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Abstract 

In this paper we set out Jorda’s (2005) method of local projections by which nonlinear 

impulse responses can be computed without the need to specify and estimate the 

underlying nonlinear dynamic system. The method is used to compute price reaction 

functions that show how the prices of the different stages in the supply chain dynamically 

respond to one another and whether or not these responses reveal any asymmetric 

patterns. Empirical applications for the US pork-meat and broiler composite chains 

illustrate the convenience of the method. 

 

1. Introduction 
The relationship between producer prices and consumer prices receives lots of attention 

by practitioners and scientists because of its diagnostic capability to reveal market imper-

fections. Indicative of excess profits would be a large, persistent and/or diverging 

difference between the two prices. Visual inspection of the time series graphs of both 

prices in one diagram is likely to be a sufficient device for detecting such a pattern. Less 

straightforward to find out about is the well-known phenomenon of asymmetric price 

adjustment according to which, for example, transmission of producer price increases to 

retail prices is of a greater magnitude and occurs more quickly than transmission of 

producer price decreases. In addition to a graphical analysis, multivariate time-series 

models will be needed to identify the diverse transitory and persistent dynamics in the 

price series. Moreover, to capture asymmetric responses, a threshold or nonlinear 

specification of the time-series model must be considered. Such time-series models, in 

contrast to traditional linear models like a Vector Auto-Regression (VAR), do usually not 

allow for simple derivation of the point and interval estimates of the impulse response 

functions to assess the short-, intermediate- and long-run price reactions to a change in 

one of the supply chain prices.  

Recently, however, Jorda (2005) has introduced the method of local projections 

by which nonlinear impulse responses can be computed without the need to specify and 

estimate the underlying nonlinear dynamic system. In this paper we set out Jorda’s 

method to compute price reaction functions that show how the prices of the different 

stages in the supply chain dynamically respond to one another and whether or not these 

responses reveal any asymmetric patterns. Empirical applications for the US pork-meat 

and broiler composite chains illustrate the convenience of the method. 

 

2. Impulse responses by local projections 
Traditional impulse responses are multi-period ahead predictions computed on the basis 

of a model in which the coefficients have been estimated by using a sample of time series 

observations. Unfortunately, neither a within nor out-of-sample multi-period ahead 

prediction performance evaluation is usually presented before an impulse response 

analysis is conducted. Consequently, models yielding inadequate predictions beyond a 

certain prediction horizon are often used for computing impulse responses at prediction 

horizons much farther away. Recently, Jorda (2005) introduced the method of local 

projections for deriving impulse responses which may solve this problem to some extent 

as impulse responses by local projections are, in fact, within sample direct multi-step 

forecasts and hence, are utilising more information than just using the sample obser-

vations for estimation of the model parameters. The following bi-variate producer-retailer 



price models illustrate the projection method. Let Pp,t be the producer price and Pr,t the 

retail price in period t. Then, the linear projection model of order one for the retail price 

is given by 

(1) Pr,t1 r
(1) 
rp

(1)
Pp,t rr

(1)
Pr,t + ur,t1 

where the residuals ur,t1 are Gaussian white noise. Given that the linear projection model 

for the producer price is also of order one, then SUR is not needed as simple OLS 

regression to (1) already yields an efficient estimate of rp
(1)

, which is the one-period 

ahead (as indicated by the superscript index (1)) direct impulse response of the retail 

price after a producer-price-specific one-unit shock in period t. The two-periods ahead 

impulse response rp
(2)

 is then consistently estimated by the OLS regression 

(2) Pr,t2 r
(2) 
rp

(2)
Pp,t rr

(2)
Pr,t + ur,t2 

etc. Hence, by a separate regression for each prediction horizon h (h = 1, 2, …) the retail 

price Pr,th is projected onto the information set including all observations on the retail 

and producer prices up to and including period t. The estimates rp
(1)

, rp
(2)

, … , rp
(h)

, … , 

rp
(H)

 form the impulse responses from period t  1 to period t H displaying how the 

retail price reacts to a producer-price specific one-unit shock in period t. Notice that the 

residuals ur,th are a moving average of the prediction errors from time t + 1 to t + h. 

