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ON WEATHER AND CROPS 

Course prepared for the post graduate training programme in soil science. 

C.T. DE WIT 

Theqretical Agronomy~ Agricultural Universityp Wageningen 

1. Introduction ============ 

One of the aims of modern crop ecology is to estimate the yields obtained 

under conditions in which the weather is limited. In arid regions, where water 

is l1ard to come by~ this is of course the amount of water available for 

tra-~spiration and under these conditions the study centres around the relation 

bet~~Jeen crop yield and transpiration. In other areas, or with irrigation the 

gro··~th rate of crops and the amount of water necessary to maintain this growth 

rate is mainly limited by temperature and radiation. 

A discussion on some of the work proceeding in this field is appropriate 

here~ because some idea of potential yields may give the soil scientist a standard 

by 'J.7h:i.ch the result of his efforts may be measured (How could this be done?) 

2.1 Radiation 

Solar radiation~ which is the primary source of energy for all processes 

on earth, falls at the earth 9 s upper atmosphere at a rate of 2 cal cm-2min- 1• 

Even with a perfectly clear sky some of this radiation is scattered and 

absorbed during its passage through the atmosphere~ so that at most a radiant 
-? -1 

energy of 1.65 cal em~ min reaches the earth's surface when the sun is 

overhead. 

Due to the scattering about 15 percent of this radiation arrives in 

diffused form. vlith a decreasing inclination of the sun the rays traverse 

more air so that less light reaches the soil surface and the light intensity 

of a horizontal surface decreases also, because of the change in angle between 

the surface and the sun. (Try to scetch this). The resulting relation bet'tveen 

the total radiant energy reaching the earth's surface and the inclination of 

the sun is shown by curve 1 in figure 1 and the direct and diffuse part of 

this radiation by the curves 2 and 3? respectively. These curves hold for 

perfectly clear days. Usually~ there is so much dust and water vapour in the 



that the total is about 15 lower on normal elear days. 

(Wh.y is this reduction espec:i.a1Jy at the expense of the. di:r(~et portion?) 

.0 

Fig .. I. In.eident light intensity (left scale) and the total radiation 
(right scale) for various heights of the su11. 

1~ Total radiation with a very clear sky 
2. Direct radiation with a very clear sky 
3e Diffuse radiation with a very clear sky 
4. Total and diffuse radiation with an overcast sky 
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Clouds absorb and reflect a great deal of the intercepted radiation and 

on days with overcast skies the radiation intensity may be as low as shown 

by curve 4 in figure 1. The radiation is not all of the same quality. About 

50 percent is visible and the other 50 percent is in the infra-red region. 

A black surface is heated by both rays but only the radiation in the visible 

region, the light~ supplies the kind of energy a plant needs to convert 

carbondioxyde into carbohydrates (section 3). 

Any surface with a temperature above the absolute zero emits thermal 

radiation and the more so the higher the temperature. (Can you list 

examples?) Since the earth is w·armer than space this leads to a net loss 

of heat. This heat loss occurs from the earth surface when the sky is 

bright and may amount to 0. 2 cal cm·=2 min-l. With overcast skies this 

radiant heat is lost from the clouds~ since these are not trar1sparcnt and 

their temperature is about the same as that of the earth surface. 

The net radiation is equal to the incoming visible and infra-red 

radiation minus the outgoing thermal radiation. The amount may be estimated 

at any time from the height of the sun~ the cloudiness, and temperature and 

h·1midity of the air at screen height. The principle of instruments which 

o:nablo. tho not radiation to be measured is a black surface of which the 

temperature can be determined. The radiation absorbed by this black surface 

is transformed into heat~ leading to a temperature rise and this leads to a 

transfer of heat to the surroundings. A twice higher radiation leads to a 

twice higher temperature difference under othenvise similar conditions. 

2~2 Heat and vapour transfe~ 

The relation between sensible heat loss from a surface to the surroundings 

is expressed by the following equation 

SHL = H (TS ~· TA) ( 1 ) 

h , · h 'bl h f f£" · · 1 - 2 · -l 0 c- 1 
r.v ere h ~s t e sensJ. e eat trans er coe J.CJ.ent J.n ca em m1.n , 

S is the heat transfer rate in cal cm=2 min-l and TS and TA the temperature 

in °C of the surface and the surrounding air, respectively. 

The sensible heat transfer coefficient increases with increasing wind speed 

at the surface and has been experimentally determined. (How would you go about 

this?) For a small surface (leaf) it \vas found that 

H = Oo0324 U O.? -·2 • ~ 1 0 -1 
cal em m~n C 

(2a) 

where U is the wind speed in meters sec~l at the height of the leaf. 
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r'or a rather smooth land surface it was found that 

H = 0.0070 (1 + 0.54 U) -2 . -1 0 -1 cal em m~n C 

It can be seen by plotting both relations (do this, please) that the value 

of H in the first equation is about 2-3 times higher than in the second one. 

