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Abstract

Forage nutrients vary both spatially and temporally. Imaging spectroscopy studies
have shown that it is possible to map various forage nutrients. These studies have
focussed on discerning the spatial variation of nutrients in the wet season. In
savanna systems grazing herbivores rely on the grass resource for their sustenance.
During dry seasons the quality of the grazing resource declines often to within and
below critical limits for maintenance. For rangeland managers it is therefore of
importance that quality can be assessed in both the wet and dry seasons. With
the use of a greenhouse experiment, field studies and an image acquisition, it has
been shown in this study, that it is possible to observe variability in the quality
of the grazing resource (expressed as concentrations of nitrogen, phosphorus and
fibre) both spatially and temporally.

Changes in vegetation between the wet and the dry season resulted in different
spectral and ancillary (ecological) variables being selected in the forage quality
models. This means that developing a single model for each nutrient, that can be
applied irrespective of season, is apparently not feasible. However, within a season
it appeared that certain wavelengths were consistently selected (e.g. for nitrogen
in the wet season absorption features at 640, 910 and 1020 nm were repeatedly
selected). In terms of ancillary variables, the physiology of a grass (captured
as species and\or age) and soil type were found to be significant variables that
contribute to models estimating grass quality in both the wet and dry seasons.

Models developed in a heterogeneous field environment (Northern Plains of the
Kruger National Park, RSA), in the wet and dry seasons for the three forage nu-
trients, achieved results which explained between 49%—74% of the forage quality
variability. Combining spectral and ancillary (spatially derived ecological vari-
ables) variables into forage quality models aided upscaling from laboratory —
field — airborne level, making it possible to analyse spatial variations in forage
quality nutrients. From laboratory — field upscaling it was shown that, at least
with nitrogen, masking of features by prominent plant biochemicals (e.g. water
and photosynthetic pigments) influenced the selection of absorption features.

el



Abstract

Through linear modelling applied to analyse the three forage nutrients, it was
found that absorption features in the SWIR region were prominent when ancillary
variables were included. A non-linear modelling approach using only the VNIR
spectral range achieved comparable, but slightly inferior results. Non-linear models
typically achieve higher accuracy models compared to linear models, implying that
forage nutrient mapping ideally require a full spectral (VNIR-SWIR) range sensor.

The output from this study provides a valuable contribution to the field of nutrient
mapping, and rangeland management in savanna or grassland environments. It
has been shown that in an ecologically sensible way, it is possible to observe both
temporal and spatial variations of forage quality.
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Chapter 1

Introduction




1.1. Forage nutrients in African savanna systems

1.1 Forage nutrients in African savanna systems

Globally savanna and grassland systems sustain a wide diversity of grazing
herbivores [Jones and Wilson, 1987]. In these ecosystems, the energy avail-
able for herbivore metabolism (e.g.,maintenance, lactation) is a function of
the quantity and quality of the forage resource. The importance of these
ecosystems for maintaining not only wild ungulates, but also domestic live-
stock, has lead to extensive research into the quantification of the forage
resource.

In an effort to obtain, at minimum, maintenance levels, it is necessary for
a herbivore to obtain both energy and nutrients from their food source
[Prins and van Langevelde, 2008a]. In African savannas, forage is often
limited by either nitrogen or phosphorus, or co-limited by both these nutri-
ents [Grant and Scholes, 2006; McNaughton and Banyikwa, 1995]. Forage
fibre concentrations, tend to be high in these systems, in comparison to
temperate systems [Jones and Wilson, 1987]. Forage quality is tradition-
ally described in terms of either fibre concentration alone, or both nitrogen
and fibre concentrations. In systems where co-limitation from phosophorus
also occurs, ideally all three nutrients should be considered when evaluating
forage quality.

Studies into variations in nutrient concentrations in tropical ecosystems,
have determined numerous factors that are linked to observed differences
in the forage resource. Within savanna systems nutrients have been shown
to differ significantly between seasons [Grant et al., 2000; McNaughton,
1987, 1990]. These seasonal differences, in combination with limitation of
certain nutrients, have been attributed to the mass migrations of herbi-
vores observed in East Africa [McNaughton, 1990]. Variations in nutri-
ent concentrations have been linked to biotic factors such as plant species
[Jones and Wilson, 1987; McNaughton, 1988; Mutanga et al., 2004b; Sea-
gle and McNaughton, 1992], phenological development [Jones and Wilson,
1987; McNaughton, 1988], below and outside tree canopies [Treydte et al.,
2007, 2008], and grazing [Archibald, 2008; Augustine, 2003]. Abiotic factors
have included soil [Allred and Snyder, 2008; Craine et al., 2009; Heitkonig
and Owen-Smith, 1998], geology [Grant and Scholes, 2006; Ferwerda et al.,
2006a], topography [Seagle and McNaughton, 1992]; and anthropogenic fac-
tors such as fire [Allred and Snyder, 2008; van de Vijver et al., 1999], and
fertilisation [Jones and Wilson, 1987]. The interaction of these different
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Figure 1.1: Depiction of the interaction of ecological factors, resulting in observed
fluctuations in plant nutrient levels across a savanna system.

ecological factors to create the observed fluctuations of nutrients concen-
trations across a savanna system is depicted in figure 1.1.

These and similar studies highlight the fact, that at various spatial scales,
forage nutrient levels vary. Rangeland management of forage quality is pri-
marily based on point based studies [Mirik et al., 2005]. With such studies
it is, however, difficult to assess the nature of the nutrient distribution,
e.g. uniform or patchy. Such information would be useful for rangeland
managers, in terms of planning rotation times in pastures, or for wildlife
managers, to build models to calculate carrying capacity or predict distri-
bution models of game.

The main aim of the research presented in this thesis, is to provide remote
sensing techniques that can be used for monitoring forage nutrient con-
centrations in savanna systems. The savanna system where this study was
conducted was located on the Northern Plains of the Kruger National Park,
South Africa. As mentioned above, nitrogen and phosphorus are found to




1.2. Remote sensing of forage nutrients

be limiting in African savannas, both of these nutrients, in combination
with fibre were considered, for the evaluation of forage quality.

1.2 Remote sensing of forage nutrients

Remote sensing provides a platform for analysing continuous variables over
large areas. Multi-spectral sensors, have proved useful in mapping broad
biophysical and geological features [Ustin, 2004]. It was, however, the de-
velopment of imaging spectrometers in the 1980’s to early 1990’s that paved
the way for mapping of biochemicals in vegetation [Asner, 2004]. Biophys-
ical and empirical modelling have been the two approaches followed for
investigating the physical and chemical properties of plants [Jacquemoud
et al., 1995].

Biophysical models have been successfully used for the determination of
physical properties such as leaf area index (LAI), leaf angle distribution
(LAD) and chemical properties such as chlorophyll, and water [Jacque-
moud et al., 2009]. This modelling approach has been unable to resolve
for the range of nitrogen compounds contained in leaves of different species
[Kokaly et al., 2009], and is limited in its ability to invert models in hetero-
geneous grassland systems [Darvishzadeh et al., 2008a]. The use of empir-
ical modelling for biochemical modelling has it foundation in near infrared
spectroscopy (NIRS). In the 1970’s, NIRS provided a theoretical basis for
utilising spectroradiometry to discern biochemical features [Starks et al.,
2004].

Initial NIRS studies were aimed at developing techniques to rapidly as-
sess forage quality, for agricultural purposes [Clark, 1989]. Through NIRS
studies absorption features associated with forage nutrients were identified
[Curran, 1989; Fourty et al., 1996; Himmelsbach, 2000]. In this research I
have focussed on the use of empirical modelling for the determination of
plant biochemicals. The modelling approaches applied here have used, as
their foundation, known absorption features linked to forage nutrients. In
table 1.1, the location of absorption features, linked to the forage nutrients,
nitrogen (protein and nitrogen) and fibre (cellulose and lignin), and their
associated physical properties are listed. Unlike nitrogen and fibre, linking
phosphorus to absorption features in plant molecules is more challenging.
Within plants, the concentration of phosphorus is much lower than either




Chapter 1. Introduction

nitrogen (10 times lower), or fibre (up to 100 times lower). This low concen-
tration will reduce the ability to directly detect phosphorus through spectral
signatures, therefore associated links are made with respect to plant activ-
ity. Within plants, phosphorus is primarily associated with plant metabolic
processes. In this thesis, spectral links to phosphorus concentrations are
made through associating phosphorus to sugars and starches, as products
of metabolism. These absorption features are also presented in table 1.1.

Table 1.1: Absorption features related to physical bond vibrations of forage nutrients,
compiled from the following texts: Curran [1989]; Fourty et al. [1996];
Himmelsbach [2000] and Kumar et al. [2001].

A (nm) Bond vibrations Biochemical

430 electron transition chl a

460 electron transition chl b

640 electron transition chl b

660 electron transition chl a

910 C — H stretch, 3"¢ overtone protein

970 O — H bend, 1°¢ overtone water, starch

990 O — H bend, 2™ overtone starch

1020 C — H stretch, 2" overtone protein

1120 C — H stretch, 2"¢ overtone lignin

1200 O — H bend, 1% overtone water, cellulose, starch,
lignin

1420 C — H stretch, C' — H deformation protein, lignin

1450 O — H stretch, 1% overtone, C — H starch, sugar, lignin, wa-

stretch and deformation ter

1490 O — H stretch, 1%¢ overtone cellulose, sugar

1510 N — H stretch, 1%¢ overtone protein, nitrogen

1530 O — H stretch, 1°¢ overtone starch

1540 O — H stretch, 1°¢ overtone starch, cellulose

1580 O — H stretch, 1% overtone starch, sugar

1690 C — H stretch, 1°¢ overtone protein, nitrogen, lignin,
starch

1730 C — H stretch protein, cellulose, lignin

1780 C — H stretch, 1% overtone, O — H cellulose, sugar, starch

stretch, H — O — H deformation
1820 O — H stretch, C — O stretch, 2 over-  cellulose

tone

Continued on next page...
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Table 1.1 (Continued)

A (nm) Bond vibrations Biochemical
1900 O — H stretch, C' — O stretch starch
1940 O — H stretch and deformation protein, nitrogen, lignin,
starch, water, cellulose
1950 O — H stretch and deformation protein, nitrogen, lignin,
starch, water, cellulose
1960 O — H stretch and bend protein, sugar, starch
1980 N = H asymmetry protein, lignin
2000 O — H deformation, C — O deformation starch
2060 N —H bend, N — H stretch, 2"¢ overtone protein, nitrogen
2080 O — H stretch and deformation sugar, starch
2100 O = H/C -0 stretch, C—O—C stretch, starch, cellulose
374 overtone
2130 N — H stretch protein
2180 N —H bend, 2" overtone, C—H stretch, protein, nitrogen
C — O stretch, C — N stretch
2240 C — H stretch protein
2250 O — H stretch and deformation starch
2270 C'— H stretch, O— H stretch, CHs bend, protein, nitrogen, lignin,
CH, stretch starch, sugar,cellulose
2280 C — Hstretch, C'Hy deformation starch, cellulose
2300 N — H bend, C —O stretch, C— H bend, protein, nitrogen, cellu-
274 overtone lose
2320 C — H stretch, CHy deformation starch
2340 C — H stretch and deformation, O — H  cellulose
stretch and deformation
2350 CH, bend, 2™ overtone, C — H defor- protein, nitrogen, cellu-
mation, 2"? overtone lose

Remote sensing studies of biochemicals in vegetation has been a stepwise
procedure. Studies have not been confined to a single ecosystem or a sin-
gle nutrient, although, comparatively, nitrogen has been extensively re-
searched. The first studies identified significant wavelengths that predicted
the concentration of nutrients in dried and ground material [Card et al.,
1988; Grossman et al., 1996]. This progressed onto studies on fresh leaves
[Curran et al., 1992, 2001; Grossman et al., 1996], then onto fully canopies
of either single or multiple species [Asner, 1998; Darvishzadeh et al., 2008c;
Johnson et al., 1994; Martin and Aber, 1997; Martin et al., 2008; Mutanga
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et al., 2004c; Peterson et al., 1988; Serrano et al., 2002], and finally gen-
erating maps of nutrient concentrations from hyperspectral images across
landscapes [Martin and Aber, 1997; Mutanga and Skidmore, 2004a; Mu-
tanga and Kumar, 2007; Skidmore et al., 2010; Wessman et al., 1988|.

In the biochemical studies listed above, a recurrent finding, was that se-
lection or identification of all the spectral features did not coincide with
features that had been physically linked (through bond vibrations, e.g. like
those listed in table 1.1) to the biochemical under observation. Features
were often linked to other nutrients [Johnson et al., 1994], or explained in
terms of plant or spectral properties [Asner, 1998; Grossman et al., 1996;
Jacquemoud et al., 1995]. A couple of attempts to generalise biochemi-
cal models between sites has had limited success [Martin and Aber, 1997;
Martin et al., 2008], a result most likely attributed to the inclusion of “non-
physically” linked absorption features. In order to create a model that can
be generalised between sites or temporally, model variables should exclude
site or temporal specific data. As an example, a generalised biochemical
model that can be applied at multiple sites should contain only biophysical
variables associated to variations in the nutrient of interest, e.g. absorption
features for that nutrient, LAI, phenology, and water content, and should
exclude site specific variables, e.g. species, or soil layer.

Temporal factors play an important role in nutrient models. There is a-
priori knowledge that nutrients fluctuate between seasons, and that con-
centrations alter with respect to plant age [Grant et al., 2000; Jones and
Wilson, 1987; McNaughton, 1988, 1990]. From a remote sensing perspec-
tive, it is known that optical properties of plants alter with ageing [Asner,
2004]. Understanding the role of time (season and plant age) in biochem-
ical mapping, would provide a valuable contribution towards the task of
creating a repeatable means for nutrient mapping.

Studies within the focal savanna system have shown that, particularly in the
dry season, the concentrations of forage often fall below maintenance level
requirements of herbivores [Grant et al., 2000; Grant and Scholes, 2006;
Treydte et al., 2009]. In biochemical remote sensing studies, there has been
an emphasis placed on the peak growing season, and limited emphasis on the
senescent stage of vegetation. In order to provide remote sensing techniques
that can be used to monitor biochemical concentrations in vegetation, with
an emphasis on forage, it was considered, that the influence of plant ageing
and seasons in this process should be investigated.
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1.3 Research objective

The main objective of the research presented here, is to provide a technique
for spatially and temporally monitoring forage quality in an African savanna
system. To achieve this the role of seasonal and plant age influences in
biochemical mapping were investigated. The means, and structure taken
to investigate these objectives is described below.

1.4 Outline of the thesis

This thesis is a compilation of seven chapters. Besides the introduction
and synthesis, the five remaining chapters are in preparation or have been
submitted, to the scientific peer review process. The structure and content
used in submitting the manuscripts is largely retained in the thesis.

The research was conducted in three stages, a greenhouse-laboratory level,
this was scaled up to a field level and finally an application using airborne
imaging spectroscopy.

1.4.1 Greenhouse-laboratory level

A greenhouse study provided the opportunity, in a controlled environment,
to investigate plant ageing effects on biochemical predictions, with the util-
isation of spectroradiometry.

Chapter 2:

Given the theoretical basis for biochemical mapping was founded in NIRS,
in this chapter, it was investigated how procedures applied to NIRS bio-
chemical studies, upscaled to field spectroscopic studies. Using plant nitro-
gen as the basis for this study, the investigation captured the differences in
how sample preparation for laboratory and field studies influences spectro-
scopic nutrient modelling.
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Chapter 3:

Changes in plant phenology are primarily driven by climatic changes, but
at local scales plant age differs between plants as a result of micro - topogra-
phical differences (e.g. soil moisture and catenal position) [Archibald and
Scholes, 2007]. Plant phenology has been empirically associated with nu-
trient fluctuations [Jones and Wilson, 1987; McNaughton, 1988], and thus
its effect on predictive models, for forage nutrient concentration estimation,
should ideally be understood when building remote sensing - nutrient pre-
diction models. In chapter 3, of this thesis, the integration of plant age
into models for predicting forage nutrient concentrations utilising spectro-
radiometry, was investigated.

Chapter 4:

In chapter 3, plant age was a co-variate variable, generated from the ex-
perimental design, and thus each age defined was known prior to analysis.
Across an image covering a savanna system, the phenological condition of
plants would differ, with variations in topography. The findings from chap-
ter 3 indicate that inclusion of a variable that captures variation in plant
ageing, is beneficial for nutrient mapping. In chapter 4, a comparison is
made of indices that have been used for determining vegetation condition,
in addition to the presentation of a new phenological index. Indices that
could statistically separate age classes, in chrono-sequence of the plants age,
were evaluated against data collected in the field.

1.4.2 Field level
Chapter 5:

Ecologists have identified numerous variables that explain forage nutrient
variability (depicted in figure 1.1). Spectroscopically, research has identified
absorption features that are physically associated with each of the individ-
ual forage nutrients (table 1.1). In chapter 5 of this thesis, the findings
of earlier ecological and spectral research are combined, to test if together
this information can be used to create reproducible monitoring models for
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predicting forage nutrients in savannas, irrespective of seasons.

1.4.3 Airborne level
Chapter 6:

Findings from the field and laboratory level studies provide evidence that
mapping of forage nutrients is possible irrespective of season and plant age.
In chapter 6, the findings from earlier chapters are combined and upscaled
through to image data. For the first time, forage nutrients in savanna
systems are mapped during the dry season. The findings observed in the
nutrient distribution maps, are considered in terms of relationships through
to the savanna environment under evaluation.

The research presented here combines aspects of both a technical nature,
in terms of applied remote sensing, and a theoretical ecological nature.
In the final chapter of this thesis (chapter 7), the findings of this study
are considered in terms of the contributions made to the field of image
spectroscopic science for biochemical mapping. Caveats are identified and
suggestions towards further research are presented.
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Chapter 2

Upscaling nutrient
prediction models, from
dried - to canopy plant
material

*This chapter is based on the following paper: Knox, N.M., Skidmore, A.K., Schlerf,
M., de Boer, W.F., van Wieren, S.E., van der Waal, C., Prins, H.H.T. and Slotow, R.
2010. Nitrogen prediction in grasses: Effect of bandwidth and plant material state on
absorption feature selection. International Journal of Remote Sensing 31, 691-704.
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Abstract

We analysed stability and predictive capabilities of known nitrogen absorp-
tion features between plant material prepared for NIRS (dried) and RS
(fresh) studies. Grass spectra were taken of the plant canopy, and again
after the grass sample was dried and ground. Models were derived us-
ing stepwise multiple linear regression (sMLR). Regression values (Rgdj)
produced using the dried material, were greater than those produced us-
ing canopy material. For dried material only wavebands from the SWIR
region were selected. Wavebands selected by sMLR on canopy material
were located in both the VNIR and SWIR regions. Using wavebands se-
lected for dried material models produced low dej values when applied to
canopy plant material, differences in Rgdj values are smaller when wave-
bands selected in canopy material models are applied to dried material.
Widening of nitrogen features produced higher Rgdj values for both dried
and canopy material. This work shows that obtaining models with high
predictive capabilities for nitrogen concentration is possible, but waveband
selection should not be limited to features identified by NIRS studies. To
accommodate for variability in absorption features, and instrument errors,
absorption features should be widened.

2.1 Introduction

The ability to map biochemicals provides the opportunity to investigate nu-
trient fluxes, system productivity, and provide input into models analysing
ecosystem processes. Mapping of biochemicals through remote sensing
(RS) has followed two principle approaches, physically based modelling
[Darvishzadeh et al., 2008a; Schaepman et al., 2005; Gastellu-Etchegorry
and Bruniquel-Pinel, 2001; Jacquemoud et al., 2000] and empirical ap-
proaches [Chen et al., 2007; Mutanga and Skidmore, 2007; Huang et al.,
2004; Mutanga et al., 2004c; Curran et al., 1997; Johnson and Billow, 1996;
Jacquemoud et al., 1995]. The empirical approach, which is the focus of
this study, has developed closely with near infrared spectroscopy (NIRS).

Initial vegetation NIRS studies were focused on developing techniques to
rapidly assess the quality of vegetation for agricultural purposes [Clark,
1989]. Through the use of NIRS, numerous absorption features were found
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to relate biochemicals to electron transitions, and bond vibrations. The
application of NIRS for the analysis of vegetation quality has become a
standard technique applied by the US agricultural board [Marten et al.,
1989; Barton IT and Windham, 1988]. The standard NIRS method measures
spectra on dried ground material.

Unlike NIRS, remote sensing, when applied to vegetation, has to consider
the influence of fresh canopy vegetation, e.g. leaf water content and canopy
structure, and the implications of distance from subject, e.g. atmosphere,
soil background and signal-to-noise ratio (SNR), on spectra [Peterson and
Hubbard, 1992]. Biochemical spectroscopic studies have been extended
from NIRS to remote sensing, with varying degrees of success. These stud-
ies have attempted to determine wavelengths and spectral features that
relate to the biochemicals of interest, the selected wavelengths are then
checked to see if they relate to features that have been previously identified
as absorption features using NIRS. Biochemical measurements have been
made on fresh leaves [Grossman et al., 1996; Curran et al., 1992; Card et al.,
1988] as well as plant canopies - single and multiple species [Darvishzadeh
et al., 2008c; Martin et al., 2008; Mutanga et al., 2004c; Serrano et al., 2002;
Asner, 1998; Martin and Aber, 1997; Johnson et al., 1994; Peterson et al.,
1988; Wessman et al., 1988].

Biochemical concentrations within plants alter with age and over seasons.
Nutrients move to different areas of the plant in response to growth, flower-
ing or senescence [Salisbury and Ross, 1992], so it would be expected that
these changes are reflected in the spectra. Ideally a model that can predict
a biochemical irrespective of plant age or species would allow for seasonal
monitoring.

Ecologically many biochemicals are important not only to plant growth, but
also to animals that forage on them [du Toit et al., 2003; Provenza, 1995].
Many absorption features, caused by bond vibrations of plant biochemicals,
amongst others relate to plant nitrogen concentrations (table 2.1). Given
the ecological importance of nitrogen [Prins and van Langevelde, 2008a;
Owen-Smith and Danckwerts, 1997], we chose to base our study on this
biochemical. The absorption features selected for predicting nitrogen in
plants include bonds that have been linked to: Elemental nitrogen; chloro-
phyll [Yoder and Pettigrew-Crosby, 1995]; protein, which includes nitrogen
as an elemental constituent and is an essential component of herbivore di-
ets [Provenza et al., 2003; Provenza, 1995]; and the red edge position which
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has been shown to be useful in estimating numerous biophysical variables,
including nitrogen concentration [Mutanga and Skidmore, 2007; Cho and
Skidmore, 2006].

Although many studies using fresh material have included wavelengths iden-
tified by NIRS on dried material [Cho and Skidmore, 2006; Mutanga, 2004;
Huang et al., 2004; Serrano et al., 2002; Martin and Aber, 1997; Curran
et al., 1997; Johnson et al., 1994; Matson et al., 1994], no study that we are
aware of, has explored how stable known spectral absorption features are
between the same plant samples measured as both fresh canopy, and then
dried and ground. We investigated whether nitrogen absorption features se-
lected in prediction models of dried plant material, from plants of different
phenological stages, are preserved in plant canopy models, and vice-versa.

The biochemical spectral studies referenced above have been conducted
using a wide variety of spectroradiometric instruments e.g. GER 3700,
GER Mark IV, AVIRIS, etc., these instruments differ with respect to their
number of wavebands, wavelength centres, band widths and calibration
settings. To consider this variation on biochemical predictions we tested
the effect of increasing the width of absorption features, on the stability of
model variables obtained in dried and fresh plant canopy material.

2.2 Methods

2.2.1 Sample preparation and measurement

In a greenhouse experiment we grew two tropical grass species, Digitaria
eriantha and Urochloa mosambicensis, on soils with three different nitrogen
treatments (0.05, 0.125 and 0.2 % N per 1 kg soil). The nitrogen levels in
the soil were based on levels found in the Kruger National Park (KNP),
South Africa, where both grass species occur as dominant species, and are
considered to be important foraging grasses [van Oudtshoorn, 1992]. Pots
were placed in a randomized layout. The conditions within the greenhouse
were maintained at a constant temperature of 25°C, with 12 daylight hours,
and daily watering of the grasses. Three weeks after seed germination the
number of grasses within the pots were thinned. To reduce soil background
effects at the time of the spectral measurements, sufficient grass plants were
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Table 2.1: Absorption features related to plant nitrogen [Cho and Skidmore, 2006;
Ferwerda, 2005; Mutanga, 2004; Huang et al., 2004; Serrano et al., 2002;

Martin and Aber, 1997; Curran et al., 1997; Fourty et al., 1996; Johnson

et al., 1994; Matson et al., 1994; Curran et al., 1992; Card et al., 1988]

A (nm) Bond vibrations Biochemical
430 electron transition chl a

460 electron transition chl b

640 electron transition chl b

660 electron transition chl a

910 C — H stretch, 3" overtone protein
1020 C — H stretch, 2"¢ overtone protein

1420 C — H stretch, C — H deformation
1510® N — H stretch, 1! overtone

1520¢

1690 C — H stretch, 1%¢ overtone

1730 C — H stretch
1940 O — H stretch, O — H deformation

1950 O — H stretch, O — H deformation

1960 O — H stretch, O — H bend

1980° N = H asymmetry

2060¢ N —H bend, N — H stretch, 2" overtone

2130 N — H stretch

2180% N —H bend, 2" overtone, C— H stretch,
C — O stretch, C' — N stretch

2200

2240 C — H stretch

2270 C'— H stretch, O— H stretch, C H; bend,
CH, stretch

2290

2300° N — H bend, C — O stretch, C'— H bend,
274 overtone

2350% CH, bend, 2™ overtone, C — H defor-
mation, 2"¢ overtone

REPd*?

REPc®?

REPg®?

protein, lignin

protein, nitrogen
protein

protein, nitrogen, lignin,
starch

protein, cellulose, lignin
protein, nitrogen, lignin,
starch, water, cellulose
protein, nitrogen, lignin,
starch, water, cellulose
protein, sugar, starch
protein, lignin

protein, nitrogen
protein

protein, nitrogen

protein

protein

protein, nitrogen, lignin,
starch, sugar,cellulose
protein

protein, nitrogen, cellu-
lose

protein, nitrogen, cellu-
lose

nitrogen

nitrogen

nitrogen

a

® red edge inflection point (REP), calculated using a standard derivative (REPd),

wavelength shown to relate to nitrogen in fresh material

linear four-point interpolation (REPg) and linear extrapolation (REPc), formulae

in Cho and Skidmore [2006]
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Table 2.2: Phenological classes and numbers of samples included in each class of
spectral measurements

Species Phenological Code Weeks  Samples
stage from
sowing
D. eriantha Seedling DES 5 31*
D. eriantha Adult DEA 8 38
U. mosambicensis Adult UMA 10 27
Spp. combined Adult & Seedling  All NA 86

* Only 21 samples were included on the fresh material measurements

kept within each pot to ensure that, at the different phenological stages, the
soil would be covered. As the germination rates of U.mosambicensis were
low, there were only sufficient numbers of germinated seed to be included
in a single phenological age, it was decided to measure them at the adult
stage, at this phenological stage the plant material was sufficient to cover
the soil.