Although these errors are uncorrelated with the regressors, which are dated t, so that the 

impulse responses are consistently estimated, efficient estimates can only be obtained if 

we take the moving average structure explicitly into account. This may complicate the 

estimation of the projection, but Jorda (2005) reports that only little loss of efficiency 

results when performing the projection regressions with a heteroskedasticity and auto-

correlation (HAC) robust estimator like the one provided by Newey and West (1987), 

which is nowadays available in many standard regression packages like the EViews 6.0 

software that we used for our computations. 

So far we have considered local-linear projections. More flexible specifications 

are straightforward to apply, like the following threshold model which allows for 

asymmetric impulse responses 

(3) Pr,th  (r
(h)

rp
(h)

Pp,t)I(Pp,t ≤ 0) r
(h)

rp
(h)

Pp,t)I(Pp,t  0) 

rr
(h)
Pr,t + ur,th 

for h = 1, 2, …, where Pp,t  Pp,t Pp,t1, E(Pp,t)  0, and I() is the indicator function 

such that I(a) = 1 if a is true, else I(a) = 0. In (3) the impulse responses triggered by a 

negative producer-price-specific one-unit shock, given by the rp
(h)

 estimates, do not 

have to be just the opposite of the impulse responses after a positive producer-price-

specific one-unit shock as provided by the rp
(h)

 estimates. In the next section we employ 

the threshold in model (3) to assess the asymmetry in the producer-retailer price trans-

mission. 

 

3. Empirical applications 
To illustrate the method of local projections for estimating impulse responses, two 

empirical cases are considered for which montly prices ($ cents per pound, retail weight 

equivalent) are obtained from USDA for the sample period January 1990 up to and 

including December 2008. For the first case we study the relationship between the 

wholesale price and the retail price of broiler composite. The composite wholesale and 

retail prices are a weighted average of whole chicken prices and prices for parts. The 

weights are based on estimates of the percentage of chicken sold as parts versus whole. 



The second empirical application concerns the pork chain of which we consider the 

relationships between the farm price, the wholesale price and the retail price. Clearly, 

with two prices the broiler case is less involved than the analysis of the three prices in the 

pork chain. Therefore, we start with the broiler case before applying the method to the 

pork chain. 

 
Figure 1. Monthly wholesale and retail prices of broilers in the US in $ cents per 

pound, retail weight equivalent for the period January 1990 up to and 

including December 2008 

 

Figure 1 displays the time series of the two broiler composite prices. From visual 

inspection and formal unit root and cointegration tests, using the Johansen (1995) 

procedure, it appears that both prices are integrated of order one and not cointegrated. 

Consequently, we base our local projections on a VAR model in first differences. To test 

for asymmetry, we allow each price coefficient and the intercept term in the local 

projection regressions to differ between positive and negative first differences of the 

variable to which the coefficient is attached. Furthermore, we impose the contemporane-

ous identification restriction according to which the current retail price is always based 

on the current wholesale price. Then, the retail price projection regressions become 

(4) Pr,th Pr,t1 r  𝛿11
𝑠=1 rsDst  {

𝑚𝑟
𝑖=0 (rwi

(h)
rwi

(h)
Pw,ti)I(Pw,ti ≤ 0) 

rwi
(h)

Pw,ti I(Pw,ti  0)} {
𝑛𝑟
𝑖=1 (rri

(h)
rri

(h)
Pr,ti)I(Pr,ti ≤ 0) 

rri
(h)

Pr,ti I(Pr,ti  0)} ur,th 

for h = 0, 1, … , where Pw,t is the wholesale price and the Dst are seasonal dummies. 

