Design-based Generalized Least Squares Estimation of Status and Trend

Dick Brus¹, Jaap de Gruijter ¹

¹Alterra, Wageningen University and Research Centre

- Important issue in society and scientific research
- ▶ Proposition: quality of the monitoring result and the efficiency of whole operation strongly determined by the sampling design
- ▶ How many locations and where? How frequent and when?
- ▶ Revisit locations or not?

- Important issue in society and scientific research
- ▶ Proposition: quality of the monitoring result and the efficiency of whole operation strongly determined by the sampling design
- ▶ How many locations and where? How frequent and when?
- Revisit locations or not?

- Important issue in society and scientific research
- Proposition: quality of the monitoring result and the efficiency of whole operation strongly determined by the sampling design
- ▶ How many locations and where? How frequent and when?
- ▶ Revisit locations or not?

- Important issue in society and scientific research
- Proposition: quality of the monitoring result and the efficiency of whole operation strongly determined by the sampling design
- ▶ How many locations and where? How frequent and when?
- Revisit locations or not?

Basic types of space-time design

Static-synchronous (pure panel)

Independent synchronous

Supplemented panel

Selection mode of locations and times

Four possible combinations of probability and non-probability sampling

Mode	Space	Time
A	Non-probability	Non-probability
В	Probability	Probability
С	Probability	Non-probability
D	Non-probability	Probability

- Existing networks: mode A, occasionally C
- ► For estimating space—time means and totals: mode B recommendable (fully design-based inference, see e.g. Brus and Knotters, 2008)
- ▶ This presentation: mode C

Selection mode of locations and times

Four possible combinations of probability and non-probability sampling

Mode	Space	Time
A	Non-probability	Non-probability
В	Probability	Probability
C	Probability	Non-probability
D	Non-probability	Probability

- Existing networks: mode A, occasionally C
- ► For estimating space—time means and totals: mode B recommendable (fully design-based inference, see e.g. Brus and Knotters, 2008)
- ▶ This presentation: mode C

Selection mode of locations and times

Four possible combinations of probability and non-probability sampling

Mode	Space	Time
A	Non-probability	Non-probability
В	Probability	Probability
C	Probability	Non-probability
D	Non-probability	Probability

- Existing networks: mode A, occasionally C
- ► For estimating space—time means and totals: mode B recommendable (fully design-based inference, see e.g. Brus and Knotters, 2008)
- ▶ This presentation: mode C

Aim of research

- Central question: how to estimate spatial means and trend of spatial means from partially overlapping sample data obtained by selection mode C?
- To introduce and demonstrate GLS estimation
- ► Comparison of five space—time designs

Aim of research

- Central question: how to estimate spatial means and trend of spatial means from partially overlapping sample data obtained by selection mode C?
- ▶ To introduce and demonstrate GLS estimation
- ► Comparison of five space—time designs

Aim of research

- Central question: how to estimate spatial means and trend of spatial means from partially overlapping sample data obtained by selection mode C?
- To introduce and demonstrate GLS estimation
- Comparison of five space—time designs

Naive estimation method for partially overlapping samples

- \triangleright Estimate spatial mean at time t using data of time t only
- Estimate trend by Ordinary Least Squares fitting of simple linear model to the estimated spatial means, using sampling time t as predictor
- ► Suboptimal for partially overlapping samples: no use is made of temporal correlation of co-located observations

Naive estimation method for partially overlapping samples

- ightharpoonup Estimate spatial mean at time t using data of time t only
- ► Estimate trend by Ordinary Least Squares fitting of simple linear model to the estimated spatial means, using sampling time t as predictor
- ▶ Suboptimal for partially overlapping samples: no use is made of temporal correlation of co-located observations

Naive estimation method for partially overlapping samples

- ightharpoonup Estimate spatial mean at time t using data of time t only
- ► Estimate trend by Ordinary Least Squares fitting of simple linear model to the estimated spatial means, using sampling time t as predictor
- Suboptimal for partially overlapping samples: no use is made of temporal correlation of co-located observations

Less naive method: Generalized Least Squares

Spatial mean at time t is estimated as

- weighted average of all 'elementary' estimates
- weights determined by the sampling variances and covariances of the elementary estimates