Spectra were measured at two phenological stages: seedling and adult. At
the seedling stage, morphologically the D.eriantha seedling canopy was a
tufted, erect grass standing approximately 15-25 c¢m high. The adult stages
of both D.eriantha and U.mosambicensis were without flower and reached
a height of approximately 70 cm, U.mosambicensis formed denser tufts
and their leaves were slightly broader than those of the adult D.eriantha
plants. The number of spectral samples take for each of the phenological
stages is presented in table 2.2. Spectra were measured using a GER 3700
spectroradiometer (Geophysical and Environmental Research Corp.). The
GER 3700 is a three dispersion grating spectroradiometer using Si and PbS
detectors with a single field of view. The instrument has a wavelength
range of 350-2500 nm, the spectral range has a resolution of 1.5 nm in the
350-1050 nm range, 6.2 nm in the 1050-1900 nm range and 8.5 nm in the
1900-2500 nm range.

For fresh canopy material (referred to as ‘fresh material’ hereafter) mea-
surements, the GER 3700 was fitted with a 10° optic, and placed on a
tripod at a 15° angle, 80 cm above the pot rim level, creating a field of
view (FOV) of 14 cm in diameter (the diameter of the pot size at rim level
was 19 cm). Mounting the spectrometer at this height, above the pot rim,
allowed for the projected plant growth between a seedling and an adult
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growth phase, and ensured that the same setup could be maintained for all
phenological stages. The calibration panel (Labsphere, Inc, Sutton, NH),
used for converting the relative reflectance to absolute reflectance, was mea-
sured at a distance of 31 cm from the optic, thus creating a FOV of 5.5 cm
in diameter. The calibration panel was only 225 cm?, and thus a FOV of
this size ensured an accurate reading of the panel. A halogen lamp was
placed alongside the GER 3700 at the same level as the optic.

Potted plants were transferred from the greenhouse to the laboratory for
measurement. The pot was fixed in place (to ensure the FOV was located
above the pot centre) for a group reading, one group reading consisted of
a measure of the calibration panel and a set of 5 readings of the sample.
In order to reduce directional effects, caused by leaf orientation within the
canopy, the pot was rotated by 90°, and the next group reading taken [Cho
and Skidmore, 2006; Mutanga et al., 2003]. The 20 spectral readings taken
per pot were averaged to obtain a single spectral reading per sample.

Following the fresh canopy material spectral measurement, all the grasses
within a pot were clipped at the plant base and dried at 70°C, for 24 hours.
The samples were then ground through a 1 mm sieve (these samples are
hereafter referred to as ‘dried material’). Spectra were measured with the
GER 3700, fitted with a 3° optic, 38 cm above the point of measurement,
creating a FOV of 2 cm. To reduce reflectance and directional effects,
the dried material was placed in a shallow non-reflective bowl on a non-
reflective background and the sample leveled. A measurement of a sample
was composed of a calibration panel measurement and 5 readings of the
sample. The 5 readings were averaged to create a single reading per sample.

After completion of all spectral measurements, all the samples were chem-
ically analysed. Nitrogen was analysed using the wet chemistry Kjedahl

technique [AOAC, 1970].

2.2.2 Data Analysis
Data preparation:

The brightness of the dried material reflectance data were greater than that
of the canopy spectral data. These brightness differences were a result of the
setup of the canopy measurements, where the distances differed between the
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sensor to calibration panel and sensor to the target. In the standard NIRS
method and in many RS studies, reflectance data are transformed using
log 1/Reflectance [Kokaly, 2001; Grossman et al., 1996; Card et al., 1988].
We tested this and other transformations (first and second derivatives) and
found that the first derivative best preserved the absorption feature data.
The first derivative acts to removes brightness effects, but is known to
enhance sensor noise levels within the spectra. As we were comparing dried
and fresh material, and differences in brightness were not constant for all
phenological stages, we believe the use of the first derivative was optimal
because data properties of the absorption features were maintained (and we
found no evidence of enhanced noise at these absorption feature locations),
and the comparisons between the materials could be made. Given the
aim of our study was to focus on absorption features associated to the
physical properties of nitrogen and proteins (table 2.1), only wavebands
that corresponded with the absorption features listed in the table 2.1 were
included in the data analysis.

Model Development:

The data for the regression analyses were maintained in their separate phe-
nological classes (table 2.2). In addition all the data were grouped together
(code: ALL) to determine whether a selection of wavebands could predict
nitrogen concentration irrespective of plant age or species. In this study we
considered a regression model with an adjusted 72 value of greater than 0.7
to be a suitable model for prediction of nitrogen concentration, an adjusted
r2 value of greater than 0.5 was considered to be unsuitable for prediction
of nitrogen concentration, however it could function to show trends.

Nitrogen concentration (obtained from the chemical analysis of the plant
samples) was regressed against the individual known absorption features
/ wavebands derived firstly from the spectral measures on the dried ma-
terial, and then the fresh material. The regressions were run using step-
wise multiple linear regression (sSMLR), a standard method applied within
NIRS and frequently applied in RS studies [Huang et al., 2004; Kokaly
and Clark, 1999; Martin and Aber, 1997; Marten et al., 1989]. Step-
wise regression was run in both directions (forward and backward), to
ensure the same wavebands were selected via either method. To avoid
over-parametrisation, in the backward regression, the maximum number
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of wavebands that could be included within a regression fitting was kept
below a threshold (numbersamples + 3), a technique suggested by Craw-
ley [2006]. Given that 26 absorption features were tested (table 2.1), and
the sample numbers (table 2.2) for each of the phenological stages was
less than that required to test all wavebands at one time (except for the
ALL class), model fitting was undertaken iteratively [Crawley, 2006]. A
subset of the 26 absorption features was fed into a model, the significant
wavebands were selected, this procedure was repeated until all absorption
features had been included in the sub-models. This process was repeated
with the order of included wavebands randomised and repeated to test that
the same wavebands were selected. All the significant wavebands selected
from the sub-models were included in a final selection model to determine
which of these wavebands, when placed in a single model was still retained
as a significant nitrogen concentration predictor.

Regression models were derived separately for both dried and fresh material.
To determine whether the plant material state effected the outcomes of
the regression or whether a regression remains stable irrespective of plant
material state, the wavebands selected for a model (e.g. dried material)
were then used to define a new regression model using the same waveband
combinations on the second material (fresh material), and vice versa. The
differences in the Rgdj values, and the wavebands that remained significant
when applied to the counterpart material, were recorded. Should there be
no effect of plant material state on the prediction of nitrogen concentration,
then we would expect all the regression variables would remain as significant
contributors to the prediction of nitrogen, and the RZ dj of the models would
be similar (within a range of the original model 0.1).

Feature widening:

We investigated the influence of widening each of the absorption features.
By creating an absorption feature that was wider than a single waveband
we believe that selected features of a regression would be more robust as
white noise inherent in the reflectance data would be cancelled out. The
wider features would ideally reduce the effects from measurements taken
using any of the multiple field instruments available together with their
requirements for frequent calibration and maintenance, due to shifts in
sensors and changing sensitivity across spectra, resulting in shifts of ab-
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sorption features [Mutanga and Skidmore, 2007; Kokaly, 2001]. A broader
absorption feature would be less sensitive to shifts of an absorption fea-
ture within a spectrum. A feature was widened by averaging the derivative
value across three neighbouring wavebands (i.e. a waveband above and be-
low each absorption feature). The spectral resolution was maintained in the
original form obtained from the GER 3700 instrument, thus the width of
the widened features differed across the spectrum (in the 350 nm — 1050 nm
range a widened feature was 1.5 nm x 3, in the 1050 nm — 1900 nm range
the features were 6.2 nm x 3, and in the 1900 nm — 2500 nm range they
were 8.5 nm x 3 wide). The method of applying sMLR as outlined in the
above section was then applied to these “widened” features.

2.3 Results

Nitrogen concentration is reported as percentage dry weight, and ranged
from 2.33% — 5.00%. In this study we attempted to emulate the soil nitrogen
contents found in Kruger National Park (KNP), South Africa. Our results
for nitrogen percentage found within the grass samples in this study were
higher than those we obtained in several separate studies conducted in the
KNP and surrounding regions.

When evaluating the overall spectral curves on dried and fresh material
certain differences were consistently observed: The effect of water on fresh
vegetation spectra is evident particularly when one looks at the known
water absorption features. Although these features are not solely linked
to water but also linked to other plant biochemicals (e.g. protein, lignin
and starch), they were narrower and deeper in the fresh material compared
to the dried material (figure 2.1), the water within the fresh material thus
modifies these biochemical absorption features. In addition the red edge
feature (i.e. the sharp transition, found in fresh vegetation, between the red
and near infrared (700-1400 nm) (NIR) region of the spectrum), is altered
in the dried when compared to the fresh material, the absorption feature in
the red region becomes shallower and the NIR shoulder is no longer sharply
defined, but levels off gently towards the NIR plateau (figure 2.1).
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Figure 2.1: Spectra of dried and fresh material for a plant sample with mean (3.871%)
nitrogen concentration. The locations of the principal water absorption
bands (water) and the three regressors (nitrogen) having the highest cor-
relation with the dried plant samples are shown. Reflectance values of
the dried sample were adjusted down by a factor of 8 to account for the
increased brightness in this measurement (section 2.2.2).

2.3.1 Narrow absorption feature models

We investigated whether any single waveband consistently predicted ni-
trogen concentration, irrespective of phenology or the preparation state of
material, and found none of the absorption features, that we were consid-
ering in this study, consistently had an R? value above 0.5 for both dried
and fresh material. For the dried material, wavebands centred at 1420 nm,
2130 nm, and 2180 nm (indicated on figure 2.1) were the highest individual
predictors (R? values greater than 0.5), for all phenological classes.

Absorption features selected by sMLR, for the dried material produced pre-
diction performances (R? 4;) above 0.7 (and thus suitable predictive models)
for all phenological classes. Almost all selected wavebands for dried ma-
terial fall within the shortwave infrared (1400-3000 nm) (SWIR) region.
These selected wavebands when applied to fresh material, of the same phe-
nological class, have little to no predictive power. The red edge - linear
four point interpolation feature (REPg) in the D. eriantha adult (DEA)
class is the only feature to remain significant, all other wavebands are
non-significant contributors to predicting nitrogen concentration in fresh
material (table 2.3).

The predictive power (Rgdj values) of models selected by sMLR for fresh
material are lower when compared to those models selected for dried ma-
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Table 2.3: Wavebands selected and adjusted R? values obtained from applying step-
wise MLR to dried plant material. These selected wavebands are then
applied to the fresh material to determine their ability (Rgdj) to predict
on material of the same age, but different preparation state

Selected wavebands (nm) Age Dried Material Fresh Material
(Code) (RZdj) (Ridj)

1420, 1690, 2130, 2180 ATl 0.75 20.02

1020, 1980, 2200 DES 0.76 -0.01

1420, 2350, REPg* DEA 0.82 0.12

1980, 2060, 2130, 2300 UMA 0.70 0.14

* wavebands significant when applied to fresh material

Codes: All plant samples grouped (All), D. eriantha seedling (DES), D. eriantha
adult (DEA), U. mosambicensis adult (UMA)

Table 2.4: Wavebands selected and adjusted R? values obtained from applying step-
wise MLR to fresh plant material. These selected wavebands are then
applied to the dried material to determine their ability (Ridj) to predict

on material of the same age, but different preparation state

Selected wavebands (nm) Age Fresh Material Dried Material
(Code) (Rgdj) (Rgdj)

640*, 1420*, 2290¢, REPd®, All 0.53 0.62

REPc

910¢, 1940, 1980*¢ DES 0.80 0.24

1690, 2200¢, 2290°, REPg*¢ DEA 0.43 0.41

1520%¢, 19407, 2240°¢ UMA 0.51 0.28

* wavebands significant when applied to dried material

¢ wavelengths in a previous study related to nitrogen in fresh leaves (table 2.1)
Codes: All plant samples grouped (All), D. eriantha seedling (DES), D. eriantha
adult (DEA), U. mosambicensis adult (UMA)

terial. When the wavebands selected for predicting nitrogen for fresh ma-
terial were applied to dried material, of the same phenological stage, the
differences in the Rgdj values is lower than that seen when the situation
is reversed (tables 2.3 vs 2.4). More of the fresh material wavebands are
significant predictors when applied to the dried material (table 2.4).

We earlier highlighted that there was no single waveband that could predict
nitrogen irrespective of the phenology, species or preparation state, how-
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ever, we found that at least one of the wavelengths selected in each of our
models was solely related to the biochemicals nitrogen or protein (i.e. many
features presented in table 2.1 refer to multiple biochemicals). Although U.
mosambicensis was phenologically an adult plant, in selection of wavebands
within the models (fresh/dried), it shared at least one featured waveband
(1940 nm in fresh material and 1980 nm in dried material) with the seedling
stage of D. eriantha, and none with the adult stage of D. eriantha.

The results from the narrowband absorption features highlight that models
for predicting nitrogen concentration can be obtained for all phenological
classes in dried material, but not for fresh material. With narrowband
absorption features the state of plant material effects regression variable
selection and particularly with models derived from dried material it is
not possible to apply the same waveband selections to spectra from fresh
material.

2.3.2 Widened absorption feature models

When the wavebands were widened, and the number of wavebands selected
in the SMLR’s remained unchanged (i.e. not for the DEA class on dried
material), the ability to predict nitrogen concentration in models was im-
proved (through an increase in the adj r? values) in both the dried (column
three in tables 2.5 vs 2.3) and the fresh (column three in tables 2.6 vs 2.4)
material.

In comparing the output from sMLR’s run on each phenological stage in the
narrow absorption features (tables 2.3 and 2.4) and widened features (tables
2.5 and 2.6); when the wavebands selected in widened models were applied
to their material counterpart (i.e. when the same wavebands selected from
a fresh material model are used with the wavebands from the dried material
spectral data, and vice versa), the results again showed that the prediction
of nitrogen concentration is affected by plant material state. Creating a
widened absorption feature reduced the differences between the between the
materials (smaller differences between RZ 4; values within each phenological
class and increased number of significant values - particularly for the fresh
material models then applied to dried material (table 2.6)), in addition the
widened absorption features generated better fitting models (higher Rgdj
values). The increase in significant predictors carried over between the fresh
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Table 2.5: Waveband centres selected and the adjusted R? values obtained for
widened features selected from stepwise MLR applied to dried plant
material. These selected widened wavebands are then applied to the
fresh material to determine their ability (RZ ;) to predict on material of
the same age, but different preparation state

Selected waveband centres Age Dried Material Fresh Material
(nm) (Code) (RZdj) (Rgdj)

640, 1940, 2130, 2290* All 0.77 0.37

1020, 1960, 2200 DES 0.77 0.06

1420, REPg* DEA 0.79 0.25

1420, 2130, 2300 UMA 0.70 0.34

* wavelengths significant when applied to fresh material
Codes: All plant samples grouped (All), D. eriantha seedling (DES), D. eriantha
adult (DEA), U. mosambicensis adult (UMA)

to the dried material models indicate that the wider absorption features are
better preserved between these two different plant material states.

Generally the wavebands selected by widening the features altered from
those wavebands selected by sMLR on the narrow absorption waveband
models. For the dried material wavebands selected by most of the models
shared some but not all of the wavebands (tables 2.3 and 2.5). For the
fresh material some of the wavebands were selected by both the widened
and narrow features, particularly for the D. eriantha seedling (DES) class
(tables 2.4 and 2.6).

2.4 Discussion

The pronounced differences to the spectral signatures in dried and fresh
material (figure 2.1), particularly caused by water, highlight the need to
consider features less influenced by the presence of water in the plant ma-
terial when developing algorithms for biochemical prediction.
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Chapter 2. Upscaling nutrient predictions

Table 2.6: Waveband centres selected and the adjusted R? values obtained for
widened features selected from stepwise MLR applied to fresh plant
material. These selected widened wavebands are then applied to the
dried material to determine their ability (RZ ;) to predict on material of

the same age, but different preparation state

Selected waveband centres Age Fresh Material Dried Material
(nm) (Code) (RZdj) (Rgdj)

640*, 1510¢, 1940*, 1950*, All 0.63 0.40

REPc*¢

910*¢, 1940, 1980*¢ DES 0.84 0.34

640*, 1980*¢, 2060*¢, 2200°, DEA 0.55 0.68

REPg*

1020¢, 1420%, 1940, 2290*¢ UMA 0.66 0.62

* wavelengths significant when applied to dried material

¢ wavelength in a previous study related to nitrogen in fresh leaves (table 2.1)
Codes: All plant samples grouped (All), D. eriantha seedling (DES), D. eriantha
adult (DEA), U. mosambicensis adult (UMA)

2.4.1 Narrow absorption feature models

The predictive capabilities of models are greater when applied to plant ma-
terial that has been dried and ground. The selected wavebands in dried
material have little to no predictive capabilities when applied to fresh ma-
terial. The wavebands selected for dried material differ from those wave-
bands selected for models built using fresh material (column 1 in tables 2.3
and 2.4). Our study shows that absorption features selected in dried plant
material are not preserved in fresh canopy material.

Wavelengths selected by models built using dried material (table 2.3) are
almost exclusively located within the SWIR (1400 nm — 3000 nm) region,
in contrast wavelengths selected on fresh material (table 2.4) include wave-
lengths located in both the visible near infrared (400-1400 nm) (VNIR) and
SWIR regions, a result in agreement with Jacquemoud et al. [1995]. For
dried material, in each phenological stage, a wavelength was selected that
is linked to a 2" overtone bond vibration (table 2.1), though Curran [1989]
suggested that these wavelengths were hidden by sensor noise in field and
airborne sensors. These wavelengths were not selected for the fresh mate-
rial models, indicating that these wavelengths might also be influenced by
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the canopy and leaf structure of the plant.

Spectral measurements on plant canopies are affected by several factors:
leaf structure (thickness, cell structure), plant symmetry (which includes
leaf orientation), leaf area and background. In this experiment we dealt
with only a single plant functional group (grasses), and thus the leaf struc-
ture was consistent through the analysis. The rotation of the pot between
measurements and averaging the spectra would account for plant symmetry
effects. We therefore managed to keep as constants in the measurements
the leaf structure and plant symmetry, the leaf area and the soil background
are however still factors that would influence the prediction capabilities for
biochemicals in the analysis of fresh canopy material. Leaf area (measured
in remote sensing as the LAT (LAI - that is the ratio of the total one sided
leaf area per unit ground surface area) would not have been constant across
all the plant canopies in each of the measurement stages. In our study, for
each measurement stage, we felt that the variations in LAI would have been
negligible given that the plants had received the same treatment, were of the
same age, species and quantities within each pot. In creating a generalised
(species and age) model the influence of leaf area on reflectance spectra and
the individual absorption features should be considered. Although we did
not specifically measure LAI effects on our model, the inclusion of a REP
variable in the ALL class model, could be used to evaluate variations in
LAI values. Darvishzadeh et al. [2008b] showed that the REP, although
not the best predictor for LAI in a heterogeneous grassland, shows a linear
relationship with measured LAI values.

Unlike the waveband selection within dried material, the selection of wave-
bands we observed for the fresh material all included at least one waveband
from within the VNIR of the spectrum. Baret et al. [1993] and Jacquemoud
et al. [1992] in their works highlighted that the soil line and soil spectra
are best measured in the VNIR region, as the relative reflectance indices or
inter-band relationships created within this region are unaffected by mois-
ture, and the soils composition, and through this the varying degrees of soil
brightness, are clearly observed. Including a waveband from within this re-
gion in combination with wavebands from the SWIR region provides wave-
band combinations suitable for creating a soil adjusted vegetation indice.
Similar soil indices such as the transformed soil adjusted vegetation index
(TSAVI) or modified soil adjusted vegetation index (MSAVI) [Qi et al.,
1994; Baret and Guyot, 1991] have been used to discriminate backgrounds
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Chapter 2. Upscaling nutrient predictions

of different brightnesses created by reflectance of different soil types.

Wavelengths selected for fresh material, when applied to dried material,
predict nitrogen. Why the converse does not apply is that measures of dried
material are essentially free from the “noise” created by fresh material.
Dried material is unaffected by soil background, leaf structure or water,
therefore wavelengths that are strong protein or nitrogen predictors, but
are influenced by “vegetation structure noise” are masked when measuring
fresh plant material (e.g. the 2"? overtone bonds), but can be selected by
models created on dried material.

It might have been expected that different species of similar phenological
stages would share wavebands within their selected models. Contrary to
this our work suggests that it is important not to categorise plants into
phenological stages, but rather different species be categorised according to
their shared current physical structures.

2.4.2 Widened absorption feature models

Widening of absorption features increased the predictive power of models.
A widened feature, would allow for variability of measurements made on
multiple instruments with different calibrations and yet ensure that the
biochemical absorption feature is still captured. Although we would expect
neighbouring wavelengths to be more alike (multi-collinearity), if the av-
eraged wavelengths include a reflectance value which is very different from
its neighbours this will reduce its predictive power and it will no longer
be amongst the selected wavelengths. The widening of an absorption fea-
ture makes sense when one considers that most investigators are using field
and airborne instruments with differing calibration settings. Widening of
an absorption feature would also potentially reduce the effects caused by
increased noise associated with first derivative data transformations, and
thereby also result in better predictive models. Mutanga and Skidmore
[2004b]; Kokaly [2001]; Curran [1989] highlighted that at the centre of wave-
lengths features might saturate at relatively low levels, while widening a fea-
ture could act as a means to avoid this saturation. We have shown that the
predictive power is not reduced by widening the features, but the influence
of multi-collinearity of the widened features should be further investigated.
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2.5 Conclusion

In respect to furthering our understanding towards prediction of nitrogen
concentration in-situ our findings highlight that models created on fresh
material should include wavebands from both the VNIR and SWIR regions
of the spectrum, by doing so soil brightness effects can be integrated into the
model. Widening of absorption features not only increases the predictive
power of models, but it would allow comparisons between studies made with
different spectroradiometric instruments having different waveband centres.
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Chapter 3

Plant age impacts, on
forage-nutrient predictions
derived from
spectroradiometry-

*This chapter is based on the following paper: Knox, N.M., Skidmore, A.K., Schlerf,
M., Groen, T., Prins, H.-H.T., van Wieren, S.E., van Langevelde, F., de Boer, W.F.,
Heitkonig, I.M.A., Mwakiwa, E., Pretorius, Y., Grant, C.C., and Slotow, R. The influence
of plant age, on predicting forage-nutrient concentrations derived from spectroradiometric
data. In review, after resubmission, International Journal of Applied Farth Observation
and Geoinformation.
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3.1. Introduction

Abstract

To study the seasonal fluctuation of nutrients within grasses using hyper-
spectral data, there is need to study the effect that takes place on spectra,
not only with respect to nutrient variation, but also the additional variation
created by changes in plant age (phenology). In this paper the integration
of plant age in grasses, into models predicting nutrient concentrations from
spectroradiometric data were studied. Two commonly applied empirical
methods, partial least squares regression (PLSR) applied to a full spec-
trum and stepwise multiple linear regression (sMLR) applied to a reduced
spectrum, were used on spectra collected from grass samples of variable
ages. Grass samples were analysed for concentrations of forage-quality nu-
trients (nitrogen, phosphorus, and fibre). Regression models were applied,
with and without, the addition of the co-variate plant age. Plant age, was
shown to be important in the outcome of prediction models. A full spec-
trum PLSR model takes variability in plant age into account through having
higher loadings in the regions of the spectrum associated with plant physi-
ological development. For the three nutrients predicted by PLSR, without
plant age, the R2CV values ranged between 0.59-0.81. With the addition
of plant age RQCV values ranged between 0.62-0.82. sMLR using a reduced
spectrum showed decreases in number of model variables required and/or
an increase in R2 . values when the co-variate plant age was included R?

adj adj
0.50-0.66 without and dej 0.48-0.78 with plant age. PLSR, when com-
pared to sMLR, could predict nitrogen, fibre and phosphorus with higher
R? (up to a 19% increase). Integration of plant age, either for interpreta-
tion (PLSR) or as a co-variate (SMLR), into regression models was shown

to be an influential variable in creating nutrient fluctuation models.

3.1 Introduction

Being able to map continuous biophysical (chemistry and physical) plant
variables allows nutrient fluxes, and system productivity to be investigated,
and provides input into models analysing ecosystem processes. The pos-
sibility of creating such spatially explicit quantitative data has driven re-
search in various biomes e.g. forests or woodland [Johnson and Billow,
1996; Curran et al., 1997; Smith et al., 2002; Huang et al., 2004; Ferw-
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Chapter 3. Plant age effects on forage nutrient predictions

erda and Skidmore, 2007; Asner and Martin, 2008, 2009], agricultural land
[Takahashi et al., 2000; Thenkabail et al., 2000; Monteiro et al., 2007] and
grassland - both pasture and natural [Lamb et al., 2002; Mutanga et al.,
2004b; Schut et al., 2005; Cho et al., 2007; Gianelle and Guastella, 2007;
Darvishzadeh et al., 2008a].

In African savanna systems, many herbivores migrate large distances. These
migrations have been linked to fluctuations in nutrients between seasons,
in particular phosphorus and nitrogen levels [McNaughton, 1990; Prins,
1996]. Such seasonal nutrient fluctuations, and the extent of savannas ob-
served in these ecosystems, lends itself to remote sensing applications. Use
of remote sensing techniques, would allow for repeatable measurements,
at reduced costs, compared to physical field measurements. An algorithm
robust enough to monitor these natural systems, would not only have to de-
tect seasonal fluctuations in nutrient levels, but would also need to account
for phenological changes to plants.

Most studies into mapping of plant biochemical variables have been site-
specific. Martin et al. [2008] investigated spatial variation of nutrients and
applied nutrient algorithms developed for single sites to multiple study sites,
with limited success. It would seem that currently there is insufficient un-
derstanding gathered within site-specific areas to allow extension of algo-
rithms to multiple sites. Understanding of a single site would include the
understanding of factors such as plant phenological cycles, and species vari-
ation in respect to changes in nutrient concentrations. As a plant develops,
water content, cell structure and function will alter. These physiological al-
terations are evident in the reflectance spectrum [Kokaly et al., 2009; Kumar
et al., 2001]. Changes in spectral absorption features would be associated
with not only fluctuations in nutrient levels but also associated phenolo-
gical information [Asner, 2004; Blackburn, 1998; Kokaly and Clark, 1999;
Kokaly et al., 2009]. Linking the aging of plants to spectroscopic models of
nutrient concentrations would potentially allow for seasonal monitoring of
nutrients.

The aim of this paper is to show that prediction of nutrients, with spectro-
scopic data, should be integrally related to the inclusion of field knowledge,
in this instance the variable plant age (phenology). Field knowledge is
either required as a variable input into models or as an aid for the interpre-
tation of model output. To reduce complexity, this study was conducted
as a controlled greenhouse experiment. The plant nutrients to be predicted
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were nutrients associated with the quality of grass forage. A full spectrum
and reduced spectrum regression approach into modelling of the nutrient
concentrations was applied'. The hypotheses tested were:

1. The full spectrum (PLSR) approach captures both plant age and nu-
trient information in the model variables (i.e. loadings) compared
to a reduced spectrum approach (sMLR) that only uses wavelengths
/absorption features linked to the specific nutrient in question. The
PLSR models will produce models with higher R? values and lower
root mean square error (RMSE) than sMLR models.

2. Through the addition of a plant age co-variate as an additional vari-
able in PLSR and sMLR models, both approaches will have increased
R? values and lower RMSE values.

3.2 Materials and methods

3.2.1 Greenhouse and samples

In a controlled greenhouse setting, two tropical grass species important for
forage, Digitaria eriantha and Urochloa mosambicensis [van Oudtshoorn,
1992], were grown from seed. The two species were grown in separate pots
on soils with three different nitrogen treatments (0.05, 0.125 and 0.2 % N
per 1 kg soil). Pots were placed in a randomized layout. For the growth
phases, conditions within the greenhouse were maintained at a constant
temperature of 25°C, with 12 daylight hours and daily watering. Three
weeks after seed germination, the number of germinated grasses within the
pots were thinned. Sufficient grasses were left in each pot so as to ensure
that the soil would be covered by vegetation at the time that spectra were
measured.

