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Abstract 

It is hypothesised that the spatial distribution of organisms in landscapes is largely a 
response to spatial heterogeneity that reflect, for instance, varying levels of resource 
availability or varying levels of human disturbance.  In this regard, the ecologically 
meaningful characterisation of spatial heterogeneity is critical.  It is for this purpose that 
remote sensing provides an important source of spatial data.  However, current approaches 
and techniques to quantify spatial heterogeneity from remote sensing imagery as a 
precursor to predicting different ecological patterns such as wildlife distribution largely 
remain underdeveloped.  
 In this thesis, a new approach is developed to quantify spatial heterogeneity 
from remote sensing imagery, based on the intensity (i.e., the maximum variance 
exhibited when a spatially distributed landscape property such as vegetation cover is 
measured with a successively increasing window size or scale) and the dominant scale 
(i.e., the window size or scale at which the intensity is displayed).  This is followed by 
investigating whether this new approach can be used to reliably predict the probability of 
elephant (Loxodonta africana) presence in the landscape, as well as changes in the 
probability of elephant presence over time.  The investigation was conducted in the 
communally managed agricultural areas of the Sebungwe in northwestern Zimbabwe.  
Overall, the thesis contributes to a wider scientific debate about the role of scale in 
understanding ecological patterns, as well as to a wider societal debate, that aims to attain 
a mutually beneficial human-wildlife co-existence in increasingly agricultural landscapes.  
 In this thesis, it is demonstrated that variograms and wavelets can be used to 
quantify spatial heterogeneity from remote sensing imagery based on intensity and 
dominant scale.  Wavelets are found to be particularly invaluable for this purpose 
compared with variograms.  Furthermore, using the new approach, the probability of 
elephant presence, as well as changes in the probability of elephant presence over time in 
the Sebungwe is reliably predicted.  
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Samenvatting 

Aangenomen wordt dat de ruimtelijke verdeling van organismen in landschappen 
grotendeels afhangt van de ruimtelijke heterogeniteit die een afspiegeling is van, 
bijvoorbeeld, sterk uiteenlopende beschikbaarheid van middelen of verschillende niveaus 
van verstoring door de mens.  In dit opzicht is het op ecologische wijze kenschetsen van 
de ruimtelijke heterogeniteit cruciaal.  Voor dit doel vormen aardobservatiebeelden een 
belangrijke bron van ruimtelijke gegevens.  Echter, de huidige benadering en het gebruik 
van technieken voor het bepalen van de ruimtelijke heterogeniteit uit 
aardobservatiebeelden als tussenstap voor het voorspellen van verschillende ecologische 
patronen, zoals de verspreiding dieren, is nog onvoldoende ontwikkeld. 
 In dit proefschrift wordt een nieuwe manier beschreven voor het bepalen van 
ruimtelijke heterogeniteit uit aardobservatiebeelden die gebaseerd is op de intensiteit 
(d.w.z., de maximale variantie die wordt gemeten wanneer een eigenschap van de 
ruimtelijke verdeling van het landschap, zoals bedekking door plantengroei, verandert met 
een successievelijk toenemende schaal) en de overheersende schaal (d.w.z., de schaal 
waarop die intensiteit zich voordoet).  Vervolgens wordt onderzocht of deze nieuwe 
benadering gebruikt kan worden voor het betrouwbaar voorspellen van de kans op 
aanwezigheid van olifanten (Loxodonta africana), alsmede veranderingen in de kans op 
aanwezigheid van olifanten.  Het onderzoek richtte zich op de gemeenschappelijk 
beheerde landbouwgebieden in Sebungwe in het noordwesten van Zimbabwe.  
Daarenboven draagt het proefschrift bij aan een bredere wetenschappelijke discussie 
aangaande de rol van de schaal in het begrijpen van ecologische patronen, alsmede aan 
een bredere maatschappelijke discussie die zich richt op het bereiken van een wederzijds 
voordeel in het samenleven van mens en dier in landschappen die meer en meer worden 
gebruikt voor landbouw. 
 In dit proefschrift wordt aangetoond dat variogrammen en wavelets kunnen 
worden gebruikt voor het bepalen van ruimtelijke heterogeniteit uit 
aardobservatiebeelden, gebaseerd op de intensiteit en de overheersende schaal.  Wavelets 
worden bijzonder waardevol bevonden voor dit doel, vergeleken met variogrammen.  
Gebruikmakend van de nieuwe benadering, wordt de kans op aanwezigheid van olifanten, 
alsmede veranderingen in de kans op aanwezigheid van olifanten, in Sebungwe 
betrouwbaar voorspeld. 
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Chapter 1
General introduction 

1.1 Sustainable utilization as a conservation paradigm 

Sustainable utilization of wildlife is the current conservation paradigm in 
the Southern African wildlife management strategies.  This paradigm 
promotes the coexistence of wildlife and humans in landscapes outside of 
the national parks, particularly in communally managed areas such as the 
communal agricultural landscapes or in landscapes that are used for other 
purposes such as for pastoralism, timber extraction or mining, through non-
exhaustive utilization of wildlife (Hoare and Du Toit 1999, Hulme and 
Murphree 2001).  This sustainable utilization is a relatively new 
conservation paradigm in communally managed areas and it advocates for 
the wise use of natural resources while not compromising the future 
availability of the natural resource.  The inception of this paradigm in the 
communal areas followed a realization in the early 1980s that the wildlife 
preservation strategy had failed as poaching in wildlife reserves and 
particularly, expanding agricultural activities, e.g., arable agricultural field 
expansion in wildlife habitats continued to cause wildlife species loss 
(Hulme and Murphree 2001).  Thus, the sustainable utilization marks a 
departure from the preservation paradigm that advocates for the total 
exclusion of wildlife in landscapes outside of the national parks (Prins, et 
al. 2000).  However, the success of the sustainable utilization paradigm in 
conserving wildlife species hinges upon the persistence of wildlife species 
in the landscapes outside of the national parks, especially in communal 
lands.  In other words, only when wildlife species are present outside the 
national parks in preferred numbers the sustainable utilization paradigm 
succeeds.
 In order to sustainably utilize wildlife, there is a need to 
understand and promote landscape conditions that enable the persistence of 
wildlife, particularly in unfenced communally managed agricultural 



Chapter 1 

2

landscapes.  This focus on sustainability may take the form of 
understanding the habitat conditions under which wildlife species of 
interest can persist, in the face of pressure from expanding agricultural 
activity.  The term habitat is generally defined as the place where an 
animal lives and this takes into consideration that all animals, excluding 
humans, can live in an area with sufficient basic resources such as food, 
water and cover (Morrison, et al. 1992).  In this regard, the need for 
researchers to devote attention to the habitat of wildlife species they are 
studying has been emphasized (Yapp 1922, Southwood 1977) and not so 
much their coexistence with humans.  However, agricultural landscapes 
provide unique environments where agricultural fields and human 
settlements subdivide a continuous habitat into discontinuous habitat 
patches of different quality and spatial arrangements.  In other words, 
agricultural activity results in a landscape that is uniquely spatially 
heterogeneous (patchy).  In this situation, not only the amount of natural 
habitat is important, but the spatial arrangement and the amount of natural 
vegetation cover in the habitat patches also become particularly critical.  
Therefore, all being the same, whether wildlife species populations can 
persist in an unfenced agricultural landscape could be a function of how 
suitable the spatial arrangement of natural habitat patches is for the 
particular wildlife species.  In other words, the persistence of a wildlife 
species population in an agricultural landscape that is not bound by a 
wildlife fence could be a function of the optimal levels of spatial 
heterogeneity that results from the imposition of agricultural activity (e.g., 
arable fields and logging) and human settlements on the natural habitat 
template.  These optimal levels of spatial heterogeneity then define habitat 
permitting the coexistence of both wildlife and humans in a sustainable 
way. 
 As a preamble, the terms landscape and spatial heterogeneity 
need to be properly defined to avoid unnecessary confusion.  A landscape 
is defined as an area that is spatially heterogeneous (Pickett and Rogers. 
1997) and ranges in size from a few square metres to tens of square 
kilometres.  Spatial heterogeneity is defined as the patchiness of a 
landscape property in space, e.g., vegetation cover (Legendre and Fortin 
1989, Pickett and Rogers. 1997, Gustafson 1998).  A patch is defined as an 
internally homogenous entity in the landscape (Kotliar and Wiens 1990).  
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In other words, a patch is a definable area on the Earth’s surface whose 
structure differs from adjacent areas (Pickett and Rogers. 1997).  However, 
the perception of the internal homogeneity of the patch may vary between 
wildlife species (Hostetler 1999). 
 To the best of our knowledge, not much is currently known about 
the response of wildlife species to spatial heterogeneity.  Although, 
empirical and theoretical literature indicates the importance of spatial 
heterogeneity to wildlife species distribution (Turner 1989, Johnson, et al.
1992, Kareiva and Wennergren 1995, Turner, et al. 1997, Lynam and 
Billick 1999, Adler, et al. 2001), an understanding of the optimal levels of 
spatial heterogeneity at which specific wildlife species can persist in 
agricultural landscapes is still rudimentary.  This has been attributed to the 
lack of clarity in the definition and therefore, quantification of spatial 
heterogeneity (Sparrow 1999).  

