010) may also be useful 

for gadoid species.  The low nutritional value of hydrolyzed feather meal found both in 

vivo and in vitro was not unexpected as it is consistently reported to be low when fed to 

most fish species and other terrestrial animals.  The low nutritional value may be due to 

high levels of poorly digestible keratin protein (Dong et al., 1993; Hardy and Barrows, 

2002; Yu et al., 2004), an inferior essential amino acid profile with low levels of 

methionine, lysine, histidine and tryptophan, the presence of disulfide bonding (Moran et 

al., 1966) and the presence of indigestible amino acid processing products, namely 

lysinoalanine and lanthionine (Williams et al., 1991; Wang and Parsons, 1997).  This 

limits the use of high proportions of feather meal in gadoids feeds.  Cost-effective 

processes that can further increase the protein digestibility of feather meals could greatly 

increase their feeding value and provide an excellent high protein alternative ingredient 

for marine fish and other animal feeds (Bertsch and Coello, 2005). 

 

DH of plant-origin feed ingredients 

In vitro DH of the plant-origin feed ingredients is presented in Table 6.  DH 

values were highest (17-21%) for wheat gluten meal, soy protein isolate, soy protein 

concentrate and canola protein concentrate; high (10-13%) for soybean meal, white lupin 

meal and canola meal and mid-range (6-9%) for pea protein concentrate and flaxseed 

meal.  No results could be determined for corn gluten meal because, unlike other 

ingredients, the hydrolysis curve remained linear over the entire 10 hour assay.  This 

result was initially confirmed after repeating the assays 4 additional times.  For further 

confirmation of this result, the corn gluten meal assays were repeated again in duplicate 

over a 20-hour assay duration and linearity remained, therefore making it impossible to 

determine a maximum DH.  The cause for this situation remains unknown but may be 
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related to the fact that glutelin proteins, which account for a large proportion of CGM 

protein, are relatively insoluble in water (de Rodrigáñez et al. 2011).   Kiliç Apar and 

Özbek (2010) successfully hydrolyzed the protein in corn gluten meal in a pH-Stat assay 

however, they used much higher assay temperatures (40-60°C) and a high-activity 

purified commercial bacterial endopeptidase enzyme.  Lemos et al. (2009) determined 

DH values for corn gluten meal (2-4%) using an enzyme cocktail from Pacific white 

shrimp hepatopancreas and found poor agreement between in vitro DH and in vivo 

protein ADC. 

The results for wheat gluten meal, all soy-based products and white lupin meal are 

in agreement with conventional in vivo protein ADC results that also show high to very 

high protein digestibility for these ingredients (90-100%).  In contrast, it appears that in 

vitro DH may over-estimate the relative protein quality for canola protein concentrate, 

canola meal and flaxseed meal, as their in vivo protein ADC were high (89%), mid-range 

(76-83%) and low (53%), respectively while their in vitro DH were very high (17%), 

high (12%) and mid-range (9%), respectively.  The relatively high DH found for these 

ingredients is consistent with results for canola protein concentrate found during earlier in 

vitro digestion studies with rainbow trout and rats, where relatively higher DH was also 

observed (Dimes and Haard, 1994; Gauthier et al., 1982; Henry and Ford, 1965).  Under 

in vivo conditions, inclusion of dietary ingredients containing high fibre typically results 

in lowered protein digestibility (reduced protein ADC) in fish feeds and this is attributed 

to decreased proteolytic enzyme activity (Falge et al., 1978) and shortened gut-transit 

time (Jobling, 1981; Steffens, 1989).  By contrast, the high indigestible fibre content of 

these ingredients tends to elevate digestibility estimations (increased protein DH) under 

in vitro situations.  It has been shown that the fibre component of some plant-based feed 

ingredients have especially high buffering capacity in the presence of proteolytic 

enzymes and this high fibre content and subsequent high buffering capacity requires 

excessive use of NaOH titrant causing over-estimates of protein digestibility via in vitro 

methods (O’Hare et al., 1984).  The in vitro pH-Stat assays used a procedural blank to 

account for this high buffering capacity and other sources of non-enzymatic hydrolysis, 

whereas previous studies with salmonids and other marine fish and shellfish have either 

used a distilled water blank or no blank at all.  Although processing conditions play a 
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large role in protein quality of feed ingredients of both plant and animal-origin, it has 

been suggested that when higher in vitro protein DH values are observed for plant-origin 

ingredients, the primary causes may also be due to higher protein solubility, higher 

percentage of amino acids that are susceptible to alkaline protease cleavage and 

differences in peptide bond flexibility (Alarcón et al., 2002). 

It has been shown in other species of fish and shellfish that potential 

inconsistencies between in vitro protein DH and in vivo protein ADC based on 

quantification of fecal nitrogen may involve the effects of ingredient composition, dietary 

inclusion level and poor palatability (Lemos et al., 2009).  It is likely that the use of 30% 

plant protein substitution in the initial in vivo protein ADC trials may have been too high 

given the low palatability of some plant protein ingredients.  It has been demonstrated for 

gadoids that inclusion levels of 10-50% fish meal and 10-40% soybean meal had no 

significant effect on in vivo protein ADC (Kim et al., 2006, 2007), however, it remains 

unclear what the effect would be with other less digestible, less palatable ingredients.  It 

is highly likely that some of the ingredients used in this study may not be used at the 30% 

replacement level under practical, commercial aquafeed conditions due to undesirable 

proximate composition, inferior amino acid profile, palatability problems, 

pelletability/extrudability problems, anti-nutritional factors and cost.  The robustness of 

the correlations between in vivo protein ADC and in vitro protein DH could be greatly 

strengthened with further determination of in vivo protein ADC data conducted at more 

practical ingredient inclusion levels (Lemos et al., 2009; Tacon and Akiyama, 1997). 

The in vitro pH-Stat assay used in this study appears suitable as a tool for 

assessing the effect of processing on particular plant protein ingredients, which is in 

agreement with studies with terrestrial animals (Rothenbuhler and Kinsella, 1985) and 

shrimp (García-Carreño et al., 1997; Lemos and Tacon 2011).  The in vitro DH results 

for the variously processed canola and soy products (e.g. meal, concentrate and isolate) 

mirrored the in vivo protein ADC results with correlation coefficients (r) of 0.90 and 

0.99, respectively.  It is well documented that the various processing stages from intact 

beans or seeds to de-hulled meals and ultimately the production of protein concentrates 

and isolates can significantly reduce the levels of poorly digestible non-protein 

components such as fibre, oligosaccharides, non-starch polysaccharides and phytic acid 
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(Storebakken et al., 1998, 2000) and also inactivate protease inhibitors (Anderson and 

Wolf, 1995), all of which can negatively affect nutrient digestion in fish.  As such, 

through an appropriate combination of physical, chemical and thermal processing, these 

anti-nutritional components are reduced, inactivated and/or the protein structures altered 

through thermal processing permitting higher protease activity on peptide bonds (García-

Carreño et al., 1997; Hsu et al., 1977) and improved accessibility of protein to enzymatic 

hydrolysis.  The mode of action of plant-based anti-nutritional factors in monogastric 

animals has been well studied and is through nutrient binding with bile salts and other 

anti-nutritional components (e.g., phytic acid, metal ions), obstruction of protease activity 

(proteolytic enzyme inhibition), accelerated movement of digesta through the intestinal 

tract and increased viscosity of digesta (Storebakken et al., 1998, 2000; Refstie et al., 

1999; Francis et al., 2001; Dendougui and Schwedt, 2004; Leenhouwers et al., 2006; 

Krogdahl et al., 2010).  As discussed earlier, the relationship between the level of 

processing of canola products (meal to concentrate) and soy products (meal to 

concentrate to isolate) used in this study with the in vitro protein DH was proportional.  

This result is in agreement with Dimes et al. (1994) who reported significantly reduced in 

vitro DH of casein when rainbow trout pyloric caeca enzymes were incubated with 

graded levels of soybean trypsin inhibitor (SBTI, 0-16 µM) representing those found in 

un-processed soy products.  The results also agree with García-Carreño et al. (1997) who 

demonstrated increased in vitro DH of legume seed meals using shrimp hepatopancreas 

enzymes after thermal processing.  Similar results have been reported on the beneficial 

effects of de-hulling and reduction of anti-nutritional factors in plant protein supplements 

when fed to rainbow trout during in vivo protein digestibility studies (Glencross et al., 

2007, 2010). 

 

In vitro prediction of protein quality 

Most of the in vitro protein digestion studies with fish and crustaceans have 

subjected ‘individual’ test ingredients to the various enzyme cocktails and in vivo protein 

ADC studies typically determine digestion coefficients for ‘single’ test ingredients.  

Thus, the combination of these two methods may complicate the application of results to 

the feed industry for the following reasons:  a) these in vitro enzyme studies do not take 
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into account the effect of other dietary nutrients and binders which can inhibit proteolytic 

enzyme activity in vivo (Yamamoto and Akiyama, 1995) and b) in vivo studies assume 

that the single ingredient digestion coefficients are always additive in the combined diet 

(Cho et al., 1982); which is valid in many cases but may not be for ingredients having 

very high or very low digestibility (Tibbetts et al., 2006).  Due to these concerns and the 

complexity of in vivo food digestion, the complete reproduction of in vivo results through 

in vitro methods may be difficult (Bassompierre, 1997; Savoie, 1994). 

The ultimate goal of determining the in vitro protein DH of feed ingredients is to 

utilize the data in conjunction with in vivo protein ADC values by generating a predictive 

equation(s).  However, the generation of an ‘all-inclusive’ predictive regression equation 

may not be possible.  It is likely that several predictive equations for each species are 

required according to the origin of feed ingredient, level of processing and relative 

digestibility as discussed by several authors (Pedersen and Eggum, 1983; Jaguelin et al., 

1994; Shipton and Britz, 2002; Lemos et al., 2009).  Specifically, Haard (1993) pointed 

out that in vitro pH-Stat assays may over-estimate protein quality of plant-origin 

ingredients relative to those of animal-origin for salmonids.  This has also been 

documented for shrimp (Fernández Gimenez et al., 2009), seabream (Alarcón et al., 

2002) and mammals (Marletta et al., 1992).  This is consistent with the findings of the 

present study where the DH of plant-origin ingredients were higher than those of animal-

origin ingredients and this highlights the necessity for separate predictive equations for 

plant-origin and animal-origin feedstuffs (Table 4). 

Measurement of in vitro DH by pH-Stat using enzymes from the pyloric caeca of 

farmed Atlantic cod provided results that were in general agreement with in vivo protein 

digestibility of many conventional and novel feed ingredients including of fish and 

poultry meals, soy-based products, wheat gluten and lupin meals, while ingredients 

containing high levels of chitin, ash and/or fibre were not as successful.  In order to make 

in vitro DH data useful for research or industrial use it is necessary to combine these data 

with known in vivo protein quality data through the generation of predictive regression 

equations.  For finfish, only one of these equations currently exists for rainbow trout 

(Dimes and Haard, 1994) while there are several equations for white shrimp (Ezquerra et 

al., 1997, 1998; Lemos et al., 2009).  With the exception of Lemos et al. (2009), these 
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few published predictive equations are based on a small number of test feed ingredients 

(<10) providing data from a relatively static set of environmental conditions and have 

generated only a few small data sets and predominantly linear models.  This is highly 

unlikely if the studies were conducted under natural environmental conditions of fish 

farms (e.g. culture conditions and nutritional history of donor animals) and a higher 

number and composition/quality range of test ingredients had been assayed (Bender 

1982; Jørgensen, 1995).  Indeed, this was the case reported by Lemos et al. (2009) who 

conducted extensive DH assays with shrimp hepatopancreas enzymes from various 

different culture conditions, enzyme batches and activities and using a large number (26) 

of test ingredients with a wide range of composition (28-99% crude protein, 0-20% fat, 0-

47% carbohydrate, 0-49% ash) and in vivo protein digestibility (59-100% protein ADC).  