Four plant age classes were differentiated in the analysis: seedling, adult,
flowering and dormant. Ideally, samples of both species should have been
used in each of these four stages, however the germination rates of U. mo-
sambicensis were low and there were only sufficient numbers of germinated

Lurther background information on the regression approaches, as applied to spectro-
scopic data, are provided in appendix A
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seed to be included in a single development stage. It was decided to anal-
yse the U. mosambicensis samples as adults, because at this stage the plant
material covered the soil. The description of the grass morphology in the
different age classes is outlined below.

At seedling stage, the D. eriantha seedling canopy was morphologically a
tufted, erect grass standing approximately 15-25 cm high. The adult stages
of both D. eriantha and U. mosambicensis were without inflorescence’s and
reached a maximum height of 70 cm. U. mosambicensis formed denser tufts
and their leaves were slightly broader than those of adult D. eriantha plants.
Spectral measurements of the flowering stage were taken once a minimum
of 2 inflorescences had fully opened. Because of a time lag in flowering
under the different nutrient applications, the spectral measurements of the
flowering stage were split and taken on two separate occasions, with one
week between the measurements.

Following flowering, to invoke dormancy in the remaining samples, green-
house conditions were adjusted. Samples were watered weekly and the
temperature allowed to drop over night to a minimum of 10°C. Samples
were considered dormant when all leaves had browned. Morphologically,
the dormant grass tufts had opened and sagged. A direct spectral mea-
surement of these samples would result in the inclusion of soil background
within the spectra. To ensure that the soil was completely covered during
spectral measurements, samples were bunched into tufts prior to taking a
measurement. The number of samples analysed for each plant age class is
presented in table 3.1.

3.2.2 Measurements
Spectral measurements

Spectra were measured using a GER 3700 spectroradiometer (Geophysical
and Environmental Research Corp.). The GER 3700 was fitted with a 10°
optic, placed on a tripod at a 15° viewing angle, 80 cm above the pot rim
level, creating a field of view (FOV) of 14 c¢m in diameter (the diameter
of the pot size at rim level was 19 cm). Mounting the spectrometer at
this height, allowed for the projected plant growth between the seedling
and flowering phase, and ensured that the same setup could be maintained
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Table 3.1: Grass age classes, the time taken until spectral measurements could
be made and numbers of samples included in each class

Code Species Age class Weeks Samples
from
sowing
DES D. eriantha Seedling 5 21
DEA D. eriantha Adult 8 38
UMA U. mosambicensis  Adult 10 27
DEF 14« D. eriantha Flowering 10 7
DEF D. eriantha Flowering 11 19*
DED D. eriantha Dormant 16 39

* These 19 samples were only included in calculations for Fibre see section
3.2.1; ni++= samples that were treated with 0.05 % N per 1 kg soil

for all measurements. The calibration panel (Labsphere, Inc, Sutton, NH),
used for converting radiance to absolute reflectance, was measured at a
distance of 31 cm from the optic, creating a FOV of 5.5 cm in diameter.
The calibration panel was only 225 cm?, and thus a FOV of this size ensured
an accurate reading of the panel. A halogen lamp was placed at nadir on
the same level as the optic, illuminating the full field of view.

Potted plants were transferred from the greenhouse to the laboratory for
spectral measurements. A pot was fixed in place (to ensure the FOV was
located above the pot centre) for a group reading. One group reading
consisted of a measure of the calibration panel and a set of 5 readings of
the sample. In order to reduce directional effects, caused by leaf orientation
within the canopy, the pot was rotated by 90°, and the next group reading
taken [Mutanga et al., 2003; Cho and Skidmore, 2006]. The 20 spectral
readings taken per pot were averaged to obtain a single spectral reading
per sample.

Chemical analysis

After completing spectral measurements, grass samples were clipped 1 ¢m
above the soil line, bagged and oven-dried at 70°C for 24 hours. During the
oven drying process the D. eriantha flowering (DEF) samples (table 3.1)
were mistakenly dried for part of the cycle at 105°C. Proteins denature at
temperatures above 70°C, these 19 samples were therefore excluded from
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analyses of nitrogen and phosphorus, but fibre concentrations were still
analysed. Prior to chemical analysis, all oven-dried samples were ground
through a 1 mm Wiley steel mill.

Nitrogen and phosphorus concentrations were determined using a modified
Kjedahl procedure. Samples were initially digested in a mixture of sulphuric
acid, selenium and salicylic acid [Novozamsky et al., 1983]. Following di-
gestion, the samples were colorimetrically measured using a continuous flow
analyser (SKALAR SAN plus). Fibre (Acid Detergent Fibre - ADF) con-
centrations were determined according to the ANKOM filter bag procedure,
using an ANKOM 209/220 fihre analyser (ANKOM Technology, Macedon,
NY, USA). The analysis procedure for ADF required 0.5 g of dried plant
material. There was insufficient dried material to perform both the Kjedahl
and ANKOM analysis procedures for nine seedling samples, thus only 142
of the total 151 samples have been analysed for their fibre concentrations.
All nutrient concentrations are presented as percentage dry matter.

3.2.3 Data Analysis

All statistical analyses was performed using the statistical software “R” ver.
2.6.2 [R Development Core Team, 2008].

Pre-processing

All data (reflectance and nutrient) were first mean centred prior to applying
the different regression approaches. Mean centering allows for comparison
between the effects of different wavelengths on variable loadings produced
in the PLSR models [Geladi and Kowalski, 1986]. Mean centering is not
a standard pre-processing technique for sMLR, but allows for direct com-
parison with the PLSR output, because all data were treated uniformly.
Prior to implementing the SMLR, tests for each nutrient, modles were first
performed using both the reflectance and then mean-centred data, to de-
termine if the transformation altered model outcomes. It was verified that
applying mean-centering did not alter the outcome of the sMLR algorithms,
and therefore to allow for direct comparison with PLSR models the mean-
centred data were used in the sMLR.
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Stepwise regression

Spectrum reduction Numerous methods have been developed for re-
ducing a hyperspectral data into a few key variables that can be used as
input for sMLR (see appendix A). Except for selection of only wavelengths
that have been linked to physical bond vibrations of a nutrient of interest,
other reduction methods also select and include other parts of the spectrum
that are linked to the particular dataset in question. Reducing a spectrum
to include spectral areas that link to both plant physiology and nutrient
concentrations will result in better fitting models specific for a test dataset,
but makes models difficult to transfer to other datasets. Thus in trying
to create models that can predict nutrients concentrations irrespective of
plant age, it was decided that the method of reduction should only con-
tain spectral features associated with the nutrient of interest. With this
method it would be possible to see how much information is obtained us-
ing only these parts of the spectrum, before additional information about
the plants development is added as a co-variate to modelling. The wave-
lengths selected are features that have been identified by multiple authors
[Card et al., 1988; Peterson et al., 1988; Curran, 1989; Johnson et al., 1994;
Fourty et al., 1996; Martin and Aber, 1997; Kokaly and Clark, 1999; Kumar
et al., 2001; Soukupova et al., 2002; Mutanga, 2004; Ferwerda, 2005; Cho
and Skidmore, 2006]. The different wavelengths used in this study for the
different nutrients is given in table 3.2.

To test the two hypothesis stated in the introduction, the following points
were considered in creating the input libraries for the sMLR analysis:

1. If plant age plays no role in predicting nutrient concentration lev-
els, then an sMLR approach that uses only wavelengths associated
with a particular nutrient should yield a similar prediction output
(adjusted R? and RMSE) to a full spectrum (PLSR) approach. The
wavelengths with maximum loadings of different wavelengths in a
PLSR model should correspond to those variables associated with a
particular nutrient.

The reduced spectral library, containing only the wavelengths associ-
ated with the nutrient of interest, were used to compute the stepwise
process outlined below.

2. Plant age (PA) is added as an additional variable (categorical) to-
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Table 3.2: The absorption features used as input for the stepwise regression (see
section 3.2.3) calculations®

Nutrient Absorption Features (nm)

Nitrogen 430%, 460%, 640%, 660%, 910%, 1020%, 1420%, 1510%, 1520
1690*, 1730*, 1940*, 1950*, 1960*, 1980*, 2060*, 2130%*,
2180%, 2200, 2240*, 2270*, 2290, 2300*, 2350*, REPg?,
REPc’, REPd®

Phosphorus 990%, 1450%, 1490*, 1530%, 1540%, 1560, 1580%, 1720,
1750, 1780%, 1900*, 1910, 1950*, 1960*, 2000%, 2080%,
2100%, 2110, 2140, 2250%, 2270%, 2280*, 2310, 2320%,
2340%

Fibre - Cellulose 1410, 1470, 1490%, 1540%, 1550, 1730%, 1736%, 1770,
1780%, 1820%, 1920, 1924*, 1940%, 1950%, 2020, 2090,
2100%, 2260, 2270%, 2280*, 2300%, 2340*, 2350*, 2380

¢ absorption features compiled from Card et al. [1988]; Peterson et al. [1988];
Curran [1989]; Johnson et al. [1994]; Fourty et al. [1996]; Martin and Aber [1997];
Kokaly and Clark [1999]; Kumar et al. [2001]; Soukupova et al. [2002]; Mutanga
[2004]; Ferwerda [2005]; Cho and Skidmore [2006]

* absorption features associated with physical bond vibrations

® REP, calculated using a standard derivative (REPd), linear four-point interpo-
lation (REPg) and linear extrapolation (REPc), formulae for the calculation of
these different REP’s are given in Cho and Skidmore [2006]

gether with the reduced spectral library as input in the sMLR pro-
cedure. If PA has no effect on the prediction of nutrients then the
outcome of the sMLR models shoud be no different. By differences,
we refer to the variables selected in the sMLR process and the predic-
tion outcomes of the models. Using an Akaikes information criteria
(AIC), the sMLR models with (PA) and without (nPA) the plant age
variable were compared to determine the most parsimonious models
[Crawley, 2006].

Both input data libraries outlined above had the following modified sMLR
procedure applied:

Selection of variables in sMLR is sensitive to outliers and samples of high
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leverage [Crawley, 2006]. To account for this, an iterative approach for
selecting variables was developed. For each iteration, 75% were randomly
selected and used to train a model. The model was trained using stepwise
regression. Variables (absorption features) selected at the end of a training
run were recorded.

For the first nutrient tested (nitrogen) it was determined at which point
the same variables were consistently selected in 80% of the training models.
These variables were considered to be features that would best describe vari-
ations in nutrient concentrations irrespective of phenological state. Start-
ing from 50 iterations, in increments of 50, the number of iterations was
increased until the stable point was reached. The stable point in this study
was found to be 250 iterations, this value was then implemented for all
remaining runs for all nutrients.

Following the 250 iterations, the selected absorption features, i.e. those
variables selected in 80% of all training models, were used as variables to
create a model on the entire dataset. The selected absorption features
were applied to the full dataset, and the adjusted R? (dej) and RMSE are
reported.

Partial Least Squares Regression

Prior to applying PLSR, the spectra were visually assessed for noise. Bands
below 400 nm and between 1890-1910 nm were consistently noisy and thus
removed.

Similar to the sMLR procedure outlined above, PLSR was run twice. Re-
gressions were run firstly using only the spectral data cube, and then again
with plant age added as a variable (converted to a numerical data type) to
the independent data cube. The analyses were performed using the “pls”
package [Wehrens and Mevik, 2007] within the statistical program “R”.
On the basis of a study by Mevik and Cederkvist [2004], we selected to
run PLSR using leave-one-out cross validation (LOO). The number of la-
tent variables (NLV) selected to model nutrient concentration was made by
identifying the minimum prediction residual error sum of squares (PRESS)
value [Geladi and Kowalski, 1986]. The outcomes of the PLSR models are
described by the NLV selected, calculation of the R? for cross validation
(RZ,,) and root mean square error of prediction (RMSEP). Both the RZ,,
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Table 3.3: Basic statistics of the nutrient concentra-
tions analysed

Nutrient Mean (%) Range (%) Samples

Nitrogen 3.8 2.3-5.0 131
phosphorus 0.3 0.2-0.6 131
Fibre 27.7 21.3-32.6 142

and RMSEP values were calculated considering the NLV’s used to describe
a model.

The models that provided the highest R%V and lowest PRESS values, with-
out the plant age variable added for each nutrient, are graphically repre-
sented in the results. Rather than presenting each loading vector separately,
the vectors are combined additively for the NLV used in the models. The
graphical outputs are used in conjunction with the known absorption fea-
tures related to physical properties of the nutrients (features marked with
an * in table 3.2) to discuss the implications of the PLSR models.

3.3 Results

Across the spectral range numerous plant physiological features were visu-
ally pronounced in spectra taken of grases in different development stages
(figure 3.1). Reflectance within the green region (£ 550 nm), the red ab-
sorption and red-edge feature (650 nm, 670-720 nm), the near-infra red
plateau, depth of water features (particularly at 1450, 1940, 1950 nm), and
the ligno-cellulose absorption feature at 2100 nm, all showed the greatest
spectral variations between the different age classes. Brightness differences
on the NIR plateau, appears to be most characteristic difference between
spectra taken of adult and flowering plants.

The statistics of the different nutrient concentrations measured in the chem-
ical analysis are given in table 3.3. In figure 3.2, the concentrations of the
forage nutrients is given for each age class. For each nutrient, the differences
between the flowering and dormant classes were non-significant.
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Figure 3.1: The average spectrum per age class. Reflectance values of the flowering
and dormant spectra were adjusted down by a factor of 1.2, to compen-
sate for brighter measurements resulting from the measurement set-up.
Adjusting of spectra allow for an easier comparison of absorption features
between the spectra of different age classes.

3.3.1 Regression with only spectral variables:

Reduced spectrum sMLR models using only spectral features were able to
explain between 50% and 66% of the variation in nutrient concentration
levels (table 3.4). The spectral features selected in the sSMLR models were,
for nitrogen and phosphorus, mostly associated with wavelengths that have
been linked to bond vibrations (marked with an * in table 3.5). Only one
of the fibre features was associated with a bond vibration (table 3.5).

Full spectrum PLSR models were able to explain between 59% and 81% of
both the plant ages and nutrient variations in the output models (table 3.4).
For all nutrients studied here, PLSR models when compared to the reduced
spectrum sMLR models had higher R? values and lower root mean square
error (RMSE) (table 3.4, nPA columns).

Figure 3.3 displays the sum of latent variable loadings used in each of the
nutrient PLSR models. A grass spectrum is overlain in each of these figures
to visualise where loadings occur relative to spectral features of a plant.
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Figure 3.2: The concentrations of forage nutrients for each age group measured. The
letters to the right of the plot are the outcome of a Mann-Whitney U test
to determine whether nutrients differed statistically (95%) between the
different age classes. Different letters indicate a statistical difference.
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Table 3.4: A comparison of the R? and RMSEP values obtained for the sSMLR and
PLS regressions, with (PA) and without (nPA) the addition of the variable
plant age. The number of variables required in the respective models both
with and without the variable plant age is presented in the last column.

Nutrient Method RZ? RMSEP R? RMSEP  Variables
(nPA)  (nPA) (PA) (PA) (nPA, PA)

Nitrogen sMLR 0.63 0.39 0.70 0.35 5,7

PLSR 0.79 0.29 0.79 0.29 12,12
Phosphorus  sMLR 0.50 0.07 0.48 0.07 7,6

PLSR 0.59 0.06 0.62 0.06 8,8
Fibre sMLR 0.66 1.62 0.78 1.30 5,6

PLSR 0.81 1.20 0.82 1.17 11,11

For the PLSR models the number of variables presented are the number of latent

variables selected at the minimum PRESS value (see section: 3.2.3).

Table 3.5: Wavelength selection in the SMLR with (PA) and without
(nPA) the addition of variable plant age. The variables
marked with an * are features associated with physical
bond vibrations.

Nutrient Method  Selected absorption features (nm)
Nitrogen nPA 430%, 1940%*, 1960*, 2350*

Nitrogen PA® 2060*, 2350*, age

Phosphorus  nPA®  990%, 1450%, 1540%, 1720, 2250%, 2280*
Phosphorus  PA 2250* age

Fibre (C)  nPA 1470, 1550, 2270%, 2340%

Fibre (C) PA¢ 1550, age

Using the Akaikes information criteria (AIC), sMLR models were

compared for each of the forage nutrients. The models marked with

® had the lowest AIC values and are considered superior.
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Absorption features linked to bond vibrations (table 3.2 -marked with *)
of the associated nutrient are overlain on the figures to highlight where the
maximum loadings occur with respect to these features.

3.3.2 Regression with spectral and plant age variables:

It was hypothesized that with the inclusion of the variable plant age into
the PLSR and sMLR model, the predictive capabilities of both approaches
would improve (i.e. increased R? and decreased RMSE values) and that
these values would be similar for either approach.

The number of variables needed to model the nutrient concentrations, was
reduced (table 3.5). The predictive capabilities (lower AIC and higher
R?) or complexity (reduced numer of variables) of sMLR models improved
for all nutrients. The features selected by sMLR models for all nutrients
included the plant age variable. Most of the variables that were selected
in these models had also been selected in the modelling performed without
the variable plant age (table 3.5).

Similar to the sMLR models, plant age was a variable with a high loading
weight in the PLSR models. Unlike sMLR the addition of plant age to
PLSR models only provided marginal improvements to the various models
capabilities (table 3.4 - PA columns vs nPA columns). In the PLSR models
there were no notable differences in the number of latent variables required
to model the respective nutrients (table 3.4 - Variables column). This indi-
cates that plant age was already accounted for in the full spectrum models
and by including it as a variable no further improvements, to the modelling
procedure, were made.
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Chapter 3. Plant age effects on forage nutrient predictions

3.4 Discussion

In this study, full and reduced spectrum regression models were compared
for the prediction of forage quality nutrient concentrations in plants of
different ages. Partial least squares regression (PLSR) was found to be a
method that could predict the concentrations of nitrogen, fibre, and less
reliably phosphorus, in tropical grasses, irrespective of the age of the grass.

Examination of the PLSR model variables, through plotting the sum of
loadings for each nutrient (figure 3.3), allowed for a visual interpretation
of why a stepwise multiple linear regression (sMLR) approach, using only
known absorption features, would be unsuccessful in predicting nutrient
concentrations. The highest spectral loading values, for each individual
nutrient, did not coincide with only the absorption features associated
with the particular nutrient of interest. Spectral features, such as the
red-edge region (670-780 nm), and the far shoulder regions (of both the
near and shortwave-infrared peaks) in the 1000-2000 nm range, had high
loadings. These regions have been associated with changes in plant phys-
iological state, including pigments and water absorption features [Curran,
1989; Elvidge, 1990; Fourty et al., 1996; Blackburn, 1998; Kokaly and Clark,
1999], and concurred with the spectra taken of the different age classes (fig-
ure 3.1). The highest loading values for each of the nutrients occurred at
the wavelength 2280 nm. This wavelength has been associated with a C—H
stretch/C Ha deformation, and linked to concentrations in starch, cellulose
[Curran, 1989], sugar [Fourty et al., 1996] and lignin [Martin and Aber,
1997]. To capture the variation in both plant age and nutrients a greater
component of the spectrum is required, or information associated with a
plants physiological state is necessary.

In a field situation, or when upscaling to imagery, there are most likely mul-
tiple phenological states and species. Multiple species have, however, been
shown to have unique spectral signatures [Schmidt and Skidmore, 2001;
Mutanga et al., 2004b; Vaiphasa et al., 2007; Asner and Martin, 2009]. Mu-
tanga et al. [2004b] showed that tropical grass species and sodium interacted
to change spectral reflectance across most of the spectrum, particularly so
in the visible part. Asner and Martin [2009] suggested an approach for
integrating chemical, spectral and species fingerprints. Our findings sup-
port this notion that both plant physiological characteristics and chemical
characteristics should be combined and considered within the spectroscopic
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analysis.

In conclusion the development of models for predicting nutrients, a PLSR
approach captures and includes more information, in the output latent vari-
ables, than just the dependent (nutrient concetration) dataset. A reduced
spectrum sMLR model is unable to do so directly, but improves when ancil-
lary data were added (this might also be additional wavelengths associated
with ancillary data). If these results are extended to a field situation, it
would be expected that a simpler sMLR model which includes ancillary
data could easily be transferred between sites. A PLSR model, by compar-
ison would contain additional information in the model output that is site
specific. In this study the ancillary variable added was plant age, but in a
field situation these data would likely also include variables such as species
information, soil characteristics, or terrain data.
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Chapter 4

A comparison of
spectroscopic phenological
algorithms, for
differentiation of plant age in
savanna grasses

*This chapter is based on the following paper: Knox, N.M., Skidmore, A.K., van
der Werff, HM.A., Groen, T.A., de Boer, W.F., Prins, HH.T., Kohi, E., Peel, M. A
comparison of spectroscopic phenological algorithms for the differentiation of plant age
in savanna grasses. In review, International Journal of Remote Sensing.
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4.1. Introduction

Abstract

Being able to classify a plant according to its phenological stage (including
transitions between age classes), allows for examination of micro-topogra-
phical effects on plant growth, improvement on the accuracy of species
discrimination, and will improve our understanding of temporal variations
in plant phenology. In this paper five phenological algorithms (including
a newly proposed PhIX algorithm) were analysed for their ability to sta-
tistically differentiate grasses of different ages, in the sequenece of their
ages. Spectra of grasses of different ages were collected from grasses grown
in a greenhouse study. These spectra were used to determine if NDVI,
NDWI, CAI, tied SWIR2, and the newly proposed PhIX algorithm could
sequentially discriminate grasses of different ages. The PhIX algorithm was
defined as:
AV iR +108(ASw k2)
AV N1 — 108(ASy po) +1

where Ay g and A%y, Ry are the respective normalised areas under the
continuum removed reflectance curve within the VNIR (500-800 nm) and
SWIR2 (2000-2210 nm) regions. Both CAI and PhIX sequentially dif-
ferentiated plant ages in the correct chronological order, while NDVI and
NDWI could differentiate most age classes, but the plant age order was not
chronological. The tied SWIR2 method could not differentiate classes, but a
visual assessment showed that photosynthetic and non-photosynthetic ma-
terial could be differentiated. CAI and PhIX were applied to a field dataset
to see if defined phenological classes could be discriminated on mixed grass
species collected as paired dataset over two consecutive seasons. Both al-
gorithms performed well, showing an advance in phenology between the
seasons. This work showed that phenological classes (in grasses) could
be defined using either the CAI or PhIX algorithms, and applied to new
datasets to classify the stage of phenological development.

4.1 Introduction

The response of an ecosystem to climatic variation is reflected in the growth
response of vegetation. In order to understand the effects of human in-
duced climate change on ecosystems, there has been an increased interest
into means to evaluate vegetation phenology [Archibald and Scholes, 2007].
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Remote sensing has been used to investigate phenology at various scales,
from ecosystem [Asner et al., 2000; Asner and Heidebrecht, 2002; Archibald
and Scholes, 2007; Dennison and Roberts, 2003; Elmore et al., 2005; Garcia
and Ustin, 2001], through to regional, and continental scales [Beck et al.,
2007; Bradley and Mustard, 2005; Bradley et al., 2007; Kathuroju et al.,
2007; Marsett et al., 2006; Reed et al., 1994; Zhang et al., 2003].

Phenological studies, that have applied remote sensing technologies, have
typically been approached in two ways:

1. An area is repeatedly studied to gain an idea of the temporal fluc-
tuations in vegetation phenology. To observe phenological changes
requires data of high temporal resolution, and consequently such
studies have favoured the use of AVHRR and more recently MODIS
data. The spectral range available in these data have resulted in
most studies applying either normalised difference vegetation index
(NDVT; Tucker [1979]) [Archibald and Scholes, 2007; Beck et al., 2008;
Bradley et al., 2007; Reed et al., 1994; Zhang et al., 2003], or a com-
bination of NDVI and the normalised difference water index (NDWT;
Gao [1996]) [Delbart et al., 2005, 2006; Huesca et al., 2009; Koltunov
et al., 2009; Peckham et al., 2008]. The output of these studies have
been used to understand land cover changes [Bradley and Mustard,
2005], biomass estimates [Butterfield and Malmstrom, 2009] and cli-
mate changes [Cleland et al., 2007; Pettorelli et al., 2005].

2. The second approach to phenological studies, is to use the different
stages of phenologic development in order to differentiate cover in
terms of vegetation that is photosynthetic (PV) and non-photosyn-
thetic (NPV) and the soil layer. The need to discriminate vegetation
from soil background is of particular importance in grassland and sa-
vanna systems where the presence of bare soil patches confound veg-
etation remote sensing studies. The demand for this information has
resulted in the development of the cellulose absorption index (CAI;
Nagler et al. [2003]), as well as the tied SWIR2 method [Asner and
Lobell, 2000]. The output from these studies have then been further
applied to fire risk mapping, species identification, and crop modelling
[Elmore et al., 2005; Garcia and Ustin, 2001; Huang and Geiger, 2008;
Nagler et al., 2003]

Many of the studies that were conducted in arid, semi-arid ecosystems
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have indicated that the phenological responses of grasses differ from trees,
and are often problematic to evaluate [Archibald and Scholes, 2007; Butter-
field and Malmstrom, 2009; Dennison and Roberts, 2003; Garcia and Ustin,
2001]. The difficulties have been attributed to the combination of both pho-
tosynthetic and non-photosynthetic grasses often present at the same time
[Dennison and Roberts, 2003; Garcia and Ustin, 2001]. Grasses are water
limited and rely on soil moisture for the onset of greening [Zhang et al.,
2003], they tend to green later than trees and their greening response is
masked by tree reflectance and is difficult to detect [Archibald and Scholes,
2007]. Because of the reliance of grass on rainfall events, grass phenologi-
cal developments in drier environments are unpredictable, and might also
include multiple growth responses over a season [Reed et al., 1994; Zhang
et al., 2003].

Identification of grass phenological stages has been used for the evaluation of
fire fuel conditions [Elmore et al., 2005], invasive species mapping [Bradley
and Mustard, 2005; Huang and Geiger, 2008], and land cover classification
[Asner et al., 2005; Garcia and Ustin, 2001]. Mingo and Oesterheld [2009]
highlighted the selectivity of foraging herbivores to avoid senescent material.
While estimating changes in grass biomass, Butterfield and Malmstrém
[2009] and Marsett et al. [2006] highlighted how different phenological stages
confound predictions. Bradley and Mustard [2005] and Huang and Geiger
[2008] demonstrated that inclusion of grass phenological stages, increased
the accuracy of mapping grass cover. An accurate and robust algorithm
that can be used to readily identify the phenological stage of grasses would
provide a useful tool to analyse such problems as these.

Considering the earlier findings of Asner et al. [2000]; Asner and Heide-
brecht [2002]; Elvidge [1990]; Elvidge and Portigal [1990]; Nagler et al.
[2000] both the visible near infrared (400-1400 nm) (VNIR) and shortwave
infrared 2 (2000-2300 nm) (SWIR2) regions are considered to be the most
relevant regions to analyse phenological information. Combining informa-
tion from these two regions was felt would produce a useful means to iden-
tify phenological changes, in particular those associated with entering dor-
mancy. The VNIR region would capture the changes in plant pigments and
the SWIR2 region the development of cellulose and lignin as a plant ages
[Elvidge, 1990]. In this paper a new phenological algorithm, using informa-
tion combined from both the VNIR and SWIR2 regions, is proposed and
compared with the four previously proposed algorithms listed above.
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If a phenological algorithm is applied either in continuous monitoring or at
individual points in time, it is necessary to be able to interpret the output
value generated from the application. For example, if analysing two pixel
values of 0.23 and 0.54 produced after applying an algorithm to an image,
it is necessary to be able to interpret these values. If performing a spatial,
point in time analysis the production of phenological age classes would
aid interpretation of these values, in a temporal analysis a division of age
classes is needed and these classes should be sequential in terms of plant
development, e.g. seedling — adult — senescent.