The main reason is that in the latter case the wind speed and air temperature 

are not measured at the height of the surface but 2 meters above. It is clear 

from the figure you have just made that the equations are not suitable for 
~1 

wind speeds below 0.5 meters sec 

(The temperature of a thin black surface which receives a net radiation 
-2 =1 0 of I cal em min ~ exposed to an air stream with a temperature of 20 C 

-1 0 0 and a v1ind speed of 1 m sec is 35.5 C and not 51 C. Explain why) • 

The saturation vapour pressure of air (what is this?) increases with 

t~1e temperature according to table 1 • 

Table 1. Saturation vapour pressure of water in millimeters mercury. 

0 

4.58 

4 8 

8.04 

12 20 

10.5 17.5 

24 

22 .Lt 

28 

28.3 

32 

35.7 

36 

44.6 

(T·:1e saturation vapour pressure of boiling water is •••• mm Hg.) 

A "Vvet surface is a surface at v1hich the vapour pressure of the water is 

equal to the saturation vapour pressure at the surface. 

This surface of course loses ·vapourized water to the surrounding air 

if the vapour pressure of the water in this air is lower than the saturation 

vapour pressure at the surface and the more so the greater the difference. 

Since 560 cal are needed to evaporate 1 gram of water~ this evaporation is 

associated to an evaporative heat loss which amounts to 

EHL = K (ES = EA) 

in which the evaporative (latent) heat transfer coefficient K is expressed 
~2 -1 =1 

in cal em min (mm Hg) ~ the difference between the vapour pressure of 

the surface (ES) and the air (EA) in mm Hg and the evaporative heat loss EH 

(2b) 

(3) 

• 1 ~z • = J (t.:l 1 • h d d • f ff • • ~n ca em m~n • r.ow mucu ~s t e correspon en ~ng vapour trans er coe ~c~ent 

-2 -1 -I 
in g water em min (mm Hg) ?) 

The exchange of water vapour between the evaporating surface and the air 

is governed by the same physical processes (diffusion and convection) as the 

exchange of heat, so that the sensible and evaporative heat transfer coefficient 

are proportional. It was found that this ratio~ referred to as Bowen 9 s ratio~ 

equals 

H I K = 0.49 mm Hg I °C (= psychrometive constant) (4) 
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2.3 Evaporation 

The equations 1 to 4 enable the evaporation and temperature to be 

evaluated of a wet surface if the environmental factors are knoV~m. This 

will be shown by calculatine; the teraperature of a \~et black paper receiving 

d . . f 1 no 1 ~2 . - 1 • • a net ra ~at1.on o • ~ ca em m1.n ~ exposed to an a1.r stream w1. th a 
.... 1 ' 0 

speed of 1 m sec , a temperature of 20 C~ and the humidity of 10 mm Hg. 

The sensible heat loss of the surface is absent if the temperature is the 

same as that of the surrounding air~ but according to equations 2a? 4 and 3 

and table 1 the evaporative heat loss is 0.13 (17.5- 10) = 0.98 cal cm-2 min-I 

Obviously, the surface gains more heat by radiation so that the temperature 

riscso In a similar way it may be calculated that the loss of sensible plus 
~~z . v-1 

evaporative heat is ····~ •••• and~··· cal em m1.n at surface temperatures 
0 of 21, .22 and 23 Cjl respectively. By linear interpolation it is found that 

at an air temperature of ····~ the loss of sensible plus evaporative heat 

equals the gain in heat due to the net radiation and that the amount of water 
=2 . --1 . . ' . • . . lost by evaporation is •••• g water em m1.n 1.n th1.s equ1.Ltbr1.um Sl.tuatl.Otl 

(Do these calculations). This iterative process seems rather cumbersome~ but 

it may be conveniently executed with a computer. 

The evaporation of a water surface may be calculated in a similar way by 

Jsing equation 2b instead of 2a 9 including a reflection coefficient of about 

10 percent and a reasonable estimate of the heat storage in the water layer. 

(A much used and rather unreasonable assumption is that the ·water layer is 

thermally isolated from the soil and infinitely thin.) The incoming radiation 

varies under Dutch conditions from 50 in winter to 400 cal cm·=Z day -l in 

summer and the evaporation of a free water surface varies from little over 
~I 

zero in winter to 5 mm day in summer. (Calculate the fraction of the 

incoming radiation used by evaporation.) The evaporation rates in arid regions 

may be as large as 10 mm/day. 

