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BSTRACT

erdonschot P.F.M. & Nijboer R.C.(eds.), 2002. A review of model designs. Wageningen, Alterra,
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he PAEQANN project aims to review current ecological theories which can help identify
uited models that predict community structure in aquatic ecosystems, to select and discuss
ppropriate models, depending on the type of target community (i.e. empirical vs. simulation
odels) and to examine how results add to ecological water management objectives. To reach

hese goals a number of classical statistical models, artificial neural networks and dynamic
odels are presented. An even higher number of techniques within these groups will tested

ateron in the project. This report introduces all of them. The techniques are shortly
ntroduced, their algorithms explained, and the advantages and disadvantages discussed.

eywords: ecological model, statistical model, artificial neural network, structurally dynamic
odel, PAEQANN, community structure, aquatic ecosystem

SSN 1566-7197

his report can be ordered by paying € 18,- into bank account number 36 70 54 612 in the
ame of Alterra, Wageningen, the Netherlands, with reference to rapport 517. This amount is

nclusive of VAT and postage.
6 Alterra-rapport 517

 2002 Alterra, Green World Research,
P.O. Box 47, NL-6700 AA Wageningen (The Netherlands).
Phone: +31 317 474700; fax: +31 317 419000; e-mail: postkamer@alterra.wag-ur.nl

o part of this publication may be reproduced or published in any form or by any means, or stored
n a data base or retrieval system, without the written permission of Alterra.

lterra assumes no liability for any losses resulting from the use of this document.

roject 324 10155.01 [Alterra-rapport 517/EvL/07-2002]



Contents

Preface 11

Summary 13

1 Introduction 15
1.1 Background 15
1.2 Classical statistical models 16
1.3 Artificial Neural Networks 17
1.4 Dynamic models 18

2 Multinomial Logistic Regression (Paul Goedhart) 19
2.1 Introduction 19
2.2 Multinomial Logistic Regression algorithm 19

2.2.1 Algorithm and application 19
3 Informed Latent Class / Discriminant Model (Herbert Hoijtink, Paul

Goedhart, Piet Verdonschot, Rebi Nijboer, Wies Akkermans & Cajo ter
Braak) 23
3.1 Introduction 23

3.1.1 Background 23
3.1.2 Application of Bayesian models in aquatic ecology 23
3.1.3 Mixture Models Using A Priori Information and Discriminant

Functions 24
3.1.4 Data needed 25
3.1.5 Questions involved 25

3.2 Informed Latent Class / Discriminant Model algorithms 26
3.3 Advantages and disadvantages 27

4 Generalized Linear Models (GLM) (Sovan Lek) 29
4.1 Introduction 29

4.1.1 The normal linear model 29
4.1.2 Why is linearity not enough? 29
4.1.3 Why is normality not enough? 29

4.2 Generalized Linear Models; properties and algorithms 30
4.2.1 Properties 30
4.2.2 GLM algorithms 31

5 Generalized Additive Models (GAM) (Sovan Lek) 33
5.1 Introduction 33
5.2 Smoothing methods and Generalized Additive Model algorithms 33

6 TREE Models (Sovan Lek) 37
6.1 Introduction 37
6.2 CART algorithm 38
6.3 Advantages and disadvantages 40

7 Partial least square regression (PLS) (Sovan Lek) 41
7.1 Introduction 41
7.2 Partial Least Square Regression algorithm 42
7.3 Advantages and disadvantages 44



8 Alterra-rapport 517

8 Artificial Neural Networks (ANNs) 45
8.1 Historic developments 45

9 Self-Organizing Maps (SOMs) (Jean Luc Giraudel) 47
9.1 Introduction 47

9.1.1 Development of SOMs 47
9.1.2 The SOM concept 47

9.2 Self-Organizing Map algorithm 48
10 Back Propagation Artificial Neural Network (ANNbp) (Muriel Gevrey) 51

10.1 Introduction 51
10.2 Back Propagation Artificial Neural Network algorithms 51

10.2.1 Structure 51
10.2.2 Algorithms 51
10.2.3 Forward-propagating step 52
10.2.4 Backward-propagating step 53
10.2.5 Training the network 53
10.2.6 Testing the network 54

10.3 Advantages and disadvantages 54
11 Kernel-induced nonlinear model (KINM) (Sun Ruixiang) 55

11.1 Introduction 55
11.2 Kernel-induced nonlinear models algorithms 55

11.2.1 SRM versus ERM 55
11.2.2 KINM concept 56
11.2.3 KINM algorithm 57

11.3 Advantages and disadvantages 57
12 Counterpropagation network (Young-Seuk Park) 59

12.1 Introduction 59
12.2 Counterpropagation network algorithm 59
12.3 Advantages and disadvantages 60

13 Competitive neural network in combination with Linear Vector Quantisation
(Wies Akkermans) 61
13.1 Introduction 61
13.2 Competitive neural network and Linear Vector Quantisation algorihms 61

13.2.1 Competitive ANNs 61
13.2.2 Linear Vector Quantisation Network 62

13.3 Advantages and disadvantages 64
14 Structurally Dynamic Models (Sven Jørgensen) 65

14.1 Introduction 65
14.2 Structurally dynamic models 66

15 Use of models in the PAEQANN project 75
15.1 Classical statistical models in PAEQANN 75

15.1.1 GLM, GAM and CART 75
15.1.2 Bayesian Models 75

15.2 Artificial Neural Networks in PAEQANN 75
15.2.1 MultiLayer Perceptrons 75
15.2.2 Sensitivity analysis 76
15.2.3 Self-Organizing Maps 77
15.2.4 Artificial Neural Networks Backpropagation 77



15.2.5 Counterpropagation 77
15.2.6 Future developments of ANNs 78

15.3 Structurally dynamic models in PAEQANN 78
16 References 81





Alterra-rapport 517 11

Preface

The landmass on which we live is an integral part of our water catchment. Any
human activity will inevitably have some consequences on the availability and
composition of freshwater. These consequences are becoming increasingly important
and detectable. The problem has to be addressed at the EU-level, as frequently,
decisions made have inter-regional and international impacts, and must therefore be
co-ordinated. In a number of Member States, the availability of water resources
depends on the activities of other upstream countries. The demand for freshwater in
Europe, as well as in the world, is increasing. There is an upward pressure on
European water demand for public supplies (drinking water, recreation, etc.), for
industry, and for irrigated agriculture. The ecological impacts of different uses are
complex, and currently not always predictable. Our program should help planners in
their decisions on different water management options for human use.
Water, of course, is not only relevant as a resource, exploited for human activities,
but it is also relevant to aquatic ecosystems and to their quality. Preservation and/or
restoration of the ecological quality of these ecosystems, have a major social impact,
as it has been stressed in several Community actions.
It is important to stress that the development of models for the prediction of aquatic
ecosystem quality in the framework of a European consortium is not merely a
scientific exercise, but a social one as well. Water management and environmental
policies of different countries in the European Union share a common base (e.g.
Urban Waste Water Treatment Directive 91/271/EEC, Integrated Pollution
Prevention and Control Directive 96/61/EEC, etc.) thus policies will be become
more and more integrated in the near future, the models will aid throughout this
process.
The main feature of the PAEQANN project is to provide a unified, common set of
tools for i) checking the river ecology status, and ii) predicting environmental impacts
of management action on a European scale. This project will not only provide a
significant improvement of our knowledge about the ecological applications of
classical statistical techniques, dynamic models, and artificial neural networks and
other artificial intelligence techniques, but also a set of predictive tools that will be
easily applied to real management scenarios. At the end of the project, the results of
the research activities will be readily disseminated and the products will be made
available to a wide spectrum of potential end-users.
In the first phase of the project, the PAEQANN partners focus their work in two
directions: i) to produce the database, and ii) to develop the modelling methodology.
This report deals with the second item. In the PAEQANN project, river ecosystem
integrity will be assessed using the relationship between environmental impacts and
organism groups, i.e. community structure as depending upon the environmental
variables. The Classical statistical, Artificial Neural Network and Dynamic models
developed can be used as predictive tools, and can also be used to explain and
understand the complex relationships between variables. These tools could be
applied in other river networks throughout Europe. They will be simple, easy to
handle and applicable to stream management and stream policy-making. The
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PAEQANN partners focus their work to improve the knowledge on these methods
with several algorithms, e.g. backpropagation, self-organising maps, goal function,
Bayesian function, etc. All of these techniques are presented in this report.
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Summary

The complexity of the ecological systems often results in complex relations between
the biological and abiotic variables, justifying the uses of multiple modelling
techniques. This use of models is based on different statistical and simulation
techniques, designed to predict community structure from environmental variables.
The PAEQANN project tackles this challenge and aims to:
1. to review current ecological theories which can help identify suited models that

predict community structure in aquatic ecosystems
2. to select and discuss appropriate models, depending on the type of target

community (i.e. empirical vs. simulation models)
3. to examine how results add to ecological water management objectives

PAEQANN uses the following approaches:
Classical statistical models; Multinomial Logistic Regression ,Informed Latent Class /
Discriminant Models, Generalised Linear Models (GLM), Generalized additive
models (GAM), TREE Model, Partial least square regression (PLS)

Classical statistical approaches mostly follow three steps:
(1) water samples are clustered into groups on the basis of the biological data

and
(2) the groups are related to the environment data, for example by discriminant

analysis.
(3) the reverse process is used whereby regression techniques use environmental

variables to predict the biological communities

Artificial Neural Networks; Self-Organizing Map (SOM), Back Propagation Artificial
Neural Network (ANNbp), Kernel-induced nonlinear models (KINM),
Counterpropagation network, Competitive neural network in combination with
Linear Vector Quantisation
Artificial Neural Networks (ANNs) are powerful computational tools that can be
used for classification, pattern recognition, empirical modeling and for many other
tasks. Even though most of these tasks can also be performed by conventional
statistical or mathematical methods, ANNs often provide a more effective way to
deal with problems that are difficult, if not intractable, for traditional computation.
Several kinds of ANNs have been developed during the last 10-15 years, but two
main categories can be easily recognized, depending on the way ANNs “learn”:

 in supervised learning, there is a "teacher" who in the learning phase "tells" the
ANN how well it performs or what the correct behaviour would have been;

 in unsupervised learning the ANN autonomously analyses the properties of the data
set and learns to reflect these properties in its output.

Dynamic models; Structural dynamic models
The present models have rigid structures and a fixed set of parameters,
reflecting that no changes or replacements of the components are possible.
The type of models that can account for the change in species composition as
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well as for the ability of the species to change their properties, that is to adapt
to the prevailing conditions imposed on the species, are called structural
dynamic models. The name indicates that the models are able to capture
structural changes.

The last chapter summarizes all different techniques to be tested in in the
PAEQANN project.
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1 Introduction

1.1 Background

Ecological communities are the expression of complex biological processes
(reproduction, nutrition, rest, interspecific relationships, et cetera) and abiotic
processes (nutrient cycling, discharge regimes, erozion, et cetera), both being
expressed on various scales of time and space. To analyze all these processes, i.e. to
include and understand the relationship which exist in the community, and to
characterize their relationships with environmental parameters, their degree of
importance, and their structuring, requires the observation of variables related to the
operation of the system.
The complexity of the ecological systems often results in complex relations between
the biological and abiotic variables, justifying the uses of multiple modelling
techniques. This use of models is based on different statistical and simulation
techniques, designed to predict community structure from environmental variables.
The PAEQANN project is designed to tackle this challenge. The main objectives of
the project are:
1. to review current ecological theories which can help identify suited models that

predict community structure in aquatic ecosystems
2. to select and discuss appropriate models, depending on the type of target

community (i.e. empirical vs. simulation models)
3. to examine how results add to ecological water management objectives
Ecological water management aims to contribute to the value of aquatic ecosystems.
Such management requires the understanding how these ecosystems function, and
thus how communities are related to the environment. To learn about the
community-environment relationships, data-analytical approaches are explored.
Within the PAEQANN project the following approaches are used:
Classical statistical models

Multinomial Logistic Regression
Informed Latent Class / Discriminant Models
Generalised Linear Models (GLM)
Generalized additive models (GAM)
TREE Model
Partial least square regression (PLS)

Artificial Neural Networks
Self-Organizing Map (SOM)
Back Propagation Artificial Neural Network (ANNbp)
Kernel-induced nonlinear models (KINM)
Counterpropagation network
Competitive neural network in combination with Linear Vector Quantisation

Dynamic models
Structural dynamic models
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1.2 Classical statistical models

Classical statistical approaches mostly follow three steps:
1. water samples are clustered into groups on the basis of the biological data and
2. the groups are related to the environment data, for example by discriminant

analysis.
3. the reverse process is used whereby regression techniques use environmental

variables to predict the biological communities
These three steps are part of the PAEQANN project. Multinomial logistic regression
(chapter 2) is an improvement over normal discriminant analysis to carry out step 2.
In the traditional approach the environmental data play no part in the cluster analysis
of step 1. This may be unfortunate. If the environmental data already show distinct
groups as a result of water chemistry processes, it is a shame not to use this
information. There is also a statistical reason. If for example, discriminant analysis is
used in step 2 of the analysis, it can occur that a water sample is misclassified on the
basis of the environmental data but on further inspection happens to be a borderline
case in the cluster analysis. One would then rather reclassify such a sample and iterate
the two steps. A popupar rival method for studying community-environment
relationships is to use ordination rather than cluster analysis in step 1. By ordination
the biological data are reduced to continuous gradients rather than to group. But
groups have a simplicity that helps to communicate the results to water managers.
Groups, when well described in a typology, can get meaning and become real as if
they already existed. The cenotypes of Verdonschot (1990) are just one example.
For the above reasons within the PAEQANN project the potential benefits of other
model-based methods, like Bayesian latent class analysis (chapter 3), are investigated.
Generalized linear models (GLMs) are used to perform regression modelling for
non-normal data with a minimum of extra complication compared with normal linear
regression (chapter 4). In the statistical analysis of data and observational studies, the
identification and adjustment for prognostic factors is an important component. A
valid comparison of different treatments requires the appropriate adjustment for
relevant prognostic factors. The failure to consider important prognostic variables,
particularly in observational studies, can lead to errors in estimating treatment
differences. In addition, incorrect modelling of prognostic factors can result in the
failure to identify nonlinear trends or threshold effects.
Chapter 5 describes flexible statistical methods that may be used to identify and
characterise the effect of potential prognostic factors on an outcome variable. These
methods are called "generalized additive models", and extend the traditional linear
statistical model. They can be applied in any setting where a linear or generalized
linear model is typically used. These settings include standard continuous response
regression, categorical or ordered categorical response data, count data, survival data
and time series.
Tree-based methods involve dividing the observations into groups that differ with
respect to the variable of interest. A tree-based procedure automatically chooses the
grouping that results in homogeneous groups that have the largest difference in
proportion of the variable of interest. The tree-based method first divides the
observations into two groups. The next step is to subdivide each of the groups based
on another characteristic. The process of subdividing is separate for each of the
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groups. This is an elegant way of handling interactions that can become complicated
in traditional linear models. When the process of subdivision is complete, the result
is a classification rule that can be viewed as a tree. For each of the subdivisions, the
proportion of the variable of interest can be used to predict the effect of that
variable. The structure of the tree gives insight into which characteristics are relevant.
There are several tree-based methods that differ with respect to the types of variables
allowed, the way groups are chosen, and the way groups are split (chapter 6). The
most common methods are Classification and Regression Trees (CART) and Chi-
Squared Automated Interaction Detection (CHAID).
Partial least squares (PLS) is a method for constructing predictive models when the
factors are many and highly collinear. The general idea of PLS is to try to extract
from many factors a few underlying or latent factors, accounting for as much of the
manifest factor variation as possible while modelling the responses well. The overall
goal is to use the factor to predict the responses in the population (chapter 7).

