

Three European protected crops: LCA and alternatives to reduce environmental impact

M.Torrellas¹, A. Antón¹, E. Baeza², J.C. López², J. Pérez Parra², M. Ruijs³, N. García³, J.I. Montero¹ ¹IRTA Centre de Cabrils, 08348 Cabrils, Spain. marta.torrellas@irta.es

²EEFC Las Palmerillas, 04710 El Ejido, Almeria, Spain ³Wageningen UR Greenhouse Horticulture, PO box 644, 6700 AP Wageningen, the Netherlands

Goal and scope:

Analysis of protected agricultural crops in different climate conditions in Europe, and comparison with alternatives of cleaner production

Fig 2, Scenario 2

Fig1, Scenario 1: Tomato crop, multi-tunnel greenhouse, Almeria, Spain

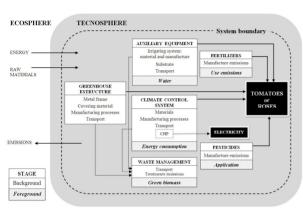


Fig 3, Scenario 3: Rose crop ,Venlo greenhouse, the Netherlands

Fig 4. Flow diagram for production systems

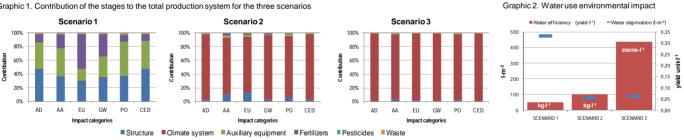
Materials and methods:

- Methodology: Life Cycle Assessment (LCA)
- Data: Foreground data: Estación Experimental Fundación Cajamar, Almeria, Spain, 2008.

Wageningen UR, Greenhouse Horticulture, the Netherlands, 2008. Background data: - Ecoinvent database v.2.2, 2010 and LCAFoods database, 2003

Table 1. Representative data for analysed scenarios

	Tomato, multi-	Tomato, Venlo,	Rose, Venlo,				
	tunnel, Spain	the Netherlands	the Netherlands				
FU	1 ton tomato	1 ton tomato	1000 stems				
Yield	16.5 kg·m ⁻² ·y ⁻¹	56.5 kg·m ⁻² ·y ⁻¹	276 stems-m-2-y-1				
Substrate	Perlite	Rockwool	Rockwool				
Fertirrigation system	Open-loop	Closed-loop	Closed-loop				
Water (I-m-2)	475	794	902				
Water use	28.8 l·kg-1	14.1 l-kg ⁻¹	3.3 I-stem ⁻¹				
Climate system	Natural ventilation	Co-generation Natural gas	Co-generation Natural gas				
Lighting	no	no	yes				


Results:

- Reference situation: Main contributors:
- Scenario 1: Structure, auxiliary equipment, fertilizers
- Scenario 2: Climate control system (heating)
- Scenario 3: Climate control system (lighting electricity)

Impact categories selected:

- AD: Abiotic depletion (kg Sb eg)
- AA: Air acidification (kg SO₂ eg)
- EU: Eutrophication (kg PO₄-3 eg)
- -GW: Global warming (kg CO₂ eq)
- -PO: Photochemical oxidation (kg C₂H₄eq)
- -CED: Cumulative energy demand (MJ)
- -WSI: Water deprivation (Pfister et al., 2009)

Graphic 1. Contribution of the stages to the total production system for the three scenarios

Alternatives for cleaner production

Tables show the percentage of environmental impact reduction versus the reference situation, for scenarios and their alternatives.

Scenario 1					Scenario 2							Scenario 3								
	AD	AA	EU	GW	РО	CED		AD	AA	EU	GW	PO	CED		AD	AA	EU	GW	РО	CED
Fertilizers ↓30%	3.6	6.0	15.3	9.7	2.7	3.0	Energy saving cultivation method	31.1	25.9	20.4	30.4	29.1	30.9	Diffuse glass covering	4.7	4.6	4.5	4.7	4.6	4.7
Closed irrigation system	5.2	9.9	48.2	12.3	5.1	4.9	New type of glasshouse with double glazing	38.8	29.9	6.4	38.0	39.9	38.7	Substrate volume reduced by 30%	4.8	5.1	4.9	4.8	5.1	4.8
New type of greenhouse with improved ventilation	42.6	38.8	36.0	39.3	41.8	42.7			% R	eductio	ın	<5	5<10	10<20 20<30 ≥30						

Conclusions:

- A multi-tunnel greenhouse is an unheated passive system which requires little energy and inputs other than fertilizers and water.
- Greenhouse production in the Netherlands is an efficient process that requires intensive technology and energy.
- In scenario 1, new type of greenhouse decreased environmental impacts significantly as yield increased up to 31.4 kg·m⁻².
- In scenario 2, energy saving cultivation method was a very efficient solution because of the reduction of natural gas consumption.
- In scenario 3, the reduction of inputs could not compensate the high contribution of electricity consumption for lighting.
- Inclusion of water assessment in LCA is important to evaluate the amount of water used and the localization of water resources.