The iterative process of calculating transpiration may be by-paased by using 

an approximate method which was first introduced by PENHAN. In the equilib~iurn 

situation (characterized by ••••...••••••• '?) the absorbed short ·wave radiation 

minus the long wave radiation or the net radiation equals the sensible heat 

loss + the evaporative heat loss? or NRAD = SHL + EHL 

Substituting the equations (1)~ (3) and (4) gives 

NRAD == H (TS ~· TA) + (H/. 49) (ES ~ EA) 

There are t'{JI70 unknowns~ the temperature (TS) and the vapour pressure at the 

surface (ES). 

(5) 

(6) 

For a wet surface~ ES equals the saturation vapour pressure which corresponds 

to TS 9 hence there is another equation. and only one unkno"m. 
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To simplify the relation for further computations PE1~1AN introduced the 

approximate relation~ 

ES - EA = S(TS - TD) 

in v1hich TD is the dew-point (definition?) and S the avarage slope of the 

saturation vapour pressure curve (table 1) between TA and TD (Draw this curve 

and calculateS at 2? 6~ 10~ 14, 18~ 22~ 30 and 34 degrees). 

Substituting (7) in (6) yields~ 

NRAD = H(TS - TA) + (H/.lt9) S (TS ~· TD) 

in which TD is the only unknown and can be made expli.cite~ 

TS = TA + • q.g x NRAD ·~· --· S x(TA ~· TD) 
.49+8 H 8+.49 

Verify that the constant .49 and the variable S have the same dimension and 

that NRAD/H has the dimension of degrees. Find some conditions in which 

TS = TA~ TS >TA or TS < TA. 

By substituting (3) in (7) and substracting from HRAD it is found that 
c 

EEL = ·~0-.- (NRAD + H(TA=TD)) 
S+ 0 L:-9 

Which expression for H has to be used to obtain the evaporative heat loss 

of a lake~ and how is the evaporation in millimeter "tvater calculated? 

2. L~r !'oter..tial transpiration 

The leaf is protected against desiccation by the cuticula which is almost 

impermeable for v1ater o This imperm.eab le layer is covered with a large number 

of stomata so that carbondioxyde for photosynthesis may enter. These are open 

when the leaf is subjected to sufficient light and \·?ell supplied "~:lith "~"ilater s 

(7) 

(iJ) 

(9) 

;.'l.nd closed when there is a shortage of water and in the dark. Hater is of course 

lost through the stomata~ when these are open. 

Compared to a \.Vet surface~ the water vapour in the leaf has to overcome 

an additional resistance and the evaporative he.at exchange coefficient is 

therefore smaller than the one calculated with Bowen 7 s ratio from the sensible 
-I heat exchange coefficient. (It was found that at a wind speed of 1 meter sec 

the evaporative heat exchange coefficient of a barley leaf is about half that 

of a similar wet surface. Calculate the temperature and the transpiration of a 

barley leaf which absorbs a net radiation of 1.2 cal m~2 min-l and is exposed 

to an air stream with a speed of 1 m sec-l :~ a temperature of 20° and a humidity 

of 10 mg Hg. Compare the outcome with the outcome of the calculations in section 

2.3.) 

With a closed crop surface this increased resistance is rnore or less off-set 

by the large number of leaves~ and for this reasor1 the transpiration rate of a 
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th water (that is the green, closed crop surface well supplied 

potential transpiration rate) does not too much from the e.va.poration 

rate of a wat.e:e surface~ More important reasons for differences are 

that the reflection eoefficient of a green 

and for water only 10 and that the 

coefficient of a rather rough crop surfaee is 

aurface~ 

These effe.cts are often accounte.d for by 

factor of the free water evaporation to 

about 20-25 percent 

le heat exchange 

tha~n that of a smooth 

a multiplication 

the potential transpiration~ 

This multiplication factor from. about 0~8 for bowl greens to 

.::tbout 1 .. 5 for alfalfa in its grand period of growth .. 

It has already been that leaves are provided with stomata 

to enable carbondioxyde for prwtosynthesis to enter. 

by ·which the carbondioxyde from th~~ a 

according to the follo-v;ring scheme co
2 

+ + 

the proces 

The photosynthesis function 

cal 
rlb!CWbt!d 

MPH:: 
RHM 

t10 

for leaves of 

corn 
"" l 1 cal em~- L min-

60 cal c.u1~z hr 1 

and 



100 

50 ' 

The curve for sugarbeets figure 2a 

single leaYes of a. w~~ll developing 

radiation intensity~ The photosynthes 

The luence of temperature 

on the photosynthesis of corn 

and sugarbeet~ 

ho-fAr the photosynthesis of 

tural crop may depend on 

rate at low intens is about 

proportional to the light intensi , but at radiation intensities above 
-2 -· 1 20 cal em hr the increase with radiation small The 

shape of the photosynthesis function ·for this species not ve1:y temperature 

dependent within the normal range (figure 2b). Other 

like corn, have a much higher saturation value of photosynthesis$' whereas 

at the same time the temperature depende-r1ce is also much higher~ 

A very simple crop surface consists of large, horizontal le.aves~ The 

first laye-r of leaves subjected to a light intensity of about 0.6 cal 
-2 . -l 0 

em m~n. on a clear day with. the sun a.t ·45 (figure 1) and produces 

carbohydrates at a rate of about 18 kg CH
2
o ha-l hour-l (figure 2~ 

sugarbeet). The second layer of leaves receives about 15 percent of that 
. -l -1 

on the first layer and its production rate is abottt ll kg CH
2
o ha h.r ,. 