The aim of this paper is to evaluate phenological algorithms in terms of
robustness and broad applicability, for both point in time and temporal
studies. The algorithms were compared firstly for their ability to statisti-
cally differentiate between different plant development stages, and secondly
whether the separation of classes was chronological in terms of plant devel-
opment.

4.2 Experimental design and datasets

The newly proposed algorithm was developed using a dataset obtained
from a greenhouse experiment (4.2.2), this dataset was also used to test
four other phenological methods already in use, including the normalised
difference vegetation index (NDVI) [Tucker, 1979], normalised difference
water index (NDWI) [Gao, 1996], cellulose absorption index (CAI) [Nagler
et al., 2000], and the tied SWIR2 method [Asner and Lobell, 2000]. The
respective algorithms were assessed to determine if they could separate the
phenological classes sequentially. If this was fulfilled, phenological classes
were created from this dataset. The classes were then applied to a field
paired-dataset collected in a mopane-grassland savanna in two consecutive
seasons. This allowed for an evaluation into how the algorithms performed
in a diverse (topographically and in terms of plant species) field environ-
ment. The algorithms are described in section 4.2.1. The greenhouse and
field datasets, and method of spectral collection, on which the algorithms
were tested, are described in sections 3.2.3 and 4.2.3.
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4.2.1 Algorithm development and evaluation
The PhIX algorithm

In the newly proposed PhIX algorithm information, from the VNIR and
SWIR2 regions are combined to create a new phenological algorithm. Two
separate continua were created over the VNIR and SWIR2 regions. The
start and end points of the continua were fixed. The VNIR continuum
stretched between 500-800 nm. By starting at 500 nm noise associated
with atmosphere, in the blue region was removed, but the green and red
regions associated with plant pigments remain. The endpoint of 800 nm was
selected as a point where all phenological stages reached the NIR plateau.
The SWIR2 continuum stretched between 2000-2210 nm, the start point
was defined by the end of the water absorption feature located at 1950 nm
[Curran, 1989; Fourty et al., 1996], and the end point by the end of the
cellulose absorption feature [Elvidge, 1990] observed in dormant grasses. In
figure 4.1 the average continuum removed spectra are shown to highlight the
observed differences seen between grasses of differing development stages.

Band centre, band depth, feature width, and symmetry have all been gen-
erated from continuum removed spectra to describe absorption features,
in both geological [van der Meer et al., 2001] and more recently vegeta-
tion applications [Chen et al., 2007; Huang et al., 2004; Kokaly and Clark,
1999; Kokaly, 2001; Mutanga and Skidmore, 2004a; Schmidt and Skidmore,
2003]. These feature variables were found to be unsuitable in describing the
variation in phenological classes, and thus a new variable for describing the
continua was used. It was found that the area under the reversed continuum
could statistically differentiate age classes (figure 4.2). Statistical separa-
tion of classes was tested by performing a Tukey HSD test [Crawley, 2006].
The area variable was normalised (through maximum value normalisation)
to allow for comparison between the separation of the VNIR and SWIR2
regions.

Although the normalised VNIR areas differed significantly between classes
(figure 4.2a), it did not do so in the order of phenological development. In
the SWIR2 region especially the dormant class was significantly different
from all the other classes (figure 4.2b). To linearize the difference in these
SWIR2 classes, the normalised SWIR2 values were logged. Combining the
VNIR and the SWIR2 properties, we developed a new index to separate
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Figure 4.1: The average CRR spectrum, for each age class grown in the greenhouse
experiment, in the VNIR and SWIR2 region of the spectrum. Because
the PhIX algorithm is calculated using the area under the CRR curves,
the curves have been inverted to allow for an easier visual assessment of
the areas under each curve. Note: the scales for the VNIR and SWIR2
region differ.

the classes in sequence of phenological development:

PhIX = nA?/NIR + Iog(:lg‘WIRQ) (4.1)
AV nir —108(Ay ro) +1

where A(‘/ ~NIR is the normalised area under the VNIR continuum curve and
Ay 1po 1s the normalised area under the SWIR2 curve.
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Figure 4.2: The statistical (Tukey HSD) separation (95% Cl) of the different age
classes of samples, grown in the greenhouse experiment, using the nor-
malised area under the CRR curve: a) is the area under the VNIR curve,
and b) is the area under the SWIR2 curve. A different letter on the right
margin indicates that an age class differs significantly.

Phenological algorithms for comparison

A number of phenological algorithms are already in use. The potential of
these algorithms were evaluated and the outcomes compared with the newly
proposed algorithm, using the evaluation method described in section 4.2.1.
These algorithms were: NDVI (Eq. 4.2), NDWI (Eq. 4.3), CAI (Eq. 4.4),
and the tied SWIR2 (Eq. 4.5). Only the tied SWIR2 algorithm utilises
hyperspectral images.

RN 1R830) — BRed(680)
Rn1R(830) + BRed(680)

NDVI = (4.2)

where RyrR(s30) is reflectance at 830 nm in the NIR region, and Rpr.q(s80)
is reflectance at 680 nm in the red region.

Rn1R(s60) — Bswir(1240)

NDWI = (4.3)

Ry1R(860) + Rswir(1240)
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where Ryrg(seo) is the reflectance at 860 nm in the NIR, and Rgyw rr(1240)
is the reflectance at 1240 nm in the SWIR region.

CAI = 0.5(R2000 + Ra200) — R2100 (4.4)

where Roggo, R2100, R2200 are the reflectances at 2000 nm, 2100 nm and
2200 nm respectively.

Ra000
SWIR2. = — Rog30 (4.5)
Ra300

The tied SWIR2 method normalises, through subtraction, all reflectance
values in the range of 2000-2300 nm to the reflectance value at 2030 nm.
Unlike the other methods presented, the tied SWIR2 algorithm does not
produce a single output value, but rather a normalised spectrum. The
normalised spectrum can then be applied as endmembers for further phe-
nological analysis.

Algorithm evaluation

Fach algorithm was applied to a greenhouse dataset of which the ages of the
samples was known. Using a Tukey HSD test [Crawley, 2006] it was tested
if the algorithms were capable of stastically differentiating the age classes.
This analysis was used to evaluate the algorithms for their potential to
ascertain the spatial heterogeneity of phenological classes at a single point
in time. To evaluate the algorithms for their potential in temporal studies
the different classes generated in the Tukey HSD test were analysed to
determine if the separation of classes was sequential, e.g. seedling — adult
— senescent.

If an algorithm was able to sequentially separate out classes, classes per
age category were then defined for this algorithm, using the greenhouse
dataset. A class was defined as the data falling within the inter-quartile
range of each age category. If classes followed a chronosequence, but were
not significantly different, the classes were combined to form a single class.
Combining classes was done by creating the broadest range between the
respective classes inter-quartile ranges (e.g. a combined range could be
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composed of the lowest value of one class and the highest value of the other
second class). The algorithm and these classes were then applied to a field
dataset. In interpreting the outcome of the algorithm from the field dataset,
values between two defined class were classified as Transition, values above
the Dormant class range were classified as Senescent, and values below the
lowest range were classified as Unclassified.

If a phenological algorithm is to be broadly applied it should also be able to
differentiate between vegetation (in any stage) and soil. Bare soil spectra
were also included and classified in the algorithm evaluation to determine
if this background could be discriminated.

4.2.2 Datasets
Greenhouse dataset

Two tropical grass species, Digitaria eriantha and Urochloa mosambicen-
sts, were grown in pots from seed, and were placed in a randomized layout.
Grasses were grown under three different nitrogen applications (0.05, 0.125
and 0.2 % N per 1 kg soil). Conditions in the greenhouse during the growth
phases, were maintained at a constant temperature of 25°C, with 12 day-
light hours and daily watering.

Urochloa mosambicensis had low germination rates, and there were only suf-
ficient numbers of germinated seed to be included in a single growth stage.
A requisite of the spectral measurements was that measurements were taken
when the plant material fully covered the soil background. For Urochloa
mosambicensis, this requisite was only met when the samples were at the
adult growth phase, and samples were therefore measured at this stage. A
brief outline of the morphological characteristics and canopy features of the
grass samples in the different growth stages is given below.

As seedlings the canopy of D.eriantha samples were tufted, erectile grasses
standing approximately 15-25 cm high. This stage was equivalent to the
green-up stage marking the onset of photosynthetic activity for new grasses,
either at the start of a new growth season or following a burn and re-
sprouting. As adults both D. eriantha and U. mosambicensis were without
inflorescences and reached a maximum height of 70 cm. The tufts and
the leaves of the adult D. eriantha samples were narrower than those of
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the adult U. mosambicensis samples. This stage could be described phe-
nologically as having reached maturity and full green-up. Morphologically
the adult and flowering samples of D. eriantha did not differ in terms of
leaf output, but at minimum two fully developed infloresences had emerged
prior to taking the spectral measurements, of the flowering plants.

To invoke dormancy following flowering, the greenhouse conditions were
altered. Samples were watered weekly, and the temperature was allowed to
drop over-night to a minimum of 10°C. A sample was considered dormant
when all the leaves had browned (i.e. no longer photosynthetic). Morpho-
logically, the grasses sagged and the canopy opened thus exposing the soil
background.

Field

An in-situ validation was used to test whether the studied algorithms were
sensitive to phenological changes over time, by using spectra collected in
the field. The outcome expected for this validation is that the developed
algorithm would capture grasses, within a plot, advancing from one phe-
nological stage to the next (e.g. for this study from adults to flowering or
flowering through to dormancy).

Paired spectral samples of dominant grass species growing on the Northern
Plains savanna system, Kruger National Park (KNP), South Africa, were
collected. The dominant species in a plot was sampled once in the late
wet season (late March- mid April 2007), and again in the early dry sea-
son (mid May - early June 2007), a minimum period of one month passed
between each paired measurement. Using stratified point cluster sampling,
42 plots were sampled. Eight different grass species (Bothriochloa radicans,
Cenchrus ciliaris, Panicum spp, Setaria spp, Sporobolus ioclados, Schmid-
tia papphoroides, Themeda triandra and Urochloa mosambicensis), were
found to be dominant amongst these 42 plots. Two strata were defined
based on a geological stratification that splits KNP into a granitic East
and a basaltic West. The structure and phenological responses of the vege-
tation are influenced by the topography on these two substrates [Archibald
and Scholes, 2007; Asner and Martin, 2009; Grant et al., 2000].

59



4.2. Experimental design and datasets

4.2.3 Spectral measurements

Greenhouse spectra

A laboratory set-up ensured a consistent method for the collection of spec-
tra for all phenological stages. Spectra were collected using a GER 3700
spectroradiometer (Geophysical and Environmental Research Corp.), fitted
with a 10° fore-optic. The radiometer was placed on a tripod at a 15° an-
gle, and was fixed at 80 cm above the pot rim level. This created a field of
view (FOV) of 14 cm in diameter (pot diameter was 19 cm). Mounting the
spectrometer at this height allowed for the projected plant growth between
the seedling and flowering growth phase of the grasses. The calibration
panel (Labsphere, Inc, Sutton, NH), used to convert relative reflectance to
absolute reflectance, was measured at a distance of 31 cm from the optic,
creating a FOV of 5.5 cm in diameter. The calibration panel was 225 cm?,
and this FOV ensured an accurate reading of the panel. A halogen lamp
was placed alongside the GER 3700 at the same level as the optic head.

Samples, when having reached their respective phenological development
stages (see table 4.1), were transferred to the laboratory for measurement.
A sample was fixed in position for a group reading, thereby ensuring the
FOV was located directly over the pot centre. If needed, to ensure that
the soil background was not included in the spectral measurement, the
samples were first bunched together prior to taking spectral measurements.
A group reading consisted of a reading of the calibration panel and a set
of five separate measurements of the sample. To reduce directional effects,
caused by leaf orientation within the canopy, the sample was rotated by
90° for each group reading [Cho and Skidmore, 2006; Mutanga et al., 2003],
thus four group readings were taken per sample. The 20 spectra taken per
sample were averaged to yield a single result.

Spectra were also collected of the soil background after the samples had
been clipped, to determine if soils too could be discriminated from the
vegetation using the respective algorithms.
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Table 4.1: Plant age classes, the time taken until spectral measurements could
be made and numbers of samples included in each class.

Code Species Phenological Weeks Samples
stage from
sowing
DES D. eriantha Seedling 5 21
DEA D. eriantha Adult 8 38
UMA U. mosambicensis  Adult 10 27
DEF,; D. eriantha Flowering 10 7
DEF D. eriantha Flowering 11 19
DED D. eriantha Dormant 16 39

ni= samples that were treated with 0.05 % N per 1 kg soil. These samples
flowered earlier and the spectra were therefore taken earlier than the remaining

flowering samples.

Field spectra

In-situ grass canopy spectra were collected using a field spectrometer (Field-
spec Pro FR, Analytical Spectral Devices, Inc. (ASD)), fitted with an 8°
fore optic. In line with the laboratory experiment it was ensured that soil
background effects were minimised. Spectra were collected holding the op-
tic between 80-100 cm from ground level, thereby creating a FOV in the
range of 11-14 cm. The background effects could thereby be minimized, by
ensuring the instantaneous field of view (IFOV) covered plant leaf material
as much as possible. A calibration panel (Labsphere, Inc, Sutton, NH) was
used in the spectral measures in order to convert radiange to reflectance.

In each plot a total of 25 spectra were collected from five separate plants
of the dominant species found in that plot. The 25 spectra per plot were
then averaged to create a single spectrum per plot. During the late wet
season there were cloudy days, measurements were however taken under
full sun. On unstable days (i.e. cloud and sun), high quality averaged plot
spectra were obtained by collecting additional spectra. Prior to averaging,
noisy spectra were deleted, but with the additional collected spectra, it was
ensured that 25 spectra were used to create each plot spectrum .

Across the study area, 16 soil spectral samples were taken to capture the
soil background variation across the study area. Each soil spectra was an
averaged spectrum of 15 individual spectra collected at a site.
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Table 4.2: Age class range defined by the greenhouse exper-
iment. Each class is defined as the inter-quartile
range within each age category sampled in the
greenhouse experiment

Age CAI PhIX Samples
Soil -1.59 --1.31  -0.73 --0.71 13
Seedling -1.19 --0.78  -0.70 —-0.66 21
Adult -0.62 —-0.37%  -0.47* —-0.24* 65

Flowering -0.74* —-0.42 -0.41 —-0.30 26
Dormant  1.31 — 1.63 -0.02 - 0.08 39

* = values combined to form the upper and lower class
boundaries of the Adult class applied to the field dataset

(see section 3.3).
4.3 Results

4.3.1 Algorithm comparison on the greenhouse dataset

The number of samples analysed for each growth stage is presented in ta-
ble 4.1.

Both the CAI and PhIX algorithms met the requirement of chronological
separation of phenology (figure 4.3c and 4.3e). For both these algorithms
it was not possible to separate adult from flowering samples. All phenolo-
gical classes differed significantly when applying NDVI (figure 4.3a), and
for NDWI, all but the seedling and dormant classes could be statistically
differentiated (figure 4.3b). For both NDVI and NDWI the order of phe-
nological separation was not sequential, i.e. the values in the classes did
not follow a correct chronosequence, e.g. from lowest values in seedling —
adult — to the highest values for senescent.
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The SWIR2 tie method is not an index producing a single value, but rather
discriminates image endmembers. In figure 4.3d the mean SWIR2 tied
reflectance are shown for each phenological class. Visually the dormant
samples can be easily discriminated, but the remaining classes are more
difficult to separate from one another. From 2150-2200 nm the separa-
tion of the photosynthetic (i.e. seedling, adult and flowering) classes are
phenologically chronological.

Given that the CAI and PhIX algorithms were the only two able to ful-
fil the requirement of chronological separation, only these two algorithms
were applied to the field dataset. The value ranges applied to differentiate
each phenological stage, for both the applied algorithms, are presented in
table 4.2. In both the CAI and PhIX algorithms the adult and flowering
class could not be statistically separated, these classes were combined to
form a single class in classifying the field data (the values marked with an
* in table 4.2 formed the boundaries for this class).

4.3.2 Algorithm application to the field dataset

The narrow ranges (table 4.2) created by the CAI algorithm for each of
the age classes resulted in very few samples (8 out of 84 samples) of the
field dataset falling into an age class, the majority of samples fell into the
Transition or Senescent classes (table 4.3). The majority of the values
created by applying the PhIX algorithm to the field dataset also resulted in
samples falling into the Transition or Senescent class (57 out of 84), but the
broader age class ranges of the PhIX algorithm resulted in the remaining
27 samples being classified into one of the original age categories.

In applying the algorithms to the field data it was expected that the phe-
nological classes applied to the paired data would advance between the
first and second paired reading. Eighteen and nine sample pairs remained
unchanged between the paired seasonal measurement, when the CAI and
PhIX algorithms were respectively applied. In analysing the actual out-
put values produced, all 18 CAI values increased in value, thus in effect
“ageing”. Only six of the nine PhIX values advanced in value. Analysis of
the remaining three PhIX samples showed that noise in the SWIR2 region
and background soil impacted on the algorithms application. The single
sample classified as Seedling in the CAI field dataset (table 4.3), was also
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Table 4.3: Phenological classification of paired field data using
the class ranges for the CAl and PhIX algorithm de-
fined in table 4.2.

Age CAI PhIX
Soil 0 9¢
Seedling 1 6¢
Transition% A 0 1¢
Adult® 1 8
Transitionfi‘ D 75¢ 43
Dormant 6 19
Senescent® 17 14

@ = The Adult phenological class range was formed by a combi-
nation of the range of the Adult and Flowering ranges outlined
in table 4.2; ® = The Transition classes are defined by a sam-
ple that fell in the range between two age classes, where g4 is
the transition between the Seedling and Adult class, and ap
is the transition between the Adult and Dormant class; ¢ =
These classifications include the classification results of 16 soil
spectra taken in the field, i.e. for the CAI classification, all 16
soils were classified in the Transitionap class; 4 — The Senes-
cent class are any values that fall above the upper limit of the

Dormant class.

a spectrum affected by noise levels in the SWIR2 region.

The soil samples from the field were all misclassified using the CAI algo-
rithm, and were all classified into the adult to dormant Transition class.
Nine of the 16 soil samples were classified into the Soil class (table 4.2)
using the PhIX algorithm.

4.4 Discussion

The PhIX and CAI algorithms were capable of statistically and sequentially
separating grasses of different phenological stages. NDVI and NDWTI could
statistically separate grasses into age classes, but because the separation
was not sequential they could not be directly used for interpretation of
grass samples in transition between different classes, e.g. an NDVI value of
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0.65 (figure 4.3a and 4.3b) could be classified as either in transition between
seedling — adult or adult — dormant.

Unlike the above algorithms, the tied SWIR2 method does not produce a
single output value for interpretation. It has however been applied to phe-
nological studies [Asner et al., 2000; Asner and Heidebrecht, 2002; Elmore
et al., 2005], and was therefore considered to be a method that should be
evaluated in this study. A visual evaluation of the tied spectra showed clear
discrimination between photosynthetic and non-photosyn-thetic vegetation.
What was less apparent was the discrimination between bare ground and
photosynthetic vegetation (figure 4.3d). In the greenhouse study a single
soil type was evaluated, but a broader range of soil endmembers might
enhance this algorithms ability to discriminate soil and photosynthetic veg-
etation. This method could potentially be converted to create an algorithm
for phenological discrimination, but in its current form it cannot be applied
for direct interpretation of phenologic features.

In Nagler et al. [2003] different soils were shown to produce different ranges
of values for the CAI algorithm. In this study a single soil type was used
to define the soil class, but in the field a range of soils were sampled and
these produced CAI values that fell out of the soil class range. The results
here showed that the CAI algorithm could potentially be used to seperate
out plants of variable phenological stages. It was also shown that soil vari-
ability impacted on interpretation of CAI values, and that this variability
in combination with plant ages should be further investigated.

By developing the PhIX algorithm using continuum removed reflectance
spectra, and area normalisation, an index was created that allows for com-
parisons of datasets collected in different seasons, under different solar con-
ditions. Although the PhIX algorithm successfully differentiated grasses of
various classes and soil, it showed a sensitivity to noise levels in the SWIR2
region. Effects due to noise in the SWIR2 region also impacted the applica-
tion of the CAI algorithm. Solar irradiance has a pronounced effect on this
spectral region [McCoy, 2005], and thus collection of spectra under overcast
or hazy conditions should be carefully monitored as it will influence the ef-
fectiveness of these algorithms. The PhIX algorithm also showed that, at
least in the dormant and senescent stage of phenologic development, it was
affected by the presence of soil background. This effect on the algorithm
should be further investigated, particularly with respect to mixed pixels, a
common feature in arid and semi-arid environments [Okin et al., 2001].
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Elvidge [1990] displayed the spectral progression of a number of trees and
shrubs from green through to senescent. Visual evaluation of these spectra
showed clear differences in both the VNIR and SWIR2 regions of the spec-
trum. Given that absorption features used in the PhIX algorithm are based
on changes of pigments and development of the ligno-cellulose feature at
2100 nm, it seems reasonable that the PhIX algorithm could be successfully
extended to a broad variety of plants.
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Chapter 5

Remote sensing of forage
nutrients: combining
ecological- and absorption
feature data-

*This chapter is in preparation to be submitted to International Journal of Applied
Earth Observation and Geoinformation.
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Abstract

Forage quality in savanna and grassland systems determines the capac-
ity of these systems to support ungulates [Jones and Wilson, 1987; Prins,
1996]. Findings from ecological and laboratory studies, focused on assess-
ing forage quality, are combined to evaluate a remote sensing approach for
predicting forage quality. Spatially available ecological findings (ancillary
data), and physically linked spectral (absorption data) findings are eval-
uated and combined to predict forage quality (nitrogen, phosphorus and
fibre concentrations). Ancillary data alone, could predict nutrients, with a
higher goodness of fit, than absorption data (Ancillary: Rgdj =0.42-0.74%
compared with Absorption: Rgdj =0.11-0.51). Species and soil were found
to be ecological variables most frequently included in prediction models of
ancillary data. Developing prediction models (through stepwise regression)
with both ancillary and absorption variables did not necessarily result in
significant models that include variables from both data types. Models for
which both ancillary and absorption data were included, had the highest
predictive capabilities compared to models where data sources were sepa-
rate. This research provides an important step in the process of creating
biochemical models for mapping forage nutrients in savanna systems that
can be generalised over larger areas.

5.1 Introduction

Grassland-savanna ecosystems, support a high percentage of wild ungulate
and domestic livestock populations [Jones and Wilson, 1987]. The impor-
tance of these systems, has led to extensive research into the properties that
allow them to support these ungulate populations [du Toit, 2003; Werner,
1991]. A component of this research has targeted assessment of the quality
of the food source; firstly in terms of variations in quality, and secondly in
quantifying the quality of the food source.

Within tropical ecosystems, factors that have been linked to differences
in forage quality are numerous. Nutrients have been shown to fluctuate
between seasons [Grant et al., 2000; McNaughton, 1987, 1990; Prins and
Beekman, 1989]. Concentrations of different nutrients differ significantly
between plant species [Jones and Wilson, 1987; McNaughton, 1988; Mu-
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tanga et al., 2004b; Seagle and McNaughton, 1992], and between different
growth stages of plants [Jones and Wilson, 1987; McNaughton, 1988; Prins
and Beekman, 1989]. Soil [Allred and Snyder, 2008; Craine et al., 2009;
Heitkonig and Owen-Smith, 1998], geology [Grant and Scholes, 2006; Fer-
werda et al., 2006a], slope and catenal position [Seagle and McNaughton,
1992], and fire [Allred and Snyder, 2008; van de Vijver et al., 1999] are
amongst other ecological factors that have been significantly linked to vari-
ations in forage nutrient concentrations within savannas.

Given the variability identified in forage quality nutrients, and the im-
portance of forage quality for maintaining healthy herbivore populations
[Jones and Wilson, 1987; Prins and Beekman, 1989], it is reasonable to as-
sume that livestock managers or managers of wildlife reserves would benefit
from a landscape quantification of forage quality. Collecting and analysis
of forage, using wet chemistry techniques, is a time consuming and labori-
ous task, this has been greatly aided by the development of rapid analysis
techniques using near infrared spectroscopy (NIRS) [Clark, 1989]. Using
NIRS, absorption features related to physical bond vibrations associated
with different nutrients have been identified [Card et al., 1988; Curran,
1989; Fourty et al., 1996]. With the advent of imaging spectrometry, in
combination with this spectral information, it is possible to map the distri-
bution of plant biochemicals at a landscape level [Mutanga and Skidmore,
2004a; Mutanga and Kumar, 2007; Skidmore et al., 2010; Wessman et al.,
1988].

In the field of imaging spectrometry for biochemicals, much effort has been
placed on predicting the quantity of nitrogen in plants. This has not only
been in savanna and grassland systems [Gianelle and Guastella, 2007; Mu-
tanga and Skidmore, 2004a; Skidmore et al., 2010], but extensive work has
also been undertaken in forest and cropping systems, where the assessment
of nitrogen is a proxy for net primary production and plant health [Asner
and Martin, 2008; Cho and Skidmore, 2006; Goel et al., 2003; Huang et al.,
2004; Johnson and Billow, 1996]. What is evident in the results of these
and other biochemical studies, is that absorption features that have been
physically linked to foliar nutrient concentrations, were not the only wave-
lengths significant in the development of foliar nutrient models. In many of
these studies additional wavelengths and spectral regions were identified as
important to capture the variations in foliar nutrient concentrations [Cho
and Skidmore, 2006; Mutanga and Skidmore, 2004a; Huang et al., 2004;
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Johnson and Billow, 1996]. To create a reproducable model, the reason be-
hind inclusion of variables in a model should be interpretable. All variables
should ideally be physically or causally related to the item under study (e.g.
for nitrogen, variables might include either known absorption features, or
wavelengths linked to geological properties or phenology - which have been
proven to result in nitrogen variations [Ferwerda et al., 2006a; Grant and
Scholes, 2006; Owen-Smith, 2008; Skidmore et al., 2010]).

Most of the studies into quantifying the spatial distribution of biochemicals
have been site-specific. The choice of including additional wavelengths, that
have not been identified as having a physically link to a foliar nutrient,
would therefore make sense if only a single measurement at a moment in
time is desired, or if the wavelength link to the foliar nutrient is to be
explored. If, however, it is the aim (and we believe it is) of remote sensing
biochemical studies to provide algorithms that can be utilised, in multiple
sites, at multiple moments of time, then variables in a model should be
interpretable and transferable between sites and time periods.

In this study findings from ecological and laboratory research into forage
nutrients are combined. These findings are transferred to remote sensing
data, to evaluate if in unison, the quality of forage nutrients in a savanna
can be predicted in an interpretable and transferable manner from remote
sensing data. We believe the combination of this information would provide
a sound platform for mapping and monitoring forage nutrients in these
systems at a landscape level.

