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Chapter 1

General introduction

Natural variation and quantitative traits

For most organisms variation between individuals can be observed in nature.
Plants are no exception to this and naturally occurring variation can be observed
between and within species. Although part of the within-species variation
observed in nature can be attributed to environmental influences, genetic variation
can be observed when plants of different origins are grown together in the same
environment (Nordborg ef al., 2005). The contribution of genetic factors to the
totally observed variation between different genotypes is often expressed as the
heritability of a trait.

Natural variation exhibited by genotypically different accessions can be
classified as qualitative or quantitative. Qualitative traits are characterized by
distinct phenotypic classes, e.g. presence or absence of a property, often a result
from genetic differences at single genes. Such traits can relatively easily be
dissected genetically due to their clear segregation pattern in the progeny of
crosses. Quantitative traits on the other hand, often display a more continuous
variation in phenotypes due to a multiplicity of genes involved and a relatively
large effect of environmental factors on the expression of the trait. Because
different genes can contribute positively or negatively to a quantifiable trait,
recombination of genes results in a large number of phenotypic classes which can
not unambiguously be associated with genotypic classes (Kearsey et al., 2003;
Weigel and Nordborg, 2005; Holland, 2007). The complexity of quantitative traits is
further enhanced by the presence of epistatic interactions and interactions between
genes and the environment (Carlborg and Haley, 2004; Kroymann and Mitchell-
Olds, 2005).

Although much more difficult to dissect, quantitative variation is found for
many agronomical important traits like biomass formation, plant height, flowering
time, reproductive yield and seed dormancy (Koornneef ef al., 2004; Ross-Ibarra,
2005; Ashikari and Matsuoka, 2006; Semel et al.,, 2006; Zhao et al., 2006).
Furthermore, quantitative natural variation controls adaptive strategies to cope
with biotic and abiotic influences and its understanding can provide insight in
ecological mechanisms and the evolutionary history of plants (Tonsor et al., 2005;
Mitchell-Olds and Schmitt, 2006).



Chapter 1

Arabidopsis thaliana as a model plant

The study of quantitative traits is often contrasted with the analysis of qualitative
traits, which are mostly represented by single gene mutants or single gene natural
variants. For the study of such single genes Arabidopsis thaliana has proven to be a
very efficient model plant because of a number of biological properties that make
genetic analyses very efficient (Somerville and Koornneef, 2002). Although it is
self-fertilizing it can easily be out-crossed and it combines short generation times
with high reproductive yield. Moreover, it contains a fully sequenced small
genome (120 Mbp) made up of only five chromosomes and approximately 30,000
genes (The Arabidopsis Genome Initiative, 2000). The accumulation of knowledge,
biological resources and available molecular tools adds up to the attractiveness of
Arabidopsis as a model system (Alonso and Ecker, 2006).

These advantages also make Arabidopsis very suitable for the genetic
analysis of natural variation. The plant shows a broad global distribution
throughout the northern hemisphere at different continents, including America,
Africa, Europe and Asia (Schmid et al., 2006). Moreover it is found at different
latitudes and altitudes ranging from Scandinavian sea level to high up in the Asian
Himalayas. At many locations, accessions or ecotypes, have been collected
displaying a broad spectrum of natural variation for numerous traits (Alonso-
Blanco and Koornneef, 2000; Koornneef et al., 2004). Many of those accessions are
deposited to stock centers making them publicly available for genetic analyses.

Genetic analysis of quantitative traits
Despite the complexity in genetic regulation of quantitative traits much progress
has been made over the past decades in dissecting these traits by the use of
molecular markers. The increasing ease by which molecular markers can be
generated (Borevitz and Chory, 2004) in combination with the application of
sophisticated mapping methods (Jansen, 1993) has led to a strong interest in the
use of natural variation for studying quantitative traits (Slate, 2005). Mutant
screens, often directed to a specific trait, and the subsequent mapping and cloning
of the affected gene, have been a very effective strategy to analyze the function of
genes in Arabidopsis (Meinke et al., 2003). However, specific advantages are
associated with the study of multiple natural perturbations in the same mapping
population. This allows for the analysis of an almost infinite number of traits
(Doerge, 2002). For this type of study so-called immortal mapping populations,
consisting in most cases of homozygous genotypes that can be tested in replicates
and in different experiments, have proven very useful.

Although various types of such mapping populations have been
developed for a variety of species (Eshed and Zamir, 1995; Rae et al., 1999; Yoon et
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al., 2006), the relative ease of generating recombinant inbred lines (RILs) has led to
their favorable use for quantitative trait locus (QTL) analysis in Arabidopsis and
many other plants (Jansen, 2003b). RILs are produced by crossing two distinct
genotypes and using single seed descent propagation of the inbred lines obtained
by selfing a random set of Fz individuals. While the accuracy of QTL mapping
depends on statistical factors such as the size of the mapping population, it has
been shown to be quite accurate in many cases (Price, 2006). However, there is
often still a need for confirmation and further fine mapping (Paran and Zamir,
2003; Weigel and Nordborg, 2005). For these aspects, which are the basis of the
cloning of genes underlying QTLs, near isogenic lines (NILs) are often used to
isolate a QTL. A set of NILs consists of lines with identical genetic background but
differing in genotype at the position of a limited number of loci. NILs are generally
constructed by introgressing a donor accession into the genetic background of
another accession by crossing and repeated back-crossing with the recurrent
accession. NILs allow studying the effect of Mendelized QTLs and can refine the
position of a QTL by varying position and size of introgressions.

Despite the fact that RIL populations have been developed for an
increasing number of different genotypes the development of NILs has lagged
behind. Upon the detection of a QTL, NILs are often not available for the
confirmation and finemapping of those QTLs. Valuable time is often lost in
developing NILs before the necessary follow-up experiments can be continued.
The Landsberg erecta (Ler) x Cape Verde Islands (Cvi) RIL population (Alonso-
Blanco et al., 1998b) is one of the most frequently used populations in quantitative
genetics and several NILs have been developed at distinct loci for these genotypes
(Alonso-Blanco et al., 1998a; Swarup et al., 1999; Alonso-Blanco et al., 2003; Bentsink
et al., 2003; Edwards et al., 2005; Juenger et al., 2005; Teng et al., 2005). However,
most of these NILs were developed after the detection of QTLs in the RIL
population and these studies could have benefited much from the direct
availability of NILs. To increase the efficiency from the mapping of quantitative
traits to the actual cloning of the causal genes it would therefore be advantageous
to have a NIL at every possible genomic location at one’s disposal. Moreover,
collections of NILs with genome-wide coverage can serve as mapping populations,
which differ in effectiveness from RILs, mainly because the complexity of epistasis
is strongly reduced (Eshed and Zamir, 1995).

Genetical genomics: variation in genome sequence and expression

In Arabidopsis as well as in other species, genome-wide analyses of genomic
polymorphisms in a large collection of accessions have revealed extensive
sequence variation (Borevitz ef al., 2003; Han and Xue, 2003; Schmid et al., 2003;
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Nordborg et al., 2005; Vigouroux et al., 2005). Polymorphisms, when converted to
molecular markers, are indispensable for (fine) mapping of quantitative traits in
experimental populations. When surveyed in natural populations at high density,
polymorphisms even enable high resolution mapping through linkage
disequilibrium (Remington et al., 2001; Nordborg ef al., 2002; Aranzana et al., 2005;
Kim et al., 2006). The best marker, however, is the polymorphism causal for the
observed variation. By definition natural genetic variation is a result of genomic
differences and therefore the extent of variation in quantitative traits is largely
dependent on the level of DNA sequence variation. Although many of the
polymorphisms will be neutral, it leaves little doubt that the study of quantitative
traits can benefit enormously from genomic analyses (Borevitz and Nordborg,
2003; Maloof, 2003; Gilad and Borevitz, 2006). Non-synonymous polymorphisms in
coding sequences of genes might alter protein function or stability, introducing
phenotypic variation. Polymorphisms in regulatory sequences on the other hand
might result in differences in transcriptional efficiency of genes. It is conceivable
that expression differences, or variation in mRNA stability caused by coding
sequence polymorphisms, contribute heavily to natural variation in Arabidopsis
(Chen et al., 2005). Given the extensive variation in phenotype and genomic
sequence within Arabidopsis, it is therefore not surprising that for many genes
expression differences can be observed between accessions (Vuylsteke et al., 2005;
Kliebenstein et al., 2006a; West et al., 2006).

The genetic regulation of natural variation in gene expression is
presumably not different from any other ‘classical’ quantitative trait. Therefore,
gene expression can be treated like any other quantitative trait, on which all
statistical tools of quantitative genetics can be applied. However, the effect of this
variation may be reflected at the phenotypic level, thereby explaining the genetic
component of natural phenotypic variation. This combination of linkage analysis
(genetics) and expression profiling (genomics) was coined ‘genetical genomics’
(Jansen and Nap, 2001) and experiments were first reported in yeast (Brem et al.,
2002), soon followed by data of higher eukaryotes (Schadt et al., 2003). Because of
the available high quality mapping populations and the commercially available
genome-wide microarrays, Arabidopsis is ideally suited for these kinds of
analyses. However, upon publication of the first genetical genomics studies no
genome-wide data for Arabidopsis were available yet and only recently a number
of studies in various RIL populations have indicated extensive genetic regulation
of gene expression (DeCook et al., 2006; Vuylsteke et al., 2006; Keurentjes et al.,
2007; West et al., 2007).

Genome-wide expression analysis of fully sequenced genomes, like
Arabidopsis, offers the unique possibility to compare genomic positions of genes
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with the map position(s) of their detected expression QTL(s) (eQTL). Such
comparative analyses reveal either local or distant regulation of gene expression.
Local regulatory variation is observed when genes and their respective eQTLs co-
locate and distant regulatory variation is observed when genes and their respective
eQTLs are positionally separated on the genome (Rockman and Kruglyak, 2006).
Local regulatory variation is often a result of polymorphisms within the gene for
which the eQTL was observed. When such polymorphisms reside in cis-acting
regulatory elements this might affect transcriptional activity. Regulation in cis
could also act post-transcriptionally by altering mRNA stability when
polymorphisms reside in coding sequences of the gene. However, polymorphisms
within the gene itself might also act in frans by altering auto-regulation and
feedback loops. Furthermore, occasionally local regulatory variation might act in
trans due to polymorphisms in a tightly linked gene that regulates the gene for
which the eQTL was detected. To determine whether local regulatory variation
acts in cis or trans further experimentation, like allele specific expression analysis,
is necessary (Ronald et al., 2005; Zhang et al., 2007). Distant regulatory variation
most likely acts in trans when polymorphisms in another gene (e.g. a transcription
factor) affect transcription of the gene for which the distant eQTL was detected.
Nonetheless, other mechanisms of distant regulation, both in cis and trans, are
imaginable (Rockman and Kruglyak, 2006).

Genetic regulation of plant metabolic content

The impact of gene expression variation on quantitative traits is now widely
acknowledged and the use of high throughput genomic analyses has become an
important tool in genetic analyses of natural variation (Gibson and Weir, 2005).
Transcription however, is only a first link in the chain from genotype to phenotype
and successive entities like proteins and metabolites (quality and quantity) are
expected as causal sources for natural phenotypic variation but have been largely
under-exploited. Yet, high-throughput technologies, ie. proteomics and
metabolomics, have shown that much variation is observed upon physiological
perturbation and between genetic variants (Fiehn ef al., 2000; Chevalier et al., 2004).
Moreover, small-scale targeted analyses and subsequent QTL analysis revealed
strong genetic regulation in a number of studies (Kliebenstein et al., 2001; Consoli et
al., 2002).

Analogous to genetical genomics, the combination of high-throughput
proteomics and metabolomics and multifactorial genetic analyses would therefore
allow studying the functional consequences of natural genetic variation at a much
larger scale (Jansen, 2003a). However, full-scale analyses for proteins and
metabolites, equivalent to genome-wide expression analysis, are not available yet.
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This is mainly because proteins and metabolites are much more diverse in their
properties than nucleic acids, making it difficult to extract and analyze all different
classes using a single protocol. Even based on a fully sequenced genome one
cannot predict all protein variants and metabolites that a plant can contain.
Moreover, the dynamic range of protein and metabolite abundance is far greater
than for nucleic acids and no amplification techniques are available for these
entities, making sample volume and detection range (sensitivity vs. saturation)
critical limitations. Nevertheless, several complementing high-throughput
technologies have been developed covering together a large part of the proteome
(Peck, 2005) and metabolome (Ward et al., 2003; Lisec et al., 2006; De Vos et al.,
2007).

The progress made in proteomics and metabolomics now also enables the
large-scale genetic analysis of these entities, which has only recently be
demonstrated for primary metabolites (Schauer et al., 2006). However, variation in
secondary metabolism is probably more extensive and determines much of the
phenotypic variation that can be observed. Plants are especially rich in the number
of secondary metabolites, possibly as a consequence of their sessile nature. Since
plants are unable to move away from biotic and abiotic threats they have adapted
to cope with many environmental influences. In Arabidopsis alone already
hundreds of secondary metabolites representing numerous chemical classes have
been discovered (D'Auria and Gershenzon, 2005). Given the wide global
distribution range of Arabidopsis and the diverge range of sites plants have been
collected, it is conceivable that metabolites play an important role in local
adaptation strategies. It is therefore likely that the high level of natural variation in
Arabidopsis is also reflected in metabolite composition and content (Fiehn, 2002).

A large drawback of metabolomic analyses is the lack of compound
identification. Unlike microarrays, where each signal can be reduced to a specific
gene, most large-scale metabolomic techniques are untargeted. The output of a
metabolic sample analysis typically consists of a complex chromatogram of many,
often anonymous peaks, where compounds can be represented by multiple peaks
depending on adduct formation, fragmentation and isotopes. For genetic analysis
it is essential that chromatograms of different genotypes are qualitatively
comparable. This alignment problem can be solved by adding reference
compounds, standardization and proper alignment software (Lisec et al., 2006; De
Vos et al., 2007). Although each peak represents a specific chemical compound, the
order, retention time and intensity of peaks can differ substantially depending on
analytical differences and sample properties. Such inconsistencies in data output
make it difficult to compare analyses performed in different labs or experiments.
Although some efforts have been made in constructing identification libraries
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(Schauer et al., 2005; Moco et al., 2006; Ward et al., 2007), such libraries do not cover
entirely the still expanding number of detected compounds. Moreover, the
different methodologies applied in various labs make it difficult to implement such
libraries. The scientific community would therefore benefit much from a
commonly adopted standard for metabolomic analyses (Jenkins et al., 2004).

Regulatory network construction

To functionally link the large data sets obtained in ‘omic’ experiments as an order
of events that ultimately result in a specific phenotype, network construction
provides a useful tool. Biological networks describe relationships between
individual components of a biological process (Barabasi and Oltvai, 2004). Such
components can either be genes, proteins, metabolites or a combination thereof.
Depending on the data source, networks can be constructed in various ways but all
of them serve to elucidate the, often complex, regulation of biological processes.

A special type of networks does not rely on experimental data but rather
predicts in silico connections based on genome-wide sequence information. Most
notably are genome-scale metabolic connectivity networks, where metabolites are
connected when the genome contains a gene encoding an enzyme able to catalyze
the conversion of one of the metabolites into the other (Jeong et al., 2000). However,
genetic networks have also been predicted in silico by analyzing regulatory
elements of genes for binding sites of known transcription factors (Palaniswamy et
al., 2006). Although powerful in hypothesis formation such studies require
empirical data for confirmation of predicted pathways and interactions. Therefore,
many approaches for network construction are based on experimental data, which
also allows the identification of relationships unable to be predicted from genomic
information only. Protein-protein interactions for instance, are difficult to deduce
from sequence information but require immuno precipitation or two-hybrid
screens. Similar analyses, like chromatine immuno precipitation (ChIP-chip), can
also be used to identify and confirm transcriptional regulation of target genes by
transcription factors or other known regulators (Lee et al.,, 2002). In yeast, much
progress in regulatory network construction has been made by expression and
metabolic profiling of deletion strains (Forster et al., 2002; Hu et al., 2007) and
genetic interaction analyses of double mutants (synthetic lethals) (Tong et al., 2004).
However, for most higher eukaryotes such genome-wide analyses are not realistic
because of the much higher gene number, the presumably more complex genetic
architecture, and aspects of sub-cellular and tissue specific compartmentation.
Many attempts in regulatory network construction therefore rely on more indirect
approaches of establishing associations between network components.
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A straightforward approach is correlation analysis over a large set of data
compiled from numerous perturbation experiments (de la Fuente et al., 2004).
Exemplary are the widely applied gene co-expression analyses, where correlation
in gene expression patterns is surveyed under a large number of diverse conditions
(Stuart et al., 2003; Gachon et al., 2005). The rationale for this kind of analysis is that
genes participating in the same biological process are often co-regulated and hence
exhibit similar expression patterns. Following the same line of reasoning, metabolic
correlation networks have been constructed (Steuer ef al., 2003). However,
correlation does not necessarily imply functional relatedness nor does it address
causality issues. The reliability of, and information contained in constructed
networks would therefore gain much strength from integrated analyses of
interdisciplinary approaches (Fiehn et al., 2001; Winnacker, 2003). Such integrated
studies can either combine experimental data with in silico analyses (Segal et al.,
2003) or benefit from multi-parallel analyses of diverse biological samples
(Urbanczyk-Wochniak et al., 2003; Hirai et al., 2005; Joosen et al., 2007).

Although demonstrably effective, correlation analyses depend on large
compendia of publicly available data or suffer from the limited number of
physiological conditions that can be analyzed in dedicated experiments. However,
sometimes co-regulation is displayed only in particular conditions (Gachon et al.,
2005) which may even remain undiscovered in large data sets due to dilution
effects. The largest drawback of correlation analyses, however, is that no
information can be retrieved about the nature of the underlying genetic regulation.
Correlation may be a result from co-regulation by a common regulator or due to
independent pathways that occur in parallel, possibly due to developmental or
spatial control. A highly correlated cluster of biological elements, such as genes,
proteins and metabolites, can also result from downstream effects of the regulation
of a single member but no information about cause and consequence can be
extracted from genetic correlations.

Mapping populations combine a high number of genetic perturbations by
which numerous quantitative traits can segregate in a single experiment.
Moreover, genetic analysis offers the unique possibility of identifying genomic loci
causal for observed variation in, and possible correlation between traits. When
applied to genome-wide expression analysis or other large-scale ‘omic’ analyses
this therefore allows the identification of true gene-to-gene or gene-to-function
regulation. Unfortunately, mapping resolution is often not high enough to identify
directly causal genes underlying detected QTLs and will require further analysis
such as fine mapping, the study of overexpressors and mutants of candidate genes,
etc. However, cis-regulated genes are obvious candidates and co-regulated traits
can effectively be identified through co-location of detected QTLs. Still, not all
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coinciding QTLs necessarily represent the same causal gene because effects of
closely linked genes are difficult to distinguish from true pleiotropic effects of a
single gene. Without further experimentation genetic interactions can be predicted
computationally by comparing QTL profiles and correlation analyses (Zhu et al.,
2004; Bing and Hoeschele, 2005; Li et al., 2005; Lan et al., 2006; Fu et al., 2007).
However, the accuracy of constructed networks can benefit tremendously from the
integration of additional information like gene ontology (Kliebenstein ef al., 2006b;
Keurentjes et al., 2007), sequence data (Hitzemann et al., 2003) and related
quantitative trait data (Consoli et al., 2002; Hubner et al., 2005).

Although much progress has been made in the construction of regulatory
networks, any information inferred from such networks should be interpreted with
caution. Where many studies have shown the identification of correct interactions,
most approaches can not exclude the assignment of false positives. Predicted
interactions and regulatory steps should therefore be considered as hypothesis
formation only and confirmation of such relationships should come from
additional experimentation.
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Scope of the thesis

In Arabidopsis natural variation exists for many quantitative traits. The genetic
regulation of quantitative traits can effectively be analyzed in mapping
populations by way of quantitative trait locus (QTL) analyses. This thesis describes
the large-scale genetic analysis of ‘omics’ data and their use in dissecting the
genetic regulation of quantitative traits.

Chapter two describes the development of a near isogenic line (NIL)
population and its use in mapping and fine-mapping of QTLs. NILs are widely
used in the confirmation of QTLs, detected in recombinant inbred line (RIL)
populations. However, when a population of NILs with genome-wide coverage is
available, such a population can also be used for mapping purposes. A genome-
wide NIL population was generated by introgressing genomic regions of an
accession from the Cape Verde Islands (Cvi) into the genetic background of the
commonly used laboratory accession Landsberg erecta (Ler). Mapping power and
resolution of this population was compared with the previously developed Ler x
Cvi RIL population.

Chapter three describes the genome-wide expression analysis of the Ler x
Cvi RIL population. Similar to ‘classical’ quantitative traits, natural variation also
exists for expression levels of many genes. QTL mapping of expression variation
therefore reveals genomic loci controlling the expression of genes. This information
can then be used to construct genetic regulatory networks and help elucidating the
genetic control of many physiological traits.

Chapter four describes the large-scale untargeted metabolomic analyses in
the Ler x Cvi RIL population. Subsequent mapping revealed substantial genetic
control for metabolite composition and content. Identification of anonymous mass
peaks enabled the reconstruction of metabolic pathways and revealed novel
biosynthetic steps.

Chapter five describes the integrated analysis of gene expression, enzyme
activities and metabolite content in primary carbohydrate metabolism. QTL and
correlation analyses identified different modes of control of primary carbohydrate
metabolism, including regulation of structural gene expression and metabolic
control.

Finally, in chapter six, the work described in this thesis is summarized and
discussed.

10
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ABSTRACT

In Arabidopsis Recombinant Inbred Line (RIL) populations are widely used for
Quantitative Trait Locus (QTL) analyses. However, mapping analyses with this
type of populations can be limited because of masking effects of major QTLs and
epistatic interactions of multiple QTLs. An alternative type of immortal
experimental population commonly used in plant species are sets of introgression
lines. Here we introduce the development of a genome-wide coverage Near
Isogenic Line (NIL) population of Arabidopsis thaliana, by introgressing genomic
regions from the Cape Verde Islands (Cvi) accession into the Landsberg erecta (Ler)
genetic background. We have empirically compared the QTL mapping power of
this new population with an already existing RIL population derived from the
same parents. For that, we analyzed and mapped QTLs affecting six
developmental traits with different heritability. Overall, in the NIL population
smaller-effect QTLs than in the RIL population could be detected although the
localization resolution was lower. Furthermore, we estimated the effect of
population size and of the number of replicates on the detection power of QTLs
affecting the developmental traits. In general, population size is more important
than the number of replicates to increase the mapping power of RILs, whereas for
NILs, several replicates are absolutely required. These analyses are expected to
facilitate experimental design for QTL mapping using these two common types of
segregating populations.
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INTRODUCTION

Quantitative traits are characterized by continuous variation. The establishment of
the genetic basis of quantitative traits is commonly referred to as Quantitative Trait
Locus (QTL) mapping, and has been hampered due to their multigenic inheritance
and the often strong interaction with the environment. The principle of QTL
mapping in segregating populations is based on the genotyping of progeny
derived from a cross of distinct genotypes for the trait under study. Phenotypic
values for the quantitative trait are then compared with the molecular marker
genotypes of the progeny to search for particular genomic regions showing
statistical significant associations with the trait variation, which are then called
QTLs (Broman, 2001; Slate, 2005). Over the past few decades, the field has
benefited enormously from the progress made in molecular marker technology.
The ease by which such markers can be developed has enabled the generation of
dense genetic maps and the performance of QTL mapping studies of the most
complex traits (Borevitz and Nordborg, 2003).

QTL analyses make use of the natural variation present within species
(Alonso-Blanco and Koornneef, 2000; Maloof, 2003) and have been successfully
applied to various types of segregating populations. In plants, the use of
‘immortal’ mapping populations consisting of homozygous individuals is
preferred because it allows performing replications and multiple analyses of the
same population. Homozygous populations can be obtained by repeated selfing,
like for Recombinant Inbred Lines (RILs), but also by induced chromosomal
doubling of haploids, such as for Doubled Haploids (DHs) (Han et al., 1997; Rae et
al., 1999; von Korff et al., 2004). Depending on the species one can in principle also
obtain immortality by vegetative propagation, although this is often more
laborious. RILs are advantageous over DHs because of their higher recombination
frequency in the population, resulting from multiple meiotic events occurred
during repeated selfing (Jansen, 2003).

Another type of immortal population consists of Introgression Lines (ILs)
(Eshed and Zamir, 1995), which are obtained through repeated backcrossing and
extensive genotyping. These are also referred to as Near Isogenic Lines (NILs)
(Monforte and Tanksley, 2000) or Backcross Inbred Lines (BILs) (Jeuken and
Lindhout, 2004; Blanco et al., 2006). Such populations consist of lines containing a
single or a small number of genomic introgression fragments from a donor parent
into an otherwise homogeneous genetic background. Although no essential
differences exist between these populations, we use the term Near Isogenic Lines
for the materials described here. A special case of ILs are Chromosomal
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Substitution Strains (CSSs) (Nadeau ef al., 2000; Koumproglou et al., 2002), where
the introgressions span complete chromosomes. All immortal populations except
those which can only be propagated vegetatively, share the advantage that they
can easily be maintained through seeds, which allows the analysis of different
environmental influences and the study of multiple, even invasive or destructive,
traits. Statistical power of such analyses is increased because replicate
measurements of genetically identical individuals can be done.

In plants, RILs and NILs are the most common types of experimental
populations used for the analysis of quantitative traits. In both cases the accuracy
of QTL localization, referred to as mapping resolution, depends on population size.
For RILs, recombination frequency within existing lines is fixed and can therefore
only be increased within the population by adding more lines (ie. more
independent recombination events). Alternatively, recombination frequency can be
increased by intercrossing lines before fixation as homozygous lines by inbreeding
(Zou et al., 2005). In NIL populations resolution can be improved by minimizing
the introgression size of each NIL. Consequently, to maintain genome-wide
coverage a larger number of lines are needed. Despite the similarities between
these two types of mapping populations, large differences exist in the genetic
makeup of the respective individuals and the resulting mapping approach. In
general, recombination frequency in RIL populations is higher than in equally
sized NIL populations, which allows the analysis of less individuals. Each RIL
contains several introgression fragments and, on average, each genomic region is
represented by an equal number of both parental genotypes in the population.
Therefore, replication of individual lines is often not necessary because the effect of
each genomic region on phenotypic traits is tested by comparing the two genotypic
RIL classes (each comprising approximately half the number of lines in the
population). In addition, the multiple introgressions per RIL allow detection of
genetic interactions between loci (epistasis). However, epistasis together with
unequal recombination frequencies throughout the genome and segregation
distortions caused by lethality or reduced fitness of particular genotypes may bias
the power to detect QTLs. Furthermore, the wide variation of morphological and
developmental traits present in most RIL populations may hamper the analysis of
traits requiring the same growth and developmental stage of the individual lines.
When many traits segregate simultaneously, this often affects the expression of
other traits due to genetic interactions. Moreover, large-effect QTLs may mask the
detection of QTLs with a small additive effect.

In contrast to RILs, NILs preferably contain only a single introgression per
line, which increases the power to detect small-effect QTLs. However, the presence
of a single introgression segment does not allow testing for genetic interactions and
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thereby the detection of QTLs expressed in specific genetic backgrounds (epistasis).
In addition, because most of the genetic background is identical for all lines, NILs
show more limited developmental and growth variation, increasing the
homogeneity of growth stage within experiments. Nevertheless, lethality and
sterility might sometimes hinder the obtaining of specific single introgression lines.

The choice of one mapping population over another depends on the plant
species and the specific parents of interest. In cases where different cultivars or
wild accessions are studied preference is often given to RILs. However, when
different species or when wild and cultivated germplasm are combined NILs are
preferred (Eshed and Zamir, 1995; Jeuken and Lindhout, 2004; von Korff et al.,
2004; Blair et al., 2006; Yoon et al., 2006). For instance, in tomato the high sterility in
the offspring of crosses between cultivated and wild species made the use of NIL
populations preferable because genome-wide coverage cannot be obtained with
RIL populations due to sterility etc. (Eshed and Zamir, 1995). Furthermore, the
analysis of agronomical important traits (such as fruit characters) cannot be
performed when many genes conferring reduced fertility segregate. In
Arabidopsis, the easiness to generate fertile RIL populations with complete
genome coverage, due to its fast generation time, has led to their extensive use in
mapping quantitative traits.

NILs have been developed in various studies using Arabidopsis to confirm
and fine map QTLs previously identified in RILs (Alonso-Blanco ef al., 1998a, 2003;
Swarup et al., 1999; Bentsink et al., 2003; Edwards et al., 2005; Juenger et al., 2005a;
Teng et al., 2005) for which also Heterogeneous Inbred Families (HIFs) (Tuinstra et
al., 1997) have been used (Loudet et al., 2005; Reymond et al., 2006). A set of
chromosomal substitutions of the Landsberg erecta (Ler) accession into Columbia
(Col) has been developed to serve as starting material for making smaller
introgressions (Koumproglou et al., 2002). In mice CSSs are widely used for
mapping purposes and have proven to be a valuable complement to other
population types (Stylianou et al., 2006). However, no genome-wide set of Nlls that
allows mapping to subparts of the chromosome has been described in Arabidopsis
and, to our knowledge, no empirical comparative study has been performed
between the two population types within a single species.

In this study we aim to compare a RIL population with a NIL population
in terms of QTL detection power and localization resolution. For that, we
generated a new genome-wide population of NILs using the same Ler and Cvi
parental accessions as used eatlier to generate a RIL population (Alonso-Blanco et
al., 1998b). The two experimental populations were grown simultaneously in the
same experimental setup, including multiple replicates. QTL mapping analyses
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were performed on six different traits and the results of these analyses were
compared in both populations.

RESULTS

Construction of a genome-wide Near Isogenic Line population

We constructed a population of 92 introgression lines carrying between one and
four Cvi introgression fragments in a Ler genetic background. Lines were
genotyped using 349 AFLP and 95 PCR markers to determine the number, position
and size of the introgressions (see Materials and Methods). This set of lines was
selected to provide together an almost complete genome-wide coverage (Figure 1).
Forty lines contained a single introgression while 52 lines carried several Cvi
fragments. From those, 32, 19, and 1 line bore two, three and four introgressions
respectively. The genetic length of the introgression fragments was estimated using
the map positions of the introgressed markers in the genetic map constructed from
the existing RIL population derived from the same Ler and Cvi parental accessions
(Alonso-Blanco et al., 1998b). The average genetic size of the main, second, third,
and fourth introgression fragment was 31.7, 11.1, 6.7, and 5.2 ¢cM respectively.
Thus, lines with multiple Cvi fragments carried a main large introgression and
several much smaller Cvi fragments. Additionally, we selected a core set of 25 lines
that together covered more then 90% of the genome (supplemental Table 1 at
http://www.genetics.org/supplemental/).