These authors found that non-linear models were required to describe the relationships 

between in vivo protein ADC and in vitro protein DH as was the case in this study (Table 

4).  To accurately ‘model’ this relationship and generate truly robust predictive equations 

for a particular species, data sets from numerous feed ingredients from a large number of 

processing conditions must be included in order to be adopted by the feed industry and 

researchers.  At this stage, it would be wise for the aquaculture feed industry to learn 

from past mistakes associated with the human food and farm animal feed sectors.  For 

example, many correlations between rapid-screening in vitro assays and in vivo 

performance have been made over the past century, only to be discredited once a wider 

range of samples were tested (Bender, 1982).  Although the data generated in this study 

should provide the basis for further work, the current body of knowledge on gadoid 

nutrition needs additional research to develop more robust equations.  As concluded for 

the salmonid work in the early 1990’s (Dimes et al., 1994) upon which these studies were 

based, seabream by Alarcón et al. (2002) and shrimp in the mid- to late 1990’s (Ezquerra 

et al., 1997; Lan and Pan, 1993), additional in vivo data are needed to establish a clear  

relationship between in vitro and in vivo assays for fish, including gadoids. 

 

Conclusions 

Initial in vivo digestibility studies with juvenile gadoids indicated that the 

‘measured’ in vivo protein digestibility coefficients (protein ADC) were very high 
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(>95%) for wheat gluten meal, soy protein concentrate, soy protein isolate and whole 

krill meal; high (85-95%) for herring meal, soybean meal, anchovy meal, pea protein 

concentrate, white lupin meal, crab meal, canola protein concentrate and corn gluten 

meal; mid-range (75-85%) for poultry by-product meal and canola meal; and low (<75%) 

for high ash shrimp meal, hydrolyzed feather meal and flaxseed meal.  Using an enzyme 

fraction extracted from the pyloric caeca of farmed Atlantic cod, the in vitro degree of 

protein hydrolysis (protein DH) of these same feed ingredients was measured.  

Regression equations describing the relationship between in vivo protein ADC and in 

vitro protein DH provided good correlation (<4 percentage points difference) of protein 

ADC in most of the cases (r = 0.90-0.99; R
2 

= 0.88-0.99), while some ingredients were 

either over- or under-estimated (6-7 percentage points) and appears to be related to high 

ash or chitin content (r = 0.75; R
2 

= 0.61) and may indicate the need for an acid pre-

hydrolysis stage and full account of non-protein nitrogen (NPN) content.  The ‘predicted’ 

in vitro protein ADC were above 95% for wheat gluten meal, soy protein concentrate, soy 

protein isolate and whole krill meal; relatively high (85-95%) for soybean meal, white 

lupin meal, herring meal, anchovy meal, canola protein concentrate, pea protein 

concentrate and poultry by-product meal; mid-range (75-85%) for crab meal, shrimp 

meal and canola meal; and low (<75%) for hydrolyzed feather meal and flaxseed meal.  

Further research on development of a two-stage hydrolysis assay involving an acid 

(gastric) pre-digestion step prior to the assay presented may provide better agreement 

between in vivo protein ADC and in vitro protein DH and more robust predictive 

equations, specifically for farmed gadoids. 
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Table 1 

Formulation and proximate composition of the basal diet (as-fed basis) used to measure 

in vivo apparent protein digestibility (ADC) of common and alternative feed ingredients. 

Ingredient      (%) 

     Herring meal
1     

46-48 

     Wheat gluten meal
2    

5 

     CPSP-G
3      

5 

     Wheat middlings
4     

16.8-18.7 

     Whey powder
5     

7 

     Krill hydrolysate
6
     0-2 n 

     Corn starch (pre-gel)
7    

5.6-6.1 

     Vitamin mixture
8     

1.95 

     Mineral mixture
8     

1.95 

     Choline chloride
9
     0.3 

     Herring oil
10

     6.4-8.0 

 

Proximate composition 

     Moisture (%)     10.1±0.1 

     Crude protein (%)     47.9±2.5 

     Lipid (%)      13.0±1.3 

     Ash (%)      7.2±1.6 

     Carbohydrate
11

 (%)    22.7±0.2 

     Gross energy (MJ/kg)    20.6±0.1 

      
1
St. Laurent Gulf Products Limited (Caraquet, NB, Canada) 

2
Roquette UK Limited (Northants, UK) 

3
Concentre proteique soluble de poisson (soluble fish protein concentrate) (Sopropêche, France) 

4
Dover Mills Limited (Halifax, NS, Canada) 

5
Farmers Co-operative Dairy (Truro, NS, Canada) 

6
SD-KH2, MaraVision Marine Products (Vancouver, BC, Canada) 

7
National Starch and Chemical Company (Bridgewater, NJ, USA) 

8
Vitamin and mineral premixes according to Tibbetts et al. (2004)

 

9
USB Corporation (Cleveland, OH, USA) 

10
Corey Feed Mills Limited (Fredericton, NB, Canada) 

11
Calculated as 100 – (moisture + crude protein + lipid + ash)
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Table 2 

Proximate composition, gross energy content (as-fed basis) and in vivo apparent protein digestibility (ADC) of the reference and 

experimental diets used to determine in vivo apparent protein digestibility (ADC) of the conventional and alternative feed ingredients. 

 

   Crude    Gross   In vivo protein   

  Moisture protein  Ash  energy   ADC (diet) 

     (%)  (%)  (%)  (MJ/kg)   (%) 

 

Reference   10.0-10.3 44.2-49.4 7.0-9.1  20.4-20.6  91.2-93.6 

Herring meal
   

9.2-9.5  51.1-57.1 8.0-10.5  20.5-20.9  92.0-93.8 

Anchovy meal
   

9.4  56.7  9.5  19.8   91.6 

Whole krill meal
   

8.9  56.1  9.8  20.0   93.2 

Crab meal
   

8.3-9.5  46.5-50.8 10.9-13.3 19.2-19.9  90.1-90.6 

Shrimp meal
   

7.7-8.5  42.4-46.3 15.4-16.3 18.2-19.0  85.2-86.3 

Poultry by-product meal
  

8.2  54.8  8.3  20.8   87.8 

Hydrolyzed feather meal
  

8.3  59.9  6.0  21.1   78.2 

Soybean meal
   

9.3-10.0  43.7-48.4 6.8-8.2  19.6-20.8  90.1-91.5 

Soy protein concentrate
  

9.1  56.0  6.5  20.0   94.0 

Soy protein isolate
  

9.4  61.1  6.4  20.6   92.8 

Canola meal
   

8.8-9.0  41.0-46.9 7.1-8.2  19.8-20.5  87.3-90.4 

Canola protein concentrate
  

8.3  54.2  8.1  20.0   89.9 

Flaxseed meal
   

10.3  43.9  6.3  19.9   81.6 

Pea protein concentrate
  

8.8  49.5  6.6  19.9   90.3 

White lupin meal
   

9.0  45.6  6.0  20.0   90.8 

Corn gluten meal
   

8.8-10.0  49.6-53.6 5.3-6.6  20.5-21.7  89.5-92.5 

Wheat gluten meal
  

9.1  59.5  5.0  21.1   94.8 
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Table 3 Proximate composition, gross energy content (as-fed basis) and in vivo apparent protein digestibility (ADC) of the 

conventional and alternative feed ingredients used to measure in vitro degree of protein hydrolysis (DH) using enzymes from pyloric 

caeca of Atlantic cod (Gadus morhua). 

 

     Crude     Gross  In vivo protein 

  International Moisture protein Lipid Ash Carbohydrate
a 

energy  ADC (ingredient) 

     feed number (%)  (%) (%) (%) (%)  (MJ/kg)  (%) 

 

Fish meals 

Herring meal
b   

5-02-000 7.1  74.5 10.1 10.4 0.0  20.8  93.3 

Herring meal
b   

5-02-000 8.5  69.7 10.2 14.4 0.0  19.8  95.9 

Anchovy meal
c   

5-01-985 7.8  68.3 9.6 15.8 0.0  19.1  92.2 

Zooplankton and crustacean by-product meals 

Whole krill meal
d   

5-16-423 4.8  72.4 5.3 17.5 0.0  18.8  96.3 

Crab meal
e   

5-01-663 9.1  54.0 5.7 22.7 8.4  15.8  89.4 

Crab meal
e   

5-01-663 8.5  50.3 7.1 26.7 7.4  15.0  82.0 

Shrimp meal
f   

5-04-226 6.2  37.2 3.5 38.4 14.7  12.4  66.7 

Shrimp meal
f   

5-04-226 5.8  40.6 4.5 37.7 11.4  12.5  73.5 

Animal by-product meals 

Poultry by-product meal
g  

5-03-798 5.0  66.3 14.6 10.8 3.3  22.0  80.2 

Hydrolyzed feather meal
g  

5-03-795 5.8  83.5 7.9 3.8 0.0  22.7  62.4 

Oilseed meals 

Soybean meal
h   

5-04-612 11.4  47.3 2.0 6.0 33.3  17.4  92.3 

Soybean meal
h   

5-04-612 6.6  46.3 5.5 5.7 35.9  19.5  92.2 

Soy protein concentrate
i  

5-08-038 7.9  68.7 0.3 5.1 18.0  19.0  98.6 

Soy protein isolate
i  

–  7.6  85.6 4.4 4.5 0.0  21.2  97.4 

Canola meal
j   

5-06-145 6.3  38.9 2.6 7.1 45.0  18.2  76.0 

Canola meal
j   

5-06-145 11.4  38.3 3.8 6.9 39.6  18.2  83.0 

Canola protein concentrate
j 

–  4.7  61.4 2.7 10.3 20.7  19.4  88.8 

Flaxseed meal
k   

–  12.0  31.0 9.5 4.6 42.8  18.8  52.6 
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Table 3 (Continued) Proximate composition, gross energy content (as-fed basis) and in vivo apparent protein digestibility (ADC) of 

the conventional and alternative feed ingredients used to measure in vitro degree of protein hydrolysis (DH) using enzymes from 

pyloric caeca of Atlantic cod (Gadus morhua). 

 

     Crude     Gross  In vivo protein 

  International Moisture protein Lipid Ash Carbohydrate
a 

energy  ADC (ingredient) 

     feed number (%)  (%) (%) (%) (%)  (MJ/kg)  (%) 

 

Pulse meals 

Pea protein concentrate
l  

–  7.2  49.0 4.1 4.9 34.8  18.5  89.8 

White lupin meal
m  

–  7.4  38.5 6.2 3.4 44.4  18.9  89.7 

Cereal grain meals 

Corn gluten meal
h  

5-28-242 11.0  61.6 4.3 1.0 22.1  20.9  86.3 

Corn gluten meal
h  

5-28-242 7.5  65.8 1.8 1.4 23.5  22.1  92.3 

Wheat gluten meal
n  

5-05-220 7.4  79.3 1.9 0.5 10.9  22.6  99.9 

 
a
 Calculated as 1000 − (moisture + crude protein + lipid + ash) 

b
 Scotia Garden Seafood Incorporated (Yarmouth, NS, Canada) 

c
 Sindicato SA, Grupo Sipesa (Lima, Peru) 

d
 Aqion (Colorado Springs, CO, USA) 

e
 St. Laurent Gulf Products Limited (Caraquet, NB, Canada) 

f
 Island Fisherman's Co-Op (Lemeque, NB, Canada) 

g
 Rothsay (Dundas, ON, Canada) 

h
 Bunge Canada (Oakville, ON, Canada) 

i
 Soycomil

®
 and Pro-Fam

®
, respectively; Archer Daniels Midland (Decatur, IL, USA) 

j
 MCN BioProducts Incorporated (Saskatoon, SK, Canada), Canbra Foods (Lethbridge, AB, Canada) 

k
 Bioriginal Food and Science Corporation (Saskatoon, SK, Canada) 

l
 Parrheim Foods (Portage La Prairie, MB, Canada) 

m
 Alberta Department of Agriculture (AB, Canada) 

n
 Roquette UK Limited (Northants, UK) 
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Table 4 Correlation coefficients (r) of the relationship between in vivo apparent protein digestibility (ADC) and in vitro degree of 

protein hydrolysis (DH) and coefficients of determination (R
2
) of various predictive models of feed ingredients fed to juvenile 

gadoids. 