1.2 Quantifying spatial heterogeneity  

In this thesis, special focus is put on the quantification of spatial 
heterogeneity as a forerunner (Perry, et al. 2002) to testing hypotheses 
about ecological patterns such as wildlife species distribution.  
Traditionally, researchers have quantified spatial heterogeneity from 
remote sensing images using two basic approaches: (a) the direct image 
approach, where variance measures derived from straight reflectance or 
reflectance indices are used to quantify spatial heterogeneity, using the 
original pixel size of the image (Goodchild and Quattrochi. 1997); and (b) 
the cartographic or patch mosaic approach, where the image is subdivided 
into homogeneous mapping units through classification (Gustafson 1998).  
The first approach assumes that spatial heterogeneity is displayed at the 
constant pixel size of the image and, in this case, it is only the reflectance 
values that change in space.  The limitation of this approach is that its 
choice of scale is arbitrary, thus it is subjective.  Alternatively, using the 
patch mosaic approach to quantify spatial heterogeneity assumes a 
collection of discrete patches.  Based on this approach, characterisation of 
spatial heterogeneity is highly dependent on the initial definition of 
mapping units by the researcher (Turner 1989).  The limitation of this 
approach is that patches have abrupt boundaries and the variation within 
the patches is assumed to be irrelevant (McGrigal and Cushman 2002).  
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The categorical maps upon which the patch mosaic model depends 
facilitate the contextual interpretation of spatial heterogeneity.  
Furthermore, the patch mosaic model is parsimonious and has therefore 
become the operating paradigm.  It is particularly valid where landscape 
patches have crisp boundaries, as with the regular landscapes of Europe 
(Pearson 2002).  However, categorical representation of spatial 
heterogeneity may not be valid in most landscapes where gradients exist 
and therefore boundaries between patches are not clearly defined (Pearson 
2002).
 Therefore, by using either of the abovementioned approaches to 
predict ecological patterns, only the influence of measured spatial 
heterogeneity is considered, which either reflects the arbitrary scale at 
which the observer collected the data (i.e., the grain) or the scale at which 
the observer delimited patches.  This is in contrast to functional spatial 
heterogeneity (Legendre 1998), which reflects the dominant scale of 
natural variability (see next paragraph) that influences the response of 
specific organisms in the landscape (Western and Bloschl 1999).  
Furthermore, this single scale approach is inconsistent with the hypothesis 
that the scale at which humans perceive spatial heterogeneity may have 
little connection to the scale at which wildlife species perceive spatial 
heterogeneity (Turner 1989).  Thus, in view of these limitations, it can be 
argued that further advances in understanding ecological patterns may be 
constrained by the underdevelopment of approaches and analytical tools 
for characterising spatial heterogeneity. 
 In this thesis, a new approach to characterise spatial heterogeneity 
from remote sensing imagery is developed, based on the intensity, as well 
as the dominant scale.  Intensity is defined as the maximum variance 
exhibited when a spatially distributed landscape property is measured with 
a successively increasing window size or scale.  For example, measuring 
the variance in percent canopy cover along a 100 m long transect in a tree 
plantation with 10 m wide tree stands (with uniformly high canopy cover) 
that evenly interchange with 10 m wide bare ground (with zero canopy 
cover) at a successively increasing window size, starting from 1 m up to 
100 m, would yield the maximum variance at a window size of 10 m.  This 
maximum variance is the intensity of spatial heterogeneity.  It is the scale  
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Figure 1.1: Part (A) are transects with alternating spaces of trees and bare ground and part (B) 
shows the simulation tree canopy cover along each transect assuming that the cover measurements 
are made after every 1 m (i.e., grain = 1 m) and an extent of 1000 m.  For example, the (a) intensity 
(maximum variance) of transect 1 occurs at (b) a dominant scale of 100 m.  

or window size where the maximum variance in the landscape property is 
measured that is defined as the dominant scale of spatial heterogeneity.  In 
other words, intensity and dominant scale of spatial heterogeneity are 
properties of a landscape that are inseparable and in this case, the dominant 
scale of spatial heterogeneity coincides with the dominant patch dimension 
(i.e., size of tree stands and bare ground) while intensity coincides with the 
degree of contrast in vegetation cover between the bare ground and the tree 
stands.  Note that our definition of scale follows that of Levin (1992) and 
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Rietkerk, et al. (2002) whereby scale refers to the window or dimension 
(e.g., m, km, m2, km2) through which the landscape may be observed either 
in remote sensing images or by direct measurement.  Hereinafter, we treat 
scale as a linear dimension, e.g., m, km.  Note that the definition of scale 
used in this thesis is the opposite of the cartographic definition (Foody and 
Curran 1994).  We therefore propose that spatial heterogeneity be defined 
and quantified using both intensity and the dominant scale.  However, 
grain (i.e., the initial observation scale or window size at which the data is 
collected) and extent (overall size of the study area) limits the range of the 
dominant scale that can be detected (Wiens 1989). 
 Furthermore, in order to elucidate the centrality of the intensity 
and the dominant scale in the definition of spatial heterogeneity, we 
present a simulated example of tree canopy cover that is measured along 
three artificial transects (fig. 1.1).  The three artificial transects stretch over 
1000 m and the tree canopy cover was measured at an interval of 1 m.  The 
sampling interval of 1 m defines the grain (initial observation scale) while 
1000 m defines the extent (overall transect length).  In this example, the 
transects 1 and 2 have a dominant scale of spatial heterogeneity of 100 m, 
i.e., a maximum discontinuity between high canopy cover and low canopy 
cover occurs after every 100 m whereas transect 3 has a dominant scale of 
200 m.  If we consider, transects 1 and 2, the dominant scale of spatial 
heterogeneity is equal, but the intensity of spatial heterogeneity is different, 
and transect 1 and transect 3 have equal intensity of spatial heterogeneity 
but have different dominant scales of spatial heterogeneity.  We see that 
characterizing spatial heterogeneity in this example is not complete if only 
either intensity or dominant scale of spatial heterogeneity is considered.  
Therefore, both intensity and dominant scale of spatial heterogeneity 
cannot be separated and must be quantified prior to analysing ecological 
patterns. 

1.3 Thesis objectives  

In this thesis, the objectives were: (1) to develop a new approach to 
quantify spatial heterogeneity from remote sensing imagery, based on the 
intensity and the dominant scale, and (2) to investigate whether the new 
approach can be used to reliably predict the probability of wildlife species 
presence, particularly that of the elephant (Loxodonta africana) in the 
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communal lands (i.e., agricultural landscape) of the Sebungwe (fig. 1.2) 
between 1983 and 1995.  
 Fig. 1.3 is a graphic illustration of the hypothesised relationship 
between elephant and the dominant scale and intensity of spatial 
heterogeneity.  Specifically, we hypothesise that the probability of elephant 
presence yields a unimodal and a positive asymptotic response to the 
dominant scale and the intensity of spatial heterogeneity respectively 
(fig.1.3c).  The unimodal component of the model with regards to the 
dominant scale of spatial heterogeneity (fig. 1.3a) is a result of small patch 
sizes “repelling” elephants due to inadequate cover against human 
disturbance (e.g., by simple human contact or hunting) while at larger 
dominant scales, the enlarged hostile patches “repel” elephants.  The latter 
patches can be, for instance, agricultural fields or bare ground.  In addition, 
the hypothesised positive asymptotic response of elephant presence to the 
intensity of spatial heterogeneity is because at high variability of 
vegetation cover, the chances of the elephant to find food and shelter 
increase, but as the variability becomes increasingly higher, it tends to 
have no effect on the elephant presence (fig. 1.3b).  
 Moreover, in this thesis, focus was on a single species, i.e., the 
African elephant.  This single species approach was adopted because 
different wildlife species interact with spatial heterogeneity differently 
(Wiens 1989, Van Langevelde 1999, Bailey, et al. 2002).  For example, 
larger animal or bird species are likely to perceive spatial heterogeneity at 
a larger dominant scale than smaller animal or bird species (Hostetler 
1999) based on their mobility and size.  This thesis focused on the African 
elephant and several reasons justified the choice its choice.  Firstly, the 
Africa elephant is a keystone species of the African savanna (Hoare and  
Du Toit 1999) that needs to be conserved.  Secondly, the African elephant 
is on the list of the world’s endangered species (IUCN 2002) and is 
considered a conservation priority (Burton 1999).  Thirdly, the study area 
has been the only agricultural landscape in Zimbabwe outside the protected 
areas with a healthy expanding elephant population (Cumming 1981) that 
may now be threatened by agriculture.  Fourthly, there is no water 
limitation in the study area (Cumming 1981), and since the African 
elephant is a habitat generalist (Kingdon 2001) it has a potential of being 
anywhere in the study area and only the level of agricultural field driven 
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spatial heterogeneity can affect its distribution.  Fifthly, good survey data 
exists on the spatial distribution of the African elephant in the study area.  
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                  Figure 1.2: Map showing the location of the Sebungwe region in Zimbabwe. 
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Figure 1.3: Hypothetical relationship: between elephant presence and: (a) the dominant scale of 
spatial heterogeneity, (b) the intensity of spatial heterogeneity, plus (c) both the dominant scale and 
intensity of spatial heterogeneity.  The bars in (a) with gray levels representing woody cover in 
indicate variations in the dominant scale of spatial heterogeneity in different parts of the landscape, 
i.e., from (A) small a dominant scale of spatial heterogeneity, (B) medium dominant scale of spatial 
heterogeneity, to a large dominant scale of spatial heterogeneity (C).  The bars in (b) represent the 
same dominant scale of spatial heterogeneity with increasing levels of intensity, from (D) low,  
(E) medium to (F) high. 

 Furthermore, Landsat TM imagery was selected as the 
appropriate source of remote sensing imagery to characterise the spatial 
heterogeneity of vegetation amounts, estimated using the normalised 
difference vegetation index (NDVI).  This is because the spatial resolution 
or grain of Landsat TM, i.e., 30 m by 30 m was detailed enough to enable 
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the quantification of spatial heterogeneity that is relevant for analysing 
elephant distribution.  Generally, the grain should be several magnitudes 
smaller than the total range of the organism (Sparrow 1999).  In this case, 
elephants in the Sebungwe region have an estimated range of between  
83 km2 to 263 km2, approximating a horizontal length scale (horizontal 
dimension) of 9.1 km and 16.2 km, respectively (Guy 1976a, Dunham 
1986) thus, making the grain of 30 m at least 300 times smaller than the 
dimension of the elephant range.  In addition, the extent of the study area, 
i.e., 3721 km2, which is at least 14 times the range of the elephant in the 
Sebungwe, is large enough for this study. 

