PEPEIRA

PepMV: epidemiology, economic impact and pest risk analysis

René van der Vlugt

WP 3 objectives

PepMV characterization and detection

- Determine occurrence and spread of PepMV isolates and strains over Europe
- Most important biological and genetic characteristics of the different strains and isolates of PepMV across (and outside) Europe
- Determine possible risks of PepMV strains and variants on tomato and other Solaneceous crops
- Develop and evaluate accurate detection and diagnostic methods
- Determine risk of seed transmission

Overview of presentation

Update on the virus

• Strains and isolates

- Biological and genetic characteristics
- Development of diagnostics
- Occurrence and incidence
- Seed transmission

Pepino mosaic virus

 Virus first found in Peru (1974) on pepino (Solanum muricatum)

- Potexvirus (*Flexiviridae*)
 - ± 500 nm flexuous particle
 - Mechanical transmission
 - Very persistent and infectious

Present in Spain on tomato in 1998, Netherlands 1999 and spreading since

PepMV strains

- 4 PepMV strains recognized
 - Pepino (or Peruvian) = type strain (Jones et al 1980)
 - EU-tomato strain (Netherlands 1999)
 - US1 strain = 2005 USA (2007 Can. Islands)
 - Chile-2 strain = 2007 USA
 - Recombination also occurs (US2)

No clear distinction between strains on plantsDifferentiation on basis of sequence homology

PepMV strains

 Strong biological differences between isolates of one strain

- Mild and 'aggressive' isolates
- Leaf and fruit symptoms
- Yield and fruit quality
- Unknown factors influence symptoms on leaves and fruits
 - Climate
 - Cultivar

Biological characterization of PepMV strains

Impact on other Solaneceous crops

- Standardized isolates
- EU-tomato, Chile-2 and US1
- Symptoms and effects on
 - Solaneceous crops: tomato, potato, pepper, aubergine and tobacco
 - Local crop cultivars

Risks for other Solaneceous crops

 Mechanical inoculations of 5 -10 plants with PepMV isolate

- Score local and systemic symptoms
- Test by ELISA
- Confirm by back-inoculation

Risks for other Solaneceous crops

Tomato

Nearly always systemic symptoms and always ELISA positive in both leaves and roots

Pepper

In general no symptoms and rather seldom leaves ELISA positive

Potato

 In general no symptoms and about 1/3 leaves ELISA positive. No roots or tuber infection

Aubergine

 Often systemic symptoms and in general ELISA positive in leaves and roots

LANT RESEARCH INTERNATIONA

Genetic characteristics

- Typical potexvirus
 - 6412 nts
- Many sequences available
 - > 10 full-length sequences
- Distinction between strains by sequence differences
 - Virus-wide and strain specific primer sets (qRT-PCR)
- No correlation between sequences and biology

Development of diagnostics

Serology

- DAS-ELISA antisera available (several suppliers)
- Different strains but CPs highly homologous
- Antisera compared: minor differences in reactivity but no differences in sensitivity

PCR

 Conventional RT-PCR and q-RT-PCR primer sets developed and tested

Selection of diagnostic methods made for ring test

Occurrence and incidence

- First report in Europe in 1999
 - Netherlands and UK
 - Present in Spain in 1998
- Reports worldwide
 - USA and Chile: new strains
- Presence in Europe
 - National surveys mandatory
 - Seeds of EU origin
 - Imported seeds third countries
 - Tomato plants for planting
 - Tomato fruit production
 - Fruits on the market

Occurrence and incidence

Present in Europe

- Established in a few countries
- 'Present' in some countries
- Under various levels of control
- Main transmission route still under debate

Seed transmission

Set-up of test

- Seeds collected from crop grown by Belgian partner
- Infected with mixture of EU-tomato and Chile-2 strain
- > 100.000 seeds harvested, 3 batches, 6-12 weeks after infection
- Seeds only marginally cleaned
 - Pectinase treatment only to remove fruit flesh
 - No additional disinfection
 - Distributed to partners and sown within 3 weeks after harvest

LANT RESEARCH INTERNATIONA

Seed transmission

Seed testing

- Seeds distributed to 10 partners (official permits!)
- Seedlings tested 6 weeks after germination
- Batches of 10 seedlings, standardized ELISA protocol

Test results

- 87.780 seedlings tested
- 23 pooled batches found positive
 - 1/1887, 3/3538, 19/3353
- 0.026% seed transmission

Seed transmission

Seed transmission confirmation

- In line with earlier results from the Netherlands, Spain
- Seed transmission re-confirmed
- 'Worst-case scenario'
- Practical implications
 - EU-directive: no seed harvest from infected crops
 - Rigorous testing of crops, thorough disinfection (acidtreatment) plus seed testing by seed companies
 - Transmission risk small

On behalf of the consortium:

Thank you for your attention!

© Wageningen UR