            R
2
 

Ingredients used in model    r  Linear  Log  Power  Exponential 

All (n=21)      0.58  0.33  0.32  0.28  0.29 

Animal-origin (n=10)    0.66  0.43  0.47  0.46  0.42 

 Fish and poultry (n=5)  0.94  0.89  0.86  0.89  0.92 
* 

 Zooplankton and crustacean (n=5) 0.75  0.57  0.61 
*
  0.57  0.53 

Plant-origin (n=11)    0.58  0.34  0.26  0.23  0.29 

Oilseed (n=8)    0.80  0.64  0.74  0.70  0.59 

  Soy (n=4)   0.99  0.99  0.99  0.99  0.99 
* 

Canola and flax (n=4)  0.90  0.80  0.88 
*
  0.85  0.77 

Pulse and grain (n=3)   0.96  0.92 
*
  0.80  0.80  0.92 

 

* 
Predictive regression equations 

Fish and poultry (Exponential) Predicted in vivo protein ADC = 51.995 
(0.046[in vitro DH])

   R
2
 = 0.92 

Zooplankton and crustacean (Log) Predicted in vivo protein ADC = 28.772Ln(in vitro DH) + 40.626  R
2
 = 0.61 

Soy (Exponential)   Predicted in vivo protein ADC = 83.071 
(0.008[in vitro DH])

   R
2
 = 0.99

   

Canola and flax (Log)   Predicted in vivo protein ADC = 54.963Ln(in vitro DH) – 63.321  R
2
 = 0.88 

Pulse and grain (Linear)  Predicted in vivo protein ADC = 0.723(in vitro DH) + 84.377  R
2
 = 0.92 
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Table 5 

In vitro degree of protein hydrolysis (DH), in vivo apparent protein digestibility (measured vs. predicted) and prediction residuals 

(predicted protein ADC – measured protein ADC) of animal-origin feed ingredients
a
 fed to juvenile gadoid fish. 

 

Enzyme activity
b 

(U/µL)    In vitro
  

Protein ADC 

     Trypsin  Chymotrypsin DH (%)
 
 Measured Predicted 

           
In vivo  In vitro  Residual 

 

Fish meals 

Herring meal (70-74%)
c  

0.46±0.01
ns

 2.8±0.08
ns

 12.2±0.3
c 

94.6  91.2  -3.4 

Anchovy meal (68%)  0.46±0.00 2.8±0.00  12.3±0.1
c 

92.2  91.5  -0.7 

 

Zooplankton and crustacean by-product meals 

Whole krill meal (72%)
  

0.45±0.01 2.9±0.03    7.3±0.3
b 

96.3  98.0  +1.7 

Crab meal (50-54%)  0.46±0.00 2.9±0.04    3.8±0.6
a  

85.7  78.8  -6.6 

Shrimp meal (37-41%)  0.47±0.03 2.9±0.01    3.4±0.5
a 

70.1  76.1  +6.0 

 

Animal by-product meals 

Poultry by-product meal (66%) 0.48±0.00 2.9±0.01  11.3±0.7
c 

80.2  87.3  +7.1 

Hydrolyzed feather meal (83%) 0.48±0.00 2.7±0.07    3.7±0.1
a 

62.4  61.8  -0.6 

 
a 
Mean ± SE (n=3); values within the same column with different superscript letters are significantly different (P<0.05) 

b 
Measured enzyme activity of pyloric caeca-derived enzymes fractions

 

c 
Values in brackets indicate the crude protein content (% as fed basis) of the test ingredients 

ns
 no significant differences (P>0.05) within column 
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Table 6 

In vitro degree of protein hydrolysis (DH), in vivo apparent protein digestibility (measured vs. predicted) and prediction residuals 

(predicted protein ADC – measured protein ADC) of plant-origin feed ingredients
a
 fed to juvenile gadoid fish. 

 

 Enzyme activity
b 

(U/µL)    In vitro
  

Protein ADC 

     Trypsin  Chymotrypsin DH (%)  Measured Predicted 

           In vivo  In vitro  Residual
 

 

Oilseed meals 

Soybean meal (46-47%)
c  

0.48±0.02
ns

 2.7±0.08
ns

 13.3±0.3
bc

 92.3  92.4  +0.1 

Soy protein concentrate (69%) 0.45±0.00 3.0±0.09  21.5±2.4
d
 98.6  98.7  +0.1 

Soy protein isolate (86%)  0.45±0.00 2.9±0.10  20.7±0.1
d
 97.4  98.0  +0.6 

Canola meal (38-39%)  0.45±0.01 2.8±0.16  12.5±0.7
bc

 79.5  75.4  -4.1 

Canola protein concentrate (61%) 0.46±0.00 2.9±0.05  17.2±0.4
cd

 88.8  93.0  +4.2 

Flaxseed meal (31%)  0.46±0.01 3.0±0.02  8.9±0.2
ab 

52.6  56.5  +3.9 

 

Pulse meals 

Pea protein concentrate (49%) 0.46±0.00 3.0±0.02  5.6±0.5
a  

89.8  88.5  -1.3 

White lupin meal (38%)  0.46±0.01 2.9±0.01  10.0±0.7
ab

 89.7  91.6  +1.9 

 

Cereal grain meals 

Corn gluten meal (62-66%) 0.47±0.00 2.9±0.01  nd  89.3  -  - 

Wheat gluten meal (79%)  0.46±0.00 3.0±0.07  20.7±2.2
d
 99.9  99.4  -0.5 

 
a 
Mean ± SE (n=3); values within the same column with different superscript letters are significantly different (P<0.05) 

b 
Measured enzyme activity of pyloric caeca-derived enzymes fractions

 

c 
Values in brackets indicate the crude protein content (% as fed basis) of the test ingredients 

ns
 no significant differences (P>0.05) within column
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Chapter 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Discussion 
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Dietary protein and energy sources 

One of the primary research goals of this thesis was to examine the digestive 

capacity of farmed juvenile gadoids when fed conventional or alternative (novel) feed 

ingredients, using a combination of in vivo methods (Chapters 2 and 3) and in vitro 

methods (Chapters 5 and 6).  After determination of the macronutrient composition of 

feed ingredients, these methods are typically the next step to understand dietary protein 

and energy utilization by fish.  Considering both in vivo measured protein and energy 

apparent digestibility (ADC) and in vitro predicted protein ADC data, it was clear that 

gadoids have a high capacity to utilize a wide variety of dietary feed ingredients such as 

fish meals (herring meal and anchovy meal), zooplankton meal (whole freeze-dried krill), 

soy products (protein meal, concentrate and isolate) and wheat gluten meal with very 

high protein and energy ADC values of 90-100% and 86-96%, respectively.  Other feed 

ingredients that may have considerable potential for use in gadoid feeds include pulse 

meals (pea protein concentrate and white lupin meal), corn gluten meal and canola 

protein concentrate with relatively high protein and energy ADC values of 84-93% and 

75-83%, respectively.  Due to high levels of poorly digestible components (e.g. chitin, 

ash, fiber, carbohydrates and keratin protein), poultry meals (poultry by-product meal and 

hydrolyzed feather meal), crustacean meals (crab and high-ash shrimp meal), canola meal 

and flaxseed meal may have limited value as feed ingredients in gadoid diets with poor 

protein ADC values of 53-89% and energy ADC values of 29-83%.  It should be noted 

that there is some discrepancy with regard to the nutrient utilization from crustacean 

meals between gadoids in these studies and other marine species reported in the literature.  

The discrepancy is certainly due to the unusually high ash content (>38%) of the shrimp 

meal sample used in these studies relative to other studies at 18–27% (Hardy 1996; NRC 

2011).  In addition, the present studies showed a relatively high nutrient utilization of 

crab meal in vivo but this was not reflected in vitro and will be discussed further.  As a 

result, the nutritional value of crustacean meals by gadoids should be re-examined with 

additional sources of crab and shrimp meals. 

Digestibility of dietary macronutrients by farmed gadoids fed formulated feeds 

has received some attention recently (Hemre et al. 1989, 2003; Førde-Skjærvik et al. 

2006; Kim et al. 2006, 2007; Refstie et al. 2006).  However, with the exception of Kim et 



 

161 

 

 

al. (2006, 2007) that only examined two common feed ingredients (herring and soybean 

meal), all of these previous studies have been limited to work on ‘complete feeds’ and 

have exclusively used manual stripping or dissection to obtain fecal samples.  The in vivo 

digestibility data presented in this thesis (Chapters 2 and 3) is unique because it is the 

only body of work with farmed gadoids that has examined the macronutrient digestibility 

of ‘individual feed ingredients’.  This provides essential data that is required for least-cost 

ration formulations and the effective substitution of dietary feed ingredients.  In addition, 

these studies used sedimentation columns for fecal collection, which is generally 

considered to be more appropriate and accurate than other methods (Cho et al. 1982).  

Manual stripping and dissection to obtain fecal samples from fish have been criticized 

because they underestimate nutrient digestibility (Hajen et al. 1993; Kabir et al. 1998; 

Storebakken et al. 1998; Vandenberg and de la Noüe 2001) due to incomplete digestion 

and fecal contamination with non-dietary components of endogenous origin (blood, urine, 

semen, sloughed intestinal cells).  In addition, these methods subject the fish to 

considerable handling stress and potential physical damage (manual stripping) and death 

(dissection).  Specifically, the internal anatomy of gadoids have a fold in the mid-section 

of the abdomen, unlike salmonids, that make manually stripping difficult, requiring 

additional pressure on the abdomen that can result in significant stress, injuries and 

contaminated fecal samples (Førde-Skjærvik et al. 2006; Roy et al. 2004).  In contrast, 

fecal samples collected from properly designed settling columns, such as those designed 

for these studies (Chapters 2 and 3), allow for collection of uncontaminated samples 

from actively feeding, free-swimming fish that are naturally voided from the animal 

without stressful fish handling. 

 

Digestible protein/digestible energy ratio 

Protein bioavailability through in vivo and in vitro methods is a critical step to 

assess the protein quality of feed ingredients and complete feeds for fish.  However, the 

ultimate assessment of protein quality is through biological evaluation with the target 

species involving growth and nutrient metabolism studies (Bender 1982).  This thesis 

addressed this area by documenting the growth potential and nutrient utilization 

efficiency of gadoid fish at the juvenile grower phase using varying levels of dietary 
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macronutrients (Chapter 4) which could not have been accurately done without an initial 

in vivo digestibility study (Chapter 2).  The range of digestible protein/digestible energy 

(DP/DE)
 
ratios examined in these studies was within the range (22–33 g DP/MJ DE) 

reported to promote high protein gains in other juvenile fish species such as rainbow 

trout, Atlantic halibut, Atlantic cod and gilthead seabream (Lie et al. 1988; Cowey 1992; 

Aksnes et al. 1996; Lupatsch et al. 2001).  After 63 days of feeding, fish receiving all 

experimental diets achieved over 400% growth and over 98% survival indicating that 

juvenile gadoids have excellent potential for rapid growth on formulated diets.  In 

particular, these studies demonstrated that a dietary DP/DE
 
ratio of no less than 28.5 g 

DP/MJ DE
 
promotes the highest growth rates (>2.4%/day) of juvenile (<100 g) gadoids.  