Less naive method: Generalized Least Squares

Spatial mean at time t is estimated as

- weighted average of all 'elementary' estimates
- weights determined by the sampling variances and covariances of the elementary estimates

Panels and elementary estimates

Supplemented panel: 4×2 elementary estimates

$$\hat{\bar{y}}_i(t_j) = \bar{y}(t_j) + \varepsilon_i(t_j)$$

with $arepsilon_i(t_j)$ the sampling error of i^{th} elementary estimate of spatial mean at time t_j

$$\hat{f y} = {f X}ar{f y} + {f \epsilon}$$

with ${f X}$ the (P imes r) design-matrix with 0's and 1's

$$\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}} = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{C}^{-1}\hat{\bar{\mathbf{y}}}$$

with ${f C}$ the $\emph{sampling}$ variance-covariance matrix of elementary estimates

$$\mathsf{Cov}(\hat{ar{\mathbf{y}}}_{\mathrm{GLS}}) = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}$$

 $\hat{\bar{y}}_i(t_j) = \bar{y}(t_j) + \varepsilon_i(t_j)$

with $arepsilon_i(t_j)$ the sampling error of i^{th} elementary estimate of spatial mean at time t_j

$$\hat{ar{\mathbf{y}}} = \mathbf{X}\bar{\mathbf{y}} + \boldsymbol{\epsilon}$$

with ${\bf X}$ the $(P \times r)$ design-matrix with 0's and 1's

$$\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}} = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{C}^{-1}\hat{\bar{\mathbf{y}}}$$

with $\mathbf C$ the $\mathit{sampling}$ variance-covariance matrix of elementary estimates

$$\mathsf{Cov}(\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}}) = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}$$

$$\hat{\bar{y}}_i(t_j) = \bar{y}(t_j) + \varepsilon_i(t_j)$$

with $\varepsilon_i(t_j)$ the sampling error of i^{th} elementary estimate of spatial mean at time t_j

$$\hat{ar{\mathbf{y}}} = \mathbf{X}\bar{\mathbf{y}} + \boldsymbol{\epsilon}$$

with ${\bf X}$ the $(P \times r)$ design-matrix with 0's and 1's

$$\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}} = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{C}^{-1}\hat{\bar{\mathbf{y}}}$$

with ${\bf C}$ the sampling variance-covariance matrix of elementary estimates

$$\mathsf{Cov}(\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}}) = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}$$

$$\hat{\bar{y}}_i(t_j) = \bar{y}(t_j) + \varepsilon_i(t_j)$$

with $\varepsilon_i(t_j)$ the sampling error of i^{th} elementary estimate of spatial mean at time t_j

$$\hat{ar{\mathbf{y}}} = \mathbf{X}\bar{\mathbf{y}} + \boldsymbol{\epsilon}$$

with X the $(P \times r)$ design-matrix with 0's and 1's

$$\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}} = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{C}^{-1}\hat{\bar{\mathbf{y}}}$$

with ${\bf C}$ the sampling variance-covariance matrix of elementary estimates

$$\mathsf{Cov}(\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}}) = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}$$

Linear trend defined as a population parameter

$$b = \frac{\sum_{j=1}^{r} (t_j - \bar{t})(\bar{y}_j - \bar{\bar{y}})}{\sum_{j=1}^{r} (t_j - \bar{t})^2} = \frac{\sum_{j=1}^{r} (t_j - \bar{t})\bar{y}_j}{\sum_{j=1}^{r} (t_j - \bar{t})^2} = \sum_{j=1}^{r} w_j \bar{y}_j$$

with

$$w_j = \frac{t_j - \bar{t}}{\sum_{j=1}^r (t_j - \bar{t})^2}$$

$$\hat{b} = \mathbf{w}' \hat{\bar{\mathbf{y}}}_{\mathrm{GLS}}$$

$$\operatorname{Var}(\hat{b}) = \mathbf{w}' \operatorname{\mathsf{Cov}}(\hat{\bar{\mathbf{y}}}_{\operatorname{GLS}}) \mathbf{w}$$