The next layer receives a negligible aJnount of light, so that the total 
-1 -1 

production of such a crop surface is about 30 kg CH
2
o ha Ahr under these 



conditions. (Check.these estimates, 

difference betwtu~n radiation and 

care of units and of the 

!!~~!~-~~ ~ Schematic representation of 1 interceptio-n by and 
scattering of light in a crop with a leaf area index of 2. 

However~ a crop surface does not cons t of big, h.orizontal leavf~s but 

of small leaves~ inclined to rnany angles~ This is schematically presented 

~n figure 3 11 for a crop surf ace v-Ji th a leaf area index of 2 (this means 

that the leaf area t\vo times the soil area). The left side of the graph 

shm:JS how the light from ve.rtical direction is distributed9 Obviously many 

more leaves than one LAI are neeessary to intercept all the light, so that 

this light is dis trib"ixted over a much larger leaf area. than with horizontal 

leaves .. Moreover,. about 30 percent of the light arriving at a leaf ~s 

scattered and the right hand side of figure 3 shows that this also results 

in a more even distribution of the light. 

This better distribution of light over a large number of leaves causes 

a higher photosynthesis per. unit crop area bec:ause the photosynthesis of 

single leaves is not proportional to the light intensity •. The distribution 

of light in a c·rop surface depe.nds on many factors, such as amount of leaves y, 

reflection and transmission (scattering), position of the leaves with 

respect to tht~ soil and each other and the height of the sun and the 

eloudiness., All these variables can be. measured and th,eir mutual effect 

on. light tribution and therefore on the photosynthesis rate of crop 

surfaces can be calculated with 



For the present purpose only the. pote.ntial photosynthesis is defined 

here. as the photosynthesis of a erop surf ace with a LAI <:If 5, the s true ture 

of young grass or small grains~ consisting of leaves with a reflection and 

transmission of 1.5 percent and \vi th a photosynthe.s 

figure 2, for sugarbeet. 

function as shown in 

Eig~~-~: Potential photosyntlH:~si.s in ·relation to the height of the 
sun 'l.:.;ri th clear and overcast skies 

The dependence. of this potential photosynthesis on the ht~ight of the 

sun with clear an.d overcast skies is shown in figure L~. The maximum rate 

appears to be about 60 kg CH
2
o ha- 1 hr_, 1 which is considerable higher than 

that of a crop surface with horizontal leaves. The light intensities with 

ove.rcast skies is about 20 percent of the light intensity of clear skies 

(figure 1), but the photosynthesis rate is ~bout 50 percent. This 

relativ~ly high rate with overcast skies is due to a better distribution 

of light under these conditions. 
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!:i:~l!~~-_2: Daily total of potential photosynthesis a-nd light throughout 
the year in the NetlH~rlands 

The height of the sun for any plaee and hour of t'he day may be 

calculated and the cloudiness can be measured. It therefore 

possible to calculate the daily total of potential photosynthesis for 

any date and plac.e. Under Dutch conditions these potential photosynthesis 

are summarized in figure 5~ together with the daily totals of light 
~ 1 ~$J 

intensity. The potential photosynthesis ~s about 375 kg CH2o ha day 
. . -1 -1 

in June -v.rhich is equivalent to 375 x 4 x 1000 In.loc.al ha day ~ 

(what does the I.J stand for'!) the daily light total amounts to 20 5 x 10
6 

kilocal ha-l day-l" and therefore t'he efficiency of photosynthesis is 

(1~5 x I06/20.5x10
6

)IOO = 7 3 pereent. ('liJhy is the effic:it~ncy of photo·· 

synthesis higher (ll percent) in winter?) 
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Table 2. The d.a5.ly totals of light r:.~.nd pot.eni;.ial photosynthesis for (3, canopy with a 
oli<Oltl-? 

IAI of 5. HC is the light on ve:ry elear and is expressed in cal. em "-
~J day · ~ The light irrtens.i ty on overcast d;;;J,ys is 0. 2 times HC. 