This level of growth performance is similar to those reported for other marine fish such 

as juvenile European sea bass (2.3%/day) of similar size (Peres and Oliva-Teles 1999).  

The macronutrient utilization data presented in Chapter 4 also revealed that the weight 

gain observed in the fish was regulated solely by increasing levels of dietary protein in a 

linear manner and was independent of dietary lipid level or DP/DE ratio.  Likewise, the 

feed conversion ratios (FCR) of the fish were solely affected by dietary protein content 

rather than dietary lipid level or DP/DE ratio. 

Since protein efficiency ratio (PER) is generally regulated by the non-protein 

energy input of the diet, PER is a good measure of the ‘protein-sparing effect’ of dietary 

lipid and/or carbohydrate (Lie et al. 1988).  In these studies, there were no significant 

differences in PER between the experimental diets with the exception of the lowest 

DP/DE ratio (24.7 g DP/MJ DE) which was significantly higher than all other diets.  All 

of these results indicate that when dietary protein is adequate, haddock preferentially use 

protein as the prime dietary energy source.  This result from Chapter 4 using haddock 

confirms this situation for commercially important gadoids as it is also consistent with 

previous results with Atlantic cod (Lie et al. 1988; Morais et al. 2001).  These results 

provide further evidence for the case that the opportunity for protein sparing in gadoids 

diets is very limited and that only when dietary protein is limited (e.g. below 

requirement), does dietary lipid have some ability to spare dietary protein, possibly at the 

expense of growth rate.  This nutritional constraint has also been reported for European 

sea bass (Dias et al. 1998). 
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Juvenile gadoids, like other marine fish, efficiently utilize single feed ingredients 

and ‘complete’ feeds formulated with multiple feed ingredients.  High protein and energy 

digestibilities (>90% and >80%, respectively) are achievable in juvenile gadoids when 

the fish are provided with nutritionally complete feeds formulated with high quality feed 

ingredients (Chapters 2, 3 and 4).  These studies demonstrated that dietary carbohydrate 

content has little effect on protein digestibility which is in agreement with other farmed 

marine species such as Atlantic halibut (Grisdale-Helland and Helland 1998), salmonids 

(Aksnes 1995; Hemre et al. 1995; Grisdale-Helland and Helland 1997) and European sea 

bass (Peres and Oliva-Teles 1999).  Alternatively, significant differences were observed 

with respect to energy digestibility given different feed formulations.  Since the energy 

content of a diet is supplied by the catabolism of protein, lipid and carbohydrate and 

differences in protein digestibility measured in Chapter 4 were negligible, the significant 

differences in energy digestibility observed must be attributed to either lipid or 

carbohydrate content, or a combination of both.  In the experimental diets used in 

Chapter 4, with a decrease in protein from 55 to 45% and lipid from 16 to 11%, the 

dietary carbohydrate content increased from 12 to 28%.  The decreasing energy 

digestibility observed was significantly correlated to increasing dietary carbohydrate 

content but lipid content had no effect.  Lie et al. (1988) suggested that dietary 

carbohydrate should not exceed 17% for juvenile Atlantic cod and data presented in 

Chapter 4 now confirms this as well for juvenile haddock where energy digestibility was 

significantly reduced in all diets containing carbohydrate levels in excess of 17%. 

Unlike salmonids, gadoids accumulate excess dietary lipid in the liver, resulting 

in enlarged livers and a high hepatosomatic index (HSI).  This has been well 

demonstrated for both Atlantic cod and haddock (Lie et al. 1986, Dos Santos et al. 1993, 

Nanton et al. 2001).  Further studies have shown that the primary causes of this condition 

in gadoids are a low capacity for lipoprotein transport from the liver to the muscle cells 

and limited catabolic activity (ß-oxidation) of lipid in the liver (Nanton et al. 2003).  

Although liver function may not be impaired by this condition (Morais et al. 2001; 

Nanton 2002), it is considered undesirable from a fish metabolism perspective.  Fish with 

enlarged livers inefficiently utilize dietary energy resulting in lower somatic tissue 

growth as a percentage of whole-body weight gain than fish with smaller livers and this 
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condition can also be stressful to the fish.  Thus, minimizing the HSI or ‘fatty liver’ 

condition in cultured gadoids is of economic importance.  Earlier reports suggest that it is 

excessive dietary lipid levels that promote this enlarged liver condition.  However, the 

results presented in Chapter 4 demonstrate that it was both dietary protein and lipid 

levels that had significant effects on liver growth in haddock, as HSI values increased in 

step with increasing protein and lipid levels.  This result for haddock is in agreement with 

reports on Atlantic cod (Jobling et al. 1991) suggesting that the accumulation of liver 

lipid is not only dependent upon total dietary lipid content but its interaction with other 

nutrients causing an aberration in lipid metabolism.  Clearly, the dietary carbohydrate 

also plays a role in the results observed in the literature for cod and in Chapter 4 for 

haddock since excess dietary energy is not only stored as lipid but also as liver glycogen.  

In fact, the combination of the energy-yielding nutrients (defined by the DP/DE ratio) 

when fed to haddock was the most strongly correlated variable with HSI values measured 

in the studies presented in Chapter 4 (e.g. as DP/DE ratio decreases, HSI 

correspondingly increases).  This strong inverse relationship has also been documented in 

sharpsnout seabream, Diplodus puntazzo (Hernández et al. 2001).  These studies 

demonstrated that a minimum DP/DE ratio of 29.3 g DP/MJ DE is required to ensure 

juvenile haddock have a liver HSI under 9%, which corresponds to a diet containing 

minimum 50% protein and 11% lipid.  This result is consistent with preliminary studies 

using isocaloric diets (Kim and Lall 2001; Kim et al. 2001; Nanton et al. 2001) which 

demonstrated that high growth rates and minimal HSI can be achieved in juvenile fish fed 

50-55% protein and <12% lipid, but also suggests a maximum carbohydrate inclusion of 

17%. 

The various levels of dietary protein (45-55%) and lipid (11-16%) used in 

Chapter 4 had highly significant effects on final whole-body (WB) energy retention. 

That is, within each dietary lipid level, increasing dietary protein from 45 to 55%, led to 

significant increases in WB energy gain and within each dietary protein level, increasing 

dietary lipid from 11 to 16% also led to significantly higher WB energy gains.  The end 

result was that the diet containing the highest levels of both dietary protein and lipid (28.5 

g DP/MJ DE) resulted in juveniles with the highest WB energy gain, which is also 

documented for juvenile European sea bass (Lanari et al. 1999).  This high energy 
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retention efficiency (>45%) is higher than that reported previously for juvenile haddock 

(43%) (Kim and Lall 2001) using isocaloric diets so it is likely the result of a more 

appropriate DP/DE ratio.  However, it cannot be concluded that this particular DP/DE 

ratio is optimum because one of the goals of farming fish is to produce marketable fish 

products containing high levels of protein, which is in the form of the fillet flesh and not 

other components like viscera and liver.  As discussed, all diets containing less than 29.3 

g DP/MJ DE (e.g. 16% lipid) produced juveniles with enlarged livers (>11% HSI).  

These enlarged livers, being high in lipid, contributed considerable amounts of energy to 

the WB energy content, so it is an undesirable portion of the WB energy gain as it 

currently has no commercial value and will ultimately be discarded during processing.  

The highest nitrogen gains (>1.2 g/fish) were achieved when the DP/DE ratio was 28.5 

and 30.2 g DP/MJ DE as a result of high nitrogen retention efficiency (>40%) of fish 

being fed these diets.  To discriminate between these two potential optimum DP/DE 

ratios, studies in Chapter 4 determined the ‘composition’ of the energy gain according to 

Rodehutscord and Pfeffer (1999).  The results showed that in juveniles fed the 28.5 g 

DP/MJ DE diet, the gains were predominantly due to a build-up of energy in the form of 

lipid (>100 kJ/fish), particularly liver lipid.  In contrast, juveniles fed the 30.2 g DP/MJ 

DE diet had significantly lower and more acceptable levels of energy retained as lipid 

(<85 kJ/fish), relative to that retained as the more desirable protein energy (>180 kJ/fish).  

The energy retained in the form of protein was highly regulated by the dietary protein 

content whereas energy retained as lipid was highly regulated by both dietary lipid and 

digestible energy levels.  The overall conclusions from the data presented in Chapter 4 

were that in order to ensure not only maximum growth rate (>2.4%/day) but also highest 

digestibility of organic matter (>80%), protein (>93%) and energy (>85%), maximum 

nitrogen and energy retention efficiency (>40 and >45%, respectively), low energy 

retention in the form of liver lipid (<100 kJ/fish) and mimimal excessive liver growth and 

reasonable HSI (<10%), a diet for farmed gadoids during the juvenile grower phase must 

contain 30.2 g DP/MJ DE.  Practically, this requirement can be met in a commercial feed 

formulation containing 55% crude protein, 11% fat and 16% carbohydrate.  The studies 

presented in Chapter 4 were conducted with juvenile haddock based on real measured 

nutrient ADC values of feed ingredients measured in Chapter 2.  The goal was to 
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improve the understanding of juvenile haddock nutrition and also to confirm the 

suspected similarities between both gadoid species.  The recommended juvenile diet 

formulation for haddock discussed above closely agrees with previous recommendations 

for Atlantic cod (54% protein and >17% carbohydrate) and initial studies with haddock 

(50–54% protein and >12% lipid). 

 

Dietary protein quality – In vitro evaluation 

Method development 

A major goal of this thesis was to develop and assess the potential of an in vitro 

pH-Stat method for rapid screening of the protein quality of feed ingredients, specifically 

for farmed gadoids (Chapters 5 and 6).  Current methods for finfish are highly variable, 

have poor repeatability and use pyloric caeca-derived digestive enzymes from sources 

other than the target species, and therefore required a novel approach to study ‘gadoid-

specific’ nutritional development (Chapter 5).  The pyloric caeca in gadoids is relatively 

small in size compared to other fish species, representing only about 5% of the total 

digestive tract length and 1.5% of the fish body weight.  The pylorosomatic index (PSI) 

reported for the farm-raised Atlantic cod used in these studies (1.4%) is much lower than 

that of rainbow trout which is 2.8-3.8% (Bassompierre et al. 1998b).  However, due to 

the very large number of blind diverticula or caecal ‘fingers’ present in gadoids (222) 

relative to the less than 60 for most other species including rainbow trout, the multiple 

foldings contained within the pyloric caeca in gadoids increases the gut surface area to 

such an extent that it makes it a larger site of digestion than all of the remaining regions 

of the alimentary tract combined (Buddington et al. 1986; 1987).  As such, the pyloric 

caeca of gadoids likely accounts for more than 70% of total enzymatic digestion, making 

it the most suitable digestive tissue for in vitro protein hydrolysis studies. 