1.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are powerful computational tools that can be
used for classification, pattern recognition, empirical modeling and for many other
tasks. Even though most of these tasks can also be performed by conventional
statistical or mathematical methods, ANNs often provide a more effective way to
deal with problems that are difficult, if not intractable, for traditional computation.
In fact, while traditional computation is based on the a priori selection of suitable
functions or algorithms, ANNs are able to adjust their inner structure to provide
optimal solutions, given enough data and a proper initialisation. Thus, if appropriate
inputs are applied to an ANN, it can acquire knowledge from the environment,
mimicking the functioning of a brain, and users can later recall this knowledge.
ANNs lie in a sort of machine learning middle ground, somewhere between
engineering and artificial intelligence (Zurada, 1992). They use mathematical techniques,
such as mean-square error minimization, but they also rely on heuristic methods, since
very often there is no theoretical background to support decisions about ANNs
implementation.
Several kinds of ANNs have been developed during the last 10-15 years, but two
main categories can be easily recognized, depending on the way ANNs “learn”:

 in supervised learning, there is a "teacher" who in the learning phase "tells" the
ANN how well it performs or what the correct behaviour would have been;

 in unsupervised learning the ANN autonomously analyses the properties of the data
set and learns to reflect these properties in its output.

In the PAEQANN project both categories of ANNs will be used, with special
attention to Self Organizing Maps for unsupervised learning (chapter 9), and
Multilayer Perception ANNs for supervised learning (chapter 10).
Kernel-induced nonlinear models (KINMs) are developed in recent years and they
can be used to perform nonlinear modelling in complex engineering problems, such
as ecological research (chapter 12). They extract the most informative information
from the real-world data sets and establish the nonlinear model by utilizing those
partical informative data points in the high dimensional kernel-induced space.
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In chapter 13 unsupervised Competitive Artificial Neural Networks (CANNs) and
the supervised LVQ network are described. Applying these two networks in
combination may give a powerful tool for fast classification of future observations.

1.4 Dynamic models

The present models have rigid structures and a fixed set of parameters, reflecting that
no changes or replacements of the components are possible. The type of models that
can account for the change in species composition as well as for the ability of the
species to change their properties, that is to adapt to the prevailing conditions
imposed on the species, are called structural dynamic models. The name indicates
that the models are able to capture structural changes. Chapter 13 deals with these
fifth generation of ecological models. The generation label indicates that these
models are radically different from previous modeling approaches and can do more,
namely describe changes in species composition.
This type of models was developed by use of biomass as goal function by Pr. Milan
Straskraba in the late seventies and later by use of the theoretically more correct,
exergy, in the mid-eighties by S.E. Jørgensen (see Jørgensen, 1997). Exergy measures
biomass and information, thus more developed organisms, will contribute more to
the exergy per weight unit than less developed organisms. The idea behind this type
of model is that the goal function describes the development direction of the
considered ecosystem. It can therefore be applied to describe how organisms will
adapt to the currently changing conditions and how - if the adaptation process is not
sufficient - the present organisms will be replaced by other and better fitted
organisms with other properties.
This type of model will therefore currently change the parameter values according to
how the organisms will change their properties in real ecosystems according to the
currently changed conditions. This type of models using exergy as goal function has
already been applied successfully in (Jørgensen, 1997). It should also be possible by
this model type to give the properties of the species present in a river, lake or coastal
area, provided that we know the conditions. From the properties it will probably in
most cases be possible to describe the species that have these properties.
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CLASSICAL STATISTICAL MODELS

2 Multinomial Logistic Regression (Paul Goedhart)

2.1 Introduction

A two-step approach is often used to build a model for the prediction of
macrofaunal community composition from environmental data. In the first step the
water samples are clustered into groups on the basis of the macrofauna data alone;
these groups are called cenotypes. This is generally a so-called hard clustering in
which every water sample is assigned to one cenotype only. In the second step the
cenotypes are related to the environmental data. Two important methods to establish
this relationship are discriminant analysis and multinomial logistic regression.
Discriminant analysis assumes that the environmental data follow a multivariate
normal distribution and that is often not the case, for example for dichotomous or
nominal environmental variables. Furthermore for the multinomial logistic regression
model the whole range of methods and techniques for the generalised linear model is
available, such as selection of environmental variables. A third advantage of
multinomial logistic regression is that it directly models the probability of occurrence
of each cenotype as a function of the environmental data, while in discriminant
analysis this is a by-product of the analysis. Multinomial logistic regression is
therefore the method of choice to relate cenotypes to environmental data. The
results can be used to predict the occurrence of species from environmental
variables.

2.2 Multinomial Logistic Regression algorithm

2.2.1 Algorithm and application

Multinomial logistic regression is a well-established technique and is a direct
extension of ordinary logistic regression which itself is a special case of a generalised
linear model. Suppose for simplicity that there are only two cenotypes 1 and 2.
Suppose further that y1 and y2 are indicator variables for cenotypes 1 and 2
respectively; i.e. y1 is 1 when a water sample is classified as cenotype 1 and 0
otherwise, and similarly for y2. And finally, π1 and π2 are the probabilities of
occurrence of cenotypes 1 and 2. It is then natural to assume that y1 follows a
binomial distribution with probability π1 of "success", i.e. y1 ~ Binomial (1;π1). It
follows directly from y1+y2=1 and π1+π2=1 that y2 ~ Binomial (1;π2). Ordinary
logistic regression can then be used to relate the probabilities of occurrence π1to the
environmental variables x1,…,xp:
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log(π1/(1-π1)) = log(π1/π2) = β0 + β1x1 + … + βpxp
With k cenotypes there are k indicator variables y1,…,yk and k probabilities of
occurrence π1,…,πk. The indicator variables then follow a multinomial distribution
which is a direct generalisation of the binomial distribution, i.e.
(y1,…,yk) ~ Multinomial(1; (π1,…,πk)). The relationship between the k probabilities
and the p environmental variables is now modeled by means of (k-1) linear
predictors:
log(π1/πk) = β10 + β11x1 + … + β1pxp

log(π2/πk) = β20 + β21x1 + … + β2pxp
: : : : : :
log(πk-1/πk) = βk-1,0 + βk-1,1x1 + … + βk-1,pxp
This completes the specification of the multinomial logistic regression model. There
are (k-1)(p+1) parameters in total, which must be estimated from the data. The
model can be fitted by means of software for generalised linear models by employing
the equivalence between the multinomial likelihood and the Poisson likelihood. In
figure 2.1 an example is given of a multinomial logistic model with 4 cenotypes and
only 1 environmental variable. Note that the sum of the 4 probabilities is 1 for every
value of the environmental variable. Further information about multinomial logistic
regression can be found in McCullagh & Nelder (1989) and in Hosmer & Lemeshow
(1989).
There are in general a lot of environmental variables, 20 or more is not uncommon,
and they are frequently correlated. Using all variables in a model then yields unstable
estimators of the regression coefficients and thus poor predictions. Some form of
selection of environmental variables is therefore necessary. Forward selection,
backward elimination or stepwise regression result in only one model and alternative
models, with an equivalent or even better fit, are easily overlooked. A preferable
method is to fit all possible regression models and to evaluate these according to
some criterion such as the deviance. However the fitting of all possible regression
models is very computer intensive, especially for multinomial logistic models. A
practical approach is to perform iterative model selection. Firstly, the variables are
subdivided in a few groups, and model selection is performed within each group. The
best predictors from each group are then combined in a new model selection step,
which yields a few best variables. With these few variables fixed in the model, the
remaining variables are again subdivided in a few groups and the next iteration starts.
This eventually results in a number of best candidate models. The predictive power
of these candidate models can be assessed by means of leave-one-out, also called
cross validation. In the first leave-one-out step, the first observation is temporarily
deleted from the data, and the model is fitted to the remaining observations. This
model is then used to calculate a so-called leave-one-out prediction for the first
observation. In the same way leave-one-out predictions are obtained for all
observations, by subsequently removing them from the data. The mean leave-one-
out probability of predicting the correct cenotype can then be used as a criterion for
choosing among the candidate models.
Another approach, which has been proven beneficial for the prediction of cenotypes,
is what is called hierarchical modelling. This approach assumes that the effect of
certain environmental variables is more or less the same for groups of cenotypes.
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Instead of estimating this effect for every individual cenotype, it is now estimated for
groups of cenotypes. In this way a reduction of the number of estimated parameters
can be accomplished. In this approach the cenotypes are first classified into a small
number of groups, in such a way that cenotypes within a group are comparable.
Then separate multinomial logistic models are fitted to the grouping of the
cenotypes, and to the cenotypes within each group. These models can then be used
to predict the probability of occurrence of groups, and the probability of occurrence
of cenotypes within groups. These probabilities need then be multiplied to obtain the
probability of occurrence of cenotypes. Suppose for example that there are two
groups (1 and 2), group 1 consists of three cenotypes (A, B and C), and group 2
consists of two cenotypes (D and E). Suppose further that for a set of environmental
variables the predicted probability of occurrence of group 1 and 2 is 0.8 and 0.2
respectively. Suppose furthermore that the predicted probability for A, B and C
within group 1 equals 0.9, 0.1 and 0.0, and that the predicted probability for D and E
within group 2 equals 0.4 and 0.6. The probability of occurrence of cenotypes A - E
is then as follows

A:0.8 × 0.9 = 0.72 D:0.2 × 0.4 = 0.08
B:0.8 × 0.1 = 0.08 D:0.2 × 0.6 = 0.12
C:0.8 × 0.0 = 0.00

The sum of the probabilities over cenotypes A - E is then again 1.0.

Figure 2.1 The probability of occurrence of 4 cenotype A, B, C and D as a function of an environmental variable.
The sum of the 4 probabilities is 1 for any value of the environmental variable.
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3 Informed Latent Class / Discriminant Model (Herbert
Hoijtink, Paul Goedhart, Piet Verdonschot, Rebi Nijboer,
Wies Akkermans & Cajo ter Braak)

3.1 Introduction

3.1.1 Background

Bayesian models are based on the principles of Bayes Rule or Bayes Theorem. It
defines the formalism of updating a belief about a hypothesis (or a-priori probability)
in the light of a new evidence (e.g. new data). The updated probability is called the
posterior probability. The distinctive feature of Bayesian models is the explicit
consideration of probability. So it is a strong method to increase the knowledge
about a certain system of the real world by the integrative analysis of probabilities of
models and observation data.
The basic applications in Bayesian reasoning were extended for application in time
series as well as for cases of interdependent probabilities. Extension of the basic
method is the integration of Markov chain theory, Metropolis Hastings algorithm,
Monte Carlo methods, information theory, and spatial analysis. Integrated methods
are for example the Gibbs sampler, Markov chain Monte Carlo techniques (MCMC),
Bayesian maximum entropy, and Bayesian kriging. This family of methods is used in
a wide field of disciplines, e.g. medicine, astrophysics, economy as well as in ecology.
The integration of Bayesian principles with other methods supported the
development of complex Bayesian models in Bayesian networks (BN). In hierarchical
Bayesian networks the hierarchical influences of parameters with different probability
functions can be modelled. Bayesian Belief Networks (BBN, also known as Belief
Networks, Causal Probabilistic Networks, Causal Nets, Graphical Probability
Networks, Probabilistic Cause-Effect Models, and Probabilistic Networks) are
building the bridge to Artificial Intelligence (AI) by the possibility to integrate expert
knowledge into the model. Advantages of BBNs are the ability to represent and
manipulate complex models, and the possibility for event prediction based on partial
or uncertain data.

3.1.2 Application of Bayesian models in aquatic ecology

A common application of Bayesian models is stock assessment especially in fish
ecology and fish management. An application of special practical interest is the
determination of stock assessment for regulation of fish catches and related topics,
with a predominance of basic Bayesian models (Adkison & Peterman, 1996; Cow-
Rogers, 1997; Hammond, 1997; Hilborn & Liermann, 1998; Jon et al., 2000; Kinas,
1996; McAllister & Ianelli, 1997; McAllister & Kirkwood, 1998; McAllister &
Kirkwoood, 1998; McAllister & Pikitch, 1997; Myers et al., 1999; Newman, 1997;
Ogle et al., 1996; Pella et al., 1998; Peterman et al., 1999; Punt & Hilborn, 1997; Punt
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& Walker, 1998; Robb & Peterman, 1998; Smith & Punt, 1998). A lower number of
publications in fish management is related to advanced Bayesian models (Chen &
Fournier, 1999; Chen et al., 2000; Helu et al., 2000; Kuikka et al., 1999; Lee et al., 1996;
Lee & Rieman, 1997; Liermann & Hilborn,1997; Meyer & Millar, 1999; Patterson,
1999; Vignaux et al., 1998).
The improvement of Bayesian models by addition of other methods effected an
increase in applications outside of fish ecology. Basic Bayesian models are applied for
risk and decision analysis (Qian et al., 2000; Steinberg et al., 1996; Varis, 1997). A
focus of complex Bayesian models is classification and diagnosis of water quality
(Trigg et al., 2000; Varis & Kuikka, 1997; Walley & Dzeroski, 1996; Walley &
Fontama, 1997, 2000). Other applications are related to environmental
reconstruction (Vasko et al., 2000) and models about heterogeneous populations
(Billheimer et al., 1997; Carpenter et al., 1996; Cottingham & Schindler, 2000; Lamon
& Clyde, 2000; Mau et al., 1999; Meyer & Millar, 1999; Pinelalloul et al., 1995).