Notice that the endogenous variable, Pr,th Pr,t1, represents the accumulated predictions, 

since Pr,th Pr,t1 = Pr,t + Pr,t1 + … + Pr,th. Consequently, the parameters rw0
(h)

 

and rw0
(h)

 represent the accumulated retail-price-change impulse responses and hence, 

the impulse responses of the retail price level, after a negative and positive one-unit 

shock, respectively, in the wholesale price in period t. Similarly, the price projection 

regressions for the wholesale price that we use are given by 

(5) Pw,th Pw,t1 w  𝛿11
𝑠=1 wsDst  {

𝑚𝑤
𝑖=1 (wwi

(h)
wwi

(h)
Pw,ti)I(Pw,ti ≤ 0)  

wwi
(h)

Pw,ti I(Pw,ti  0)}  {
𝑛𝑤
𝑖=1 (wri

(h)
wri

(h)
Pr,ti)I(Pr,ti ≤ 0) 

wri
(h)

Pr,ti I(Pr,ti  0)} uw,th  

for h  1, 2, … to estimate the wholesale price level impulse responses wr1
(h)

 and 

wr1
(h)

 that are triggered by a negative and positive one-unit shock, respectively, in the 

retail price in period t. Notice that these impulse responses are zero in period t. 
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To directly estimate the impulse responses in the retail price level as a 

consequence of a one-unit shock in the retail price itself in period t, we have to re-specify 

the expression in (4) to obtain 

(6) Pr,th Pr,t1 r*  𝛿11
𝑠=1 rs*Dst  {

𝑚𝑟
∗

𝑖=1 (rwi
(h)

* rwi
(h)

*Pw,ti)I(Pw,ti ≤ 0)  

rwi
(h)

*Pw,ti I(Pw,ti  0)}  {
𝑛𝑟
∗

𝑖=1 (rri
(h)

* rri
(h)

*Pr,ti)I(Pr,ti ≤ 0) 

rri
(h)

*Pr,ti I(Pr,ti  0)} ur,th* 

for h  1, 2, … so that the estimates of rr1
(h)

* and rr1
(h)

* are the impulse responses 

we look for as in (6) the link between the most recent lag in the retail price change and 

the unlagged wholesale price change has been eliminated by taking out the latter term. 

For a similar reason, but now regarding the contemporaneous relationship between the 

first differences of the wholesale price and those of the retail price, we re-specify (5) by 

taking out the one-period lag of the retail price change, obtaining 

(7) Pw,th Pw,t1 w*  𝛿11
𝑠=1 ws*Dst  {

𝑚𝑤
∗

𝑖=1 (wwi
 (h)

*wwi
(h)

*Pw,ti)I(Pw,ti ≤ 0)  

wwi
(h)

*Pw,ti I(Pw,ti  0)} {
𝑛𝑤
∗

𝑖=2 (wri
(h)

*wri
(h)

*Pr,ti)I(Pr,ti ≤ 0) 

wri
(h)

*Pr,ti I(Pr,ti  0)} uw,th* 

for h  1, 2, … to estimate ww1
(h)

* and ww1
(h)

* as the impulse responses in the 

wholesale price level initiated by a one-unit shock in the wholesale price itself in period t. 

A maximum lag length of 6 appears to reduce the residual term to white noise. 

Next, we use the AIC model selection criterion to determine the number of lags m and n  

in each of the equations (4)-(7) at h  0. In fact, one could repeat this for each prediction 

horizon h 1, 2, …, but for our empirical application we assume the selected numbers 

for m and n to be representative for each h. The standard errors of the impulse response 

coefficients could be estimated by a HAC robust estimator. For our computations we 

choose another, but very easy to implement, approach. Each time a regression is run with 

h  0, we first run the same regression for h  1 and insert the residual term of this 

regression as a regressor in the regression with h. In this way the dynamics in between t 

and t h are captured, leaving the coefficient estimates unchanged and consistent as they 

were, but reducing their standard errors towards efficiency levels. 