In the first part of Chapter 5, the two major alkaline protease enzymes were 

successfully concentrated though various extraction and partial purification steps.  Each 

step was performed to enrich the total concentration of the target enzymes being followed 

in the enzyme fraction (e.g. trypsin and chymotrypsin) which have similar molecular 

weights of 24.2 and 26.2 kDa, respectively (Ásgeirsson et al. 1989; Ásgeirsson and 

Bjarnason 1991; Raae and Walther 1989).  These target enzymes were selected as 
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‘marker’ enzymes because they have been clearly shown to constitute the major enzymes 

produced by the pancreatic cells for proteolytic function in the pyloric caeca of gadoids 

and other coldwater marine species.  Large increases in enzyme activities (trypsin, 408%, 

chymotrypsin, 1270%) were measured throughout the extraction steps indicating that the 

extraction procedure was successful in concentrating these enzymes.  The trypsin and 

chymotrypsin activity levels in the final extracts were 0.50±0.01 and 3.05±0.15 U/µg 

protein, respectively while the final blank fractions were confirmed to have no proteolytic 

activity.  When reviewing the literature with respect to digestive enzyme activities of 

fish, the only consistency is the overwhelming lack of consistency; making comparisons 

very difficult.  Reported values for fish pyloric caeca enzyme extracts processed at 

similar levels are highly variable due to species differences, nutritional history, culture 

conditions of donor fish, extraction/purification techniques and different activity assay 

conditions (e.g. different substrates, incubation temperature and/or pH, method of 

calculation, reporting units, etc.) (Alarcón et al. 1995 ; Hidalgo et al. 1999; Pérez-

Jiménez et al. 2009). 

The method development studies reported in Chapter 5 also involved running a 

‘procedural blank’ to account for background protein hydrolysis that occurs for non-

enzymatic reasons (eg. stirring motion, hydration, atmospheric gases, pH-probe 

fluctuations, etc.).  During early in vitro studies, Pedersen and Eggum (1983) assumed 

that measuring non-enzymatic hydrolysis was not necessary and would not increase the 

agreement between in vitro and in vivo results, while Alarcón et al. (2002) proved that 

this assumption was incorrect by demonstrating that non-enzymatic hydrolysis can be 

highly variable between samples and may account for a significant amount of total 

protein hydrolysis (>35%).  Pedersen and Eggum (1983) pointed out that in vivo 

digestion is a combination of both enzymatic hydrolysis and non-enzymatic hydrolysis; 

however, several authors have demonstrated better agreement between in vivo and in 

vitro results when non-enzymatic hydrolysis was accounted for.  The research presented 

in Chapters 5 and 6 is the first time a procedural blank has been used to account for non-

enzymatic hydrolysis, whereas previous studies with salmonids, other marine fish and 

shellfish have either used distilled water or no blank at all. 
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A major objective of Chapter 5 was to determine the most appropriate protein 

substrate concentration [S] to use during pH-Stat assays.  This was an important step 

because the [S] used in various studies in the literature with aquatic animals is quite 

variable (1-2 mg of N per mL of solution) and the reason for this range was not entirely 

clear.  This was troubling from the stand-point of method development because the [S] 

should surely affect the degree of hydrolysis (DH) under the variable assay durations 

used in the literature, even for the same test ingredient.  An interesting finding of Wei and 

Zhimin (2006) demonstrated its significant effects on protein hydrolysis rate and final 

DH by varying the [S] (0.3-2.4 mg/mL) using purified trypsin as the enzyme and bovine 

serum albumin (BSA) as the protein substrate.  It would appear that the use of a 1-2 mg 

N/mL [S] may have originated from the work of Hsu et al. (1977) and Maga et al. (1973) 

using an in vitro pH-Shift method with laboratory rats.  In these studies, a high 

correlation between in vitro DH and in vivo protein digestibility was achieved within 3-

10 minutes using 1-2 mg N/mL solution.  Subsequent studies with aquatic animals appear 

to have adopted these [S] as the standard.  Researchers working with salmonids, sparids, 

tuna, shrimps and abalone have used [S] in the range of 0.7 to 1.6 mg N/mL given 

differences in protein content and proteolytic activity of their enzyme fractions (Alarcón 

et al. 1998; Carter et al. 1999; Córdova-Murueta and García-Carreño 2002; Dimes and 

Haard 1994; Dimes et al. 1994a; Ezquerra et al. 1997, 1998; García-Carreño et al. 1997; 

Lan and Pan 1993; Shipton and Britz, 2002).  However, these studies did not attempt to 

optimize the [S] for the assay.  Only Alarcón et al. (1998, 2002) working with seabream 

assessed the effects of varying [S] on DH.  Direct adoption of the procedures of Hsu et al. 

(1977) and Maga et al. (1973) is not appropriate for aquatic animal studies since rats are 

warm-blooded endothermic animals and, as such, these studies were conducted at higher 

temperatures (37°C) than have been used in the literature for ectothermic shellfish (25-

30°C) and finfish (15-25°C).  In particular, digestive enzymes from gadoids, used in 

Chapters 5 and 6, have been shown to be highly efficient at lower temperatures and 

different pH levels compared to endothermic animals (Gudmundsdóttir and Pálsdóttir 

2005; Haard 1992; Hazel and Prosser 1974; Jóhannsdóttir 2009; Shahidi and Kamil 2001; 

Simpson et al. 1990; Simpson and Haard 1984, 1987; Squires et al. 1986).  In addition, 

Hsu et al. (1977) and Maga et al. (1973) did not use a prepared enzyme extract fraction 
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from the digestive tract of rats; rather they used a mixture of commercially available, 

high-activity purified enzymes (trypsin, chymotrypsin, peptidase). 

The work presented in Chapter 5 was largely based on pioneering method 

development studies for salmonids that used vitamin-free casein as the test protein source 

(Dimes and Haard 1994).  The results using Atlantic cod enzymes were in agreement 

with the relevant literature for salmonids.  Casein DH achieved in Chapter 5 (23-26%) 

was similar to the range reported for salmonids (23-27%; Dimes and Haard 1994; Dimes 

et al. 1994a) upon which this work was based.  The data presented in Chapter 5 

demonstrated that the same DH can be achieved in a shorter period of time using an 

optimized [S].  Plots of [S] versus assay duration (minutes) and titrant volume required 

(mL) showed significant linear relationships (R
2
=0.85-0.99), demonstrating the high 

proportionality between [S] and both assay duration and titrant consumption.  As a result 

of these findings, a [S] of 0.5 mg N/mL was recommended for subsequent DH studies 

(Chapter 6) based on the curve progression over 10 hours having a rapid increase 

initially and then leveling off at maximum DH (26%) in a moderate assay duration (~6 

hours) with minimal use of titrant (<12 mL).  This was also supported by comparing 

slopes of the linear portion (R
2
>0.99) of each hydrolysis curve over the first 90 minutes.  

The most rapid proteolysis occurred at a [S] of 0.5 mg N/mL (>0.18), whereas the 

activity rates fell to <0.12 at [S] of 0.75 and 1 mg N/mL.  This result supports that of 

Rothenbuhler and Kinsella (1985) working at 37°C with purified enzymes and various 

protein substrates (sodium caseinate, bovine serum albumin and defatted soy protein).  

They found the optimum [S] to be 3 mg protein/mL, when expressed in terms of nitrogen 

(N/P conversion factors of 6.38 for sodium caseinate and 6.25 for bovine serum albumin 

and defatted soy protein) equals 0.47 and 0.48 mg N/mL, respectively. 

A secondary goal of studies in Chapter 5 was to assess the stability, in terms of 

protein concentration and proteolytic activity, of the enzyme fractions stored at -20 and -

80ºC over a period of 12 months.  The results provided important quality-control 

information for these studies and also for future studies with respect to the thermal 

stability or usable “shelf-life” of enzyme fractions produced in the manner described in 

Chapter 5.  The enzyme fractions produced were extracted and stored in Tris/NaCl and 

sodium phosphate solutions in polypropylene cryogenic vials without an anti-microbial 
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additive and were only thawed once.  Results from this part of the study (Chapter 5) 

have demonstrated that under these conditions, the enzymes were very stable with the 

protein content remaining relatively constant over 12 months at storage temperatures of -

20 and -80°C and the trypsin activity showing no significant change over 10 months, 

having retained over 94% of initial activity.  Although there was a significant loss by 12 

months (83% of initial activity) when stored at -80°C, there was no significant difference 

relative to those stored at -20°C over the same period of time.  At -80°C, the 

chymotrypsin after 12 months storage showed no significant loss of activity and retained 

88% of initial activity.  However, when stored at -20°C, chymotrypsin showed a 

significant loss of activity after 8 months (70% of initial activity).  As a final quality 

control check, the results of DH of vitamin-free casein was compared using fresh enzyme 

fractions (T0 months) versus ones stored for 12 months at -80ºC (T12 months).  The DH was 

statistically the same (P=0.839) at 23.5±1.8% and 23.3±0.5%, respectively.  Based on 

these results, it was recommended that enzyme fractions produced by the methods 

detailed in Chapter 5 be stored at -80ºC and used within 8-10 months. 

 

Application to common and alternative ingredients 

Using enzyme fractions isolated from the pyloric caeca of Atlantic cod according 

to the methods in Chapter 5, the in vitro degree of protein hydrolysis (DH) of the same 

feed ingredients used during in vivo protein ADC studies (Chapter 2 and 3) were 

measured by an in vitro closed-system pH-Stat assay (Chapter 6).  The ingredients 

represented a wide range of available feed ingredients either in use or being considered 

for use in gadoid diets in Canada with highly variable compositions (31-86% crude 

protein, 0.3-15% lipid, 0.5-38% ash, 0-45% carbohydrate, 12-23 MJ/kg gross energy) 

providing a large variation in in vivo measured protein ADC of 50-100% (Chapter 2 and 

3).  The work presented in Chapter 6 is the first time that these in vitro protein 

hydrolysis methods have been applied to gadoid species.  Because of the technical 

difficulties inherent with the pH-Stat procedure, successful use of the methods with 

aquatic animals is rare and to date have only been adequately demonstrated a few times 

with non-gadoid finfish and shrimps (Dimes and Harrd 1994; Ezquerra et al. 1997, 1998; 

Alarcón et al. 2002; Lemos et al. 2009).  The work presented in Chapter 6 should add to 
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the much-needed body of knowledge on the application of the in vitro pH-Stat assay as a 

tool for nutritional development for aquatic animals, in particular the rapid-screening of 

potential feed ingredients. 

For animal-origin feed ingredients, the in vitro DH values were highest (11-12%) 

for poultry by-product meal, herring meal and anchovy meal, mid-range (7%) for whole 

krill meal; and lowest (3-4%) for crab meal, shrimp meal and hydrolyzed feather meal.  

These in vitro DH results were in good agreement with in vivo protein ADC data for fish 

meals and poultry meals (Chapters 2 and 3) that also showed relatively high protein 

ADC for herring, anchovy and poultry by-product meals and low protein ADC for 

hydrolyzed feather meal.  The in vitro DH results for zooplankton and crustacean meals, 

however, indicated lower digestibility than those using in vivo protein ADC methods 

(Chapters 2 and 3).  For the zooplankton and crustacean meals, the total amount of 

intact protein was likely over-estimated because of a relatively higher proportion of N in 

the form of NPN.  Zooplankton and crustacean feed ingredients may contain significant 

levels of chitin (10-20%) and free amino acids (>2%) (Hertrampf and Piedad-Pascual 

2000; Heu et al. 2003).  In addition, it is possible that the krill and crustacean products 

used in this study may have retained some endogenous enzyme activity that may be 

rapidly triggered causing partial post-mortem protein hydrolysis after capture at sea 

(within 6-8 hours) prior to final processing (Kolakowski 1986) resulting in elevated 

levels of NPN (e.g. volatile bases, trimethylamine, free amino acids, peptides, ammonia).  