3.1.3 Mixture Models Using A Priori Information and Discriminant
Functions

Mixture models (Titterington et al., 1985) assume that each sample is a member of
one of a finite number of classes, and use the data to estimate the parameters of the
model. Within each class a specific group of taxa is linked to a specific environment.
The latter implies that knowledge of the environment enables a researcher to predict
the group of taxa. Previous research (amongst others Verdonschot & Goedhart,
2000) indicates that the mixture assumption is reasonable and worthwhile pursuing.
This approach can be seen as the counterpart of ANNs. ANNs use the data to
construct a model with which the number of each taxon can be predicted using
environmental variables.
Traditionally mixture models are analysed using maximum likelihood. The latter
increases in difficulty with the complexity of the mixture model. It may be impossible
to determine if the likelihood has actually been maximised; confidence intervals and
standard errors for the model parameters are unobtainable, it is hard to determine
the number classes that have to be used in the mixture, and, the distribution of
goodness of fit tests is unknown. Using Bayesian computational statistics these
problems can almost completely be avoided. See Hoijtink & Molenaar (1997),
Hoijtink (1998, 2001) for an application of this approach to mixture models where
the observed variables are dichotomous.
The use of Bayesian computational procedures for the analysis of the data with
mixture models does not solve the problem that the number of parameters in the
model is rather big compared to the amount of data (the sample size). The
consequence is that the predictive validity of the model will probably be rather small
if this problem is ignored. Two measures will be taken to control this problem:
Some of the taxa are more similar (i.e. have a higher probability of living in the same
environment) than others. The similarity among the taxa will be quantified into a
number of variables that will be used to determine the parameters of a hyperprior for
each of the taxa. The result is that similar taxa will receive similar parameter-values.
The latter will increase the predictive validity of the model.
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The environmental variables are correlated. The latter implies that not all
environmental variables are needed to make a distinction among the mixture
components. Instead of estimating parameters for each environmental variable, the
parameters of a (much smaller) number of discriminant-functions will be estimated.
The latter will also increase the predictive validity of the model.
A pilot project indicated that the approach described above is rather promising. In
the sequel of the project software for mixture models using a priori information and
discriminant functions will be developed, tested and implemented.

3.1.4 Data needed

Informed Latent Class / Discriminant Models can use different type of data to
answer ecologically relevant questions. A potential use is described below, first
introducing the data features as well as the research questions involved.
The data consist of N = 664 samples obtained from, for example, streams and
ponds. For each sample two sets of variables are recorded: the truncated logarithm of
the number (subsequently called the prevalence) of each of S=854 taxa present in the
sample; and, the value of M=53 environmental variables like temperature, oxygen
content and current velocity. The measurement of the environmental variables is
relatively straightforward. The prevalence of the taxa is obtained by placing a net in
the water, retraction of the net and subsequent manual identification and count of
the number of each taxon present in the sample.
Each of the 854 taxa is characterised using K=6 variables representing the existing
knowledge with respect to each of the taxa. Among these variables are the watertype
that a taxon usually lives in and the usual habitat of a taxon. These variables
constitute prior information with respect to the taxa. The statistical model presented
in paragraph 3.3 will use this information in order to obtain more stable estimates of
the parameters of each taxon.

3.1.5 Questions involved

The research question consists of two parts:
 How many water-classes Q can be distinguished using the taxa and the

environmental variables, and, what is the label/characterisation that should be
attached to each of these classes.

 How well can class-membership be predicted using only the environmental
variables i.e. can the population of taxa be predicted from the environment.

A cenotype is a group of individual waterbodies that are relatively homogeneous with
respect to taxon composition and environmental characteristics. The probability that
the taxon composition can be predicted from the environment increases if the
cenotypes are rather distinct. Since the number of variables in the data (854+53) is
rather large in comparison to the sample size (664), there is room for errors. It may
be difficult to correctly estimate the number of classes. The labelling /
characterisation of the cenotypes may be wrong (local maxima of the likelyhood of
the model that is used); and, there is room for capitalization on chance i.e. the
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“correlation” between taxon composition and environment may overestimated
leading to an overestimation of the predictive validity of environment. Two measures
will be taken to reduce the room for errors; the taxon parameters will be estimated
using the prior knowledge with respect to the taxa; and, using discriminant functions
the parameter space of the environmental variables will be reduced. Both measures
will be described in the next paragraph.

3.2 Informed Latent Class / Discriminant Model algorithms

To save space, the presentation of the model will be rather informal. The interested
reader is referred to the full technical report that will be finished in the spring of
2002. The likelihood of the model is:
       N    Q      S                              M
L = ∏  [∑ πq ∏  g ( Yis | θ1 = q) ∏   h (xim | θ1 = q)],        (1)
      i=1   q=1     s=1                                      m=1
in which yis contains  the prevalence of taxa s in water sample i, xim contains the
scores on environmental variable m, θ1 denotes the class membership of water sample
i, and πq the proportion of water samples belonging to class q. The density g (.) of the
environmental variables is Poisson with parameter λqs denoting the prevalence of taxa
s in class q. The density h (.) of the environmental  variables can be normal,
Bernouille,  binomial  or multinomial depending on the scale on which the variable is
measured. Each density is (at least) characterised by a parameter µqm representing the
centre of environmental variable m in class q.
Prior information will be specified for each parameter in the model. Usually relative
vague priors will be used. An exeption are the parameters on the taxa. A normal
hyperprior will be assigned to the logarithm of each Poisson parameter, each with
expectation

α q0 + ∑ α qk zks ,         (2)
         k

in which zks denotes the score of taxa s on the k-th variable containing prior
knwledge with respect to the taxa and α qk the hyperparameter associated with the k-
th variable in class q. The variance of the hyperprior is σ²qs. The use of these
hyperpriors has two consequences:
1. Taxa with similar scores on the K prior information variables will also have

similar preferences of the parameter  λqs in each of the latent classes.
2. The number of parameters to be estimated for the taxa is strongly reduced.

Instead of a preference for each taxon, only the hyperparameters have to be
estimated. This should have a favourable effect on the problems described at the
end of the previous paragraph.

Within each of Q latent classes, each of the M environmental variables has a
distribution containing a location parameter µqm. This implies that Q x M location
parameters have to be estimated. It is very likely that not all M environmental
variables are needed to make a distinction between the q latent classes. Stated
otherwise, it is very likely that a limited number of discriminant functions is
sufficient. Let υq denote the set of location parameters for the q-th class. Then the
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implication of using, for example, three discriminant functions to distinguish the Q
latent classes is that

υq = υ1 + βq2 (υ1 – υ2) + βq3(υ1 – υ3) + βq4(υ1 – υ4) for q = 5, …,Q.  (3)
This reduces the number of parameters to be estimated from Q x M to 4 x M + (Q -
(D+1)) x 3, which should have a favourable effect on the  problems described at the
end of the previous paragraph.

The parameters of the informed latent class/discriminant model can be estimated
using a procedure based on the Gibbs sampler (Gelman, Carlin, Stern & Rubin,
1995; Zeger & Karim, 1991). The selection of the number of classes Q and the
number of discriminant functions will be based on Bayes factors (Kass & Raftery,
1995).
Once the model described in this paragraph is calibrated i.e. the number of classes Q
is determined and each of the classes is labelled/characterised using the λqs’s and the
µqm’s an answer to the first research question is obtained. To obtain an answer to the
second research question, two classifications have to be compared: an assignment of
the samples to latent classes using both the taxon preferences and the environmental
variables; and, an assignment using only the environmental variables. The higher the
agreement between both classifications, the higher the predictive validity of the
model as defined in the second research question.

3.3 Advantages and disadvantages

The model described in the previous paragraph has two features, which distinguishes
it from other approaches (e.g. cluster analyses or artificial neural networks). Both
could be used in this context: it deals explicitly with the fact that the number of
variables exceeds the sample size; and, it is a statistical model which implies that it can
be used to make inferences with respect to the unknown population from which the
sample is obtained. To clarify the latter, both cluster analysis and neural nets are
models that describe the structure in the data without reference to a population from
which the data are obtained.
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4 Generalized Linear Models (GLM) (Sovan Lek)

4.1 Introduction

Generalised linear models (GLMs) are used to do regression modelling for non-
normal data with a minimum of extra complication compared with normal linear
regression. GLMs are flexible enough to include a wide range of common situations,
but at the same time allow most of the familiar ideas of normal linear regression to
carry over. The essay by Firth (1991) gives a good introduction to GLMs; the
comprehensive reference is McCullagh & Nelder (1989).

4.1.1 The normal linear model

Let y be a vector of observations, and let X be a matrix of covariates. The usual
multiple regression model takes the form:

µ = Xβ (1)
where µ = E(y) and β is a vector of regression coefficients. Typically we assume that
the yi are normal and independent with standard deviation σ, so that we estimate β by
minimizing the sum of squares:

(y - µ)T(y - µ)

4.1.2 Why is linearity not enough?

The most important and common case is that in which the yi and µi are bounded. For
example, if y represents the amount of some physical substance then we may have y
> 0 and µ > 0. On the other hand if y is binary, y = 1 if an animal survives and y =0
if it does not, then 0 < µ < 1. The linear model (1) is inadequate in these cases
because complicated and unnatural constraints on β would be required to make sure
that µ stays in its range. Generalized linear models instead assume a link linear
relationship:

g(µ) = Xβ (2)
where g() is some known monotonic function which acts pointwise on µ. Typically
g() is used to transform µ to a scale which is unconstrained. For example we might
use g(µ) = log(µ) if µi > 0 or g(µ) = log[ µ / (1-µ) ] if 0 < µi < 1.

4.1.3 Why is normality not enough?

In some situations, typically cases when σ is small, the normal approximation to the
distribution of y is accurate. More typically, responses are not normal.
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If y is bounded then the variance of y must depend on its mean. Specifically if µ is
close to a boundary for y then the var(y) must also be small. For example, if y > 0,
then we must have var(y) -> 0 as µ -> 0. For this reason strictly positive data almost
always shows increasing variability with increased size. If 0 < y < 1, then var(y) -> 0
as µ -> 0 or µ -> 1. For this reason, generalized linear models assume that:

var(y) = φ V(µ) (3)
where V() is some known variance function appropriate for the data at hand.
We therefore estimate the nonlinear regression equation (2) weighting the
observations inversely according to the variance functions V(µ). This weighting
procedure turns out to be exactly equivalent to maximum likelihood estimation when
the observations actually come from an exponential family distribution.

4.2 Generalized Linear Models; properties and algorithms

4.2.1 Properties

Generalised linear models, or GLMs, (see Dobson (1983) or McCullagh & Nelder
(1994)) refer to a wide class of statistical models including log-linear models, analysis
of variance, probit analysis, logistic regression and standard multiple regression. As a
result, GLMs have many applications. The GLMs were first given a firm theoretical
and computational framework by Nelder & Wedderburn (1972), who assumed
distributions in the exponential family. Such distributions have the form:

( ) ( )
( ) ( )









+−= φ
φ

θθφθ ,exp,, yc
a

byyfY (4)

for known functions a(.), b(.) and c(.). The function a(φ) is often of the form
a(φ)=φ/wi, where wi are known prior weights θ is referred to as the canonical
parameter, and φ as the dispersion parameter. The covariates, X, are linked to the
expected values through a monotonic differentiable link function, g(.), such that:

( ) βµη Xg == (5)
in which β is to be estimated. The link function can be chosen independently of the
error distribution. A commonly used link function is the canonical link function,
η=b(θ). Distributions such as the normal (Gaussian), gamma, inverse Gaussian,
Poisson and binomial distributions are members of the exponential family.
It can be shown that ( ) ( )θµ 'bYE == and ( ) ( ) ( )φθ abY "var = . The first component
of the variance, b"(θ), depends on the canonical parameter and therefore the mean. It
is usually referred to as the variance function and written as V(µ). The second
component, a(φ), depends only on θ and is independent of the canonical parameter.
For example, the normal distribution has ( ) 2/2θθ =b  and 2σφ = , so

( ) θµ ==YE  and ( ) 2var σ=Y  with a variance function of ( ) 1=µV .
The unit deviance is defined as:

( ) ( )∫
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µ 2, (6)
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and the total deviance, a measure of the distance between y and µ , is defined as:

( ) ( )∑
=

=
n

i
iii ydwyD

1
,, µµ (7)

where the summation is over the data and wi are the prior weights. The quantity
( ) φµ /,yD  is called the scaled deviance. For the normal distribution, the deviance is

equivalent to the residual sum-of-squares:

( )
2

1
∑

=

−
n

i
i i

y µ .

4.2.2 GLM algorithms

The algorithms for fitting generalised linear models are robust and well established
(see Nelder & Wedderburn (1972) and McCullagh & Nelder (1994)). The maximum
likelihood estimates of β can be obtained using iterative least-squares. Given 0µ̂ ,
initial values of the linear predictor 0η̂  are found from the link function, and the
adjusted dependent variable, 0z , can be formed as:

( )
0

000 ˆ
ˆˆˆ 







−+=

µ
ηµη

d
dyz (8)

where the derivative is evaluated at the initial values. The quadratic weights, W0, are
defined so that:
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η (9)

where V0 is the variance function evaluated at the initial values. z0 is then regressed
onto the covariates, X, with weights W0 to produce new parameter estimates, 1β̂
These are then used to form new estimates 1µ̂  and 1η̂ , and iterations are repeated
until changes are sufficiently small. Starting values are obtained directly from the
data, using y=0µ  with occasional refinements in some cases (for example, to avoid
evaluating log(0) when fitting a log-linear model with zero counts).