PC and PO are the daily totals ef photos~rnthesis on. very clear and overcast 

days, respeetively, and are expi·essed in kg CH
2

0 ha-l day""
1

• 

f-N-th~~~·l-~~ lt::'~--~~ ,_,,,,lu<•w5 __ .T_lf-\----~ -;:1-]-;~-~,--1~~--~--lk'-~-ll:\ ----:---15-" -~ --15 l 15 -~~ 
or -. :> 1 J 1 • 1 ~ .; 1 - .J 1 ... ) • ) t ) ; _,.. : ~ l . 1l 

I I • • ' I I ' l l 
I Lat. ~Jan~ FebrQ! Mareh 1, Apr.! :May\ Junel Julyl Aug. ! Sept. 11 Oct.! Nov. l Dec. l 
· I ' t l ' 1 l l j 

:-;;o HC 343 36~-3~49-1337-t" 3h21357i ,681365~ I ';4;1-337'1 
! PC ~ll3 424 1 LJ29 l 4-26 1 1~17 !' )i-10 r 1+13 1 1+22 429 I '-i·27 , 418 ll+lO 1 I PO 1219 226 . 230 ! 228 I 221 I 216 I 218 ! 225 230 I 228 i 222 l 216 I 

10° I HC ' 299 332 359 375 I 37'7 i (74 I 375 377 369 i 3h5 i 311 I 291 I' 

PC 3'76 4.01 L~22 t~37 · 440 t ~1J-J.O 440 439 4-31 t~ll 1 385 1 3'TO 
PO 197 212 225 234 236 i 235 236 235 230 2181 203 I 193 I 

20° HC 249 293 337 375 39!1- l t~oo 399 386 357 }1.3 ! 264 238 I 
PC 334 371 1{.07 L~39 460 i 1.~68 lt65 )4·51 4-25 387 / 348 325 I 
PO 1170 193 215 235 21;6 [ 250 2~9 2i.;2 226 203 I 178 164 I 

30° He! 191 21+5 .303 363 i.too l 417 t~11 .38l~ 5.33 270 l 210 r79 
PC I 281 333 .385 4·37 i-+71 I 1189 1~83 1+56 4-12 356 l 299 269 ! 
PO 13'"( 168 200 ~~32 251 l 261 258 2L1-3 216 182 ! 148 130 ! 

4o0 Hcl131 190 260 .::·39 396! 1-122 413 ' 369 298 220 l 151 nsj
1 

PC' 218 283 j 353 427 480 I 506 497 455 390 314! 241 204 
PO 99 137 j 178 223 253 l 268 263 239 200 155 ~ 11.2 91 ! 

HC' 73 PC. 147 
PO 60 

HC 
PC 
PO' l 
HC 
PC 
PO 

HC 
PC 
PO 

90° HC 

'22 
66 
19 

0 
0 
0 

0 
0 
0 

l i l 
131 l 207 304 3E30 l 418 }-105 ?4.1+ 25h 163 i 92 61 i 
223 310 409 48t~ j 522 509 1+!+8 358 260 i 1'"(3 130 l 
100 150 20'( 251 l 273 265 230 178 121 l 73 51 ! 

1119 260 '56 i ~os 389 309 201 103 37 111 I 72 
151 
60 

20 
65 
16 

0 
0 
0 

0 
0 
0 

25i.J. 38.3 487 ; 5il-4 523 }.136 316 195 91~ i-i-9 ! 
11~- 187 245 i 2T6 265 216 1Lr8 82 31 11 ~ 

0 
0 
0 

209 
350 
158 

162 
333 
133 

'3'31; 4oe 
"506 I 612 
2l-tl 291 

3B0 
575 
273 

393 
6.32 
29T 

200 

248 
t1:r1+ 
196 

142 
262 
112 

81 
195 

69 

2.52 4o 
49'[ . 16'"( 
215 

3 
11 

2 

2 
7 
1 

0 
0 
0 

0 
0 
0 

I 

I 
0 
0 
0 

0 
0 
0 

0 
0 
0 
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t::lfi.rbohydr. --bu. 

JfJD 

1fJti 

Th1?. between the 

leaf area index and the photo· 

synthesis~ the net photo­

synthesis and the respiration 

for a grass like green crop 

surface in the Netherlands 

on the 21st of June. 

Photo;::;yntlH::sis clnd respiration 

o:f subterranean c.lover 

dependence of leaf area index 

under controlled conditions 

(after HcGree) .. 



The potential photosynthesis c.lear and overcast skies has been 

calculated for different latitudes and places. These results are given in 

table 2 together with the daily light total on clear days~ The daily light 

total and potential photosynthesis in less extreme 'Heather conditions can be 

estimated from the. relative duration. of sunshine (N in a sc.ale of 0 to l) 

with the fo1 

Daily total 0.8(0.25 + 0.75 X N)HC 

Potential photosynthesis = PO + 0.9 N(PC 

(Try to unde.rs tand these t."qua tions ~ TlH?. f a.c tors 0 * 8 and 0 ~ 9 a.re u~::u~d to 

reduce the value for c. lear 

(Calculate also the ly light total and photosynthesiB ~ith 

a relative duration of sunshine (N) of 0.7 and for the 15th of August in 

N th 1 . 't d f 2!,· 0 a . or __ a~l· u.e D - and -30° and for the 23rd of a No:r.:th 

Latitude of 24°. Use linear lation whereever necessary.) 