Various authors have reported that freshly harvested krill and crustaceans with NPN 

levels of less than 10 g N/100 g can exceed 50 g N/100 g within 24 hours (Kolakowski 

1986; Fagbenro and Bello-Olusoji 1997; Heu et al. 2003).  If this were the case, these 

products would have a comparatively high content of NPN that may not affect apparent 

in vivo protein ADC (since it is based on N ratios between diet and faeces) (Chapters 2 

and 3) but could influence in vitro protein DH (Chapter 6) if the specific enzyme 

cleavage sites along those polypeptides (during in vitro protein hydrolysis) have 

previously been cleaved (Córdova-Murueta and García-Carreno, 2002).  The implication 

of these scenarios is an altered ratio of enzyme to intact protein substrate and this may 

have artificially resulted in lower in vitro DH than anticipated.  Secondly, and likely the 

major cause for the lower in vitro DH results, involves the method used in these studies 
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that used enzymes isolated from the pyloric caeca of Atlantic cod which function at a pH 

of 7 or higher (Danulat and Kausch, 1984).  Unlike other animal and plant protein 

sources, the major by-product of zooplankton and crustacean processing is the carapace 

or shell which may contain 50–80% chitin (poly-β-(1→4)-N-acetyl-glucosamine) and 

relatively high levels of ash (>15%) which have both shown high in vivo digestibility in 

gadoids (Danulat, 1987; Danulat and Kausch, 1984; Toppe et al., 2006).  The problem is 

that under the in vivo conditions such as those used in Chapters 2 and 3, these 

ingredients are exposed to an environment of acidic pH (3.8-6.5) and endogenous 

chitinase enzymes in the stomach ‘prior to’ entry into the alkaline (>pH 7) pyloric caeca 

(Danulat and Kausch 1984; Grabner 1985; Jeuniaux 1966).  This in vivo ‘preparatory’ 

gastric phase is unavailable in an in vitro pH-Stat assay using digestive enzymes from the 

pyloric caeca only, like that of Chapter 6.  In fact, Danulat and Kausch (1984) 

demonstrated that the activity of chitinase enzyme in the gadoid pyloric caeca is lower 

than that of the stomach and what little chitinolytic activity does exist in the pyloric caeca 

is not optimized at pH levels above 6.5.  This is in agreement with other monogastric 

animals like poultry that showed that the acid (gastric) phase was critical for chitin and 

chitosan digestion because it provides a preparatory phase whereby acidic gastric juices 

dissolve and swell the molecules, thus permitting a higher substrate availability for 

chitinase enzyme activity (Hirano et al., 1990) and subsequent alkaline protease activity.  

Since the enzyme fractions used in Chapter 6 were extracted only from the pyloric caeca 

at pH 7, these particular test ingredients lacked the benefit of a preparatory low gastric 

pH and chitinase pre-exposure phase that they would have had during in vivo digestion 

and not as important for the other low-chitin, low-ash feed ingredients.  Thus, it is not 

surprising that the ash and chitin-rich crustacean meals could be less digested under these 

specific in vitro conditions and especially for the particular sample of shrimp meal used 

in these studies which contained an unusually high level of ash (38%).  In fact, consistent 

lower than expected in vivo protein ADC and in vitro protein DH was observed for this 

ingredient in Chapters 2, 3 and 6.  Bassompierre et al. (1998a) found improved 

agreement between in vivo protein utilization (measured in rats) and in vitro protein DH 

(measured in rainbow trout) when an in vitro acidic (pH 3.8) gastric phase was 

implemented prior to the in vitro alkaline (pH 7.8) intestinal digestion phase.  Similar 



 

173 

 

 

increases in in vitro DH following an acid pre-step have been demonstrated using 

rainbow trout pyloric caeca enzymes (Grabner and Hofer, 1985) and purified mammalian 

enzymes (Rothenbuhler and Kinsella, 1985).  However, many authors concluded that the 

improvement was only marginal and resulted in a more complex and time-consuming 

assay, which may not be practical for use by the feed industry.  Alarcón et al. (2002) also 

found higher DH values with seabream after an acid pre-digestion, although the 

improvement was only observed for some ingredients (corn gluten meal, meat and bone 

meal, fish meal, soybean meal and blood meal) but not others (squid meal, lupin meal and 

green pea meal).  Similarly, Rothenbuhler and Kinsella (1985) observed that an acid pre-

treatment greatly enhanced the in vitro DH of soy protein and casein but reduced it for 

bovine serum albumin.  Recent work with other fish species on the development of a 

gastrointestinal model (GIM) that incorporates both the gastric acidic and intestinal 

alkaline phase, the use of bile salts and also a pH ‘transition’ phase (Hamdan et al., 2009; 

Morales and Moyano, 2010) may also be useful for gadoid species. 

The low nutritional value of hydrolyzed feather meal for gadoid feeds was 

confirmed by both in vivo protein ADC (Chapter 3) and in vitro protein DH methods 

(Chapter 6) and was not unexpected.  Similar findings have been reported for other 

farmed fish species and also other farmed terrestrial animals.  The low nutritional value 

may be due to high levels of poorly digestible keratin protein (Dong et al. 1993; Hardy 

and Barrows 2002; Yu et al. 2004), an inferior essential amino acid profile with low 

levels of methionine, lysine, histidine and tryptophan, the presence of disulfide bonding 

(Moran et al. 1966) and the presence of indigestible amino acid processing products, 

namely lysinoalanine and lanthionine (Williams et al., 1991; Wang and Parsons 1997).  

This limits the use of high proportions of feather meal in gadoid feeds.  It appears that 

global poultry production will continue to rise and availability of poultry feathers from 

the processing industry is enormous (4,500 million tonnes annually) and they routinely 

contain high (>80%) levels of total protein (Hertrampf and Piedad-Pascual 2000; Bertsch 

and Coello 2005).  Cost-effective processes that can further increase the protein quality of 

feather meals would greatly increase their feeding value and provide an excellent high 

protein alternative ingredient for marine fish and other animal feeds (Bertsch and Coello 

2005). 
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For plant-origin feed ingredients, the in vitro DH values obtained in Chapter 6 

were highest (17-21%) for wheat gluten meal, soy protein isolate, soy protein concentrate 

and canola protein concentrate; high (10-13%) for soybean meal, white lupin meal and 

canola meal and mid-range (6-9%) for pea protein concentrate and flaxseed meal.  The 

results for wheat gluten meal, all soy-based products and white lupin meal are in 

agreement with conventional in vivo protein ADC results (Chapters 2 and 3) that also 

showed high to very high protein digestibility for these ingredients (90-100%).  In 

contrast, it appears that in vitro DH may overestimate the relative protein quality for 

canola protein concentrate, canola meal and flaxseed meal, as their in vivo protein ADC 

(Chapter 3) were found to be high (89%), mid-range (76-83%) and low (53%), 

respectively while their in vitro DH (Chapter 6) were found to be very high (17%), high 

(12%) and mid-range (9%), respectively.  The relatively high DH found for these 

ingredients is consistent with results for canola protein concentrate found during earlier in 

vitro digestion studies with rainbow trout and rats, where relatively higher DH was also 

observed (Dimes and Haard 1994; Gauthier et al. 1982; Henry and Ford 1965).  Under in 

vivo conditions, inclusion of dietary ingredients containing high fibre typically results in 

lowered protein quality (reduced protein ADC) in fish feeds and this is attributed to 

decreased proteolytic enzyme activity (Falge et al. 1978) and shortened gut-transit time 

(Jobling 1981; Steffens 1989).  This was observed in particular for canola meal and 

flaxseed meal used in Chapters 2 and 3 where protein ADC was low (50-83%) and fecal 

output was very high from fish fed these high-fibre test ingredients.  By contrast, the high 

indigestible fibre content of these ingredients tends to elevate digestibility estimations 

(increased protein DH) under in vitro situations.  It has been shown that the fibre 

component of some plant-based feed ingredients have especially high buffering capacity 

in the presence of proteolytic enzymes and this high fibre content and subsequent high 

buffering capacity requires excessive use of NaOH titrant causing over-estimates of 

protein digestibility via in vitro methods (O’Hare et al. 1984).  The in vitro pH-Stat 

assays used in Chapter 6 used a procedural blank to account for this high buffering 

capacity and other sources of non-enzymatic hydrolysis, whereas previous studies with 

salmonids and other marine fish and shellfish have either used distilled water or no blank 

at all.  Although processing conditions play a large role in protein quality of feed 
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ingredients of both plant and animal-origin, it has been suggested that when higher in 

vitro protein DH values are observed for plant-origin ingredients, the primary causes may 

also be due to higher protein solubility, higher percentage of amino acids that are 

susceptible to alkaline protease cleavage and differences in peptide bond flexibility 

(Alarcón et al. 2002). 

It has been shown in other fish and shellfish species that potential inconsistencies 

between in vitro protein DH and in vivo protein ADC based on quantification of fecal 

nitrogen may involve the effects of ingredient composition, dietary inclusion level and 

poor palatability (Lemos et al. 2009).  It is likely that the use of 30% plant protein 

substitution in the initial in vivo protein ADC trials may have been too high given the low 

palatability of some plant protein ingredients.  It has been demonstrated for gadoids that 

inclusion levels of 10-50% fish meal and 10-40% soybean meal had no significant effect 

on in vivo protein ADC (Kim et al., 2006, 2007), however, it remains unclear what the 

effect would be with other less digestible, less palatable ingredients.  It is highly likely 

that some of the ingredients used in these studies may not be used at the 30% replacement 

level under practical, commercial aquafeed conditions due to undesirable proximate 

composition, inferior amino acid profile, palatability problems, feed processing 

(pelleting/extrusion) problems, anti-nutritional factors and cost.  The robustness of the 

correlations between in vivo protein ADC and in vitro protein DH could be strengthened 

with further determination of in vivo protein ADC data conducted at more practical 

ingredient inclusion levels (Lemos et al. 2009; Tacon and Akiyama 1997). 

The results presented in Chapter 6 demonstrated that the in vitro DH assay used 

may be a suitable tool for assessing the effect of processing on particular plant protein 

ingredients for gadoids, which is in agreement with studies with terrestrial animals 

(Rothenbuhler and Kinsella 1985) and shrimp (García-Carreño et al. 1997; Lemos and 

Tacon 2011).  The in vitro DH results (Chapter 6) for the variously processed canola and 

soy products (e.g. meal, concentrate and isolate) mirrored (r = 0.90 and 0.99, 

respectively) the in vivo protein ADC results of Chapter 3.  It is well documented that 

the various processing stages from intact beans or seeds to de-hulled meals and ultimately 

the production of protein concentrates and isolates can significantly reduce the levels of 

poorly digestible non-protein components such as fibre, oligosaccharides, non-starch 
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polysaccharides and phytic acid (Storebakken et al. 1998, 2000) and also inactivate 

protease inhibitors (Anderson and Wolf 1995), which can negatively affect protein 

quality and nutrient digestion in fish.  As such, through an appropriate combination of 

physical, chemical and thermal processing, these antinutritional components are reduced, 

inactivated and/or the protein structures altered through thermal processing permitting 

higher protease activity on peptide bonds (García-Carreño et al. 1997; Hsu et al. 1977) 

and improved accessibility of protein to enzymatic hydrolysis.  The mode of action of 

plant-based anti-nutritional factors in monogastric animals has been well studied and is 

through nutrient binding with bile salts and other anti-nutritional components (e.g., phytic 

acid, metal ions), obstruction of protease activity (proteolytic enzyme inhibition), 

accelerated movement of digesta through the intestinal tract and increased viscosity of 

digesta (Storebakken et al., 1998, 2000; Francis et al., 2001; Dendougui and Schwedt, 

2004; Leenhouwers et al., 2006; Krogdahl et al., 2010).  As discussed, the relationship 

between the level of processing of canola products (meal to concentrate) and soy 

products (meal to concentrate to isolate) used in Chapter 6 was similar.  This was also 

reflected in vivo in Chapter 3 where protein ADC for canola and soybean was improved 

with processing (e.g. isolate ≥ concentrate > meal). 