We first determined whether environmental factors that were significantly
related to variations in forage nutrient concentrations, and available or
potentially available as spatial data, could estimate forage nutrient concen-
trations (referred to as ancillary variables from hereon). The potential of
spectral features, identified through NIRS that have been physically linked,
to different nutrients, in predicting the forage nutrients, (referred to as ab-
sorption variables from hereon) were evaluated for predictive capabilities.
Finally, we combined the ancillary and absorption variables to evaluate
their combined ability to predict forage nutrients. We conducted this in-
vestigation using spectral, environmental and forage nutrient data collected
on grasses, in a wet and dry season, within a sub-tropical savanna system.
Our findings are discussed in terms of creating algorithms that can be gen-
eralised to temporally map nutrients at multiple savanna sites.
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Figure 5.1: Location of field site within the Kruger National Park (KNP), South
Africa. The inset shows the distribution of the plots, measured in the dry
and wet season, stratified according to the underlying geology that splits
the park into a granitic east and basaltic west.

5.2 Methods

5.2.1 Study Area

The study area was located on the Northern Plains of the Kruger National
Park (KNP), South Africa (figure 5.1), the area is located between 22°49’S,
31°01'E and 22°44° S, 31°22’E, covering an area of approximately 25 x
6 km (inset figure 5.1). The location of the study area captures a geological
transition, variation in fire treatments, and a rare game herbivore enclosure.

The study area is underlain by a geological complex dividing it into granites
(west) and basalts (east) [Gertenbach, 1983](inset figure 5.1). The underly-
ing geological complexes have implications for soil nutrient concentrations
and consequently on the forage chemistry of the vegetation cover [Ferwerda
et al., 2006a; Mutanga et al., 2004a]. The vegetation comprises a savanna
system with a mixed species grass layer and a tree layer dominated by
Colophospermum mopane. On the shallow to moderate melanic and ver-
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tic clay soils, of the granites, the mopane forms woodlands with an open
herbaceous understory. On the moderate deep to deep calcareous duplex
clay soils, of the olivine rich basalts, the mopane forms an open shrubland,
with a dense herbaceous understory [Venter, 1990].

The herbivore enclosure (“N’washitsumbe!” or ”Roan Enclosure”), was cre-

ated in 1967 to act as a breeding area for roan antelope (Hippotragus equi-
nus). The exclusion of large browsing herbivores over this extended period,
has resulted in an altered woody vegetation structure when compared with
the surroundings [Asner et al., 2009; Levick and Rogers, 2008]. The enclo-
sure has a greater woody structural diversity in terms of tree species and
size variation of the trees. Fire management within and without the en-
closure has further contributed to the structural variation [Ferwerda et al.,
2006a; Levick et al., 2009].

5.2.2 Data Collection
Field Sampling

Field sampling was carried out twice in 2007. Sampling was first conducted
in the late wet (late growing) season (mid March to beginning April), and
again in the early dry season (May) to capture grass senescence. In the
wet season 43 sites were sampled, these sites were again resampled in the
dry season thereby creating a paired seasonal dataset. Due to improved
weather conditions for spectral measurements, an additional 19 sites were
sampled in the dry season (totaling 62 sites for the dry season).

The location of the field sites was defined in an earlier study by Mutanga
et al. [2004a]. Mutanga et al. [2004a] defined the sites through a stratified
clustered-random sampling. The area was stratified into open grasslands,
mixed woodland and woodland. Using S-PLUS, x-y coordinates were ran-
domly generated, plots were then located in the field using GPS (Garmin
12XL, with an estimated 3m accuracy). Purposive sampling included five
samples on known natural salt licks. In the dry season of 2002, 96 sites
were sampled, of these, 62 sites were re-sampled in the dry season of this
study.

'www . sanparks.org/parks/kruger/conservation/scientific/exclosures
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A plot of 15x15m was laid out at each GPS location. Within a plot, record-
ings were made of the estimated percentage tree, grass and bare ground
cover. The dominant grass and tree species were recorded. Spectra were
taken of the dominant grass species, and any other grass specie that was
estimated to cover greater than 30% of the plot. Spectra were measured
using a handheld ASD Fieldspec Pro FR spectrometer (Analytical Spectral
Devices, Inc.). A minimum of five spectra were taken per plant (dependent
on weather stability), and five plants of the same species were measured
within a plot. Prior to spectral measurement of each plant, a spectra was
taken of a calibrated spectralon panel (Labsphere, Inc, Sutton, NH), this
allowed radiance measurements to be converted into absolute reflectance.
Per measured species, per plot, the associated spectra were averaged to
create a single spectral measurement.

Following spectral measurements, grass samples, of each species measured,
were collected. For each species five whole grass plants were clipped at
approximately 2 cm above ground level. Per species the clipped samples
were pooled, bagged, and dried at 70°C for 48 hours. Following drying,
samples were ground through a 1 mm steel mill and transported back to
The Netherlands for chemical analysis.

Nutrient analysis

The dried and ground samples were analysed for their chemical constituents,
in the laboratory of the Resource Ecology Group, Wageningen University,
The Netherlands. The three forage nutrients that we consider in this study
are nitrogen, phosphorus and fibre. Nitrogen and phosphorus were anal-
ysed using a modified Kjedahl procedure, samples were initially digested
in a mixture of sulphuric acid, selenium and salicylic acid [Novozamsky
et al., 1983]. Digestion was then followed by colormetric measurement us-
ing a continuous flow analyser (SKALAR SAN plus). Fibre content (ADF)
was determined according to the ANKOM filter bag procedure, using an
ANKOM 290/220 fihre analyser (ANKOM Technology, Macedon, NY, USA).
All concentrations are expressed as percentage nutrient, on a dry matter
basis (% DM).
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Ancillary Variables

Ancillary variables that were either available or potentially producible from
GIS or remote sensing data, and had been linked to variations in forage nu-
trient concentrations, were compiled for each sample site. Geology, soil
and fire data were obtained from the GIS and Remote Sensing Centre?,
Scientific Services, Kruger National Park. Slope, aspect and altitude data
were generated from a resampled Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) - digital elevation model, obtained
for the site, in June 2006. Phenological and Red Edge Position data were
generated from spectra measured in the field. The species data collected in
the field were used for analysis. Although no grass species map currently
exists for this area, studies have shown that imaging spectroscopy poten-
tially provides a means to create such maps [Irisarri et al., 2009; Schmidt
and Skidmore, 2003]. A description of all the ancillary variable layers that
were used in this analysis are presented in table 5.1.

Absorption variables

Only wavelengths that have been physically linked to each of the forage nu-
trients were selected for this analysis. These physically linked wavelengths
have been determined through near infrared spectroscopic (NIRS) studies.
The features are associated with the excitation and reaction of molecular
bonds at specific wavelengths.

Nitrogen, phosphorus and fibre concentrations are not directly measured,
but rather their association with plant compounds are used to derive their
concentrations. Total nitrogen measured, is associated with molecular
bonds of protein, chlorophyll and nitrogen molecules found within the plant
[Curran, 1989].

Within plants, phosphorus concentration is much lower than the concen-
trations of either nitrogen, or fibre (chapter 3, table 3.3). The low phos-
phorus concentrations reduce the ability to directly detect this nutrient
through spectral signatures [Kokaly et al., 2009], therefore an associated
link is made with respect to the functioning of phosphorus in a plants de-
velopment. Within plants, phosphorus is primarily associated with plant

2www . sanparks . org/parks/kruger/conservation/scientific/gis/
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Table 5.1: Description of the ancillary variables used in this study

Variables

Type

Description

Slope
Altitude
Aspect

Geology
GeOVen

Slinp

SlVen

Fire

Species

Phenology

REP*

Continuous
Continuous
Categorical

Categorical
Categorical

Categorical

Categorical

Categorical

Categorical

Continuous

Continuous

Expressed in degrees

Expressed in metres above sea level (m asl)
Initially calculated in degrees, and then converted
into four cardinal points N(315° — 45°), E(45° —
135°), S(135° — 225°) and W(225° — 315°)
Broad geological division of basalt, granite
Geological classes based on work of Venter [1990].
Within the study area four geological classes were
defined

Soils map based on the South African soils clas-
sification system [Macvicar et al., 1977]. Within
the site seven soil layers were identified

Soils map based on the work of Venter [1990].
Across the site, three soil layers were classified.
Frequency of fires over a five year period prior to
sampling. Three classes were defined none, once
and twice

Plant species sampled in the field. Eight separate
species were identified. Additional species were
sampled, however these were only identified in a
maximum of two sites and were therefore com-
bined to create a mixed species class. Thus in
total this class has nine separate categories.
Phenological condition of a sample was generated
using the spectral data collected in the field, and
applying the PhIX algorithm defined in chapter 4.
Two methods for calculating the red-edge were
applied, REP; was derived by determining the
wavelength location of the maximum first deriva-
tive, between the Red and NIR spectral regions,
and REP. was calculated using the linear ex-
trapolation method defined by Cho and Skidmore
[2006].

REP* = Red Edge Position.
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5.2. Methods

Table 5.2: The wavelength absorption features selected for predictive analysis of
the respective forage nutrients. These wavelength centres have been
physically linked (through bond vibrations, excitations) to each of the
forage nutrients.

Nutrient Absorption feature wavelength centres (nm)

Nitrogen® 430, 460, 640, 660, 910, 1020, 1510, 1690, 1730, 1940, 1950,
1980, 2060, 2130, 2180, 2240, 2300, 2350

Phosphorus® 970, 990, 1450, 1490, 1530, 1540, 1580, 1780, 1900, 1940, 1950,
1960, 2000, 2080, 2100, 2250, 2270, 2280, 2320

Fibre® 1120, 1200, 1420, 1450, 1490, 1540, 1690, 1730, 1736, 1780,
1820, 1924, 1940, 1950, 2100, 2232, 2262, 2270, 2280, 2310,
2320, 2340, 2350, 2380

@ = features associated with protein, chlorophyll and nitrogen [Curran, 1989; Fourty
et al., 1996]

b = features associated with starch and sugar [Curran, 1989; Fourty et al., 1996]

¢ = features associated with cellulose and lignin [Curran, 1989; Fourty et al., 1996;
Himmelsbach, 2000]

metabolic processes [Schachtman et al., 1998]. We have therefore chosen to
spectrally associate phosphorus concentrations to sugars and starches, as
representative end products of metabolism.

Fibre is located within plant cell walls, and is a combination of hemicel-
lulose, cellulose and lignin compounds. In NIRS studies for determining
forage quality, cellulose and lignin have been extensively studied and their
absorption features identified [Curran, 1989; Fourty et al., 1996; Himmels-
bach, 2000]. The spectral features associated with both of these compounds
are used to predict the concentration of fibre within the samples. The spec-
tral absorption features, used as input for the modelling, for each of the
forage nutrients, are listed in table 5.2.

5.2.3 Model development

Prior to model building all sample spectra were visually assessed for noise.
Six spectra, three taken in the wet season and three in the dry season were
found to be noisy (i.e. have high variation) across the entire spectrum.
These six samples were therefore excluded from further analysis. In total,
therefore, 40 samples were included in the wet season analysis, and 59
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samples for the dry season.

One of the assumptions of applying linear regression modelling is that
variables are not collinear [Crawley, 2006]. The selected wavelengths for
each of the nutrients (in both seasons) were found to be highly correlated.
By applying a principal components analysis to these absorption feature
wavelengths the collinearity between bands was reduced. These principal
components (PC) were then input into the models. Within the ancillary
variable, collinearity was found between variables that measured the same
environmental parameters, e.g. the geological classes, soil classes and the
two REP calculations. All variables were included as input into the mod-
elling process, but selected output models were checked to ensure they did
not include collinear ancillary variables [Crawley, 2006].

Although stepwise regression is effective for developing multi-variate mod-
els, it has been shown to be affected by the order in which variables are
entered into the modelling procedure [Crawley, 2006; Grossman et al., 1996].
An exhaustive best subsets regression method, is an effective means to min-
imise this limitation of the stepwise regression procedure. This regression
approach can also be set to limit the number of variables contained within
a model, thereby avoiding the problem of over-fitted models [Furnival and
Wilson, 1974].

“Best subsets regression”3 was implemented, for each forage nutrient, in

each season, based firstly on ancillary variables, and then absorption vari-
ables (as the converted PCs). The “best subsets regression”, compared and
selected models based on the lowest Akaikes Information Criteria (AIC)
value [Crawley, 2006]. Because the ancillary input variables contained
collinear features, it was verified that the variables selected in the top
model, by the “best subset regression” method, were free from collinearity.
If collinear variables were found, the next best model was evaluated, until
a model free from collinearity was found.

For each forage nutrient, in each season, the ancillary and absorption (PC)
variables selected in the analysis above, were combined into an ancillary
+ absorption model. Stepwise regression (including backward and forward
selection), was then applied to these combined models, to create a signifi-
cant parsimonious model that predicted forage nutrient concentrations, in

3Implemented in R [R Development Core Team, 2008], using the “leaps” (absorption)
or “bestglm” (ancillary) packages [Furnival and Wilson, 1974].
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5.3. Results

Table 5.3: Results from the chemical analysis of the field samples. In the final
column results of t-test’s comparing the mean forage nutrient levels
in the wet (40 samples) and dry (59 samples) seasons are shown.

Nutrient Season Range Mean t-test
(% DM) (% DM)
Nitrogen wet, 0.6-2.2 1.1 £ 0.37
dry 04-1.5 0.7+ 0.20 t=6.50%**  df=53.62
Phosphorus  wet 0.1-0.5 0.2 £0.09
dry 0.1-0.4 0.2 4+0.09 t=2.61** df=82.46
Fibre wet 34.1-49.7 414 4+ 3.53

dry 35.8-51.1 43.4 £ 3.18 t=-2.88*** df=77.79

+ the standard deviation of the mean; Significance level of t-tests,
**%—=0.99,¥*=0.95

each season. It was verified that the variables included in these final models
were free from collinearity. Adjusted R? (dej) and root mean square error
(RMSE) values are reported for the each of the selected models.

Using AIC, for each forage nutrient, in each season the three selected models
were then compared (i.e. the ancillary, absorption and combined models).
The models with the lowest AIC values were considered to be the best
models for predicting a forage nutrient. The results of this analysis allow us
to provide suggestions as to a suitable approach to analyse forage nutrients
in a heterogeneous savanna ecosystem.

5.3 Results

In agreement with earlier studies [Grant and Scholes, 2006; McNaughton,
1990] we found that forage nutrient concentrations differed significantly
between the dry and wet seasons (table 5.3). The values for the different
forage nutrients are comparable with those observed for this region [Grant
and Scholes, 2006; Treydte et al., 2008].
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Ancillary Variables

Models built using ancillary variables alone (i.e. environmental links to nu-
trients), showed that between 42%-74% of the variation in forage nutrients
could be explained. The selected models derived from the “best subsets
regression” are presented in table 5.4. All variables, included in these mod-
els, were significant contributors to explaining the respective concentration
of forage nutrients.

Species, significantly contributed to explaining the concentration of forage
nutrients, irrespective of the season. Soil type variables were also significant
in their contribution to explaining differences in forage nutrient concentra-
tions, being a variable type selected in four out of the six models. The finer
detail provided by the South African soil classification system [Macvicar
et al., 1977], compared to the classification system of Venter [1990], en-
hanced the ability of most models to estimate the forage nutrient content.
The REP is only selected to estimate nitrogen concentrations, supporting
the earlier findings of Cho and Skidmore [2006] and Mutanga and Skid-
more [2007]. Phenology significantly contributed to explaining nitrogen,
and fibre in the wet season (table 5.4).

Within the KNP the geological stratification into the basaltic east and
granitic west has been used to describe broad variations observed in nutri-
ents [Grant et al., 2000; Grant and Scholes, 2006; Skidmore et al., 2010].
Our findings show that when trying to estimate the concentrations of nu-
trients on a continuous scale, that geological strata, in combination with
soil strata, significantly contributed to explaining foliar phosphorus levels
in the dry season.

Absorption Variables

The model variables, and predictive ability of models, developed with only
spectral data (converted to PC data), associated with physical bond vibra-
tions, is presented in table 5.5.

Absorption feature variables could better predict (higher Rgdj) the concen-
tration of a forage nutrient, when the forage nutrient levels were highest
in the plant (e.g. nitrogen/phosphorus in the wet season) (table 5.3 vs ta-
ble 5.5). Thirty four percent of the recorded variation in foliar phosphorus
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5.3. Results

Table 5.4: The significant model variables for ancillary variables, for each forage
nutrient in the dry and wet season. The model selection was made by
applying a “best subsets regression*”, with all the variables included in
table 5.1. All variables had a significant (p)-value less than 0.05.

Nutrient Season  R? d RMSE  Model variables
(% DM)
Nitrogen wet 0.74 0.19 Aspect, Fire, Phenology, REP.,
Species

dry 0.67 0.12 Phenology, REP4, Slyen, Species
Phosphorus  wet 0.42 0.07 Slinp, Species

dry 0.64 0.05 GeOyen, Slknp, Species
Fibre wet 0.70 1.94 Phenology, Slinp, Species

dry 0.50 2.24 Species

* “Best subsets regression” implemented in R [R Development Core Team, 2008],

using the “bestglm” library.

concentrations, was explained by using absorption features, associated with
sugars and starch.

During the wet season water absorption features dominate vegetation spec-
tra, these affects are particularly prominent in the SWIR region (1400-
3000 nm) of the spectrum [Kokaly and Clark, 1999]. For nitrogen and
particularly fibre we see this influence in the outcomes of the components
selected. During the wet season few PC with high loadings of wavelengths
within the SWIR2 (2000-2300 nm) regions are included as model variables.
Conversely in the dry season many of highest loadings associated with the
selected PC’s are associated with wavelengths found in the SWIR2 region.

Combined Data

A combination of absorption data and ancillary data did not always lead
to forage nutrient models with higher prediction accuracies (table 5.6 vs
Tables 5.4 and 5.5). Using the stepwise regression procedure, we found that
in only half of the models which combined both sources of data, resulted
in a parsimonious model with a higher Rgdj. For the remaining models
the ancillary variable models proved to be the most parsimonious model
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Table 5.5: The significant principal components (PC) selected in the “best
subset regressions*” for each forage nutrient, in each season. The
values in parenthesis are the wavelengths (nm) with the highest
eigen loading values (greater than +0.5) associated with the PC.

Nutrient Season  RZ; RMSE  Model variables(¥*)
(% DM)
Nitrogen wet 045  0.27 PC2(910, 1020), PCA4(640,
even®), PC11(2180)
dry 0.42 0.16 PC2(910, 1020), PC4(even),
PC5(430, 460), PC9(2240),
PC10(2060), PC11(2130)
Phosphorus  wet 0.34 0.08 PC2(970), PC5(1490, 2000),
PC7(2320, even), PC8(2270)
dry 024 0.8 PC2(970), PC7(2100),
PC10(1530, even- 1490,
1540, 1580)
Fibre wet 011  3.33 PC9(2262), PC14(1730,1736)
dry 051 2.22 PC3(even), PC6(2232),
PC8(2310), PC9(2310),
PC10(2100)

* Best subsets regression implemented in R [R Development Core Team, 2008],
using the “leaps” library.

@ “even” the remaining wavelengths either listed or indicated, for a particular
forage nurient (table 5.2). The “even” wavelengths had loading weights less

that £0.5 but were similar in value.

selected. Similar to the result where only ancillary variables were used for
modelling, we found that when combining ancillary and absorption variable,
the species variable was again a significant contributor in all the selected
forage nutrient models. Soil type data also significantly contributed to four
out of the six forage nutrient models.

Model comparisons

Predicting the concentrations of any of the forage nutrients studied here, in
either the wet or dry season, could be done with a higher degree of precision,
using ancillary data alone compared to using only the absorption datasets
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5.4. Discussion

Table 5.6: Combined (ancillary+absorption) model variables. Model variables were
selected through a stepwise selection procedure. The input variables
were a combination of the best models from the ancillary (table 5.4)
and absorption spectral data (table 5.5).

Nutrient Season  R? d RMSE  Model variables
(% DM)
Nitrogen wet 0.74 0.19 Aspect, Fire, Phenology, REP.,
Species

dry 0.70 0.11 PC2, PC10, REPg, Slyen, Species
Phosphorus  wet 0.49 0.07 PC8, Slinp, Species

dry 0.64 0.05 GeOyen, Slknp, Species
Fibre wet 0.70 1.94 Phenology, Slinp, Species

dry 0.64 1.92 PC3, PC8, Species

(table 5.4 vs table 5.5).

A statistical comparison of the models (using AIC), showed that the six
models finally selected in the combined data approach were the most suit-
able models (in terms of parsimony and predictive ability) for estimating
forage nutrient concentrations (table 5.6). Only three of these models con-
tained data from both ancillary and absorption spectral sources, the re-
maining three models were identical to the ancillary data models. The
combined dry season fibre model was the only model of the six combined
models that resulted in a reduction in the number of variables.

5.4 Discussion

In this study we show that using remote sensing and imaging spectrometry
it is possible to map forage biochemicals in a repeatable and ecologically
sensible way. We have identified for three forage nutrients (nitrogen, phos-
phorus and fibre) remote sensing derived variables - based on ecological and
spectroscopic theory, that predict each of the respective forage nutrients in
both the dry and wet season. These variables, could be used as a base
from which to generate algorithms, for estimating forage nutrient content
in savanna regions.
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This study has shown that irrespective of the forage nutrient being consid-
ered, temporally universal prediction models cannot be created. Although
there are variables that significantly contribute to forage nutrient models
irrespective of season (e.g. species and soil type data for foliar phosphorus),
additional variables are required in different seasons.

For all forage nutrients, species were found to contribute significantly to
prediction models. For multiple plant nutrients, it has been shown that
different species display variations in the means they store, or translocate
nutrients through the plant [Chapin, 1980]. These interspecific differences
would be the likely reason that the species variable is found to be a signif-
icant variable in explaining nurient variations in different seasons.

In this study, species information was not derived from remote sensing data.
In generating this variable from imaging spectrometry data, it is likely
that information will be required from numerous regions of the spectrum
[Schmidt and Skidmore, 2003]. Studies where species have been spectrally
separated, have highlighted that spectral features selected have been related
to physico-chemical regions [Vaiphasa et al., 2007], and that vegetation
structure strongly influenced the seperability of species [Ribeiro da Luz
and Crowley, 2010]. In using species information for mapping of nutrients,
in combination with absorption features, the relationship between variables
associated with nutrients and plant physical status should be investigated.

Absorption features associated with fibre are all located in the SWIR re-
gion of the spectrum (table 5.2). During the wet season the SWIR region is
strongly affected by water absorption features [Elvidge, 1990; Kokaly and
Clark, 1999], therefore the cellulose and lignin features are masked by wa-
ter features. Our results show that during the wet season fibre is better
estimated through ecological features that explain the environment (soil
type), and plant morphology (phenology and species). During the dry sea-
son when cell water content is neglighle, then the SWIR features of lignin
and cellulose can be used to predict the concentration of fibre.

Soil, significantly explained variations in the phosphorus concentrations in
both the wet and dry seasons (table 5.4). The soil phosphorus pool is corre-
lated with measured concentrations of foliar phosphorus [Schachtman et al.,
1998]. Hartshorn et al. [2009] showed the catenal position was associated
with variations in phosphorus levels within the soil, supporting the use of
the detailed soil classification provided by the South African soil classifica-
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tion system [Macvicar et al., 1977], as this classification system details the
catenal soil strata.

For nitrogen, if only environmental variables were considered, then plant
phenology and REP, in addition to species, were significant contributors
in both seasons (table 5.4). When combining absorption features linked to
nitrogen, with the environmental variables, only REP and species remained
significant in both seasons. REP, has been associated with nitrogen [Cho
and Skidmore, 2006; Gianelle and Guastella, 2007; Mutanga and Skidmore,
2007], but also estimating LAI, phytomass [Darvishzadeh et al., 2008c,b;
Gianelle and Guastella, 2007], and in combination with the SWIR region,
vegetation condition [Asner et al., 2005]. Thus, although REP has been
found to be an indicator for forage nutrient concentrations, it has also been
linked to plant physical state. When applied to a forage nutrient algorithm,
REP should be verified as a variable explaining the forage nutrient variance,
and not biomass or plant status.

Findings from earlier studies [Curran, 1989; Darvishzadeh et al., 2008c;
Grossman et al., 1996; Jacquemoud et al., 1995], showed that bands selected
in studies on fresh leaves frequently did not coincide with bands directly
linked to the nutrient under investigation. Our studies showed that predic-
tion using only features associated with physical bond vibrations yielded
poor predictions of forage nutrient concentrations. The wavelengths (as
highest loadings in the PC) attributed to predicting the forage nutrient
concentrations also varied between seasons. With the addition of ancillary
data, to models of physically linked wavelengths, there was a significant
improvement in model performances.

What is clear from the findings presented here, is that prediction of nu-
trients using remote sensing techniques is greatly aided by inclusion of en-
vironmental variables. Inclusion of suitable variables not only improves
model predictions, but also provides grounds for creating models that can
be generalised temporally. In this study we considered as ancillary data,
variables that have been ecologically tied to variations in nutrients. Asner
and Martin [2008] and Kokaly and Clark [1999] highlighted remote sensing
features that are associated to changes in vegetation structure (water con-
tent) and morphology (architecture, leaf area index), and how these optical
effects, may influence the detection of biochemicals. Inclusion of such fea-
tures in combination with environmental variables would provide a logical
step for creating generalisable forage nutrient models.
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In terms of creating generalisable algorithms for predicting forage nutri-
ent concentrations in savanna grasses, this research showed that, while a
base algorithm can be defined for each forage nutrient, additional vari-
ables should be included in the wet and dry season if accurate (i.e. where
accuracy is defined as above 70% of variation explained) estimations are
required.

Although this linear regression method is an attractive and simple approach
to implement, we believe the following aspects need further consideration:

1. Error propagation is a factor which has not been considered here, but
could have implications for the stability of model outcomes. With
each layer of data that are created in association with a relevant
variable, there is a certain level of uncertainty attached to it, e.g. the
possibility of a misclassification of a species, or perhaps a geological
boundary shift. Thus with the inclusion of data into the modelling
of biochemicals there is a need to critically assess the quality of the
data.

2. A second aspect for consideration is the selection of the appropriate
data layers. In this study for example we selected to use a fire layer
based on the frequency of burns over a time interval, a feature shown
to influence vegetation structure [Levick et al., 2009]. The effect of fire
on savannas is complex, and it might well be that a more appropriate
layer could be fire intensity, or time since last fire [van de Vijver et al.,
1999.

3. A spectrum taken of vegetation, not only captures the physical con-
tents of the plants, but also aspects of plant structure. In using en-
vironmental variables for modelling, there needs to be an assessment
of the relationship between these variables to other plant physical
variables measured in a spectrum, e.g. LAI or biomass.

5.5 Conclusion

In this study our main findings were:
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5.5. Conclusion

1. Combining ancillary and absorption data for mapping of forage nu-
trients in savanna produces ecologically sensible outcomes with high
predictive capabilities.

2. Species and soil information were two ecological variables that re-
peatedly (temporally and between forage nutrients) significantly con-
tributed to the estimation of forage nutrients.