By default, the scale parameter is estimated by the mean deviance, ( )∑
i

yD
n

µ,1 , in

the case of the normal, gamma and inverse Gaussian distributions. The default value
of the scale parameter for binomial and Poisson distributions is one. In the case of
over- or under-dispersion, it can be estimated by the mean deviance.
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5 Generalized Additive Models (GAM) (Sovan Lek)

5.1 Introduction

One of the most commonly used statistical models in ecological research is multiple
linear regression for the quantitative dependant data and the logistic regression
model for binary data. The logistic model is used as a specific illustration of a
generalized additive model (GAM). Logistic regression (and many other techniques)
model the effects of prognostic factors xj in terms of a linear predictor of the form
∑ jjx β , where the jβ  are parameters. The generalized additive model replaces

∑ jjx β  with ( )∑ jj xf  where jf  is a unspecified ("non-parametric") function.
This function is estimated in a flexible manner using a scatterplot smoother (e.g.
LOESS). The estimated function ( )jj xf̂  can reveal possible nonlinearities in the
effect of the xj.
Hasti & Tibshirani (1990) is an excellent reference of GAM, and Chambers & Hastie
(1992) cover GAM and LOESS.

5.2 Smoothing methods and Generalized Additive Model algorithms

First some background is given on the methodology, and then the details of the
logistic regression model and its generalization are discussed. Some related
developments are discussed in the last paragraph.
The building block of the generalized additive model algorithm is the scatterplot
smoother. First, scatterplot smoothing is described in a simple setting, and then it is
indicated how it is used in generalized additive modelling.
Suppose that we have a scatterplot of points ),( ii yx  like that shown in figure 5.1.

Figure 5.1 Left panel shows a fictitious scatterplot of an outcome measure y plotted against a prognostic
factor x. In the right panel, a scatterplot smooth has been added to describe the trend of y on x.
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Here y is a response or outcome variable, and x is a prognostic factor. We wish to fit
a smooth curve f(x) that summarizes the dependence of y on x. If we were to find the
curve that simply minimizes ( )( )∑ − 2

ii xfy , the result would be an interpolating
curve that would not be smooth at all.
The cubic spline smoother imposes smoothness on f(x). We seek the function f(x)
that minimizes:

( )( ) ( )∑ ∫+− dxxfxfy ii
22 "λ (1)

Notice that ( )∫ 2" xf  measures the “wiggliness” of the function f: linear fs have

( ) 0" 2 =∫ xf , while non-linear fs produce values bigger than zero. λ is a non-negative
smoothing parameter that must be chosen by the data analyst. It governs the trade-
off between the goodness of fit to the data and (as measured by ( )( )∑ − 2

ii xfy )
and wiggleness of the function. Larger values of λ force f  to be smoother.
For any value of λ, the solution to (10) is a cubic spline, i.e., a piecewise cubic
polynomial with pieces joined at the unique observed values of x in the dataset. Fast
and stable numerical procedures are available for computation of the fitted curve.
The right part of figure 5.1 shows a cubic spline fit to the data.
What value of λ was used in figure 5.1? In fact, to express the desired smoothness of
f in terms of λ is unconvenient. As the meaning of λ depends on the units of the
prognostic factor x. Instead, it is possible to define an "effective number of
parameters" or "degrees of freedom" of a cubic spline smoother, and then use a
numerical search to determine the value of λ to yield this number. In figure 5.1 we
chose the effective number of parameters to be 5. Roughly speaking, this means that
the complexity of the curve is about the same as a polynomial regression of degrees
5. However, the cubic spline smoother "spreads out" in a more even manner its
parameters, and hence is much more flexible than polynomial regression. Note that
the degrees of freedom of a smoother need not be an integer.
The above discussion tells how to fit a curve to a single prognostic factor. With
multiple prognostic factors, if xij denotes the value of the jth prognostic factor for the
ith observation, we fit the additive model:

( )∑≈
j

ijji xfŷ (2)

A criterion like (10) can be specified for this problem, and a simple iterative
procedure exists for estimating the EMBEDED Equation.3 s. A cubic spline
smoother to the outcome EMBEDED Equation.3 as a function of ikx  is applied, for

each prognostic factor in turn. The process is continues until the estimates jf̂
stabilize. This procedure is known as "backfitting" and the resulting fit is analogous
to multiple regression for linear models.
When generalized additive models are fit to binary response data (and in many other
settings), the appropriate error criterion is a penalized log likelihood or a penalized
log partial-likelihood. To maximize it, the backfitting procedure is used in
conjunction with a maximum likelihood or maximum partial likelihood algorithm.
The usual Newton-Raphson routine for maximizing log-likelihoods in these models
can be cast in an IRLS (iteratively reweighted least squares) form. This involves a
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repeated weighted linear regression of a constructed response variable on the
covariates: each regression yields a new value of the parameter estimate, which gives
a new constructed variable, and the process is iterated. In the generalized additive
model, the weighted linear regression is simply replaced by a weighted backfitting
algorithm. The detail of algorithm can be found in Hastie & Tibshirani 1990.
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6 TREE Models (Sovan Lek)

6.1 Introduction

Tree-based methods involve dividing the observations into groups that differ with
respect to the variable of interest. For example, suppose one wants to know which
passengers on the Titanic were most likely to survive the ship's sinking, and what
characteristics were associated with survival. In this case, the variable of interest is
survival. The passengers could be divided into groups based on age, sex, and class,
and look at the proportion surviving in each group. A tree-based procedure
automatically chooses the grouping that results in homogeneous groups that have the
largest difference in proportion surviving.
In the Titanic example, the tree-based method first divided the observations into
men and women. The next step is to subdivide each of the groups based on another
characteristic. Men were divided into adults and children, while women were divided
into groups based on class. Notice that the process of subdividing is separate for
each of the groups. This is an elegant way of handling interactions that can become
complicated in traditional linear models.
When the process of subdivision is complete, the result is a classification rule that
can be viewed as a tree. For each of the subdivisions, the proportion surviving can be
used to predict survival for members of that group. The structure of the tree gives
insight into which characteristics of the passengers are related to survival. A tree for
Titanic survival, with the proportion surviving in each subgroup, is given in figure
6.1.

Figure 6.1 A tree for Titanic survival, with the proportion surviving in each subgroup.

There are several tree-based methods that differ with respect to the types of variables
allowed, the way groups are chosen, and the way groups are split. The most common
methods are Classification and Regression Trees (CART) and Chi-Squared
Automated Interaction Detection (CHAID). CART and similar methods allow the
response and grouping variables to be either categorical or continuous. CART
methods are implemented in SYSTAT version 7, in S-Plus, and in SAS. CHAID and
similar methods require the response variable to be categorical. CHAID methods are
available in an SPSS add-on module and in the SAS macro %TREEDISC.
The best description of regression trees theory can be found in Breiman et al. (1984).

All passengers

Men

Women

Adults (20%)

Children (45%)

3rd class or crew (46%)

1st or 2nd class passengers (93%)
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6.2 CART algorithm

The main steps of the CART method extensively developed by Breiman et al. (1984)
are used and used to grow a regression tree model.
Let a learning sample L be a set of n couples of observations ( , ),..., ( , )y yn1 x x1 n

where xi ∈R p  and y Ri ∈ , i n= 1,..., . The objective of a regression tree method is

to predict values of the response variable ( )y y y p

t
= 1 ,...,  explained by the set of the

other p predictor variables ( )X x xn p 1 n× = ,...,
t
. The sample

{ }L y i ni= =( , ), , ,xi 1L  is partitioned by a sequence of binary splits, into a set of
terminal nodes. Splits are formed by means of successive inequality conditions on the
predictor variables. At each split and starting to the root node, these conditions make
the couples ( , )y x  falling in successive intermediate nodes to finally move into a
terminal node t. At each terminal node t, a predicted value of y is estimated by the
average of the n(t) values of y associated to that terminal node,

( ) ( ) ( )
( )t

t
1

t,
yy

n
iy

i == ∑
∈ix

ixµ . The final structure is displayed as a binary tree T.

Thus, the tree building procedure with the CART method revolves around three
steps:

 selection of the best binary split at each node,
 decision either to declare a node as terminal or to continue the splitting

procedure,
 assignment of the estimator ( ) ( )µ x = y t  to the predicted variable.

The first step in tree construction is to determine best binary splits of L into smaller
and smaller exclusive subsets. At any node t, the split selection is carried out so that
the data are more and more homogeneous in every of the descendant subsets, this
according to the squared deviations of the response variable from the estimated
average y( )t , called the deviance D(t) and given by:

( ) ( )( )
( )

D y yi
yi

t t
t

= −
∈

∑ 2

,xi

When a split is performed, two subsets of observations tL and tR are obtained. The
deviance of the response variable is respectively given on both sides of the split by :

( ) ( )( )
( )

D y yi
yi

t tL L
tL

= −
∈

∑
2

,xi

 and ( ) ( )( )
( )

D y yi
yi

t tR R
t R

= −
∈

∑
2

,xi

in which: ( ) ( )y yt tL R, are the means estimated at the nodes tL and tR.
Among the set S of possible binary partitions, the best split s* of a node t is the split
which most decreases the deviance value ( )D t  i.e. the one that maximizes the
difference between deviance before and after that split. For any split s of t in tL and
tR, the best split s* is selected, so that it verifies:

( ) ( ) ( ) ( )[ ]
( ) ( )

∆

∆ ∆

D s D D D

D s D s
s S

,

, max ,*

t t t t

t t
L R= − +

=
∈
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The two subsets satisfying this rule will generate two new nodes according to a given
condition on a predictor. Then, they will be divided one after the other to define a
second level of partition. The splitting procedure is reiterated until the decision to
stop splitting. A binary structured tree is then obtained with several levels of splits
(figure 6.1).
Theoretically, a tree could have as many terminal nodes as there are observations.
Consequently, a node is declared to be suitable for splitting if :

 the deviance at this node is greater than a given fraction of the root node
deviance,

 the number of observations at this node is greater than a given percentage of the
total sample size.

This process results in a large tree with a great number of terminal nodes. As the
number of terminal nodes increases, the tree structure tends to be determined from
peculiarities in the learning sample: the model used for prediction is not easy to
interpret and it must be simplified. However, the more splitting steps are performed,
the more precise are the estimations of y. A compromise between the tree size and
the error given by the model used for prediction must be found.
Pruning a tree allows a decrease of the size of a tree Tmax build on the sample L by
successively removing nodes. A pruned subtree T of Tmax is a simplified tree that has
the same root node but less terminal nodes than Tmax. This is denoted by T T≤ max ,
the set of current terminal nodes of T is denoted by ~T  and the number of terminal
nodes in T by ~T . The pruning process consists in finding the best compromise
between the number of terminal nodes and the mean deviance of the predicted
variable y between each terminal group.

For any subtree T T≤ max , let the penalized deviance D Tα ( )  be the following linear
combination:

D T D T Tα α( ) ( ) ~= +

with: - ( )( )
( )

D T y yi
yT i

( )
,

~
= −

∈∈
∑∑ t

tt

2

xi

, the total deviance of a tree T,

- ~T , the complexity of T i.e. the number of terminal nodes in T,
- α ≥ 0 , the cost parameter which weights the number of terminal nodes.

Now, for each value of α, the subtree ( )T Tα ≤ max which minimizes D Tα ( )  must be
found, i.e.

( )( ) ( )D T D T
T T

α αα =
≤

min
max

Although α values may vary continuously, the minimal error-complexity trees grown
on L result in a decreasing finite sequence { }T T1 2 1> > >... t  of k pruned trees such
that max1 TT ≤  and { }1t  is the root node. Thus, at each Tk  is associated an αk , a

threshold value such that α α αk k≤ ≤ +1 , with α1 0=  and ( ) ( )T T Tk kα α= = ,
k ≥1  (Breiman et al., 1984).
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The standard error committed by each tree of the sequence { }Tk  could be estimated

considering ( )D Tk  as a criterion of prediction error. But, using the sample that was
used to build the sequence of pruned subtrees would lead to an unrealistic low
estimation of the total deviance. By construction, the largest tree T1 would be
selected as the optimum-sized tree i.e. the tree with the lowest standard error. To
determine the best-sized tree, a better estimate of the deviance ( )D Tk  must be found.
Cross-validation method is a solution to limit the over-optimistic bias of the
estimation of the total standard error (Breiman et al., 1984; Efron, 1983).

6.3 Advantages and disadvantages

Tree-based methods have several attractive properties when compared to traditional
methods. They provide a simple rule for classification or prediction of observations,
they handle interactions among variables in a straightforward way, they can easily
handle a large number of predictor variables, and they do not require assumptions
about the distribution of the data. However, tree-based methods do not conform to
the usual hypothesis-testing framework.
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7 Partial least square regression (PLS) (Sovan Lek)

7.1 Introduction

In such so-called soft science applications, the researcher is faced with many variables
and ill-understood relationships, and the object is merely to construct a good
predictive model. For example, ecological communities are often used to estimate its
biodiversity and related to its structure; the amount of different environmental
variables characteristic for the studied site. In this case, the factors are the
measurements that comprise the environmental data; they can number in the dozens
or hundreds but are likely to be highly collinear. The responses are community
amounts that the researcher wants to predict in the future samples.
Partial least squares (PLS) is a method for constructing predictive models when the
factors are many and highly collinear. Note that the emphasis is on predicting the
responses and not necessarily on trying to understand the underlying relationship
between the variables. For example, PLS is not usually appropriate for screening out
factors that have a negligible effect on the response. However, when prediction is the
goal and there is no practical need to limit the number of measured factors, PLS can
be a useful tool. The general idea of PLS is to try to extract from many factors a few
underlying or latent factors, accounting for as much of the manifest factor variation
as possible while modelling the responses well. Figure 7.1 gives a schematic outline
of the method. The overall goal is to use the factor to predict the responses in the
population. This is achieved indirectly by extracting latent variable T and U from
sampled factors and responses, respectively. The extract factors T (also referred to as
X-scores) are used to predict the Y-scores U, and then the predicted Y-scores are
used to construct predictions for responses. For the detail of PLS methods, readers
can refer to Geladi & Kowalski (1986), Höskuldsson (1988), and HeIland (1990)

Figure 7.1 Indirect modelling.