 
Figure 2. Monthly impulse responses retail price obtained by the sum of the 

retail price impulse responses after a negative one-unit shock in the 

wholesale price in December 2003 and the retail price impulse 

responses after a positive one-unit shock in the wholesale price in 

December 2003 (broilers in the US, responses in $ cents per pound, 

retail weight equivalent) 
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Figure 2 presents the net result of the impulse responses of the retail price to 

negative and positive shocks in the wholesale price, taking December 2003 as the month 

in which the price shocks occur and computing the impulse responses for the period 

thereafter (i.e., January 2004 - December 2008). After one year, in 2005, the retail price 

becomes significantly lower unil the second half of 2006. Since then, with a few 

exceptions, the retail price does not significantly differ from pre-shock levels. To see 

whether or not wholesalers have to pay the bill of these lower retail prices, we have to 

look at the impulse responses of the wholesale price itself to the same shocks that 

triggered the retail price impulse reponses in Figure 2. The ones of the wholesale price 

are displayed in Figure 3. As for the retail price, lower levels also show up for the 

wholesale price in 2005. 

 
Figure 3. Monthly impulse responses wholesale price obtained by the sum of the 

wholesale price impulse responses after a negative one-unit shock in 

the wholesale price in December 2003 and the wholesale price impulse 

responses after a positive one-unit shock in the wholesale price in 

December 2003 (broilers in the US, responses in $ cents per pound, 

retail weight equivalent) 

 

However, to assess the net result for the retail-wholesale price spread we should 

not only take into account the responses triggered by wholesale price shocks, but also 

those initiated by the positive and negative shocks in the retail price. Moreover, we have 

to consider the shocks that are representative. For this we can take the standard deviation 

of the errors of the reduced-form equations: the standard error of the residuals of equation 

(5), denoted w, for the wholesale price, and the standard error of the residuals of 

equation (6), denoted r*, for the retail price. As a consequence, the net retail price 

impulse responses can be computed as w(rw0
(h)

rw0
(h)

) r*(rr1
(h)

* rr1
(h)

*) and 

the net wholesale price responses are derived as w(ww0
(h)

* ww0
(h)

*) 

r*(wr1
(h)

wr1
(h)

). These net responses are presented in Figure 4 and Figure 5 and 

provide clear evidence that during the last quarter of 2004 and the whole of 2005 the 

wholesale price decreases significantly more than the retail price. On average the retail-

wholesale price spread is 4.47 cents higher with a maximum of 8.68 cents in July 2005. 

On average the widening of the retail-wholesale price spread amounts to 6.57 per cent of 

the wholesale price and 2.57 per cent of the retail price level that period. To compare, the 

retail-wholesale price spread is 164 per cent of the wholesale price so that the widening 

of 6.57 per cent of the wholesale price seems ignorable. Nevertheless, in a sector 

characterised by a saturated market and price-inelastic consumer demand, which may 
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explain the lower or non-significant net retail price responses, a 6.57 per cent margin on 

the wholesale price as extra profit for the retail stage vis-à-vis the wholesalers could well 

be quite considerable when compared to the assumed low profit margins in the broiler 

wholesale business.

 
Figure 4. Monthly impulse responses retail price (including its 95% confidence 

interval) and wholesale price after positive and negative one-standard 

deviation shocks in the wholesale and retail prices in December 2003 

(broilers in the US, responses in $ cents per pound, retail weight 

equivalent) 

 
Figure 5. Monthly impulse responses wholesale price (including its 95% confi-

dence interval) and retail price after positive and negative one-

standard deviation shocks in the wholesale and retail prices in 

December 2003 (broilers in the US, responses in $ cents per pound, 

retail weight equivalent) 

 

We now turn to the pork chain in the U.S. Three prices are considered: the farm 

price, the wholesale price and the retail price. The time series graphs of these prices are 

presented in Figure 6. As for the broiler price series the formal unit root and cointegration 

tests by Johansen (1995) do not find any cointegration and conclude that the series are 

integrated of order one such that the unconditional mean of each price in first-differences 
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is equal to zero. Next, we examine the contemporaneous causal relationships according to 

which the first-differences of the retail price depend on the first-differences of the whole-

sale price and, in turn, the first-differences of the wholesale price depend on the first-

differences of the farm price. In  a  schematic  presentation  this comes down to:  Pf,t    