1.4 Thesis Outline  

This thesis is based on a series of papers; each chapter can be read as a 
stand-alone unit.  As a result, some degree of repetition of terms and 
definitions is inevitable among the chapters; however, they are considered 
important in each case.  
 Chapter 1 provides a brief background of approaches to quantify 
spatial heterogeneity of landscapes as well as, introducing our new 
approach to quantifying spatial heterogeneity, objectives and outline of the 
thesis.  
 In Chapter 2, wavelets and variograms are explored as methods to 
quantify the dominant scale and intensity of spatial heterogeneity of a 
landscape, using artificial transect data with known characteristics, as well 
as remotely sensed NDVI imagery of actual landscapes.  In addition, 
Chapter 3 demonstrates the use of wavelets to detect change in spatial 
heterogeneity of NDVI over time from the intensity and the dominant scale 
perspective. 
 Chapter 4 puts the thesis into context by presenting the dynamics 
of agricultural fields in the Sebungwe landscape following tsetse 
eradication, as well as, making an initial test of whether the expanding 
agricultural fields had a significant effect on the probability of elephant 
presence in different wards and vegetation classes of the study area.  This 
chapter provides a necessary preamble to the investigation of whether and 
how the probability of elephant presence in different parts of the study area 
was as a function of spatial heterogeneity.  
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 In chapter 5, the results of whether the new intensity and 
dominant scale approach to quantify spatial heterogeneity (implemented 
using variograms and wavelets) can predict the probability of elephant 
presence better than the usual NDVI average and the NDVI coefficient of 
variation that assume a uniform scale are presented. 
 Chapter 6 and Chapter 7 further present results on an 
investigation of whether the spatial distribution of the elephant in the 
Sebungwe agricultural landscape (1) consistently responded to spatial 
heterogeneity of NDVI irrespective of time and also (2) whether the spatial 
distribution of the elephant respond to changes in the spatial heterogeneity 
of NDVI.  In Chapter 6, the variogram-derived intensity and dominant 
scale of spatial heterogeneity of NDVI were used while in Chapter 7, 
wavelet transform-derived intensity and dominant scale of spatial 
heterogeneity of NDVI were used.  
 Finally, Chapter 8 synthesizes the findings of the thesis and 
discusses the implications of these to the modelling of ecological patterns, 
as well as the future management of wildlife species in the increasingly 
human dominated landscapes such as the Sebungwe region. 
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Chapter 2
Characterising the spatial heterogeneity 
of a landscape1

Amon Murwira and Andrew K. Skidmore 

Abstract

Success in understanding spatial heterogeneity (i.e., patchiness) in the landscape and how 
it relates to other ecological patterns relies on its accurate characterisation.  In this study, 
the intensity (i.e., the maximum variance exhibited when a spatially distributed landscape 
property such as vegetation cover is measured with a successively increasing window size 
or scale) and the dominant scale (the scale at which the intensity is displayed) as 
descriptors of spatial heterogeneity are defined and quantified.  A variogram and a 
wavelet transform are shown to quantify the dominant scale and intensity of spatial 
heterogeneity, first in one-dimensional (1D) artificial transects with known characteristics, 
and secondly in two-dimensional (2D) remote sensing imagery.  The results demonstrated 
that the grain (or observation scale or scale of measurement) does not necessarily coincide 
with the dominant scale of spatial heterogeneity.  However, the converse that grain must 
be less than dominant scale must be true.  This implies that the dominant scale and 
intensity of spatial heterogeneity need to be considered when relating ecological patterns 
such as wildlife distribution to spatial heterogeneity.  

1
In review: International Journal of Geographical Information Science 
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2.1 Introduction 

Understanding spatial heterogeneity (i.e., the patchiness) in the landscape 
and its influence on other ecological patterns is a central problem in 
ecology, particularly landscape ecology (Turner 1989, Pickett and Rogers. 
1997).  The fundamental issue in this regard revolves around the definition 
and quantification of spatial heterogeneity in a way that is objective and 
ecologically relevant.  Thus, the success in understanding how spatial 
heterogeneity relates to other ecological patterns relies on its accurate 
characterisation (McGrigal and Cushman 2002). 
 Traditionally, spatial heterogeneity has been quantified from 
remote sensing imagery by using two basic approaches: (a) the direct 
image approach, where straight reflectance or reflectance indices are used 
to quantify spatial heterogeneity, using the original pixel size of the image 
(Goodchild and Quattrochi. 1997), and (b) the cartographic or patch 
mosaic approach, where the image is subdivided into homogeneous 
mapping units through classification (Gustafson 1998).  The first approach 
assumes that spatial heterogeneity is displayed at the constant pixel size of 
the image and, in this case, it is only the reflectance values that change in 
space.  The limitation of this approach is that it ignores the dominant scale 
(see next paragraph for details on the dominant scale concept), thereby 
introducing subjectivity.  Alternatively, using the patch mosaic approach to 
quantify spatial heterogeneity assumes a collection of discrete patches.  
Based on this approach, characterisation of spatial heterogeneity is highly 
dependent on the initial definition of mapping units by the researcher 
(Turner 1989).  The limitation of this approach is that patches have abrupt 
boundaries and the variation within the patches is assumed to be irrelevant 
(McGrigal and Cushman 2002).  The patch mosaic model is parsimonious 
and has therefore become the operating paradigm.  It is particularly valid 
where landscape patches have crisp boundaries, as with the regular 
landscapes of Europe (Pearson 2002).  However, the model poorly 
represents spatial heterogeneity in landscapes that are characterised by 
gradients rather than discrete patches, for instance in savanna landscapes 
(Pearson 2002), and this leads to both loss of information and the 
introduction of subjectivity.  Nevertheless, alternative approaches for 
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defining and quantifying spatial heterogeneity that are based on continuous 
environmental variation remain underdeveloped.  
 In this study, a new approach to define and quantify the spatial 
heterogeneity of continuously varying landscape properties such as 
vegetation cover, based on intensity and dominant scale, is developed.  
Intensity is defined as the maximum variance exhibited when a spatially 
distributed landscape property is measured with a successively increasing 
window size or scale.  For example, measuring the variance in percent 
canopy cover along a 100 m long transect in a tree plantation with 10 m 
wide tree stands (with uniformly high canopy cover) that evenly 
interchange with 10 m wide bare ground (with zero canopy cover) at a 
successively increasing window size, starting from 1 m up to 100 m, would 
yield the maximum variance at a window size of 10 m.  This maximum 
variance is the intensity of spatial heterogeneity.  It is this scale or window 
size where the maximum variance in the landscape property is measured 
that is defined as the dominant scale of spatial heterogeneity.  In other 
words, intensity and dominant scale of spatial heterogeneity are properties 
of a landscape that are inseparable and in this case, the dominant scale of 
spatial heterogeneity coincides with the dominant patch dimension (i.e., 
size of tree stands and bare ground) while intensity coincides with the 
maximum degree of contrast in vegetation cover between the bare ground 
and the tree stands.  Note that our definition of scale follows that of Levin 
(1992) and Rietkerk, et al. (2002) who define scale as the window or 
dimension (e.g., m, km, m2, km2) through which the landscape may be 
observed either in remote sensing images or by direct measurement in the 
field.  In this study, scale is treated as a linear dimension, e.g., m, km.  We 
therefore propose that spatial heterogeneity must be defined and quantified 
using both intensity and the dominant scale.  Of course, grain (i.e., the 
initial observation scale or window size at which the data is collected) and 
extent (i.e., the size of the study area) limits the range of the dominant 
scale that can be detected (Wiens 1989).  
 In this study, we propose that variograms and wavelet transforms 
can be used to quantify dominant scale and intensity of spatial 
heterogeneity.  Variograms are a geostatistical measure used to determine 
the average decrease in similarity (also called semivariance) as the distance  
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Figure 2.1: Artificial transects simulating vegetation cover with different dominant scales or 
intensity of spatial heterogeneity.  Transects A (-) and B (-·-) have the same dominant scale of 
spatial heterogeneity (10 m), but transect B has a higher intensity than transect A.  Transect C (······) 
has two dominant scales of spatial heterogeneity (2 m and 10 m).  

of separation between points in space increases, and they were originally 
developed to measure the optimal scale of variability in the landscape 
(Rietkerk, et al. 2000).  The wavelet transform is a relatively new tool, 
initially developed in mathematics during the 1980s for analysing the 
variance of a signal on a scale-by-scale basis (Graps 1995).  To the best of 
our knowledge, virtually no work has used both variograms and wavelet 
transforms to quantify spatial heterogeneity from the perspective of 
dominant scale and intensity. 
 The aim of this study was to demonstrate the use of the variogram 
and wavelet transform in quantifying spatial heterogeneity in order to 
understand continuously varying landscape properties from the perspective 
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of dominant scale and intensity.  The hypothesis was that spatial 
heterogeneity can be quantified from the perspective of dominant scale and 
intensity by using variograms and wavelet transforms.  First, we used the 
two methods (variogram and wavelet transform) to quantify the spatial 
heterogeneity of one-dimensional (1D) artificial transects with known 
characteristics.  Secondly, we applied the methods to two-dimensional 
(2D) remote sensing images of different landscapes (i.e., a regular 
landscape in Europe and a savanna landscape in Africa).  

(a) (b)

Figure 2.2: The NDVI images derived from Landsat TM imagery (same pixel size or grain of 30 m) 
of the northern Netherlands (a) and northwestern Zimbabwe (b) study sites.  Low NDVI values 
indicate low vegetation cover while high NDVI values indicate high vegetation cover.  