3. Ancillary data could model forage nutrient concentrations with higher
goodness of fit, in both the wet and dry seasons, than absorption data
alone.
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Chapter 6

Mapping savanna forage
quality, in the dry season -

*This chapter is based on the following paper: Knox, N.M., Skidmore, A.K., Asner,
G.P., Prins, HH.T., van der Werff, HM.A., de Boer, W.F., van der Waal, C., de Knegt,
H.J., Kohi, E.M., Slotow, R., Grant, C.C.. Mapping savanna forage quality, in the dry
season, using CAO Alpha imagery. In preparation, Remote Sensing of Environment.
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6.1. Introduction

Abstract

Forage quality within an African savanna would be well described in terms
of nutrients that are limiting (nitrogen and phosphorus) and nutrients that
constrain the intake rates (non-digestible fibre) of herbivores. These for-
age quality nutrients have been shown to be particularly crucial in the dry
season when concentrations of limiting nutrients decline and non-digestible
fibres increase. Using artificial neural networks, in this study, we test the
ability of a new imaging spectrometer (CAO Alpha sensor), in combination
with ancillary data, to map quantities of grass forage nutrients in the early
dry season within an African savanna. Respectively 656%, 57% and 41%,
of the variance in fibre, phosphorus and nitrogen concentrations can be
explained. We found that all forage nutrients show response to fire. Prin-
cipal components analysis, not only reduced over-fitting in neural network
models, but was a useful method for removing cross-track illumination ef-
fects in imagery. To further improve the mapping of forage nutrients in the
dry season we believe that spectra within the SWIR region, or additional
relevant ancillary data, are required.

6.1 Introduction

Within African savanna ecosystems, phosphorus and nitrogen have been
identified as limiting forage nutrients in the diets of grazers [McNaughton,
1990; Prins, 1996]. To maintain an energetic balance, a grazer needs to
obtain sufficient quantities of required forage nutrients before reaching their
digestive system intake constraint for non-digestible fibre [Grant et al., 2010;
Treydte et al., 2009; van Soest, 1996]. With the use of modelling within
African savannas, it has been shown that during the dry season, ungulates
were unable to meet their nutritional nutrient requirement needs prior to
reaching the gut intake constraint [Treydte et al., 2009].

At landscape scale, forage nutrient levels will vary in response to multi-
ple factors (e.g. edaphic, rainfall gradients, fire, herbivory), creating a
patchy distribution of nutrients [Grant and Scholes, 2006; Prins and van
Langevelde, 2008a; Treydte et al., 2007]. Having an overview on this dis-
tribution would be valuable input for effective management, particularly at
a time when these nutrients are limited. Remote sensing has the potential
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to rapidly, record these variations across large areas.

It has been demonstrated that forage quality nutrients (nitrogen, phospho-
rus and tree condensed tannins) could be mapped, during the wet season in
an African savanna system, using hyperspectral data [Ferwerda, 2005; Mu-
tanga and Skidmore, 2004a; Mutanga and Kumar, 2007; Skidmore et al.,
2010]. Although not creating maps, Mirik et al. [2005] demonstrated the
potential of hyperspectral data to estimate forage nutrient values in range-
lands on an areal basis (g.m~2). During the dry season, vegetation struc-
ture changes which in turn results in spectral changes of vegetation [Elvidge,
1990; Kokaly and Clark, 1999]. Elvidge [1990]; Asner [1998] and Asner et al.
[2000] highlighted some of the changes that take place in various vegetation
types as vegetation dries and becomes senescent (e.g. change of red edge
shoulder, increase in prominence of SWIR features associated with lignin
and cellulose). Here, we explore whether these changes in optical properties
allow for the prediction and mapping of forage nutrients, during the dry
season. This is tested using CAO Alpha hyperspectral imagery obtained
from a flight campaign that took place over the Northern Plains of Kruger
National Park (KNP) in May 2008 (i.e. early dry season).

The Carnegie Airborne Observatory (CAO) Alpha sensor! is a new airborne
system which integrates hi-fidelity imaging spectrometer and LiDAR. Pre-
vious mapping of plant nutrients within the KNP used HyMAP imagery,
covering a spectral range from 5002450 nm. The neural network algo-
rithms implemented for mapping of plant nutrients by Mutanga and Skid-
more [2004a]; Mutanga and Kumar [2007] and Skidmore et al. [2010] all
included selected input wavelengths from the VNIR and SWIR regions.
The CAO Alpha sensor covers a spectral range from 367-1058 nm, there-
fore wavelengths within the SWIR regions are not available for modelling.

To account for limitation of nitrogen and phosphorus in African savannas
[McNaughton, 1990; Prins, 1996], and gut constraint size with respect to
quantity of non-digestible fibre consumed [van Soest, 1996], ideally concen-
trations of all three of these nutrients should be considered when analysing
forage quality in an African savanna [Treydte et al., 2009]. Earlier work
in imaging spectroscopy has focused on mapping nitrogen and phospho-
rus [Mutanga and Skidmore, 2004a; Mutanga and Kumar, 2007; Skidmore
et al., 2010], but to the authors knowledge, none has looked at mapping

lcao.stanford.edu/
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6.2. Methods

fibre. Work in agriculture has produced methods to rapidly assess fibre con-
tent using NIRS and field spectroscopy [Albayrak, 2008; Kawamura et al.,
2008; Starks et al., 2004], but this has not been upscaled through to image
level. In this study we investigate three aspects to nutrient mapping: We
firstly consider mapping three separate nutrients, which when considered
together provide ecologists and farmers, with a complete overview of the
grazing forage quality resource. Secondly this investigation is conducted in
the dry season, an important time for herbivores when nutrients are lim-
ited, and a time when optical properties of vegetation are influenced by
increased cover of non-photosynthetic vegetation. The third component of
this study considers the potential of CAO Alpha imagery for mapping sa-
vanna grass forage quality (nitrogen, phosphorus and fibre) during the dry
season. Created maps are discussed in terms of whether they make eco-
logical sense, the implications for dry season forage nutrient mapping, and
the potential of the CAO Alpha imagery for mapping each of the forage
nutrients is discussed.

6.2 Methods

6.2.1 Study area

The study area was located on the northern plains of the KNP, South
Africa. The focus study area (top left: 22°45°47”S, 31°14’42”E; bottom
right: 22°47°15”S, 31°17'30”E) fell within a larger extent (West: 22°46’S
and 31°11’E; East: 22°46’S and 31°21’E) covered by a HyMAP image ac-
quired in March 2003 (wet season) (figure 6.1). The area was located on
the basaltic plains, which are characterized by high grass production and
a woody layer dominated by mopane (Colophospermum mopane) shrubs.
The soils are rich in iron- and magnesium- containing minerals, that easily
erode forming dark clay soils [Grant et al., 2000]. A drainage line runs
through the study area creating a vlei (wetland) grassland.

The focal study area included the 304 ha N’washitsumbe roan enclosure?

(figure 6.1 inset). This rare-game enclosure was established in 1967 (and
extended in 1984 by 48 ha, to include vlei grassland), to act as a breeding
enclosure for roan antelope (Hippotragus equinus). All other large herbi-

2www . sanparks . org/parks/kruger/conservation/scientific/exclosures
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Figure 6.1: Location of the study area within the KNP. The inset shows the study
area, defined by the overflight of the HyMAP image acquired in 2003,
the location of the focus study area, defined by the CAO Alpha overflight
extent, and the extent of the N'washitsumbe roan enclosure within these
areas.

vores (greater than +5 kg) and predators were excluded. The enclosure
is structurally distinct from its surroundings with a greater structural di-
versity of the woody vegetation within the enclosure compared to outside
[Asner et al., 2009; Levick and Rogers, 2008]. Trees have been associated
with increases in nutrient concentrations [Ludwig et al., 2004; Treydte et al.,
2008]. Fire has been an important management tool used within the park
[du Toit et al., 2003]. The management of fire within the enclosure differs
from the surroundings. Areas are burnt at different time intervals, resulting
in a spatial patchwork of fire frequencies across the study area. Fire, graz-
ing, trees and soils have all been attributed to variations in nutrient levels
[Allred and Snyder, 2008; Archibald, 2008; Craine et al., 2009], making this
site ideal for testing the potential of remote sensing for mapping nutrient
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variability within a savanna system.

6.2.2 Image acquisition

On 1 May 2008, using the CAO Alpha system, imagery was acquired over
the focus study area. Data were collected from 2000 m above ground level,
providing imagery with a spatial resolution of 1.12 m. To cover the focus
area, a total of 9 flight lines were required. The overflight took place within
2 hr of solar noon. The spectral resolution of the imagery was 9.4 nm
covering the spectral range between 384-1054 nm, creating an image with
72 contiguous bands.

In this study, only the imaging spectrometry data from the CAO Alpha
system were used. Pre-processing of the image data was automated and
integrated with the LIiDAR and GPS-IMU components of the system. In
this section, only the pre-processing of the image data are described, but
for a more comprehensive description of the entire system processing see
Asner et al. [2007]. The image data were converted to at-sensor radiance
by using radiometric corrections developed during sensor calibration at the
laboratory. The apparent surface reflectance was derived from the radiance
data using an automated atmospheric correction software (ACORN 5 Li-
Batch; Imspec). The atmospheric model requires multiple inputs, some of
which were estimated and the rest derived from the integrated data: from
the LIDAR (elevation), GPS-IMU (aircraft altitude), atmosphere type, and
estimated visibility. ACORN software used a MODTRAN look-up table to
correct for Rayleigh scattering and aerosols. Water vapour was estimated
from the imagery using the 940 nm absorption feature. The image data
were delivered as an end product of the nine image strips mosaicked, and
ortho-registered to within 0.4 m absolute error into a single output image.

6.2.3 Field sampling

Field samples were collected within a two week period around the time of
the overflight. Twenty field sites, defined (stratified random clustering) in
an earlier study by Mutanga et al. [2004a], that fell within the boundaries
of the focus study area were sampled. An additional 10 sites were included
as random samples within the study area strata. These sites were selected
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to capture the variation in fire frequency and soil strata. Figure 6.2 shows
the location, of the sampled field sites across the study area, the location
of the rare game enclosure is included for reference (figure 6.2a). The field
site locations are shown in respect to the soil strata (figure 6.2b) and fire
frequency strata (figure 6.2c). Although savannas are a combination of tree
and grass layers, we focus here on the grazing resource and thus only grass
samples were collected for analysis.

Sites were located using a GPS receiver (Garmin 12XL, estimated accuracy
of 3 m). At these sites a 15 x 15 m plot was laid out. The percentage
vegetation- and bare ground cover and dominant grass and tree species were
recorded. Using an ASD Fieldspec Pro FR field-spectrometer (Analytical
Spectral Devices, Inc.), field spectra of the dominant grass species that
covered an area greater than 30% of a plot, were measured. Five spectra
were taken per plant, and a minimum of five separate plants of a species were
measured in each plot. The number of spectra taken was increased when the
plants appeared to differ structurally. Before each plant was measured, the
spectral reflectance of a calibration panel was taken (Spectralon, Labsphere,
Inc, Sutton, NH). This allowed the spectra to be converted to absolute
reflectance. In each plot, following spectral measurements, grass samples
(minimum five plants) for each species were clipped, pooled, and bagged
for drying and later chemical analysis. A total of 52 plant samples were
collected for chemical analysis.

6.2.4 Chemical Analysis

Grass samples were dried at 70°C for 48 hr, in an oven. The dried samples
were mill ground to 1 mm using facilities at the Agricultural Research Coun-
cil, Nelspruit (ARC). These dried and ground samples were transported to
Wageningen University, The Netherlands for chemical analysis.

For determination of nitrogen and phosphorus concentrations, a modified
Kjeldahl procedure was used. Samples were initially digested in a mixture
of sulphuric acid, selenium and salicylic acid [Novozamsky et al., 1983].
Following digestion, the samples were colorimetrically measured using a
continuous flow analyser (SKALAR SAN plus). Fibre (Acid Detergent
Fibre - ADF) concentrations were determined according to the ANKOM
filter bag procedure, using an ANKOM 290/220 fibre analyser (ANKOM
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1]

Figure 6.2: Ancillary GIS data used in the network models: a) The focus study area
with the demarcation of the N'washitsumbe enclosure and the position
of the field sites. b) The soil strata across focus area, with the field sites
overlain. ¢) The frequency of burning between the imagery acquired in
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2003 and the imagery acquired for this study.
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Technology, Macedon, NY, USA).

6.3 Data Analysis

6.3.1 Selection of modelling method

Using linear modelling, Mirik et al. [2005] did not find any relationship
between spectra and biochemicals measured on a dry matter basis. Mu-
tanga and Skidmore [2004a]; Mutanga and Kumar [2007] and Skidmore
et al. [2010] demonstrated that with the use of non-linear modelling, signif-
icant relationships existed between spectra and biochemicals measured on
a dry matter basis. Savanna systems typically have a mix of photosynthe-
tic (PV) and non-photosynthetic vegetation (NPV), irrespective of season.
Asner [1998] determined that variances in PV:NPV cover were non-linear.
A possible reason therefore for the effectiveness of the non-linear mod-
elling, compared to linear modelling, is its ability to capture this variance
in standing cover of PV:NPV within the savanna systems. Given the a-
priori knowledge that the vegetation would be mix of both photosynthetic
and non-photosynthetic states, and the earlier success in nutrient mapping,
using non-linear methods, shown by the above authors, it was decided to
apply non-linear modelling in this study.

Neural networks are capable of using high dimensional data, from multiple
sources, without being constrained by statistical distributions [Atkinson
and Tatnall, 1997]. Although this capability is useful when causal features
for predicting a feature are unknown, it does have some constraints. Neural
networks are “black boxes”, therefore implementation of trained models to
completely new datasets is not possible [Skidmore et al., 1997]. As the
number of input variables in a neural network increases, an increase in
computational time to train the network is required [Skidmore et al., 1997],
increases the number of samples required to train the network [Atkinson and
Tatnall, 1997], and often results in a network which is unable to generalise
to new data. Causal features for predicting biochemicals with spatial data
could include known absorption features within spectra, or ancillary GIS
layers of environmental factors. Whether these causal features alone are
sufficient for predicting forage nutrients in the dry season is evaluated using
various input types for neural network modelling.
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In this study the networks are tested for the ability to accurately generalise
to a validation dataset. The networks are trained using three possible input
datasets: Spectral data is included either as the full CAO Alpha spectrum
(full dataset), or as a spectrum with the collinearity between wavelengths
removed (generated through applying a principal components analysis),
or as a causal spectrum of selected wavelengths associated with known
absorption features (causal dataset). The spectral dataset is combined with
ancillary data layers (GIS and RS products) to create the input data to
be fed into the neural networks. From the generated models, the best
fitting networks for each nutrient are selected, these are then inverted and
applied to the full image range to create nutrient maps across the savanna
landscape.

6.3.2 Data processing for model input
Imagery:

The mosaicked image had clear cross-track illumination effects. These ef-
fects were minimized, by per pixel, fitting a convex hull across the spectral
range, the reflectance spectrum was subtracted from the hull resulting in a
continuum removed spectra. This procedure allowed spectral features asso-
ciated with the nutrients of interest to be maintained [van der Meer et al.,
2001]. For the remainder of the analysis the first two and last two bands
were dropped, these bands were dropped because they equalled 1 (a result
of continuum removal). Sixty-eight bands were therefore retained for input
into training the network models.

Ancillary data:

Ancillary data, if related to nutrient concentration variance, can aid model
prediction (chapter 3, Mutanga and Skidmore [2004a]). Within the study
area (chapter 3 and 5), during the dry season, we found that phenology, soil,
species, and geology were all variables that related to nutrient level variance.
Ferwerda et al. [2006a] showed that fire frequency had a significant negative
effect on grass growth, and Skidmore et al. [2010] showed interaction effects
between fire and parent material on foliar nutrient variations. Based on
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these findings, we assessed whether these variables identified above could
be included as input variables for the network modelling.

To capture the variation in plant age across the landscape, a phenological
algorithm was applied to the data. Ideally either the PhIX (section 4.2.1,
chapter 4) or CAI [Nagler et al., 2000] algorithms would have been used,
but the available spectral range of the CAO Alpha imagery prevented this.
Given the season (dry), and no recent fires in the area and therefore no
grasses in an early growth phase, it was considered that using the nor-
malised area under the visible curve (section 4.2.1, chapter 4) was a suitable
means to evaluate plant age variations (termed phenology hereafter).

Using the soil classification system based on the South African soils classi-
fication system [Macvicar et al., 1977], three different soil types were iden-
tified in the focus study area (figure 6.1b). The underlying geology was
uniform [Venter, 1990], and therefore this layer was excluded.

Different plant species have been linked to the type, location and translo-
cation of forage nutrients in plants [Chapin, 1980]. In chapter 5 we showed
that inclusion of a plant species variable was a significant variable in gener-
ated models for explaining variations for all three forage nutrients analysed
in this study. This we believe is a valuable layer to include in modelling,
however no plant species map of this area exists and thus a plant species
layer could not be included.

As fire plays a role in differences in forage nutrient levels, then this may
be apparent between two different measurements in time. Using the time
frame between the 2003 HyMAP, and the CAO Alpha imagery used in this
study, the frequency of burning was determined. GIS data on annual fire
occurrence between 2003-2008 was obtained from the GIS/remote sensing
centre?, Scientific Services, KNP. These GIS data layers were combined and
used to develop a layer of fire frequency within the focus study area. Three
fire frequency levels were identified (figure 6.1c). The area burnt once was
burnt only in the 2004-2005 fire season, the area burnt twice was burnt
in the 2002-2003 and 2004-2005 fire season and the area burnt on three
occasions was burnt in both these seasons and in 2006-2007.

Phenology, fire frequency and soil type were the three ancillary data layers
that were combined with spectral data as input for the network models.

3www.sanparks . org/parks/kruger/conservation/scientific/gis/
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6.3. Data Analysis

Normalisation:

Skidmore et al. [1997] demonstrated that normalising input layers to a
network reduced the number of epochs required to train network models,
and increased the training accuracy of models. Input and output layers
were normalised using a linear contrast stretch.

Defining the output and validation datasets:

In order to create a model that can be generalised, it is necessary that the
dataset used to train the model covers a broad range of values in the output
layer and that the variability associated with the output layer is captured
within the input layers [Atkinson and Tatnall, 1997].

The field sites sampled were 225 m?, with an image spatial resolution of
1.12 m, 178 pixels were located within each field site. Pixels for the develop-
ment of the models were individually selected at the location of the 30 field
sites. Pixels were selected based on the percentage cover by an individual
species (percentage cover was a component of the collected field data) and
a visual comparison with the field spectra collected at each site (see section
6.2.3) and the image spectra. In total 448 pixels distributed between the
different sites were selected. These 448 pixels covered the breadth of the
nutrient concentrations measured in the grass samples. Of these 24 pixels
were withheld and used for model validation. The 24 pixels were randomly
selected, but it was verified that they covered the nutrient ranges covered
in this analysis. The remaining 424 pixels (and their associated nutrient
concentration) were used in developing the neural networks.

6.3.3 Neural network implementation
Modelling inputs:
Three inputs were generated to model the forage nutrients:

1. The full range - The three ancillary data layers and the 68 layers from
the continuum-removed CAO spectral dataset were stacked to create
a 71 node input layer.
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2. The reduced range - the 68 band, continuum-removed CAO Alpha
spectral dataset was run through a principal component analysis. Us-
ing a combination of the eigenvalues and eigenvectors, the first five
principal component layers were selected. These layers accounted for
98% of the variation within the CAO Alpha data. Visualisation of
the principal components also showed that above the fifth component
traces of the cross-track illumination were evident. This gave further
support to the inclusion of only the first five components. Together
with the ancillary data a stack of 8 nodes was created for this input
layer

3. The causal range - A literature study revealed that, within this spec-
tral range, there were absorption features associated with variations
in nitrogen concentration (see Knox et al. [2010]). Wavelengths lo-
cated at 422, 432, 460, 639, 715, 724, 913 and 1016 nm [Curran, 1989;
Mutanga et al., 2004c] were identified and these were used in com-
bination with the three ancillary data layers as input for a nitrogen
prediction model, creating 11 nodes for the input dataset.

Given no causal absorption features were identified for phosphorus and fibre
within the CAO Alpha spectral range, network modelling was applied using
only the full and reduced spectrum range data as input for modelling.

Model training and selection:

A 3-layer back propagation perceptron network, based on the algorithm of
Rumelhart et al. [1986] was implemented (programmed in ENVI\IDL®).
Unlike widely used linear empirical methods (e.g. stepwise regression), the
implementation of neural networks is stochastic and requires an iterative
process to select the best models. Networks are prone to over-learning,
resulting in over-fitted models and models that are unable to generalise to
new datasets [Chen et al., 2007; Skidmore et al., 1997], therefore the use of a
test and training set for model evaluation is essential. The most challenging
aspect to applying neural networks is to determine the models that are best
suited to predicting the item of interest. Using a similar procedure applied
by Mutanga and Skidmore [2004a] and Skidmore et al. [1997], we trained
and tested our models. This procedure for training the models is outlined
in figure 6.3.
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Figure 6.3: The procedure implemented for training and saving the best individual network parameters. For each nutrient, the
model outcomes were evaluated per input data type, the model that produced the lowest average test RMSE value
was selected as the best-input model. These different best-input models were compared and the model with the
lowest test RMSE value was selected as the best model for inversion. For each network architecture tested, five
iterations (i) were run.
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Once all the individual components of the network architecture had been
trained and tested, the network with the lowest average RMSE value ob-
tained for the test and training dataset, for each nutrient, and each input
data model was selected. Given the stochastic nature of neural networks,
model selection is a compromise between several factors (network architec-
ture and the training and test results) [Skidmore et al., 1997]. Taking this
property into consideration, if two outputs had the same lowest average
RMSE value, then the network with the least number of epochs required
for training the models was selected. For each nutrient the different se-
lected models were compared, and the model with the lowest test RMSE
value was selected as the model for inversion.

Model inversion and validation:

The selected model for each nutrient was inverted and used to create an
output map. The network architecture, training set size and training time
(epochs) are all factors that contribute to the ability of a network to inter-
polate and extrapolate on new data-sets [Atkinson and Tatnall, 1997]. As
stated earlier this study focused only on the grazing resource, network train-
ing was therefore limited to grass samples. The pixels selected for training
the models were limited to pixels containing grass spectra. The savanna
environment is however a combination of trees, grass and bare ground. To
limit extrapolation beyond the values used to train the model, a check was
performed prior to inversion. Inversion was performed on a pixel by pixel
basis. It was first verified if each layer within a pixel fell within the same
spectral range used to train the models, only if this was the case, for all of
the layers, was model inversion applied. Each output map was recalculated
to the percentage value of the nutrient, by inverting the linear contrast
normalisation.

Using the 24 pixels set aside for validation, the output images were vali-
dated, the root mean square error (RMSE) and Rgdj of these images are
presented.
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Table 6.1: Summary of the chemical analysis of the 52 plant
samples collected in the field.

Nutrient mean (% DM) Range (% DM)
Nitrogen 0.53 0.31-0.91
Phosphorus 0.17 0.04-0.36
Fibre 44.7 40.9-48.5

6.4 Results

The results from the chemical analysis performed on the sampled plants is
presented in table 6.1. The range of nitrogen and phosphorus is in agree-
ment with findings reported by Grant and Scholes [2006]. The findings of
Grant and Scholes [2006] and Treydte et al. [2009] indicated that nitrogen
and phosphorus, in this region, during the dry season, fell below mainte-
nance levels required by herbivores. Of particular interest is that the mean
nitrogen and phosphorus levels were already, so early in the dry season,
below levels identified for maintenance for wild herbivores. Nitrogen main-
tenance levels for wild herbivores has been calculated as 1% N on a dry
matter basis [Prins and Beekman, 1989], and phosphorus maintenance lev-
els have been calculated for wild equids to be 0.24% P on a dry matter
basis [Duncan, 1992].

The quantity of standing biomass contributes to a pixel’s signal [Asner,
2004]. To ensure predictions were related to the nutrient content and not
standing biomass, they were compared with leaf area index measurements
(LAI). LAI measurements were collected in a separate study (unpublished
data?), and those measurements confirmed that the forage nutrient val-
ues and LAT values were uncorrelated (r-values below 0.01 for the three
nutrients).

6.4.1 Network architecture

The neural network parameters selected for each of the input data sets
(causal, full and reduced), per nutrient, are presented in table 6.2. What is

1Filiz Bektas Balic, Istanbul Technical University, Turkey
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evident from the selected models is that there is no ideal network architec-
ture that applies either per input dataset or relative to each nutrient. For
each nutrient the use of the entire spectral range as input resulted in the
lowest test RMSE. The inclusion of known causal bands did not result in
better fitting models, compared to either the entire spectral dataset or a
reduced spectral dataset. The lack of consistent patterns (e.g. more input
would need more epochs) observed in reaching the final selected models
highlights the stochastic nature of neural networks [Skidmore et al., 1997].
Similar to the findings of Uno et al. [2005], we found that there was little
difference between results using the principal components and the entire
spectral dataset, the processing time for both datasets was also similar.
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Table 6.2: The selected network architectures, for the three forage nutrients tested. Selection of a model was made
by selecting the network models that produced the lowest RMSE values when the trained models were
tested (figure 6.3).

Nutrient Input Data  L/N¢ LR* M? Epochs Training Training Test Test
R2 RMSE? R? RMSE®
Nitrogen Full 71 0.8 0.6 17500 0.79 0.004 0.49 0.123
Reduced* 8 0.2 0.2 15000 0.53 0.01 0.53 0.161
Causal® 11 0.2 0.8 15000 0.55 0.006 0.34 0.195
Phosphorus Full 71 0.2 0.2 5000 0.88 0.005 0.74 0.14
Reduced* 8 0.4 0.6 12500 0.79 0.007 0.72 0.143
Fibre Full 71 0.8 0.4 15000 0.96 0.004 0.67 0.184
Reduced* 8 0.4 0.4 10000 0.64 0.01 0.62 0.19

= L/N - The number of input layers and neurons in the hidden layer; LR - Learning Rate; M - Momentum
®*=The RMSE values are unit-less as they are based on normalised values used for training the network and not the
original percentage values for each nutrient.

¢ = The wavelengths used in the causal dataset were 422, 432, 460, 639, 715, 724, 913, 1016 nm [Curran, 1989;
Mutanga et al., 2004c].

* the network model selected for inversion to create the nutrient maps shown in figure 6.4
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6.4.2 Network inversion and validation

In section 6.3.3 it was stated that the models with the lowest test RMSE
values would be selected for inversion. Thus, for phosphorus and fibre the
models using the full dataset was selected for inversion and for nitrogen the
reduced model (principal components) was inverted (table 6.2). In section
6.3.2, it was reported that the mosaicked CAO Alpha imagery contained
cross-track illumination effects. By applying continuum-removal to the mo-
saicked image, it appeared that these effects were removed. However, when
the fibre and phosphorus images were inverted to produce maps of nutrient
concentrations there was some visual evidence of the cross-track illumina-
tion artefact in the output image. These effects were not evident when the
principal component models were inverted to create nutrient output maps.
None of the validation points were located on or neighbouring a mosaic
line, therefore it was not possible to test the effect of these illumination
differences, however, visually it appeared that the illumination artefacts
affected the nutrient predictions. The test results between network models
trained using the full dataset and the reduced dataset were small; hence it
was decided that using the reduced models for inversion was an appropriate
choice, thereby minimizing the illumination artefacts. The resultant images
produced by model inversion are shown in figure 6.4.

The validation of the inverted models is presented graphically in figure 6.5.
The nitrogen and phosphorus validation Rgdj results are below those of the
model test results (figure 6.5 vs table 6.2). The fibre validation results are
slightly higher than those obtained from testing the model. The graphical
presentation of the validation provides the opportunity to see if the model
predictions are equally accurate across the entire prediction range.