 
Figure 6. Monthly farm, wholesale and retail prices of pork in the US in $ cents 

per pound, retail weight equivalent for the period January 1990 – 

December 2008 

 

Pw,t  Pr,t. To check that this causal ordering is compatible with the data, we follow 

Swanson and Granger (1997) in using the residuals from the VAR by which we tested for 

cointegration and order of integration, to perform the following regressions 

 

Table 1a.  Estimates of Equation (8a)   

Dependent Variable: ur,t ; Method: OLS 

Sample: 1990M01 2003M11; Included observations: 167   
     
     

Variable Coefficient Std. Error t-Statistic Prob.   
     
     

Intercept 1.34E-16 0.172628 7.78E-16 1.0000 

𝑢 w,t 0.254899 0.096911 2.630239 0.0093 

𝑢 f,t -0.127044 0.075819 -1.675623 0.0957 
     
     

R-squared 0.051826     Mean dependent var 7.98E-17 

Adjusted R-squared 0.040263     S.D. dependent var 2.277157 

S.E. of regression 2.230844     Akaike info criterion 4.460438 

Sum squared resid 816.1731     Schwarz criterion 4.516450 

Log likelihood -369.4466     Hannan-Quinn criter. 4.483172 

F-statistic 4.481990     Durbin-Watson stat 2.014959 

Prob(F-statistic) 0.012730    
     

     
(8a) 𝑢 r,t  rw𝑢 w,t rf 𝑢 f,t er,t   

(8b) 𝑢 w,t wf 𝑢 f,t  ew,t 

where 𝑢 r,t, 𝑢 w,t and 𝑢 f,t are the estimated residuals from the VAR for Pr,t, Pw,t and Pf,t. 

The causal ordering Pf,tPw,tPr,t complies with finding that rw and wf are signifi-
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cantly larger than zero, while rf should be zero. The regression results, presented in 

Tables 1a and 1b, confirm these estimates, at least, at the 5 per cent significance level. 

 

Table 1b.  Estimates of Equation (8b)   

Dependent Variable: uw,t   

Sample: 1990M01 2003M11; Included observations: 167   
     
     

Variable Coefficient Std. Error t-Statistic Prob.   
     
     

Intercept -5.54E-16 0.138675 -3.99E-15 1.0000 

𝑢 f,t 0.694398 0.028058 24.74897 0.0000 
     
     

R-squared 0.787785     Mean dependent var -2.39E-16 

Adjusted R-squared 0.786498     S.D. dependent var 3.878417 

S.E. of regression 1.792071     Akaike info criterion 4.016524 

Sum squared resid 529.9003     Schwarz criterion 4.053865 

Log likelihood -333.3798     Hannan-Quinn criter. 4.031680 

F-statistic 612.5116     Durbin-Watson stat 2.023429 

Prob(F-statistic) 0.000000    
     
     

The following projection regressions are used to directly estimate the impulse 

responses. For the retail price we perform the regressions 

(9) Pr,th Pr,t1 r  𝛿11
𝑠=1 rsDst  {

𝑚𝑟
𝑖=0 (rwi

(h)
rwi

(h)
Pw,ti)I(Pw,ti ≤ 0)  

rwi
(h)

Pw,ti I(Pw,ti  0)} {
𝑛𝑟
𝑖=1 (rri

(h)
rri

(h)
Pr,ti)I(Pr,ti ≤ 0) 

rri
(h)

Pr,ti  I(Pr,ti  0)}  {
𝑙𝑟
𝑖=1 (rfi

(h)
rfi

(h)
Pf,ti)I(Pf,ti ≤ 0) 

rfi
(h)