Genetic analyses of developmental traits

Six traits were measured and analyzed in the RIL and NIL populations (Table 1).
Although plants were grown in four replicated blocks, block effects were negligible
and was therefore not used as a factor in subsequent analyses. In both populations,
among-genotype variance was highly significant (P < 0.0001) for all traits. In the
RIL population, broad sense heritability estimates ranged from 0.34 (basal branch
number) to 0.92 (total plant length) (Table 1). Statistical parameters of most traits
were similar to those described by Alonso-Blanco ef al. (1998a, 1999) and Juenger et
al. (2005b). However, Ungerer et al. (2002) reported much lower average values for
plant height and branch number although time to flower was similar. Moreover,
among-genotype variance estimates were lower and within-genotype variance
estimates higher resulting in lower heritability values compared to our analyses.
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Development of a Near-Isogenic Line population

Figure 1: Graphical genotype of the Ler x Cvi NIL population.
Bars represent introgressions. Solid bars represent the genetic position of Cvi introgressions in
individual NILs. Shaded bars represent crossover regions between markers used for the genotyping of
the lines. Numbers at the top indicate the five linkage groups.

Table 1: Descriptive statistics for six developmental traits analyzed in two mapping populations and
their parents.

Trait X +(sD) [Vc]? [VE] [H2] [CVg]¢
Parents
FT (days) 24.30 (1.03)¢ 8.74 3.57 0.71 10.85
30.21 (2.47)f
SL (cm) 9.58 (0.98)¢ 3.27 3.14 0.51 15.87
13.21 (2.30)f
TL (cm) 23.59 (1.92)¢ 26.81 10.53 0.72 17.99
33.95 (4.17)f
1B 2.21 (0.46)° 0.02 0.33 0.05 5.53
2.49 (0.67)f
BB 1.54 (0.68)¢ 0.00 0.65 0.00 0.00
1.48 (0.91)f
TB 3.75(0.77)¢ 0.01 0.82 0.01 1.88
3.97 (1.02)f
RIL population
FT (days) 26.06 (6.03) 32.59 3.82 0.90 21.91
SL (cm) 9.89 (3.39) 9.70 1.80 0.83 31.49
TL (cm) 26.13 (9.22) 78.53 6.52 0.92 33.91
1B 2.34 (1.22) 0.99 0.50 0.67 42.66
BB 1.43 (0.93) 0.30 0.57 0.34 37.98
TB 3.77 (1.27) 0.78 0.84 0.48 23.36
NIL population
FT (days) 23.68 (3.60) 10.78 221 0.83 13.87
SL (cm) 9.81 (2.18) 3.17 1.58 0.65 18.15
TL (cm) 24.50 (5.95) 31.24 4.10 0.87 22.82
IB 2.26 (0.88) 0.51 0.27 0.65 31.42
BB 1.56 (0.84) 0.18 0.53 0.24 26.92
TB 3.82 (1.06) 0.48 0.64 0.42 18.25

FT, flowering time; SL, length at first silique; TL, total plant length; IB, main inflorescence branch
number; BB, basal branch number; TB, total branch number. @ Among-genotype variance component
from ANOVA,; tests whether genetic differences exist among genotypes for specified traits (P < 0.0001).

b Residual variance component from ANOVA. ¢ Measure of total phenotypic variance attributable to
genetic differences among genotypes (broad sense heritability) calculated as Vc/(Vc+VE). 4 Coefficient of

genetic variation calculated as (100 x Vg )/ X.e Landsberg erecta parent. f Cape Verde Islands parent.

23



Chapter 2

For the NIL population, mean trait values were closer to those measured
for Ler due to the genetic structure of the population, consisting of lines carrying
only small Cvi introgressions in a Ler background. Furthermore, variance
components from ANOVA were lower in the NIL population but heritability
estimates differed only slightly compared to the RIL population (Table 1).

Strong and similar genetic correlations were observed between traits in the
two Ler x Cvi populations indicating partial genetic co-regulation (Table 2).
Flowering time shows the highest correlation with the number of main
inflorescence branches but is negatively correlated with basal branch number.
Flowering time is also, but to a lesser degree, correlated with plant height.
Correlations were also found between plant height and branching, with again
positive values with the number of main inflorescence branches and negative
correlations with basal branch number. These results contrasted with those from
Ungerer et al. (2002), who found negative correlations between flowering time,
plant height and branching in all pair-wise comparisons, which is probably due to
the different environmental set up in the two laboratories.

Table 2: Genetic correlations among developmental traits analyzed in two mapping populations.

Trait FT SL TL 1B BB TB
FT 0.63" 0.38" 0.97 -0.49" 0.80"
SL 0.39 0.90 0.52" -0.39" 0.35
TL 0.21" 0.88" 0.18" -0.32" 0.00
1B 0.91" 0.31" 0.09" -0.54" 0.95
BB -0.26 -0.28° -0.26" -0.35° 0.12
TB 0.77" 0.15 -0.07 0.85" 0.31"

The top right and the bottom left halves of the table represent values calculated for the RIL and the NIL
populations respectively. FT, flowering time; SL, length at first silique; TL, total plant length; IB, main
inflorescence branch number; BB, basal branch number; TB, total branch number. * Significant at P <
0.001.

Mapping quantitative traits in the Ler x Cvi RIL population

Each trait was subjected to QTL analysis and three to eight QTLs were detected for
each trait (Figure 2, Table 3). Major QTLs for flowering time, plant height and
branching were in concordance with previously reported studies (Alonso-Blanco et
al., 1998a, 1999; Ungerer et al., 2002, 2003; Juenger et al., 2005b), although slight
differences for minor QTLs were also found. Total explained variance for each trait
ranged from 38.5% for basal branch number to 86.3% for total plant height. LOD
scores for the largest-effect QTL ranged from 5.7 for basal branch number up to
60.7 for total plant height with corresponding explained variances of 11.0 and
64.0% respectively. The average genetic length of 2-LOD support intervals was 11.6
cM, ranging from 2.3 (length at first silique) to 33.3 cM (total branch number).
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Table 3: QTLs detected in the RIL population.

LOD support Explained Total Explained  Interactionf
Trait Chra  score interval® (cM) Variancec (%) Effectd Variancee (%) (%)
FT 1 11.9 1.5-9.8" 13.0 -39 68.4 9.6
5 18.9 388.4-394.5° 222 5.7
5 119 408.2-413.7° 13.0 44
SL 1 9.3 0.0-9.3 6.3 -1.7 79.5 15.0
1 4.8 103.1-126.0 3.1 -1.3
2 39.7 173.2-175.5 432 4.5
3 29 234.2-253.6 1.9 1.0
3 5.0 281.5-287.8 3.2 -1.2
5 15.7 387.9-392.4° 11.8 29
5 10.2 403.6-409.7° 7.2 2.0
TL 1 6.5 0.0-9.8 2.8 -3.1 86.3 115
1 5.0 73.9-84.6 21 2.7
1 3.3 116.3-126.0 1.2 -2.3
2 60.7 173.2-176.0 64.0 14.8
3 6.0 207.3-225.7° 2.6 -3.0
4 52 287.8-307.5° 22 -2.7
5 7.8 383.1-392.5" 3.6 41
5 5.1 403.6-411.7 2.2 3.0
IB 1 5.0 0.0-13.5° 53 -0.4 65.0 20.5
2 2.7 154.9-171.0° 2.8 -0.3
5 153 387.0-391.9° 19.7 0.9
5 104 398.8-411.7° 12.3 0.7
5 3.1 472.2-485.3 32 -0.3
BB 1 5.7 72.4-91.0° 11.0 0.4 38.5 3.1
2 3.2 167.0-200.2 6.2 -0.3
4 4.6 360.7-373.5° 9.1 0.4
5 5.5 385.6-406.1" 11.3 -0.5
TB 1 155 5.3-12.4" 16.1 -0.8 71.1 16.2
1 49 81.7-93.8 4.6 0.4
2 9.5 169.0-180.0 9.1 -0.6
5 9.7 386.5-392.4" 9.4 0.6
5 10.9 403.3-412.2 10.8 0.7
5 52 472.2-485.3 4.7 -0.4

FT, flowering time; SL, length at first silique; TL, total plant length; IB, main inflorescence branch
number; BB, basal branch number; TB, total branch number. @ Chromosome number. » 2-LOD support
interval. ¢ Percentage of total variation explained by individual QTLs. 4 Effect of QTLs calculated as ps-
pa, where A and B are RILs carrying Ler and Cvi genotypes at the QTL positions, respectively. us and
pa were estimated by MapQTL® Effects are given in days (flowering time), centimeters (length at first
silique and total length) or numbers (elongated axils, basal branch number and total branch number). ¢
Percentage of total variance explained by genetic factors estimated by MapQTL®. { Percentage of total
variation explained by interaction between individual QTLs. * QTLs showing significant epistatic
interactions (P < 0.05) and used to estimate the percentage of explained variance by genetic interactions.
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Development of a Near-Isogenic Line population

Figure 2: Genome-wide QTL profiles of traits analyzed in the RIL population.

(A) Flowering time, (B) Length at first silique, (C) Total plant length, (D) Number of main inflorescence
branches, (E) Basal branch number and (F) Total branch number. Solid lines represent the QTL effect
calculated as described in Materials and Methods. Shaded lines represent LOD scores. Shaded dashed
lines represent genome-wide significance threshold levels for LOD scores determined by permutation
testing.

Opposing effect QTLs were found for all traits, explaining the observed
transgressive segregation within the population (data not shown). Genetic
interaction among the detected QTLs was also tested. The proportion of variance
explained by epistatic interactions ranged from 3.1 (basal branch number) to 20.5%
(number of main inflorescence branches) and involved two to five of the detected
QTLs (Table 3). Using a complete pairwise search of all markers (Chase et al., 1997),
a number of additional interactions were detected between loci not co-locating
with major QTL positions (supplemental Figure 1 at http://www.genetics.org/
supplemental/).

The smallest significant absolute effect detected was 4.4 days for flowering
time, 1.0 and 2.3 cm for length at first silique and total plant length, respectively,
and 0.3, 0.3, and 0.4 for the number of main inflorescence branches, basal branch
number and total branch number, respectively. Relative effects, expressed as the
fold difference between genotypes, calculated as (Ius-pal+pa)/pa, then equaled
1.15-, 1.09-, 1.09-, 1.13-, 1.59-, and 1.10-fold, respectively (Tables 3 and 5). As
expected, the total explained variance of a trait correlated positively with the
smallest significantly detectable effect for that particular trait. In general, smaller
effects could be detected with increasing total explained variance. When the
chromosome-wide threshold for significance was used instead of the genome-wide
threshold, one additional suggestive QTL was detected for main inflorescence
branch number and total branch number and two for length at first silique.

Mapping quantitative traits in the Ler x Cvi NIL population

To search for QTLs in the NIL population, we divided the Arabidopsis genetic map
in adjacent genomic fragments that were individually tested. The complete genome
was subdivided into 97 regions, defined by the position of the recombination
events of the main introgressions of the 92 NILs (supplemental Table 2 at
http://www.genetics.org/supplemental/). These regions are referred to as bins and
each NIL was then assigned to those adjacent bins spanned by its Cvi introgression
fragment. Thus, each bin contains a unique subset of lines with overlapping Cvi
introgressions in that particular region, which were used to test the phenotypic
effects of that bin. The average genetic length of the bins was 5.0 cM, ranging from
0.1 to 26.3 cM. The number of NILs per bin ranged from 0 to 13 with an average of

27



Chapter 2

5.1 NILs. Because NILs were only assigned to bins when the complete bin was
covered by the introgression, three bins remained empty [viz. bins 66 (26.3 cM), 73
(3.3 cM) and 77 (5.4 cM)]. On average each NIL was assigned to 5.4 adjacent bins.
One NIL (LCN4-2) was not assigned to any bin because its introgression included
only a single marker. Two NILs corresponded to complete chromosomal
substitutions: line LCN3-8 (chromosome 3) and line LCN1-8 (chromosome 1), the
latter carrying the largest introgression assigned to 27 adjacent bins.

To map QTLs in the NIL population, all bins were tested individually by
comparing the phenotypes of the NILs assigned to each bin with that of Ler. As
shown in Figure 3 and Table 4, one to nine QTLs were detected for each trait. The
total explained variance for each trait ranged from 26.7% for basal branch number
up to 87.7% for total plant height. Explained variances for the largest-effect QTL for
each trait ranged from 19.3% for basal branch number to 91.9% for total plant
height as calculated from a restricted ANOVA using only lines from the most
significant bin and Ler. To show the relative effect of Mendelizing QTLs with
respect to the total population variance we calculated the explained variances also
when all lines of the population were subjected to ANOVA analysis using the most
significant bin as fixed factor (Table 4). Relative effects of QTLs were much lower
in this unrestricted analysis because all other QTLs in the population increase
residual variation which is not corrected for, as is done in MQM mapping in the
RIL population. Moreover, lines partly overlapping the QTL bin are not assigned
to that bin but can still contain the QTL Cvi allele, further increasing the residual
variation in the population.

The smallest significant QTL effect detected was 0.7 days for flowering
time, 1.1 and 2.1 cm for length at first silique and total plant length, respectively,
and 3.8, 0.5, and 0.4 for the number of main inflorescence branches, basal branch
number and total branch number, respectively. Relative effects, expressed as the
fold difference between genotypes, calculated as (Ius-pal+pa)/ua, then equaled
1.03-,1.11-, 1.09-, 2.71-, 1.30-, and 1.11-fold, respectively (Tables 4 and 5).

For a number of traits several QTLs were found that could not be
significantly detected in the RIL population. In total 12 of such small-effect QTLs
were detected for flowering time (3), length at first silique (5), total plant length (2),
and basal branch number (2). None of those met the lower chromosome-wide
significance threshold for suggestive QTLs in the RIL population. Although two
were close to this threshold, ten of them did not reach LOD scores >1.0 in the RIL
population (supplemental Table 3 at http://www.genetics.org/supplemental/).
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Table 4: QTLs detected in the NIL population.

Support Support Explained Variance (%) Total Explained
Trait Chra intervalb bin (cM)¢ Restrictedd  Unrestrictede  Effectf Variances (%)
FT 1 0.0-21.6 39-78 70.3 32 -3.2 83.2
1 31.4-40.6 33.4-40.7 18.0 0.5 -1.0
1 73.3-122.0 83.6-87.0 7.1 0.7 -0.7
2 174.4-204.7  200.9-201.8 223 0.6 15
5 388.4-4342  392.3-395.0 52.1 42.8 15.7
SL 1 10.8-27.4 17.3-21.7 64.0 4.8 -3.1 66.1
1 31.4-40.6 33.4-40.7 17.1 0.6 -1.1
1 73.3-1259  122.1-126.0 349 2.8 -1.7
2 160.8-207.2  162.0-1745 734 5.3 49
3 270.1-288.4  287.1-288.4 37.1 1.6 -1.7
4 359.5-375.7  368.2-375.7 322 1.7 -1.6
5 388.3-4189  392.3-395.0 322 0.7 2.7
5 4342 -436.0  434.3-436.1 29.6 3.8 -14
5 4414-459.3  454.3-459.4 28.2 1.1 -1.1
TL 1 0.0-33.3 17.3-21.7 66.2 1.7 -6.3 87.7
1 64.7-1259  122.1-126.0 48.8 3.8 -3.8
2 160.8-207.2  1745-178.8 91.9 10.5 18.5
3 287.0-288.4  287.1-288.4 19.0 04 2.1
5 389.9-416.1  411.7-416.2 34.1 1.7 3.7
5 4342 -4543  434.3-436.1 45.0 14 -39
1B 5 388.3-4342 392.3-395.0 46.3 37.7 3.8 66.1
BB 1 0.0-15.1 39-78 17.7 1.8 -0.6 26.7
1 40.6 - 125.9 94.5-101.6 17.9 9.0 0.8
2 174.4-189.1  179.7-189.2 114 2.4 -0.5
5 388.3-434.2  392.3-395.0 144 1.7 -0.7
5 483.2-487.8  483.2-487.8 19.3 1.1 -0.8
TB 1 0.0-159 7.8-9.9 241 2.2 -0.8 441
1 40.6 - 125.9 94.5-101.6 14.0 41 0.8
2 1744-189.1  179.7-189.2 7.6 15 -0.4
5 388.3-4342  392.3-395.0 43.2 17.4 3.1

FT, flowering time; SL, length at first silique; TL, total plant length; IB, main inflorescence branch
number; BB, basal branch number; TB, total branch number. @ Chromosome number. b The region
spanned by consecutive bins, significantly (P < 0.001) differing from Ler and sharing the same direction
of effect, was taken as support interval. < Position of the bin within the QTL support interval showing
the largest effect. ¢ Within the QTL support interval, the bin showing the largest effect was compared to
Ler in an ANOVA analysis. The among-genotype component of ANOVA was taken as an estimator of
explained variance. ¢ All lines in the population were subjected to ANOVA using the bin described in
footnote ¢ as fixed factor. The among-genotype component of ANOVA was taken as an estimator of
explained variance. f Effect of QTLs calculated as ps-pia, where pa is the mean value of all Ler lines and
us is the mean value of all lines in the bin described in footnote 9. Effects are given in days (flowering
time), centimeters (length at first silique and total length) or numbers (main inflorescence branch
number, basal branch number and total branch number). 8 All bins together with Ler were analyzed by
ANOVA and the among-genotype component was taken as a measure of totally explained variance.
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Development of a Near-Isogenic Line population

Figure 3: QTL profiles of traits analyzed in the NIL population.

(A) Flowering time, (B) Length at first silique, (C) Total plant length, (D) Number of main inflorescence
branches, (E) Basal branch number and (F) Total branch number. Solid lines represent the QTL effect
calculated as described in Materials and Methods. Shaded lines represent significance scores. Shaded
dashed lines represent significance threshold levels applied in this study.

Table 5: Comparative summary of QTL mapping parameters in the Ler x Cvi RIL and NIL populations.

QTLs®  Supporte Explained Total explained Relative
Trait  Population.? (no.) (cM) Varianced (%) Variance (%) Effecte effectf
FT RIL 3 6.6 16.1 68.4 47 1.15
NIL 5 35.5(3.6) 34.0 83.2 44 1.03
SL RIL 7 10.1 11.0 79.5 2.1 1.09
NIL 9 23.3(5.2) 38.7 66.1 2.1 1.11
TL RIL 8 11.1 10.1 86.3 4.5 1.09
NIL 6 31.4(3.4) 50.8 87.7 6.4 1.09
1B RIL 5 12.1 8.7 65.0 0.5 1.13
NIL 1 459 (2.7) 46.3 66.1 3.8 2.71
BB RIL 4 21.3 9.4 38.5 0.4 1.59
NIL 5 33.1(5.6) 16.1 26.7 0.7 1.30
TB RIL 6 9.7 9.1 71.1 0.6 1.10
NIL 4 40.5 (5.4) 22.2 441 1.3 1.11

FT, flowering time; SL, length at first silique; TL, total plant length; IB, main inflorescence branch
number; BB, basal branch number; TB, total branch number. @ Population type. ® Number of QTLs
detected. < Average length of support interval. In parentheses: average length of largest-effect bin. ¢
Average explained variance for each QTL. ¢ Average absolute effect for each QTL. Effects are given in
days (flowering time), centimeters (length at first silique and total length) or numbers (elongated axils,
basal branch number and total branch number). f Smallest relative effect significantly detected,
expressed as fold difference compared to Ler, calculated as (| ps-pia l+ua)/pa.

We defined the support interval in the NIL mapping population as the
region spanned by consecutive bins, significantly differing from Ler (P < 0.001) and
sharing the same direction of effect. The length of support intervals estimated in
this way ranged from 1.4 (total plant length) to 85.3 cM (basal branch number) with
an average of 30.9 cM. Alternatively, we also searched for QTLs in the NIL
population by comparing the phenotype of each NIL individually against Ler
(supplemental Figures 2-7 at http://www.genetics.org/supplemental/). In this case,
support intervals can be estimated as the length of the overlapping regions
between the Cvi introgression fragments of NILs significantly differing from Ler in
a particular genomic region. This second method increases the QTL localization
resolution, but reduces statistical power. For each bin on average 116 plants could
be tested against Ler whereas only 24 plants were available for analysis of
individual NILs. Moreover, individual lines may contain multiple opposing-effect
QTLs, resulting in nonsignificant differences compared to Ler. Therefore, lines
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spanning the bin support interval were occasionally not significantly different
from Ler. Likewise, lines bearing introgressions outside the bin support intervals
sometimes differed significantly from Ler, probably due to multiple additive small-
effect QTLs. Together, the loss of power and the complexity of the traits under
study hindered a confident estimation of a NIL support interval. Nevertheless, all
QTLs detected in the bin analysis could also be detected by analyzing individual
NILs. As a compromise between the two methods of support interval estimation
we recorded the position of the largest-effect bin within the bin support interval
(Table 4). However, it must be noted that bin support intervals may contain
multiple QTLs of similar direction. The average size of these largest-effect bins was
4.6 cM. Within those bins, at least one individual NIL significantly differing from
Ler, was always found.

Power in RIL vs. NIL QTL mapping
The power to detect a QTL at a specific locus basically depends on the difference in
mean trait values between A and B genotypes for that particular locus. Although
other parameters like trait heritability, genetic interactions, and genetic map
quality should not be ignored. Because power increases when variance for mean
values decreases, QTL analyses can benefit greatly from multiple measurements. In
a RIL population this can be achieved in two ways. First, because segregation of
both alleles occurs randomly and each locus is represented equally by the A and B
genotype, provided there is no segregation distortion (Doerge, 2002), increasing
the number of RILs to be analyzed will increase the number of observations of each
genotype at a given genomic position. A further advantage of increasing the RIL
population size is that the number of recombination events increases, which can
improve resolution. However, when the number of lines is fixed, more accurate
trait values of lines can be achieved by measuring replicate individuals of the same
line. In addition accurate trait values based on replicate measurements improve the
possibility of detecting smaller-effect QTLs.

To test the effect of replicated measurements and population size on the
QTL detection power of the two Ler x Cvi populations we analyzed the phenotypic
data obtained in these populations by varying both parameters. For the RIL
population we performed QTL analyses on different numbers of RILs (population
size) and used mean line values obtained with different number of replicates
(replicate size). The total explained variance in the population, LOD score of the
largest-effect QTL, and the number of detected QTLs were then recorded for each
trait (Figure 4). When the population size was kept constant (161 lines), the
recorded statistics increased when increasing the replicate number from one to
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four but this increase leveled off rapidly when measuring more replicates (Figure
4, A-C).
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Figure 4: QTL detection power analysis of the Ler x Cvi RIL population.

(A) Effect of replicate number on total explained variance. (B) Effect of replicate number on LOD score
of the largest-effect QTL. (C) Effect of replicate number on the number of detected QTLs. (D) Effect of
population size on total explained variance. (E) Effect of population size on LOD score of the largest-
effect QTL. (F) Effect of population size on the number of detected QTLs. o, Flowering time; 9, Length at
first silique; A, Total plant length; x, Main inflorescence branch number; o, Basal branch number; and +,
Total branch number. Error bars represent SEM of ten independent analyses.

In contrast, when the number of replicates was kept constant (16 replicated
measurements per RIL) and population size was increased, the QTL detection
power improved more drastically. However, the total explained variance remained
more or less constant over all population sizes (Figure 4D). This phenomenon is
commonly known as the Beavis effect and is due to the fact that estimated
explained variances of detected QTLs are sampled from a truncated distribution
because QTLs are only taken into account when the test statistics reach a
predetermined critical value (Xu, 2003). As a result, the expectations of detected
QTL effects are biased upward. A second effect of increasing population size is the
nearly linear increase of LOD scores, observed for all analyzed QTLs (Figure 4E).
Significance thresholds determined by permutation tests for each population size,
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were steady around 2.7 LOD for population sizes >30 RILs and increased slightly
with smaller population sizes (data not shown). The largest-effect QTL could be
significantly detected at all population sizes for all traits except for basal branch
number, whose largest-effect QTL could not be significantly detected in population
sizes <80 RILs.

To evaluate the NIL population, we studied the effect of increasing the
number of replicates per line by estimating the relative difference between line
mean values that could still be significantly detected with different replicate
numbers (see Materials and Methods). As shown in Figure 5A the power to detect
significant phenotypic differences greatly increases when increasing the number of
replicate individuals of NILs measured. Furthermore, the lower the heritability of
the trait the larger the increase of detection power achieved by increasing the
number of replicates per NIL. When a bin analysis was carried out using increasing
replicate numbers a similar increase in the number of detected QTLs was observed
(Figure 5B). Overall, the results presented in Figures 4 and 5 show that the number
of replicates used in our analyses (16 individuals for each RIL and 24 individuals
for each NIL) approximated the maximum QTL detection power of both Ler x Cvi
populations.
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Number of QTL
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0 T T T T
0 5 10 15 20 25
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Figure 5: QTL detection power analysis of the Ler x Cvi NIL population.

(A) Effect of replicate number on significantly detectable relative differences, expressed as fold
difference between two lines. (B) Effect of replicate number on the number of detected QTLs. o,
Flowering time; 0, Length at first silique; A, Total plant length; x, Main inflorescence branch number; o,
Basal branch number; and +, Total branch number. Error bars represent SEM of ten independent
analyses.
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DISCUSSION

Experimental mapping populations are a basic resource to elucidate the genetic
basis of quantitative multigenic traits. In this work, we have developed the first
genome-wide population of NILs of Arabidopsis thaliana consisting of 92 lines
carrying genomic introgression fragments from the parental accession Cvi into the
genetic background of the common laboratory accession Landsberg erecta. In
addition we have empirically compared the mapping power of this population
with an existing population of recombinant inbred lines, derived from the same
parental accessions. RIL and NIL populations have been used extensively in
genetic studies (Eshed and Zamir, 1995; Rae et al., 1999; Monforte and Tanksley,
2000; Koumproglou et al., 2002; Han et al., 2004; Koornneef et al., 2004; Singer et al.,
2004; von Korff et al., 2004) due to the advantages derived from their homozygosity
and immortality: they can be used indefinitely; various traits can be analyzed in
different experiments and environmental settings; and replicates of the individual
lines can be analyzed, enabling a more accurate estimate of the line’s phenotypic
mean value. However, the main difference between the two populations lies in the
nature of their genetic makeup. In a RIL population multiple genomic regions
differ between most pairs of RILs and several segregating QTLs contribute to
phenotypic differences between pairs of lines, making it impossible to assign the
observed variation between pairs of lines to a specific genomic region. Therefore,
to detect QTLs one must perform the simultaneous analysis of a large number of
lines. In contrast, in a NIL population, the phenotypic variation observed between
pairs of lines can be assigned directly to the distinct genomic regions introgressed
in an otherwise similar genetic background. Depending on the desired resolution
one can minimize the number of lines by analyzing lines carrying large
introgressions or even chromosome substitution strains (Nadeau ef al., 2000).

A summary of the differences observed between the RIL and NIL
populations derived from Ler and Cvi is shown in Table 5 and in supplemental
Figure 8 at http://www.genetics.org/supplemental/. The total number of QTLs
detected did not differ much between the two populations. However, different loci
were detected in both types of populations, showing their complementary
properties. For both populations the detection of QTLs was highly dependent on
the trait under consideration and its genetic architecture (e.g. effect and position of
QTL, epistasis). The power of the new NIL population to detect the large-effect loci
was close to that of the existing RIL population since most large-effect loci were
detected in both populations. However, a few relatively large-effect loci showing
significant epistatic interactions could only be detected in the RIL population, but
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not in the NILs (supplemental Table 3 at http://www.genetics.org/supplemental/).
Moreover, localization resolution was higher in the RIL population compared to
the bin analysis of the NIL population, allowing separation of linked QTLs. This
was best illustrated by the two major QTLs for flowering time detected in the RIL
population on the top of chromosome five, which not only are linked but also
showed strong epistatic interaction. Consequently, these two QTLs could not be
separated in the NIL population. Nevertheless, the QTL resolution in the NIL
population can be increased when analyzing individual lines, although this will be
at the cost of mapping power. In total, 14 QTLs detected in the RIL population
could not be detected in the NIL population, of which 10 showed significant
epistatic interactions with other QTLs and all others were closely linked to another
significant QTL.

In contrast, the average explained variance of single QTLs was higher in
the NIL population, increasing the power to detect small-effect QTLs. This
difference can be attributed to the level of transgression, which is stronger in the
RIL population, thereby increasing total phenotypic variance. As a result, 13 small-
effect QTLs could be detected in the NIL population, which were not detected in
the RIL population. Nevertheless, some of the small-effect QTLs detected in the
NILs were close to the significance threshold in the RIL population when using the
lower chromosomal LOD thresholds (supplemental Table 3 at http://www.
genetics.org/supplemental/). Expectedly, the power to detect small-effect QTLs in
the NIL population was higher for the more heritable traits (flowering time and
plant height) than for those traits with low heritability (branching traits). The
different power to detect small-effect QTLs of the two populations is due to the
effect of the segregation of multiple QTLs in the RIL population, which increases
the residual variance at each QTL under study.

The analyses of the RIL and NIL populations performed in this work were
probably close to the maximum statistical power for the given population sizes
since the number of detected QTLs leveled off at higher replication sizes (Figures 4
and 5). The power analyses presented here could guide the decision-making on the
number of plants to be analyzed when experiments are costly, laborious, or time
consuming and therefore may require the analysis of fewer plants. Overall, for
RILs, the effect of population size on mapping power was larger than the effect of
replicated measurements of individual lines. Therefore, to reduce the number of
plants to be analyzed, it is preferable to first reduce the number of replicates per
line, and only thereafter, if required, the number of lines. In our analyses major-
effect QTLs for most traits could still be significantly detected when only 50 lines
were analyzed without replicates (data not shown). However, due to the Beavis
effect (Xu, 2003) the explained variances obtained with small population sizes were
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strongly overestimated. In the NIL population, the number of replicated
measurements has a larger impact on mapping power and at least five replicated
plants should be analyzed to obtain enough statistical power (Figure 5). However,
fewer lines can be analyzed as long as genome-wide coverage is maintained. In this
NIL population this can be achieved using a core set of 25 lines, although
localization resolution was diminished. Nevertheless, most QTLs detected in the
full set could still be detected in the core set (supplemental Figure 9 at
http://www.genetics.org/supplemental/). Once a QTL has been identified in a
particular region, one can zoom in with a minimal set of lines carrying smaller
introgressions defined by crossovers in the support interval of the QTL of interest
(Fridman ef al., 2004).