2.2 Materials and methods 

Artificial transects 
To evaluate the dominant scale and intensity information inherent in 
variograms and wavelets, spatial heterogeneity was simulated in three 
transects (fig. 2.1).  The artificial transects were sampled at a grain (i.e., the 
observation scale) of 1 m and an extent (i.e., the transect length) of 240 m.  
In transect A and transect B, the dominant scale of spatial heterogeneity is 
10 m, i.e., maximum variance occurs at a window size or scale of 10 m.  
However, transect B has higher intensity than transect A, i.e., there is a 
higher variance in transect B than transect A at the dominant scale (i.e.,  
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10 m).  Transect C shows two dominant scales of spatial heterogeneity, 
namely 2 m and 10 m.  

Remote sensing imagery  
Two 1.92 km by 1.92 km test sites representing contrasting landscapes 
were selected in the north of the Netherlands and in the northwest of 
Zimbabwe.  The Netherlands was selected because it has landscapes that 
are dominated by near regular agricultural fields, comparable with the 
artificial transects.  In contrast, the Zimbabwe study site is in a savanna 
landscape characterized by a heterogeneous mixture of agricultural fields 
and natural vegetation.  Savanna is defined as a heterogeneous sub-tropical 
vegetation type co-dominated by woody plants and grasses (i.e., in some 
places trees are arranged in scattered patches that are dominated by 
grasslands, or vice versa (Scholes 1997)).  The centres of the study sites 
are defined by the geographical coordinates 53° 05’ 24”N, 5° 38’ 24”E, and  
17° 18’ 35”S, 28° 38’ 59”E respectively.  
 The normalised difference vegetation index (NDVI) images were 
derived from Landsat TM images acquired on 5 May 1992 for the northern 
site and 6th of November 1999 for the Zimbabwe site.  NDVI is defined as: 

                                                
R)(NIR

R)(NIR
NDVI

++++
−−−−

====                                                  (2.1) 

where NIR and R are the spectral reflectance values in the near infrared and 
the red.  Data were normalised to the range of 0 to 255 in order to facilitate 
data handing in image processing software.  NDVI was used because it is 
an established index for estimating vegetation quantity (Walsh, et al. 1997, 
Walsh, et al. 2001) and it is a continuous representation that can be 
analysed for the dominant scale and intensity of spatial heterogeneity using 
variograms and wavelets.  The Landsat TM images have a spatial 
resolution of 30 m, which means the grain is 30 m.  Fig. 2.2 shows the 
NDVI images of the two study sites. 
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dominant scale and intensity.  

Characterising spatial heterogeneity using a variogram 
In this study, the intensity and dominant scale of spatial heterogeneity were 
quantified for z(x) (i.e., the transects (fig. 2.1) and the NDVI images  
(fig. 2.2)), using the variogram (fig. 2.3) and its main structural parameters, 
the sill and the range (Curran 1988) respectively.  The error or the non-
spatial variance is characterised by the nugget (fig.2.3).  The sill is the 
level at which the variogram becomes flat, and it exists if the process being 
analysed is stationary.  A spatial process is stationary when only the 
distance that separates points in space explains the difference in value 
between them.  The range is used to measure the scale of spatial 
correlation, which is the maximum distance at which spatial correlation is  
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Figure 2.4: The Haar wavelet transform showing wavelet coefficients of four scale levels.  Idwt is 
the data function reconstructed using inverse discrete wavelet transform.  The d1…d4 are detail 
wavelet coefficients at levels j = 1…j = 4, and S4 are the smooth wavelet coefficients at level j = 4.  
The absolute value of a coefficient is a measure of the magnitude of contrast in the function. 

present and beyond which spatial correlation is absent.  The sill can 
measure intensity because it quantifies the maximum degree of contrast 
between points that are the distance of the range apart.  The following 
formula was used to calculate the variogram )(hγ :

                                   [ ]
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where N(h) is the number of observation pairs separated by the distance h,
z is the value of the regionalised variable at spatial position xi, and z(xi+ h)
is the value of the regionalised variable at distance h from xi (Treitz and 
Howarth 2000).  The variograms were calculated using a maximum lag of 
one-third of the total distance covered by a data function (Cohen, et al.
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1990) and the theoretical variogram models were fitted using a non-linear 
least squares method.  Variograms for the NDVI images were calculated in 
the vertical (north-south), horizontal (east-west) and diagonal (northeast-
southwest and northwest-southeast) directions in order to account for 
anisotropy, which is the tendency for variogram parameters to change with 
direction.

Characterising spatial heterogeneity wavelets 
Wavelet energy (Bruce and Hong-Ye. 1996) was used to quantify the 
dominant scale and intensity of spatial heterogeneity in transects and 
NDVI images.  The analysis of wavelet energy begins with a wavelet 
transform (in this study a Haar wavelet was used), which is defined as the 
convolution of two wavelet functions (i.e., the smooth φ(x,y) and detail 
ϕ(x,y) functions) and a data series f(x,y) (i.e., 〈f(x,y)φJ(x,y) ,
and〈f(x,y)ϕj(x,y)  respectively) at successive scales, each being (2j) (i.e.,  
j = 0,1,2…J).  A wavelet transform result in a set of coefficients where 
each coefficient is associated with a scale level, j = 0,1,2…J and a 
particular location.  Note that formal treatment of wavelets has been 
handled exhaustively elsewhere (Mallat 1989, Ogden 1997).  Wavelet 
energy is, however, explained below. 
 Fig. 2.4 illustrates the results of a wavelet transform where 
wavelet coefficients can be positive or negative but the absolute coefficient 
value measures the magnitude or degree of contrast in f(x,y) at a specific 
location at 2j .
 In this regard, wavelet energy was calculated as a second moment 
of the wavelet transform, defined as the sum of the squared individual 
coefficients of a band at 2j, divided by the sum of the squares of all the 
coefficients in y)(x,f̂ :

                                  Jjyxj
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where dj(x,y) are wavelet coefficients at j  and position (x,y), E  is the total 

wavelet energy of y)(x,f̂ , and n/2j is the number of data points at j.  Then, 
wavelet energy values were plotted against scale, and the local maxima in 
the wavelet energy represented the intensity of spatial heterogeneity, while 
the corresponding scale values represented the dominant scale(s) of spatial 
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heterogeneity.  Details were used in the analysis because they are more 
scale-specific.  For example, details in the NDVI image at j = 1 capture 
vegetation patches of between 30 m and 60 m in dimension.  In contrast, 
smooths can capture only scales that are equal to or greater than 2j.

2.3 Results 

Table 2.1 summarises the variogram and wavelet parameters illustrating 
the intensity and dominant scale of spatial heterogeneity for both the 
artificial transects and NDVI images of The Netherlands and Zimbabwe 
sites.  The results in table 1 are described together with fig. 2.5 to fig. 2.9 
in the paragraphs below. 

Table 2.1: The variogram and wavelet energy parameters of the artificial transects and  
The Netherlands and Zimbabwe sites  

Data Orientation 
Variogram 

Nugget 

Variogram 
Nugget  
95 % CL 

Variogram 
Sill 

Variogram 
     Sill   
95%CL 

Variogram 
Range (m) 

Variogram 
Range 

95 % CL 

Wavelet 
energy 

maxima

Wavelet 
dominant 
Scale(s) 

(m) 

Transect A  0.11 0.01 0.99 0.01 9.73 0.09 0.11600 16 

Transect B  0.41 0.03 3.80 0.03 9.81 0.08 0.12300 16 

Transect C  0.44 0.09 3.86 0.09 12.24 0.40 0.18; 0.15 4; 16 

Netherlands Horizontal -32.12 6.90 602.56 6.96 302.48 3.83 0.00230 480 

Netherlands Diagonal -0.56 0.10 6.53 0.10 263.266 3.22 0.001100 480 

Netherlands Vertical  -27.81 11.12 594.25 11.14 199.42 3.79 0.004700 240 

Zimbabwe Horizontal 6.75 0.95 50.77 0.95 90.78 1.74 0.000386 120 

Zimbabwe Diagonal 4.87 0.82 54.18 0.82 259.10 4.25 0.0001; 0. 0017 120; 480 

Zimbabwe Vertical  45.18 3.73 45.18 0.80 120.02 2.30 0. 000260 120 

 Fig. 2.5 and table 2.1 describe the results of the variogram and 
wavelet analysis of spatial heterogeneity of the artificial transects.  As 
noted earlier, it is important to note that since wavelets jump scales by 2j,
the wavelet energy maxima at j represents the intensity that corresponds to 
the dominant scales between j and j-1.  With this in mind, we can proceed 
to observe that the wavelet-derived dominant scale (i.e., the scale margin at 
which the wavelet energy showed the highest maxima) coincided with the 
dominant scale depicted by the variogram (variogram range) for transect A 
and transect B.  Particularly, we can observe that the wavelet energy local 
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maxima coincides with a dominant scale of 16 m, meaning that the 
dominant scales between 8 m and 16 m are represented, which coincides 
with the estimated variogram range of 9.82 m.  Therefore, it is observed 
overall that both methods depict the dominant scale of spatial 
heterogeneity, namely 10 m, and the intensity that resembles the spatial 
heterogeneity present in both transects.  However, the variogram range for 
transect C coincides only with the wavelet energy maxima describing the 
larger dominant scale, namely 10 m.  Furthermore, a look at the two local 
wavelet energy maxima that represent the two dominant scales of spatial 
heterogeneity in transect C, shows that the 2 m dominant scale of spatial 
heterogeneity coincides with the highest intensity compared with the 10 m 
dominant scale of spatial heterogeneity.  Moreover, the differences in 
intensity are reflected consistently by the variogram sill and peak wavelet 
energy.  It can also be observed that the dominant scale is greater than the 
grain, namely 1 m. 
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Figure 2.5: The variogram (a) and wavelet energy (b) functions describing spatial heterogeneity in 
artificial transects A (�), B (�) and C (�). 