Pf,ti   I(Pf,ti  0)} ur,th 

for h 0, 1, … to obtain rw0
(h)

 and rw0
(h)

 which are the retail price impulse responses 

after a negative and positive one-unit shock, respectively, in the wholesale price. To 

compute the retail price impulse responses after a shock in the retail price itself, we use 

the regressions 

(10) Pr,th Pr,t1 r*  𝛿11
𝑠=1 rs*Dst  {

𝑚𝑟
∗

𝑖=1 (rwi
 (h)

* rwi
(h)

*Pw,ti)I(Pw,ti ≤ 0)  

rwi
(h)

*Pw,ti I(Pw,ti  0)} {
𝑛𝑟
∗

𝑖=1 (rri
(h)

*rri
(h)

*Pr,ti)I(Pr,ti ≤ 0) 

rri
(h)

*Pr,ti  I(Pr,ti  0)}  {
𝑙𝑟
∗

𝑖=1 (rfi
(h)

* rfi
(h)

*Pf,ti)I(Pf,ti ≤ 0) 

rfi
(h)

*Pf,ti  I(Pf,ti  0)}  ur,th* 

for h 1, 2, … to estimate rr1
(h)

* and rr1
(h)

* which are the retail price impulse 

responses after a negative and positive one-unit shock, respectively, in the retail price. 

Finally, for a shock in the farm price the following regressions are run 

(11) Pr,th Pr,t1 r** 𝛿11
𝑠=1 rs**Dst  {

𝑚𝑟
∗∗

𝑖=1 (rwi
 (h)

**rwi
(h)

**Pw,ti)I(Pw,ti ≤ 0)  

rwi
(h)

**Pw,tiI(Pw,ti0)} {
𝑛𝑟
∗∗

𝑖=1 (rri
(h)

**rri
(h)

**Pr,ti)I(Pr,ti≤ 0) 

rri
(h)

**Pr,ti I(Pr,ti 0)} {
𝑙𝑟
∗∗

𝑖=0 (rfi
(h)

**rfi
(h)

**Pf,ti)I(Pf,ti ≤ 0) 

rfi
(h)

**Pf,ti I(Pf,ti  0)} ur,th** 

for h 0, 1, … to compute rf0
(h)

** and rf0
(h)

** which are the retail price impulse 

responses after a negative and positive one-unit shock, respectively, in the farm price. 

The impulse responses of the wholesale price are estimated by running the 

following regressions 



(12a) Pw,th Pw,t1 w   𝛿11
𝑠=1 wsDst  {

𝑚𝑤
𝑖=1 (wwi

(h)
wwi

(h)
Pw,ti) I(Pw,ti ≤ 0)  

wwi
(h)

Pw,ti I(Pw,ti 0)} {
𝑛𝑤
𝑖=1 (wri

(h)
wri

(h)
Pr,ti)I(Pr,ti ≤ 0) 

wri
(h)

Pr,ti I(Pr,ti  0)}  {
𝑙𝑤
𝑖=0 (wfi

(h)
wfi

(h)
Pf,ti) I(Pf,ti ≤ 0) 

wfi
(h)

Pf,ti I(Pf,ti  0)} uw,th  for h 0, 1, … 

(12b) Pw,th  Pw,t1 w*  𝛿11
𝑠=1 ws*Dst  {

𝑚𝑤
∗

𝑖=1 (wwi
 (h)

*wwi
(h)

*Pw,ti)I(Pw,ti ≤ 0)  

wwi
(h)

*Pw,ti I(Pw,ti0)}  {
𝑛𝑤
∗

𝑖=1 (wri
(h)

*wri
(h)

*Pr,ti)I(Pr,ti ≤0) 

wri
(h)

* Pr,ti I(Pr,ti  0)}  {
𝑙𝑤
∗

𝑖=1 (wfi
(h)

*wfi
(h)

*Pf,ti)I(Pf,ti ≤ 0) 

wfi
(h)