The Ler x Cvi NIL population developed in this work provides a useful
resource that will facilitate the genetic dissection of quantitative traits in
Arabidopsis in various aspects. First, as shown here, it can be analyzed as an
alternative segregating population to perform genome-wide QTL mapping, with
the particular advantage of detecting small-effect QTLs. Second, this population
can be used to confirm previously detected QTLs in the Ler x Cvi RIL population.
Third, individual lines of this population can serve as starting point for the rapid
Mendelization of particular QTLs and for their fine mapping and cloning (Paran
and Zamir, 2003). Finally, the single introgression lines of this population may also
strongly facilitate the fine mapping of artificially induced mutant alleles in the
common laboratory Ler genetic background (or transferred to this accession). The
fine mapping of mutant loci affecting quantitative adaptive traits is often
hampered by the confounding effects of QTLs segregating in the mapping
populations derived from crosses between the mutant and another Arabidopsis
wild accession. Knowing the approximate genetic location of the mutant locus
within a chromosomal arm, specific lines of this NIL population can be selected as
carrying a single introgression spanning the map position of the locus of interest.
These lines can then be used to derive the required monogenic mapping
population, as has been illustrated with the flowering-time locus FVE (Ausin et al.,
2004). In conclusion, the elucidation of quantitative traits can benefit from the
parallel analysis of both populations.
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MATERIALS AND METHODS

Mapping populations

Two types of mapping populations were used to analyze six developmental traits.
The first population consists of a set of 161 recombinant inbred lines (RILs) derived
from a cross between the accessions Cape Verde Islands (Cvi) and Landsberg erecta
(Ler). The Fi generation has been extensively genotyped (Alonso-Blanco et al.,
1998b) and is available from the Arabidopsis Biological Resource Center. All lines
were advanced to the Fi3 generation and residual heterozygous regions, estimated
at 0.71% in the Fio generation, were genotyped again with molecular PCR markers
to confirm that they were practically 100% homozygous.

The second population consists of a set of 92 near isogenic lines (NILs).
NILs were generated by selecting appropriate Ler x Cvi RILs and repeated
backcrossing with Ler as recurrent female parent. A number of these lines have
been described previously (Alonso-Blanco et al., 1998a, 2003; Swarup et al., 1999;
Bentsink et al., 2003; Edwards et al., 2005; Juenger et al., 2005a; Teng et al., 2005). The
progeny of backcrosses was genotyped with PCR markers and lines containing a
homozygous Cvi introgression into an otherwise Ler background were selected.
The set of selected lines was then extensively genotyped by AFLP analysis using
the same restriction enzymes and primer combinations as those used for the
genotyping of the RILs (Alonso-Blanco et al., 1998b). The NILs will be made
available through the Arabidopsis stock centers.

In both populations each line is almost completely homozygous and
therefore individuals of the same line are genetically identical, which allows the
pooling of replicated individuals and repeated measurements to obtain a more
precise estimate of phenotypic values. For the RIL and NIL population 16 and 24
genetically identical plants were grown per line, respectively. Additionally, 96
replicates were grown for each parental accession Ler and Cvi. All plants were
grown in a single experiment with four completely randomized blocks containing
4, 6, and 24 replicates per RIL, NIL, and parent, respectively.

Plant growing conditions

Seeds were sown in petri dishes on water-soaked filter paper and incubated for
five days in a cold room at 4°C in the dark to promote uniform germination.
Subsequently, petri dishes were transferred to a climate chamber (24°C, 16 hr light
per day) for two days before planting. Germinated seedlings were transferred to
clay pots, placed in peat, containing a sandy soil mixture. A single plant per pot
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was grown under long-day light conditions in an air-conditioned green house from
July until October. Plants were fertilized every two weeks using a liquid fertilizer.

Quantitative traits

A total number of six developmental traits, which were known to vary within the
populations for the number of QTLs and heritability, were measured on all
individuals. We quantified flowering time (FT); main inflorescence length at first
silique (SL); total length of the main inflorescence (TL); basal branch number (BB),
which is the number of side shoots growing out from the rosette; main
inflorescence branch number (IB), which is the number of elongated axillary
(secondary) inflorescences along the main inflorescence; and total number of side
shoots (TB; basal plus main inflorescence). Flowering time was recorded as the
number of days from the date of planting until the opening of the first flower. All
other traits were measured at maturity.

Quantitative genetic analyses

For both populations and for each trait, total phenotypic variance was partitioned
into sources attributable to genotype (Vg; i.e. the line effect) and error (V) using a
random-effects analysis of variance (ANOVA, SPSS version 11.0) according to the
model Y = u + G + E. Variance components were used to estimate broad sense
heritability according to the formula H? = V¢/(Vc + VE), where Ve is the among-
genotype variance component and V: is the residual (error) variance component.
Genetic correlations (rc) were estimated as 7, = cov,,/4/V;, xV,, , where coviz is

the covariance of trait means and Ve: and Ve are the among-genotype variance
components for those traits. The coefficient of genetic variation (CVc) was

estimated for each trait as CV = (100><1/VG )/Y, where Ve is the among-genotype

variance component and X is the trait mean of the genotypes.

QTL analyses in the RIL population

To map QTLs using the RIL population, a set of 144 markers equally spaced over
the Arabidopsis genetic map was selected from the RIL Ler x Cvi map (Alonso-
Blanco et al., 1998b). These markers spanned 485 cM, with an average distance
between consecutive markers of 3.5 cM and the largest genetic distance being 11
cM. The phenotypic values recorded, except basal branch number, were
transformed (logio(x+1)) to improve the normality of the distributions and the
values of 16 plants per RIL were used to calculate the means of each line for all
traits. These means were used to perform the QTL analyses unless otherwise
stated. The computer program MapQTL version 5.0 (Van Ooijen, 2004) was used to
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identify and locate QTLs linked to the molecular markers using both interval
mapping and multiple QTL mapping (MQM). In a first step, putative QTLs were
identified using interval mapping. Thereafter, a marker closely linked to each
putative QTL was selected as a cofactor and the selected markers were used as
genetic background controls in the approximate MQM of MapQTL. LOD statistics
were calculated at 0.5 cM intervals. Tests of 1000 permutations were used to obtain
an estimate of the number of type 1 errors (false positives). The genome-wide LOD
score, which 95% of the permutations did not exceed, ranged from 2.6 to 2.8 and
chromosome-wide LOD thresholds varied between 1.8 and 2.1 depending on trait
and linkage group. The genome-wide LOD score was then used as the significance
threshold to declare the presence of a QTL in MQM mapping, while the
chromosome-wide thresholds were used to detect putative small-effect QTLs. In
the final MQM model the genetic effect (us-pa) and percentage of explained
variance was estimated for each QTL and 2-LOD support intervals were
established as an ~95% confidence level (Van Ooijen, 1992), using restricted MQM
mapping.

Epistatic interactions between QTLs were estimated using factorial
analysis of variance. For each trait, the mean phenotypic values were used as
dependent variable and cofactors, corresponding to the detected QTLs, were used
as fixed factors. The general linear model module of the statistical package SPSS
version 11.0 was used to perform a full factorial analysis of variance or analysis of
main effects only. Differences in R?>-values, calculated from the Type III sum of
squares, were assigned to epistatic interaction effects of detected QTLs.
Additionally we performed a complete pairwise search (P < 0.001, determined by
Monte Carlo simulations) for conditional and coadaptive epistatic interactions for
each trait using the computer program EPISTAT (Chase et al., 1997).

The effect of replication on statistical power was analyzed by performing
MQM mapping on means of trait values from 1, 2, 4, 8, 12, and 16 replicate plants,
respectively. Analyses were performed on ten independent, stochastically
sampled, data sets for each replication size and trait using automated cofactor
selection (P < 0.02). Total explained variance, LOD score of the largest-effect QTL,
and number of significant QTLs were recorded for each analysis.

The effect of population size on statistical power was analyzed by
performing MQM mapping on increasing population sizes. Analyses were
performed on ten independent, stochastically sampled, data sets for each
population size. Subpopulations of increasing size, with a step size of 20 lines,
were analyzed for each trait using automated cofactor selection (P < 0.02). Total
explained variance, LOD score of the largest-effect QTL, and number of significant
QTLs were recorded for each analysis.
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Statistical analyses NILs

Differences in mean trait values of Ler and NILs were analyzed by univariate
analysis of variance, using the general linear model module of the statistical
package SPSS version 11.0. Dunnett’s pairwise multiple comparison t-test was
used as a post hoc test to determine significant differences. For each analysis, trait
values were used as dependent variable and NILs were used as fixed factor. Tests
were performed 2-sided with a Bonferroni-corrected significance threshold level of
0.05 and Ler as control category. In order to increase statistical power, similar
analyses were conducted for bins (see results section). For this, trait values of all
introgression lines assigned to a certain bin were pooled and compared to values
of the Ler parental line. Because each NIL can be a member of more than one bin
the significance threshold was lowered to 0.001 to correct for multiple testing. The
genetic effect of Cvi bins significantly differing from Ler was calculated as us-ua,
where pa and ps are the mean trait values of Ler and the Cvi bin, respectively.
Explained variance was estimated from the partial 12 of the univariate analysis of
variance, where 1?2 is the proportion of total variance attributable to factors in the
analysis. The total percentage of explained variance was then estimated by using
trait values as dependent variable and NILs as fixed factor, where all NILs where
included as subjects. The percentage of explained variance of individual QTLs was
estimated as a fraction of the total variation in the population (including all lines),
using a single bin as fixed factor and as a fraction of the total variation in a
comparison of a single bin with Ler only.

To determine the effect of replicated measurements we calculated the
power of detecting significant differences between Ler and NILs using various
replicate numbers. For each trait we calculated the minimal relative difference in
mean trait values that could still be significantly detected. Calculations were
performed using a normal distribution two-sample equal variance power
calculator from the UCLA department of statistics (http://calculators.stat.ucla.
edu/). We first calculated for each trait the mean phenotypic value of 96 Ler
replicate plants (pa) and for each line the standard deviation of 24 replicate plants.
The mean line standard deviation of each trait was taken as a measure of variation
(0) in all subsequent calculations. The significance level, the probability of falsely
rejecting the null hypothesis (Ho:pa=us) when it is true, was set to 0.05 and power,
the probability of correctly rejecting the null hypothesis when the alternative
(Hi:pa#pus) is true, was set to 0.95. The sample size of Ler (Na) was always identical
to the sample size of NILs (Ns) and ranged from 2 to 24 individuals. For each trait
and sample size the mean trait value (us) for NILs was then calculated as the
minimum value to meet the alternative hypothesis (Hi:pa#us) in a two-sided test.
These minimum values were then converted in a fold-difference value compared
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to the Ler value, calculated as (lps-pal+pa)/pa, to obtain a relative estimate
independent of trait measurement units.

The effect of replication on statistical power was also analyzed by
performing bin mapping using 2, 4, 8, 12, and 16 replicate plants, respectively.
Analyses were performed on ten independent, stochastically sampled, data sets for
each replication size and trait and the number of significant QTLs was recorded for
each analysis.
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ABSTRACT

Accessions of a plant species can show considerable genetic differences that are
effectively analyzed using Recombinant Inbred Line (RIL) populations. Here we
describe the results of genome wide expression variation analysis in an RIL
population of Arabidopsis thaliana. For many genes, variation in expression could be
explained by expression Quantitative Trait Loci (eQTLs). The nature and
consequences of this variation are discussed based on additional genetic
parameters, such as heritability and transgression and by examining the genomic
position of eQTLs versus gene position, polymorphism frequency, and gene
ontology. Furthermore, we developed a novel approach for genetic regulatory
network construction by combining eQTL mapping and regulator candidate gene
selection. The power of our method was shown in a case study of genes associated
with flowering time, a well studied regulatory network in Arabidopsis. Results
that revealed clusters of co-regulated genes and their most likely regulators were
in agreement with published data, and unknown relationships could be predicted.
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INTRODUCTION

Analogous to classical traits, quantitative genetic variation is often observed for
transcript levels of genes. Jansen and Nap (2001), therefore, introduced the concept
of genetical genomics, in which Quantitative Trait Locus (QTL) analysis is applied
to levels of transcript abundance and identifies genomic loci controlling the
observed variation in expression (eQTLs). One of the best studied organisms with
regard to gene expression regulation nowadays is yeast (Brem et al.,, 2002, 2005;
Yvert et al., 2003; Bing and Hoeschele, 2005; Brem and Kruglyak, 2005; Ronald et al.,
2005; Storey et al., 2005). However, in recent years several studies have
demonstrated the feasibility of this approach in different organisms and diverse
types of populations (Brem et al., 2002; Schadt et al., 2003; Morley et al., 2004;
Bystrykh et al., 2005; Hubner et al., 2005; DeCook et al., 2006).

A logical next step would be the construction of genetic regulatory
networks (Kendziorski and Wang, 2006), which only a few studies have addressed
up to now (Bing and Hoeschele, 2005; Kliebenstein et al., 2006). Although many
studies on higher eukaryotes suffered from small populations or only analyzed a
subset of genes present on the genome of the organism under study, the main
reason holding back the identification of gene-by-gene regulation has been the lack
of a reliable identification of candidate regulators. Although powerful in detecting
loci controlling the observed variation for trait values, support intervals of QTLs
are still of considerable width, often covering hundreds of genes. Consequently,
the molecular dissection of quantitative trait regulation is still in its infancy and
would greatly benefit from approaches reducing the number of candidate genes in
a QTL support interval.

Promising results have been obtained by combining QTL analyses of
physiological and gene expression traits, based on co-localization of (e)QTLs
(Wayne and Mclntyre, 2002; Hubner et al., 2005; DeCook et al., 2006). However,
when expression differences in genes are caused by differences in expression of
their regulator, it is likely that they show correlation in expression (Bing and
Hoeschele, 2005). Moreover, multiple functionally related genes with co-inciding
eQTLs, which might be members of a common pathway, are likely to have one and
the same regulator. We therefore developed a novel approach for the assignment
of maximum-likelihood regulators by combining QTL analysis of gene expression
profiling and iterative Group Analysis (iGA) (Breitling et al., 2004) of functionally
related genes with co-inciding eQTLs.

To apply the concept of genetical genomics to higher plants we analyzed
genome-wide gene expression variation in a large, well-studied Recombinant
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Inbred Line (RIL) population of Arabidopsis thaliana. We show that for many genes
the variation in transcript level can be explained by genetic factors. By integrating
current knowledge of the genetics of a specific trait, we demonstrate the
construction of genetic regulatory networks, which can serve to form hypotheses
about as-yet-unknown regulatory steps.

RESULTS

Genetic control of gene expression in plants is highly complex

To determine the effect of genetic factors involved in the regulation of expression,
we analyzed genome-wide gene expression in the parents and an RIL population
of a cross between the distinct accessions Landsberg erecta (Ler) and Cape Verde
Islands (Cvi), consisting of 160 lines (Alonso-Blanco ef al., 1998b). Transcript levels
of 24,065 genes were analyzed by DNA microarrays, of which 922 showed
significant differential expression between the parents [P < 2.5 x 103; false-
discovery rate (FDR) = 0.05]. Subsequent mapping resulted in 4,523 eQTLs detected
for 4,066 genes (P < 5.29 x 10 FDR = 0.05, corresponding to a g value of 0.01)
(Storey and Tibshirani, 2003).

05000, A 80 w350, B 45
£ 4,500 = 40
e 70 5 3,000 : 5
04,000 g0 8.5 N e
w :3{10 B35 2,500 0 &
5 3000 S § 2000 5S
82,500 0=8 " ;
E 2,000 o E 130 (| ES
= T v = 1 15
51,50 x Z 100
1,000 . 10
500 10 500 5
0 | L0 0| SAEREEY 0
0 0.7 02 03 04 05 0.6 07 08 09 10 0 0102 03 04 05 06 07 08 09 10

H H

Figure 1: Frequency distributions of heritability values of gene expression.

(A) Data from a microarray comparison of the parents. (B) Data from a microarray analysis of the Ler x
Cvi RIL population. Solid and shaded bars represent the number of genes that could and could not be
mapped, respectively. The solid line depicts the number of mapped genes as a proportion of the total
number of genes for a given heritability class.

Because the microarray probe set was designed on the sequenced accession
Columbia (Col), we performed hybridizations of genomic DNA of the parental
lines and found relatively few hybridization differences (supplemental Table 1 at
www.pnas.org/cgi/content/full/0610429104/DC1). However, the low power to

49



Chapter 3

detect differences, due to the small number of replicates, might have led to an
under estimation, as indicated by other studies (Borevitz, 2006).
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Figure 2: Effect of expression level and transgression on eQTL detection.

(A) Frequency distribution of the mean expression level of analyzed genes in the RIL population. Solid
and shaded bars represent the number of genes that could and could not be mapped, respectively. The
solid line depicts the number of mapped genes as a proportion of the total number of genes for a given
class. (B) Diagram of the number of genes showing linkage and transgression. Circles are proportional
to the number of genes. Increasing shading represents, respectively, the total number of genes analyzed
(24,065), the number of genes whose expression showed significant linkage (4,066) and the number of
genes whose expression showed transgressive segregation (10,849).

Heritability values calculated from the parental data and the RIL
population reached a median value of 28.6 and 74.7%, respectively (Figure 1),
which is in agreement with the discrepancy between the number of differentially
expressed and mapped genes (i.e. genes for which an eQTL was found). Although
the fraction of mapped genes increased with higher heritability values, for many
genes showing high heritability, no eQTL could be significantly detected. These
findings suggest that the regulation of expression of many genes is controlled by
multiple eQTLs, of which many might not have passed the significance test
because of their small effect. Likewise, only 65.6% of the genes differentially
expressed between the parents could be mapped. However, for 15.0% of the genes
for which the parents did not show a significant difference in expression levels,
eQTLs could be detected. These observations and the much lower heritabilities
calculated from the parental data, compared with those from the RIL population,
indicate that eQTLs for a given gene might exert opposite additive effects, leading
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to a balanced expression in the parents but a transgressive expression pattern
among the segregants of the population. To test this hypothesis, we tested each
gene for significant transgression and found significant transgression of expression
for 10,849 genes (45.1%). No relationship was found between the number of
mapped genes and transgression (Figure 2B). These data indicate that the
regulation of gene expression in plants is largely under genetic control but is
highly complex because of the involvement of multiple genes.

Distribution of eQTLs identifies regulatory hot spots

To characterize in more detail the genes whose expression showed significant
linkage, we determined several features. We first analyzed the distribution of
eQTLs along the genome of Arabidopsis and found a number of genomic regions
containing numbers of eQTLs significantly deviating from what can be expected by
chance, as determined by permutation tests (Figure 3). These hot spots may reflect
local gene-dense regions, in contrast to cold spots, which may reflect low-gene-
density regions such as centromers. Alternatively, hot spots may contain master
regulators: genes controlling the expression of many other genes. The large
number of genes mapping to the ERECTA gene, which was included as a
phenotypic marker, illustrate this finding. An empirical threshold for assessing a
hot spot, providing a 0.05 genome-wide error rate was generated using a
permutation procedure, which defined a hot spot as any marker associated with 43
or more genes. Because 176 genes mapped to the ERECTA marker, this locus was
considered to be an eQTL hot spot. Polymorphisms in ERECTA, a receptor protein
kinase (Torii ef al., 1996), are well known for their pleiotropic effect on many traits,
including morphological differences (Koornneef ef al., 2004).
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Figure 3: Genomic distribution of eQTLs.

Bars represent the number of distant (solid) and local (shaded) eQTLs detected at each marker position.
Each eQTL was positioned at its best controlling marker. The dashed horizontal line represents the
significance threshold value for defining a hot spot. Shaded vertical lines depict chromosomal borders.
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Distant gene expression regulation occurs more frequently but local regulation
is stronger

Genomic differences responsible for eQTLs either occur in regulatory genes
affecting the transcript level of other genes (trans-regulation) or in the genes
encoding the mRNA for which the eQTL was found (cis-regulation) (Rockman and
Kruglyak, 2006). To compare the position of genes and their eQTLs, we anchored
the genetic map to the physical map and found an almost linear genome-wide
relation of 4.1 cM per Mbp (supplemental Figure 8 at www.pnas.org/cgi/content/
full/0610429104/DC1). When the position of each eQTL was plotted against the
position of the gene for which that eQTL was found, a strong enrichment along the
diagonal of the graph was observed (Figure 4). This enrichment indicates that
many genes, of which the majority is expected to be cis-regulated (Ronald et al.,
2005), map to their own physical position.
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To quantify this result, we defined local/distant regulation in terms of the
positional coincidence of genes and their accompanying eQTL(s). Of 4,066 mapped
genes, 1,875 (46.1%) co-located with the support interval of one of their eQTLs,
corresponding to a region consistent with max{-LogiwP} - 1.5 (where P expresses
the significance of association (Keurentjes et al., 2006)), and were therefore
classified as locally regulated. Genes outside such intervals (1,958; 48.1%) were
classified as distantly regulated. A minor number of 198 genes (4.9%) with multiple
eQTLs showed both local and distant regulation, whereas the physical position of
35 genes (0.9%) was unknown (Table 1).
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Table 1: The number of genes showing linkage, classified according to the position of eQTLs relative to
the gene. Shown are the number of genes with a single or multiple eQTL(s) for different significance
thresholds (P) and eQTL support intervals (max{-LogiP} - x, where x = 1.5 and 2.0 respectively).

Position Single eQTL Multiple eQTLs

P <5.29 x 105; max{-Log1oP} - 1.5

Local 1875

Distant 1752 206
Local + distant 198
Unknown 31 4

P <6.50 x 104; max{-Log1P} - 1.5

Local 2167

Distant 3671 916
Local + distant 794
Unknown 45 11

P <5.29 x 105, max{-LogioP} - 2.0

Local 2007

Distant 1676 156
Local + distant 192
Unknown 31 4

Because cis-regulation is often much stronger than trans-regulation (Bing
and Hoeschele, 2005), as also indicated by the median —Log1oP values of 7.1 and 5.3
and the median explained variance of 30.3 and 22.6% for local and distant eQTLs,
respectively, the ratio of detected local versus distant eQTLs depends on the
applied significance threshold (Schadt et al., 2003; Morley et al., 2004; Hubner et al.,
2005). The stringent threshold applied here, corrected for multiple testing, might
therefore have underestimated distant regulation. When the threshold was
decreased from 5.29 x 105 to 6.5 x 10* (FDR = 0.25, 4 = 0.05), 7,604 transcripts
showed at least one linkage, with 2,167 (28.5%) being locally regulated, 4,587
(60.3%) being distantly regulated, and 794 (10.4%) being both locally and distantly
regulated. Based on their P-value distributions (Storey and Tibshirani, 2003), the
overall proportion of locally and distantly regulated genes were estimated at 40.5
and 15.3% respectively.

A second parameter affecting the assignment of locally versus distantly
regulated transcripts is the setting of the eQTL support interval. However, when a
wider interval of max{-Log1P} - 2.0 was used at P <5.29 x 107, results were similar
with 2,007 (49.4%), 1,832 (45.1%), and 192 (4.7%) genes classified as locally,
distantly, and both locally and distantly regulated, respectively.
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Local regulation correlates with SNP frequency and is less frequent in
regulatory genes

To determine whether a relationship exists between SNP or gene density and the
number of mapped genes, we performed a sliding-window regression analysis. A
strong correlation was observed between gene density and the number of locally
and distantly regulated genes (12 = 0.88, P < 0.0001 and r2 = 0.91, P < 0.0001,
respectively) (Figure 5A).
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Figure 5: Relationship between gene and SNP frequency and the number of mapped genes.

(A) Relationship between gene frequency (solid lines) and the number of mapped genes, divided in
locally (shaded lines) and distantly (dotted shaded lines) regulated genes. (B) Relationship between
SNP frequency (solid lines) and the number of mapped genes, divided in locally (shaded lines) and
distantly (dotted shaded lines) regulated genes, corrected for gene density. Gaps represent
chromosomal borders. Mbp, megabase pairs.

A weaker but significant correlation was also found between gene and SNP
frequency (r2 = 0.34, P < 0.0001). Even when the number of mapped genes in a
window was corrected for gene density, a significant correlation was still found
between SNP frequency and the number of locally regulated genes (r>= 0.32, P <
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0.0001), although incidental differences in hybridization efficiency might have
contributed to an overestimation. Such a relationship was not found for distantly
regulated genes (12=-0.003, P = 0.89) (Figure 5B).

To assess whether there was a functional enrichment for genes whose
variation in expression could be genetically explained, we computed the
proportion of these genes for each Gene Ontology biological process and molecular
function category (The Arabidopsis Information Resource; www.arabidopsis.org)
(Figure 6). Genes involved in regulatory processes showed significantly less
genetically explainable variation in expression (Al-Shahrour et al, 2004)
(supplemental Table 3 at www.pnas.org/cgi/content/full/0610429104/DC1).
However, small changes in expression level, which may be more frequent in
regulatory genes, are more difficult to detect but can nevertheless be very relevant
biologically, because they may result in large changes in expression of target genes.
Furthermore, many regulatory genes often display pleiotropic effects. A change in
expression of such key regulators can affect the expression of many more target
genes, which may skew the distribution of differently expressed genes in favor of
classes containing predominantly target genes.
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Figure 6: Frequency distribution of the proportion of mapped genes versus function.

(A) Proportion of genes that could be mapped in different Gene Ontology categories of biological
processes. (B) Proportion of genes that could be mapped in different Gene Ontology categories of
molecular functions. Solid, shaded, and white bars represent local, distant, and both local and distant
regulation.
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Interestingly, when these analyses were performed separately for locally
and distantly regulated genes, regulatory categories showed a comparable
proportion of distantly regulated genes with other classes but a much smaller
proportion of locally regulated genes (Figure 6). Comparing locally to distantly
regulated genes (Al-Shahrour et al., 2004) resulted in significant overrepresentation
of distantly regulated genes in ten Gene Ontology biological process categories, all
involved in regulation. Only one category was detected in which locally regulated
genes were overrepresented (Table 2). This finding agrees with the general
assumption that regulatory genes are much more strongly conserved than other
genes because of their often pleiotropic effects.

Table 2: Gene ontology categories with significantly different proportions of locally versus distantly
regulated genes. The second and fourth column represent, for each category respectively, how many
genes of the test set were locally and distantly regulated. The third and fifth column represent, for each
category respectively, the proportion of the total number of annotated genes in the test set that were
locally and distantly regulated. The sixth column represents, for each category, the P-value of observed
differences between locally and distantly regulated genes. n.s., not significant.

Local Distant

Gene Ontology category Genes % Genes % P-value
Biological process

regulation of cellular process 69 7.6 135 14.4 1.68E-03
regulation of cellular metabolism 58 7.2 120 14.2 1.68E-03
regulation of nucleic acid metabolism 57 8.2 118 16.1 1.68E-03
regulation of transcription 56 10.4 117 20.7 1.68E-03
regulation of metabolism 59 7.0 121 13.4 2.02E-03
regulation of cellular physiological process 69 8.2 135 15.0 2.02E-03
transcription 63 9.1 123 16.8 2.52E-03
regulation of physiological process 74 8.2 136 14.5 2.99E-03
RNA processing 31 57 9 1.6 3.86E-02
transcription, DNA-dependent 29 5.4 65 115 3.86E-02
regulation of transcription, DNA-dependent 29 8.6 64 17.9 3.86E-02
Molecular function

transcription factor activity 64 6.2 125 11.5 1.60E-02

Cellular component
n.s.

A dual approach for the construction of regulatory networks reveals novel
regulatory steps for flowering time

Genetic regulatory networks consist of a collection of genes, which are
interconnected because one gene regulates the transcription of another directly or
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indirectly. The analysis of gene expression in a mapping population can greatly
enhance the construction of such networks. If an eQTL results from differences in
expression of a regulator, this regulator is likely to show correlation in expression
levels with the gene that mapped to its position (Bing and Hoeschele, 2005).
Multiple genes involved in the same biological process mapping to the same
position indicates that many of them might be under the control of the same gene.
We reasoned that the best candidate within an eQTL interval is the gene whose
expression best correlates with multiple genes mapping to the position of that
gene. We therefore combined expression trait profiling with eQTL mapping, gene
annotation, and extended iterative Group Analysis (iGA) (Breitling et al., 2004) to
sort candidate regulators based on their PC-value (Possibility of Change), which
tells, for a given regulator, how likely it is to observe a strong correlation with
multiple members of a selected group of genes. This novel approach enabled us to
drastically narrow down the number of candidate genes in an eQTL interval and
select the best candidate for the construction of genetic regulatory networks.

To verify our approach, we focused on one of the best studied and most
complete genetic regulatory networks available in plants: the regulation of
flowering in Arabidopsis. Flowering time is highly variable between accessions of
Arabidopsis (Koornneef et al., 2004). Variation in flowering time also exists
between Ler and Cvi, and several studies have reported QTLs for this trait (Alonso-
Blanco et al., 1998a; Ungerer et al., 2002; Juenger et al., 2005). Although flowering
starts much later, the expression of genes that indicate commitment to flowering
are already apparent at very early stage and find their transcription peak in the
seedling stage (Kobayashi ef al., 1999; Zimmermann et al., 2004). We selected a set
of 192 genes known to be involved in the control of flowering from recent
literature (see supplemental Table 5 at www.pnas.org/cgi/content/full/0610429104/
DC1 for a full list) and keyword searching in The Arabidopsis Information
Resource database; 175 of these genes were analyzed in our study. Analysis of their
expression level in the parental accessions assigned eight of them as being
differentially expressed. However, 83 genes showed at least one eQTL at a
genome-wide threshold of 2.23 x 102. We calculated PC-values for correlation in
expression profiles, using the group of 83 mapped flower genes and all candidate
genes within their eQTL support intervals. We then selected the genes within the
eQTL support interval of a given flower gene with significant PC-values (FDR =
0.05) as candidates for this eQTL (supplemental Table 5 at www.pnas.org/cgi/
content/full/0610429104/DC1). Regulators were predicted for 51 genes, whereas for
32 genes no significant PC-value was obtained
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Figure 7: Regulatory network of genes involved in the transition to flowering.
Flower genes are connected to their most likely regulator by directional edges. Arrows and
bars represent stimulative and repressive regulation, respectively.