:ion and net 

The plant uses its but ·fbis JY.tocess ~ 

and fo:r the.: of the structure, energy is needed is 

derived from respiration of 

is like grm:/th c.onsiderab1y 

It is often assumed that the 

with the amount of pla:nt material em the 

\vhereas the photosynthes rate 

ncreases more or less linearly 

or the leaf area index, 

a maximum value be.cauSf! of mutual 

shading of leavesti The composite effect of all s is illustrated in figure 

6, vihere photosy11thes ed from labo:ratoTy ex.periments 

v.rith single plants and net photosynthesis at"<~ dependence of the 

LAI in de Netherlands on the. 15th of June The photosynthesis increases to 
-1 1 

a maxim-um. of about 395 kg CJ:l
2

0 ha day ~ hut the optin.nun photosynthesis is 
·~~! .,~ l 

reached at an LAI of about !+. 5 a:nd amounts to 250 lzg cn
2
o hrl • da:;l • It. 

appears th.at at optimum LAI about 30 perccmt of the photosynthesis lost 

by respiration. A ceiling leaf area index (net photosynthesis zero) has 

been observed*after placing plants gro\..Jll :::1part, close. t:ogether ~ 

However measurements on gro\ving crops do not corroborate the assumption o:f. 

linea.ri ty as shm.\rn by som(-:~ results in figure 1, obtained x,ri th subterranean 

clover and for the time being it seems bette.r to Bssume that reBpiration is 

a fraction of photosynthes in the order of magnitude of 30-50 percent, 

mo1~e or less independent of the amolmt of material on the field. 

for short periods 
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3 5 

F ar:mers know f ;;n r ly we 1 t .for eac.h crop hovJ a green closed crop 

surface can be main in their region, The 

maximum d.:ty rnatter of such a crop can be. estimated 

approximation with 60 percent of the 

potential in table. 2. In the. Netherlar1ds, the maximtm1 

dry mat:ter product.ion. of smmner is esti-mated a.bout 60 X 200 
-l -1 -1 

kg ha day · or 12.000 kg ha · and of at 7000 kg Ln plus 

6000 in t plus 5000 13ome 2000 Octobe:r 
··-I 

or in total 20,000 kg ha ,, These are not unreasotH:\.ble estJ..mates for the 

total dry matter yields as 18 shown in 8.. (Hake in the same fashion 

some estimates of total artd cbec.k ·hrhethe:r 

these are :reasonab:l 

l;ROVVTH OF CLOSED GRFEN CROP SURF ACES IN THE NET:I-U:.RLANDS 

· 10
3 t, 9.dm ho

1 

22 

20 

19 

16 

12 

1 (I 

6 

2 

0 

1. Grass 1960 
2, Hheat 1965 
3. Oats + :Barley 1960 
3a. .. Oats ~+~ Peas 196tJ. 
4q Oats l96Lt 

5~ Peas 1964 

Albe:rda 6. Barley 
de Vos 7. Potatoes 
de Hit ?~ v Sugarbeets 
de wit 9., 
de I;Ji t sn 

A \.J.;; 

de \tJi t 

Cou1parison of growth 

rates of agricultural 

erops and algae with the 

curves corresponding to 

200~ 175 and 150 
·-I -l 

ha day 

(af te.r Sibma) 

1966 de Wit 
1965 Bodlaender 
1965 Bakermans 
1937 Mt.~yers 
195/~ van Oorschot 
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Methods are being developed of the grand of 

growth to be eE>timated of the density and date of planting, 

the temperature of a:Lr and soil etc.~ l)ut t:hese are too complicated to 

discuss here. 

It 1;-,;ras found in . 3 an.d 2, l1r that th.e on rate of a 

closed green crop surface 
-1 -1 -l 

J s about .J nun of 50.000 kg ha day 

during the summer months 

photosynthesis of 200 kg 

during the production of 

the Netherlands. m.eans that v:rith an optimum 
; ~~t -1 . 

GH,.)O na day about 250 kg of ·v;~ater is used 
,:J 

d.ry matter:, ,_)r that thf~ tr ation ratio 

is 250 under these conditions. 

The ratio between the transpired amoun.t of water (\,•l) and the dry matter 

production (P) of plants grown in coutainers, i.e. the transpiration ratio 

(W/P) has been determined under a wide range of conditions in course of 

time. it -v;ras found, at .least UT:tder conditions, that this transpiration 

ratio is more or less proportional to the evaporation rate of a free water 

surface (E), averaged over the grand period of growth. But the re.maining 

scattering of the observations, attributed to different growing conditions, 

appeared to be so uneom.fortabJ..y large that the usefulness of this approach 

has been and is often doubted. 