The ultimate goal of determining the in vitro protein DH of feed ingredients is to 

utilize this data in conjunction with in vivo protein ADC values by generating a predictive 

equation(s).  However, the generation of an ‘all-inclusive’ predictive regression equation 

may not be possible.  It is more likely that several predictive equations for each species 

are required according to the origin of feed ingredient, level of processing and relative 

digestibility as discussed by several authors (Pedersen and Eggum 1983; Jaguelin et al. 

1994; Shipton and Britz 2002; Lemos et al. 2009).  Specifically, Haard (1993) pointed 

out that in vitro pH-Stat assays may overestimate protein quality of plant-origin sources 

relative to those of animal-origin for salmonids.  This has also been documented for 

shrimp (Fernández Gimenez et al. 2009), seabream (Alarcón et al. 2002) and mammals 

(Marletta et al. 1992).  This was consistent with the findings of Chapter 6 where the DH 

of plant-origin ingredients were higher than those of animal-origin ingredients and this 

highlights the necessity for separate equations for plant-origin and animal-origin 

feedstuffs. 
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Measurement of the in vitro DH by pH-Stat using enzymes from the pyloric caeca 

of farmed Atlantic cod (Chapter 6) provided results that were in general agreement with 

in vivo protein digestibility of many conventional and novel feed ingredients including of 

fish and poultry meals, soy-based products, wheat gluten and lupin meals, while 

ingredients containing high levels of chitin, ash and/or fibre were not as successful 

relative to the results measured in vivo (Chapters 2 and 3).  As discussed, in order to 

make in vitro DH data useful for research or industrial use, it is necessary to combine 

these data with known protein quality data measured in vivo through the generation of 

predictive regression equations.  For finfish, only one of these equations currently exists 

for rainbow trout (Dimes and Haard 1994) while there are several equations for white 

shrimp (Ezquerra et al. 1997, 1998; Lemos et al. 2009).  With the exception Lemos et al. 

(2009), these few published predictive equations are based on a small number of test feed 

ingredients (<10) providing data from a relatively static set of environmental conditions 

and have generated only a few small data sets and predominantly linear models.  This is 

highly unlikely if the studies were conducted under natural environmental conditions of 

fish farming (e.g. culture conditions and nutritional history of donor animals) and a 

higher number and composition/quality range of test ingredients had been assayed 

(Bender 1982; Jørgensen 1995).  Indeed, this was the case reported by Lemos et al. 

(2009) who conducted extensive DH assays with shrimp hepatopancreas enzymes from 

various different culture conditions, enzyme batches and activities and using a large 

number (26) of test ingredients with a wide range of composition (28-99% protein, 0-

20% fat, 0-47% carbohydrate, 0-49% ash) and in vivo protein digestibility (59-100%).  

These authors found that non-linear models were required to describe the relationships 

between in vivo protein ADC and in vitro protein DH as was the case for gadoids in 

Chapter 6 of this thesis. 

To accurately ‘model’ this relationship and generate truly robust predictive 

equations for a particular species, data sets from numerous feed ingredients from a large 

number of processing conditions must be included in order to be adopted by the feed 

industry and researchers.  At this stage, it would be wise for the aquaculture feed industry 

to learn from past mistakes associated with the human food and farm animal feed sectors.  

For example, many correlations between rapid-screening in vitro assays and in vivo 
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performance have been made over the past century, only to be discredited once a wider 

range of samples were tested (Bender 1982).  Although the gadoid in vitro data generated 

in Chapters 5 and 6 and the comparisons with in vivo data from Chapters 2 and 3 

should provide the basis for further work, the current body of knowledge on gadoid 

nutrition needs additional research to develop more robust equations.  As concluded for 

the salmonid work in the early 1990s (Dimes et al. 1994a) upon which these studies were 

based, seabream by Alarcón et al. (2002) and shrimp in the mid- to late 1990s (Ezquerra 

et al. 1997; Lan and Pan 1993), additional data are needed to establish a clear relationship 

between in vitro and in vivo assays for fish, including gadoids. 
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Summary 

 

There is growing interest in gadoid farming as a means to meet the demand for 

Atlantic cod and haddock and to ease the strain on wild populations that would have 

otherwise been fished into extinction.  Although the majority of farmed gadoid 

production will be accomplished through infrastructure that currently exists for marine 

salmonid farming, these feeds may not be suitable for gadoids due to differences in 

dietary protein digestion, absorption and metabolism as well as energy utilization.  The 

primary research goals of this thesis were to: 1) examine the in vivo digestion and 

absorption of macronutrients from conventional or alternative (novel) feed ingredients 

incorporated into practical diets fed to juvenile gadoids (Chapters 2 and 3), 2) document 

the growth potential of gadoid fish at the juvenile grower phase given varying levels of 

dietary protein and energy (Chapter 4) and 3) to assess the potential of an in vitro pH-

Stat method for rapid screening the protein quality of feed ingredients, specifically for 

gadoids (Chapters 5 and 6).  All of these primary research questions were linked to, and 

built upon, one another with the ultimate goal of gaining a better understanding of protein 

and energy utilization of gadoids during the juvenile grower phase. 

The studies presented in Chapters 2 and 3 demonstrated that cod and haddock 

have a high capacity to utilize a wide range of dietary feed ingredients.  High in vivo 

apparent protein digestibility (APD) was found for fish meals such as herring meal (93-

96%) and anchovy meal (92%), whole freeze-dried krill meal (96%), soybean products 

such as soybean meal (92%), soy protein concentrate (99%) and soy protein isolate (97%) 

and wheat gluten meal (100%).  Other feed ingredients having relatively high APD 

included corn gluten meal (86-92%), pea protein concentrate (90%), white lupin meal 

(90%), canola protein concentrate (89%) and crab meal (82-89%).  High in vivo apparent 

energy digestibility (AED) was found for fish meals such as herring meal (92-93%) and 

anchovy meal (86%), whole freeze-dried krill meal (96%), soybean products such as 

soybean meal (88-92%), soy protein concentrate (95%) and soy protein isolate (92%) and 

wheat gluten meal (95%).  Other feed ingredients having relatively high AED included 

crab meal (82-83%), corn gluten meal (81-83%) and canola protein concentrate (83%).  

The digestibility data presented in this thesis is currently the only research that has 
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examined both the in vivo (Chapters 2 and 3) and in vitro (Chapter 6) macronutrient 

digestibility of a large number and wide range of individual feed ingredients, specifically 

for gadoids.  This data is essential to gain new knowledge on protein and energy 

utilization as well as for least-cost ration formulations and effective substitution of 

ingredients into new feed formulations. 

Using species-specific in vivo protein and energy digestibility data from Chapter 

2 it was possible to precisely formulate several experimental diets for use in Chapter 4 to 

further examine dietary protein and energy utilization of juvenile haddock with respect to 

growth rate, efficiency of protein and energy utilization and nutrient retention and 

deposition.  The data presented in Chapter 4 demonstrated that a dietary digestible 

protein/digestible energy (DP/DE)
 
ratio of 30 g DP/MJ DE was required for haddock 

during the juvenile grower phase (<100 g).  This DP/DE ratio was achieved in an 

experimental diet containing 54.8% crude protein, 11.4% lipid and 16.4% carbohydrate 

which agrees well with that of juvenile Atlantic cod.  Fish fed this practical diet 

formulation had the highest daily growth rate (2.4%), lowest feed conversion ratio (0.7 g 

feed/g gain), highest protein and energy digestibility (94 and 86%, respectively), highest 

nitrogen gain (1.2 g/fish) and highest energy retention efficiency (46%).  In addition, fish 

fed this diet had the lowest hepatosomatic index (9%) indicating that it prevented 

excessive liver lipid accumulation which has been problematic for farming of gadoids.  

This findings of this thesis have brought various preliminary nutrient requirement studies 

together for both cod and haddock and, through an applied nutritional approach using in 

vivo digestibility studies (Chapters 2, 3 and 4) and growth performance and nutrient 

utilization studies (Chapter 4), has identified that commercial feeds for juvenile gadoids 

(fingerling to 100 g) farmed in the Western North Atlantic should be formulated to 

contain 50-55% crude protein, <12% fat and <17% carbohydrate. 

The studies presented in Chapters 5 and 6 of this thesis are the first reports 

towards the development and application of an in vitro closed-system pH-Stat assay for 

rapid screening the protein quality of test feed ingredients that is ‘species-specific’ to 

gadoids.  The method development studies (Chapter 5) demonstrated that by using a 

combination of techniques used previously with fish and shellfish, a species-specific 

protease enzyme cocktail rich in trypsin and chymotrypsin proteolytic activity (0.5 and 
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3.0 U/µg protein, respectively) could be produced relatively easily in the lab and had 

better frozen storage capacity.  The studies demonstrated that the enzyme fractions had 

stable activity when stored at -80°C for up to 10 months while stability when stored at -

20°C was lost after 8 months.  These results provide very important quality-control 

information for subsequent studies presented in Chapter 5 (optimum substrate 

concentration), studies presented in Chapter 6 (in vitro pH-Stat degree of protein 

hydrolysis (DH) of feed ingredients) and also for future studies with respect to the 

thermal stability or usable “shelf-life” of enzyme fractions produced in the manner 

described in Chapter 5 of this thesis.  A major objective of Chapter 5 was to determine 

the most appropriate protein substrate concentration [S] to use during pH-Stat assays.  A 

[S] of 0.5 mg N/mL was found to be the most suitable based on the degree of protein 

hydrolysis (DH) curve progression having a rapid increase initially and then leveling off 

at maximum DH (26%) in a moderate assay duration (~6 hours) with minimal use of 

NaOH titrant (<12 mL) and this conclusion was also confirmed through slope modeling. 

The final chapter of this thesis (Chapter 6) involved the application of the 

enzyme extraction methods and pH-Stat assay conditions from Chapter 5 to measure the 

in vitro degree of protein hydrolysis (protein DH) of several conventional and novel feed 

ingredients by closed-system pH-Stat assay.  The protein DH data were combined with in 

vivo apparent protein digestibility data (protein ADC) from Chapter 3 to generate 

‘species-specific’ equations to predict protein ADC.  The equations resulted in good 

correlation (<4 percentage points difference) between ‘measured’ and ‘predicted’ protein 

ADC in the majority of cases (r = 0.90-0.99; R
2 

= 0.88-0.99), while some ingredients 

were either over- or under-estimated (6-7 percentage points) which appears related to 

high ash or chitin content (r = 0.75; R
2 

= 0.61) and may indicate the need for an acid pre-

hydrolysis phase and full account of non-protein nitrogen (NPN) content.  The 

‘predicted’ in vitro protein ADC were high for wheat gluten meal (99%), soy protein 

concentrate (99%), soy protein isolate (98%) and whole krill meal (98%); relatively high 

for soybean meal (92%), white lupin meal (92%), herring meal (91%), anchovy meal 

(91%), canola protein concentrate (93%), pea protein concentrate (88%) and poultry by-

product meal (87%); mid-range for crab meal (79%), shrimp meal (76%) and canola meal 

(75%); and low for hydrolyzed feather meal (62%) and flaxseed meal (56%).  It was 
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concluded that the in vitro results (Chapter 6) generally reflected the results obtained 

through conventional in vivo protein digestibility methods (Chapters 2 and 3) and results 

were more rapidly obtained using less animals.  The studies presented in Chapters 5 and 

6 have resulted in the first generation of a ‘gadoid-specific’ enzyme extraction method 

and in vitro closed-system pH-Stat assay, which will be useful to further investigate 

protein digestion, absorption and metabolism of gadoids and development of their feeds.  