Figure 7 shows a network of flower genes and their most likely regulators.
The most significant regulator detected was GIGANTEA (GI) with a PC-value of
1.01 x 10'2. Thirteen genes mapped to GI, including GI itself, and all of them
contributed to the lowest PC-value. GI is the first member of an output pathway of
the circadian clock that controls flowering time and has been shown to regulate
circadian rhythms in Arabidopsis (Mizoguchi et al., 2005). At the position of GI, a
minor flowering-time QTL (Alonso-Blanco et al., 1998a) and a circadian period
length QTL (Swarup et al., 1999; Michael et al., 2003) were identified, which
indicates the physiological consequences of this complex pattern of gene
expression variation. Indeed many of the genes, like CCA1 (see supplemental Table
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5 at www.pnas.org/cgi/content/full/0610429104/DC1 for details), LHY1, ELF4, and
TOCl1, for which GI was identified as their most likely regulator, belong to the core
circadian oscillator (Boss et al., 2004). Others are involved in the regulation of the
circadian clock, such as PCL1, APRRY, and FKF1 (Michael et al., 2003; Onai and
Ishiura, 2005), or play a role in floral transition, such as ELF7 and the CONSTANGS-
LIKE family COL1, COL2, and COL9 (Ledger et al., 2001; He et al., 2004; Cheng and
Wang, 2005). A second cluster of co-regulated genes is involved in floral repression
and mapped to FLG, another major QTL for flowering time. Where the floral
repressors FLC, MAF1, MAF4, MAF5, and TOE1 (Boss et al., 2004) are up-regulated,
the floral promoter CRY2 (Boss et al., 2004) is down-regulated by this locus, in
agreement with findings that FLC expression negatively correlates with CRY2 (El-
Din El-Assal et al., 2003). In addition to FLG, CRY2 and FLC are major-effect QTLs
for flowering time in the Ler x Cvi population, and significant epistasis has been
found between CRY?2 and FLC (El-Din El-Assal ef al., 2003) and between the FLC
region and the FLG locus (Alonso-Blanco et al., 1998a). Although HUA2 was
previously suggested as a candidate for the FLG locus (Doyle et al., 2005), we did
not identify it as such and found a gene with unknown function (At5g23460) to be
the most likely candidate. Other clusters are predominantly involved in hormonal
pathways (MYB33, ARF6, ARF8, RD29B, and SHI) (Mouradov et al., 2002; Nagpal et
al., 2005) and the photoperiod pathway (PIE1, CAM1, PHYE, and ESD4) (Levy and
Dean, 1998; Boss et al., 2004) of flowering.

To identify other possible target genes of the most significant regulator
(GI), we calculated the correlation coefficient between the genes of the GI
regulatory cluster and all other genes. Strong correlation was observed for 280
transcripts at an empirical correlation coefficient cutoff of 0.55, corresponding to a
FDR of 9.5 x 10° (supplemental Table 6 at www.pnas.org/cgi/content/full/
0610429104/DC1). Many of these genes showed no significant linkage at the
position of GI but several displayed a suggestive eQTL. Although correlation can
be a result of linked genetic effect, only 32 locally regulated genes were located
within 2.5 Mbp of GI. The highest correlation coefficient (0.75) was found for a
CONSTANS-LIKE PROTEIN encoding gene (Atlg07050). The long day integrator
CONSTANS (CO) has been shown to be a direct target of GI (Mizoguchi et al.,
2005), although it was not identified as such in our study. Two other genes
associated with circadian rhythms, APRR5 and WNKI1, were detected, and both
showed a suggestive eQTL at the position of GI. APRR genes are paralogs of TOC1
and have been shown to be regulated by the protein kinase WNK1 (Nakamichi et
al., 2002). These results suggest that the feedback regulation of the circadian clock
by GI acts, at least partly, through WNKI and APRR5.
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DISCUSSION

Genetic variation in gene expression is abundant and complex
We determined differences in gene expression between two distinct accessions of
Arabidopsis and within an RIL population derived from these accessions.

Our data suggest that variation in gene expression among genetically
different plants of the same species is for a large part genetically controlled and
highly complex. Although eQTLs were detected for >4,000 genes, only 922 were
differentially expressed between the parents, which suggests that the expression of
many genes is controlled by multiple loci with opposing effects, avoiding large
differences between natural accessions but generating strong transgression in a
segregating population. This suggestion is supported by the differences in
heritability, as calculated from the parental and population expression analyses.
This difference between the two heritability estimates might have several reasons.
First, statistical issues might bias the outcome of the analyses. False negatives
might bias the number of genes differentially expressed between the parents
downwards, because statistical power was limited to ten replicate measurements
of each parent. On the other hand, false positives due to low signal-to-noise ratios
for low-expressed genes might bias the number of mapped genes upwards.
However, most mapped genes had medium-to-high expression levels (Figure 2A).

A second and more likely reason why mapped genes were not
significantly differently expressed between the parents, given the extent of the
difference in number, might be the complex genetic inheritance of gene expression.
Mlustrating this finding is that although the median heritability of mapped genes
was 82.4%, only a median 28.4% of the variation observed for mapped genes could
be explained by significant eQTLs. Furthermore, although the proportion of
mapped genes increased with higher heritability values, many genes with a high
heritability could not be mapped significantly. Together with the strong
transgression observed for many genes, these data imply that regulation of
expression often occurs through the added effect of numerous small-effect loci,
each of which fail to pass the significance threshold.

Because two color arrays were used in this study, a dye effect can be
expected in subsequent analyses. In our experiment, dye effect was controlled and
corrected at two levels. At the level of the experimental design, we balanced the
dye effect between two alleles by optimizing for the number of Ler/Cvi and Cvi/Ler
comparisons at each marker position (Fu and Jansen, 2006). At the analysis level
we included the gene-specific differential effect between the two dyes in the QTL
analysis model (Dobbin et al., 2005).
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Molecular background of expression variation

Many factors, ranging from abiotic external influences to direct active control of
transcriptional activity, influence the level of transcript abundance of a given gene.
Here, we focused on genetic factors contributing to whole-genome transcript
levels. Our data showed that genes whose transcript variation could be mapped
are not equally distributed over the Arabidopsis genome. Although a strong
correlation between the total number of genes per unit of chromosome and those
that could be mapped was observed, other explanations, such as differences in
chromatin structure or SNP frequency, cannot be excluded. Illustrative for this was
the correlation observed between SNP frequency and the proportion of mapped
genes.

Anchoring of the genetic map enabled us to define local versus distant
regulation. Although, in general, local regulation seems stronger, distant
regulation occurs more frequently. These findings were demonstrated by
decreasing the significance threshold; only a minor number of additional locally
regulated genes were detected, whereas the number of distantly regulated genes
increased more than two-fold. Because the vast majority of genes showing local
linkage are expected to be cis-regulated (Ronald et al., 2005), this difference in
increase can be explained by the direct influence of cis-polymorphisms on
expression, whereas trans-polymorphisms exert their effect indirectly through a
change in expression or coding sequence of a second gene. Taking together the
strong transgression observed for many genes and the number of distantly versus
locally regulated genes, it is conceivable that many cis-regulated genes exert
pleiotropic effects on the expression of other genes and are causal for many of the
eQTLs acting in trans.

Regulatory networks

For many biological processes, the genes contributing to a certain phenotype are
often well known. However, in many cases, little is known about the regulation
and interaction of these genes. We combined expression information with eQTL
mapping, gene annotation, and iterative Group Analysis to identify likely
regulators. This approach enabled, for the first time, the construction of maximum-
likelihood genetic regulatory networks from a genome-wide genetical genomics
experiment. A case study that used genes involved in the well-known process of
transition from a vegetative state to a flowering state confirmed many of the
interactions identified previously. Moreover, numerous novel interactions that can
serve to form hypothesis for future studies were predicted. It must be noted,
however, that analyses were performed on data from a single time point. It is not
unlikely that regulation occurs differently at other developmental stages or diurnal
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phase or even organ, specifically. Especially for pathways influenced by the
circadian clock, such as flowering time, expression differences at one time point
can be caused by differences in circadian phase (Michael et al., 2003; Darrah et al.,
2006). Accuracy and reliability would therefore benefit from gene expression
analysis at multiple developmental stages and time points. Nevertheless,
confidence in the followed approach was gained from the fact that many
functionally related genes grouped together, indicating common and simultaneous
regulation. We assigned the gene with the lowest PC-value as the most likely
candidate responsible for this regulation although other genes with significant PC-
values can not be ruled out a priori. Moreover, due to coincidental genetic linkage
of regulators, independently regulated genes may show a high correlation in
expression. This potential source of false candidate assignment is especially prone
to hot spots of locally regulated genes. Subsequent in-depth analysis should be
performed to unambiguously identify genes underlying eQTLs, but the number of
candidate genes decreased substantially with the described method.
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MATERIALS AND METHODS

Plant material and tissue collection

Aerial parts of seedlings from the accessions Ler and Cvi and a population of 160
recombinant inbred lines derived from a cross between these parents (Alonso-
Blanco et al., 1998b; Keurentjes et al., 2006) were grown and collected as described
previously (Keurentjes et al., 2006). In brief, seeds of lines were sown in petri dishes
on 1/2MS agar and placed in a cold room for seven days. Petri dishes were then
transferred to a climate chamber and seedlings were collected after seven days.
Plant material was stored at -80°C until further processing.

Linkage map construction and anchoring to the physical map
The genetic map was constructed from a subset of the markers available, at
http:/nasc.nott.ac.uk/, with a few new markers added. The computer program
JoinMap 4 (van Ooijen, 2006) was used for the calculation of linkage groups and
genetic distances. In total, 144 markers were used, with an average spacing of 3.5
cM. The largest distance between two markers was 10.8 cM.

To anchor the genetic map to the physical map of Arabidopsis, the total set
of 291 available markers was analyzed. First, a genetic map that comprised all 291
markers was constructed. Physical positions of molecular PCR markers were
obtained from The Arabidopsis Information Resource, release 6.0 (www.
arabidopsis.org). Sequences of amplified fragment length polymorphism markers
were obtained by in silico amplification of Col markers that were polymorphic
between Ler and Cvi (Peters ef al., 2001) or by sequencing fragments polymorphic
between Ler and Cvi but absent in Col. The retrieved marker sequences were then
blasted against the completely sequenced Col genome, and center positions of
positive hits were taken as the physical position. Physical positions could be
established for 179 markers; positions of remaining markers were inferred from
interpolation by using the closest nearby markers for which a physical position
was known. The largest gap between two markers with confirmed physical
position comprised 3.5 Mbp, which corresponded to a genetic distance of
approximately 15 cM.

Sample preparation

Total RNA of each line was isolated from two biological replicates by using
phenol-chloroform extraction (Jones et al., 1985). Extracts were then combined and
purified with RNeasy (Qiagen, Valencia, CA), amplified with the MessageAmp
aRNA kit (Ambion, Austin, TX) incorporating 5-(3-aminoallyl)-UTP, and labeled
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with Cy3 or Cy5 mono-reactive dye (Amersham, Piscataway, NJ.). All RNA
products were purified by using the Rneasy kit (Qiagen). Labeled RNA was
fragmented for 15 minutes before hybridization (fragmentation reagent obtained
from Ambion).

Microarray analyses

Arabidopsis DNA microarrays were provided by the Galbraith laboratory
(University of Arizona, Tucson, AZ) and were produced from a set of 70-mer
oligonucleotides, representing 24,065 unique genes (Array-Ready Oligo Set,
version 1.0, Qiagen-Operon).

DNA probe immobilization and hybridization was performed according to
instructions from the Galbraith laboratory. Arrays were scanned by using a
ScanArray Express HT (PerkinElmer, Wellesley, MA) and quantified by using
Imagene 6.0 (BioDiscovery, El Segundo, CA).

Experimental design

Genome-wide gene expression analysis was carried out for Ler and Cvi and an RIL
population derived from a cross between these two accessions. Ten replicates of
the parental lines were compared in direct hybridizations by using a dye swap
design. The 160 RILs were analyzed by direct hybridization of two genetically
distant lines on each array, leading to a total of 80 slides. A novel distant pair
design, which was proposed specifically for genetic studies on gene expression (Fu
and Jansen, 2006) was used. An optimal design was obtained through simulated
annealing, in which pairs of genetically distant lines were hybridized to maximize
the direct comparisons between two different alleles at each marker. The numbers
of Ler/Cvi and Cvi/Ler comparisons at each marker were optimized for equal ratio
to balance dye effects, and their total number was optimized for minimal extra
variation across other markers. The observed signal intensities on the arrays were
subjected to general normalization procedures (Yang et al., 2002; Smyth, 2004).
Resulting log signal intensities and log ratios between co-hybridized RILs were
used for further analyses.

Statistical analyses

Differential expression of genes between the two parents was tested for
significance. For each gene, the P-value of a {-test and the corresponding g-values
(Storey and Tibshirani, 2003) were computed (Smyth, 2004). The P-value
significance threshold was 2.5 x 10 at a g-value cutoff of 0.05.
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Log signal intensities of gene expression were used to test for genetic
variance of expression traits. Spot effects were removed by treating it as a random
effect in a linear mixed model.

Heritability of expression in the parental accessions was calculated as
follows (Hegmann and Possidente, 1981):

»  05xVg

" 05x Vg+Ve
where Vg and Ve represent the components of variance among and within
accessions, respectively. The factor 0.5 was applied to adjust for the 2-fold
overestimation of additive genetic variance among inbred strains.

Heritability of expression within the RIL population was calculated by
using the pooled variance of the parents as an estimate of the within line variance:

H ;IL = Vi Z Ve
VRIL
where Vi and Ve are the variance among adjusted expression intensities in the
segregants and the pooled variance within parental measurements, respectively.
To prevent overestimation, we removed outliers more than three standard
deviations away from the mean values. We discarded 1,470 (6.1%) negative
heritability values.

Transgressive segregation was determined in terms of the pooled standard
deviation of the parents (Brem and Kruglyak, 2005). We calculated the number of
RILs, n, whose expression level lay beyond the region i + 2 x SD; where u and SD
are the mean and the standard deviation of parental phenotypic values,
respectively. To determine significance, phenotype values of parents and
segregants were reassigned at random to null parents and segregants for each
transcript. The number of transgressive individuals, no, was then recorded. The
total number of transcripts with 7o greater than a given threshold m represented
the genome-wide false-positive count at m. The FDR was computed as the ratio
between estimated false-positive count at m and the number of non-permuted
transcripts with n > m. Results were averaged over 20 permutations. The FDR =
0.05 cutoff corresponded to m = 33.

Multiple QTL analysis

Gene expression in the mapping population was analyzed for significant eQTLs.
For each gene the log-ratios of signal intensities were subjected to multiple QTL
mapping (MQM). Cofactors were selected by using a backward elimination
process (Jansen, 1993) (see supplemental information at www.pnas.org/cgi/
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content/full/0610429104/DC1). For every marker-by-gene combination, the MQM
model can be given as:

y=u+bx, + Zk:bixi
i-1

where y is the expression ratio of a transcript, p is the gene-specific differential
effect between Cy3 and Cy5 dyes (characterized as consistent across samples)
(Dobbin ef al., 2005), x denotes the genotype comparison and takes the following
values: 1 for Ler/Cvi, -1 for Cvi/Ler and 0 for Ler/Ler and Cvi/Cvi; b is the
substitution effect; k is the k" marker under study; and i denotes the cofactors from
1 to mx, outside a 30-cM interval of the k marker. The P-value from a t-test that
tested the hypothesis that bx = 0 was used as a measure of significance of the
association.

A genome-wide P-value threshold of 2.23 x 10 at a = 0.05 for a single trait
was estimated by a 10,000 permutation test (Churchill and Doerge, 1994). But for a
study with 24,065 gene transcripts, we controlled the false discovery rate (FDR)
based on the pool of P-values for all markers and all transcripts. Because the P-
values are correlated when markers are linked, the FDR increases depending on
the number of markers on a chromosome (Benjamini and Yekutieli, 2001). In our
experiment, the maximum number of markers reached 35 (chromosome 5), and a
simulation analysis (data not shown) that used Storey’s algorithm to control the
FDR (Storey, 2002) at a desired level indeed showed a 4.4-fold increase of the
actual FDR. To account for this increase, we corrected the FDR by a factor of 5 and
calculated the genome wide P-value threshold at Storey’s FDR of 0.01 for all gene-
marker P-values, to make sure that the real FDR rate is <0.05 (corrected FDR =
0.05). The estimated P-value threshold then corresponded to 5.29 x 10, and this
threshold was used as a significance threshold for the detection of eQTLs.

Explained variance of detected eQTLs was estimated by fitting expression
ratios of all detected eQTLs and their interactions in a linear model. We used
ANOVA to estimate the fraction of variance explained by each eQTL and eQTL
interactions.

Local and distant regulation
We determined the physical position of each eQTL by anchoring the genetic map
of the Ler x Cvi population to the physical map of the sequenced accession Col.
Support intervals were then calculated by setting left and right border positions
associated with max{-LogiP} - 1.5, where P represents the significance value for
linkage (Keurentjes et al., 2006).

The physical positions of genes (The Arabidopsis Information Resource,
version 2005.12.8) showing significant linkage of expression values were then
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compared with the positions of their respective eQTL(s); a gene was classified as
locally regulated when its position coincided with the support interval and as
distantly regulated when it did not.

Distribution of hot spots

eQTL hot spots are shown by the frequency distribution of the number of
significant eQTLs detected. Each eQTL is presented by the marker showing the
most significant linkage. The frequency distribution of eQTLs by chance was
empirically estimated by 250 permutations (de Koning and Haley, 2005). The 95*
percentile, corresponding to 43 eQTLs, was used as a confidence threshold for the
occurrence of a hot spot.

Sliding-window analyses

All 24,065 genes analyzed were positioned on the Arabidopsis physical map, and
the ATG start codon was used as the start of each gene. Each gene was classified as
locally regulated, distantly regulated, or non-regulated. The frequency of the total
number of genes and the number of locally and distantly regulated genes along
each chromosome was determined in a 5-Mbp sliding window by using a 50-Kbp
step size.

Polymorphisms between Ler and Cvi in 875 sequenced loci (Nordborg et
al., 2005) were downloaded from the MSQT website (http://msqt.weigelworld.org)
and filtered for unique positions. INDELs were recorded as a single polymorphism
by using the physical position of the first nucleotide difference. A total number of
4,032 polymorphisms were subjected to further analysis. A sliding-window
analysis for SNP frequency was then carried out as described above.

Observed gene and SNP frequencies per window were standardized by
using the genome-wide average and standard deviation, and resulting z-scores
were plotted at the physical position of the center of each window.

Genetic network construction
A group of 83 functionally related genes and their potential regulators were used
for the construction of a genetic regulatory network. All of the genes that were
physically located in an eQTL interval were assigned as a regulator candidate for
the gene for which that eQTL was detected. The candidates were sorted by using
iterative Group Analysis (iGA) (Breitling et al., 2004). We postulated that, among
all possible regulators, the best candidates are those that correlate particularly well
to a large number of their potential target genes.

To test that postulation, we calculated all pair-wise Spearman rank
correlations on expression profiles (80 log-ratios of co-hybridized RILs) between
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each of the 83 functionally related genes and all potential regulators in their eQTL
intervals. These values were then rank-ordered so that the strongly correlated
gene-candidate pairs were at the top of the list. For each given candidate, we
determined the iGA possibility of change value (PC-value, supplemental Table 5 at
www.pnas.org/cgi/content/full/0610429104/DC1). The PC-value threshold was
Bonferroni-adjusted as 0.05/m, where m is the total number of candidate genes.
Any candidate with a significant PC-value is a putative regulator, and all genes
contributing to this value are putative target genes. We defined the regulatory
relation in terms of the sign of the correlation coefficient. If the correlation
coefficient is negative, regulation is repressive; otherwise it is stimulative.

Potential target genes outside the initial group of functionally related
genes were identified by using expression trait correlations (Lan ef al., 2006), for
which we used the regulators and target genes obtained from the iGA study as
seed transcripts. We then split the log-ratio gene-expression profile matrix (a x b)
into two parts: a1 x b and a2x b, where a is the total number of gene transcripts (a =
24,065 in our case); a1 is the number of seed transcripts; a2 is the number of other
genes (a1 + a2 = a) and b is the number of arrays (b = 80 in our case). We then
computed the Spearman correlation coefficient and its corresponding P-value
between each a1 seed gene and a: transcript. A 95 percentile empirical threshold (r =
0.55) and its corresponding FDR (Storey and Tibshirani, 2003) (FDR = 9.5 x 107%)
were estimated by performing 1,000 permutations.
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ABSTRACT

Variation for metabolite composition and content is often observed in plants.
However, it is poorly understood to what extent this variation has a genetic basis.
Here, we describe the genetic analysis of natural variation in the metabolite
composition in Arabidopsis thaliana. Instead of focusing on specific metabolites, we
have applied empirical untargeted metabolomics using Liquid Chromatography-
Time of Flight Mass Spectrometry (LC-QTOF MS). This uncovered many
qualitative and quantitative differences in metabolite accumulation between A.
thaliana accessions. Only 13.4% of the mass peaks were detected in all 14 accessions
analyzed. Quantitative Trait Locus (QTL) analysis of more than 2,000 mass peaks,
detected in a Recombinant Inbred Line (RIL) population derived from the two
most divergent accessions, enabled the identification of QTLs for about 75% of the
mass signals. More than one-third of the signals were not detected in either parent,
indicating the large potential for modification of metabolic composition through
classical breeding. Combining partial interpretation of mass signals and QTL
profiles allowed us to confirm biochemical pathways known from the literature
and also to elucidate novel biosynthesis steps. This can lead to the identification of
the underlying genes and the construction of biochemical networks in relation to
other phenotypic traits.
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INTRODUCTION

Metabolites are critical in biology, and plants are especially rich in diverse
biochemical compounds. It has been estimated that over 100,000 metabolites can be
found in plants, and each species may contain its own chemotypic expression
pattern (Wink, 1988). Moreover, substantial quantitative and qualitative variation
in metabolite composition is often observed within plant species (Windsor et al.,
2005).

Although knowledge on the regulation of metabolite formation is
increasing, for thousands of metabolites, their function in the plant, their
biosynthetic pathway and the regulation thereof is still unknown. QTL analysis of
natural variation present in segregating populations, which can also concern
metabolites (Jansen and Nap, 2001), can identify loci explaining the observed
variation (Jansen, 1993). In recent years, a few studies have focused on identifying
QTLs regulating a specific group of known metabolites using detection methods
directed toward specific metabolite groups (Mita et al., 1997; Bentsink et al., 2000;
Kliebenstein et al., 2001a; Loudet et al., 2003; Hobbs et al., 2004). However, recent
advances in mass spectrometry-based metabolomics and data processing
techniques should now allow large-scale QTL analyses of untargeted metabolic
profiles, which may uncover previously unknown regulatory functions of loci in
metabolic pathways. Using dedicated alignment software, it is now possible to
perform an unbiased comparison of large numbers of metabolite-derived masses
detectable in large numbers of samples, arising from inherently large sets of
genotypes (which are required for accurate mapping of QTLs) in an RIL
population (Tikunov et al., 2005; Vorst et al., 2005). QTL mapping will result in the
localization of loci, and ultimately genes, causal for the observed variation and will
allow the discovery of co-regulated compounds. In this way, genome-wide genetic
correlative metabolic analysis now becomes feasible, as we demonstrate here.

Relationships between biological traits are often inferred from correlation
analysis within a given data set. However, many of these correlations need not to
be causal or a result from pleiotropic effects of a common set of regulators. In
studies focusing on a small number of traits this is usually not a problem because
additional experiments can easily address this. In large data sets, such as those
from gene expression analysis and metabolomics, more sophisticated approaches
are needed to reduce the number of ‘false positive’ correlations (Kose et al., 2001;
Stuart et al., 2003). Such methods are powerful in detecting relevant relationships
and can be applied to any given data set even when data were acquired in different
experiments. However, no information can be obtained about the underlying
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genetic regulation responsible for the observed correlation. The use of a mapping
population to create comprehensive data sets, on the other hand, allows the
identification of common regulators causal for the observed correlation between
traits. Yvert et al. (2003) combined both approaches by first clustering traits based
on segregation variation and subsequent mapping of the mean cluster values.
Although this reduced multiple testing of traits and markers, noise may be
introduced when multiple QTLs segregate in the cluster therewith reducing
mapping power. Moreover, to exclude chance correlation from true coordinate
regulation, stringent thresholds need to be applied to define clusters, thus
individual outliers and less tightly linked genes are not included.

We chose to map each mass peak separately and determine relationships
by correlation analysis of QTL profiles. This enables a pair wise genetic correlation
analysis of each individual mass peak identifying related masses on the basis of co-
regulation. Although this rules out experimental error and other non-genetical
variation, we can not exclude developmental control of metabolite formation as the
cause for the observed correlation when developmental traits segregate in the
population.

75



Chapter 4

RESULTS

Metabolite variation is abundant and genetically controlled

To assess the natural variation in metabolite content present in Arabidopsis, we
performed HPLC-QTOF MS-based untargeted metabolic fingerprinting of acidified
aqueous methanol extracts from seedlings of 14 different accessions originating
from various parts of the global distribution range of Arabidopsis (supplemental
Table 1 at http://www.nature.com/naturegenetics).

Considerable quantitative and qualitative variation was observed in the
mass profiles of the different accessions. Although a metabolite may be
represented by one to several mass signals in these analyses, depending on its
chemical structure and abundance, each mass signal was treated as a separate
element in subsequent analyses. On average, 964 mass peaks were detected per
accession, with a minimum of 826 (Col) and a maximum of 1,337 (Cvi). We
detected a total of 2,475 different mass peaks; 706 were unique to single accessions,
and only 331 were present in all 14 accessions (Figure 1A). On average, 50 mass
peaks per accession were found to be unique, with a minimum of 14 (Bay-0) and a
maximum of 235 (Cvi). Although there might be a slight bias toward an
overestimation of the number of accession specific mass peaks owing to low-
abundance peaks detected around the threshold level, the observed frequency
distribution pattern was similar when the threshold level was increased from six to
ten times local noise. It can therefore be assumed that many of the differences
observed between accessions are due to qualitative differences. For most masses, a
large part of the observed variation can be assigned to genetic factors, as concluded
from their often high broad-sense heritabilities (Figure 1B). This, together with the
substantial variation in metabolite composition observed within a single plant
species promises great opportunities for metabolic engineering by classical
breeding (Dixon, 2005).
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Figure 1: Natural variation in Arabidopsis metabolite accumulation.

(A) Frequency distribution of the number of different accessions each mass peak was detected in. (B)
Frequency distribution of broad sense heritability of each mass peak detected in the different accessions.
Data are based on at least two biological replicates per accession.

Most of the metabolic variation can be mapped

To uncover loci controlling the observed variation in metabolic profiles, we
subsequently analyzed an RIL population derived from a cross between Landsberg
erecta (Ler) and Cape Verde Islands (Cvi) (Alonso-Blanco et al., 1998). These were
the two biochemically most distinct accessions for which such a mapping
population was available (Figure 2).

Strikingly, 853 of a total of 2,129 mass peaks identified in the RIL
population were not detected in either parent (Figure 3). Although the number of
lines analyzed in the RIL population (160 lines measured in duplicate) exceeded
that of the number of parental lines (5 replicates of each parent measured in
duplicate), making the chance of detecting mass peak intensities around the
threshold level higher, the observed ratio did not differ much when the threshold
was increased modestly (data not shown). This suggests that many metabolites not
present in either parent are produced as a result of the recombination of the
genomes of the two parents.
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For 1,592 mass signals (74.8%), at least one significant (P < 0.0001) QTL was
detected using a two-part parametric model (Broman, 2003). This P-threshold
corresponded to a g value of 0.0002 in Storey’s genome-wide false discovery rate
(FDR) method (Storey and Tibshirani, 2003). On average, we found nearly 2.0
QTLs per analyzed mass, leading to a total of 4,213 QTLs (supplemental Figure 2 at
http://www.nature.com/naturegenetics). Thus, after crossing these two distinct
genotypes, variation in the presence and abundance of ~75% of the detected
masses in their offspring could at least partly be explained by mappable genetic
factors (Figure 3), consistent with the relatively high heritabilities found for many
masses (supplemental Figure 3 at http://www.nature.com/naturegenetics). At more
stringent P-value thresholds of 5.0 x 105, 1 x 105, and 1 x 10, corresponding to g
values of 1 x 10+, 2.9 x 105, and 4.1 x 10, respectively, 1,500 (70.5%), 1,306 (61.3%),
and 1,068 (50.2%) mass signals showed at least one significant linkage.
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Figure 3: Number of masses detected in the RIL
population and its parents.

The triangle is subdivided into masses not
detected in either parent (upper part), detected in
one parent only (left and right) and detected in
both parents (lower part). The number of masses
for which at least one significant (P < 0.0001) QTL
was detected is shown in parentheses. Data
represent two biological replicates per RIL and 5
biological replicates for each parent measured in
2 replicate extractions.

Analysis of the genomic distribution of the detected QTLs shows that these
are not evenly distributed over the Arabidopsis genome. Instead, hot and cold
spots for the regulation of metabolic content were observed (Figure 4). This
unequal distribution of QTLs may occur for a number of reasons. Many of the
metabolites detected by the approach chosen may be biochemically related and
therefore have similar genetic control. In addition, genetic factors such as degree of
genetic differentiation and effects of differential recombination rates might
contribute to this heterogeneity. Finally, hot spots may reflect false-positive QTLs
of traits highly correlated owing to technical or environmental factors (de Koning
and Haley, 2005). We therefore computed empirical confidence levels by
permutation tests (supplemental methods at http://www.nature.com/
naturegenetics) and found that in most cases, the frequency of QTLs occurring at
hot spots was much higher than was expected by chance (Figure 4).
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Figure 4: Frequency distribution of the number of significant QTLs detected at each marker position at
four significance levels.

When, for a certain mass signal, consecutive markers showed significant linkage, only the most
significant marker was counted. Markers were evenly spaced over the genome with an average distance
of 5 cM between them. Chromosomal borders are indicated by vertical shaded lines. The dashed
horizontal lines represent the 95% genome-wide frequency confidence thresholds for regulation
hotspots obtained from 1,000 permutations. The corresponding values are 31, 23, 8, and 2 QTLs per
marker expected by chance for significance levels of 104, 5 x 10-%, 10-%, and 10 in increasing intensity,
respectively. Data represent two biological replicates per RIL.

Map positions can reveal metabolic pathways

Co-location of QTLs coincides with clusters of highly correlated mass peaks, which
are assumed to be enriched for masses regulated by the same genes. Co-regulated
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metabolites may indicate that a specific biological function controls different
components or that a specific step in a biochemical pathway is affected (Mitchell-
Olds and Pedersen, 1998). To demonstrate the latter possibility, we first focused on
the mass signals corresponding to glucosinolates, for which over 30 different
structures have already been identified in Arabidopsis (Reichelt et al., 2002). The
largest class comprises the aliphatic glucosinolates, which are all derived from
methionine (Figure 5).

Methionine
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3-methylsulfinylpropyl 4-methylsulfinylbutyl GE0X
AOP3"| AOP2™ AOP3"| AOP2™

5-methylsulfinylpentyl

6-methylsulfinylhexyl

3-hydroxypropyl 2-propenyl 4-hydroxybutyl 3-butenyl 7-methylsulfinylheptyl
GS-OH'  8-methylsulfinyloctyl
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3-benzoyloxypropyl 4-benzoyloxybutyl  2-benzoyloxy-3-butenyl 7-benzoyloxyheptyl
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Figure 5: Genetic regulation of aliphatic glucosinolate accumulation in Arabidopsis.
Corresponding loci of enzymatic steps are shown in bold next to the arrows.