 In addition, fig. 2.6 and table 2.1 show the results of the 
variogram and wavelet analysis of spatial heterogeneity of the north 
Netherlands image.  It can be observed that in the horizontal (east-west) 
orientation, the dominant scale of spatial heterogeneity quantified using a 
variogram range (i.e., 302 m) coincides with the wavelet-based dominant 
scale of spatial heterogeneity that peaks at 480 m (i.e., representing 
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dominant scales of 240 m – 480 m).  Also, in the diagonal (northeast-
southwest and northwest-southeast) orientation, the dominant scale of 
spatial heterogeneity quantified using a variogram range (i.e.,  
263 m) coincides with the wavelet-based dominant scale that peaks at  
480 m (i.e., also representing dominant scales of 240 m – 480 m).  Finally, 
in the vertical (north-south) orientation, the dominant scale of spatial 
heterogeneity quantified using a variogram range (i.e., 199 m) also 
coincides with the wavelet-based dominant scale that peaks at 240 m (i.e., 
representing dominant scales of  120 m – 240 m).  Moreover, there is 
relative consistency between the intensity of spatial heterogeneity, i.e., the 
variogram sill and peak wavelet energy values.  Both the variogram sill 
and maximum wavelet energy values consistently characterise intensity of 
spatial heterogeneity because both are highest in the vertical (north-south) 
orientation, medium in the horizontal (east-west) orientation and lowest in 
the diagonal (northeast-southwest and northwest-southeast) orientation.  
Furthermore, the dominant scale of spatial heterogeneity measured using 
both variograms and wavelets is greater than the grain of Landsat TM, 
namely 30 m. 
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Figure 2.6: The variogram (a) and wavelet (b) functions describing the spatial heterogeneity of the 
north Netherlands NDVI image in the horizontal (east-west) (�), and diagonal (northeast-southwest 
and northwest-southeast) (�) and vertical (north-south) (�) orientations. 

 The spatial distribution of wavelet energy of the north 
Netherlands image, whose sum constitutes the intensity of spatial 
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heterogeneity and the dominant scales of spatial heterogeneity illustrated in 
fig. 2.6 and table 2.1 is described in fig. 2.7.  Based on fig. 2.7, it can be 
observed that the highest wavelet energy values in the images coincide 
with two dominant agricultural field sizes in different orientations, i.e., 
between 240 m and 480 m in the horizontal (east-west) and diagonal 
(northeast-southwest and northwest-southeast) orientations, and between 
120 m and 240 m in the vertical (north-south) orientation. 

(a) (b)

(d)

Dominant scale = 480 m

Dominant scale = 240 m

(c)

Dominant scale = 480 m

Figure 2.7: The north Netherlands site showing the (a) original NDVI image and the wavelet energy 
images that make up the most dominant scales of spatial heterogeneity in the (b) horizontal (east-
west), (c) diagonal (northeast-southwest and northwest-southeast) and (d) vertical (north-south) 
orientations. 
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 Moreover, fig. 2.8 and table 2.1 show the results of the Zimbabwe 
site.  The vertical (north-south) and horizontal (east-west) orientations 
depict a single dominant scale of spatial heterogeneity, shown by the single 
peak (or maximum) in the wavelet energy.  The variogram range coincides 
with the wavelet-derived dominant scale of spatial heterogeneity, namely 
60 m to 120 m.  The diagonal (northeast-southwest and northwest-
southeast) orientation shows the presence of two dominant scales of spatial 
heterogeneity, depicted by two wavelet energy maxima.  However, in the 
diagonal (northeast-southwest and northwest-southeast) orientation, the 
highest wavelet energy maximum is at 480 m.  It can be further observed 
that, in the diagonal (northeast-southwest and northwest-southeast) case, 
the variogram range coincides with the wavelet energy peak depicting the 
larger dominant scale of spatial heterogeneity, namely 240 m to 480 m.  In 
addition, there is a similarity in the relative order of variogram sill and 
peak wavelet energy values (i.e., in intensity for the three different 
orientations).  The variogram sill and the local maxima in wavelet energy 
are highest in the horizontal (east-west) orientation, medium in the vertical 
(north-south) orientation and lowest in the diagonal (northeast-southwest 
and northwest-southeast) orientation.  The dominant scale of spatial 
heterogeneity measured using both variograms and wavelets is also greater 
than the grain of Landsat TM, namely 30 m. 

Figure 2.8: The variogram (a) and wavelet (b) functions describing the spatial heterogeneity of the 
northwestern Zimbabwe NDVI image in the horizontal (east-west) (�), and diagonal (northeast-
southwest and northwest-southeast) (�) and vertical (north-south) (�) orientations. 
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 Fig. 2.9 shows the spatial distribution of wavelet energy of the 
Zimbabwe image, whose sum constitutes the intensity of spatial 
heterogeneity and the dominant scales of spatial heterogeneity illustrated in 
fig. 2.8 and table 2.1.  For the diagonal (northeast-southwest and 
northwest-southeast) orientation, only the highest intensity that coincides 
with the largest dominant scale of spatial heterogeneity is shown.  It can be 
observed that the highest wavelet energy values in the images coincide 
with different patch dimensions from different orientation. 

2.4 Discussion 

The results presented in this paper indicated that variograms and wavelet 
transforms could both quantify spatial heterogeneity from the perspective 
of dominant scale and intensity.  Variograms and wavelets yielded similar 
outcomes when a single dominant scale of spatial heterogeneity was 
present (i.e., the distance at which the sill and peak wavelet energy are 
observed).  However, in the presence of more than one dominant scale of 
spatial heterogeneity, the variogram range coincided with the largest 
wavelet-derived dominant scale (i.e., the largest scale at which a peak in 
the wavelet energy is observed).  In addition, the relative values of 
intensity were similar between variograms and wavelets in instances where 
the variogram range and the wavelet dominant scale coincided.  The results 
were consistent with the fact that wavelets are localised (i.e., wavelet 
transform can characterise localised dominant scales of spatial 
heterogeneity) whereas variograms are global in nature (i.e., variograms 
characterise only the largest dominant scale of spatial heterogeneity) (Dale 
and Mah. 1998).  Furthermore, given a situation when the researcher 
desires to test the presence of more than one dominant scale and intensity 
of spatial heterogeneity, our results imply that wavelets are more suited for 
that purpose compared with variograms.  
 Moreover, it is important to note that the interpretation of the 
dominant scale and intensity of spatial heterogeneity based on variograms 
and wavelet transforms is different.  The intrinsic assumption upon which 
the variogram was calculated (i.e., that differences in the values of a 
landscape property between two points in space is a function of the 
distance separating them) enables us to conclude that the dominant scale 
measured by the variogram range represents both the predominant patch 
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dimension in the landscape and the distance between different patches.  On 
the other hand, using a wavelet transform to estimate the first-order 
properties of spatial data enables us to deduce the dominant scale of spatial 
heterogeneity only in relation to the patch dimension at which the wavelet 
energy is recorded.  It is important to consider these issues when these 
methods are used to characterise spatial heterogeneity as a prelude to 
analysing other ecological patterns. 

(a) (b)

(c) (d)

Dominant scale = 120 m

Dominant scale = 120 mDominant scale = 480 m

Figure 2.9: The Zimbabwe site showing the (a) original NDVI image and the wavelet energy images 
that make up the most dominant scale of spatial heterogeneity in the (b) horizontal (east-west),  
(c) diagonal (northeast-southwest and northwest-southeast) and (d) vertical (north-south) 
orientations. 
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 In addition, the results in this study indicated that with the 
wavelet transform the patches that contribute to the measured intensity of 
spatial heterogeneity and the corresponding dominant scale of spatial 
heterogeneity could be extracted and visualised (figs. 2.7 and 2.9).  In 
contrast, the intensity and the dominant scale of spatial heterogeneity 
quantified from the variogram sill and variogram range respectively, 
constitute the overall statistic that describe the average landscape 
conditions but cannot be extracted and visualised (Ettema and Wardle 
2002).  Therefore, we can deduce that wavelets not only provide a global 
summary of the intensity and dominant scale of spatial heterogeneity, but 
also provide an explicit spatial distribution of the spatial features that 
constitute both the intensity and the dominant scale of spatial 
heterogeneity. 
 Furthermore, the results indicated that both the variogram and the 
wavelet transform could be useful in characterising the dynamics of spatial 
heterogeneity.  The three transects in fig. 2.1 (transects A, B and C) could 
be conceptualised as two possible ways in which spatial heterogeneity in a 
landscape vary: transect A and transect B show differences (only) in 
intensity of spatial heterogeneity, whereas transect A or transect B and 
transect C show differences in both dominant scale and intensity of spatial 
heterogeneity (fig. 2.1).  Pickett and Rogers (1997) point out that one of 
the most important insights into patchiness or spatial heterogeneity in the 
landscape is that it is changeable, owing either to natural disturbance such 
as droughts and floods or to human management factors such as land use 
management regimes, and that this may occur at various dominant scales.  
Consequently, the results in this study indicate that variograms and 
wavelets can also be applied in characterising differences in the intensity 
and dominant scale of spatial heterogeneity either in a single landscape 
over time or between different landscapes, in space.  
 The results indicated that the grain does not coincide with the 
dominant scale of spatial heterogeneity.  For example, the grain of the 
artificial transects (fig. 2.1) was 1 m, yet they had different dominant 
scales of spatial heterogeneity.  Similar observations applied to the NDVI 
images (fig. 2.2).  Both images had a grain or spatial resolution of 30 m, 
yet the dominant scales of spatial heterogeneity are more than 30 m  
(figs. 2.6 and 2.8).  However, the converse that grain must be less than 
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dominant scale must be true.  Therefore, we deduce that it is important that 
either a variogram or a wavelet transform should be used to quantify 
spatial heterogeneity before any further ecological analysis is conducted 
with the data.  This could improve the study of ecological patterns in 
relation to spatial heterogeneity.  For example, it could improve the 
explanation of ecological patterns such as wildlife distribution.  This has 
traditionally been explained by relating it to spatial heterogeneity, which 
reflects the grain, rather than to the dominant scale and intensity of spatial 
heterogeneity (Legendre 1998), that reflect meaningful ecological entities 
that may influence the response of specific organisms in the landscape.  
 The results have demonstrated that variograms and wavelets can 
be used to characterise the dominant scale, as well as the intensity of 
spatial heterogeneity in “cultural” landscapes and in “natural” landscapes.  
In this regard, the Netherlands site typically represents a cultural landscape 
where landscape patches can be clearly identified and the Zimbabwe site 
largely represents a natural landscape where the boundaries between 
landscape patches are subtle (fig. 2.1).  The ability to characterise spatial 
heterogeneity, particularly in natural landscapes, is critical, because this is 
where issues such as the conservation of diversity in wildlife species are of 
crucial importance.  In other words, the ability to characterise spatial 
heterogeneity in natural landscapes enables the determination of patch 
gradients that are more difficult to identify using conventional methods 
such as the patch mosaic model (Pearson 2002).  Therefore, we can deduce 
that variograms and wavelet transforms are invaluable for characterising 
the dominant scale, as well as the intensity of spatial heterogeneity in 
different landscapes, including landscapes that are characterised by subtle 
patch boundaries, i.e., where gradients are prevalent.  Future research will 
focus on empirically determining the relationships between the dominant 
scale and intensity of spatial heterogeneity and other ecological patterns 
such as wildlife distribution. 