Population
Sample

Factors Responses

Factors Responses

T U
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7.2 Partial Least Square Regression algorithm

PLS is a regression technique to solve the linear model in a stepwise fashion,
including every predictor variable in the model. PLS bears some resemblance to
principal component regression (PCR) in that PCR also creates an orthogonal set of
variables. However, in PCR the orthogonal variable extraction is independent of the
target variables and a subsequent MR step is needed to relate target and explanatory
variables, while in PLS the orthogonal set of variables is constrained to maximize
directly the communality of the predictor and response variable blocks. PLS applies
this constraint by using NIPALS (Non-linear Iterative Partial Least Squares) rather
than diagonalization, to extract factors.

Denote the block of explanatory variables as: { }ijxX = , i=1,n j=1,p, where n is
the number of rows (compounds) and p is the number of explanatory columns.

The block of target variables is denoted as: { }ikyY = i=1,n k=1,r, where r is the
number of target data (dependent variables).

There is an optional associated weight vector: { }iwW = i=1,n

PLS calculates an orthogonal set of explanatory variables that are linear combinations
of the original p variables. In each step an iterative procedure calculates the weights
of the linear combinations in both blocks and a new set of latent variables.

1. start with the first response variable as latent variable of the response block
1,, iai yv = , i=1,n

2. weights of the linear combination in the first block ∑
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9. inner relationship coefficient ρ
∑
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10. loading of the predictor block (projection on the model ρ * u) 
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11. residuals in the block of explanatory variables aiaajjiji ubxx ,,,, ρ−=
12. residuals in the block of target variables aiaakkiki udyy ,,,, ρ−=

This procedure is reiterated until a=A, i.e., until the specified number of components
have been obtained, each time starting from the residual matrices of the previous
step. If all possible components are calculated, i.e., A=p, PLS gives the conventional
least squares regression equation, here called a full model.
Crossvalidation is used to determine the number of components that yields an
optimally predictive model (refer to the crossvalidation procedure). Usually a model
with less than the maximum number of components (A<p) gives a better
crossvalidated sum of squared residuals than the full model. The model with optimal
number of components has a higher standard error of fit than a full-rank model, but
is generally more reliable for prediction. Thus the crossvalidated PLS model is usually
less subject to errors of over-specification than is a regression model.
Bootstrap can be used to calculate confidence intervals around the model parameters
(refer to the bootstrapping procedure). The number of crossvalidation groups and
bootstrap samples is user-specified.

Other useful PLS statistics include:

The residual eij for the descriptor value Xij from the jth column of the ith row:
∑
=

••−=
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jaaaiijij buXe
,1

, ρ

The Modelling Power function MP: ( ) ( )∑
= •
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j ns

e
MP

,1
2

2

1 , where: 2
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The Discriminant Power function, DP(j): ( ) ∑
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7.3 Advantages and disadvantages

Research in ecological sciences sometime involves controllable and/or easy-to-
measure variables (factors) to explain, regulate, or predict the behaviour of other
variables (response). When the factors are few in number, are not significantly
redundant (collinear) and have a well-understood relationship to the responses, then
multiple linear regression (MLR) can be a good way to turn data into information.
However, if any of these three conditions breaks down, PLS can be more efficient
and appropriate than MLR.
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ARTIFICIAL NEURAL NETWORKS

8 Artificial Neural Networks (ANNs)

8.1 Historic developments

Over the last ten years, the use of Artificial Neural Networks (ANNs) in ecological
modelling is discussed (Colasanti, 1991), which resulted in different applications (e.g.
Adams et al., Albiol et al., 1995; Balls et al., 1996; Baran et al., 1996; Brey et al., 1996;
Chon et al., 1996; French & Recknagel, 1994; Komatsu et al., 1994; Lek et al., 1995,
1996a, 1996b, 1996c; Recknagel et al., 1997; Scardi, 1996; Spitz et al., 1996). Typical
ecological applications of ANNs include amongst others:

 pattern recognition and classification in taxonomy (e.g. Nakano et al., 1991; Simpson
et al., 1992, 1993; Boddy et al., 2000),

 remote sensing (e.g. Carpenter et al., 1999; Civco, 1993; Gross et al., 1999; Keiner
& Yan, 1998; Kimes et al., 1996; Mann & Benwell, 1996),

 GIS data analysis (e.g. Hilbert & Ostendorf, in press; Silveira et al., 1996).
 empirical models of ecological processes (Aoki & Komatsu, 1997; Aoki et al.,

1999; Barciela et al., 1999; Brey et al., 1996; Brey & Gerdes, 1998; Brosse et al.,
1999; Lae et al., 1999; Mastrorillo et al., 1997, 1998; Recknagel et al., 1997; Scardi,
1996, 2000; Scardi & Harding, 1999),

 tools for predicting community structure or population characteristics (Aussem
& Hill, 1999; Baran et al., 1996; Guegan et al., 1998; Giske et al., 1998; Lek et al.,
1996a, 1996; Scardi et al., in press; Schleiter et al., 1999; Wagner et al., 2000)

 water management (e.g. Kastens & Featherstone, 1996),
 time series analysis and prediction (e.g. Recknagel, 1997; Chon et al., in press),
 ecosystem dynamics (e.g. with recurrent back-propagation algorithms by Pineda,

1987; Chon et al., in press; Jeong et al., in press).
As for hydrological applications, although parametric statistical protocols and
deterministic models have been the traditional approaches in forecasting water
quality variables in streams, many recent efforts have shown that, when explicit
information of hydrological subprocesses is not available, ANNs can then be more
effective (Zhu et al., 1994; Maier & Dandy, 2000).
A comprehensive overview of ANN applications in ecology and evolution is
compiled by Lek & Guegan (2000).
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9 Self-Organizing Maps (SOMs) (Jean Luc Giraudel)

9.1 Introduction

9.1.1 Development of SOMs

The Self Organizing Map (SOM) algorithm has been proposed by Kohonen in the
early eighties (Kohonen, 1982). Since that time, SOMs have been used in a number
of different applications. As for ecological ones, SOMs have been used to reveal the
relationships between ecological communities, for instance to describe patterns in
communities (Chon et al., 1996), to analyse community data (Foody, 1999) or to
model micro-satellite data (Giraudel et al., 2000).
SOMs are among the most well known neural networks with unsupervised learning
rules. They perform a topology-preserving projection of the data space onto a regular
two-dimensional space and can be used to effectively visualise clusters (Kohonen,
1995). Consequently, SOMs are ideal for ecological ordination (Jongman et al. 1995)
Already used in different areas, SOMs were able to recognize clusters in datasets
where other statistical algorithms failed to produce meaningful clusters (e.g. Cho,
1997). With the U-Matrix method, SOMs can be used for clustering without prior
knowledge of the number or size of the clusters and then for studying Multivariate
Time Series (Ultsch, 1999).
The detection and the visualisation of clusters are very straightforward and often
outperform the results obtained by classical classification methods. A drawback of
the SOM algorithm is that the size and the shape of the map have to be fixed in
advance. Growing self-organising networks have been proposed in order to deal with
this problem (Villmann & Bauer, 1998), but this approach remains still to be applied
to ecological data.

9.1.2 The SOM concept

The Kohonen Self-Organizing Map (SOM) is one of the most popular unsupervised
artificial neural network (Kohonen, 1995), it performs a topology-preserving
projection of the data space onto a regular two-dimensional space. SOM shares with
the conventional ordination methods the basic idea of displaying a high-dimensional
dataset in a lower dimensional space (usually a 2-dimensional space). This method is
recommended for use in an exploratory approach for data sets in which unexpected
structures might be found. The complete description of this method can be found in
Kohonen (1995).
Let { }pXX ,;1 L  be p vectors of Rn. With SOM, these p vectors will be projected in a
non-linear way onto a rectangular grid laid out on a hexagonal lattice with S
hexagons: the Kohonen map (figure 9.1).
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Figure 9.1 A two-dimensional Self-Organizing Map. Each sphere symbolises each neuron in the input layer and
in the output layer (Kohonen map).

The goal of the SOM algorithm consists in putting the dataset on the map preserving
the neighbourhood, so the similar vectors should be mapped close together on the
grid. For this purpose, in each hexagon, a neuron will be considered. These neurons
( ) Skkm ≤≤1 are in fact reference vectors of Rn with components ( ) Skniikw ≤≤≤≤ 1,1 to be
computed.
The modifications of the reference vectors are made through an Artificial Neural
Network (ANN). Modelling the human brain working, ANN has a learning ability: the
components ( )ikw  of each reference vector are computed during a training phase.
The modifications of each ( )ikw  take place by iterative adjustments. The Kohonen
neural network consists of two layers: the first one (input layer) is connected to each
vector of the dataset, the second one (output layer) forms a two-dimensional array of
nodes (figure 9.1). In the output layer, the units of the grid (reference vectors) give a
representation of the distribution of the data set in an ordered way. For learning, only
input units are used, no expected-output data is given to the system: we are referring
to unsupervised learning.

9.2 Self-Organizing Map algorithm

 Step 1: Epoch t=0, the reference vectors ( ) Skkm ≤≤1  are initialised with random
samples drawn from the input dataset.

 Step 2: A sample vector ( ) niijj xX ≤≤= 1  is randomly chosen as an input unit.
 Step 3: The distances between jX  and each reference vector are computed.
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 Step 4: The virtual unit cm  closest to the input jX  is chosen as the winning
neuron. cm  is called the Best Matching Unit (BMU).

 Step 5: The reference vectors ( ) Skkm ≤≤1  are updated with the rule:
[ ])()()()()1( twtxthtwtw ikijckikik −+=+ (1)

 Step 6: Increase time t to t+1. If t<tmax then go to step 2 else stop the training.

In step 5, in the equation (1), the function )(thck  is called the neighbourhood
function and plays a very central role. During the learning process, the BMU defined
in step 4 is not the only updated unit. In the grid, a neighbourhood is defined around
the BMU and all units within this neighbourhood are updated. Several choices can be
made for the definition of the neighbourhood function. For instance, the
neighbourhood can be written in terms of the Gaussian function:










 −
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ck
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 ck rr −  is the Euclidean distance on the map between the winning unit cm and
each reference vector km .

 σ  is a decreasing function of time which defines the width of the part of the
map affected by the learning.

 α  is the ``learning-rate factor'', it is a decreasing function of the time. σ and α
both converge towards 0.

The learning is broken down into two parts:
the ordering phase: during this phase, the virtual stations are widely modified in a large
neighbourhood of the Best Matching Unit. So, this occurs with large values for
α  and σ.
the tuning phase: when this second phase takes place, only the virtual units adjacent of
the Best Matching Unit are modified. This phase is much longer than the former one
and α is decreasing very slowly towards 0.
When the learning process is finished, The sample vectors can be mapped. For this
purpose, the BMU is computed for each sample vector and this one can be
represented in the corresponding hexagon.
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10 Back Propagation Artificial Neural Network (ANNbp)
(Muriel Gevrey)

10.1 Introduction

The back propagation neural networks, also called multilayer feed-forward neural
networks or multilayer perceptron, are very popular and are used for a wide variety
of problems more than other types of neural networks. The ANNbp is based on the
supervised procedure, i.e., the network is built with a dataset where the outputs are
known. ANNbp is a powerful system, often capable of modelling complex
relationships between variables. For a given input, one can predict an output.

10.2 Back Propagation Artificial Neural Network algorithms

10.2.1 Structure

ANNbp is a layered feed-forward neural network, in which the non-linear elements
(neurons) are arranged in successive layers, and the information flows
unidirectionally, from input layer to output layer, through the hidden layer(s) (figure
10.1). As can be seen in this figure, neurons from one layer are connected to all
neurons in the adjacent layer, but no lateral connection between neurons within one
layer, or feedback connection are possible. The number of input and output neurons
depends on the number of explanatory and explained variables, respectively. The
hidden layer(s) is (are) an important parameter in the network.

10.2.2 Algorithms

ANNbp learning and update procedure is based on a relatively simple concept: if the
network gives the wrong answer, then the weights are corrected so that the error
lessens, so future responses of the network are more likely to be correct. The
conceptual basis of the back propagation algorithm was presented to a wide
readership by Rumelhart et al. (1986).
In a training phase a set of input/target pattern pairs is used for training, which is
presented to the network many times. After training is stopped, the performance of
the network is tested. The ANNbp learning algorithm involves a forward-
propagating step followed by a backward-propagating step.
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Figure 10.1 Schematic illustration of a three-layered feed-forward neural network, with one input layer, one hidden
layer and one output layer.

10.2.3 Forward-propagating step

Like a real neuron, the artificial neuron has many inputs, but only a single output,
which can stimulate many other neurons in the network. The neurons are numbered,
for example the one neuron in figure 10.2 is called j.

Figure 10.2 Basic processing neuron in a network. Each input connection value (xi) is associated with a weight
(wji).

The input the jth neuron receives from the ith neurons is indicated as x. Each
connection to the jth neuron is associated to a quantity called weight. The weight on
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the connection from the ith neuron to the jth neuron is denoted wji. An input
connection may be excitatory (positive weight) or inhibitory (negative weight). A net
input (called activation) for each neuron is the sum of all its input values multiplied
by their corresponding connection weights, expressed by the formula:

j
i

ijij Bxwa ∑ +=

where i is the total number of neurons in the previous layer, Bj is a bias term, which
influences the horizontal offset of the function. The bias Bj may be treated as the
weight from the supplementary input unit, which has a fixed output value of 1. Once
the activation of the neuron is calculated, we can determine the output value by
applying a transfer function:

)( jj afx =
We can used many different transfer functions, e.g. linear function, a threshold
function, a sigmoid function, etc. The sigmoid function is often used in ecology, its
formula is:
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The weight plays an important role in propagation of the signal in the network. They
establish a link between an input pattern and the associated output pattern, i.e. they
contain the knowledge of the neuronal network about the problem/solution
relationship.