Previous studies, targeted towards this class of metabolites, have shown
large quantitative and qualitative differences in accumulation of aliphatic
glucosinolates between Arabidopsis accessions (Kliebenstein et al, 2001b). In
addition, QTL analysis of these glucosinolates in the Ler x Cvi RIL population
uncovered two major loci explaining the observed variation for most aliphatic
glucosinolates (Kliebenstein et al., 200la). The MAM locus at the top of
chromosome 5 is responsible for the observed variation in chain length (Kroymann
et al., 2001), whereas the AOP locus at the top of chromosome 4 is responsible for
the observed variation in side chain modification (Kliebenstein et al., 2001c).
Moreover, both loci, which contain multiple copies of genes having different
biochemical functions, seem to control the quantitative variation in glucosinolate
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accumulation, with substantial interaction between the two loci. The MAM locus
harbors a family of methylthioalkylmalate synthase (MAM) genes. In addition to a
MAM-L (MAM-like) gene, the locus may harbor two further genes, MAM1 and
MAM? (Figure 5). Synthesis of C4 glucosinolates is completely dependent on the
presence of a functional MAM1I gene. Without this gene, C3 glucosinolates are
synthesized. The occurrence of a MAM-L gene is responsible for the formation of
glucosinolates with longer chain lengths. Both Ler and Cvi contain a functional
MAM-L gene whereas Cvi contains two MAM1 genes arranged in tandem and Ler
contains a functional MAM?2 gene in addition to a truncated, non-functional MAM1
gene (Kroymann et al., 2001). The AOP locus is also a complex region containing
genes encoding 2-oxoglutarate-dependent dioxygenases. At least three paralogs
have been identified. The function of AOP1 is still unknown but AOP2 and AOP3
functions have been described (Figure 5). All three AOP genes are present in both
Ler and Cvi but where AOP1 is expressed at similar levels, AOP2 is only expressed
in Cvi and AOP3 is only expressed in Ler (Kliebenstein et al., 2001c). Because the
specific genes of the two loci, which are phylogenetic paralogs, are physically
placed at the same genomic position, they segregate as alleles of each other.

By making use of the mass accuracy of the TOF-MS, we were able to
identify most of the aliphatic glucosinolates reported for Arabidopsis. Subsequent
QTL analysis showed that all masses corresponding to an aliphatic glucosinolate
indeed mapped to the AOP and/or MAM loci (Figure 6), thus confirming previous
findings. Epistatic analysis of the two loci revealed strong interactions for many of
the detected glucosinolates (supplemental methods and supplemental Table 2 at
http://www .nature.com/naturegenetics).

f glucosinolates detected in the RIL population.
The first QTL, at 303.3 cM, is at the AOP locus,
the second, at 409.4 cM, is at the MAM locus. The
sign of the value is related to the additive effect
at each marker position (+, Cvi; -, Ler). Solid lines
represent glucosinolates before side chain
modification and dotted lines glucosinolates
after side chain modification. Chromosomal
borders are indicated by vertical shaded lines.
Colors represent different chain lengths (black,
3C; shaded, >4C).

30 ‘ ‘ Figure 6: QTL likelihood profiles of aliphatic

[
=

QTL likelihood (-Log,,P)

100 200 300 400 500
Position (cM)

82



The genetics of plant metabolism

The fact that we did not detect all glucosinolate QTLs found in another
study (Kliebenstein et al., 2001a) is most likely explained by the use of a different
stage of plant development and differences in growing conditions. This is
supported by the fact that they found different QTLs in seeds versus leaves. The
observation that our MAM QTL was much stronger than in their study provides
another example of such a genotype x environment or genotype x developmental
stage interaction, which can be expected also for metabolites. Furthermore, we
mapped individual glucosinolates whereas Kliebenstein et al. (2001a) showed the
mapping of total aliphatic glucosinolate content.

0.43

MAM

3-Methylthiopropy! 4-Methylthiobutyl 5-Methylthiopentyl o-Methylthiohexyl  7-Methylthioheptyl

0.54

3-Benzayloxypropyl 4-Benzayloxybutyl  5-Benzayloxypentyl 6-Benzayloxyhexyl

0.97 0.44

Figure 7: Second-order genetic correlations between aliphatic glucosinolates detected in the RIL
population.

The upper panel contains glucosinolates before side chain modification; the lower panel contains
glucosinolates after side chain modification. All edges depicted are significant at o = 0.05, as determined
by permutation. Corresponding correlation values are placed next to edges.

To assess the extent of genetic overlap between any two masses, we
computed the correlation coefficients between QTL profiles (vectors of P-values
associated with markers along the genome for each mass). Strong genetic
correlations among aliphatic glucosinolates were observed due to the co-location of
QTLs (data not shown). To extract the most relevant relationships between
different glucosinolates, we also calculated second-order correlations defined by
correlation between two glucosinolates independent of co-variance with any other
pair (de la Fuente et al., 2004). The significance threshold for the second-order
correlations was empirically estimated by permutation (supplemental methods at
http://www.nature.com/naturegenetics). Significant coefficients are shown in
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Figure 7 as edges between metabolites; 0.1 false positive edges are expected by
chance. The resulting network is essentially a reconstruction of a known pathway
for glucosinolate formation (Figure 5) and groups glucosinolates according to their
specific biosynthesis steps. The fact that the reconstructed network has similarities
to the known pathway validates our methods, and the dissimilarities suggest
possible previously unknown steps in the formation of glucosinolates.

Even if no prior information had been available, our mapping data alone
suggest that at least two loci contribute to the observed variation in aliphatic
glucosinolate formation. The fact that most MAM-regulated compounds do not
show a QTL at the AOP locus and all AOP-regulated compounds also show a QTL
at the MAM locus (Figure 6) suggests that AOP acts downstream of MAM.
Furthermore, we observed high levels of side chain-modified compounds in
unexpected genotypic classes (Table 1). In contrast to previous findings
(Kliebenstein et al., 2001c), this suggests, that both AOP2 and AOP3 are expressed
in seedlings, indicating that regulation of glucosinolate formation is dependent on
developmental stage. The reverse additive effect of the AOP locus for 4-
hydroxybutyl, 2-propenyl and 4-benzoyloxybutyl formation shows that regulation
can be completely different for different growth stages, although Kliebenstein et al.
(2001c) also suggested alternative loci for 4-hydroxybutyl formation. These results
validate our combined genetic and metabolomic approach to identify co-regulated
masses and provide an independent line of evidence to validate or modify current
knowledge. An untargeted approach should therefore facilitate the annotation of
metabolites to existing or even to as-yet-unknown pathways.
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Untargeted metabolomics uncovers new biosynthetic steps

To demonstrate the power of our untargeted metabolomics approach in
uncovering previously unknown potential regulatory relationships between
metabolites, we focused on a locus on chromosome 1 at 88.6 cM, where a number
of mass signals could be mapped with high significance. We first determined the
extent of QTL overlap, expressed as the correlation coefficient, of the mass with the
most significant QTL with all other masses. Next, masses showing significant
correlation were identified by calculating their accurate mass, interpreting their
absorbance spectra (Photo Diode Array (PDA) signals) and using MS/MS
fragmentation techniques (supplemental Table 4 at http://www.nature.com/
naturegenetics). Most of the mass signals sharing this single QTL on chromosome 1
corresponded to different glycosylated flavonols (Figure 8A). The direction of the
additive effect, however, suggests that genotypic variation at this locus exerts
opposite effects on the glycosylation pattern. Lines carrying the Ler allele(s) at this
locus accumulate flavonols containing dihexosyl glycosides, whereas lines carrying
the Cvi allele(s) at this position do not. Ler genotypes, however, are able to
synthesize all flavonols detected in Cvi genotypes (Table 2 and Figure 8, B and C).
The present findings suggest that a specific not-previously-identified glycosyl
transferase, catalyzing the production of flavonol-dihexosides, is active in Ler but
not in Cvi, thus affecting total flavonol composition.

Table 2: Characteristics of putatively identified flavonols. Each flavonol is presented as its aglycone
with its distinguishing glycosylation pattern. Significance of the detected QTL on chromosome 1 at 88.6
cM for each flavonol is shown as —LogioP values and additive effect and relative abundance of each
flavonol in the parental lines is given as mass signal intensities (MC, counts at maximum peak height).

Sign. Effect Ler Cvi
Aglycone Glycosylation (-Log1oP) (MC) (MC + SE) (MC + SE)
Isorhamnetin Deoxyhexosyl-hexoside 30.7 199 247 + 54 212+ 10
Isorhamnetin Deoxyhexosyl-dihexoside 24.0 -123 258+ 18 4+ 0
Kaempferol Dideoxyhexosyl-hexoside 39.1 197 13+ 2 329+ 40
Kaempferol Deoxyhexosyl-dihexoside 29.5 -1326 1334 + 164 7+ 0
Quercetin Deoxyhexosyl-hexoside 50.7 2659 1293 +291 4928 + 517
Quercetin Deoxyhexosyl-dihexoside 24.3 -1721 3031 £ 167 4+ 0

Two genes putatively annotated as UDP-glucose:glycosyltransferases
(UGTs) based on consensus sequence homology with Family 1 UGTs coincide with
the support interval of the QTL (viz. UGT79B10 and UGT79B11) (Li et al., 2001).
UGT79B10 has been expressed as recombinant protein in Escherichia coli, but it
showed no activity against quercetin glucosides in an in vitro analysis (Lim et al.,
2004). However, the coding sequence was obtained from the Columbia accession
which might harbor allelic differences compared with Ler or Cvi. No information
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about activity of UGT79B11 is currently available, but its sequence is highly
homologous to UGT79B10, and the two genes probably arose from a duplication
event. Therefore, both genes cannot be ruled out a priori as candidates for the
observed QTL. Another possibility might be the presence of a gene in Ler that is
absent in Cvi and Col and therefore is not annotated in the Col sequence. Fine-
mapping of this locus should demonstrate whether the QTL represents an
encoding structural gene or a regulator thereof.
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Figure 8: Genetic variation in flavonol-glycoside accumulation in Arabidopsis.

(A) QTL likelihood profiles of putatively identified flavonol glycosides in the RIL population. The sign
of the value is related to the additive effect at each marker position (+, Cvi; -, Ler). Dotted and solid lines
represent flavonols with and without dihexosyl residues, respectively. Chromosomal borders are
indicated by vertical shaded lines. (B) Typical example of relative levels of flavonol-dihexoside versus
flavonol-monohexoside in the RIL population. Each symbol represents the average of two
measurements per RIL. Squares and triangles represent lines carrying a Cvi or Ler genotype at the QTL
position, respectively. (C) Typical example of flavonol dihexoside and flavonol monohexoside
accumulation in the parental lines Ler (black) and Cvi (shaded). Data represent five biological replicates
for each parent measured in two replicate extractions. In (B) and (C), values represent mass signal
intensities (MC, counts at maximum peak height). Error bars represent s.e.m.

Thus, the untargeted detection and subsequent mapping of metabolites
enabled us to identify a number of putative flavonol-glycosides not previously
reported in Arabidopsis (D'Auria and Gershenzon, 2005). Co-location of QTLs
suggests that variation in the accumulation of these flavonol species is attributable
to a single locus affecting glycosylation of the basic flavonoid backbone.
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DISCUSSION

The framework proposed here involves the untargeted detection of hundreds to
potentially thousands of metabolites in a mapping population, thus enabling the
mapping of QTLs for individual metabolites. This creates new opportunities for
pathway elucidation and identification even when background knowledge is
highly limited. We show that the biochemical variation in Arabidopsis is extensive
but is nevertheless largely under genetic control, as concluded from the
observation that genomic loci could be assigned for 75% of the LC-MS-detected
mass peaks. The use of untargeted metabolomics is particularly useful in this
context, because it allows the detection of previously unidentified metabolites.
When such metabolites are co-regulated with known metabolites, this may
facilitate the functional assignment of those unknown metabolites. Similarly,
unexpected co-occurrence of well-known metabolites can also be discovered that
would otherwise have been missed if detection was targeted to a specific subset of
compounds. Genetic variation for metabolite composition might be important in
adaptation to the specific environmental conditions in which the different
accessions grow. In addition, they determine many aspects of the nutritional,
sensory, and other aspects of crop plant quality.

Biological systems are often regulated at various molecular levels,
including the influence of metabolites on plant development. A number of studies
have indicated the influence of metabolites on whole plant morphology during
early stages of development (Alba ef al., 2005; Lumba and McCourt, 2005). Thus,
our understanding of biological function would benefit greatly from quantitative
measurements of different classes of compounds (such as proteins and metabolites)
and various processes (such as gene expression) carried out in parallel, preferably
combined with other classical phenotypic analyses (Oksman-Caldentey and Saito,
2005). The implementation of different technologies then enables association
analyses based on similar genetic control, as shown by similar QTL positions. In
particular, the use of a perpetual mapping population such as an RIL population
will have added value because co-locating QTLs can identify the genetic basis for
these associations even when different experiments have been performed (Lall et
al., 2004; DeCook et al., 2006). Our study can therefore easily be extended by using
different extraction and analysis methods or by examining contrasting plant
developmental stages. Moreover, the recent progress made in genetic analyses of
gene expression (Brem ef al., 2002; Schadlt et al., 2003) can also readily be exploited,
and this will aid further the construction of genetic regulatory networks (Jansen,
2003).
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In the past, numerous studies have shown the usefulness of natural
biodiversity for the elucidation of agronomically important traits, and pleiotropic
loci have been identified controlling different traits simultaneously (Koornneef et
al., 2004). The parallel genetic analysis of physiological, transcriptional, and
biochemical profiling can greatly enhance our understanding of metabolic
regulatory circuitry and its relationship with phenotypic traits that segregate in the
same population. The definitive identification of the most interesting chemical
compounds represented by the various mass peaks would require additional
chemical analysis. However, setting priorities for these analyses can now be
performed effectively on the identified map positions of QTLs controlling such
phenotypic traits.

Understanding the mechanisms that explain natural variation in
metabolite profiles and how this correlates with phenotype is a primary challenge
for evolutionary research and research geared to defining natural biodiversity and
maximizing its use through directed plant breeding approaches. The strategy
described here has universal application and can be used for any set of metabolites
analyzed in mapping populations of any organism.
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MATERIALS AND METHODS

Arabidopsis accessions and mapping population

Fourteen accessions of A. thaliana representing different regions of the global
distribution of the species were analyzed for quantitative genetic variation in
metabolite content. A population of 160 recombinant inbred lines derived from a
cross between the accessions Cape Verde Islands (Cvi) and Landsberg erecta (Ler)
was used for QTL mapping of metabolite content. The Fio generation has been
extensively genotyped (Alonso-Blanco et al, 1998) and is available from the
Arabidopsis Biological Resource Center. All lines were advanced to the Fis
generation, and residual heterozygous regions, estimated to be 0.71% in the Fio
generation, were genotyped again using molecular PCR markers. In addition, all
lines were genotyped with a few extra markers to improve the quality of the
genetic map. Because each line is almost completely homozygous, individuals of
the same line are genetically identical, which allows the pooling of replicate
individuals and repeated measurements to obtain a more precise estimate of
phenotype values and broad sense heritabilities.

Germination, growth conditions and harvesting

Seeds of accessions and RILs were sown on 10 ml twice-diluted Murashigi and
Skoog medium containing 2% agar in 6-cm Petri dishes. For each line, five replicate
dishes were sown on five consecutive days with a density of a few hundred seeds
per Petri dish. Petri dishes were placed in a cold room at 4°C for 7 days in the dark
to promote uniform germination. Subsequently, dishes were randomly placed in
five blocks in a climate chamber where each block contained one replicate dish of
each line. Growing conditions were 16 hr light (30 W.m?2) at 20°C, 8 hr dark at 15°C
and 75% relative humidity. After 6 days the lids of the Petri dishes were removed
to ensure seedlings were free of condensed water on the day of harvesting. On day
7, seedlings were harvested by submerging the complete Petri dish briefly in liquid
nitrogen and scraping off the aerial parts with a razor blade. Harvesting started 7
hours into the light period and all lines were harvested in random order within 2
hours. Plant material was stored at -80°C until further processing.

Extract preparation and LC-MS analysis

For each line, plant material from two dishes was harvested to make one replicate
sample and material from the other three dishes was harvested for the second
sample. Samples were ground in liquid nitrogen, and 100 mg of each sample was
weighed in 2.2 ml Eppendorf tubes. Aqueous-methanol extracts were prepared by
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adding 400 pl of ice-cold 92% methanol acidified with 0.1% (vol/vol) formic acid to
the plant sample (final methanol concentration 75%, assuming 90% water in
tissues). After sonication for 15 min and centrifugation (20,000g) for 10 min, the
extracts were transferred to 96-well protein filtration plates (Captiva 0.45 pm,
Ansys Technologies), vacuum filtrated and collected in 700-ul glass inserts in 96-
well autosampler plates (Waters Corporation), using a Genesis Workstation (Tecan
Systems Inc.). Samples were automatically injected (5 ul) and separated using an
Alliance 2795 HT system (Waters Corporation) equipped with a Luna Cis-reversed
phase column (150 x 2.1 mm, 3 um; Phenomenex, CA). Separation was performed
at 40°C by applying a 20 min gradient from 5-75% acetonitril in water, acidified
with 0.1% formic acid, at a flow rate of 0.2 ml/min. Compounds eluting from the
column were detected online, first by a Waters 996 photodiode array detector at
200-600 nm and then by a Q-TOF Ultima MS (Waters) with an Electron Spray
Ionization (ESI) source. Ions were detected in negative mode in the range of m/z
100 to 1,500, using a scan time of 900 msec and an interscan delay of 100 msec.
Desolvation temperature was 250°C with a nitrogen gas flow of 500 1/h, capillary
spray was 2.75 kV, source temperature 120°C, cone voltage was 35 V with 50 I/h
nitrogen gas flow and collision energy was 10 eV. The mass spectrometer was
calibrated using 0.05% phosphoric acid in 50% acetonitrile and leucine enkaphalin
(Sigma), detected online through a separate ESI interface every 10 sec, was used as
a lock mass for exact mass measurements. MassLynx software version 4.0 (Waters)
was used to control all instruments and for calculation of accurate masses.

Data pre-processing

The dedicated software program METALIGN (http://www.metAlign.nl) was used
for unbiased and unsupervised comparison of all LC-MS datasets (Tikunov et al.,
2005; Vorst et al., 2005). In short, the program performs automated peak centering,
local noise calculation, baseline correction and extraction of all relevant mass
signals (i.e. signal-to-noise ratio of 3 or higher) from all LC-MS datasets, and it
subsequently uses landmark-dependent alignment algorithms to correct for local
chromatographic drifts and obtain an ordered data matrix (‘aligned mass peaks'
versus samples). Mass peak signals generated are calculated as mass intensities
(ion counts) at maximum peak height.

Quality improvement by reduction of the dataset

For each sample, the number of detected masses was reduced to improve the
quality of the data set. Only masses that were detected in the optimized gradient
phase (Vorst et al., 2005) (between 3 and 20 min retention time) and that had a
signal intensity higher than six times local noise were selected for further data

91



Chapter 4

analysis. For the RIL population, masses that had a signal intensity higher than six
times local noise but that were detected in fewer than ten lines were discarded as
well.

Statistical analyses

Total phenotypic variance was partitioned into sources attributable to genotype
and error. Components of variance were used to estimate broad-sense heritability
according to the formula H? = V¢/(Vc + V.), where V¢ is the among-genotype
variance component, and V. is the residual (error) variance component of the
analysis of variance (ANOVA).

The distance between accessions, based on metabolic content, was
calculated by hierarchical clustering. Data were first transformed as (xi - ui)/sd;,
where xij is the peak intensity of the it mass in the jh accession; ui is the mean
intensity of the i mass over all accessions, and sdi is the standard deviation of the
mean intensity of the it mass over all accessions. Distance was then calculated
using euclidean methods and clusters were constructed using average linkage
clustering. To verify the clustering, we performed 1,000 bootstrap runs by using
approximately-unbiased multistep-multiscale bootstrap resampling (Shimodaira,
2004). The P-values computed indicate how strongly each cluster was supported
by the data.

Linkage map construction

Genotype data for the Ler x Cvi population individuals are available at
http:/nasc.nott.ac.uk/. The genetic map was constructed from a subset of the
markers available with a few new markers added. The computer program
JOINMAP 3.0 (Stam, 1993) (http://www.kyazma.com) was used for the calculation
of linkage groups and genetic distances. Recombination frequencies were
converted to centiMorgan distances using the Kosambi mapping function.

QTL analysis
For many masses, a spike in the phenotype distribution was observed, causing a
departure from the assumption of normal distribution. The spike was caused by
the absence of a mass peak in a considerable number of RILs, consequently leading
to signal intensities equal to the detection threshold value (four times local noise).
Because distributions were normal if only RILs were taken into account when
signal intensities were above the detection threshold, we carried out a single-
marker analysis using a two-part parametric model (Broman, 2003).

The first part describes a binominal model that tests for association of
markers with presence or absence of mass peaks. For each mass peak, let yi denote
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the mass intensity for the it RIL. Let zi = 0 if yi = 4, and zi =1 if yi > 4. We then tested
each marker for significant differences between the two genotypes for the
probability of presence of the mass peak: Ho: P{z = 11g = Ler} = P{z = 1| g = Cvi}
versus the alternative hypothesis Hi: P{z = 11¢ = Ler} # P{z =11 g = Cvi}, where g is
the genotype (Ler or Cvi) of a marker under analysis.

The second part describes a parametric model that tests for association of
markers with intensity of the mass signal for those lines where yi > 4. Under the
assumption of normal distribution, we tested each marker for significant
differences in the mean values between two genotypes: Ho: u{g = Ler} = p{g = Cvi}
versus the alternative hypothesis Hi: p{g = Ler} # u{g = Cvi}. The P-value of the
two-part model was then determined by the multiple of the P-values from the two
separate analyses (P1 and P2, respectively).

To calculate significance thresholds, we performed a simulation study
following Broman (2003). Each individual had probability 40% (the median
proportion of null phenotypes observed in mass data) of having a null phenotype
and probability 60% of having a phenotype drawn from a normal distribution with
mean 13 (the median value of mass phenotype data) and standard deviation 1. For
each of 10,000 replicates, we simulated such data under the null hypothesis of no
QTL, applied the two-part model and stored the genome-wide minimum P-value.
The 98t percentile of the P-values corresponded to 0.0001. With the real data, the g-
values corresponding to P-values were estimated using Storey’s genome-wide false
discovery rate (FDR) method (Storey and Tibshirani, 2003).

We next calculated the proportion of QTL significance explained by the
binominal part by logP1/(logP1 + logP2), where P1 and P2 are the P-values from
the two separate parts of the model respectively, (supplemental Figure 4 at
http://www.nature.com/naturegenetics). The variance explained by QTLs was
calculated for both parts separately (supplemental Figure 5 at http://www.nature.
com/naturegenetics). In the quantitative model (part II), we used ANOVA to
estimate the total sum of squares (SSww) and the sum of squares between QTL
genotypes (SSeor). The proportion of variance explained by the QTL was then
calculated as SSori/SStta. For the binominal model (part I), we used the deviance
instead of the sum of squares. We fitted the binominal data into a generalized
linear (probit) model to estimate the deviances (dev) (McCullagh and Nelder,
1989). The proportion of variance explained by the QTL in the binominal model
was then calculated as devori/deviotal.
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Calculation of genetic correlations

Various methods have been developed and applied to uncover gene regulatory
networks from expression profiles (de la Fuente et al., 2004; Bing and Hoeschele,
2005; Schadt et al., 2005) or from QTL profiles (Zhu et al., 2004). We combined and
modified the methods of Bing and Hoeschele (2005) and Zhu et al. (2004) and
calculated the second-order partial correlation on QTL profiles between any pair of
masses to assess the strength of their genetic relationship.

The calculation took three steps: (i) for each QTL significant at P < 0.0001,
the QTL support interval was determined by setting left and right border positions
associated with max{-logwP} + 1.5; that is, the 1.5-LOD drop-off interval.
Subsequently —logiP values for positions outside the support intervals were set to
zero. (ii) Pair wise correlation coefficients between any two masses were then
calculated as:

Zi Xi XY
ro= i=1
Yod 2, L2
Exi + ]_2213/ i

where rw is the correlation coefficient between mass x and y, and i (i = 1...n) is a
marker. xi and yi represent —logioP values for marker i. (iii) Finally, second-order
partial correlations were calculated. The first-order correlation between variable x
and y conditional on a single variable z is given by:

r)f]/ - rXZ ryZ

rxy\z - 2 2
1-r \-r,,

where 1wy, r= and re: are correlation coefficients on mass expression profiles
between x and y, x and z, and y and z, respectively. The second-order partial
correlation between x and y, conditional on a pair of variables z and k, is a function
of first-order coefficients:

rxy\z - rxk\zryk\z

v =
R ey ey
rxk\z ryk\z

For each pair x and y, the second-order partial correlations were calculated
conditional on each pair z and k, and the minimal value was stored. Having
calculated these minimal values for all pairs x and y for aliphatic glucosinolates,
the empirical threshold was obtained by permutation (supplemental methods at
http://www .nature.com/naturegenetics). The second-order partial correlation
coefficients between QTL profiles were computed in each of 20,000 permutations
and sorted to derive the threshold of 0.14 at o = 0.05, Bonferroni-adjusted for 17,
the number of correlation tests for each glucosinolate. We did not correct the o
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level for the number of all pair-wise analyses (17 x 18/2) to avoid over-correction.
At this threshold, on average 0.1 correlation coefficients are significant by chance.
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Integrative analyses of genetic variation in enzyme
activities of primary carbohydrate metabolism reveal
distinct modes of regulation in Arabidopsis thaliana

Joost J. B. Keurentjes, Ronan Sulpice, Yves Gibon, Jingyuan Fu, Maarten
Koornneef, Mark Stitt and Dick Vreugdenhil

ABSTRACT

Plant primary carbohydrate metabolism is complex and flexible, and is regulated
at many levels. Changes of transcript levels do not always lead to changes in
enzyme activities, and these may not always affect metabolite levels and fluxes. To
analyze interactions between these three levels of function, we have performed
parallel genetic analyses of 15 enzymatic activities involved in primary
carbohydrate metabolism, the transcript levels for their encoding structural genes,
and their substrate and product metabolites, as well as a number of other related
metabolites. Quantitative analyses of each trait were performed in the Arabidopsis
Ler x Cvi recombinant inbred line (RIL) population and subjected to correlation
and quantitative trait locus (QTL) analysis. Specific regulation was often
accompanied with correlations between traits, possibly due to developmental
control affecting several genes, enzymes, or metabolites. For a number of enzymes,
activity QTLs co-localized with expression QTLs (eQTLs) of their structural genes,
or metabolite accumulation QTLs of their substrate and product. However,
regulation often occurred through multiple loci, both due to posttranscriptional
and cis- and trans-acting transcriptional control of structural genes, as well as
independent of the structural genes. Although many of the regulatory processes in
primary carbohydrate metabolism remain to be resolved, it is clear that such
studies will benefit from the integrative genetic analysis of gene transcription,
enzyme activity, and metabolite content. The multiparallel QTL analyses of the
various interconnected transducers of biological information flow, described here
for the first time, can assist in determining the cause and consequences of genetic
regulation at different levels of complex biological systems.
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INTRODUCTION

Carbon is probably the most prevalent and important element in any life form.
Unlike most other organisms, which are dependent on uptake of organic forms of
carbon, plants fix inorganic carbon through photosynthesis. Upon fixation, most of
the inorganic carbon is converted into sucrose, which then acts as the major source
of organic carbon for further metabolism. Some of the fixed carbon is temporarily
stored as starch, and remobilized at night to support respiration and continued
synthesis and export to other tissues. To meet the various demands of a growing
plant for specific purposes, carbohydrates need to be allocated within the plant,
and converted into a plethora of compounds (Koch, 2004). Carbohydrate
metabolism in plants is more complex than in most other organisms; for example,
there are alternative routes for the mobilization and metabolization of diverse
components (Carrari et al., 2003). Furthermore, depending on the tissue, part or all
of the glycolytic pathway is present in the plastid as well as the cytosol (Lunn,
2007). Moreover, most enzymes in plant central metabolism are encoded by small
gene families (The Arabidopsis Genome Initiative, 2000; Martienssen, 2000). As a
result, a given substrate may be converted into different products, and products
can be formed from different substrates. This versatility of enzymatic reactions in
combination with substrate competition enables different metabolic routes and
creates a dense metabolic network with short pathway lengths. Perturbations in
sub parts of the network can therefore have strong consequences for other parts
and even affect plant growth and development (Sturm and Tang, 1999; Roessner et
al., 2001; Fernie et al., 2002). The complexity of the metabolic network may allow
the plant to compensate for disturbance in one route, by enhancing the flux
through an alternative route (Rontein et al., 2002). To ensure a balanced carbon
allocation through a plant’s lifecycle, a strong and tight regulation is therefore
essential. At the same time, this complexity means that there may be considerable
redundancy, at least under standardized growth conditions. There are several
reports where major changes in the expression of individual enzymes lead to little
change in metabolism (e.g. (Neuhaus et al., 1989).

Given the huge diversity in plant species, with large differences in their
energy metabolism, growth and storage of reserves, it can be expected that there
will be considerable variation in primary carbohydrate metabolism between
species, and most likely also within species. For a thorough understanding of the
role of natural variation in plant metabolism and development it is of pivotal
importance to identify the genetic basis of variation in metabolic pathways and
processes within species. The identification of genes affecting metabolic processes
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might also increase our knowledge about the regulatory control of pathways in
general. The genetic control of primary carbohydrate metabolism is highly
complex because many biochemical steps are involved, together with
environmental and developmental factors. The finding, in Arabidopsis, that large
differences in many enzyme activities and metabolite contents exist between
accessions (Mitchell-Olds and Pedersen, 1998; Cross et al., 2006), growing
conditions (Gibon et al., 2006; Morcuende et al., 2007; Osuna et al., 2007),
developmental stages (Meyer et al., 2007), time of day (Gibon et al., 2004b), and
tissues (Sergeeva et al., 2004, 2006) illustrates this complexity. Cross et al. (2006)
analyzed 24 Arabidopsis accessions for biomass production, metabolite content,
and enzyme activity. Positive correlations were observed between biomass,
enzyme activities, and carbohydrates. Further evidence for developmental control
of plant metabolism is derived from a study by Meyer et al. (2007). The authors
used GC-MS metabolic profiling of the Col x C24 RIL population in parallel with
biomass determinations. No strong correlations between individual metabolites
and biomass production could be observed but a strong canonical correlation was
observed when all metabolites were taken into account. Among the metabolites
contributing most to the observed correlation were intermediates of the hexose
phosphate pool: fructose-6-phosphate, glucose-6-phosphate, and glucose-1-
phosphate. Both positive and negative correlations between biomass and
metabolites were observed although the large majority of metabolites, including
sucrose, hexose phosphates and members of the TCA cycle, showed negative
correlations. This, and the results of Cross et al. (2006), indicates that high rates of
biomass production deplete pools of metabolites resulting in higher enzyme
activities, as was also concluded from the relationship between tomato fruit size
and metabolite content (Schauer et al., 2006). Natural variation in, and spatial and
temporal control of primary carbohydrate metabolism, therefore, suggest a tight
relationship with plant development, although it is difficult to assess cause and
consequence and regulation is highly complex.