Linear trend defined as a population parameter

Þ

$$b = \frac{\sum_{j=1}^{r} (t_j - \bar{t})(\bar{y}_j - \bar{\bar{y}})}{\sum_{j=1}^{r} (t_j - \bar{t})^2} = \frac{\sum_{j=1}^{r} (t_j - \bar{t})\bar{y}_j}{\sum_{j=1}^{r} (t_j - \bar{t})^2} = \sum_{j=1}^{r} w_j \bar{y}_j$$

with

$$w_j = \frac{t_j - \overline{t}}{\sum_{j=1}^r (t_j - \overline{t})^2}$$

Þ

$$\hat{b} = \mathbf{w}' \hat{\bar{\mathbf{y}}}_{GLS}$$

۲

$$\operatorname{Var}(\hat{b}) = \mathbf{w}' \operatorname{\mathsf{Cov}}(\hat{\bar{\mathbf{y}}}_{\operatorname{GLS}}) \mathbf{w}$$

Linear trend defined as a population parameter

$$b = \frac{\sum_{j=1}^{r} (t_j - \bar{t})(\bar{y}_j - \bar{\bar{y}})}{\sum_{j=1}^{r} (t_j - \bar{t})^2} = \frac{\sum_{j=1}^{r} (t_j - \bar{t})\bar{y}_j}{\sum_{j=1}^{r} (t_j - \bar{t})^2} = \sum_{j=1}^{r} w_j \bar{y}_j$$

with

$$w_j = \frac{t_j - \bar{t}}{\sum_{j=1}^r (t_j - \bar{t})^2}$$

$$\hat{b} = \mathbf{w}' \hat{\bar{\mathbf{y}}}_{GLS}$$

$$\operatorname{Var}(\hat{b}) = \mathbf{w}' \operatorname{\mathsf{Cov}}(\hat{\bar{\mathbf{y}}}_{\operatorname{GLS}}) \mathbf{w}$$

Two space-time designs with 50% overlap

Supplemented panel

Rotating panel (in-for-2)

Three space-time designs with 100% or 0% overlap

Static-synchronous

Independent synchronous

Serially alternating

GLS estimator for SS, IS and SA

$$X = I$$

$$\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}} = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{C}^{-1}\hat{\bar{\mathbf{y}}} = \hat{\bar{\mathbf{y}}}$$

$$\operatorname{Var}(\hat{\bar{\mathbf{y}}}_{\operatorname{GLS}}) = \operatorname{Var}(\hat{\bar{\mathbf{y}}}) = \mathbf{C}$$

GLS estimator for SS, IS and SA

$$X = I$$

$$\hat{\bar{\mathbf{y}}}_{GLS} = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{C}^{-1}\hat{\bar{\mathbf{y}}} = \hat{\bar{\mathbf{y}}}$$

$$\operatorname{Var}(\hat{\bar{\mathbf{y}}}_{\operatorname{GLS}}) = \operatorname{Var}(\hat{\bar{\mathbf{y}}}) = \mathbf{C}$$

GLS estimator for SS, IS and SA

$$X = I$$

$$\hat{\bar{\mathbf{y}}}_{\mathrm{GLS}} = (\mathbf{X}'\mathbf{C}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{C}^{-1}\hat{\bar{\mathbf{y}}} = \hat{\bar{\mathbf{y}}}$$

$$Var(\hat{\bar{\mathbf{y}}}_{GLS}) = Var(\hat{\bar{\mathbf{y}}}) = \mathbf{C}$$

- Spatial sampling design: simple random sampling
- ightharpoonup Sampling in time at constant interval, number of sampling rounds r=4,5 or 6, length of monitoring period fixed
- AR(1): $cor\{y(\mathbf{s},t),y(\mathbf{s},t+\Delta(t))\} = \rho^{\Delta(t)}$

- Spatial sampling design: simple random sampling
- Sampling in time at constant interval, number of sampling rounds r=4,5 or 6, length of monitoring period fixed
- $AR(1): cor\{y(\mathbf{s},t), y(\mathbf{s},t+\Delta(t))\} = \rho^{\Delta}$