10.2.4 Backward-propagating step

The backward-propagating step begins with the comparison of the network output
pattern to the target value, when the difference (or error) is calculated. The
backward-propagating step then calculates error values and changes the incoming
weights, starting with the output layer and moving backward through the successive
hidden layers.
The error signal associated with each processing unit indicates the amount of error
associated with that unit. This parameter is used during the weight-correction
procedure, while learning is taking place. A large value for the error signal indicates a
large correction should be made to the incoming weights; its sign reflects the
direction in which the weights should be changed. The adjustment of weight depends
on three factors: the error value of the target unit, the output value for the source
unit and the learning rate. The learning rate commonly between 0 and 1, determine
the rate of learning of the network.

10.2.5 Training the network

Before starting the training, the connection weights are set to small random values.
Next the input patterns are applied to the network to obtain the output. The
differences between the output calculations and the target expected are used to
modify the weights. One complete calculation is called an epoch or iteration. This
processed is repeated until a suitable level of error is achieved. Using a parameter
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called momentum, chosen generally between 0 and 1 allow getting out of a local
minimum.

10.2.6 Testing the network

A testing set of data serves to assess the performance of the network after training is
complete. The input patterns are fed into the network and the desired output
patterns compared with those given by the neural network. The agreement or the
disagreement of these two sets gives an indication of the performance of the neural
network model. If it is possible, the best solution is to divide the data set in the aim
to use two different sets of data, one for the training and the testing stage and the
second one to validate the model (Mastrorillo et al. 1998). Different partitioning
procedures existed according to the size of the available dataset: k-fold cross-
validation or hold-out (Utans & Moody 1991; Efron & Tibshirani 1995; Kohavi &
Wolpert 1996; Friedman 1997), leave-one-out (Efron, 1983; Kohavi 1995).
The network can be overtrained or overfitted, that is it loses its capacity to
generalize. Three parameters are responsible of this phenomenon: the number of
epochs, the number of hidden layers and the numbers of neurons in each hidden
layer. It is very important to determine the appropriate numbers of these elements in
ANNbp modelling.

10.3 Advantages and disadvantages

ANNs can be regarded as an extension of the many conventional techniques for
understanding complex data, and they have been developed over several decades.
Feed-forward artificial neural networks are powerful to perform non-linear pattern
discrimination. They are powerful tools and popular especially in pattern recognition
and other decision-making, forecasting and signal processing and in the modelling of
complex non-linear systems by fitting the network to non-linear data. Those are
major advantages of using ANNbp in ecology where the relationships in the data sets
are always non-linear and complex.
However, sometimes they do not show high performance abilities. These failures are
due to inadequate training, inappropriate architecture for the used data set, and non-
separability of the feature data (inappropriate data…). These problems underline the
necessity of model calibration for its successful use. A drawback of ANNbp is that
the gradient training encounters multiple local minima. Another one comes from the
model type. Actually, ANNbp is black-box type model that means that it is not
possible to interpret the phenomenons that occur inside the network. The
complexity of the model comparing to the classical one as the regression models can
also be seen as a disadvantage.
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11 Kernel-induced nonlinear model (KINM) (Sun Ruixiang)

11.1 Introduction

Kernel-induced nonlinear models (KINMs) are derived from the principle of
statistical learning theory (Vapnik, 1995). They have attracted more and more
attention since the 1990’s and have been applied in many areas due to the attractive
features and the promising performances. As we know, multiple linear regression
(MLR) or its generalized version is widely used for most of ecological problems. In
order to deal with the nonlinearity, artificial neural networks (ANNs) are introduced
and make a great progress toward to more accurate models (Lek, 2000).
Nevertheless, there is still some weakness in ANN, such as the local minimum of the
error surface, the difficulties with generalisation. Therefore, it is very significant to
find an alternative or robust method to empirical data modelling in ecological area.

11.2 Kernel-induced nonlinear models algorithms

11.2.1 SRM versus ERM

The structural risk minimization (SRM) principle has been shown to be superior to
the most commonly used empirical risk minimization (ERM) principle employed in
ANN. Let (x, y) be a vector of observations, and f be a function to be estimated or
modelled from the obervations. The usual ERM inspired model minimized the risk
(error),

dydyPfyfR
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As in most general cases, the probabilistic density function P(x,y) is unknown, the
approximated alternative version, according to ERM principle, is
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in which l is the number of the observations.
This approximation makes sense only if,
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which is true from the law of large numbers.
In SRM, the following bound holds with probability 1-δ,
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in which h is the VC dimension, a scalar value to measure the capacity of a set of
functions. SRM minimises the right side of the inequality (4).
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11.2.2 KINM concept

The main idea behind KINMs is to map the initial data space to the high dimensional
feature space by a nonlinear kernel function chosen a prior, also called kernel-
induced space. In that space, a linear regression is possible to be implemented, which
corresponds to a nonlinear regression function in the initial data space.
One of the most important concepts in KINMs is the loss function (L), which
determines how to penalize the function according to the amounts of the error (εεεε)
between the desired and the practical values.  Figure 11.1(a) is the commonly used
quadratic loss function and (b) is the linear loss function. In KINMs, in order to
obtain the sparse distribution of the “support vectors” (explained later), a new type
extended from the linear one is developed as shown in Figure 11.1(c), the so-called ε-
insensitive loss function.

L

0 ε    

L

0 ε    

L

0 ε
-ε0 ε0 

(a) Quadratic                                  (b) Linear                                   (c) ε-insensitive
Figure 11.1 Three types of Loss Functions.

The form of the ε-insensitive loss function is:
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The classical linear regression problem is to find the weighted vector w and scalar b
for the data set RyR,...,l,,iy n

ii ∈∈= ,21),,( xx , so that:
bf +⋅= x)(wx)( (6)

meets the minimum of the quadratic loss function in the data set.
The primal problem of KINMs can be definded as follows:
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liby ii ,...,2,1,ˆ)( 0 =+≤+>⋅<− ξεixw
liii ,...,2,1,0ˆ, =≥ξξ

where  liii ,...,2,1,ˆ, =ξξ are the slack variables; C is the parameter to measure the
trade-off between complexcity and losses.
According to the Lagrange multiplier method, the optimization problem (7) can be
solved as a convex programming which has a global minimum. Vapnik (1995) and
Gunn (1998) provide more details on both the theoretical and the practical aspects of
KINMs.
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11.2.3 KINM algorithm

The primal problem of KINMs, (7) can be transformed to the dual one:
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where liii ,...,2,1,,* =αα  are 2l Lagrange multipliers and K( ) is the kernel function.
After obtaining the multipliers liii ,...,2,1,,* =αα by solving (8), the regression
function is then given by:
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Many literature gives the commonly used kernel functions. Generally speaking, any
symmetric function, which meets the Mercer condition (Vapnik,1995) can be a kernel
function. Among them, Gaussian radial basis function and polynomial function are
two examples.
Gaussian radial basis function
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ji
ji w
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where w is the width constant (w>0).
Polynomial function

dK )xx()x,x( jiji ⋅= (11)

where d is the exponent constant, +Ν∈d .
The ε-insensitve loss function (5) makes the solutions of problem (8) be sparse, i.e.
only a few of the liii ,...,2,1,,* =αα  are not zeros. The data points which correspond
to the nonzero (larger than zero) are called “Support Vectors (SVs)”. This leads to
the capacity of KINMs does not depend on the dimension of the data space because
KINMs only take use of the most informative data points, “Support Vectors”. The
optimisation problem (8), in essence, is a convex programming, which has a global
maximum. All these afford the superiority to KINMs, compared with ANN and
other regression methods.

11.3 Advantages and disadvantages

The advantages of KINMs, in comparison with ANNs, are due to the
implementattion of the structural risk minimization (SRM) principle. This principle
has been shown to be superior to the most commonly used empirical risk
minimization (ERM) principle employed in ANN. SRM minimizes an upper bound
on the VC dimension, i.e. the generalisation error, while ERM minimizes the error
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on the training data, usually in a quadratic fasion. This difference equips the power of
KINMs when modelling the nonlinear complex problems.
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12 Counterpropagation network (Young-Seuk Park)

12.1 Introduction

The counterpropagation network (CPN), proposed by Hecht-Nielsen (1987), is a
combined network of the two artificial neural networks: the Kohonen self-organizing
map (SOM) (Kohonen, 1982) and the Grossberg outstar (Grossberg, 1982). The
name counterpropagation derived from the initial presentation of this network as a
five-layered network with data flowing inward from both sides (figure 12.1). There is
literally a counterflow of data through the network. The network is designed to
approximate a continuous function f:AδRm 6 BδRn defined on a data set A, and
serves as a statistically optimal self-programming lookup-table (Hecht-Nielson,
1987).

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network
(input) x

(output) x’

y’ (output)

y (input)

Figure 12.1 Structure of a full counterpropagation network.

12.2 Counterpropagation network algorithm

The full network works best if the inverse function f -1 exists and is continuous. It is
assumed that the x and y vectors are drawn from A and B, respectively. During the
training, (x,y) of f (where y=f(x)) are presented to the network from both sides
(figure 12.1). These x and y vectors then propagate through the network in a
counterflow manner to yield output vectors x’ and y’ which are intended to be
approximations of x and y, respectively (Hecht-Nielsen, 1987; Lin & Lee, 1996).
Although this is an accurate picture of the network, it is complex; thus a simplified
forward-only CPN is preferred with no loss of accuracy (Hecht-Nielson, 1987)
(figure 12.2).
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Figure 12.2 Structure of a forward-only counterpropagation network
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As with any neural network, there are a few steps that must be performed to test a
network's performance. Initially the data for x (explanatory variables) and y
(dependent variables) are given to the SOM layer and the Grossberg layer,
respectively. For the CPN the learning process occurs in two phases. First, the SOM
layer must be trained. The learning process is carried out in an unsupervised mode to
follow the general SOM learning rules. After learning the SOM layer, the Grossberg
layer should be trained. This is carried out in a supervised mode. The weight vector
w is updated according to the Grossberg outstar learning rule:

w = w + ∃(y - w)z
where ∃ is learning rate, and z is assigned to 1 for winner neuron of the SOM layer
while set to 0 for all other neurons. By repeating this process until the weight
difference become sufficiently small, the effective information characterising
relations of the two variable sets are preserved in the weights of the network. Finally,
the trained CPN functions exactly as an optimal self-programming lookup-table.

12.3 Advantages and disadvantages

Strength and weakness of CPN depend on the geometry and probabilities of the
inputs and outputs. If that information is known or estimated, this can be a very
good approach. Another advantage is speed of convergence. Compared to other
mapping networks, it typically requires fewer training steps to achieve its best
performance. This kind of approach shows how combining different network
architectures, unsupervised network and supervised network, can produce good
results for certain classes of patterns. Finally, the CPN can provide the clustering and
predicting values at the same model. However there are also some limitations as
follows; a large database is required to train the network, and the predicted values by
the network are dependent on the number of groups in Kohonen SOM layer.
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13 Competitive neural network in combination with Linear
Vector Quantisation (Wies Akkermans)

13.1 Introduction

Artificial Neural Networks (ANNs) are non-linear models. Two main types of ANNs
can be distinguished: supervised and unsupervised ones. Unsupervised networks can
be used for clustering a set of units or patterns, i.e. for discovering ‘groups’ when no
explicit information about group membership is present in the data. Supervised
networks on the other hand are applicable when the goal is to predict an observed
dependent variable from a set of predictors, that is, they are models for regression
and classification. One of the advantages of neural nets over more classical
techniques such as k-means clustering or ordinary least squares regression is that no
assumptions have to be made regarding the distribution of variables. Furthermore,
being nonlinear, these methods can be used to detect and describe a host of
nonlinear relationships.
In this paragraph the unsupervised Competitive Artificial Neural Networks
(CANNs) and the supervised LVQ network will be described. Applying these two
networks in combination may give a powerful tool for fast classification of future
observations. An example is given in paragraph 12.4.

13.2 Competitive neural network and Linear Vector Quantisation
algorihms

13.2.1 Competitive ANNs

A competitive neural network consists of two layers, an input layer and an output
layer. The input layer consists of M input variables x1, x2, … xM; the output layer
consists of one neuron for each cluster that will be formed. The researcher has to
decide on the number of clusters, say K. When there are K clusters, the goal of a
Competitive ANN is to find K ‘prototype vectors’ that can be used to describe these
clusters. Starting from K initial prototypes (either randomly chosen, or obtained
through for example K-means clustering), for each input pattern in turn the distance
to each prototype is calculated. The prototype it is closest to, is then adjusted
somewhat into the direction of this input pattern. This process is iterated until the
change in the adjustments becomes smaller than a predetermined threshold.
Mathematically, provided both vectors have been scaled to the same (unit) length,
the pattern and prototype that are closest also have the largest inner product. Now
denote the prototype vectors by p and place them into the rows of an KxM matrix P.
Then a=Px gives the inner products of all K prototypes with x, as the k-th element

of a is given by ∑
=

=
M

m
mkmk xpa

1

. Hence, the prototype matrix thus formed also acts

as a weight matrix. Now let prototype i  be the one having the largest inner product
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with x, or alternatively, the one being closest to x. The rows of the prototype (or
weight) matrix P are then updated using the so-called instar rule:

( ))1;()1;();( −− −+= tktkk pxpp t α  if ik =  ;
)1;();( −= tktk pp for all other k.

in which the superscript k  refers to the k-th prototype, i.e. the k-th row of P, and
the superscripts t  and 1−t  to cycles in the iteration. The parameter α  has to be
chosen by the investigator. This updating rule has the effect that the prototype
closest to the input vector is moved a little into the direction of x, and all other
prototypes remain unchanged.
Starting from an initial unit length prototype matrix P(0), the algorithm for the
Competitive ANN is to iterate the following steps until convergence:
1. Select the next input vector x, and scale it to have unit length.
2. Identify the prototype closest to the input vector. This can be done either by

calculating the inner product of all prototypes with x; or by calculating the
distance between x and each prototype vector.

3. Update the prototypes according to the instar rule described above. For more see
e.g. Haykin (1999) or Hagan et al (1996).