2.5 Conclusions 

Landscape properties often vary continuously, being characterised by 
gradients (e.g., the Zimbabwe site), rather than being a collection of 
discrete patches (e.g., the Netherlands site).  In this regard, the direct image 
and the patch mosaic approaches to the analysis of spatial heterogeneity, 
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although essential, may limit advances in ecology, the former by ignoring 
the dominant scale property in spatial heterogeneity and the latter by 
ignoring both the dominant scale and intensity properties of spatial 
heterogeneity.  Based on the results, a number of conclusions 
recommendations were made.  Firstly, we concluded that a variogram and 
a wavelet transform could quantify the dominant scale and intensity of 
spatial heterogeneity, as well as changes in the dominant scale and the 
intensity of spatial heterogeneity.  Secondly, we concluded that the 
dominant scale of spatial heterogeneity measured using a variogram range 
represents both the predominant patch dimension in the landscape and the 
distance between different patches.  Alternatively, using a wavelet 
transform to estimate the first-order properties of spatial data enables us to 
deduce the dominant scale of spatial heterogeneity only in relation to the 
patch dimension at which the wavelet energy is recorded.  Thirdly, we 
concluded that the grain or observation scale does not coincide with the 
dominant scale of spatial heterogeneity, implying that the dominant scale 
and intensity of spatial heterogeneity may need to be considered when 
relating ecological patterns such as wildlife distribution to spatial 
heterogeneity.  However, the converse that grain must be less than 
dominant scale must be true.  Fourthly, we observed that both variograms 
and wavelet transforms are invaluable for characterising the dominant 
scale, as well as the intensity of spatial heterogeneity in different 
landscapes, even those with subtle patch boundaries.  However, with 
wavelets, patches that constitute the dominant scale and intensity of spatial 
heterogeneity can be extracted and visualised.  Finally, we observed that 
the results of this study provide a necessary preamble to the determination 
of empirical relationships between the dominant scale and intensity of 
spatial heterogeneity and other ecological patterns such as wildlife species 
distribution and redistribution. 
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Chapter 3
Detecting changes in the spatial 
heterogeneity of NDVI using a wavelet 
transform2

Amon Murwira and Andrew K. Skidmore 

Abstract

We investigate the use of a wavelet transform to detect changes in the intensity of spatial 
heterogeneity (i.e., the maximum variance exhibited when a spatially distributed 
landscape property such as vegetation cover is measured with a successively increasing 
window size or scale) and the dominant scale of spatial heterogeneity (i.e., the scale or 
window size at which the intensity is recorded) based on a normalised difference 
vegetation index (NDVI) of 1984 and 1999 in northwestern Zimbabwe.  The results 
demonstrated that a wavelet transform implemented within the innovative framework of 
the intensity and dominant scale of spatial heterogeneity could be an invaluable tool to 
analyse scale explicit changes in the landscape.  We concluded that this approach 
positively capitalises on the strengths of both the pixel-based or post-classification-based 
change detection methods.  In addition, we concluded that this innovative approach could 
improve the understanding of ecological patterns and their dynamics in the landscape.  In 
other words, it has a potential to radically improve studies that aim at predicting the 
spatial distribution and redistribution of organisms in the landscape in a scale explicit 
fashion.  

2 In review: International Journal of Remote sensing 
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3.1 Introduction 

In a landscape, land cover is spatially heterogeneous (i.e., patchy), as well 
as temporally dynamic (Turner 1989).  In addition, spatial heterogeneity of 
land cover is hypothesised to regulate biosphere dynamics such as the 
hydrological cycle and the variability in the spatial distribution of 
terrestrial wildlife species (Morrison, et al. 1992, Mac Nally and Bennet 
1997).  In this regard, the monitoring of changes in the spatial 
heterogeneity of land cover is critical for understanding global change, as 
well as changes in wildlife habitat. 
 The advent of satellite remotely sensed data and the concurrent 
development of digital change detection have improved the capacity to 
monitor changes in the spatial heterogeneity of land cover over time in 
large areas (Almeida-Filho and Shimabukuro. 2002, Rogan, et al. 2002).  
Thus, traditionally, remote sensing has used change detection techniques to 
monitor the spatial heterogeneity of land cover over time, largely at the 
grain (i.e., spatial resolution) of the satellite sensor.  However, the 
limitation of this approach is that its choice of scale is arbitrary, thus it is 
subjective.  This is because by assuming a constant and arbitrary pixel size 
or scale across the image, this approach ignores the scale dimension of 
spatial heterogeneity (Legendre and Fortin 1989, Legendre 1998, Ettema 
and Wardle 2002).  In other words, it is difficult to neglect the fact spatial 
heterogeneity occurs at a diversity of scales and that, often some scales are 
relatively more important than others (Wiens 1989, Hall and Hay 2003).  
Alternatively, remote sensing has used post classification techniques to 
detecting change in spatial heterogeneity (Trani and Giles 1999).  
However, the major weakness of this approach is that characterisation of 
spatial heterogeneity is highly dependent on the initial definition of 
mapping units by the researcher (Turner 1989).  In fact, using this 
approach, the variation within the patches is suppressed and assumed to be 
irrelevant (McGrigal and Cushman 2002).  
 Moreover, despite a recent interest in scale explicit analyses of 
remotely sensed imagery (Qi and Wu. 1996, Friedl 1997, Goodchild and 
Quattrochi. 1997, Walsh, et al. 1997, Hay, et al. 2001), approaches and 
methods to achieve this goal remain largely underdeveloped.  Therefore, in 
this study we develop a new approach to monitor spatial heterogeneity of 
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land cover from remote sensing imagery, based on intensity and dominant 
scale.  Intensity is defined as the maximum variance exhibited when a 
spatially distributed landscape property is measured with a successively 
increasing window size or scale.  For example, measuring the variance in 
percent canopy cover along a 100 m long transect in a tree plantation with 
10 m wide tree stands (with uniformly high canopy cover) that evenly 
interchange with 10 m wide bare ground (with zero canopy cover) at a 
successively increasing window size, starting from 1 m up to 100 m, would 
yield the maximum variance at a window size of 10 m.  This maximum 
variance is the intensity of spatial heterogeneity.  It is the scale or window 
size where the maximum variance in the landscape property is measured 
that is defined as the dominant scale of spatial heterogeneity.  In other 
words, intensity and dominant scale of spatial heterogeneity are properties 
of a landscape that are inseparable.  In this case, the dominant scale of 
spatial heterogeneity coincides with the dominant patch dimension (i.e., 
size of tree stands and bare ground) while intensity coincides with the 
maximum degree of contrast in vegetation cover between the bare ground 
and the tree stands.  Therefore, we can argue that the dominant scale is the 
relatively most important scale of spatial heterogeneity in the landscape.  
The definition of scale used in this study follows that of (Levin 1992, 
Rietkerk, et al. 2002) who define scale as the window or dimension (e.g., 
m, km, m2, km2) through which the landscape may be observed either in 
remote sensing images or by direct measurement.  In this study, scale is 
treated as a linear dimension, e.g., m, km etc.  Of course, grain (i.e., the 
initial observation scale or window size at which the data is collected) and 
extent (overall size of the study area) limits the range of the dominant scale 
that can be detected (Wiens 1989).  We propose that spatial heterogeneity 
be quantified and monitored using both the intensity and the dominant 
scale.  Therefore, the need to use methods that implement this approach is 
critical.  
 A wavelet transform can be used to analyse satellite remotely 
sensed data to detect changes in the dominant scale and intensity of spatial 
heterogeneity of land cover over time.  This is because wavelets partition 
the variance of a data function such as a satellite image on a scale-by-scale 
basis (Lindsay, et al. 1996).  Wavelet transform was initially developed in 
the 1980s for signal analysis, but has also enjoyed increased attention in 
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landscape studies (Bradshaw and Spies. 1992, Dale and Mah. 1998, de 
Carvalho 2001, Epinat, et al. 2001).  However, to the best of our 
knowledge the application of wavelets to analyse changes in the spatial 
heterogeneity of land cover from a dominant scale and intensity 
perspective has not been done.  
 In this study, the objective was to test whether a wavelet 
transform can be used to analyse change in the dominant scale and 
intensity of spatial heterogeneity of land cover estimated from a 
normalised difference vegetation index (NDVI) images.  To accomplish 
our objective, we selected of a part of northwestern Zimbabwe.  This 
particular site was selected because there were very visible changes that 
occurred between 1984 and 1999, thus making the site suitable for testing 
whether a wavelet transform can be used to analyse change in the dominant 
scale and intensity of spatial heterogeneity of land cover.  

