

Measuring buffer strip effectiveness in a deeply permeable sandy soil:

Beltrum, NL

Marius Heinen, Gert-Jan Noij
Hanneke Heesmans

Contents

- Introduction
- Experiment at Beltrum
- Results and **Buffer Strip Effectiveness BSE**
- Alternative definitions *BSE*
- Findings so far

Introduction

- Buffer Strips (BS) along water courses were suggested by EU
 - Doubts about effectiveness for specific geo-hydrological conditions in the NL
- 3rd Action Program Nitrates Directive
 - Along selected natural brooks: 5 m wide BS ✓
 - Do experimental research on effectiveness for other NL situations (+ model, + cost effectiveness)
- 5 Experimental sites: 2006-2010
 - Beltrum 16 m deep permeable sand
 - Zegveld peat
 - Winterswijk thin sand layer
 - Loon op Zand sand with loam layer at 2 m depth
 - Lelystad light clay with pipe drains

Buffer Strip (BS): unfertilized field edge

Treatments, replications

- Unfertilized buffer strip (BS) versus fertilized reference strip (REF)
- Replication A: start 2006
- Replications B&C: start 2007

Flow proportional sampling

Upper groundwater: average pattern

Concentration in reservoirs (Beltrum, A)

Cumulative discharge and load, and concentration: N_{tot}

Cumulative discharge and load, and concentration: P_{tot}

Buffer Strip Effectiveness: *BSE*

$$BSE = \frac{\bar{C}_{REF} - \bar{C}_{BS}}{\bar{C}_{REF}} = 1 - \frac{\bar{C}_{BS}}{\bar{C}_{REF}}$$

Upper bound: $BSE = 1$

Lower bound: $BSE \rightarrow -\infty$

BSE for surface water N_{tot}: total period

BSE for surface water P_{tot}: total period

Different *BSE* formulations

$$BSE = 1 - \frac{Y_{BS,out}}{Y_{BS,in}}$$

I

$$BSE = 1 - \frac{Y_{BS,out}}{Y_{REF,out}}$$

II

$$BSE = 1 - \frac{Y_{BS,a,out}}{Y_{BS,b,out}}$$

III

First leaching season serves as the before-treatment period

$$BSE = 1 - \frac{Y_{BS,a,out}}{Y_{REF,a,out}} \frac{Y_{REF,b,out}}{Y_{BS,b,out}}$$

IV

BS = buffer strip

b = before installing treatment

REF = reference strip

a = after installing treatment

Introduction, Experiment, Results, Definition BSE, BSE Beltrum, Summary

BSE based on upper groundwater

BSE for surface water N_{tot}: total period

Average (A,B,C) *BSE* for surface water N_{tot}

Average *BSE* for surface water P_{tot}

Findings so far

- Beltrum: deep sandy soil: great effect in upper ground water, but not in ditch water
 - Ditch obtains water from greater depths not influenced by the BS
 - Denitrification in ditch bank and ditch bottom
- *BSE* for surface water for the deep sandy soil at Beltrum
 - Variation between replicates
 - N_{tot} : low, around zero
 - P_{tot} : positive, about 10%
- General: there are several ways to compute *BSE*
 - The different methods yield different estimates of *BSE*
 - The method that takes into account before-treatment measurements AND reference treatments should be preferred (method IV)

Acknowledgement

Research funded by the Dutch ministry of Agriculture, Nature and Food Quality
and the Dutch ministry of Housing, Spatial Planning and the Environment

Thanks to all co-workers

Jan van Kleef, Han te Beest, Antonie van der Toorn

Meint Veninga, Gerben Bakker, Laboratory Staff CBLB

Arie van Kekem, Reind Visschers, Willy de Groot, Falentijn Assinck

Thank you