Natural variation can be effectively analyzed in mapping populations,
offering the possibility of locating genetic factors causal for the observed variation
(Koornneef et al., 2004). Although genetics has been successfully used to analyze
quantitative variation in plant metabolism (Causse et al., 1995; Mitchell-Olds and
Pedersen, 1998; Prioul et al., 1999; Hirel et al., 2001; Rauh et al., 2002; Loudet et al.,
2003; Fridman et al., 2004; Harrison et al., 2004; Sergeeva et al., 2004, 2006; Calenge
et al., 2006; Keurentjes et al., 2006; Schauer et al., 2006), most studies addressed only
a limited number of enzymes or metabolites, and did not integrate this with
information about changes in transcript levels. Given the strong interdependency
of enzyme activities and metabolites, genetic studies can benefit enormously from
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multidisciplinary approaches (Fiehn ef al., 2001, Winnacker, 2003). To gain insight
into connectivity in metabolic networks it is therefore recommendable to analyze
as many enzymes and metabolites involved in such a network as possible. The
parallel analysis of gene expression would further enhance our understanding of
genetic regulation (Urbanczyk-Wochniak et al., 2003; Gachon et al., 2005; Hirai et al.,
2005; Gibon et al., 2006).

In the present study, we analyzed the activity of 15 different enzymes
involved in primary carbohydrate metabolism as well as the transcript levels for
their structural genes, in parallel with quantification of the most important
carbohydrates and related metabolites in the Landsberg erecta (Ler) x Cape verde
islands (Cvi) recombinant inbred line (RIL) population of Arabidopsis thaliana
(Alonso-Blanco et al., 1998). RIL populations offer unique possibilities for such
integrative studies because different types of experiments can be performed in
replicates on the same genotypes. Furthermore a large number of genetic
perturbations segregate in populations derived from crosses of distinct accessions.
A relatively large set of lines can then be analyzed for correlations between traits as
well as for quantitative trait loci (QTLs) controlling variation observed for these
traits. The advantage of Arabidopsis is that the genome has been sequenced (The
Arabidopsis Genome Initiative, 2000) and genes have been (putatively) annotated
for nearly all enzymes in primary metabolism (The Arabidopsis Information
Resource at http://www.arabidopsis.org/), allowing analysis of transcriptional
regulation of these genes.

We show that genetically controlled variation exists for the activity of
many enzymes as well as for transcript levels of their structural genes and for the
metabolites they interconvert. By comparing the localization and responses of
structural genes encoding the enzymes, eQTLs for their transcript levels, and QTLs
for enzyme activities and metabolite contents, we demonstrate that genetically
controlled regulation occurs through different modes of action and at multiple
levels.
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RESULTS

Natural variation in primary carbohydrate metabolism

To determine the extent of natural variation in primary carbohydrate metabolism
in Arabidopsis we analyzed a Recombinant Inbred Line (RIL) population of a cross
between the two distinct accessions Landsberg erecta (Ler) and Cape Verde Islands
(Cvi) (Alonso-Blanco et al., 1998). Metabolic conversion rates attributable to
enzyme activity were established for 15 specific enzymatic reactions in parallel
with determinations of pools of metabolic carbon sources (Table 1, Figure 1).
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Figure 1: Enzymatic conversions in primary carbohydrate metabolism.

Reactions are given in the biologically most relevant direction, although several enzymes can catalyze
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103



Chapter 5

Table 1: Summation of enzymes and metabolites analyzed and the abbreviations used. Reactions are
given in the direction as they were assayed although several enzymes can also catalyze the reversible

reactions.

Trait Full name Reaction
Inv Acid soluble invertase, vacuolar Sucrose + H20 2
a-D-glucose + fructose
AGP ADP-glucose pyrophosphorylase ADP-D-glucose + PPi >
o-D-glucose-1-phosphate + ATP
FBP Fructose-1,6-bisphosphate phosphatase, Fructose-1,6-bisphosphate + H:.0 >
cytosolic isoform D-fructose-6-phosphate + Pi
G6PDH Glucose-6-phosphate 1-dehydrogenase fD-glucose-6-phosphate + NADP+ >
D-glucono-&-lactone-6-phosphate + NADPH
PFK ATP dependent phosphofructokinase D-fructose-6-phosphate + ATP 2>
fructose-1,6-bisphosphate + ADP
PFP Pyrophosphate: fructose-6-phosphate 1- D-fructose-6-phosphate + PPi >
phosphotransferase fructose-1,6-bisphosphate + Pi
PGM Phosphoglucomutase o-D-glucose-1-phosphate >
a-D-glucose-6-phosphate
PGI Phosphoglucose isomerase, D-fructose-6-phosphate >
cytosolic and plastidial isoforms -D-glucose-6-phosphate
SPS Sucrose phosphate synthase D-fructose-6-phosphate + UDP-D-glucose 2
sucrose-6-phosphate + UDP
SuSy Sucrose synthase Sucrose + UDP >
UDP-D-glucose + fructose
GK Glucokinase o-D-glucose + ATP >
a-D-glucose-6-phosphate + ADP
FK Fructokinase Fructose + ATP >
D-fructose-6-phosphate + ADP
UGP UDP-glucose pyrophosphorylase UDP-D-glucose + PPi 2
a-D-glucose-1-phosphate + UTP
Rubisco Ribulose bisphosphate carboxylase/ H20 + COz + D-ribulose-1,5-bisphosphate >
oxygenase, initial and upon max activation 2 3-phosphoglycerate + 2 H*
ChlA Chlorophyl A
ChlB Chlorophyl B
AA Total Amino Acids
Protein Total Protein content
Starch Starch
Suc Sucrose
Glu Glucose
Fru Fructose
G1P o-D-glucose-1-phosphate
GopP o-D-glucose-6-phosphate
UDPG UDP-D-glucose
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Considerable variation was observed within the population for most of the
analyzed traits, with coefficients of variation (CV) ranging from 13.7 (ChlA) to
54.2% (GK) (Table 2). In general CV values were higher for enzyme activity
measurements than for contents of metabolites. A substantial part of the observed
variation could be attributed to genetic factors, as concluded from QTL analyses.
Significant QTLs were detected for ten of the enzyme activity traits and for nine
metabolite traits (Table 2, Figure 2). In a number of cases, multiple QTLs were
detected, sometimes with opposite effects, explaining the large variation and
transgression that was observed, although in general the overall effect of QTLs was
in concordance with the phenotypic differences observed between the parents.
Very few co-locating QTLs were detected for the different enzyme activities, where
co-location is defined as an overlap in 2 Mbp support intervals, even though
several of them are from the same or related pathways (Table 2, Figure 3). Co-
location of QTLs was more often the case for metabolic content due to the higher
number of QTLs detected for the metabolic traits.

Despite this evidence for strong independent regulation, suggested by the
detection of trait specific QTLs, when the values are compared across all the RILs, a
positive correlation was observed between activity levels of all the enzymes
analyzed (Figure 4). There was also a positive correlation between many enzyme
activities and the structural metabolites protein and chlorophyll. A weaker positive
correlation was observed between many enzyme activities and sucrose, amino
acids, and starch, and a weak negative correlation with reducing sugars. This
group of metabolites represents the end products of photosynthesis, and the
primary compounds resulting from nitrogen incorporation. They are exported to
the remainder of the plant or, in the case of starch, temporarily stored in the leaf
and remobilized for export in the night. Stronger negative correlations were
observed with intermediates of metabolic pathways, such as glucose-1-phosphate,
glucose-6-phosphate, and UDP-glucose. These findings suggest that higher
enzyme activities may allow higher fluxes, while lowering the levels of the
intermediary substrates in the pathways.
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Table 2: Genetic analyses of analyzed traits. The second to eighth column represent, respectively, the
coefficient of variation for trait values within the RIL population, the chromosome number on which a
QTL was detected, the position of the QTL on the chromosome in Mbp, the LOD score, percentage
explained variance and direction of effect (+, Ler > Cvi; -, Ler < Cvi) of the QTL and the 2Log ratio of trait
values for the parental accessions. PC1-8, principal components.

Trait Cv_ Chr. Mb LOD %Expl. Var Effect Log Ler/Cvi
Inv 29.1 1 4.1 5.3 13.7 - -0.13
AGP 21.3 4 12.4 3.1 8.0 + -0.02
FBP 34.7 5 14.0 3.5 9.6 - -1.00
G6PDH 39.0 -0.94
PFK 322 -0.38
PFP 26.0 0.36
PGM 37.8 1 26.9 16.0 17.5 + -0.37
5 20.9 36.4 56.3 -
PGI(cyt) 22.8 1 16.8 3.1 6.8 + 0.35
2 11.2 54 12.7 +
5 17.2 4.0 8.9 +
PGI(pla) 229 5 16.7 3.1 8.4 - 0.33
PGlI(tot) 15.5 1 14.9 3.2 8.8 + 0.34
SPS 20.6 5 7.0 6.4 18.0 + 0.36
SuSy 29.8 0.07
GK 54.2 ND
FK 47.8 5 16.6 3.6 9.4 - ND
uGp 21.8 3 0.8 17.1 37.8 - 0.12
5 52 5.1 9.3 +
Rubisco(ini) 249 0.16
Rubisco(max) 20.9 3 20.5 3.1 9.0 + 0.21
Rubisco(ratio) 33.2 -0.50
ChlA 13.7 2 11.2 3.7 7.4 + 0.43
3 0.3 34 6.8 +
4 10.6 34 6.7 +
5 1.7 3.8 7.6 +
ChlB 14.0 0.32
AA 15.0 2 8.5 5.3 8.9 -0.53
2 16.2 3.9 6.2 -
3 0.3 47 7.5 +
4 13.9 5.1 8.6 -
5 14.0 4.1 6.6 -
Protein 14.2 2 12.9 32 7.6 0.35
3 7.4 32 7.6
Starch 17.8 -0.04
Suc 15.2 3 15.6 3.4 8.5 - 0.39
3 233 5.8 15.1 +
Glu 20.4 1 49 8.5 19.2 - 0.10
2 11.2 44 9.1 -
3 13.0 5.8 13.8 -
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Table 2: Continued.

Trait CvV_ Chr. Mb LOD %Expl. Var Effect 2Log Ler/Cvi

Fru 19.4 1 5.4 5.0 10.9 - 0.03
3 7.9 11.7 27.5 +
3 13.0 6.2 15.3 -

G1P 32.7 3 0.3 4.5 12.1 - -0.56
5 72 33 8.8 +

G6P 35.8 3 1.3 4.0 13.0 - -0.38

UDPG 24.7 3 0.8 35.9 64.9 - -0.71

PC1 2 11.2 4.7 11.6 +

PC2 3 0.3 28.2 54.6 -

PC3 1 4.4 4.7 13.0 -

PC4

PC5 5 8.6 4.1 11.9 -

PCé6 3 7.0 7.1 19.0 +

PC7 5 18.2 10.8 28.5 -

PC8 5 1.3 4.2 11.9 +
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Figure 2: Heatmap of QTL profiles of each analyzed trait.
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Shading intensities represent LOD scores. Positive effect loci are projected in decreasing intensity and
negative effect loci in increasing intensity. Chromosomal borders are indicated by vertical shaded lines
and the position of structural genes for the enzyme by triangles. Transcriptional regulation of structural
genes is indicated by shading intensity of the triangles; Solid, local eQTL; shaded, distant eQTL; open,
no eQTLs detected or gene not analyzed.
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Figure 3: QTL co-location network of analyzed genes, enzymes and metabolites.

Edges between planes represent, respectively: between genes and enzymes: solid, position of structural
gene co-locating with enzyme activity QTL; dashed, cis-eQTL co-locating with enzyme activity QTL;
dotted, trans-eQTL co-locating with enzyme activity QTL; between enzymes and metabolites: solid,
enzyme activity QTL co-locating with metabolite content QTL; dashed, enzymes connected to their
substrate and/or product metabolites. Solid edges within planes connect traits with co-locating QTLs.
Co-location was defined as an overlap in QTL support intervals.
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To determine whether we could identify a common factor explaining the
observed correlations we performed a principal component analysis (PCA) on all
traits analyzed. For most traits a large part of the variation could be extracted in
eight principal components (PC), explaining together 68% of the observed
variation (Table 3). By far the best representative of all traits was PC1, which
explained over 28% of the variance. Interestingly, in PC1 positive values were
obtained for the enzyme activity traits and some end products, while negative
values were obtained for the hexose pools, which is in line with the observed
correlations between these traits. When the corresponding PC values for the
individual RILs were subjected to QTL analysis a strong QTL for PCl was
observed at 11.2 Mbp on chromosome 2, which corresponds to the position of
ERECTA (Table 2). This locus was also identified as a QTL for cytosolic
phosphoglucose isomerase activity, chlorophyll A and glucose content. The
ERECTA gene is polymorphic between the population’s parental accessions Ler
and Cvi (Alonso-Blanco et al., 1998) and causal for many of the morphological and
developmental differences observed between these accessions (Torii et al., 1996;
Juenger et al., 2005; Masle et al., 2005). Moreover, ERECTA has been shown to exert
pleiotropic effects on many growth related and metabolic traits (El-Lithy et al.,
2004; Keurentjes et al., 2006, 2007a). It is therefore conceivable that ERECTA is
responsible for a subtle simultaneous regulation of primary carbon metabolism, in
parallel with its effects on development. It has been suggested earlier that there
may be such links, but without any specific suggestions as to which genes might be
involved (Cross et al., 2006; Meyer et al., 2007). Other PCs merely explain variation
in a specific subset of traits, e.g. PC2 best explains most of the variation observed
for UDP-glucose pyrophosphorylase, glucose-1-phosphate, glucose-6-phosphate
and UDP-glucose. All of these traits show a QTL at the same position at the top of
chromosome three, where a QTL for PC2 was also detected (Table 2) (see below for
further discussion).
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Table 3: Principal component analysis. Columns represent respectively the proportion of variance that
could be explained by all components and by each component separately for the different traits
analyzed. The last row represents the percentage of explained variance of all traits by all components

and by each component separately.

Extraction PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Inv 0.44 0.22 0.27 0.41 -0.24 0.06 0.26 -0.17  -0.01
AGP 0.64 0.78 0.06 0.10 -0.05 0.09 -0.01 0.03 0.05
FBP 0.53 0.48 0.21 0.15 -0.04 0.17 0.22 0.31 -0.24
G6PDH 0.59 0.70 -0.11 0.09 -0.06 0.23 0.09 -0.14 -0.10
PFK 0.42 0.56 0.02 -0.04 0.04 0.00 0.28 -0.15 -0.08
PFP 0.82 0.83 0.21 -0.06 -0.11 0.03 -0.05 0.13 -0.21
PGM 0.65 0.54 0.04 0.15 -0.19 0.09 -0.02 0.49 0.20
PGI(cyt) 0.70 0.76 0.12 -0.09 0.01 -0.08 0.13 -0.25 -0.10
PGl(pla) 0.84 0.33 -0.11 0.30 -0.54 -0.19 -0.54 -0.06 0.01
PGlI(tot) 0.89 0.71 -0.04 0.16 -0.38 -0.22 -0.34 -0.23 -0.01
SPS 0.58 0.65 0.30 0.11 0.07 -0.15 -0.13 -0.04 -0.06
SuSy 0.35 0.45 0.14 -0.01 -0.12 -0.01 0.15 -0.05 -0.30
GK 0.51 0.60 0.02 0.02 -0.31 0.04 0.17 -0.11 0.06
FK 0.54 0.49 -0.23 0.06 -0.28 0.15 0.17 0.31 0.13
UGP 0.72 0.51 0.57 0.16 0.25 0.05 -0.18 0.08 -0.04
Rubisco(ini) 0.91 0.51 -0.20 0.10 0.33 0.53 -0.41 -0.16 0.13
Rubisco(max) 0.73 0.54 0.01 0.07 0.40 -0.29 -0.37 -0.10 0.21
Rubisco(ratio) 0.93 0.09 -0.24 0.05 0.02 0.91 -0.10 -0.10 -0.03
chlA 0.83 0.73 -0.24 -0.14 0.20 -0.15 0.25 -0.02 0.32
chlB 0.78 0.68 -0.19 -0.17 0.11 -0.05 0.36 -0.06 0.33
AA 0.70 0.13 -0.52 -0.01 0.13 -0.08 -0.25 0.51 -0.26
Protein 0.74 0.80 -0.13 -0.10 0.14 -0.10 0.06 0.02 0.18
Starch 0.59 0.55 -0.25 0.02 0.31 -0.18 -0.10 0.15 -0.25
Suc 0.70 0.24 -0.23 0.50 0.48 -0.11 0.19 0.02 -0.24
Glu 0.86 -0.39 -0.30 0.78 0.01 -0.11 0.06 -0.03 0.00
Fru 0.79 -027 -0.39 0.68 -0.01 -0.03 0.22 -0.07 0.23
GI1P 0.69 -0.14 0.57 0.13 -0.01 0.04 0.00 0.39 0.43
Gé6P 0.48 -0.16 0.54 0.22 0.09 0.02 0.23 0.01 -0.23
UDPG 0.70 -0.13 0.69 0.26 0.27 0.09 -0.19 -0.07 0.15
% of Variance 67.82 28.25 9.08 6.64 5.47 5.36 5.25 4.00 3.77
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Figure 4: Correlation matrix of analyzed enzymes and metabolites.

Values and shading intensities represent spearman rank correlation coefficients between two traits.

Relationship between structural gene expression and enzyme activity

The structural genes encoding enzymes capable of specific conversions are known
for most steps in the metabolic pathways of primary carbohydrate metabolism in
Arabidopsis. As noted in the introduction, in most cases multiple genes have been
annotated. This redundancy in structural genes possibly results from a number of
genome duplications during the evolutionary history of Arabidopsis (The
Arabidopsis Genome Initiative, 2000). Empirical evidence for biological activity
exists only for a limited number of genes, although for many, two or more genes
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may be needed as a minimum to encode the enzymes in different tissues and
subcellular compartments. Many of the annotations are based on homology with
genes with known biological activity, but functional analyses have not been
performed. Furthermore homologous and paralogous genes might have lost or
modified functions or their expression pattern might have changed.

Several cases were found where the position of structural genes co-locates
with QTLs for activity of their encoded enzymes (Figure 2, Table 4), including
invertase, phosphoglucomutase, phosphoglucose isomerase, sucrose phosphate
synthase, and UDP-glucose pyrophosphorylase. In these cases, the variation
observed in enzyme activity is most likely to be due to polymorphisms in the
encoding structural genes. Such polymorphisms may occur (i) in the coding region
of genes leading to an alteration of the specific activity or stability, or (ii) in
promoter regions that affect transcription efficiency and subsequently protein
levels. In the former case the changes of activity should be independent of changes
of the transcript levels, whereas in the latter case they will be accompanied by
qualitatively similar changes of transcript levels. To distinguish between these
possibilities, we analyzed transcript levels for all of the putative structural genes,
in parallel with the aforementioned enzyme activity assays. Samples were
analyzed on full genome arrays (Keurentjes et al., 2007b); signal intensities for each
RIL were used to calculate the correlation coefficient between individual transcript
levels and enzyme activities, and signal ratios of pairs of RILs on the same slide
were used for QTL analyses.

Only a weak to medium correlation between enzyme activities and the
transcript levels of the putative structural genes was observed (Table 4); (see later
for a discussion of possible reasons). However, in some cases significant
correlations were found. The strongest correlations were observed for structural
genes co-locating with enzyme activity QTLs, indicating that part of the variation
observed in enzyme activity can be explained by differential expression of
structural genes. This is further supported by the fact that nearly all correlations of
transcript levels of these genes with enzyme activities were positive. The only
exception was a small non-significant negative correlation of a phosphoglucose
mutase gene (Atl1g70820). Negative correlations possibly result from phase shifts in
transcription and translation; although other explanations are also possible (see
discussion).
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Table 4: Statistics of structural genes. Columns represent respectively the encoded enzymes, the AGI
gene codes of structural genes, the position of the structural gene on the chromosome indicated in the
AGI code, the spearman rank correlation coefficient between enzyme activity and gene transcript levels,
the P-value of the correlation coefficient, the chromosome number and, in parentheses, the position in
Mbp, the LOD score, and the direction of effect (+, Ler > Cvi; -, Ler < Cvi) of detected eQTLs. Genes and
eQTL positions in boldface co-locate with QTLs detected for enzyme activity. When more then one
eQTL was detected, positions, LOD scores, and effects of the different eQTLs are separated by a
semicolon. NA, Not Analyzed; NS, Not Significant.

Enzyme Gene Mb R P eQTL LOD Effect
Inv at1g12240 4.15 019 1.8E-02 1(4.1) 6.4 -
at1g62660 23.20 -0.06  4.8E-01 1(7.9); 3(20.0) 37,33 - -
AGP at1g27680 9.63 -0.08  3.2E-01 1(10.2) 3.0 -
at1g05610 1.67 -0.04  6.1E-01 1(28.8); 3(20.5) 4.0;3.5 -+
at1g74910 28.14 024 3.2E-03 1(22.3);1(26.4) 3.7,4.0 ++
at2g04650 1.62 0.03 7.4E-01 NS
at2g21590 9.25 -0.02  85E-01 NS
at3g03250 0.75 -0.26  1.1E-03  1(12.5); 3(1.4); 3(20.5) 32;,151;32 - -
at4g39210 18.26 -020  1.4E-02 3(18.6) 3.5 -
at5g17310 5.70 -023  3.9E-03 3(4.1) 9.6 -
at5g19220 6.46 023 3.4E-03 5(8.1) 6.2 +

atbg48300 19.59 015 6.2E-02 NS

FBP atlga3670 1647 001 9.1E-01 1(12.2) 31 -
at3g54050  20.03  -0.15 7.2E-02 NS
at5g64380 2576  0.03  75E-01 5(22.4) 43 -
G6PDH  at1g09420 304  -0.06 45E-01 1(3.1) 48 -
at1g24280 861 031 84E-05 2(6.9) 3.1 +
at3g27300 1008 017 37E-02 4(0.3) 35 -
at5g13110 416  -002 7.6E-01 NS
at5g35790 1397 012  13B-01 4(0.3);4(139);5(167)  3.1;3.2;47 ;-
at5g40760 1633 0.06 4.9E-01 5(16.7) 8.9 +
PFK atlgad766 1655  NA
atlg59810  22.01 NA
at2g22480 955 013 11E-01 1(18.0);2(18.3);52.5)  3.7;4.9;3.6  ++-
at4g26270 1330 025 14E-03  2(10.0);2(11.2) 3.1;35 4
at4g29220 1440  -0.08 34E-01 NS
at5g03300 080 010 20E-01 5(0.8) 21.7 +

at5g47810 19.37 0.04 64E-01 NS
at5g56630 22.94 -0.01  9.0E-01 NS
atbg61580 24.78 0.09 28E-01 NS
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Table 4: Continued.

Enzyme Gene Mb R p eQTL LOD Effect
PFP at1g12000 4.05 001 93E-01 NS
at1g20950 7.30 001 93E-01 NS
atlg76550 28.73 035 95E-06 NS
at2g05150 1.86 NA
at4g04040 1.94 -0.15  6.3E-02 1(3.8) 35 +
at4g08876 5.68 NA
at4g32840 15.84 027 77E-04 NS
PGM at1g23190 8.22 011 17E-01 NS
at1g70730 26.67 0.04 6.3E-01 NS
at1g70820 26.71 -0.13  1.1E-01 1(28.0) 5.6 -
at5g17530 0.58 NA
at5g51820 21.08 0.69  4.4E-23 5(1.7);5(21.0) 7.4;36.6 + -
PGI(Cyt)  at1g30560 10.82 -0.02  8.4E-01 4(6.6); 4(10.6) 34,34 ++
at4g25220 12.92 032 4.6E-05 2(11.2) 3.1
at5g42740 17.15 019 16E-02 NS
PGI(Pla) at4g24620 12.71 -0.17  3.0E-02 NS
PGI(Tot)  atlg30560 10.82 0.01  9.3E-01 4(6.6); 4(10.6) 34;34 ++
at4g24620 12.71 -023  35E-03 NS
at4g25220 12.92 0.15 5.8E-02 2(11.2) 3.1 +
at5g42740 17.15 017 3.1E-02 NS
SPS at1g04920 1.39 0.10 22E-01 NS
atlgl16570 5.67 012 13E-01 NS
at4g10120 6.31 -0.08  3.1E-01 4(6.2) 7.0 +
at5g11110 3.54 0.13 1.2E-01 5(3.7) 4.5
at5g20280 6.84 023 4.2E-03 5(7.2) 9.2
SuSy at1g73370 27.59 0.16  4.0E-02 5(14.0) 8.2 -
at3g43190 15.19 -0.07  4.0E-01 NS
at4g02280 0.99 0.07 3.8E-01 NS
at5g20830 7.05 0.10 21E-01 NS
at5g37180 14.74 0.14 77E-02 NS
at5g49190 19.96 027 55E-04 NS
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Table 4: Continued.

Enzyme Gene Mb R p eQTL LOD Effect
GK at1g30660 10.88 0.18 25E-02 NS
at1g47840 17.62 0.04 6.5E-01 1(16.8) 3.8 -
at1g50460 18.70 0.02 79E-01 1(18.0) 17.0 -
at2g19860 8.58 0.10 23E-01 NS
at3g20040 6.99 022 6.3E-03 NS
at4g29130 14.35 007 4.0E-01 NS
atdg37840 17.79 019 20E-02 NS
FK at1g06020 1.82 -0.09 27E-01 NS
at1g06030 1.83 0.01 88E-01 NS
at1g30660 10.88 0.17  3.1E-02 NS
at1g47840 17.62 -0.11  1.6E-01 1(16.8) 3.8 -
at1g50390 18.67 NA
at1g50460 18.70 -0.09  29E-01 1(18.0) 17.0 -
at1g66430 24.78 -0.11  1.6E-01 1(28.8); 2(16.8) 3.4;3.5 - -
at1g69200 26.02 -0.07  4.0E-01 NS
at2g19860 8.58 -0.03  72E-01 NS
at2g31390 13.39 -0.15  7.2E-02  2(12.5) 5.0 -
at3g20040 6.99 022 53E-03 NS
at3g54090 20.04 026  1.2E-03 3(11.0) 3.3 +
at3g59480 21.99 0.05 5.6E-01 NS
at4g10260 6.37 NA
at4g29130 14.35 0.18 25E-02 NS
atdg37840 17.79 019 17E-02 NS
at5g51830 21.09 027  5.8E-04 5(21.0) 26.4 -
uGp at3g03250 0.75 041 13E-07 1(12.5);3(1.4) 4.5;439 -
at5g17310 5.70 042  7.1E-08 1(12.5);3(1.9) 4.6;30.3 -
Rubisco at1g34630 12.69 019 19E-02 1(13.4) 3.0 -
atlg67090 25.05 -0.03 73E-01 NS
at5g38410 15.39 0.02 84E-01 NS
at5g38420 15.40 NA
at5g38430 15.40 0.05 52E-01 NS
at5g58240 23.58 020 1.3E-02 NS

We next subjected the observed transcript levels of the structural genes to
QTL analyses. For each encoded enzyme; we found significant QTLs for at least
one of the encoding structural genes (eQTLs) (Table 4). Both local and distant
regulation was observed, as judged from the position of genes and their respective
eQTLs; locally observed eQTLs indicate that regulation occurs in cis whereas
distant eQTLs suggests regulation to occur in trans (Rockman and Kruglyak, 2006).
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Examples of strong local regulation include UDP-glucose pyrophosphorylase
(At3g03250), phosphoglucomutase (At5g51820), phosphofructokinase (At5g03300),
and hexokinase (At1g50460). As noted above, enzyme activity correlated with the
transcript level for several of these genes. Moreover, strong local regulation of
structural genes co-locating with a QTL for activity of their encoded enzyme was
observed [e.g. invertase (Atlgl2240), phosphoglucomutase (Atlg70820 and
At5g51820), sucrose phosphate synthase (At5g20280), and UDP-glucose
pyrophosphorylase (At3g03250)]. The only exception was a structural gene for
UDP-glucose pyrophosphorylase (At5g17310), which showed strong distant
regulation. These findings again suggest that cis-regulatory variation in expression
of structural genes is at least partly responsible for observed variation in enzyme
activity.

In other cases, both locally and distantly acting significant eQTLs for
structural genes, that did not co-locate with QTLs for enzyme activity, were found,
even though significant correlation was sometimes observed between transcript
levels of these genes and enzyme activity. In the case of cytosolic phosphoglucose
isomerase a trans-acting eQTL for a structural gene (At4g25220) co-locates with a
QTL for enzyme activity (Table 4). Moreover, of all genes annotated as a
phosphoglucose isomerase, the transcript levels of this gene showed the highest
correlation with enzyme activity. This indicates that also trans-acting regulatory
variation in structural gene transcription can explain variation observed in enzyme
activity. For two structural genes, co-locating with their encoding enzyme activity
QTLs (viz. Atlg70730, phosphoglucomutase and At5g42740, cytosolic
phosphoglucose isomerase), no significant eQTL was observed.

Finally, both locally and distantly acting significant eQTLs for structural
genes were detected without coinciding positions of genes and activity QTLs or co-
locating (e)QTLs and for which no significant correlation between transcript level
and enzyme activity was found. These findings suggest that not all annotated
genes actually contribute to the observed activity of the putatively encoded
enzyme and might serve other functions independently regulated from their
current annotation. However, our results do not exclude other explanations, such
as spatial and temporal control, post-transcriptional and (post)-translational
regulation, additive effects of multiple genes, and temporal shifts between
transcription and translation (see also discussion).
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Different modes of action in the genetic control of enzymatic activity

Although variation in activity was observed for many of the analyzed enzymes,
the strongest genetically controlled variation was found for phosphoglucomutase
(PGM) and UDP-glucose pyrophosphorylase (UGP). For these two enzymes, we
also investigated substrate and product levels. When combined with the parallel
analysis of transcript levels of the structural genes, this offers the opportunity of
gaining deeper insight into the mechanisms of genetic regulation of these traits.