4. Compare with the previous value. If the difference is smaller than tolerance stop;
otherwise go back to 1.

A competitive ANN is schematically represented in figure 13.1.

               Input layer        Prototypes           Output layer
                                          or weights

                           x1                            p11
                           x2              p12
                           x3                  p51
                           x4
                           x5

                        xM-1
                        xM

Figure 13.1 Schematisation of a competitive neural net (All neurons in the output layer should be connected to all
neurons in the input layer).

13.2.2 Linear Vector Quantisation Network

The second network discussed in this paragraph is the Linear Vector Quantisation
network. This is a network for classification, that is, it can be trained to learn the
relation between a set of input variables x1, x2, … xM and a qualitative output variable
Y. In ordinary statistical language: its parameters are iteratively estimated such as to
minimise the prediction errors. The variable Y is represented as a dummy vector, that
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is, if pattern x belongs to class i , ,1 Ki ≤≤  then Y consists of a ‘one’ on position i,
and of zeros everywhere else. Figure 13.2 gives a schematic description of an LVQ
network. The circles represent ‘nodes’ in the network; the squares are indicators for
the target variable which the network aims to reproduce. Each square represents one
class or group. In addition to the input and output layers, this network has a third,
so-called hidden layer. The hidden layer  identifies, as it were, a number of
‘subclasses’ for each class. This feature of the network allows it to have classes
formed from non-convex input regions. The number of hidden neurons has to be
determined by the researcher.
The first layer in the network is a competitive layer; it is similar to above, except that
here the prototypes and input patterns are not scaled to unit length. Again, let
prototype i  be the prototype closest to x. The second layer merely combines the
subclasses into broader classes. The weights of this  second layer are not changed
during the estimation process. Recall that in this case the ‘true’ class  membership of
x is known, i.e. the output variable Y has been observed. Hence, it is possible to use
this information in the updating of the weights: check if the predicted class i  is equal
to the target class Y(x). If Y has been correctly predicted, the prototype vector i  is
moved a little into the direction of x. This is similar to the procedure with the
Competitive ANN above. However, if Y has been incorrectly predicted, now  the
prototype vector i  is moved a little away from x:

( ))1;()1;();( −− −+= tktkk pxpp t α  if ik =  and i is the correct class;
( ))1;()1;();( −− −−= tktkk pxpp t α  if ik =  and i is an incorrect class;

)1;();( −= tktk pp                               for all other k.

This could be called an extended instar rule. More details again can be found in
Haykin (1999) and Hagan et al.(1996).

             Input layer            Hidden layer       Output layer        Target

                            x1
                            x2                                                                                                                         Y1
                            x3
                            x4
                            x5
                            x6
                                                                                                               Y2

                         xM-1                                                                                Y3
                         xM                                                                                                                          

Figure 13.2 Schematisation of an LVQ network (The input layer should be fully connected to the hidden layer).

Summarising the algorithm for the LVQ: start from an initial prototype matrix P(0)

and iterate the following steps until convergence:
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1. Select the next input vector x.
2. Identify the prototype closest to the input vector.
3. From this prototype, predict Y.
4. Update the prototypes according to the extended instar rule described above.
5. Compare with the previous value. If smaller than tolerance stop; otherwise go

back to 1.

13.3 Advantages and disadvantages

Competitive ANNs can be used to discover clusters of natural sites. As an example,
think of clustering aquatic sites on the basis of environmental characteristics (width,
pH) and biotic data (e.g.  abundance of benthic fauna). Once a satisfactory clustering
has been achieved, an LVQ can then be trained to learn the features of the different
clusters from only a subset of the input variables, for example from only variables
that are easy to measure. Then future observations could be assigned to one of the
clusters using this LVQ  network, that is, using only easy-to-measure variables.
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DYNAMIC MODELS

14 Structurally Dynamic Models (Sven Jørgensen)

14.1 Introduction

If we follow the general modeling procedure for dynamic bio-geo-chemical models,
we will attain a model that describes the processes in the focal ecosystem, but the
parameters will represent the properties of the state variables as they are in the
ecosystem during the examination period. They are not necessarily valid for another
period, because its known that an ecosystem can regulate, modify and change them,
if needed as response to the change in the prevailing conditions, determined by the
forcing functions and the interrelations between the state variables. It is necessary,
however, to introduce parameters (properties) that can change according to changing
forcing functions and general conditions for the state variables (components) to
optimize continuously the ability of the system to move away from thermodynamic
equilibrium. So, it is hypothesized that adaptations and shifts in species composition
can be accounted for in a model by a current change of parameters according to an
ecological goal function. The idea is currently to test if a change of the most crucial
parameters produces a higher goal function of the system and, if that is the case, to
use that set of parameters.
The type of models that can account for the change in species composition as well as
for the ability of the species to change their properties, that is to adapt to the
prevailing conditions imposed on the species, are sometimes called structurally
dynamic models.
It could be argued that the ability of ecosystems to replace present species with other
better fitted species, can be considered by construction of models that encompass all
actual species for the entire period that the model attempts to cover. This approach
has, however, two essential disadvantages. The model becomes first of all very
complex, as it will contain many state variables for each trophic level. It implies that the
model will contain many more parameters that have to be calibrated and validated
and this will introduce a high uncertainty to the model and will render the application
of the model very case specific. In addition, the model will still be rigid and not give
the model the property of the ecosystems of having continuously changing
parameters even without changing the species composition.
Changes of the structure can be described by the introduction of a goal function.
Exergy is used as a goal function as it describe the distance of the ecosystem
(described by the model) from thermodynamic equilibrium = the sum of biomass
and information. Figure 14.1 shows how exergy calculations are used to examine
currently the properties of the species that are best survivors under the currently
changed conditions. With a selected frequency it is examined whether the exergy of
the model could be greater by a 10% change of the parameters = the properties of
the organisms
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included in the model. If that is the case the properties are changed accordingly.
When the change is limited to 10% and a certain selected frequency for instance once
a week, it is because the structurally dynamic changes require a certain time,
determined by the rate of the biological processes.
It is to a certain extent possible to relate the properties to the size, which is beneficial
because that facilitates the optimisation of the goal function, as only a few
parameters, for instance the average size of the three trophic layers, have to be varied
when the optimum has to be determined.
Structurally dynamic models have been applied in 11 cases (Jørgensen, 1997, and
Jørgensen and Fath, 2001). It was used to explain the failure and success of
biomanipulation (Jørgensen and de Bernardi, 1998) and the intermediate disturbance
hypothesis (Jørgensen and Padisak, 1997) to mention a few important case studies. In
addition has been used to explain succession of phytoplankton species (Jørgensen
and Padisak, 1997) and actually observed structural changes in several other cases,
resulting from changes in the forcing function of the focal ecosystem.

14.2 Structurally dynamic models

Several goal functions have been proposed as shown in table 14.1, but only very few
models, that account for change in species composition or for the ability of the
species to change their properties within some limits, have been developed. Bossel
(1992) uses what he calls six basic orientors or requirements to develop a system
model, which can describe the system performance properly. The six orientors are:
1. Existence. The system environment must not exhibit any conditions, which may

move the state variables out of its safe range.
2. Efficiency. The exergy gained from the environment should exceed over time the

exergy expenditure.
3. Freedom of action. The system reacts to the inputs (forcing functions) with a certain

variability.
4. Security. The system has to cope with the different threats to its security

requirement with appropriate but different measures. These measures either aim
at internal changes in the system itself or at particular changes in the forcing
functions (external environment).

5. Adaptability. If a system cannot escape the threatening influences of its
environment, the one remaining possibility consists in changing the system itself
to cope better with the environmental impacts.

6. Consideration of other systems. A system must respond to the behavior of other
systems. The fact that these other systems may be of importance to a particular
system may have to be considered with this requirement.

Bossel (1992) applies maximization of a benefit or satisfaction index based upon
balancing weighted surplus orientor satisfactions on a common satisfaction scale. The
approach is used to select the model structure of continuous dynamic systems and is
able to account for the ecological structural properties.. The approach seems very
promising, but has unfortunately not been applied to ecological systems except in
three cases.
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Table 14.1 Goal functions proposed.
Proposed for Objective function Reference
Several systems Maximum useful power or

energy flow
Lotka (1924), Odum and
Pinkerton (1955)

Several systems Minimum entropy Glansdorff and Prigogine (1971)
Networks Maximum ascendency Ulanowicz (1980)
Several systems Maximum exergy Mejer and Jørgensen (1979)
Ecological systems Maximum persistent organic

matter
Whittaker and Woodwell
(1971)O’Neill et al. (1975)

Ecological systems Maximum biomass Margalef (1968), Straskraba
(1979)

Economic systems Maximum profit Various authors

Straskraba (1979) uses a maximization of biomass as the governing principle (table
14.1). The model computes the biomass and adjusts one or more selected parameters
to achieve the maximum biomass at every instance. The model has a routine that
computes the biomass for all possible combinations of parameters within a given
realistic range. The combination that gives the maximum biomass is selected for the
next time step and so on.
Exergy has been used most widely as a goal function in ecological models, and a few
of the available case studies will be presented and discussed below in this paragraph.
Exergy has two pronounced advantages as goal function compared with entropy and
maximum power (table 14.1): It is defined far from thermodynamic equilibrium and
it is related to the state variables, which are easily determined or measured. As exergy
is not a generally used thermodynamic function, we need, however, first to present
this concept.
Exergy expresses energy with a built-in measure of quality like energy.  Exergy
accounts natural resources (Eriksson et al., 1976) and can be considered as fuel for
any system that converts energy and matter in a metabolic process (Schrödinger
1944). Ecosystems consume energy, and an exergy flow through the system is
necessary to keep the system functioning. Exergy measures the distance from the
“inorganic soup” in energy terms, as  will be further explained below.
Exergy, Ex, is defined by the following equation:

Ex = To * NE  =  To *  I =  To * (Seq -   S) (1)
in which To is the temperature of the environment, I is the thermodynamic
information, defined as NE, NE is the negentropy of system, i.e., = (Seq -   S) = the
difference between the entropy for the system at thermodynamic equilibrium and the
entropy at the present state.
It can be shown (Evans, 1969) that exergy differences can be reduced to differences
of other, better known, thermodynamic potentials, which may facilitate the
computations of exergy in some relevant cases.
As can be seen the exergy of the system measures the contrast - it is the difference in
free energy if there is no difference in pressure, as may be assumed for an ecosystem
- against the surrounding environment. If the system is in equilibrium with the
surrounding environment the exergy is zero.
Since the only way to move systems away from equilibrium is to perform work on
them, and since the available work in a system is a measure of the ability, we have to
distinguish between the system and its environment or thermodynamic equilibrium
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alias the inorganic soup. Therefore it is reasonable to use the available work, i.e., the
exergy, as a measure of the distance from thermodynamic equilibrium.
Let us turn to the translation of Darwin's theory into thermodynamics, applying exergy
as the basic concept. Survival implies maintenance of the biomass, and growth means
increase of biomass. It costs exergy to construct biomass and biomass therefore
possesses exergy, which is transferable to support other exergy (energy) processes.
Survival and growth can therefore be measured by use of the thermodynamic
concept exergy, which may be understood as the free energy relative to the environment; see
equations 1.
Darwin`s theory may therefore be reformulated in thermodynamic terms as follows:
The prevailing conditions of an ecosystem steadily change and the system will
continuously select the species and thereby the processes that can contribute
most to the maintenance or even growth of the exergy of the system.
Ecosystems are open systems, and receive an inflow of solar energy. It carries low
entropy, while the radiation from the ecosystem carries high entropy.
If the power of the solar radiation is W and the average temperature of the system is
T1, then the exergy gain per unit of time, ∆Ex is (Erikson et al. 1976):

∆Ex = T1* W (1/T0  -  1/T2) (2)
where T0 is the temperature of the environment and T2 is the temperature of the sun.
This exergy flow can be used to construct and maintain structure far away from
equilibrium.

Figure 14.1 Exergy  response to increased and decreased nutrient concentration.

Notice that the thermodynamic translation of Darwin’s theory requires that
populations have the  properties of reproduction, inheritance and variation. The
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selection of the species that contribute most to the exergy of the system under the
prevailing conditions requires that there are enough individuals with different
properties that a selection can take place - it means that the reproduction and the
variation must be high and that once a change has taken place due to better fitness it
can be conveyed to the next generation.
Notice also that the change in exergy is not necessarily ≥0, it depends on the changes
of the resources of the ecosystem. The proposition claims, however, that the
ecosystem attempts to reach the highest possible exergy level under the given
circumstances and with the available genetic pool ready for this attempt (Jørgensen
and Mejer, 1977 and 1979). Compare figure 14.1, where the reactions of exergy for a
lake ecosystem to an increase and a decrease in nutrient concentrations are shown. It
is not possible to measure exergy directly - but it is possible to compute it, if the
composition of the ecosystem is known. Mejer and Jørgensen (1979) have shown by
the use of thermodynamics that the following equation is valid for the components
of an ecosystem:

          i=n
Ex = ∑ RT  (Ci * ln  (Ci/Ceq,i ) - (Ci - Ceq,i)) (3)
          i=1

 where R is the gas constant, T the temperature of the environment (Kelvin), while Ci

represents the i`th component expressed in a suitable unit, e.g., for phytoplankton in
a lake Ci could be milligrams  of a focal nutrient in the phytoplankton per liter of lake
water, Ceq,i is the concentration of the i`th component at thermodynamic equilibrium,
which can be found in Morowitz (1968) and n is the number of components. Ceq,i is,
of course, a very small concentration  of organic components, corresponding to the
probability of forming a complex organic compound in an inorganic soup (at
thermodynamic equilibrium). Morowitz (1968) has calculated this probability and
found that for proteins, carbohydrates and fats the concentration is about 10-86 µg/l,
which may be used as the concentration at thermodynamic equilibrium.
The idea of the new generation of models presented here is to find continuously a
new set of parameters (limited for practical reasons to the most crucial, i.e., sensitive
parameters) that is better fitted for the prevailing conditions of the ecosystem.
“Fitted” is defined in the Darwinian sense by the ability of the species to survive and
grow, which may be measured by the use of exergy (see Jørgensen, 1982a, 1986,
1988a and 1990a, Jørgensen and Mejer, 1977 and 1979 and Mejer and Jørgensen,
1979). Figure 14.2 shows the proposed modeling procedure, which has been applied
in the cases presented below.
Exergy has previously been tested as a “goal function” for ecosystem development;
see for instance Jørgensen (1986), Jørgensen and Mejer (1979) and Herendeen
(1989). However in all these cases the model applied did not include the “elasticity”
of the system, obtained by use of variable parameters, and therefore the models did
not reflect real ecosystem properties. A realistic test of the exergy principle would
require the application of variable  parameters.
Exergy is defined as the work the system can perform when it is brought into
equilibrium with the environment or another well-defined reference state. If we
presume a reference environment for a system at thermodynamic equilibrium,
meaning that all the components are: (1) inorganic, (2) at the highest possible
oxidation state signifying that all free energy has been utilized to do work, and (3)
homogeneously distributed in the system, meaning no gradients, then exergy



70 Alterra-rapport 517

becomes an expression for the biomass (physical structure) and the information
(embodied in the compex biochemical composition of the cells, determiend by the
genes. Temperature and pressure differences between systems and their reference
environments are anyhow small contribution to the overall exergy and for present
purposes can be ignored.
The idea is therefore to compute an exergy index based entirely on chemical energy:
∑i(µc – µc,o)Ni, where i is the number of exergy-contributing compounds, c, and µc
is the chemical potential relative to that at a reference inorganic state, µc,o. Our
(chemical) exergy index for a system will be taken with reference to the same system
at the same temperature and pressure, but in the form of  an inorganic soup without
life, biological structure, information, or organic molecules.
As (µc – µco) can be found from the definition of the chemical potential, replacing
activities by concentrations we obtain the following expression for chemical exergy:

    n
Ex = RT ∑ ci ln ci / ci,eq. [ML2T-2] (4)

  i=0



Alterra-rapport 517 71

Figure 14.2 The procedure used for the development of structurally dynamic models.