3.2 Materials and methods 

Remote sensing
Two Landsat TM images acquired on the 19th of October 1984 and 6th of 
November 1999 were used in this study.  The images were subset to extract 
a farming area of a size 6 km x 6 km.  The farming area is situated in the 
northern part of Zimbabwe.  This particular site was selected because there 
are obvious changes that occurred between 1984 and 1999, particularly the 
presence of dammed water bodies in 1999 that were absent in 1984 with 
the corresponding presence of irrigated fields (see fig. 3.2 below).  Firstly, 
the images were geometrically matched.  Secondly, a relative atmospheric 
correction using the a regression method was applied on each band to 
correct for any radiometric differences that may have arisen due to 
atmospheric differences between the two dates (Song, et al. 2001).  The 
pseudo variant objects that were used for the regression analysis were 
deep-water bodies and airstrips present in both images (fig. 3.1).  
 Next, we estimated land cover heterogeneity for each date using 
NDVI, derived from the TM image: 

                                                       
R)(NIR

R)(NIR
NDVI

++++
−−−−====                                             (3.1) 



Detecting changes in the spatial heterogeneity of NDVI using a wavelet transform 

37

where NIR and R are the spectral reflectance values in the near infrared and 
the red.  Data were normalised to the range of 0 to 255 in order to facilitate 
data handing in image processing software.  NDVI has been shown to 
provide an effective measure of photosynthetically active biomass (Tucker 
and Sellers 1986, Los. 1998, Turner, et al. 1999, Birky 2001, Hill and 
Donald 2003) and it is an index of total vegetation biomass (Goward and 
Dye 1987).  Also, NDVI is also strongly related to the extent of vegetation  

Figure 3.1: Relationship between the DN values of sampled pseudo variant objects between the 
Landsat TM images of 19 October 1984 and 6 November 1999. 
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cover and therefore, can be used as an indicator of spatial heterogeneity in 
the landscape (Kerr and Ostrovysky 2003).  Fig. 3.2 shows the NDVI 
images of the study site for 1984 and 1999. 

1984 1999

Figure 3.2: The 1984 and 1999 NDVI images of the study site.  Low NDVI values indicate low 
vegetation cover and high NDVI values indicate high vegetation cover within a 0 (no vegetation) to 
255 (high vegetation cover) range.  The coordinates in metres (Universal Transverse Mercator 
(UTM) projection Zone 35 South). 

Detecting change in spatial heterogeneity using a wavelet transform 
A wavelet transform (Bruce and Hong-Ye 1996) was used to characterise 
the changes in the intensity of spatial heterogeneity, as well as the 
dominant scale of spatial heterogeneity in the NDVI images of 1984 and 
1999.  As a preamble, we denoted the 1984 image by F(x,y) and the 1999 
image by Z(x,y).  It is important to note that both images have the same 
spatial resolution s in both directions (i.e., s = 30 m).  The analysis of the 
change in spatial heterogeneity started with a wavelet transform (a Haar 
wavelet was used), which is defined as the convolution of two wavelet 
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functions, i.e., the smooth function φ (x,y) and detail function ϕ(x,y), and a 
function f(x,y) at successive bases, (2j), i.e., j = 0,1,2…J in the vertical 
(north-south), diagonal (northeast-southwest and southeast-northwest) and 
horizontal (east-west) directions.  A wavelet transform results in a set of 
coefficients where each coefficient is associated with a base level (i.e.,  
j = 0,1,2… J), a direction and a particular location.  
 Thus, the wavelet approximations, y)(x,F̂  and y)(x,Ẑ , of the 
original NDVI images F(x,y) and Z(x,y) respectively are each a is a sum of 
the smooth and the detail functions at different bases:  

                              y)(x,
J

1j dir

dir
jDy)(x,JSy)(x,F ∑

====
∑++++====ˆ                                    (3.2) 

                              y)(x,
J

1j dir

dir
jDy)(x,JSy)(x,Z ∑

====
∑++++====ˆ                                    (3.3) 

SJ represents the smooth coefficients and dir
jD  are the directional (i.e., 

vertical (north-south), horizontal (east-west) and diagonal (northeast-
southwest and northwest-southeast)) detail coefficients.  By convention, 
the smallest grain of f(x,y) is j = 0.  Therefore, each scale level j
corresponds to a grain equals sj *2  where s is the size of the original grain 
at which the NDVI is mapped (in this case 30 m, the grain of Landsat TM).  
The decision on the magnitude of J (i.e., the broadest base or window of 
focus) is made in advance and depends on how much detail is required in 
the analysis and also on the extent of the image.  In this study we selected J
equals 5, an equivalent of a spatial dimension of 960 m.  Note that the 
theory and formal treatment of wavelets has been covered exhaustively 
elsewhere (Mallat 1989, Ogden 1997)  
 In a wavelet transform, wavelet coefficients can either be positive 
or negative.  However, the absolute coefficient value measures the 
magnitude of contrast in a function (in the case, F(x,y) and Z(x,y) at a 
specific location with a base of 2j.  Therefore, we calculated wavelet 
energy as a second moment of the wavelet transform defined as the sum of  
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squares of the coefficients at base 2j, divided by the sum of squares of all 
the coefficients in y)(x,F̂  and y)(x,Ẑ :

                                   Jjyxj

j

n

k

d
E

E d
j ...1,2,3),,(

2/

1

21
=∑

=
=                                         (3.4) 

where ),( yxjd  are the detail wavelet coefficients at j  and position ),( yx , E

is the total sum of squares of either y)(x,F̂  or y)(x,Ẑ , and n/2j is the number 
of coefficients at level j.  We used wavelet energy to determine the 
intensity and the dominant scale of spatial heterogeneity. 
 In order to analyse the changes in spatial heterogeneity between 
1984 and 1999, we began by plotting the wavelet energy functions for 
1984 and 1999 using only the significant wavelet coefficients obtained 
after applying a universal filter (Bruce and Hong-Ye. 1996) to all the 
wavelet coefficients (i.e., in the horizontal (east-west), vertical (north-
south), and diagonal (northeast-southwest and northwest-southeast) 
orientations).  Specifically, the wavelet energy values obtained for 1984 
and 1999 were plotted separately against scale (i.e., from 60 m to 960 m).  
Next, to see whether there was a change in spatial heterogeneity, the 
highest local maxima representing the intensity, as well as the 
corresponding dominant scale of spatial heterogeneity in 1984 and 1999 
were determined and compared.  It is important to note that this was 
implemented using only the detail functions rather than the smooth 
approximations.  This is because detail functions are scale specific.  For 
example, details at j = 1 capture vegetation patches that have a size 
between 30 m and 60 m.  In contrast, smooth coefficients can only capture 
scales that are equal or greater than 2J, thus they are not scale specific. 
Finally, we plotted the maps of the wavelet coefficients that correspond to 
the intensity and the dominant scales of spatial heterogeneity at which the 
intensity occurred in both 1984 and 1999.  

3.3 Results 

Fig. 3.3 shows the wavelet energy functions that resulted from the wavelet 
transform of the 1984 and 1999 NDVI images.  It can be observed that in 
the horizontal (east-west) orientation, the intensity of spatial heterogeneity 
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occurred at a dominant scale 120 m in 1984 whereas in 1999 it occurred at 
a dominant scale of 480 m, an increase of 360 m.   
 In addition, it can be observed that in the vertical (north-south) 
orientation the intensity of spatial heterogeneity occurred at the dominant 
scale of 240 m in 1984 whereas in 1999 it occurred at a dominant scale of 
480 m, an increase of 240 m.  Also, in the diagonal (northeast-southwest 
and northwest-southeast) orientation, the intensity of spatial heterogeneity 
occurred at a dominant scale of 240 m in 1984 whereas in 1999 it occurred 
at a dominant scale of 480 m.  Furthermore, it can be generally observed 
that the intensity of spatial heterogeneity was higher in 1999 compared 
with 1984. 
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Figure 3.3: Directional wavelet energy functions for study site in the (�) horizontal (east-west), (�)
vertical (north-south) and (�) diagonal (northeast-southwest and northwest-southeast) orientation in 
1984 and 1999.  The arrows indicate the intensity, as well as the dominant scale of spatial 
heterogeneity in the horizontal (east-west) and vertical (north-south) orientations in 1984 and 1999. 
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(a)

(b)

(b)

1984 1999

Figure 3.4: The (a) NDVI images of the study site in 1984 and 1999 and the (b) two dimensional 
and (c) 3-dimensional images showing the magnitude of the wavelet coefficients that constitute the 
intensity and the dominant scale of spatial heterogeneity in the horizontal (east-west) orientation in 
1984 shown in fig. 3.3 (i.e., dominant scale = 120 m).  The arrows indicate a high wavelet 
coefficient that coincides with the small water body in 1984 and in 1999. 
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(a)

(b)

(b)

1984 1999

Figure 3.5: The (a) NDVI images of the study site in 1984 and 1999 and the (b) two dimensional 
and (c) 3-dimensional images showing the magnitude of the wavelet coefficients that constitute the 
intensity and the dominant scale of spatial heterogeneity in the vertical (north-south) orientation in 
1984 shown in fig. 3.3 (i.e., dominant scale = 240 m).  The arrows indicate a high wavelet 
coefficient that coincides with the small water body in 1984 and in 1999. 
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1984

(a)

Figure 3.6: The (a) NDVI images of the study site in 1984 and 1999 and the (b) two dimensional 
and (c) 3-dimensional images showing the magnitude of the wavelet coefficients that constitute the 
intensity and the dominant scale of spatial heterogeneity in the horizontal (east-west) orientation in 
1999 shown in fig. 3.3 (i.e., dominant scale = 480 m).  The arrows indicate a high wavelet 
coefficient that coincides with the large water body in 1999. 
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1984

(a)

Figure 3.7: The (a) NDVI images of the study site in 1984 and 1999 and the (b) two dimensional 
and (c) 3-dimensional images showing the magnitude of the wavelet coefficients that constitute the 
intensity and the dominant scale of spatial heterogeneity in the vertical (north-south) orientation in 
1999 shown in fig. 3.3 (i.e., dominant scale = 480 m).  The arrows indicate a high wavelet 
coefficient that coincides with the large water body in 1999. 