For PGM-activity two highly significant QTLs were detected with opposite
effects (Figure 5A). One strong activity QTL for PGM was detected at the lower
arm of chromosome five, with activity being strongly decreased in Ler genotypes
for this locus, compared to Cvi genotypes. This activity QTL co-located with a
structural gene for the plastidic PGM (At5g51820 (PGM1) (Kofler et al., 2000;
Periappuram et al., 2000). QTL analysis of transcript levels of this gene revealed an
equally significant eQTL at the identical position of this structural gene and the
enzyme activity QTL. Since the direction of the additive effect of both QTLs is also
identical, this suggests that cis-regulatory variation in the expression of a structural
gene is causal for the observed variation in enzyme activity. The second activity
QTL for PGM is located on the lower arm of chromosome 1 and coincides with two
putatively annotated structural genes for cytosolic isoforms of PGM (Atlg70730
and Atlg70820 (The Arabidopsis Information Resource). No eQTL could be
detected explaining variation in transcript levels of Atlg70730, but a minor eQTL
was detected explaining transcript level variation of At1g70820. This minor eQTL
was located at a similar position as the QTL for PGM-activity, although with an
opposite additive effect. There are several alternative explanations why an eQTL
and activity QTL have different signs. One is that a polymorphism in the structural
gene is leading to increased activity or protein stability, which results in changes of
metabolites that weakly repress the transcription of the structural gene (negative
feedback). Another is that there are actually two cis polymorphisms, one affecting
transcription and one affecting protein function, which interact to regulate the
eventual level of enzyme activity. The Ler allele, compared to the Cvi allele, then
leads to lower transcript levels but the encoded enzyme shows higher activity for
the conversion of G1P into G6P. For Atlg70730, functional polymorphisms in the
coding sequence alone could explain the observed variation in enzyme activity
since no genetically regulated variation in transcript levels was observed for this
gene.
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Figure 5: QTL profiles and boxplots of PGM related traits.

(A) LOD scores plotted against genomic position, the sign of the LOD score is determined by the
direction of effect (+, Ler > Cvi; -, Ler < Cvi). Solid line, PGM activity; dotted line, GI1P content; dashed
line, G6P content; shaded solid line Atlg70820 expression level; shaded dotted line, At5g51820
expression level. Shaded triangles indicate positions of structural genes: 1, At1g70820; 5, At5g51820. (B)
Boxplots for four genotypic classes. Each class represents genotypic identical individuals for the two
QTLs at chromosome one and five (from left to right: A1As, AiBs, BiAs, BiBs; A = Ler, B = Cvi). Boxplots
show the median, interquartile range, outliers (0) and extreme cases (*) of individual variables. All traits
are plotted in arbitrary units.

The levels of substrate and product of PGM were not affected by PGM-
activity QTLs (Figure 5B). Although minor QTLs were detected for glucose-1-
phosphate (G1P) and glucose-6-phosphate (G6P) content, these did not co-locate
with QTLs for PGM-activity, suggesting that the size of the hexose phosphate pool
is not determined by flux rates, as catalyzed by PGM, but regulated independently.
Note that G1P and G6P are present in the plastid and the cytosol, with larger pools
in the cytosol. As the strong PGM-activity QTL is likely to be caused by the
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plastidic PGM, then quite large changes in the pools of the plastid might not have
been seen in the overall measurements.

In contrast, strong co-regulation was observed for the activity of UGP and
its metabolite substrate UDP-glucose (UDPG) and to a lesser degree its product
G1P. Two QTLs with opposite effect were detected for UGP-activity, each of them
co-locating with a putatively annotated structural gene (Figure 6A). The UGP-
activity QTL at the top of chromosome three co-locates with the position of the
structural gene At3g03250, for which an eQTL with the same direction of effect was
detected at the identical position. This suggests that variation in UGP-activity can
be explained by cis-regulated differences in transcript levels of At3g03250. The
second QTL for UGP-activity maps to the upper arm of chromosome five, and co-
locates with the structural gene At5g17310. When the At5g17310 transcript levels
were subjected to QTL analysis, a highly significant trans-acting eQTL was
detected at the same position as the chromosome three UGP-activity QTL and the
At3g03250 eQTL, and with the same direction of effect. This implies that the UGP-
activity QTL at chromosome five cannot be explained by transcription differences
of At5g17310, but might result from cis polymorphisms in the coding sequence.
Instead, transcript level differences of At5g17310 might contribute to the
chromosome three UGP-activity QTL. Although the encoded enzyme of the Cvi
allele of At5g17310, compared to the Ler allele, might have a lower specific activity
it is much stronger transcribed in lines carrying the Cvi genotype at the
chromosome three locus (figure 6B). Given the strong homology in sequence and
function between At3g03250 and At5g17310, and the fact that for both genes a
highly significant eQTL was detected at an identical position, it is likely that they
are co-regulated by the same genetic factor. This could imply that At3g03250 is not
cis-regulated, as suggested earlier, but, like At5g17310, is regulated in trans by a
tightly linked locus.

Interestingly, a QTL for both UDPG- and G1P-content was detected at the
chromosome three locus (Figure 6A), each with the same direction of effect as the
(€)QTLs for UGP-activity and gene transcript levels. The direction of effect and the
position of the G1P QTL can be explained by product accumulation (G1P) upon
higher conversion rates of UGP. However, the direction of the highly significant
QTL for the substrate UDPG is against expectations since increasing conversion
rates are incompatible with accumulation of substrate (UDPG). It is therefore
unlikely that UDPG content is controlled by the activity level of UGP. Instead, we
hypothesize that accumulation of UDPG triggers upregulation of the expression of
UGP encoding genes leading to higher enzyme activity and accumulation of G1P.
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Figure 6: QTL profiles and boxplots of UGP related traits.

(A) LOD scores plotted against genomic position, the sign of the LOD score is determined by the
direction of effect (+, Ler > Cvi; -, Ler < Cvi). Solid line, UGP activity; dotted line, UDPG content; dashed
line, GI1P content; shaded solid line At3g03250 expression level; shaded dotted line, At5g17310
expression level. Shaded triangles indicate positions of structural genes: 3, At3g03250; 5, At5g17310. (B)
Boxplots for four genotypic classes. Each class represents genotypic identical individuals for the two
QTLs at chromosome three and five (from left to right: AsAs, AsBs, BsAs, BsBs; A = Ler, B = Cvi). Boxplots
show the median, interquartile range, outliers (0) and extreme cases (*) of individual variables. All traits

are plotted in arbitrary units.
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DISCUSSION

Natural variation in primary carbohydrate metabolism

Natural diversity provides a rich source of genetic perturbations which has been
effectively analyzed for carbohydrate metabolism by quantitative genetics in a
number of studies and a variety of plant species (Causse et al., 1995; Eshed and
Zamir, 1995; Mitchell-Olds and Pedersen, 1998; Prioul et al., 1999; Chen et al., 2001;
Fridman et al., 2004; Sergeeva et al., 2004, 2006; Li et al., 2005; Cross et al., 2006;
Schauer et al., 2006). However, most of these studies did not incorporate
transcription analysis of relevant genes or even combined enzyme activity and
metabolite content measurements. Here we present, for the first time, a
comprehensive genetic analysis of all intermediate entities of the path from
genotype-to-phenotype, including gene transcription, enzyme activity, and
metabolite content. We have shown that natural variation in primary carbohydrate
metabolism is extensive in Arabidopsis. A substantial part of this variation was
attributable to genetic regulation, resulting in many QTLs detected for the
analyzed traits; including 15 QTLs for the 15 enzyme activities and 23 QTLs for the
11 metabolites analysed in this study. Many of those QTLs could be explained by
genetic variation in structural genes.

Several other studies in Arabidopsis have reported QTL analyses of
carbohydrate metabolism traits in RIL populations. Mitchell-Olds and Pedersen
(1998) analyzed activities of ten enzymes among which phosphoglucose isomerase
(PGI), phosphoglucomutase (PGM) and fructose-1,6-bisphosphate phosphatase
(FBP) in the Col x Ler RIL population. No QTL was found for FBP, in contrast to
our findings. For PGI two QTLs were found at other positions than the three loci
identified in our study. The single QTL for PGM on chromosome five however co-
located with one of the QTLs identified in our study. PGM activity was also
analyzed in the Ler x Cvi population by Sergeeva et al. (2004) who reported at least
three QTLs, of which two co-located with the two QTLs found in our study. In
another study by Sergeeva et al. (2006), soluble acid invertase (Inv) activity was
analyzed in the Ler x Cvi population revealing several QTLs, among which the one
that was confirmed in our analyses.

With respect to metabolite QTLs, amino acid content was analyzed in the
Bay-0 x Sha population by Loudet et al. (2003). Similar to our results a high number
of QTLs were detected of which a few co-located. However, no co-location was
observed between the most significant QTLs in both studies. The extracts used in
the study of Loudet et al. (2003) were also analyzed for starch, glucose, fructose,
and sucrose content (Calenge et al., 2006). Multiple QTLs were detected for each
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analyzed trait under the two different environmental conditions that were tested.
QTLs for starch content were not detected in our study, possibly due to differences
in sampling time point and growth stage. For glucose, fructose, and sucrose
multiple QTLs were also detected in our study. However, co-location with QTLs
detected by Calenge et al. (2006) was only observed for the strongest QTL for
glucose content on chromosome 1 and for a minor QTL for fructose content on
chromosome 3. The evident dissimilarities between the different studies might
reflect genotypic differences between populations or differences in developmental
stage, timing of sampling, or environmental growth conditions. Loudet et al. (2003)
and Calenge et al. (2006) showed large differences in regulation of carbohydrate
content when plants were grown under different nitrogen supply regimes.
Moreover, Sergeeva et al. (2004, 2006) showed organ specific regulation of enzyme
activity. These results illustrate that genetic regulation of primary carbohydrate
metabolism is under spatial and temporal control involving a multitude of loci,
which can be revealed depending on genotype, environment, development stages,
and their mutual interactions.

Nevertheless, residual fractions of variance could often not be explained
by detected QTLs due to minor environmental and developmental differences
between samples, and sampling and analytical variation. When high fractions of
unexplained residual variation are observed this might also reflect the complex
regulation of primary carbohydrate metabolism due to the genetic regulation by
many QTLs, each with a relatively small effect. Such minor QTLs may fail to pass
the QTL significance threshold. Segregation of these small-effect QTLs, however, in
addition to possible epistatic interactions, may contribute to transgression and to
the large genetic variation that is observed. Another indication of the complex
regulation of primary carbohydrate metabolism was the finding that specific QTLs
were detected for most analyzed traits. When co-location of QTLs for different
traits was observed this might often be due to the direct inter-dependence of the
traits. For instance, UDP-glucose pyrophosphorylase converts UDP-glucose into
glucose-1-phosphate and all three traits map to a similar position on the genome.

Despite the seemingly specific independent regulation of many traits,
indicated by the position of the identified QTLs, there was a striking correlation
pattern between many traits. Positive correlations were observed between different
enzyme activity levels and between enzyme activities and the structural
components, such as chlorophyll and proteins, and weaker correlations with some
end products, such as sucrose, starch, and amino acids. Negative correlations,
however, were observed between enzyme activities and dynamic (phosphorylated)
intermediates of carbohydrate metabolic pathways. These results suggest that in
addition to the often specific independent regulation of metabolic pathways a more
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general level of regulation is acting on carbohydrate metabolism in plants, which
could be related to the growth and developmental status of the plant. Subsequent
data analysis suggested developmental differences to be causal for the observed
correlations. The principal component best explaining the variation observed for
all traits mapped to the position of ERECTA (AT2G26330), a gene well known for
its involvement in developmental control of Arabidopsis. The entwinement of
plant growth with carbohydrate metabolism was also reported in other studies for
enzyme activities (Cross et al., 2006) and metabolite content (Cross et al., 2006;
Schauer et al., 2006; Meyer et al., 2007).

Relationship between structural gene expression and enzyme activity

Many metabolic conversions in plants are catalyzed by enzymes and variation in
enzymatic activity can have a high impact on metabolic fluxes and metabolite
content. It is conceivable that natural variation in enzyme activity is inflicted by
genomic variation in the structural genes encoding these enzymes.

We found strong evidence that natural variation for enzyme activity levels
is at least partially regulated by variation in structural genes or regulatory loci
controlling the transcription of these genes. First, co-location of structural genes
and enzyme activity QTLs suggests natural variation for these genes to be causal
for the observed variation in enzyme activity. When cis-acting eQTLs were
detected for these genes, regulation is likely to occur on the transcriptional level,
otherwise regulation might act post-transcriptionally, possibly due to altered
specific activity or protein stability. Secondly, co-location of trans-acting eQTLs for
structural genes and enzyme activity QTLs suggests trans-regulatory variation of
these genes to be causal for the observed variation in enzyme activity. Such
regulation is likely to occur through transcriptional regulation of the structural
gene due to variation for a distant regulator. Both cis- and trans-acting
transcriptional as well as cis-acting post-transcriptional regulation of structural
genes were identified as potential causes for observed variation in enzyme activity.
However, for many enzymes, QTLs were also detected which did not co-locate
with structural genes or their eQTLs, suggesting that regulation occurs at multiple
levels, partly independent of variation in (transcript levels of) structural genes.
Likewise, for many structural genes eQTLs were detected which did not co-locate
with QTLs for enzyme activity, which often explained the low correlation observed
between transcript levels and activity. Apparently variation observed in the
transcript levels of these genes does not contribute to the variation observed in
enzyme activity, suggesting that their encoded proteins might serve other
functions than their current annotation, or that variation at the transcriptional level
is ‘overruled’ by other regulating mechanisms or by temporal differences between
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gene expression and subsequent processes. Finally, for a number of structural
genes no significant eQTL could be detected which can be the result of low
(variation in) transcript levels that could not be detected in the microarray
experiment

Often only a weak to medium correlation exists between levels of enzyme
activity and transcript levels of structural genes. This can be partly explained by
the redundancy in structural genes when different genes each contribute only
partially to the eventual level of enzyme. However, different genes of a gene
family might have different specific activities for the metabolic conversions under
study, for which also natural variation might be present between accessions. In a
segregating population this diversity of genetic variants and possible epistatic
interactions between them can severely complicate correlation analyses. On the
other hand, correlations might be difficult to establish when relationships between
transcript levels and protein levels are not linear. Deviations from perfect
correlations and linearity can be caused due to delays in protein formation and/or
activation upon transcription. Moreover, regulation of enzyme activity can occur
post-transcriptionally through mRNA- and protein-stability, protein-folding,
activation by or dependency on co-factors, (de)-phosphorylation, etc. Finally, lack
of correlation can be simply a result of non-functionality at the sampled
developmental stage or due to a dilution effect when genes are only transcribed in
specific cells or tissues. Negative correlations might be the result from negative
feedback due to high transcription levels of redundant genes, or phase shifts in
diurnal rhythms of transcription and translation (Gibon et al., 2004b, 2006; Blasing
et al., 2005).

Different modes of action in the genetic control of enzymatic activity

For many enzymes natural variation was observed in their level of activity. In
many cases enzyme activity was related to metabolite content, among which
substrates and products of the analyzed enzymes. In several cases QTLs for
enzyme activity co-located with structural genes encoding these enzymes or eQTLs
for those genes. Differences in correlation pattern and QTL profiles between gene
expression, enzyme activity and metabolite content indicate, however, that genetic
regulation causal for observed variation is not similar for all analyzed traits.
Instead, various modes of genetic control, using different mechanisms, seem to act
in the regulation of carbohydrate metabolism.

For phosphoglucomutase, one of the enzymes for which the highest
variation in activity was observed, it was shown that most of this variation could
be explained by genetic factors. Parallel analysis of enzyme activity and structural
gene expression suggested cis-regulatory variation in transcription of one of the
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structural genes (At5g51820) to be causal for the major PGM activity QTL.
However, differences in the variation in transcription of structural genes and
enzyme activity also indicated polymorphisms in coding regions of structural
genes at a second locus to account for the observed variation in enzyme activity.
Furthermore, although significant negative correlations were observed between
PGM activity and its substrate and product G1P and G6P, these correlations are
not caused by any of the detected QTLs. This suggests that other levels of
regulation are also active for which no genomic variation could be detected within
the analyzed population.

In contrast, the combined analysis of variation in the activity of UGP, its
substrate and product and transcription of its encoding structural genes suggested
trans-regulated transcription differences to be the major cause for variation in
enzyme activity. In this case the strong positive correlation between UDPG and
UGP suggests UDPG levels to be the driving force for this trans-acting regulation.
This would mean that plants are able to sense and respond to changes in UDPG
accumulation, which has been suggested and shown also for other sugars (Rolland
et al., 2002; Halford et al., 2003; Avonce et al., 2005; Gonzali et al., 2006). Although it
remains speculative to assign which genetic factor(s) determine(s) the variation
observed in UDPG accumulation it is interesting to note that the inorganic
phosphate status in Arabidopsis affects the transcription of UGP-encoding genes
(Ciereszko et al., 2001, 2005). Moreover, natural variation for phosphate and
phytate, the major source of inorganic phosphate in plants, has been observed in
the Ler x Cvi population and a common QTL explaining most of the variation co-
locates with the QTL for UDPG-content and UGP-activity (Bentsink et al., 2003).
Furthermore, a QTL for the accumulation of the phosphorylated hexoses G1P and
G6P was detected at this position, which might indicate that high levels of
inorganic phosphate results in elevated levels of phosphorylated sugars. In
conclusion, variation in phosphorus levels would then regulate the accumulation
of UDPG, which in turn triggers the expression of UGP-encoding structural genes,
leading to higher activity of UGP.
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MATERIALS AND METHODS

Plant material and tissue collection

Aerial parts of seedlings from the accessions Ler and Cvi and a population of 160
recombinant inbred lines derived from a cross between these parents (Alonso-
Blanco et al., 1998; Keurentjes et al., 2006) were grown and collected as described
previously (Keurentjes et al., 2006). In brief, seeds of lines were sown in petri dishes
on 1/2MS agar and placed in a cold room for seven days. Petri dishes were then
transferred to a climate chamber and seedlings were collected after seven days.
Plant material was stored at -80°C until further processing.

Linkage map construction and anchoring to the physical map

The genetic map was constructed from a subset of the markers available, at
http:/nasc.nott.ac.uk/, as described in Keurentjes et al. (2007b). In total, 144 markers
were used, with an average spacing of 3.5 cM. The largest distance between two
markers was 10.8 cM. The genetic map was anchored to the physical map as
described in Keurentjes et al. (2007b), with an almost linear genome-wide relation
of 4.1 cM per Mbp.

Metabolite and enzyme measurements

Metabolites were extracted and analyzed as described previously; ChlA, ChiB, AA,
protein, sucrose, glucose, and fructose (Cross et al., 2006); starch, G1P, and G6P
(Gibon et al., 2002); UDPG (Keurentjes et al., 2006). Enzymes were extracted as
described in Gibon et al. (2004a) and analyzed as described previously; Inv, AGP,
FBP, G6PDH, PFK, PFP, SPS, SuSy, GK, FK, and UGP (Gibon et al., 2004a); PGI
(Cross et al., 2006); PGM (Manjunath et al., 1998); Rubisco (Sulpice et al., 2007).
Samples were randomized during extraction and analysis, and two biological
replicates were analyzed for each trait.

Microarray analyses

Transcript levels of genes were analyzed on two-color DNA-microarrays as
described previously (Keurentjes et al., 2007b). Resulting 2log signal intensities
were used for correlation analyses and 2log ratios between co-hybridized RILs
were used for QTL analyses.

Statistical analyses

Spearman rank correlations were determined in Excel (Microsoft) for mean trait
values as follows:
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7’1(712 —1)—62?:1 (]/z‘j “Yi )2 _%(Tj +Tk)
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where 7 is the number of observations, y is the rank of observations for variables j

to m, and Tj =>t j(tf —1), ti being the number of ties of a particular value of

variable j, and the summation being over all tied values of variable j (Siegel, 1956).

QTL analyses for gene transcript levels were performed as described in
(Keurentjes et al., 2007b). For QTL analyses of metabolite and enzyme traits the
computer program MapQTL version 5.0 (Van Ooijen, 2004) was used to identify
and locate QTLs linked to the molecular markers using multiple QTL mapping
(MQM). LOD statistics were calculated at 0.5 c¢cM intervals. Tests of 1000
permutations were used to obtain an estimate of the number of type 1 errors (false
positives). The genome-wide LOD score, which 95% of the permutations did not
exceed, ranged from 2.4 to 2.7. A LOD score of 3.0, to correct for multiple testing,
was then used as the significance threshold to declare the presence of a QTL. In the
MQM model the genetic effect (us-pa) and percentage of explained variance was
estimated for each QTL, and 2 Mbp-support intervals were established as an ~95%
confidence level (Van Ooijen, 1992). Co-location of (e)QTLs was defined as an
overlap in the 2Mbp-support intervals.

Genomic positions of genes were inferred from the Arabidopsis
information resource (The Arabidopsis Genome Initiative, 2000). When physical
positions of genes fell in the 2 Mbp-support interval of (e)QTLs this was
considered as co-location.

Principal component and box plot analyses were performed in SPSS
(version 12.0).
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General discussion

One of the intriguing observations in nature is the enormous diversity in
characteristic properties of various species. However, natural variation can also be
observed within species (Alonso-Blanco and Koornneef, 2000), which is supposed
to be one of the driving forces of species formation. Farmers and breeders have
used natural occurring genetic variation for centuries to improve crop species
(Koornneef and Stam, 2001; Zamir, 2001). The identification of the genetic factors
controlling natural variation would therefore improve our understanding of
genetic regulatory processes and give insight into the evolutionary significance of
variation (Mitchell-Olds and Schmitt, 2006). For many traits quantitative variation
is observed, suggesting that it is controlled by multiple genes. Possible interactions
between genes and between genes and the environment further add to the
complexity of quantitative traits, making the genetic dissection of such traits
difficult.

A classical first step in the genetic analysis of traits is the determination of
inheritance patterns in the progeny of a cross between distinct varieties.
Quantitative traits do not segregate in distinct classes but instead display a more
continuous variation in trait values as a result from the segregation of multiple
independent loci. To relate these quantitative trait loci (QTLs) to genomic positions
it is pivotal to be able to determine the genotype of segregants. The development of
molecular markers greatly enhanced the ease in which mapping populations can
be genotyped. Molecular markers represent genomic polymorphisms between
genotypically different lines. By crossing distinct accessions, numerous
polymorphisms will segregate in a progeny, enabling the construction of genetic
maps. Because quantitative traits may also segregate in the same offspring
population, QTLs for these traits can then be mapped by analyzing co-segregation
of trait values with molecular markers used for the construction of the genetic map
(Broman, 2001; Doerge, 2002; Jansen, 2003).

Depending on the species and the ease by which mapping populations can
be generated several approaches have been applied. A relatively fast approach,
requiring a minimal number of generations, is the generation of an F2 or back cross
(BC) population. However, such populations still contain a high level of
heterozygosity which may compromise the construction of genetic maps,
especially when dominant markers are being used. Moreover, such populations
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can not be propagated sexually without further segregation of the heterozygous
regions, making additional genotyping in later generations necessary. Populations
consisting of homozygous lines on the other hand, need several rounds of selfing
or backcrossing to reach full homozygosity. Alternatively, homozygosity can be
obtained by generating double haploids. When fully homozygous, lines can be
propagated without introducing further genotypic changes in their progeny. At
this stage the population has become immortal and a single round of genotyping is
sufficient to generate a genetic map for any further experimentation. Homozygous
lines offer the advantage of replicated measurements at genotypically identical
individuals and also allow comparing different experiments in time and
environment.

In Arabidopsis, recombinant inbred lines (RILs) have become the mapping
population of choice because of its selfing nature and short generation times
(Somerville and Koornneef, 2002). In other species however, near isogenic lines
(NILs) are sometimes favorable because of sterility problems and intolerance
towards inbreeding (Eshed and Zamir, 1995). Both types of population can be used
for mapping purposes although they differ markedly in their genetic make-up due
to differences in the crossing scheme. RILs are generated from an F: without
backcrossing and therefore contain on average equal contributions of both parental
genomes. NILs on the other hand, are generated from an Fi through repeated
backcrossing with a recurrent parent and contain only a limited amount of the
donor genome. As a result RILs can contain multiple introgressions whereas NILs
preferably contain only a single introgression into an otherwise isogenic
background. Because of these differences, different mapping strategies are
required for the two types of population.

Chapter two of this thesis described the development of the first genome-
wide coverage NIL population in Arabidopsis allowing the comparison of
mapping purposes with an already existing RIL population derived from the same
parental accessions (Alonso-Blanco et al., 1998). These comparisons revealed a
higher mapping power for small effect loci but lower mapping resolution in the
NIL population compared to the RIL population. However, results were greatly
depending on the genetic architecture of traits and population size and structure.
For RIL populations both mapping power and resolution can be increased by
increasing population size, which would also diminish the need for replicated
measurements. For NIL populations resolution can also be improved by adding
more lines but, depending on the size of introgressions and the amount of overlap,
power has to be increased by replicated measurements. Because of the much
higher recombination frequency, RIL populations are often favorable over NIL
populations when mapping experiments are limited by the number of plants that
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can be analyzed. The segregation of multiple loci in RIL populations might mask
small-effect QTLs, but allows the detection of genetic interactions, which is not
possible in NIL populations. Nils have been shown to be very useful for the
confirmation of QTLs and as starting material for the fine-mapping of so-called
Mendelized QTL.

Although natural phenotypic variation can be observed for many
quantitative traits in Arabidopsis, which can be effectively analyzed in RIL
populations (Alonso-Blanco and Koornneef, 2000; Koornneef et al., 2004), QTL
analysis often reveals only a limited number of steps in the complex regulatory
pathways of quantitative traits. The path from genotype to phenotype often
involves multiple intermediate steps and it is therefore difficult to determine
whether QTLs regulate traits directly or indirectly. Moreover, regulation can occur
at different levels, ranging from variation in presence or expression of genes to
variation in protein function. Until the cloning of a QTL and the identification of
the causal polymorphism(s) it therefore remains uncertain at which point in a
pathway traits are regulated. To fully understand the complex regulation of
quantitative traits it is therefore recommendable to genetically analyze different
levels and intermediates at which genetic control might act (Fiehn et al., 2001;
Winnacker, 2003).

The recent advance in analytical technologies (transcriptomics, proteomics
and metabolomics) now enables the large-scale genetic analysis of different entities
in the circuitry from gene to phenotype. The expression of genes often determines
the onset of pathways resulting in a particular phenotype. Therefore, phenotypic
variation might be inflicted by variation in gene expression. At the other end of the
information flow from DNA sequence to gene function, metabolites, as products
from the encoded proteins, stand closest to the eventual phenotype. It is
conceivable that genetically controlled variation in metabolite composition and
accumulation determines, at least partly, the observed phenotypic variation. In
chapter three and four high throughput ‘omic’ technologies were used for the
analysis of natural variation in gene expression (transcriptomics) and metabolite
composition and content (metabolomics).

Analogous to ‘classical’ quantitative phenotypic traits, natural variation
can also be observed for gene expression, when that expression is under genetic
control (Borevitz et al., 2003; Kliebenstein et al., 2006). Chapter three describes the
genetic analysis of genome-wide gene expression variation in Arabidopsis
(genetical genomics) (Jansen and Nap, 2001). These analyses revealed extensive
genetic control of gene expression, judged from the fact that for more than 4,000
genes expression QTLs (eQTLs) could be detected. However, many more genes
showed high heritability values, even though no eQTL could be detected. This
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suggests that their expression is regulated by multiple eQTLs, of which many
might not have passed the stringent significance threshold due to their small effect.
Both local and distant regulation (Rockman and Kruglyak, 2006) was observed
although local regulation was often much stronger. Local regulation might be a
result from polymorphisms in cis-regulatory elements which directly affects the
expression of the gene under study. Interestingly, local regulation correlated with
polymorphism frequency, further supporting the suggestion that expression
variation can be a result from local sequence differences. Moreover, regulatory
genes showed much less local regulation, which can be explained by much
stronger conservation due to their pleiotropic effects.

Distant regulation on the other hand, is most likely a result from
polymorphisms in a regulator, affecting expression in trans, possibly through
multiple intermediates. Since regulators may exert pleiotropic effects on numerous
genes, directly or indirectly, multiple eQTLs would map to the position of this
regulator. Indeed several eQTL hot spots were identified, possibly containing such
master regulators. The detection of distant eQTLs indicates that the expression of
the gene under study is controlled by genetic factors in trans. When the causal gene
underpinning the trans eQTL can be identified this allows the possibility of
establishing gene regulation networks (Jansen, 2003). However, QTL support
intervals often contain hundreds of genes, each of which can be a candidate
regulator. Positive confirmation of a candidate can only be obtained upon cloning
of the eQTL, which is practically difficult to achieve for genome-wide expression
studies. The assignment of candidate genes therefore relies on additional
information, such as co-expression and gene ontology. The power of such a
computational approach was demonstrated by the reconstruction of a regulatory
network for genes involved in the regulation of flowering time. Nonetheless,
variation in expression of genes can not always be explained by expression
differences of their regulator, especially when expression of the regulator is not cis-
regulated. When the causal polymorphism(s) reside(s) in the coding sequence of
the regulator this might alter protein function or stability and the expression of
target genes then depends on the allelic form of the regulator rather than on its
expression level. The identification of such relationships from additional
information such as genome sequences, e.g. binding site data, and
experimentation, e.g. protein-DNA interaction data, can further improve the
assignment of candidate regulators and ultimately the construction of regulatory
networks. The recognition of genetically controlled expression of genes and the
reduction in the number of candidate regulators through QTL analysis should
therefore further guide the detailed analysis of gene-by-gene regulation.
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Unlike microarrays for the genome-wide analysis of the transcriptome, no
single platform exists for the simultaneous analysis of the complete metabolome.
In contrast to mRNA, which has an identical chemical structure for all genes,
metabolites represent a plethora of different chemical classes and no universal
analytical tools are available yet. However, advances in mass spectrometry have
made the detection and quantification of hundreds of compounds of specific
chemical classes possible (Fiehn et al., 2000). Plants are especially rich in the
number of secondary metabolites, which is possibly a consequence of their sessile
nature. Since plants are unable to migrate they need to adapt to local environments
for their survival. The wide range of habitats makes it amenable that natural
variation in secondary metabolite composition and accumulation plays an
important role in the diversification of plants (Fiehn, 2002).

Chapter four describes the genetic analysis of metabolite composition in
Arabidopsis using large-scale untargeted liquid chromatography-time of flight
mass spectrometry (LC-QTOF MS). Although untargeted, LC-MS predominantly
detects semi-polar secondary metabolites, which are amongst the most variable
compounds in nature. When applied to accessions originating from various parts
of the global distribution range of A. thaliana, considerable quantitative and
qualitative differences were observed. The majority of compounds could only be
detected in a limited number of accessions and each accession analyzed contained
unique compounds not found in any other accession. However, a substantial
number of compounds, presumably representing essential metabolites, could be
detected in all accessions analyzed. The extensive natural variation in metabolite
content together with the often observed high heritabilities indicates that
metabolite composition is largely under genetic control. Indeed, when
quantification in a RIL population was subjected to QTL analysis, for 75% of the
detected compounds significant QTL(s) could be assigned. The impact of genetic
factors on the dynamic range of metabolite content was further demonstrated by
the fact that a high number of compounds which were not found in either one of
the parents could be detected in RILs. This suggests that metabolic pathways in the
parents are blocked at different steps which can be overcome by complementation
due to recombination of their genomes. Natural variation therefore offers a large
potential for metabolic engineering of crop species through classical breeding.