Predicted nitrogen values (figure 6.5a) were overestimated across the mea-
surement range, although the differences between measured and predicted
values was less at higher measured values. Many of the predicted phospho-
rus validation points (figure 6.5b) closely fitted the measured values. The
points not following the 1:1 line were below the line. The field data were
re-examined, to see if there were any ecological links (e.g. species, aspect,
slope, soils) that could be found to explain the under-estimation of phos-
phorus values, though no clear explanation was found. The spread of fibre
(figure 6.5¢) was quite close to the 1:1 line, although values were above the
1:1 at low measured values, and below the line at high measured values.
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6.5 Discussion

In this study, using CAO Alpha imagery, three forage quality nutrients (ni-
trogen, phosphorus and fibre) are mapped for the first time, to provide a
landscape view of forage quality in a savanna system, during the dry sea-
son. In this study an approach of applying a principal component analysis
to image data, not only insured that input data for modelling comprised
orthogonal layers, but it was a successful means to select components that
displayed no cross-track illumination artefacts.

In terms of the application of remote sensing, to the field of nutrient map-
ping, this study dealt with two pertinent issues: Firstly the state of the
vegetation, and secondly the spectral range covered by the sensor. These
factors, in combination with considering the ecological considerations of
the produced nutrient maps, are discussed for each nutrient. The context
of the discussion is based on the impact of mapping the respective forage
nutrients.

Nitrogen:

Of the three forage nutrients studied here, nitrogen predicted in the dry
season had the lowest test and validation precision. Spectroscopic studies
that predict nitrogen concentrations in grassland environments, in the wet
season, have frequently achieved high accuracies [Albayrak, 2008; Beeri
et al., 2007; Mutanga and Skidmore, 2004a; Skidmore et al., 2010]. In an
earlier study (see chapter 5), we found that estimation of nitrogen in the
dry season was lower than in the wet season. It seems likely that nitrogen
will in general be a nutrient that is more difficult to estimate in the dry
season.

Over-fitted models, through the inclusion of superfluous data, often results
in precise models, that are unable to generalise to new data [Crawley, 2006].
Pre-selection of causal input features, related to a nutrient, may not improve
the ability to predict a nutrient, with a given training dataset, however it
is expected that such a model can be generalised to new data. Eight fea-
tures previously linked to nitrogen features, in addition to three ecological
variables were used here to predict nitrogen. Although the causal model ap-
peared less affected by over-fitting than the full model (differences between

111



6.5. Discussion

~
o -
0 o
© | fo) 4
S ° " 7 o
° .
o) .
— o ’;
g0 .8
- © Lo
2 .70
Q -7
T o« .
g o 7] “,0’ 8 ©
. o]
1 o
o ]
o
- - AdjR2 (0.41); RMSE (0.07)
N — 1:1line
o
I I I I I I
0.2 0.3 0.4 0.5 0.6 0.7
Measured (%)
(a) Nitrogen
o
@ — -~ AdjR2 (0.57); RMSE (0.03)
© — 1:line
[(e]
Q o
O -
o o) ’,”
~ N - o) o, -
& o 8 .70
B °/.%% o
5 — o/ .- o
g o of”
o 2 0 .6/ °
e Pt o o
o) .
S -7
o
o
C)_ —
o

| | | | | | |
0.00 005 010 015 020 025 0.30

Measured (%)
(b) Phosphorus
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(see figure 6.4a and 6.4b), for the detailed figure explanation please see
the later description...
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Figure 6.5: Validation result of the forage nutrient maps (see figure 6.4c). The cir-
cles represent the validation points, with the dotted line representing the
regression line fit. The results of the fit are presented in the respective
legend boxes. The solid 1:1 line is provided as an aid to visualise if the
validated points are over or under estimated.

test and training results), contrary to what was expected the causal model
was less capable of generalising to a new dataset when compared to the
reduced model that did not specifically include causal features (table 6.2).

These findings are not surprising if one considers the physical nature of
nitrogen in plants. During the wet season, plant nitrogen is largely associ-
ated with photosynthetic pigments and proteins. Photosynthetic pigments
primarily reflect within the visible region of the electro-magnetic spectrum
[Ustin et al., 2009], and the most prominent of the protein absorption fea-
tures are located within the SWIR region [Kokaly, 2001; Kokaly et al.,
2009]. As plants age, photosynthetic pigments denature, and their contri-
bution to the spectral signal diminishes (chapter 4, figure 4.1). Therefore,
in the dry season when most plants have senesced, it would be expected
that the visible region of the spectrum would provide a weak contribution
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to the estimation of nitrogen concentrations in dry plants. This finding con-
curs with the findings of Jacquemoud et al. [1995] and Knox et al. [2010],
who found that in dry plants the SWIR region contributed the most to
nitrogen estimation, and in fresh green plants both the visible and SWIR
regions contributed to the discrimination of nitrogen levels in plants. Using
only the spectral features of the CAO Alpha imagery for nitrogen detec-
tion in the dry season, it would be expected that the closest estimates of
nitrogen concentrations would be located in topographical positions asso-
ciated with increased soil moisture, and therefore vegetation that remains
photosynthetic for longer.

The broad patterns associated with nitrogen concentration seen in fig-
ure 6.4a appear linked to the soil and fire data included in this analysis.
Nitrogen is lowest within the drainage lines, which is in agreement with
the finding of Kroger and Rogers [2005]. This was also seen in the im-
ages produced in the work of Mutanga and Skidmore [2004a] and Skidmore
et al. [2010]. The patterns observed with respect to fire cannot be directly
interpreted. The pattern does not indicate that increased fire frequency re-
sults in higher nutrient contents, but rather an interaction of fire frequency
and intensity. Ideally therefore both fire frequency and fire intensity maps
should be included as ancillary input layers. Skidmore et al. [2010] showed
a significant positive interaction effect between parent material and fire. In
this study all sites were located on a single parent material, but it seems
reasonable that if the results of Skidmore et al. [2010] were analysed of the
soil type rather than parent material an interaction between soil and fire,
similar to what is observed here, would result.

Although it appears that nitrogen levels cannot be directly estimated in
the dry season using only spectral features in the VNIR, some variation is
captured. The variation is most likely associated with spectral differences
associated with different species (also including variations in LAI), and
phenological differences associated with micro-topography. Our findings
show that nitrogen levels were tied to the ancillary data included in the
analysis. If only the VNIR region of a spectrum is available for mapping,
we believe that mapping of nitrogen in the dry season would be enhanced
through inclusion of mapped ancillary variables, such as species, soil, fire,
and phenological maps.
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Phosphorus:

When grasses enter senescence, most of the phosphorus within the plant is
relocated to the roots [Seastedt, 1988]. Some phosphorus is retained within
older leaves and stored as organic phosphorus, this can later be metabolised
and moved to younger shoots or leaves for forming key ATP (adenosine tri-
phosphate), nucleic acids and phospholipids [Schachtman et al., 1998].

Similar to the findings of nitrogen, it was seen that the ancillary data had
a pronounced impact on the prediction of phosphorus. Fire was shown to
play a key role in the predicted concentrations, which is in agreement with
the findings of Chambers and Attiwill [1994]; Ferwerda et al. [2006a]. If
one interprets the output image obtained in this study, it would appear
that phosphorus concentrations are linked to the intensity of fires. The
areas that had been burnt on multiple occasions (figure 6.1d) would have
had cooler fires in 2004-2005 fire season, and these cooler fires result in
lower concentrations of phosphorus over time. This finding is in agreement
with Chambers and Attiwill [1994], who found that the availability of ni-
trogen and phosphorus only increased if fires elevated the soil temperatures
between 400-600°C.

Grant and Scholes [2006] reported that by the end of the dry season, on the
northern basalts the concentration of phosphorus was below maintenance
requirements (0.24% for P, [Duncan, 1992]) for herbivores (wild equids).
Our findings show that for most of the system observed, this is already the
case early in the dry season. In our study area only the section burnt by a
single fire in 2004-2005 had phosphorus levels above the maintenance level.

Detection of phosphorus concentrations by spectra has not been studied
to the same extent as compounds such as nitrogen, cellulose, and water
[Curran, 1989; Fourty et al., 1996; Kokaly and Clark, 1999]. The total
concentration of phosphorus in plants is low [Seastedt, 1988]. Features
that would be directly linked to phosphorus, would likely be undetectable
due to the overlaps from features found in higher concentrations within
plants, e.g. water, cellulose, and nitrogen [Kokaly et al., 2009]. Nonetheless,
we show that using the VNIR region of the spectrum and ancillary data,
57% of the variance in phosphorus concentrations can be accounted for.
In an earlier study (chapter 3) we linked phosphorus to plant sugars (a
product of metabolism - for which phosphorus is directly involved in in
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the plant [Schachtman et al., 1998]). Our findings show that absorption
features selected to predict foliar phosphorus were located in the SWIR
regions. Mutanga and Kumar [2007] selected five bands, through a band
selection algorithm, two of which fell within the VNIR region (710 nm and
742 nm) and the remainder in the SWIR region. Osborne et al. [2002] used
spectroscopy to detect phosphorus deficiencies in plants; they found that a
number of wavelengths within the VNIR region (440, 445, 730 and 930 nm)
were significant predictors of phosphorus, but also stated that prediction
was best done in the early growth stages of a plant. We believe the CAO
Alpha imagery would be more effective in predicting phosphorus in the wet
season, but if one wants to map phosphorus irrespective of season a full
range sensor is required.

Fibre:

In terms of spectral plant reflectance, the dry season should be the best
season to assess the quantity of fibre in plants. At this time, cell water
content would be negligible and features (that had been hidden by strong
water features) associated with lignin and cellulose would become visible
[Elvidge, 1990]. Features associated with fibre are all located within the
SWIR regions of the spectrum [Fourty et al., 1996], therefore it would not
a-priori be expected to achieve good prediction results from an image that
covers only the VNIR region of the spectrum.

Of the three nutrients analysed, fibre produced the highest prediction accu-
racy (65%). The output map of fibre (figure 6.4c) shows detailed variations
that would be provided by spectral data rather than the emphasis of the an-
cillary data that is seen with the nitrogen and phosphorus maps (figure 6.4a
and 6.4b). As with nitrogen and phosphorus, the frequency of fires creates
a clear pattern in the fibre values. The area with the highest fibre values
had been burnt twice, with the last burn in 2004-2005. The remaining area
had been burnt either three times or once. The area burnt once was also
last burnt in 2004-2005, leaving the question why the fibre values differ be-
tween the sites. Similar to our hypothesis that intensity of fire is important
for determining phosphorus levels, we believe a similar hypothesis would
be appropriate for fibre. The intensity of a fire would be a result of the
input fuel load [Elmore et al., 2005]. Therefore in the 2004-2005 fires, the
area burnt twice would have had a lower intensity fire, than the area burnt
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only once. The time since the last fire, in combination with the intensity
of the fire appear to influence fibre concentration (as time since the last
fire increases so will fibre concentration, and lower intensity fires result in
higher fibre concentrations).

Variations in time since the last fire and fire intensity lead to variations in
current standing biomass. In remote sensing, the biomass cover of vege-
tation (photosynthetic and non-photosynthetic) contributes to the spectral
signal of a pixel [Asner, 2004]. Therefore, a pixel covered by a dense layer of
grass (and litter) would in total have a stronger signal than a pixel contain-
ing less dry litter and only non-photosynthetic vegetation. This leads to
the question of whether fibre has in fact been measured or biomass. There
was no correlation between the measured fibre values and LAI (used as a
measure of biomass -Asner [2004]), further indicating that the output image
values explain fibre concentrations found in the field.

Studies by van de Vijver et al. [1999] showed that the effect of post-fire
regrowth on plant nutrients was lost by the end of the growing season
following a burn. For all nutrients studied here, we observed longer term
effects of fires on nutrient concentrations within plants. We propose that
this effect does not contradict the findings of van de Vijver et al. [1999], but
that it is rather a result of the variable contribution of standing biomass
to the signal observed within a pixel, contributing to variances in nutrient
levels. It should be tested whether these apparent post-fire related nutrient
variations would be evident if calculations are made on a g.m~?2 rather than

the current g.g~!.

6.6 Conclusion

In this study our main findings are:

1. The spectral range of the CAO Alpha sensor could be used for map-
ping nutrients in the dry season, however, results from other field
studies show higher precision, with the inclusion of SWIR region in-
formation. Therefore if highly precise measurements are required then
a complete spectral range sensor would be required.
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6.6. Conclusion

. Neural networks effectively generate forage quality maps for savanna

grasses in the dry season.

. Our findings confirmed that ancillary data contributed to mapping of

nutrients [Mutanga and Skidmore, 2004a].

Reduction of a spectral range through principal components analysis
produced results comparable to using an entire spectral range input
[Uno et al., 2005], while also reducing model over-fitting.

. Prior selection of bands known to be linked to a nutrient of interest

(causal input dataset) did not improve model performance, rather
model performance is enhanced through reduction of the entire input
dataset using a technique such as principal components analysis.

. Fire, measured as either intensity or frequency, appears to impact on

forage nutrient levels when mapped on a g.g~! basis.
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Chapter 7

Mapping forage quality,
what’s new?
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The movement and presence of herbivores in savanna systems, has been at-
tributed to spatial and temporal variations in forage quality [McNaughton,
1990; Fryxell, 2008; Owen-Smith, 2008; Prins and van Langevelde, 2008a].
To capture (and monitor) nutrient variations at landscape scales would
provide input for managers and modelers of rangeland and savanna sys-
tems. In this thesis, the objective was to determine whether, with the aid
of remote sensing (and in particular spectroscopy), both the temporal and
spatial variability in savanna forage (grazing) quality could be captured.

An approach was taken which combined spectroscopy and ecology to de-
velop a temporally robust method for mapping forage nutrient concentra-
tions within a savanna system. To capture the temporal aspect of nutrient
variation in forage quality models, it was considered pertinent to examine
the effects of phenological changes in plants. Phenological changes within
plants have been linked to fluctuations in plant nutrients [Jones and Wilson,
1987; McNaughton, 1988; Prins and Beekman, 1989]. Plant phenology also
results in changes to reflectance within the electro-magnetic spectrum [As-
ner, 1998; Dennison and Roberts, 2003; Elvidge, 1990; Irisarri et al., 2009;
Kokaly et al., 2009]. Given phenology has ecological implications in nutrient
variations and it results in spectroscopic variations, we considered under-
standing its contribution would provide a relevant step towards developing
a method for spatially monitoring nutrients with imaging spectroscopy.

In this synthesis, first the spectroscopic findings that are associated with
observed phenological changes in forage nutrient concentrations are high-
lighted. These findings are the result of a greenhouse study conducted at
Wageningen University, The Netherlands. Findings from the greenhouse
level were then upscaled to field level, in KNP (RSA), where ecological
variables, specific to the field site, were factored into the models. Through
this process, models were created that accounted for not only temporal, but
also spatial variations in nutrient levels. The field level was then upscaled
to airborne spectroscopy to provide a landscape level view of nutrient fluc-
tuations in the KNP, RSA. These three levels are individually considered
in terms of the spectroscopic implications for nutrient mapping, and finally
brought together to provide an overview on what has been achieved, and
what I believe still needs to be considered in the field of nutrient mapping
in savanna systems.

Kokaly et al. [2009] recently wrote a comprehensive review about describing
and modelling canopy biochemistry from imaging spectroscopy. The review
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highlights numerous findings and caveats to the application of biochemi-
cal determination. I compare and address my findings, when appropriate,
within the scope of this review article.

7.1 Greenhouse level

One of the challenges to the use of imaging spectrometry for biochemical
characterisation of vegetation, has been scaling of findings from labora-
tory — leaf — canopy — landscape levels [Kokaly et al., 2009]. Figure 7.1
schematically outlines how plant reflectance spectral signatures alter with
scaling, from laboratory (dried ground material) through to canopy mea-
surements. The alterations are as a result of additional plant properties
(e.g. cell contents, cell and leaf structure, etc.), interacting with incoming
solar radiation, and finally the reflected illumination is captured as a spec-
tral signal. Figure 7.2 expands on this schema and outlines the scaling of
canopy vegetation signatures through to remotely sensed observations of
landscapes. The additional factors that contribute to an image’s output
are highlighted.

The upscaled changes to the spectral signal result in diagnostic features
being masked by dominant absorption features (compounds with higher
concentrations within the plant) [Kokaly et al., 2009]. Leaf water spectral
effects provide a clear example, where an increase in water results in de-
creased reflectance in the SWIR region, and a feature such as the protein
feature at 1420 nm being masked by the water features at 1400 nm and
1450 nm (chapter 2, figure 2.1). In chapter 2, absorption features selected
on dried material (= laboratory scale) vs fresh material (=~ canopy scale)
differed. These findings highlight not only the effects of scaling on spectrum
alterations (discussed in depth in Kokaly et al. [2009]), but also the prac-
tice of comparing findings between studies made on different plant material
states.

A finding independent of the scale of plant measurement (e.g. laboratory
or canopy), was that absorption features selected by the stepwise multiple
linear regression (sMLR) differed with plant age. These differences might
have been as a result of the SMLR method used for analysis, which has
received considerable critique [Crawley, 2006; Grossman et al., 1996; Kokaly
et al., 2009; Kumar et al., 2001], or as a result of different absorption
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Figure 7.1: Schematic representation of upscaling vegetation spectral measurements
from laboratory through to canopy levels.
* Laboratory spectra are taken on dried-ground material, and leaf and
canopy spectra are taken on fresh material.

features developing with plant age.

In chapter 3, through an approach of increasing repetitions, re-ordering
of input variables, performing forward/backward steps in the sMLR mod-
elling, and comparing findings to partial least squares regression (PLSR),
it was possible to critically review the spectral effect of plant ageing on
forage quality estimation. Absorption features within the SWIR region
from 2180-2380 nm contributed the highest loadings for the three forage
nutrients (chapter 3, figure 3.3). The SWIR region has frequently been
attributed to containing spectral information related to non-pigment chem-
icals (e.g. starch, cellulose and proteins) [Jacquemoud et al., 1995; Kokaly,
2001; Mutanga and Kumar, 2007; Nagler et al., 2003]. In the review made
by Kokaly et al. [2009], they highlight the need to understand the impli-
cations of overlapping absorption features and the spectral relationships

122



Chapter 7. Synthesis

Sun angle
Sensor Atmosphere
vy Topography
IFOV and lllumination
N —
Yl N

Vegetation -
Tree spp 1°

Vegetation -
Grass spp 1°

Bare ground Weighted Weighted
trum® tree grass
spectrum spectrum spectrum

V

% cover

Figure 7.2: Schematic outline of the technical and spectroscopic components that
contribute towards a spectral signal obtained in an image pixel.
* for the derivation of the bare ground spectrum (see figure B.1 in ap-
pendix B).
@ the derivation of each vegetation spectrum would follow the physical
principles outlined in figure 7.1.

between biochemicals.

The findings of chapter 3 showed that, the relationships between biochemi-
cals and overlapping absorption features were tied to physiological condition
of plants. Besides the high loadings in the SWIR region above 2180 nm,
in the PLSR models, there were high loadings in spectral regions associ-
ated with plant pigments (550, 660-720 nm) and leaf water content (1440,
1940 nm). The inclusion of these spectral features in PLSR was tied to
plant physiological condition. The use of sMLR modelling showed how a
plants physiology influenced the selection of variables in models. Nitrogen
and phosphorus models showed the strongest support for this (chapter 3,
table 3.5), where without the inclusion of a plant age co-variant, in the
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modelling process, variables were selected across the spectrum, particularly
notable was the inclusion of selected wavelengths in close proximity to pig-
ment (430 nm), and water features (990, 1450, 1940 nm), i.e. features that
would model plant physiological state. When the plant age co-variant is
added to the sMLR modelling process, the only absorption features remain-
ing in the models are those in the SWIR spectral region above 2180 nm.

The presence of a plant biochemical spectral feature can be used to express
an ecosystem characteristic. For example, nitrogen features have been used
to characterize net primary production [Ollinger et al., 2002], or lignin and
cellulose features have quantified leaf litter, which has then been used to
investigate nutrient cycling [Wessman et al., 1988; Peterson and Hubbard,
1992]. Results in chapters 2 and 3 showed that physiological condition
contributed to nutrient variations. Within the laboratory setting the phys-
iological state was known and controlled for, but in a field setting this
information could ideally be derived from imagery. In chapter 4, different
indices that could be used to characterize the physiological condition of
plants, through remote sensing were investigated. Ageing of a plant was
found to be expressed by the depth of the cellulose feature at 2100 nm (Cel-
lulose absorption index [Nagler et al., 2003]), or by an index which combined
the area of the VNIR (500-800 nm) and SWIR 2 (2000-2200 nm) features
(phenological index (PhIX) - chapter 4). These two areas combined in
the PhIX, include the Chl a+b (640, 660 nm), REP (710-730 nm), ligno-
cellulose (2100 nm) and protein (2050, 2180 nm) absorption features, all of
which have been associated with ageing of plants (chapter 4).

The contributions of the greenhouse-laboratory experiment, towards the
goal of spatially monitoring nutrients in a savanna system, are listed below:

1. Plant biochemical absorption features are unstable, when scaling from
laboratory to canopy /field levels. When developing the mapping tech-
nique, selection of appropriate features for biochemical estimation
should come from canopy level measurements.

2. A plants physiological state, when not considered in conjunction with
absorption feature selection, will influence the absorption features se-
lected. In mapping forage nutrients in a savanna environment, where
plant physiological conditions will vary across the landscape, ideally
plant physiological state should be considered in the nutrient models.
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3. PLSR, as a method for model building, captures information for a
site that relates not only to specific nutrients, but also accounts for
variations in the plant or site. If nutrient models are built from a
broad range of sites that capture much of the ecosystem variation
(temporal and spatial), then a PLS model would be a suitable means
to generalise to multiple sites, as done by Martin et al. [2008] in forest
stands. sSMLR models are simpler and easier to interpret. If developed
carefully, these should provide effective models for mapping. sMLR
models, when developed with relevant ancillary data, are shown to
provide models of similar predictive capabilities to PLSR models.

4. Derivation of the physiological state of plants through spectroscopy
provides an ancillary data layer that can either be used to aid the
ecological interpretation of nutrient maps, or be combined to build
ecologically variableized sMLR nutrient models.

7.2 Field level

Laboratory level studies revealed, that the physiological state of plant ma-
terial influenced the prominence of absorption features, for each nutrient.
Therefore, as a plant aged different absorption features would gain promi-
nence, therefore in terms of nutrient modelling no features remain consis-
tently significant as plants age (chapter 2 and 3). In upscaling to field
level, further variables need to be considered, e.g. species, fire, etc. (chap-
ter 1, figure 1.1). Reviews of forest species have shown that species have
their own unique chemical signatures [Asner and Martin, 2009]. Savanna
grass species are known to differ in their nutrient contents [Jones and Wil-
son, 1987; van Oudtshoorn, 1992; Prins and Beekman, 1989], therefore it
is likely that these grasses, analysed spectroscopically, would show unique
chemical signatures.

At the field level, grass species and soil type were shown to be variables
that consistently (temporally) explained variation in the three forage nu-
trients considered (chapter 5, table 5.4). Conversely, absorption features
associated with each of the nutrients altered between seasons (chapter 5,
table 5.5). For development of generalised forage nutrient models based on
nutrient absorption features alone, the field study highlights that such an
approach is challenging in savanna environments. An approach, however,
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that builds models with species and soil maps as a base, has the potential
to be more accurate. Whether models are built using ecological variables
(e.g. soil, species, topography) alone, or by combining spectral absorp-
tion features (i.e. features physically linked to a nutrient in question) and
ecological variables, it is clear that, per nutrient, a simple linear model ap-
proach will not explain the temporal variations in nutrient concentrations
within a savanna system (chapter 5, table 5.6). It would be necessary to
examine other modelling approaches (e.g. non-linear, Bayesian or decision
tree modelling) to capture the spectral changes that occur as a result of
seasonal change.

The field level study revealed two additional findings with respect to de-
termining nitrogen concentrations, upscaling, and absorption feature sta-
bility. In chapter 2 it was concluded that absorption features derived from
dried ground material did not upscale to fresh material, this is logical if
one considers that additional components (e.g. water, cell depth and soil
background) are captured by the spectrum as one upscales to canopy level
(figure 7.1). In the field level spectra taken in the dry season, three of the
nitrogen absorption features (1020, 2060, 2130 nm) that were selected when
modelling dried ground material (chapter 2, tables 2.3 and 2.5) were again
selected when building models using the dry season field spectra (chapter
5, table 5.5). It appears that these absorption features are less affected
by leaf structure and canopy architecture, but are rather affected by water
content and the quantity of photosynthetic material in the samples.

With respect to canopy measurements of photosynthetic vegetation (taken
in the wet season), nitrogen absorption features (the highest contributors
to the various principal components) selected in the sMLR modelling were
also present in the laboratory sMLR models. This finding is important in
terms of nitrogen modelling, as it shows that the absorption features at
640, 910, and 1020 nm are insensitive to the heterogeneity of the savanna
grasslands (chapter 2, Tables 2.4, 2.6 and chapter 5, table 5.5).

7.3 Airborne level

Earlier studies that mapped forage related nutrients (nitrogen, phospho-
rus and tannins) in a savanna system, were performed using hyperspectral
imagery obtained during the wet season [Ferwerda, 2005; Mutanga and
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Skidmore, 2004a; Mutanga and Kumar, 2007; Skidmore et al., 2010]. The
findings in this study showed that seasonal changes (chapter 5) and vegeta-
tion physiological condition (chapters 2 and 3) were influential with respect
to estimating forage nutrients with hyperspectral data. Findings from the
field level showed that combining ecological and spectral information into
models would allow for nutrients to be mapped in any season. Creating
forage nutrients maps from hyperspectral imagery, deficient in the SWIR
spectral region, acquired during the dry season, was an important addition
to spectroscopic science. It provided validation for the potential of imaging
spectroscopy for mapping nutrient concentrations irrespective of temporal
factors (chapter 6). It also highlighted the superiority of imagery for nutri-
ent mapping, that include not only the VNIR region, but also the SWIR
region of the spectrum.

In terms of the findings presented in this study, a modelling approach that
combines ecological and spectral information into nutrient models, was ver-
ified at airborne level. Testing the rigour of this approach at airborne level,
where additional spectral and spatial variables would further influence the
ability to retrieve biochemical variables from the data (figure 7.2), was an
important contribution to support the overall findings. For the first time,
it was shown that it is possible to map forage quality (expressed as a com-
bination of three different nutrients), irrespective of season in a savanna
system.

In the laboratory and field level, using linear modelling, the SWIR, region of
the spectrum was shown to contain information relating to the biochemical
content of vegetation. These findings were supported by authors that have
estimated biochemical variables in vegetation [e.g. Jacquemoud et al., 1995;
Kokaly, 2001; Mutanga and Kumar, 2007; Yoder and Pettigrew-Crosby,
1995]. This region of the spectrum was unavailable in the CAO Alpha
imagery. Yet, in this study using a non-linear modelling method, validated
results (chapter 6, table 6.2) for each nutrient were comparable, but slightly
inferior, to the results obtained using the full spectral range on field data
(chapter 5, table 5.6). This leads to the question whether, within the VNIR
region, nutrient specific spectral features exist that were not considered in
this study. Or whether, in this study and earlier biochemical studies, we
as spectroscopists, have failed to investigate and consider the non-linear
nature of plant biochemicals interactions with light.
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7.4 The steps made...

7.4.1 Remote Sensing

In the field of spectroscopic science, for biochemical characterisation of
vegetation, in general and specific to savanna regions, this study provided
the following insights:

. Dry season canopy vegetation, and dried-ground vegetation, share ab-

sorption features for nitrogen detection. These features are no longer
discerned when vegetation is green and fresh. This indicates that
overlaps in water and pigment absorption features, rather than leaf
and canopy structure, apparently influence detection of nitrogen (and
likely other non-pigment biochemicals) (chapter 2).

. The cellulose feature at 2100 nm, or a combination of biochemically re-

lated absorption features (Chl a+b, REP, protein and ligno-cellulose)
can be used to explain phenological properties of grasses (chapters 3
and 4).