* Pf,ti  I(Pf,ti  0)} uw,th* for h 1, 2, … 

(12c) Pw,th Pw,t1w** 𝛿11
𝑠=1 ws**Dst {

𝑚𝑤
∗∗

𝑖=1 (wwi
(h)

**wwi
(h)

**Pw,ti)I(Pw,ti≤ 0)  

wwi
(h)

**Pw,tiI(Pw,ti0)} {
𝑛𝑤
∗∗

𝑖=2 (wri
(h)

**wri
(h)

**Pr,ti)I(Pr,ti≤0)  

wri
(h)

**Pr,ti I(Pr,ti 0)} {
𝑙𝑤
∗∗

𝑖=1 (wfi
(h)

**wfi
(h)

**Pf,ti)I(Pf,ti≤ 0) 

wfi
(h)

**Pf,ti I(Pf,ti 0)} uw,th** for h 1, 2, … 

to obtain the estimates wf0
(h)

 and wf0
(h)

 from (12a) which are the wholesale price 

impulse responses triggered by a negative and positive one-unit shock, respectively, in 

the farm price, to obtain the coefficients wr1
(h)

* and wr1
(h)

* from (12b) representing 

the impulse responses in the wholesale price generated by a negative and positive one-

unit shock, respectively, in the retail price, and, to obtain the ww1
(h)

** and ww1
(h)

** as 

the wholesale price impulse responses initiated by a negative and positive one-unit shock, 

respectively, in the wholesale price itself. Lastly, the impulse responses of the farm price 

are estimated by the regressions 

(13a) Pf,th Pf,t1 f   𝛿11
𝑠=1 fsDst  {

𝑚𝑓

𝑖=1
(fwi

(h)
fwi

(h)
Pw,ti)I(Pw,ti ≤ 0)  

fwi
(h)

Pw,tiI(Pw,ti 0)}  {
𝑛𝑓

𝑖=1
(fri

(h)
fri

(h)
Pr,ti)I(Pr,ti ≤ 0) 

fri
(h)

Pr,ti I(Pr,ti  0)}  {
𝑙𝑓
𝑖=1

(ffi
(h)

ffi
(h)

Pf,ti) I(Pf,ti ≤ 0) 

ffi
(h)

Pf,ti I(Pf,ti   0)} uf,th  for h 1, 2, … 

(13b) Pf,th Pf,t1 f*  𝛿11
𝑠=1 fs*Dst   {

𝑚𝑓
∗

𝑖=1
(fwi

 (h)
*fwi

(h)
*Pw,ti) I(Pw,ti ≤ 0)  

fwi
(h)

*Pw,tiI(Pw,ti 0)} {
𝑛𝑓
∗

𝑖=2
(fri

(h)
*fri

(h)
*Pr,ti)I(Pr,ti ≤ 0) 

fri
(h)

*Pr,ti I(Pr,ti  0)}  {
𝑙𝑓
∗

𝑖=1
(ffi

(h)
*ffi

(h)
*Pf,ti) I(Pf,ti ≤ 0) 

ffi
(h)

*Pf,ti I(Pf,ti  0)} uf,th*  for h 1, 2, … 

(13c) Pf,th Pf,t1 f** 𝛿11
𝑠=1 fs**Dst  {

𝑚𝑓
∗∗

𝑖=2
(fwi

(h)
**fwi

(h)
**Pw,ti)I(Pw,ti≤ 0)  

fwi
(h)

**Pw,tiI(Pw,ti0)} {
𝑛𝑓
∗∗

𝑖=2
(fri

(h)
**fri

(h)
**Pr,ti)I(Pr,ti≤0) 

fri
(h)

**Pr,ti I(Pr,ti 0)} {
𝑙𝑓
∗∗

𝑖=1
(ffi

(h)
**ffi

(h)
**Pf,ti)I(Pf,ti≤ 0) 

ffi
(h)

**Pf,ti I(Pf,ti   0)}uf,th** for h 1, 2, … 

where fr1
(h)

 and fr1
(h)

 in (13a) are the farm-price impulse responses after a negative 

and positive one-unit shock, respectively, in the retail price, fw1
(h)

* and fw1
(h)

* in 

(13b) are the farm-price impulse responses triggered by a negative and positive one-unit 

shock, respectively, in the wholesale price and, finally, ff1
(h)

** and ff1
(h)

** are the 

farm-price impulse responses initiated by a negative and positive one-unit shock, 

respectively, in the farm price itself. 