Ho\\rever ,it has been shown tha.t conclusion is based on an incorrect 

statistical evaluation the iufon.uation and that not the ratio lhf/P should 

be compared to the value of E, hut the dry matter production P should be 

compared to the quotient \·J/E ~ The results of maity pot ex-perim{:.;nts 1.11i th 

sorghum, lvheat and alfalfa throughout the Great Plains of the tJ. ~) .i\, in tJJ~ 

years 1910 - 1927 are presented in figure 9. It appears that the observations 

are a.rou.nd a straight line through the origin~ so th.at the relation between 

the d:ry·~matter production and the quotient vJ/E c.an be expressed by th(~ 

simple equation P ~ m (H/E,) 

in which the constant m depends on th.e plant species and appen.red to be 

20~7, 11.5 a-nd 5.5 for sorghum~ whe<lt and. alfalfa ~,,The·n. P JS exp:resse.d ln 

grams, w in a.n.d E. in mm/day .. Tht:~ \ 7 a.LuP:. ()j~· nJ fo:r corn W.JS found to be 

equal to 17 and the valur::•. of w·heat h.olds also fc:.r- other small grains& 

(5) 

Qbvious ly :T s orghurn and corn are muc.h JJ1ore their \1/ater use than 

alfalfa~ 
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~=!~~E~-2: The relation het·wer•n dry matte.r production P and the ratio 
W/E of the t amount of \.vater H ahd the :h .. ·er:~ i;Jater 
evapcn~ation E fc.r sorghum, l.itheat and alfal.fa grm~1n 

1.n containers in the arid of the U ~ S .A. Data from 
, Sha.nts and. Piemiesf~l" 

Tl-ie relation ot 5 t:s :ton and 

evaporation vary for other reasons tb.an in radiation 0nention· 

a f or v;rhert the J i is so high a considerable part 

of the day that th~e photosynthesis of \veLl leaves is n.ear i t:s 

maximmn, c:rn.d theJ::-e:fo:re should be used th caution" 

(A small experiment :Ln a 

Corn Oats Bar 

5.03 2.56 2" 14 

553 768 620 

14._2 45.8 .37,8 

Calculate the transpiration 

room gave the following results: 

:P ~n grains dry llldttex 

l.J lr.t g wate:r 

Transpiration rate lU 
~·} 

g water (g shoot) 

and estimate the net photosynthesis per 

unit shoot wr~ight, Are differ:e:n.ces :u1. n1 bet'\.-;ree.sl the plant species due to 



d:ifference.s in t1:anspiration rate or to d 

rates per unit shoot?) 

p 

in net photosynthesis 

conc~h tn:dion 

~~§'i~:!::.::.,.l.Q ~ The infh.H~nce of 
transpi rat:i on CW) and 
Data from Thom and Holtz. 

m .. drie.rd sfifutior-

the relation between 
(P) of "i\rheat. 

Influenced by differences 1n nutrition, plants form more or less leaf 

surface or surface that can ·\.vat ex a.n.d assimilate c.arbondioxyde. 

Only with more severe: shor , plants fo·rm leaves w·i th a. 

smaller photosynt.hetic capaeity This is illustrated in figure 10~ in 

which the transpiration and yield of 'tvbeat 

nutrition levels are givenR (Explain how it 

grown at different 

possihle that plants with 

the same photosynthesis per unit leaf area grow at different rates .. ) 

Plants su.ffering from water shortage reduce thei:t;' size:> but under 

more severe stress the photosynthetic rate and the transpiration rate per 

unit leaf are.a are also reduced~ Fortunately, it appears that the effect 

or1 both is about the same, at. least in nornm.l light intensities~ so that 

the relation bet.we.en tra1wpira.tion and production of plants under water 

stress is abotlt the ,sam.e as that of p 1.ants t.h a normal wate·.r supply. 

This is illustrated in figure 11 corn" (Try to explain 1<ihy with 

excess water in the soil, the observations d1~viate from the line). 
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~:.ig~~!~~JJ ~ The inf luenc.e of the avai lability of ',;at(~r on the 
relation between transpiration (\•J) ar.td production (P) 
of corn. Data from Kieselbach. 
(\rJhat is the wate.rholding capacity of a soil'?) 

in the f 

The transpiration ratio of a closed crop surface is in the order of 

250 kg water per kg matter (section 3 5) wh.ex .. ·eas the same value for 

single plants of alfalfa amounts to about 1000., Henee, the efficiency 

of water use should increase with ' d . - 1 . Lng --~::'nslty ot p a.nt1.ng, except 

for. sorghum., (t'J1:1y exception?) 