- Spatial sampling design: simple random sampling
- Sampling in time at constant interval, number of sampling rounds r=4,5 or 6, length of monitoring period fixed
- AR(1): $cor\{y(\mathbf{s},t),y(\mathbf{s},t+\Delta(t))\} = \rho^{\Delta(t)}$

Covariance matrix ${f C}$ for static-synchronous design, r=4

$$\begin{bmatrix} 1 & \rho & \rho^{2} & \rho^{3} \\ \rho & 1 & \rho & \rho^{2} \\ \rho^{2} & \rho & 1 & \rho \\ \rho^{3} & \rho^{2} & \rho & 1 \end{bmatrix} \frac{\sigma^{2}}{n}$$

with σ^2 the spatial variance, and \boldsymbol{n} number of sampling locations per time

Covariance matrix C for independent synchronous design

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \frac{\sigma^2}{n}$$

Covariance matrix C for supplemented panel, r=4

$$\begin{bmatrix} 1 & \rho & \rho^2 & \rho^3 & 0 & 0 & 0 & 0 \\ \rho & 1 & \rho & \rho^2 & 0 & 0 & 0 & 0 \\ \rho^2 & \rho & 1 & \rho & 0 & 0 & 0 & 0 \\ \rho^3 & \rho^2 & \rho & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \frac{\sigma^2}{n/2}$$

Covariance matrix C for rotating panel, r=4

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & \rho & 0 & 0 & 0 & 0 & 0 \\ 0 & \rho & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \rho & 0 & 0 & 0 \\ 0 & 0 & 0 & \rho & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \rho & 0 \\ 0 & 0 & 0 & 0 & 0 & \rho & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \frac{\sigma^2}{n/2}$$

Evaluation of space-time designs

- ▶ Average of sampling variances of *r* estimated spatial means
- Generalized variance of estimated spatial means (determinant of variance-covariance matrix of estimated means)
- ▶ Sampling variance of estimated trend of spatial means

Evaluation of space-time designs

- Average of sampling variances of r estimated spatial means
- ► Generalized variance of estimated spatial means (determinant of variance-covariance matrix of estimated means)
- Sampling variance of estimated trend of spatial means

Evaluation of space-time designs

- Average of sampling variances of r estimated spatial means
- ► Generalized variance of estimated spatial means (determinant of variance-covariance matrix of estimated means)
- ▶ Sampling variance of estimated trend of spatial means

Average sampling variance of estimated means, r=5

Generalized sampling variance of estimated means, r=5

Sampling variance of estimated trend, r = 5

- Average variance of means: Supplemented Panel (SP) and Rotating Panel (RP) outperform Static-Synchronous (SS), Independent Synchronous (IS) and Serially Alternating (SA) designs
- Generalized variance of means: SS design performs best, closely followed by SP and R
- ► Variance of trend

- Average variance of means: Supplemented Panel (SP) and Rotating Panel (RP) outperform Static-Synchronous (SS), Independent Synchronous (IS) and Serially Alternating (SA) designs
- Generalized variance of means: SS design performs best, closely followed by SP and R
- ► Variance of trend

- Average variance of means: Supplemented Panel (SP) and Rotating Panel (RP) outperform Static-Synchronous (SS), Independent Synchronous (IS) and Serially Alternating (SA) designs
- Generalized variance of means: SS design performs best, closely followed by SP and R
- Variance of trend:
 - SA performs best
 - SS poor for weak to moderate temporal correlations

- Average variance of means: Supplemented Panel (SP) and Rotating Panel (RP) outperform Static-Synchronous (SS), Independent Synchronous (IS) and Serially Alternating (SA) designs
- Generalized variance of means: SS design performs best, closely followed by SP and R
- Variance of trend:
 - SA performs best
 - SS poor for weak to moderate temporal correlations

Best space—time design for status and trend monitoring

Aim	Best type of space–time design
Status	SP,RP
Trend	SA (SS)
Status <i>and</i> Trend	? $ ightarrow$ prioritize two aims

Thanks for your attention

For more details on method and a case study on soil acidification/eutrophication, see:

▶ Brus, D.J. and de Gruijter, J.J., (2011), Design-based Generalized Least Squares estimation of status and trend of soil properties from monitoring data, *Geoderma* 164: 172-180.