Select parameters based upon literature
studies and according to species

composition

Select most crucial parameters, symbolized
by parameter vector P

Test after time step t  all combinations of
all the selected parameters +/- x%, y% etc
i.e. at least three leves for each parameter.
The total number of combinations to be e-
xamined is ln, where l is the number of le-
vels and n is the number of parameters in
the parameter vector P. The combination
giving the highest exergy is used for the
simulation during the considered time step

Test after time step n*t all combinations of
the selected parameters +/- x%, y% etc.
The combination giving the highest exergy
is used for the simulation duringe the con-
sidered time step
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R is the gas constant, T is the temperature of the environment and system (Figure
14.4), ci is the concentration of the i’th component expressed in suitable units, ci,eq
is the concentration of the i’th component at thermodynamic equilibrium, and n is
the number of components.  The quantity ci,eq represents a very small, but nonzero,
concentration  (except for i = 0, which is considered to cover the inorganic
compounds), corresponding to a very low probability of forming complex organic
compounds spontaneously in an inorganic soup at thermodynamic equilibrium.
It can be shown  (Jørgensen, 1997), that an ecologically useful exergy index can be
computed based on concentrations of chemical components, ci, multiplied by
weighting factors, βi, reflecting the exergy contents of the various components due to
their chemical energy and the information embodied in DNA:

          n
Ex = ∑ βici. (5)
       i = 0

Values for βi based on detritus exergy equivalents are available for a number of
different species and taxonomic groups. The unit, detritus exergy equivalents
expressed in g/l, can be converted to kJ/l by multiplication by 18.7, which
corresponds approximately to the average energy content of 1 g detritus (Morowitz,
1968).  The index i = 0 for constituents covers inorganic components, but in most
cases these will be neglected as contributions from detritus and living biota are much
higher due to extremely low concentrations of these components in the reference
system. Our exergy index therefore accounts for the chemical energy in organic
matter plus the information embodied in living organisms.  It is measured from the
extremely small probabilities of forming living components spontaneously from
inorganic matter. The weighting factors, βi, - see table 14.2 - may be considered as
quality factors reflecting the extent to which different taxa contribute to overall
exergy.
Based on numbers of information genes and the exergy content of organic matter
in the various organisms, compared with the exergy content of detritus (about 18
kJ/g).Further detail see Jørgensen (1997).
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Table 14.2 Approximate numbers of non-repetitive genes.
Number of
Organisms information genes Conversion factor*
_____________________________________________________________
Detritus (reference) 0 1
Minimal cells 470 2.7
Bacteria 600 3.0
Algae 850 3.9
Yeast 2000 6.4
Fungi 3000 10.2
Sponges 9000 30
Molds 9500 32
Trees 10000–30000 30–87
Jellyfish 10000 30
Worms 10500 35
Insects 10000–15000 30–46
Zooplankton 10000–15000 30–46
Fishes 100000–120000 300–370
Amphibians 120000 370
Birds 120000 390
Reptiles 130000 400
Mammals 140000 430
Humans 250000 740
_____________________________________________________________
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APPLICATIONS

15 Use of models in the PAEQANN project

15.1 Classical statistical models in PAEQANN

15.1.1 GLM, GAM and CART

The complexity of the ecological systems often results in complex relations between
the variables, justifying the uses of multiple modelling techniques. PAEQANN,
amongst others, aims to apply three statistical techniques: GLM (Generalised Linear
Models), GAM (Generalised Additive Models) and CART (Classification And
Regression Tree) methods. The three models (GLM, GAM and CART) will be used
to predict and to explain the community structures. The predictive powers and the
roles of explanatory variables will be studied.

15.1.2 Bayesian Models

The Bayesian models will be developed whereby three types of input data will be
used: a species matrix, an environmental variables matrix and a so called z-matrix.
The latter is composed of autecological knowledge of the experts. This knowledge is
added to learn the model.

15.2 Artificial Neural Networks in PAEQANN

15.2.1 MultiLayer Perceptrons

Most of the neural networks that will be used in the PAEQANN project to develop
predictive models will be MultiLayer Perceptrons (MLPs). These ANNs are by far
the most commonly used, not only in ecological applications but also in many
different fields. They are usually trained by means of the error back-propagation
training algorithm, that at first was presented by Webos (1974), then independently
developed by Parker (1982), and finally presented to a wider readership by Rumelhart
et al. (1986). When properly trained, these ANNs are able to approximate virtually
every multivariable function, provided that enough data are available for their
training and that the ANN structure is adequate (Hornik et al., 1989).
Even though more efficient training algorithms are available, the theoretical benefits
of those algorithms are usually not relevant as far as ecological applications are
concerned. In fact, the accuracy of the results that can be obtained in ecological
applications of ANNs is usually limited by the amount of the available data and by



76 Alterra-rapport 517

their quality: ecological variables are usually expensive, time-consuming and difficult
to measure and they are often affected by large sampling and measurement errors.
Therefore, the selection of the training algorithm or the fine tuning of the training
parameters are usually less relevant in comparison to other kind of applications,
where data are more abundant and reliable.

15.2.2 Sensitivity analysis

On the other hand, ecologists want to understand the functioning of the models as
well as the role the predictive variables play. ANNs are usually regarded as “black
box” models, unable to provide information about the relative importance of the
various predictive variables on the dependent variables. Even if the intrinsic
predictive power of a variable (i.e. the role it plays in the underlying ecological
processes) is a very important feature that should be taken into account in the design
phase of a model, it is also necessary to evaluate the way predictive variables affect
the behaviour of the models. Therefore, several authors focused on the analysis of
the sensitivity of ANN with respect to the in- and output. Many of these authors
have used sensitivity analysis methods by determining those input variables;

 that contribute to the predictive power (El-Keib & Ma, 1995; Engelbrecht et al.,
1995; Guo & Uhrig, 1992; Hsu et al., 1995; Kim et al., 2000; Liong et al., 2000a;
Liong et al., 2000b; Maier & Dandy, 1998; van Wijk & Bouten, 1999; Yao et al.,
1998; Zurada et al., 1994),

 that contribute to the underlying causal relationships (Balls et al., 1996; Cai et al.,
1999; Chow & Yee, 1991; Dimopoulos et al., 1999; Dimopoulos et al., 1995;
Garson, 1991; Goh, 1995; Hammitt & Bartlett, 1995; Lek et al., 1996a,b; Ozesmi
& Ozesmi, 1999; Scardi & Harding, 1999; Seginer, 1997; Sung, 1998; Viktor et al.,
1995; Yao et al., 1998),

Different methods are available, e.g.;
 The stepwise method; a frequently used method which adds or rejects an input

variable and in each step evaluates the output results (Maier et al., 1998; Sung,
1998) by ranking the most significant input variables according to their effect on
the output.

 Methods with which the connection weights of the input variables are partitioned
(Garson, 1991; Goh, 1995).

 The method of varying one input variable while keeping the others constant (Lek
et al., 1996a; Lek et al., 1996b; Ozesmi & Ozesmi, 1999). With this method
response profiles are obtained that summarise the effect of each predictive
variable (i.e. of each input variable) on the output.

 Methods based on random perturbation of each input variable and analysing the
effect on the output (Scardi & Harding, 1999).

 Methods based on partial derivatives computation (Dimopoulos et al., 1995,1999;
Engelbrecht et al., 1995; Zurada et al., 1994), which classifies the input variables
and indicates how each input variable affects the output.

In PAEQANN project some of the sensitivity analysis methods will be applied to
study the contribution of the available environmental parameters on the different
studied species.
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15.2.3 Self-Organizing Maps

In ecological applications, like in the PAEQANN project, SOMs enable both the
visualisation of the sample units and the visualisation of species abundances. Thus,
they provide a visual way to detect structures in ecological communities and can be
recommended for exploratory approaches in which unexpected structures might be
found. The SOM algorithm seems fully usable in ecology; it can perfectly
complement classical techniques for exploring data and for achieving community
ordination. A promising approach may be to combine SOM with other neural
techniques. For instance:

 learning vector quantification is a supervised extension of the Kohonen
algorithm and can be used for classification problems or to add some data after
the training of the SOM (Kohonen, 2000);

 supervised learning combined with SOM can be applied to a Radial Basis
Function network (Shwenker et al., 2000);

 fuzzy logic may provide a new view over the ability of the SOM (Baraldi &
Parmiggiani, 1997).

15.2.4 Artificial Neural Networks Backpropagation

ANNbp will be used principally to forecast some questions in the PAEQANN
project. Actually, in our project we try to predict the community structure of
European freshwater using environmental features. Firstly, the prediction of species
richness or of groups would be obtained. The association of different method then
would be used to reach our goals.

15.2.5 Counterpropagation

In ecological modelling, the CPN can be applied from two points of view based on
its structure. First, the possibility of full counterpropagation structure can be
considered. In this case the network has a property of counterflow of information in
both directions. Thus, both input and output variables can be predicted. Based on
this idea biological attributes can be predicted with environmental variables, and at
the same time also environmental variables can be predicted with biological
attributes.
Another possibility is use of a simplified forward-only network. In this network the
characteristics of the network which combines unsupervised and supervised learning
algorithms can be used. Thus, the network can pattern sampling sites, interpret
relationships among environmental variables, biological attributes and sampling sites
as well as relationships among input variables, and can predict biological attribute for
assessment of target ecosystem in a network. So, the CPN can be used as a tool for
assessing ecological status and predicting water quality of target ecosystems.
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15.2.6 Future developments of ANNs

The most promising developments in ANN applications to ecological modelling will
be certainly related to hybridisation with other modelling paradigms (Recknagel &
Lek, in press; See & Openshaw, 2000). As some preliminary results pointed out,
fuzzy neural networks (Kosko, 1992) as well as cellular neural networks (Wolfram,
1984) and evolutionary neural networks (Yao & Liu, 1997) will provide new
opportunities to push the limit of the explanatory capacity of ANNs for ecological
applications.
Moreover, ANNs can also be used to merge different models (and data sets) into a
single “metamodel” (Scardi et al., in press) or, from an opposite perspective, as a
basis for rule extraction algorithms (e.g. Andrews et al., 1995).
In most papers dealing with ANN applications, sufficient details about ANN theory
are usually provided, as well as information about the case study considered and the
results obtained, but the modelling process (e.g. preliminary data analysis and pre-
processing) is generally described poorly (Maier & Dandy, 2000). Moreover, in order
to achieve significant advances in ANN applications, ANNs should be regarded as
alternatives to more traditional approaches rather than as “…a remedy for all existing
computational failings” (Flood & Kartam, 1994).

15.3 Structurally dynamic models in PAEQANN

This model type could probably work together with ANN as an overlying rule, that
could make ANNs more causal and maybe also increase the accuracy of ANN based
models. Structurally dynamic models are based upon a description of the processes
that are important for the model objectives. The change in structure is based on a
current test of the best survivors, i.e., the species that have the properties that give
most growth for the entire ecosystem under the prevailing conditions. This type of
model is therefore based to a high extent on causality opposite ANN, which in its
basic form is a black box model.
The use of exergy calculations to vary continuously the parameters has only been
used successfully in eleven cases of ecological modelling: 1-2) two shallow lakes in
Denmark, 3) The Lagoon of Venice, Italy, 4) Roskilde Fjord (Denmark), 5) Mondego
Estuary (Portugal), 6-7) two population dynamic models, 8) Lake Annone, Italy, 9)
Lake Balaton, Hungary, 10) to explain the success and failure of biomanipulation, 11)
to explain the selection of Darwin Finches. In all the cases a model was calibrated in
accordance with the normal procedure and the validation was carried out successfully
by the application of the structurally dynamic approach, including a validation of the
observed structural changes.
Structurally dynamic changes take however also place during the calibration period,
for instance succession in lakes of phytoplankton and zooplankton species. It has
therefore been decided to test in the PAEQANN project the structurally dynamic
approach in the calibration of models of lakes. Two case studies have been tested,
Lake Glumsø in Denmark and Lake Mogan in Turkey, where good data were
available. The two cases were successfully terminated in December 01 and two
papers have been submitted to Ecological Modelling.  The two cases show clearly
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that the calibration is improved considerably by use of the structurally dynamic
approach. The idea is to transfer this calibration method to the use of ANN that will
take place during the spring 02.
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