Like Figure 4 and Figure 5 for the broiler sector, with respect to the pork chain 

Figures 7-9 present the net impulse responses for the retail price (w*(rw0
(h)

rw0
(h)

) 

r*rr1
(h)

*rr1
(h)

*)f (rf0
(h)

**rf0
(h)

**)), wholesale price (fwf0
(h)

wf0
(h)

)  

r*(wr1
(h)

*wr1
(h)

*)w*(ww1
(h)

**ww1
(h)

**)) and farm price (r*(fr1
(h)

fr1
(h)

) 

w*fw1
(h)

*fw1
(h)

*)f (ff1
(h)

**ff1
(h)

**)), where the representative shocks are the 

standard deviations r*, w* and f of the residual terms in the equations (10), (12b) and 

(13a), respectively. According to Figures 7-9 all three prices become significantly higher, 

the retail price during the years 2004-2006 and the farm and wholesale prices during most 

of the years 2005-2006. Furthermore, in Figure 7 we see that the retail-wholesale price 

spread becomes significantly higher after one year and stays significantly so during the 

years 2005 and 2006. In contrast, the wholesale-farm price spread does not significantly 

change.The average widening of the retail-wholesale price spread during the years 2005 

and 2006 amounts to 12.35 cents per pound, which is 4.38 per cent of the retail price, 

10.06 per cent of the wholesale price and 14.58 per cent of the farm price. For compari-

son, the retail-wholesale price spread is, on average, 129 per cent of the whole-sale price 

and the wholesale-farm price spread amounts to 44 per cent of the farm price. Although 

these percentages are much higher than those of the widening of the retail-wholesale 

price spread, it ultimately depends on the profit margin as a percentage of the price to 

know how attractive this extra retail margin is for each of the stages in the US pork chain. 

 
Figure 7. Impulse responses farm price (including its 95% confidence interval), 

wholesale price and retail price after positive and negative one-

standard deviation shocks in all three prices in December 2003 (pork 

in the US, responses in $ cents per pound, retail weight equivalent) 

 

4. Conclusions 
In this paper we have set out Jorda’s (2005) method of local projections by which 

nonlinear impulse responses can be computed without the need to specify and estimate 

the underlying nonlinear dynamic system. The method is used to compute price reaction 

functions that show how the prices of the different stages in the supply chain dynamically 

respond to one another and whether or not these responses reveal any asymmetric 

patterns. Empirical applications for the US pork-meat and broiler composite chains 

illustrate the convenience of the method. Triggered by a negative and positive one-unit 

shock in the retail price and wholesale price simultaneously in December 2003, we find 

evidence for the US broiler chain that during the last quarter of 2004 and the whole of 

2005 the wholesale price decreases significantly more than the retail price. A simultane-
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ous negative and positive one-unit shock in the retail, wholesale and farm prices in 

December 2003 reveals that for the US pork chain the retail-wholesale price spread 

becomes significantly higher after one year and stays significantly so during the years 

2005 and 2006, whereas the wholesale-farm price spread does not significantly change. 

 

Figure 8. Impulse responses wholesale price (including its 95% confidence 

interval), farm price and retail price after positive and negative one-

standard deviation shocks in all three prices in December 2003 (pork 

in the US, responses in $ cents per pound, retail weight equivalent) 

 

Figure 9. Impulse responses retail price (including its 95% confidence interval), 

wholesale price and farm price after positive and negative shocks in 

all three prices in December 2003 (pork in the US, responses in $ cents 

per pound, retail weight equivalent) 
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