The results of this thesis suggest good potential to reduce the use of high-cost fish meals 

in gadoid diets by replacement with other more economically cost-effective and more 

environmentally sustainable feed ingredients. 
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Samenvatting 

 

Er is groeiende belangstelling voor gadoid landbouw al seen middle om de vraag 

naar Atlantische kabeljauw en schelvis te ontmoeten en om de druk op wilde populaties 

die anders zou zijn geweest gevist in uitsterven te verlichten.  Hoewel de meerderheid 

van gekweekte gadoid productie zal worden bereikt door de infrastructuur die momenteel 

bestaat voor de scheepvaart zalmachtigen landbouw, kunnen deze feeds niet geschikt 

voor gadoids te wijten aan verschillen in de eiwitbehoefte vertering, absorptie en 

metabolisme en energie gebruik.  De voornaamste onderzoeksdoelstellingen van dit 

proefschrift waren: 1) onderzoekt de in vivo vertering en absorptie van macronutriënten 

van conventionele of alternatieve (nieuwe) diervoederingrediënten opgenomen in 

praktische diëten gevoerd aan jeugdige gadoids (hoofdstukken 2 en 3), 2) het document 

van de groei van potentieel van gadoid vis op de juveniele fase teler krijgt verschillende 

niveaus van eiwitten en energie (hoofdstuk 4) en 3) de mogelijkheden van een in vitro 

pH-Stat methode voor snelle screening van het eiwit kwaliteit van de voedermiddelen te 

beoordelen, specifiek voor gadoids (hoofdstuk 5 en 6).  Al deze primaire 

onderzoeksvragen zijn gekoppeld aan, en gebouwd op, een andere met het uiteindelijke 

doel van het verkrijgen van een beter begrip van eiwit-en energie-benutting van gadoids 

tijdens de jonge kweker fase. 

De studies gepresenteerd in de hoofdstukken 2 en 3 laten zien dat kabeljauw en 

schelvis een hoge capaciteit om een breed scala van dieet voedermiddelen te gebruiken 

zijn.  Hoog in vivo zichtbaar eiwitverteerbaarheid (APD) werd gevonden voor vis eten, 

zoals haring eten (93 tot 96%) en ansjovis maaltijd (92%), hele gevriesdroogd krill meel 

(96%), soja-producten, zoals sojameel (92%), soja-eiwit concentraat (99%) en soja-eiwit 

isolaat (97%) en tarwegluten maaltijd (100%).  Andere voedermiddelen met relatief hoge 

APD opgenomen maïsglutenmeel (86-92%), erwten-eiwit concentraat (90%), witte lupine 

maaltijd (90%), canola-eiwit concentraat (89%) en krab maaltijd (82-89%).  Hoog in vivo 

schijnbare energie verteerbaarheid (AED) werd gevonden voor vis eten, zoals haring eten 

(92 tot 93%) en ansjovis maaltijd (86%), hele gevriesdroogd krill meel (96%), soja-

producten, zoals sojameel (88-92%), soja-eiwit concentraat (95%) en soja-eiwit isolaat 

(92%) en tarwegluten maaltijd (95%).  Andere voedermiddelen met relatief hoge AED 
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inbegrepen krab maaltijd (82-83%), maïsglutenmeel (81-83%) en canola-eiwit 

concentraat (83%).  De verteerbaarheid data gepresenteerd in dit proefschrift is 

momenteel het enige onderzoek dat heeft onderzocht zowel de in vivo (hoofdstukken 2 

en 3) en in vitro (hoofdstuk 6) macronutriënten verteerbaarheid van een groot aantal en 

een breed scala aan individuele diervoederingrediënten, specifiek voor gadoids.  Deze 

data is essentieel om nieuwe kennis over eiwit-en energie-gebruik en voor least-cost 

rantsoen formuleringen en effectieve vervanging van de ingrediënten te krijgen in nieuwe 

feed formuleringen. 

Met behulp van soortspecifieke in vivo eiwit-en energie verteerbaarheid van 

gegevens uit hoofdstuk 2 was het mogelijk om precies te formuleren een aantal 

experimentele diëten voor gebruik in hoofdstuk 4 tot en met eiwitten en energie het 

gebruik van jonge schelvis verder te onderzoeken met betrekking tot de groei, efficiëntie 

van de eiwit-en energie- gebruik en voedingsstoffen vasthouden en depositie.  De 

gegevens gepresenteerd in hoofdstuk 4 aangetoond dat een voeding verteerbare eiwitten 

/ verteerbare energie (DP/DE) verhouding van 30 g DP/MJ DE nodig was voor schelvis 

in de juveniele teler fase (<100 g).  Deze DP/DE verhouding werd bereikt in een 

experimentele dieet met 54.8% ruw eiwit, 11.4% vet en 16.4% koolhydraten die goed 

overeenstemmen met die van jonge kabeljauw.  Vissen gevoed deze praktische dieet 

formulering had de hoogste dagelijkse groei (2.4%), laagste voederconversie ratio (0.7 g 

voeder/g gain), de hoogste eiwit en energie verteerbaarheid (94 en 86%, respectievelijk), 

hoogste stikstof te krijgen (1.2 g/vis) en de hoogste energie-efficiëntie retentie (46%). 

Daarnaast, vissen gevoed dit dieet had de laagste hepatosomatic index (9%) die aangeeft 

dat het overdreven lever vet ophoping die problematisch waren voor de landbouw van 

gadoids voorkomen.  Deze bevindingen van dit proefschrift hebben geleid tot diverse 

voorbereidende voedingsstoffen vereiste studies samen voor zowel de kabeljauw en 

schelvis en, door middel van een toegepaste voedings-benadering met behulp van in vivo 

verteerbaarheid studies (hoofdstukken 2, 3 en 4) en de groei prestaties en 

nutriëntenbenutting studies (hoofdstuk 4), heeft vastgesteld dat de commerciële feeds 

voor jeugdige gadoids (fingerling tot 100 g), gekweekt in de West-Noord-Atlantische 

Oceaan moet worden geformuleerd om 50-55% ruw eiwit, <12% vet en <17% 

koolhydraten bevatten. 
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De studies gepresenteerd in hoofdstuk 5 en 6 van dit proefschrift zijn de eerste 

berichten naar de ontwikkeling en toepassing van een in vitro gesloten systeem pH-Stat 

test voor een snelle screening van het eiwit kwaliteit van test diervoederingrediënten dat 

is 'soorteigen' om gadoids.  De methode ontwikkeling studies (hoofdstuk 5) toonde aan 

dat met behulp van een combinatie van technieken eerder gebruikte met vis en 

schaaldieren, een soort-specifiek protease-enzym cocktail rijk aan trypsine en 

chymotrypsine proteolytische activiteit (0.5 en 3.0 U/µg eiwit, respectievelijk) kan 

worden relatief gemakkelijk geproduceerd in het lab en maar beter bevroren 

opslagcapaciteit.  De studies hebben aangetoond dat het enzym fracties stabiele activiteit 

was indien bewaard bij -80°C tot 10 maanden, terwijl de stabiliteit indien bewaard bij -

20°C werd verloren na 8 maanden.  Deze resultaten leveren een zeer belangrijke 

kwaliteitscontrole van informatie voor latere studies gepresenteerd in hoofdstuk 5 

(optimale substraat concentratie), studies gepresenteerd in hoofdstuk 6 (in vitro pH-Stat 

mate van eiwithydrolyse (DH) van diervoederingrediënten) en ook voor toekomstige 

studies met betrekking tot de thermische stabiliteit of bruikbare "shelf-life" van enzym 

fracties geproduceerd op de wijze zoals beschreven in hoofdstuk 5 van dit proefschrift. 

Een belangrijke doelstelling van hoofdstuk 5 was om de meest geschikte eiwit substraat 

concentratie [S] te gebruiken tijdens de pH-Stat testen te bepalen. A [S] van 0.5 mg 

N/mL was gevonden om de meest geschikte gebaseerd op de mate van eiwithydrolyse 

(DH) curve progressie met een snelle stijging in eerste instantie en daarna afvlakt bij 

maximale DH (26%) in een matige test duur worden (~ 6 uur) met minimaal gebruik van 

NaOH titrant (<12 ml) en deze conclusie werd ook bevestigd door de helling 

modellering. 

Het laatste hoofdstuk van dit proefschrift (hoofdstuk 6) die betrokken zijn op de 

toepassing van het enzym extractiemethoden en pH-Stat assay voorwaarden uit 

hoofdstuk 5 van de in vitro mate van eiwithydrolyse (eiwit DH) van diverse 

conventionele en nieuwe diervoederingrediënten te meten door closed-systeem pH-Stat 

assay.  Het eiwit DH gegevens werden gecombineerd met in vivo schijnbaar 

eiwitverteerbaarheid data (eiwit ADC) van hoofdstuk 3 tot en met 'soortspecifieke' 

vergelijkingen te genereren van eiwit ADC voorspellen.  De vergelijkingen resulteerde in 

een goede correlatie (<4 procentpunten verschil) tussen 'gemeten' en 'voorspelde' eiwit 
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ADC in de meeste gevallen (r = 0.90-0.99; R
2 

= 0.88 tot 0.99), terwijl sommige 

ingrediënten waren ofwel over-of onder-schatting (6-7 procentpunten) die is opgenomen 

met betrekking tot hoge as of chitine inhoud (r = 0.75; R
2
 = 0.61) en kan de noodzaak 

van een zure hydrolyse pre-fase en volle rekening gehouden met niet-eiwit stikstof (NPN 

geven) content.  De 'voorspelde' in vitro proteïne ADC waren hoog voor tarwe gluten 

eten (99%), soja-eiwit concentraat (99%), soja-eiwit isolaat (98%) en hele krill meel 

(98%), relatief hoog voor sojameel (92 %), witte lupine maaltijd (92%), haring eten 

(91%), ansjovis maaltijd (91%), canola-eiwit concentraat (93%), erwten-eiwit 

concentraat (88%) en pluimvee bijproduct maaltijd (87%), mid-range voor de krab 

maaltijd (79%), garnalen maaltijd (76%) en canola maaltijd (75%) en laag voor 

gehydrolyseerd verenmeel (62%) en lijnzaad maaltijd (56%). Er werd geconcludeerd dat 

de in vitro resultaten (hoofdstuk 6) in het algemeen de resultaten verkregen door middel 

van conventionele in vivo eiwitverteerbaarheid methodes (de hoofdstukken 2 en 3) en de 

resultaten waren sneller verkregen met behulp van minder dieren weerspiegeld.  De 

studies gepresenteerd in hoofdstuk 5 en 6 hebben geleid tot de eerste generatie van een 

'gadoid-specifieke' enzym extractie methode en in vitro gesloten systeem pH-Stat test, die 

nuttig zal zijn om verder te onderzoeken eiwit vertering, absorptie en metabolisme van 

gadoids en de ontwikkeling van hun feeds.  De resultaten van dit proefschrift suggereren 

goede mogelijkheden voor het gebruik van hoge kosten vis gerechten te verminderen 

gadoid diëten door vervanging door andere, meer economisch rendabel en ecologisch 

duurzame voedingsingrediënten. 
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