However~ under arid conditions the grmv·th of plants is cheeked by water 

shortage, so that closed crop surfaces do not develop. Because, moreover 

the transpiration ratio is independent of the availability of water, the 

same relation bet"~;veen trHnspiration and. prodt.1etion may be found the 

field under arid conditions as in containers well supplied vli th water. 

Under field conditions, the value of W in the equation P=m(W/E) is 

given in mm, and since E is expressed in rmn/day the- ratio l~/E is given 

in days~ It represents the nurn.ber of that transpiration at a rate 

equal to the e.V3J:toration of a. free vJater SlLt:-fa.c.e is possible .. The yield 



p is expressed in k.g/ha la:r so that the most con:venient 

unit for is .b.a. 
--1 

m -J -1 
lbs ac day • tons acre etc.). 

From the data in -l . -1 
4.!, the value of m expressed in ha day 

can be calculated to equal 207~ 170~ 115 and .55 for sorghum:r corn, wheat 

and alfalfa, respectively. 

(Utah J 

£ 
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Ei~::!E~_lf: The relation between the yiE~ld of alfalfa hay and the amount 
of water available for transpiration in days at three 
experimental in the U. SgA. Data from HaJ:ris and 
Pit trn.an, Fortier 7 Ma:rr. 

Highly Goodin.g Logan 

Evaporation 6 Lt q.5 :mm/day 

Grov1ing season 260 150 160 days 

Figure 12 shows that inde<~d holds the amount of \.vater available. 

for transpiration (rain water irrigation 1,vater minus an estimate of 

los expressed in days ,e Ttl/E) tted against the alfalfa yield 

in tons/ acre .. ThE· fnll dcmvn, 1 is ca1cu1ated from the pot experiments 

are th results of irrigation experiments (figure 9) and the obs 

in Logan (Utah)~ Gooding(Idaho) and Highly(.Arizona) The observation· 
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points coincide with the 

limiting factor. Beyond that 

from pot experiments as long as water is the 

the yield limited by other factors 

and the amount of water available for transpiration is probably not com­

pletely used. It is seen that the closed crop condition where the transpi-

ration ratio in the order of 250 instead of 1000 rwt at all 

achieved with these 

The between tht? amoux1t of water available for 
transpiration an~ dry matter yield of oats, corn and 
alfalfa 01.1 irrigated fields Logan (Ut.ah) ·" Data Widstoe. 

The result of a similar experiment :Logan (Utah) with corn, oats and 

lucerne is given in figtrre 13. The lmve·r yields coineide again with the. 

lines calculated from the pot experiments. (Give a possible reason \vhy 

the observations of corn are rather far from ti:u?. line) .. 

The relation between the amount of rainfall plus the amount of water 

in the soilll divided by the average f:ree water t~vaporation and the yield 

of wheat grotvn different years and place.s throughou.t the Great Plains 

of the United States is shov,rn figure 14. The line through the observations 

is again obtain.ed from pot 8Xpe.riments and the intersection with the 
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hoxizontal suggests that 1n these 

is lost in other wa·ys than by 

about 15 days of water 

\vhich L.:; not an urr.reasonable 

result.The scattering of of 

but the average. points in the graph show that he1:e 

field and pot experir11ents agre<~ 

E 

is of course large, 

the results of 

The bel-ween in days and J.ry matter 
yield of durum wheat years and at different 
places of the dry region c1f the U.S .A., Data from Cole an.d 
Ma.tht~WS 4 

The full dravirn line in figure 15 the relation betweer:t seed 

yield and seed plus straw yield a.s caleulated from pot experiments; the 

points represent field observations in the Great Plains. Obviously it is 

more difficult to reach a favourable ratio w·hen the yield (in casu the 

amount of available water) is small .. If the crop managed in such a 

way that: a large portion of the available water transpired during 

the first of the growing season, a. straw yield is obtained, 

but seed yields are lowo In i· '~vhere late rains may fail it 

is a good pi·actice to save. water for later stages of grm:tlth. The best 

way to do this is to avoid luxurious growth during the first part of 



The relation between seed and se<:::d plus straw yiE~ld (total 
yield) in several places of the great plains of U.S.A. in 
several years. The line through. the o·rigin presents 
the same :ratio as in containers~ but co'l'rected for the 
stubble~ Data from Cole and Mathews. 

the growing period by pla.nting in wi.de rm,Js,. being careful I \.rith 

(nitrogen) fertilizer application and good soil management" Of course 

early growth may be so slow th.at the p1a!J.ts do not consume all the v,.ra.ter 

in later stages and th:Ls also leads to a drop in yield~ In avoiding all 

these pitfalls llOthing is more helpful than a good farmer .. 
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Harvesting the sun~ 