. The low concentration of phosphorus in plants, and the lack of ab-

sorption features directly linked to this nutrient, challenge repeatable
estimation of phosphorus concentrations in plants. With the use of
spectral features associated with sugar and starch (as metabolic prod-
ucts), a maximum of 50% of the variation in phosphorus concentra-
tions could be explained (chapters 3, 4 and 5).

. Ecosystem variables that can be presented spatially provide valu-

able variables for biochemical model building or model interpretation
(chapters 3, 5 and 6).

. Within heterogeneous savannas, combining ecological variables and

spectral absorption features into models, provide statistically signifi-
cant variables for forage quality modelling (chapters 5 and 6).

. Forage quality modelling using imaging spectrometry data, can be

conducted in both wet and dry seasons. However, variables used for
modelling differ between seasons (chapter 5).
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7.4.2 Ecology

It has been stated that remote sensing products can make a contribution
to the field of ecology, particularly to the field of spatial ecology [Asner
and Martin, 2009; Curran, 2001; Kerr and Ostrovsky, 2003; Prins and van
Langevelde, 2008b; Ustin, 2004]. This study highlights how ecological find-
ings can contribute to remote sensing, not only in interpretation, but also
in development of models. The fusion of ecological and remote sensing
knowledge provides a platform from which remote sensing products can be
created for use in ecological studies. Plant species and soil type were found
to be the two ecological variables that, irrespective of season, significantly
contributed to explaining spatial variations in forage nutrient levels. In ad-
dition to these two base variables, it was found that seasonally, additional
ecological variables (e.g. phenology and fire) significantly contributed to
the spatial variation of the forage nutrients (chapter 5).

Contributions of ecology to remote sensing, and remote sensing to ecology,
have been the result of the approach taken in this study. The remote
sensing products derived, i.e. methods for deriving phenological and forage
quality maps, can be implemented into ecological studies such as modelling
animal movement and forage selection [Ebrahimi et al., 2010; Pretorius,
2009; Prins and van Langevelde, 2008a; Treydte et al., 2009], to create
continuous landscape models, rather than point based models.

7.5 Filling gaps...

This study focuses on individual ecological variables and spectroscopic vari-
ables, which when combined create the opportunity to map forage quality
in the wet or dry season in savanna’s. To achieve repeatable models it is my
belief that work still needs to be done on a number of these individual vari-
ables. The issues, highlighted in the following paragraphs, would I believe
be valuable contributions to characterising biochemical concentrations, not
only to spectroscopic science, but ultimately for ecological science.

The ageing of plants was the ecological variable initially considered nec-
essary to capture the temporal variations in forage nutrients detected by
imaging spectroscopy (chapter 1). Ecological science (depicted in chapter
1, figure 1.1) has shown that this is the only variable to affect seasonal and
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temporal nutrient variations in savanna systems. In this study we showed
that within the savanna system, both grass species and soil type (chapter
5) were two ecological variables that signigicantly contributed to explain-
ing nutrient variations. To further continue the approach of combining
ecological and spectroscopic findings to model nutrient variations, it needs
to be investigated whether these two variables can be reliably classified in
spectroscopic terms.

With each addition of individually derived variables in biochemical mod-
els, comes the need to evaluate correlation and overlap between variables.
Grass species within savanna ecosystems are known to vary in nutrient lev-
els, thereby creating the observed variations in use of different species by
herbivores [van Oudtshoorn, 1992; Prins, 1996]. It is thus likely that when
deriving a grass species map for a savanna region, elements of the canopy
biochemistry would be included. Derived variables (e.g. plant age and
species) are likely to contain spectral information from the same regions, as
chemicals being derived. For example, in deriving species maps from imag-
ing data, Asner and Vitousek [2005]; Kokaly et al. [2003] and Townsend
et al. [2007] all used nutrient absorption properties to separate out species.
When combining these variables in nutrient models the implications of pos-
sible circularity need to be considered and evaluated.

Both phenological indices (CAI and PhIX) were able to chronologically
differentiate the age of grasses. From the greenhouse study, classes were
defined with respect to each age group. Testing these on a broader range
of plant species and soil types, would identify strengths and limitations of
these phenological indices. These phenological indices create continuous
values, that should in essence differentiate the ratio of photosynthetic to
non-photosynthetic (PV:NPV) within plant spectra. In creating biochemi-
cal models based either on physical remote sensing variables (figure 7.1), or
based upon ecological variables (chapter 1, figure 1.1), such an index would
be a valuable input variable for modelling.

The forage quality maps derived in this study, have been presented in g.m 2.

From an ecological perspective the quality and quantity of forage is nec-
essary to determine resource sufficiency for different ungulates (e.g. quan-
tity of nutrients required differs for a buffalo, compared to a wildebeest)
[Ebrahimi et al., 2010; Prins and Beekman, 1989; Treydte et al., 2009]. In
this study the focus has been purely to analyse forage quality, and thus
the quantity of the vegetation was not measured. To derive a remote sens-
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Chapter 7. Synthesis

ing application for forage assessment, that can be used by ecologists, the
quantity of vegetation also needs to be determined.

Using remote sensing methods, vegetation biomass (quantity) has been de-
rived. The estimation of biomass, has been extensively applied to green
vegetation canopies until they reach full growth. At high biomass concen-
trations it has been found that the commonly applied NDVT algorithm sat-
urated. Mutanga and Skidmore [2004b], found that with the use of narrow
band vegetation indices biomass saturation could be avoided. In ecological
studies, the estimation of forage quality is particularly important in the dry
season, when animals are most often affected by limited resources. Thus,
in terms of forage quality evaluation, it is necessary that plant biomass can
be determined in the dry season. An index for estimating biomass there-
fore needs to be able to perform when plants have entered dormancy, and
should be sensitive to capture variations in PV:NPV ratios.

Three separate empirical approaches (PLS, sMLR and ANN) for modelling
forage quality, were applied in this work. Of these three approaches, sSMLR
derived models can be easily interpreted, however, they are limited by the
variables used for model building. In Asner [1998, 2004], the non-linear
optical properties across the spectrum of the PV:NPV relationship was
emphasized. In savanna systems, the vegetation is a gradient of PV:NPV
values, and thus with modelling the vegetation within this system, non-
linearity in spectral variation will be present. As a result of the hidden
layers within neural network models, these non-linear models are difficult
to interpret. Yet, they repeatedly produce models with high predictive
capabilities on datasets that have been used to construct the model. It
appears that modelling of forage nutrients should ideally contain non-linear
components. In order to be able to generalise biochemical models between
sites and seasons, there needs to be a means to interpret the non-linear
features within the models, and in this regard there needs to be further
studies.

The suggestions presented above, for future research into the field of spec-
troscopy for biochemical detection in vegetation, infer that there are still
numerous aspects to the field that are unknown. In this work, an insight
into the contribution of phenological and seasonal changes to alterations in
spectral properties, associated with biochemical constituents in vegetation,
has been provided. Mapping of forage quality in dry and wet seasons has
been shown to be possible, but it will be through ongoing perseverance of
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scientists, ideally in collaboration from different fields, that the applica-
tion of imaging spectroscopy for continuous monitoring of forage quality in
savanna, grassland, and pasture systems will be achieved.
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Appendix A

Full vs reduced spectrum
empirical methods in
biophysical modeling

The analysis of continuous biophysical variables has been performed using
different techniques available in spectroscopy. The development of hyper-
spectral sensors opened up the possibility to perform a range of new investi-
gations that allowed for analysis of detailed physical properties of plants. It
also created a problem of having to deal with superfluous data (the “Curse
of Dimensionality” [Scott, 1992]). Different statistical techniques have been
applied to deal with the superfluous data.

Empirical imaging spectroscopy approaches to nutrient mapping, have ei-
ther looked at reducing a full range spectrum down to a few selected wave-
lengths before prediction of nutrients, or used a full spectrum approach us-
ing all information available within a spectrum. Some of the methods that
have been applied to reduce the dimensionality of hyperspectral data prior
to model fitting include, modified stepwise regression [Kokaly and Clark,
1999; Darvishzadeh et al., 2008b; Kawamura et al., 2008], genetic algo-
rithms [Vaiphasa et al., 2007], bootstrap selection [Ferwerda et al., 2006b],
wavelet decomposition [Blackburn, 2007; Hsu, 2007], outlier analysis [Chen
et al., 2007], and selection based on known physically linked absorption fea-
tures [Mutanga and Skidmore, 2004a]. The wavelengths selected through
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the reduction process are then used as input into developing either linear
(multiple linear regression - MLR [Ferwerda et al., 2006b; Chen et al., 2007;
Hsu, 2007; Vaiphasa et al., 2007]) or non-linear (Artificial neural networks
- ANN [Mutanga and Skidmore, 2004a; Chen et al., 2007]) models.

Both MLR and ANN have been applied in the studies mentioned above and
in other studies, but several limitations have been highlighted with both
methods. Kumar et al. [2001] summarised the limitations of MLR that
have been expressed by numerous authors. ANN overcomes some of these,
but the application of non-linear models inherently requires large training
sample sizes which are generally unavailable in such studies. An ANN
model also requires the use of hidden layers, making the models difficult to
interpret, invert and apply to new datasets.

Multicollinearity and overfitting are two of the major drawbacks of the MLR
approach. Principal component regression (PCR) and partial least squares
regression (PLSR) are two full spectrum methods that have been proposed
to overcome these MLR limitations [Geladi and Kowalski, 1986]. In both
PCR and PLSR the spectral dataset is collapsed into a small number of
vectors. In calculating the vectors, independence between vectors is guar-
anteed and multicollinearity is thereby avoided. The means of collapsing
hyperspectral cubes differs for both methods.

In PCR, only the hyperspectral data matrix is collapsed. If there is large
scale variability related to spectral issues, such as brightness or water fea-
tures, these would be expressed in the first vectors. The risk being, that
subtle features, attributed to nutrient fluctuations, would only be extracted
in lesser components. In PLSR, collapsing the spectral cube into vectors
is done in combination with dependent nutrients. The dependent (nutrient
to be predicted) and independent (spectral cube) matrices are related to
one another in calculating each vector. A vector is the product of max-
imum covariance described between the dependent and independent vari-
ables [Geladi and Kowalski, 1986; Takahashi et al., 2000]. Vectors produced
by PLSR, unlike in PCR, are integrally related to properties of the nutrient
of interest.

These full spectrum methods (particularly PLSR) have proven to be re-
liable and effective for prediction of various nutrients, at single sites, in
various biomes e.g., forests [Smith et al., 2002; Huang et al., 2004; Ollinger
and Smith, 2005; Asner and Martin, 2008|, and grasslands, meadows or
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modeling

rice fields [Takahashi et al., 2000; Starks et al., 2004; Schut et al., 2005;
Darvishzadeh et al., 2008b; Kawamura et al., 2008; Suzuki et al., 2008].
Martin et al. [2008] has shown that a calibration model developed, using
PLSR, at one site could be applied to multiple forest stands.
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Appendix B

Construction of bare ground
spectra
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Summary

The grazing resource provides the basis for maintenance of a broad spectrum of
grazing herbivores, both wild and domestic. The quality of this resource, and
thereby its ability to support herbivores, varies both spatially and temporally.
Assessment of the forage resource has traditionally been made through point based
studies. More recently with the development of imaging spectrometers it has
become possible to create landscape level images depicting the concentrations of
different plant nutrients. This study focussed on the grazing resource in an African
savanna system located in the Kruger National Park, RSA. In this system, nitrogen
and phosphorus are co-limiting nutrients, and the quantity of consumed fibre limits
digestibility of forage. For rangeland managers knowledge on the concentrations
of these nutrients is particularly relevant during the dry seasons when nutrients
are limited.

The images created of plant nutrient concentrations have focussed on spatial vari-
ability in the wet season (i.e. plant growth periods). Spectral characteristics of
plants vary between photosynthetic and non-photosynthetic tissues. It was the
premise of this thesis that mapping of plant nutrients in the dry and wet seasons
differed. In order to create a method that allowed for repeatable assessment of for-
age nutrients by imaging spectroscopy it was necessary to investigate the temporal
aspect of nutrient variations. This thesis focussed on addressing temporal varia-
tions in forage nutrients and the implications for this on creating forage nutrient
images of the grazing resource. Given the limitations of nitrogen and phosphorus,
and the influence of fibre on the digestibility of forage, these three nutrients were
selected as being representative of grazing forage quality.

To create nutrient models that can be repeatedly used it was necessary to un-
derstand the role and stability of variables in derived models. The theoretical
framework for plant nutrient mapping with imaging spectroscopy (i.e. identifica-
tion of absorption features) is founded in NIRS. In developing a model based on
physical principals it was necessary to determine if at different measurement scales
the physical variables (i.e. absorption features) were stable. Absorption features
identified in NIRS studies have been used for developing and interpreting nutri-
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ent models, however, the actual effects of upscaling these studies from laboratory
to field level still required investigation. Using nitrogen as a base for analysis in
chapter two, the effects of sample preparation and spectroscopic measurement on
absorption feature stability were investigated. It was found that absorption fea-
tures selected in models derived from dried and ground material were unsuitable to
be used on vegetation canopies of fresh material (Chapter 2). In chapter five, it was
however found that spectroscopic measurements taken of senescent grass canopies
shared three nitrogen related absorption features (1020, 2060, and 2130 nm) with
dried ground material models. It appears that for these absorption features, water
and photosynthetic material, rather than leaf structure and canopy architecture
affect their prominence for nitrogen prediction.

The combined findings of chapter 2 and chapter 5, support a wide body of liter-
ature that suggest that at the vegetation canopy level, subtle nutrient absorption
features are masked by more prominent features (e.g. nitrogen features masked
by water features). To understand temporal variations in nutrient modelling it
was necessary to understand the effects of plant physiological changes on spec-
tral modelling of nutrient variations. In ecological studies, phenological changes
of vegetation have been shown to be linked to nutrient variations. Changes in a
plants physiological state also result in spectral variations (e.g. reduction of water
features as the water content in a plant declines). In chapter 3, using a green-
house study it was established that plant age significantly influenced the selection
of variables included in forage nutrient models. By either including plant age as
an independent variable in modelling, or considering plant age when interpreting
models lead to nutrient models that could be temporally applied.

Plant age, like nutrients vary across a landscape. Multiple factors cause these
variations, e.g. topography, grazing, fires, etc. In chapter 3 it was established that
knowledge of plant age aided the modelling of nutrients. Remote sensing has fre-
quently been used for phenological studies and well established indices have been
created to monitor phenological changes over time (e.g. NDVI, NDWI, CAI). It
has, however, not been determined if these phenological indices were suitable for
capturing plant age variations across a landscape. To suitably capture variations
in plant age, the values derived from an index should chronologically follow the
sequence of plant development. With such an index it would be possible to deter-
mine the landscape variation in plant age. In chapter 4, the potential of multiple
phenological indices for capturing plant age variations were investigated. NDVI
and NDWTI could separate out age classes, but not chronologically, CAI and a
newly proposed phenological index (PhIX) were both capable of chronologically
separating out age classes. These two indices were therefore considered suitable
for development of plant age images for use as input in nutrient models.

Using the greenhouse experiment it was possible to determine that plant age signif-
icantly contributed to explaining spectral variations in nutrient models (chapter 3).
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In the field, temporal and spatial variations of nutrients will be the result of many
additional factors (chapter 1, figure 1.1). To make a model that can be consistently
applied, the models should be kept as simple as possible while retaining variables
that make ecological and physical sense. In chapter 5, forage nutrient models, in
a savanna system (Kruger National Park, RSA) were developed for both wet and
dry seasons. Models were developed for each season using either ancillary (ecolog-
ical) variables (that could be derived from RS products), or spectral absorption
features related to the specific nutrient, or a combination of both. It was found
that a suitable single model per nutrient could not be derived for multiple sea-
sons, however, plant species and soil type, were variables that were significant, in
most of the nutrient models. Besides these two base variables, differing additional
variables were required to create each of the seasonal forage nutrient models.

Due to limitation of certain nutrients (e.g. nitrogen and phosphorus in the KNP),
dry seasons are critical periods for grazing herbivores to obtain sufficient nutrients
for maintenance. The studies discussed in chapters 2-5 provided evidence that
it was possible to map forage nutrients using imaging spectroscopy in both the
wet and dry seasons. Wavelengths selected in these studies have all included
wavelengths located in the SWIR region. In chapter 6, it was investigated whether
using a new imaging spectrometer (CAO Alpha system) that only covered the
VNIR spectral range, it was possible to map forage nutrients in the dry season. It
was found that during the dry season, by including ancillary variables and with
the limited sensor spectral range (i.e. excluding the SWIR spectral region), it was
possible to estimate the quantity of fibre and phosphorus with R? values above 60%
and nitrogen with an R? value of 53%. Although, forage quality could be mapped
using the VNIR region of the spectrum, to achieve higher accuracy models a full
VNIR-SWIR spectrum is required.

In conclusion, this study verified that it was possible to map forage nutrients over
a temporal range that includes both dry and wet seasons. Ideally a spectral range
that extends from the visible through to the SWIR region should be used for
nutrient mapping. By including ecological data (that can be created from spatial
data) as ancillary variables in combination with physically linked (i.e. features
linked to specific nutrients) absorption features, creates a framework for deriving
ecologically sensible spatial and temporal models of forage nutrients.
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Samenvatting

Graslanden zijn een natuurlijke hulpbron die de basis vormt voor het bestaan van
een grote variéteit aan zowel wilde als gedomesticeerde herbivoren. De kwaliteit
van het voedsel, en daarmee de mogelijkheid om herbivoren te ondersteunen, va-
rieert zowel ruimtelijk als in tijd. Traditioneel werd voedselkwaliteit bepaald door
middel van puntmetingen in het veld. Ontwikkeling van beeldvormende spectro-
meters maakt het nu mogelijk om op landschaps niveau ruimtelijke metingen van
nutriéntenconcentraties in planten te maken. Het in dit proefschrift beschreven
onderzoek richtte zich op een Afrikaans savannesysteem in het Kruger Nationaal
Park, gelegen in de Republiek van Zuid Afrika. In dit gebied zijn stikstof en fosfor
beide beperkt beschikbare nutriénten, terwijl de hoeveelheid geconsumeerde vezels
de verteerbaarheid van voer beperkt. Het is van belang dat beheerders van weide-
gronden kennis hebben over deze nutriéntenconcentraties, met name in het droge
seizoen, wanneer de hoeveelheid beschikbare nutriénten beperkt is.

De karteringen van nutriéntenconcentraties in planten die tot op heden gedaan zijn
met aard observatie beschreven voornamelijk ruimtelijk variabiliteit in het natte
seizoen. Dit is de groeiperiode voor vegetatie in het savanne ecosysteem. Spectrale
kenmerken van planten variéren tussen fotosynthetische en niet-fotosynthetische
weefsels. In dit proefschrift werd vooropgesteld dat het karteren van plant nu-
triénten in het natte of droge seizoen verschilt. Om een methode te ontwikkelen
waarbij beeldvormende spectrometers zonder tijdsbeperking gebruikt kunnen wor-
den om nutriénten te karteren, was het nodig om eerst de variatie van nutriénten in
de tijd te bestuderen. Dit proefschrift richtte zich daarom op het bestuderen van
variatie van voedingsstoffen in de tijd en de resulterende gevolgen voor het karte-
ren van deze nutriénten. De beperkt beschikbare nutriénten stikstof en fosfor, en
de invloed van vezels op de verteerbaarheid van voer, zijn een goede graadmeter
van de voedingskwaliteit van grassen.

Om nutriéntenmodellen te maken die voor monitoring gebruikt kunnen worden, is
het nodig om de rol en stabiliteit van variabelen in deze modellen te begrijpen. Het
theoretische kader voor het karteren van plantnutriénten met behulp van beeld-
vormende spectroscopie (het identificeren van kenmerkende spectrale absorptie) is
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gebaseerd op spectroscopie in het nabij-infrarode golflengtebereik (NIRS). Bij het
ontwikkelen van een model dat gebaseerd is op fysische principes, mogen fysische
variabelen (de kenmerkende absorptie golflengtes) niet veranderen bij waarneming
op verschillende schaalniveaus. Absorptie golflengtes die gevonden zijn door on-
derzoek met NIRS zijn weliswaar gebruikt voor ontwikkeling en interpretatie van
nutriéntmodellen, maar het effect van schaalvergroting van laboratorium waarne-
mingen naar veldwaarnemingen was nog niet voldoende onderzocht. Door gebruik
te maken van stikstof als basis voor de analyse, zoals beschreven in hoofdstuk 2,
kon de invloed van monster preparatie van plant materiaal en de spectrale mee-
topstelling onderzocht worden. Uit de resultaten bleek dat het niet mogelijk was
om de spectrale absorptie kenmerken van gedroogd en gemalen plant materiaal te
relateren aan een natuurlijke bedekking met levend plant materiaal (hoofdstuk 2).
In hoofdstuk 5 bleek echter wel dat spectrale absorptieckenmerken (bij 1020, 2060,
en 2130 nm golflengte), van een ouder grasland konden worden gerelateerde aan
modellen die gebaseerd waren op gedroogd en gemalen plant materiaal. Het bleek
dat voor deze drie absorptie golflengtes, water en fotosynthetisch materiaal van
grotere invloed waren bij het voorspellen van stikstof gehalte dan bladstruktuur
en bedekkingsstruktuur.

De resultaten van hoofdstukken 2 en 5 passen in het beeld dat geschetst wordt in
de literatuur, namelijk dat op het schaalniveau van vegetatie, de subtiele spectrale
absorptie kenmerken van nutriénten overschaduwd worden door andere, prominen-
tere, kenmerken (bijvoorbeeld absorptie door stikstof gemaskeerd door absorptie
door water). Om de variatie van nutriéntenconcentraties in de tijd te begrijpen,
was het nodig om eerst de effecten van fysiologische veranderingen van planten
op spectrale nutriéntenmodellen te beschrijven. Ecologisch onderzoek heeft laten
zien dat fenologische veranderingen in vegetatie gerelateerd zijn aan veranderingen
in nutriéntconcentraties in plantweefsel. Veranderingen in de fysiologische staat
en nutriéntenconcentraties van een plant resulteert vervolgens weer in spectrale
veranderingen (bijv. een vermindering van water absorptie bij een afnemende
hoeveelheid water in een plant). In hoofdstuk 3 werd door middel van een kas
experiment vastgesteld dat de plant leeftijd een significante invloed heeft op de
keuze van variabelen in nutriéntmodellen, voor stikstof, fosfor en vesels. Door
de leeftijd van een plant als onafhankelijke variabele op te nemen bij het maken
van een model, of door plant leeftijd te gebruiken bij het interpreteren van een
modelresultaat, kan een nutriéntmodel voor metingen over langere tijd gebruikt
worden.

Op landschapsniveau komen planten van verschillende leeftijden voor. Dit bein-
vloed de concentraties van nutriénten. Verscheidene factoren beinvloeden de plant
leeftijd, zoals, topografie, begrazing, brand, enz.. In hoofdstuk 3 werd vastgesteld
dat kennis omtrent de leeftijd van planten helpt bij het modelleren van nutriénten.
Aardobservatie werd al eerder gebruikt voor fenologisch onderzoek en verschei-
dene indices zijn gedefinieerd voor het observeren van fenologische veranderingen
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in planten over tijd (bijv. NDVI, NDWI, CAI). Het was echter nog niet vast-
gesteld of deze indices geschikt zijn voor het bepalen van ruimtelijke variatie in
plantleeftijd op landschapsniveau. Om de variatie in plantleeftijd deugdelijk vast
te stellen, moet een vegetatie index de chronologische ontwikkeling van een plant
kunnen volgen. In hoofdstuk 4 werd gekeken naar de geschiktheid van verschei-
dene fenologische indices voor het bepalen van plant leeftijd. NDVI en NDWI
konden onderscheid maken in leeftijdscategorieén, maar niet in een chronologische
volgorde. CAI en een nieuw ontwikkelde index, PhIX, konden beide wel leeftijdsca-
tegorieén onderscheiden in een chronologische volgorde. Deze laatste twee indices
waren dus geschikt voor het karteren van plantleeftijd met optisch beeldmateriaal
en gebruik in nutriéntmodellen.

Door het kas experiment was het mogelijk om vast te stellen dat leeftijd van plan-
ten significant bijdraagt aan het verklaren van de spectrale variatie in de nu-
triéntmodellen (hoofdstuk 3). In het veld echter wordt variatie in nutriénten en
spectrale waarden ook door verscheidene andere factoren bepaalt (hoofdstuk 1,
figuur 1.1). Om een model robuust te maken, moet het eenvoudig zijn maar moet
alle relevante variabelen met ecologische en fysische informatie bevatten. In hoofd-
stuk 5 werden nutriéntenmodellen ontwikkeld voor zowel het natte als het droge
seizoen in het savanne syteem van het Kruger Nationaal Park. Deze modellen
werden apart gemaakt voor elk seizoen, gebruik makend van ofwel ecologische va-
riabelen (verkregen door aardobservatie), ofwel spectrale absorptiekenmerken die
gerelateerd zijn aan een bepaalde nutriént, ofwel een combinatie van beide. Het
was niet mogelijk om een enkel model te maken dat geschikt is voor iedere nu-
triént en geschikt is voor zowel het droge als het natte seizoen. Het bleek ook dat
plantensoort en bodemtype in het droge en het natte seizoen significante varia-
belen zijn in de meeste modellen. Naast deze twee variabelen waren nog andere
variabelen nodig om een seizoensonathankelijk nutriéntenmodel te maken.

Door de beperkte beschikbaarheid van bepaalde nutriénten (zoals bijv. stikstof
en fosfor in het Kruger Nationaal Park), zijn de droge seizoenen kritieke periodes
voor grazende herbivoren om voldoende voedingsstoffen binnen te krijgen. Het on-
derzoek, beschreven in hoofdstukken 2 tot en met 5, liet zien dat het zowel in het
natte als het droge seizoen mogelijk is om voedingsstoffen te karteren met behulp
van beeldvormende spectroscopie. In dit onderzoek zijn significante golflengtes ge-
vonden in het kortgolvig infrarode (SWIR) golflengte bereik die gebruikt kunnen
worder voor het karteren van nutriénten. In hoofdstuk 6 werd onderzocht of de
nieuwe, vliegtuig gedragen, CAO Alpha beeldvormende spectrometer, met enkel
banden in het zichtbare en nabij infrarode (VNIR) golflengte bereik, voedingsstof-
fen kon karteren in het droge seizoen. Ondanks dat het SWIR golflengte bereik
niet aanwezig was in deze sensor, bleek dat, door gebruik te maken van ecologische
variabelen, het mogelijk was om de hoeveelheid vezels en fosfor met R? waardes
boven de 60% te karteren, en stikstof met R? waardes van 53%. Hoewel de kwa-
liteit van voedingsstoffen gekarteerd kon worden met enkel het VNIR golflengte
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bereik, zal een volledig VNIR-SWIR golflengte bereik nodig zijn om een hogere
nauwkeurigheid te verkrijgen.

Samenvattend, dit onderzoek heeft laten zien dat het mogelijk is om voedings-
stoffen te karteren over een tijdsperiode die zowel het natte als het droge seizoen
omvat. Idealiter zou zowel het zichtbare, nabij-infrarode en kortgolvig infrarode
golflengte bereik gebruikt moeten worden voor het karteren van nutriénten. Het
is de combinatie van ecologische variabelen en physiche variabelen de het mogelijk
maakt om natuurlijke voedingsstoffen in savanne graslanden in ruimte en tijd to
karteren.
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