Similar to the distribution of eQTLs along the genome, hot- and cold-spots
could be observed for metabolite accumulation QTLs. Interestingly, for both
analyses a hotspot was observed at the position of the ERECTA gene, a receptor
protein kinase well known for its pleiotropic effects (Torii ef al., 1996). The ERECTA
gene is polymorphic for the parental accessions of the RIL population and causal
for many of the morphological differences observed between the parents. Co-
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location of QTLs implies that accumulation of the metabolites mapping to the same
position might be controlled by a common regulator. Although no information can
be inferred whether this control acts directly or indirectly through downstream
effects of a regulatory step, co-regulated metabolites are likely to be part of a
common pathway or involved in the same biological process. When those
metabolites can be identified, information can be obtained about the mechanism of
regulation, and the number and order of metabolites in a metabolic pathway.
These features were demonstrated by the reconstruction of the aliphatic
glucosinolate formation pathway and the discovery of variation in glycosyl
transferase activity affecting flavonol composition. However, untargeted
metabolomic approaches detect anonymous compounds and the identification of
these compounds is still in its infancy (Schauer et al., 2005; Moco et al., 2006). The
unraveling of metabolic pathways would therefore benefit much from the
development of mass identification libraries.

The large-scale genetic analyses of gene expression and metabolite content
clearly have shown their usefulness in constructing genetic regulatory networks.
Yet, none of these approaches can fully explain the complex regulation of
phenotypic quantitative traits. Moreover, interactions and cross-talk between
components of the various regulatory levels are probably eminent and it is not
always possible to distinguish cause and consequence of natural variation without
further experimentation. However most of the tools, including the genome
sequence, are now available to study biological systems as a genetic system in its
entirety. The integration of data collected from multiparallel analyses of the
various interconnected transducers of biological information flow will therefore
thrive our understanding of complex biological systems.

Chapter five describes the integrative analysis of genetic variation in
enzyme activities of primary carbohydrate metabolism. Carbohydrates are
essential for many biological processes ranging from growth to energy metabolism
and plants contain a multitude of enzymes for the allocation and conversion of the
necessary compounds. Perturbations affecting the functionality of these enzymes
can therefore have large effects on plant growth. The activity of 15 enzymes
involved in carbohydrate metabolism were analyzed in the Landsberg erecta x
Cape Verde Islands RIL population and subjected to QTL analyses. In addition, the
expression of the structural genes encoding those enzymes and a number of
carbohydrate metabolites, as substrate and products of the enzymes, were
analyzed in parallel.

The natural variation observed for a large number of enzymes and
metabolites could partly be explained by detected QTLs. Moreover, both positive
and negative correlations were observed between enzyme activities and metabolite
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contents, although only few co-locating QTLs were detected. These findings
suggested that genetic control of primary carbohydrate metabolism acts at
different levels: a direct independent regulation of individual components and a
more general simultaneous regulation of all components. Principal component
analyses further suggested that such simultaneous regulation of carbohydrate
metabolism might be under developmental control.

The parallel analysis of structural gene expression and enzyme activity
also revealed distinct modes of regulation. From the position of structural genes,
their eQTLs and enzyme activity QTLs, together with correlation analyses of gene
expression and enzyme activity levels the involvement of structural gene variation
could be evaluated. In a number of cases cis-regulated expression variation of
structural genes was suggested to be causal for observed variation in enzyme
activity. However, trans-regulated expression variation was also observed and
might have contributed to the observed variation in activity for some enzymes.
Furthermore the lack of expression variation in some instances indicated altered
protein function to affect specific activity of enzymes. Finally, the detection of
enzyme activity QTLs not co-locating with structural genes encoding the enzyme
under study suggests other regulatory mechanisms, independent of structural
genes, to be active (e.g. post-translational control). The different regulatory
mechanisms, including the role of metabolites, were demonstrated by the detailed
analysis of phosphoglucomutase and UDP-glucose pyrophosphorylase activity,
their structural genes and their respective substrates and products.

The work described in this thesis has shown the extensive variation in
quantitative traits in Arabidopsis including variation in gene expression and
metabolite content. The use of natural variation in combination with genetic
approaches such as QTL analyses has further shown the power in elucidating the
often complex genetic regulation of traits. Moreover, the application of high
throughput ‘omic’ technologies enabled the construction of regulatory networks
which were unlikely to be uncovered from targeted small scale approaches.
However QTL analyses are limited by the amount of natural variation segregating
in the mapping population and the genetic make-up of the employed RIL
population only consists of two genotypes. The analysis of traits in multiple
populations, generated from different accessions, is likely to reveal additional
regulatory steps. Alternatively, multiple distinct accessions could be intercrossed
in a single mapping population, thereby increasing the amount of segregating
natural variation. The ultimate mapping population however, consists of the
worldwide collection of accessions and the recent advances in linkage
disequilibrium mapping have only just begun to make the exploration of this
comprehensive reservoir of natural variation possible (Nordborg et al., 2002).
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Another impediment obstructing the comprehensive elucidation of genetic
regulation is the often observed spatial and temporal control of quantitative traits.
Due to cost and time considerations analyses are often limited in the number of
developmental stages and tissues that can be sampled. However, to get a full
understanding of the complex regulatory mechanisms of traits it is recommendable
to analyze traits in multiple developmental stages and tissues. Likewise, for many
traits genetic interactions with the environment are observed and analyzing traits
in different circumstances might therefore reveal specific regulatory steps.

Although powerful in mapping genomic regions, the resolution of QTL
analysis is often not high enough to identify the causal gene (QTG), and ultimately
the causal changes at the nucleotide level (QTN), affecting the trait of interest. Due
to the often small effects of QTLs and the complex regulation of traits, it is not
always easy to obtain definitive proof for the identification of a QTG or QTN.
Initial QTL mapping is usually followed by confirmation in NILs, which can also
be used for fine-mapping. Once a select set of candidate genes has been defined,
several lines of experimentation can be followed to provide evidence for the
identification of a QTG or QTN. Such lines include natural variation surveys
within and between species, comparative sequence analyses, gene expression
analyses, functional (in vitro) gene analyses, knockout or mutational analyses, and
(transgenic) complementation tests (Borevitz and Nordborg, 2003; Weigel and
Nordborg, 2005). Although some of these analyses will provide stronger evidence
than others, usually several tests are needed to demonstrate a causal link between
allelic variation and a particular phenotype.

Finally, here Arabidopsis was chosen as a model plant for the genetic
analyses of quantitative variation. The availability of the complete genome
sequence, commercially available genome-wide microarrays and the publicly
available high quality mapping populations together with the numerous tools and
techniques developed for this species make Arabidopsis the perfect choice for these
kinds of analyses (Alonso and Ecker, 2006). However, due to the developments in
sequence technologies and comparative genomics many of the findings in
Arabidopsis can be readily ‘translated” to other species (Gale and Devos, 1998; Hall
et al.,, 2002). Moreover, the rapid progress in genomic technologies and the
increasing number of mapping populations for other (crop) species should no
longer restrict the analyses described in this thesis to model species. Many of the
tools and techniques developed in Arabidopsis can readily be applied to other
species and now the time has come that applied sciences will benefit from the
groundbreaking work in model species such as Arabidopsis thaliana.
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Summary

Plants show considerable genetic differences between accessions of the same
species, which are reflected in phenotypic variation. This natural variation is often
displayed as a continuous distribution of trait values and is therefore called
quantitative variation. Quantitative variation is the result of the interplay of
multiple genes and environmental factors. Because the contribution of each gene to
the eventual phenotype can be quite small, sophisticated statistical methods are
needed to associate genomic regions with the trait of interest. Such an approach is
known as quantitative trait locus (QTL) analysis. In QTL analysis, the trait of
interest is quantified in a genotyped mapping population, derived from a cross
between distinct genotypes.

Arabidopsis thaliana is the leading model species in modern plant sciences.
Its short generation time, small and fully sequenced genome, and wide global
distribution range make Arabidopsis especially suited for the analysis of
quantitative traits. Because of its natural self-pollination, recombinant inbred lines
(RILs) have become the mapping population of choice in Arabidopsis. However, in
other species near-isogenic lines (NILs) are favorable due to intolerance toward
inbreeding and fertility issues. NILs are also useful for the confirmation and fine-
mapping of QTLs identified in RIL populations. Chapter two describes the
development of a genome-wide coverage NIL population from a cross between the
distinct accessions Landsberg erecta (Ler) and Cape Verde Islands (Cvi), for which a
RIL population was developed previously. The genetic make-up of these two types
of populations differs in the number of introgressions that segregate in the
population. RILs contain multiple introgressions, whereas NILs preferably contain
only a single introgression per line. As a consequence, in contrast to NIL
populations, epistatic interactions between loci can be detected in RIL populations.
Furthermore, owing to the higher recombination frequency, fewer replications per
line need to be analyzed in RIL populations. However, the simultaneous
segregation of multiple QTLs diminishes the power to detect small-effect QTLs in
RIL populations compared to NIL populations.

The segregation of phenotypic variation can be observed for numerous
traits, including quantitative ones, in populations derived from crosses between
Arabidopis accessions. However, quantitative traits are often the resultant of many
intermediary steps from genotype to phenotype. To fully understand the complex
regulatory circuitry of quantitative traits it is therefore recommendable to analyze
genetic regulation at different levels of the biological information flow. The recent
advances in ‘omic’ technologies now make the large scale analysis of gene
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expression (transcriptomics), protein content (proteomics), and metabolite content
(metabolomics) feasible.

The expression of genes often determines the onset of biological pathways
and it is conceivable that variation in expression levels is reflected in phenotypic
variation. The genetic analysis of genome-wide gene expression variation in the Ler
x Cvi RIL population in chapter three revealed high heritabilities for many genes,
indicating that their expression is under genetic control. Indeed for a substantial
number of genes expression QTLs (eQTLs) could be detected. In depth analysis
uncovered both cis-regulated expression, resulting from polymorphisms in the
gene itself, and trans-regulated expression, resulting from genetic differences in
distant regulators. Identifying trans-regulators offers the possibility to determine
gene-to-gene regulation and ultimately the construction of regulatory networks.
For a number of genomic regions, unexpectedly high numbers of trans-eQTLs were
detected. Such hot spots are possibly caused by pleiotropic effects of regulators
(e.g. transcription factors). When multiple genes, involved in the same biological
process, map to the same position this indicates that many of them might be
regulated by the same gene. This information was successfully used to
demonstrate the construction of a regulatory network for flowering time.

On the other end of the information chain, metabolites stand closest to
physiological phenotypes. It is therefore likely that genetic variation, leading to
physiological differences, is also causal for differences in metabolite content. The
untargeted metabolic analyses described in chapter four uncovered extensive
natural variation in metabolite composition in 14 different accessions of
Arabidopsis. QTL analysis of more than 2,000 high quality mass peaks, detected in
the Ler x Cvi RIL population, enabled the identification of QTLs for about 75% of
the mass signals. The finding that more than one-third of the mass signals, detected
in the RILs, were not detected in either parent suggests that many metabolites are
formed due to the recombination of the parental genomes. The identification of
anonymous mass peaks, that appear to be co-regulated as based on the positions of
QTLs, enabled the (re)construction of metabolic pathways and uncovered novel
biosynthetic steps and compounds in Arabidopsis. These results indicate the large
potential for modification of metabolic composition through classical breeding.

Although each of the different entities in the path from genotype to
phenotype can be effectively analyzed, a thorough understanding of the
interaction between these different levels can only be obtained from the integrated
study of multi-parallel analyses. In chapter five, the complex regulation of primary
carbohydrate metabolism was analyzed in a case study. The activities of 15
enzymes involved in carbohydrate metabolism, in parallel with the expression of
their structural genes, and contents of their metabolic substrates and products,
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were genetically analyzed in the Ler x Cvi RIL population. For many enzymes
QTLs explaining variation observed in their activity were detected. A number of
these QTLs co-located with the position of structural genes, indicating that natural
variation in structural genes can be causal for variation in enzyme activity. From
the expression analyses of these structural genes it was concluded that both
expression variation and variation in protein function determine the differences in
observed enzyme activity. However, not all enzyme activity QTLs co-located with
structural genes, suggesting that regulation occurs at multiple levels. To further
complicate the regulation of carbohydrate metabolism, significant correlations
between enzyme activities and metabolite contents were observed, although this
was not always accompanied by co-locating QTLs. Further analysis suggested a
relationship between the regulation of carbohydrate metabolism and plant
development.

The results of this thesis demonstrate the power of combining genetic
approaches with large-scale high-throughput technologies for the construction of
genetic regulatory networks and metabolic pathways. The integration of multi-
parallel analyses will further enhance our understanding of the complex circuitry
of genetic regulation of quantitative traits.
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Samenvatting

Genetische verschillen tussen accessies van planten openbaren zich vaak als
fenotypische variatie. Deze natuurlijke variatie vertoont in veel gevallen een
continue verdeling en wordt daarom ook wel kwantitatieve variatie genoemd.
Kwantitatieve variatie is het gevolg van het samenspel van meerdere genen en de
invloed van omgevingsfactoren. Omdat de bijdrage van ieder gen aan het
uiteindelijke fenotype erg klein kan zijn, zijn geavanceerde statistische methodes
nodig om een associatie van genomische regio’s met een bepaalde eigenschap aan
te tonen. Een dergelijke aanpak staat bekend als quantitative trait locus (QTL)
analyse. In QTL analyses wordt de gewenste eigenschap gekwantificeerd in een
genetische kartering populatie, welke verkregen is door een kruising van
verschillende genotypes.

Arabidopsis thaliana (Zandraket) is de meest gebruikte modelplant in
moderne plantwetenschappen. Door de combinatie van een korte levenscyclus, een
klein en volledig opgehelderd genoom en een wijde verspreiding over de wereld is
Arabidopsis bij uitstek geschikt voor de genetische analyse van kwantitatieve
eigenschappen. Omdat het een zelfbevruchter is, zijn recombinante inteelt lijnen
(Recombinant Inbred Lines; RILs) het meest gangbaar als genetische kartering
populatie in Arabidopsis. In andere soorten zijn bijna-isogene lijnen (Near-Isogenic
Lines; NILs) echter beter bruikbaar door inteelt en vruchtbaarheidsproblemen in
RILs. NILs zijn ook erg nuttig voor het bevestigen en de precieze positionering van
QTLs die in RIL populaties gevonden zijn. Hoofdstuk twee beschrijft de
ontwikkeling van een volledig genoomdekkende NIL populatie verkregen uit een
kruising tussen de verschillende accessies Landsberg erecta (Ler) en Cape Verde
Islands (Cvi). Uit deze kruising was eerder al een RIL populatie ontwikkeld. De
genetische opmaak van deze twee types populatie verschilt in het aantal
introgressies. RILs bevatten meerdere introgressies terwijl NILs bij voorkeur
slechts een enkele introgressie per lijn bevatten. Hierdoor kunnen in RIL
populaties, in tegenstelling tot NIL populaties, epistatische interacties aangetoond
worden. Bovendien kunnen er minder herhalingen per lijn geanalyseerd worden in
RIL populaties omdat de recombinatiefrequentie hoger is dan in NIL populaties.
Echter, de kans op het detecteren van QTLs met een klein effect is kleiner in RIL
populaties, vergeleken met NIL populaties, omdat meerdere QTLs tegelijkertijd
uitsplitsen.

Voor vele eigenschappen, inclusief kwantitatieve, kan uitsplitsing van
fenotypische variatie worden waargenomen in populaties verkregen uit kruisingen
met verschillende Arabidopsis accessies. Kwantitatieve eigenschappen zijn echter
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vaak het gevolg van vele tussenliggende stappen op het traject van genotype naar
fenotype. Om een volledig beeld te krijgen van de complexe reguleringscircuits
van kwantitatieve eigenschappen is het daarom aan te bevelen om de genetische
regulatie op verschillende niveaus van de biologische informatiestroom te
analyseren. De recente voortgang in zogenaamde ‘omic’ technologieén maakt het
momenteel mogelijk om de expressie van genen (transcription; transcriptomics) en
de aanwezigheid van eiwitten (proteins; proteomics) en inhoudstoffen
(metabolites; metabolomics) op grote schaal te analyseren.

De expressie van genen bepaalt vaak het begin van biologische routes en
het is aannemelijk dat variatie in expressie niveaus zijn weerslag heeft op
fenotypische variatie. De genetische analyse van genexpressie variatie van het
complete genoom in de Ler x Cvi RIL populatie in hoofdstuk drie toonde aan dat
voor vele genen de gevonden variatie erfelijk is. Dit wijst er op dat de expressie
van deze genen genetisch gereguleerd is. Voor een groot aantal genen werden
inderdaad expressie QTLs (eQTLs) gevonden. Gedetailleerde analyses toonden
zowel cis-gereguleerde expressie, als gevolg van polymorfismen in het gen zelf, als
ook trans-gereguleerde expressie, als gevolg van genetische verschillen in
regulatoren elders op het genoom, aan. De identificatie van trans-regulatoren biedt
de mogelijkheid om gen-tot-gen regulatie aan te tonen en uiteindelijk om
regulatienetwerken te construeren. Voor een aantal genomische regio’s werden
onverwacht hoge aantallen frans-eQTLs gevonden. Deze hot spots worden
mogelijk veroorzaakt door pleiotrope effecten van regulatoren (b.v. transcriptie
factoren). Als voor meerdere genen, die ieder bij hetzelfde biologische proces
betrokken zijn, op dezelfde positie een eQTL gevonden wordt dan wijst dit er op
dat vele wellicht door hetzelfde gen gereguleerd worden. Deze informatie werd
succesvol aangewend om de constructie van een regulatie netwerk voor bloeitijd te
demonstreren.

Aan het andere eind van de informatieketen staan metabolieten het dichtst
bij het uiteindelijke fysiologische fenotype. Het is daarom waarschijnlijk dat
genetische variatie, leidend tot fysiologische verschillen, ook de oorzaak is van
verschillen in metaboliet niveaus. De ongerichte metaboliet analyses zoals
beschreven in hoofdstuk vier toonden de uitgebreide natuurlijke variatie in
metaboliet samenstelling in 14 verschillende accessies van Arabidopsis aan. QTL
analyses van meer dan 2.000 kwalitatief betrouwbare massapieken, gedetecteerd in
de Ler x Cvi RIL populatie, resulteerde in de identificatie van QTLs voor ongeveer
75% van de massapieken. Meer dan een-derde van de massapieken die in de RILs
konden worden gedetecteerd werden in geen van de ouders aangetroffen. Dit
suggereert dat vele metabolieten werden gevormd door de recombinatie van de
genomen van de ouders. De identificatie van massapieken, die op basis van QTL
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posities identiek gereguleerd lijken te zijn, maakte het mogelijk om metabole
routes te (re)construeren en om nieuwe biosynthetische stappen en metabolieten in
Arabidopsis aan te tonen. Deze resultaten geven de hoge potentie voor het
modificeren van metaboliet samenstelling door klassieke veredeling weer.

Hoewel ieder van de verschillende stappen in het traject van genotype naar
fenotype effectief geanalyseerd kan worden, kan een volledig begrip van de
interactie tussen verschillende niveaus alleen verkregen worden door
geintegreerde studies van multi-parallelle analyses. In hoofdstuk vijf werd de
complexe regulatie van het primaire koolhydraatmetabolisme geanalyseerd in een
modelstudie. De activiteiten van 15 enzymen die allen een rol spelen in dit
metabolisme werden parallel met de expressie van hun structurele genen en
accumulatie van hun metabole substraten en producten genetisch geanalyseerd in
de Ler x Cvi RIL populatie. Voor veel enzymen konden QTLs worden gevonden
die de variatie in activiteit verklaarden. Een deel van deze QTLs werd gevonden
op posities van structurele genen. Dit wijst er op dat natuurlijke variatie in
structurele genen de oorzaak kan zijn van de variatie in enzymactiviteit. Na
expressieanalyses van deze structurele genen kon geconcludeerd worden dat
zowel expressievariatie als variatie in enzymfunctie de verschillen in
enzymactiviteit bepalen. Niet alle enzymactiviteit QTLs werden echter op posities
van structurele genen gevonden, wat suggereert dat regulatie op meerdere niveaus
plaats vindt. De complexe regulatie van het hydraatmetabolisme werd verder
geillustreerd door de significante correlaties tussen enzymactiviteiten en
metaboliet accumulaties zonder dat er sprake was van QTLs op identieke posities.
Statistische analyses suggereerden een relatie tussen koolhydraatmetabolisme en
plantontwikkeling als een mogelijke oorzaak van correlaties.

De resultaten van dit proefschrift tonen de kracht aan van het combineren
van genetische analyses met grootschalige ‘omics’ technologieén om genetische
regulatienetwerken en metabole routes te construeren. De integratie van multi-
parallelle analyses zal ons begrip van de complexe circuits van genetische regulatie
van kwantitatieve eigenschappen verder vergroten.
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Nawoord

Op het moment dat u dit leest hoop ik dat u ook de moeite heeft genomen, of nog
zult nemen, om de voorgaande hoofdstukken door te nemen. De inhoud van dit
proefschrift is namelijk met zorg en toewijding samengesteld en gelukkig niet
alleen door mij. Het vermelden van een ieder die heeft bijgedragen aan de
totstandkoming ervan zou slechts leiden tot een droge opsomming. Het staat
echter buiten kijf dat dit boekje er heel anders uit had gezien zonder de hulp van
velen. Hoewel de inbreng van de één misschien omvangrijker of zinvoller is
geweest dan van de ander wil ik toch geen onderscheid maken in waardering. Ik
prijs mij gelukkig om deel uit te hebben mogen maken van een omvangrijk
netwerk van specialisten van wier expertise ik dankbaar gebruik heb gemaakt. Ik
heb geprobeerd de complexiteit van dit netwerk weer te geven in de figuur op de
volgende pagina. Kenners zullen onmiddellijk opmerken dat het een topologisch
robuust, modulair en schaalvrij hierarchisch netwerk is met een hoge graad van
connectiviteit. In de praktijk staat dit synonym voor een kwalitatief hoogwaardig
samenwerkingsverband met korte lijnen tussen de deelnemers, het zogenaamde
‘kleine-wereld effect’ (iedereen kent wel iemand die iemand anders kent).

Toch wil ik er graag een aantal personen uitlichten die in de achterliggende
jaren bijzonder veel voor mij betekend hebben. In de eerste plaats mijn promotoren
Maarten en Linus en co-promotor Dick. Deze synergistische drie-eenheid heeft mij
vrijwel probleemloos door mijn promotietraject geloodst. Een speciaal woord van
dank ook aan mijn twee paranimfen. Jingyuan, zonder wier hulp en tomeloze inzet
een groot deel van dit proefschrift niet tot stand was gekomen. Judith, met wie, als
mede-AIO en kamergenoot, ik meer dan vier jaar opgetrokken ben. We hebben
veel lief en leed gedeeld en gelukkig meer lief dan leed.

Rest mij nog te vermelden dat ik het allemaal met veel plezier volbracht
heb. Het in mij gestelde vertrouwen om er nog eens vier jaar aan vast te plakken
verheugt mij dan ook zeer.

Joost

156



HANS DIAAN

HENK MARIELLE
MAURICE
LINUS - LIDYA ROUL
SANDER
TAEDE —TREES FROUKJE
WYTSKE HARRO | ARIEN
ANITA RONNY
CASPER NKE TWAN KUMKUM
ARJAN AR JANE RIC ROBERT
FONS DICK
MERIN MAJID
AAFKE
KLAAS ROLE " ~ORRIE HANNIE
BENNO GUIDO SJEF
STEFAN COLIN
BASTEN
SIENG/INGYUAN
INEZ
RITSERT
MAARTEN
SIGI
MARK
WUANIUPITEL A
RONAN ANNA - 0 ARk EMILE
IANJUN HETTY,
vate NANIUR cosrr. ERDA
HANS 4
HEDAYAT JEONIE
SANGITA ARTA
CORRIE

157






Education Statement of the Graduate School e Cratuare ool
Experimental Plant Sciences

Issued to:  Joost J. B. Keurentjes

Date: 7 September 2007

Group: Laboratories of Plant Physiology and Genetics,
Wageningen University

1) Start-up phase date
> First presentation of your project
Using natural variation for dissecting pathways of plant performance
traits Apr 07,2003

P  Writing or rewriting a project proposal

»  Writing a review or book chapter

> MSc courses

»  Laboratory use of isotopes

Subtotal Start-up Phase 1.5 credits”

2) Scientific Exposure date

»  EPS PhD student days
EPS PhD student day, Utrecht University Mar 27, 2003
EPS PhD student day, Vrije Universiteit Amsterdam Jun 03, 2004
EPS PhD student day, Radboud University Nijmegen Jun 02, 2005
EPS PhD student day, Wageningen University Sep 19, 2006

> EPS theme symposia
EPS Theme 3 symposium 'Metabolism and Adaptation', Wageningen

university Mar 23, 2003

EPS Theme 3 symposium 'Metabolism and Adaptation', Wageningen

university Oct 25, 2004

EPS Theme 3 symposium 'Metabolism and Adaptation', Utrecht

university Nov 24, 2005
P> NWO Lunteren days and other National Platforms

ALW meeting Experimental Plant Sciences, Lunteren Apr 07-08, 2003

ALW meeting Experimental Plant Sciences, Lunteren Apr 05-06, 2004

ALW meeting Experimental Plant Sciences, Lunteren Apr 04-05, 2005

ALW meeting Experimental Plant Sciences, Lunteren Apr 02-03, 2007
»  Seminars (series), workshops and symposia

Frontiers in Plant Science, Wageningen university 2003

Flying seminars, Wageningen university 2003-2007

CBSG Cluster meeting Arabidopsis, Wageningen (3x) 2004-2005

CBSG Summit, Wageningen (2x) 2005 & 2007

15th symposium ALW-Discussion Group “Secondary Metabolism in
Plant and Plant Cell”, Zeist May 20, 2005




16th symposium ALW-Discussion Group “Secondary Metabolism in
Plant and Plant Cell”, Leiden

Netherlands BioInformatics Centre Workshop Bioinformatics for
Metabolomics, Wageningen

Seminar plus

International symposia and congresses

7th International Congress of Plant Molecular Biology (ISPMB),
Barcelona, Spain

Keystone symposia, Biological discovery using diverse high-throughput
data, Steamboat Springs, USA

16th International Conference on Arabidopsis Research, Madison, USA
4th Plant Genomics European Meetings, Amsterdam, The Netherlands
15th Crucifer Genetics Workshop: Brassica 2006, Wageningen, The
Netherlands

5th Plant Genomics European Meetings, Venice, Italy

18th International Conference on Arabidopsis Research, Beijing, China

Oral presentations

7th International Congress of Plant Molecular Biology (ISPMB),
Barcelona, Spain

Heidelberg Institute of Plant Science, Heidelberg University, Heidelberg,
Germany

CBSG Cluster meeting Arabidopsis, Wageningen (3x)

EPS Theme 3 symposium Metabolism and Adaptation, Wageningen
university

Plant Research International, Bioscience, Plant Development Systems,
Wageningen

Plant Research International, Bioscience, Metabolic Regulation,
Wageningen

ALW meeting Experimental Plant Sciences, Lunteren
EPS/VLAG/CBSG Workshop Metabolomics, Wageningen University
16th International Conference on Arabidopsis Research, Madison, USA
4th Plant Genomics European Meetings, Amsterdam, The Netherlands
EPS Theme 3 symposium Metabolism and Adaptation, Utrecht
university

Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany
De Ruiter Seeds, Bergschenhoek

15th Crucifer Genetics Workshop: Brassica 2006, Wageningen, The
Netherlands

16th symposium ALW-Discussion Group “Secondary Metabolism in
Plant and Plant Cell”, Leiden

5th Plant Genomics European Meetings, Venice, Italy

Netherlands BioInformatics Centre, Workshop Bioinformatics for
Metabolomics, Wageningen

CBSG Summit, Wageningen

ALW meeting Experimental Plant Sciences, Lunteren

Oct 6, 2006

Nov 29, 2006

Jun 23-28, 2003

Mar 30-Apr 4, 2004
Jun 15-19, 2005
Sep 20-23, 2005

Sep 30-Oct 4, 2006
Oct 11-14, 2006
Jun 20-23, 2007

Jun 24, 2003

Sep, 2003
2004-2005

Oct 25, 2004
Nov, 2004

Dec, 2004
Apr 5, 2005
May 3, 2005
Jun 17, 2005
Sep 23, 2005

Nov 24, 2005
May 5, 2006
Jul 25, 2006

Oct 4, 2006

Oct 6, 2006
Oct 14, 2006

Nov 29, 2006
Feb 6, 2007
Apr 2-3, 2007




Utrecht Genetic Seminar Series, Hubrecht laboratory, Utrecht Apr 12,2007
Institute of Vegetables and Flowers, Chinese Academy of Agricultural

Sciences, Beijing, China Jun 20, 2007

18th International Conference on Arabidopsis Research, Beijing, China

(2x) Jun 21, 2007

PhD summerschool; Environmental signaling: Arabidopsis as a model,

Utrecht University Aug 27, 2007
»  IAB interview May, 2005
»  Excursions

Subtotal Scientific Exposure 37.2 credits”

3) In-Depth Studies date

»  EPS courses or other PhD courses
International Summerschool, The analysis of natural variation within

crop and model plants, Wageningen Apr 22-25, 2003
EPS Summerschool, Functional Genomics: theory and hands-on data

analysis, Utrecht university Aug 25-28, 2003
EPS/VLAG/CBSG Workshop Metabolomics, Wageningen University May 2-4, 2005
ABIES/PE&RC/EPS/SAV Workshop Mathematics in Plant Biology, Paris,

France Jun 30-Jul 1, 2005
PhD summerschool; Environmental signaling: Arabidopsis as a model,

Utrecht University Aug 27-29, 2007

»  Journal club
member of literature discussion group 2002-2003
» Individual research training

Netherlands Genomics Initiative fellowship, MPI for Molecular Plant

Physiology, Golm Germany feb 1-may 5, 2006
Subtotal In-Depth Studies 9.6 credits”
4) Personal development date

P Skill training courses

»  Organisation of PhD students day, course or conference
Wageningen International, Training programme on the conservation,
management and use of plant genetic resources in agriculture;

Biotechnology for genetic resources conservation and crop improvement May 9-Jul 1, 2005
»  Membership of Board, Committee or PhD council
Member of PhD council 2003-2006
Subtotal Personal Development 2.9 credits®
TOTAL NUMBER OF CREDIT POINTS* 51.2

Herewith the Graduate School declares that the PhD candidate has complied with the educational
requirements set by the Educational Committee of EPS which comprises a minimum total of 30 credits.

* A credit represents a normative study load of 28 hours of study




The research described in this thesis was performed in the project ‘QTL express:
identification of plant performance traits in Arabidopsis by combining high-
throughput mapping and expression profiling’, financially supported by a grant
from the Netherlands Organization for Scientific Research, Program Genomics
(050-10-029).

Printed by: Ponsen & Looijen BV, Wageningen, The Netherlands.