 Figs. 3.4 and 3.5 illustrate the spatial distribution of wavelet 
coefficients that constituted the intensity of spatial heterogeneity that 
occurred at the dominant scale of 120 m and 240 m in 1984 in the 
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horizontal (east-west) and vertical (north-south) orientations respectively, 
as well as the corresponding wavelet coefficients in 1999 for comparison 
purposes.  It can be observed that the highest coefficients in 1984 
represented small water bodies, as well as agricultural fields of sizes 
between 120 m and 240 m.  In addition, it can be observed that despite the 
fact that the intensity of spatial heterogeneity occurred at these dominant 
scales (i.e., 120 m and 240 m) in 1984, the wavelet coefficients and hence 
the wavelet energy was relatively higher at the same scales in 1999.  In 
other words, in the year 1999 the 120 m and 240 m no longer constituted 
the dominant scales of spatial heterogeneity. 
 Furthermore, figs. 3.6 and 3.7 show the spatial distribution of 
wavelet coefficients that constituted the intensity of spatial heterogeneity 
that occurs at the dominant scale of 480 m in 1999, in the horizontal (east-
west) and vertical (north-south) orientations respectively, as well as the 
corresponding or constituent wavelet coefficients in 1984.  It can be 
observed that the largest increase in the magnitude of the wavelet 
coefficients was associated with the emergence of two large water bodies 
in 1999.  In addition, it can be observed that in 1984 agricultural fields 
occupied the spots now occupied by water bodies in 1999.  Furthermore, it 
can be observed that the horizontal (east-west) wavelet coefficients  
(fig. 3.6) reflect that change in the intensity of spatial heterogeneity and the 
dominant scale of spatial heterogeneity is not only an effect of the 
introduction of water bodies onto the farm but also a contribution of 
irrigated fields reflected in the high NDVI values of 1999.  

3.4 Discussion  

In this study, we have demonstrated that a wavelet transform can be 
applied on multi-temporal remote sensing imagery to detect changes in 
both the intensity of spatial heterogeneity and the dominant scale of spatial 
heterogeneity.  For example, the dominant scale of spatial heterogeneity 
increased from between 120 m and 240 m in 1984 to 480 m in 1999, 
suggesting that the dominant patches size at which NDVI (vegetation 
cover) varied maximally had increased (fig. 3.3).  This is mainly due to the 
large water bodies that were introduced between 1984 and 1999.  In 
addition, the intensity of spatial heterogeneity was higher in 1999 than in 
1984, suggesting that the maximum variance in vegetation cover increased 
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dramatically between the years (fig. 3.3).  The increase in the amount of 
vegetation cover (NDVI) in places and also the decrease in vegetation 
cover due to the introduction of large water bodies explains the increase in 
intensity.  Therefore, we can deduce that by using a wavelet transform, we 
are not only able to detect the differences in the maximum variance of 
vegetation cover, but we are also able to detect any the changes in the 
constituent patch dimensions at which the maximum variance occurs.  This 
supports the main hypothesis in landscape ecology that changes in the 
spatial heterogeneity of a landscape are scale dependent (Turner 1989).  
 Moreover, the results in this study demonstrated that a wavelet 
transform uses the strengths of both the pixel-based or post-classification-
based change detection methods by being able to detect changes in both the 
maximum variability (intensity) and in the size (dominant scale) of 
recognisable features in the landscape.  In other words, while the pixel-
based method makes it difficult to know the size of the patches that 
dominate the landscape without further analysis, it can capture variability 
in the landscape.  In contrast, the post-classification-based change 
detection can give an idea about the size of the constituent patches in the 
landscape but it leads to the loss of quantitative information on variability 
in the landscape.  Consequently, we can conclude that the wavelet 
transform based change detection within the framework of the intensity 
and dominant scale of spatial heterogeneity is a novel improvement over 
the abovementioned methods because we can detect both the change in 
variance and the size of the constituent patches that contribute to that 
change.  

3.5 Conclusion  

Landscapes are spatially heterogeneous and temporally dynamic at 
different scales (Turner 1989).  In addition, landscapes are composed of 
scale domains that represent the relative importance of a landscape 
property at different scales (Wiens 1989).  In this regard, any 
methodological framework that analyse change in the landscape must have 
the capacity to handle scale explicitly (Hall and Hay 2003).  
 The findings in this study demonstrated that a wavelet transform 
implemented within the framework the intensity and dominant scale of 
spatial heterogeneity could be used to analyse scale explicit changes in the 
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landscape.  We conclude that the approach used in this study uses the 
strengths of both the pixel-based or post-classification-based change 
detection methods.  In addition, we conclude that the approach used in this 
study is innovative and could improve the understanding of ecological 
patterns and their dynamics in the landscape.  In other words, it could 
radically improve studies that aim at predicting the spatial distribution and 
redistribution of organisms in the landscape in a scale explicit fashion.  
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Chapter 4
Tsetse eradication, arable fields and the 
elephant (Loxodonta africana) distribution 
in Zimbabwe: How strong is the link?3

A Murwira, A. K. Skidmore, H. G. J. Huizing and H.H.T Prins

Abstract

We investigated whether the proportion of arable fields increased in relation to the tsetse 
eradication regime in the Sebungwe region.  We also investigated whether and to what 
extent this increase in arable fields may have affected the distribution of the African 
elephant (Loxodonta africana) between the 1980s and 1990s.  Results showed a relatively 
higher increase in the proportion of the habitat under arable fields in the zone cleared of 
tsetse by 1986 compared to the zone that was still tsetse infested by the same date.  
Results also showed a change in the relationship between the proportion of the habitat 
under arable fields and elephant distribution between the two periods.  In the 1980s, when 
arable field cover was between 0 % and 11 %, there was a weak positive relationship 
between elephant presence and the proportion of the habitat under arable fields.  In 
contrast, a negative relationship emerged in the 1990s, when arable field cover ranged 
between 0 % and 88 %.  Furthermore, the results demonstrated that the change in the 
probability of elephant presence between the early 1980s and the early 1990s was 
significantly related to the change in the proportion arable fields.  In conclusion, this study 
demonstrated that the expansion of arable fields in the Sebungwe was greater in areas 
where tsetse had been eradicated compared with areas that were still tsetse infested.  
Overall, the results suggest that tsetse eradication led to new ecological patterns, 
manifested in the redistribution of elephants in response to arable field expansion.  

3 In review: African Journal of Ecology 
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4.1 Introduction 

The shortage of land that resulted from population pressure in parts of the 
country, forced the authorities in Zimbabwe to initiate a programme to 
eradicate tsetse fly (Glossina spp.) in the Zambezi valley since the 1960s, 
particularly in the Sebungwe region (Lovemore 1994, Cumming and 
Lynam 1997, Nobanda, et al. 1998).  However, this action would unleash 
new landscape conditions for wildlife species.  The tsetse fly transmits 
sleeping sickness to humans and Trypanosomiasis to livestock.  Hence, 
areas that are tsetse-infested are normally not supporting a large 
agricultural population and livestock but instead support thriving wildlife 
populations that are not affected by tsetse (du Toit 1985, du Toit 1995).  As 
a consequence of tsetse eradication, farmers began to increasingly occupy 
the valley since the 1960s (Cumming and Lynam 1997).  By the mid-1980s 
agricultural expansion accelerated thereby threatening the persistence of 
wildlife in the area (Cumming and Lynam 1997).  
 Despite efforts to preserve wildlife species through a network of 
national parks in the 1960s, poaching in wildlife reserves, as well as 
expanding agriculture in wildlife habitats continued to negatively affect 
wildlife species persistence in the Sebungwe (Hulme and Murphree 2001).  
Therefore, from the early 1980s, the approach to wildlife management 
shifted to encompass conservation in agricultural areas, this time by 
involving local communities (Cumming 1981).  This approach was 
formalized through the communal areas management programme for 
indigenous resources (CAMPFIRE) in 1989.  In this programme, local 
communities would treat wildlife as an economic asset rather than an 
impediment to agricultural production (Logan and Moseley 2002).  In 
other words, the programme envisions the of agriculture-wildlife 
coexistence outside the protected wildlife reserves.  Naturally, the success 
of CAMPFIRE can only be ensured by the persistence of wildlife in these 
agricultural landscapes.  Consequently, the need to understand the spread 
of arable agriculture following tsetse eradication as well as how this may 
have affected wildlife distribution is critical.  
 The first critical question is whether, in the first place, we can 
quantitatively attribute the increase in arable fields to the tsetse eradication 
regime.  In addition, if there was an increase in arable fields, how did the 
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proportion of the habitat under arable fields impact on the spatial 
distribution of wildlife species in the area?  To date, only a few attempts 
have been made to quantitatively investigate a link between the expansion 
of arable fields and the tsetse eradication process (Pender and Rosenburg 
1995).  Furthermore, few attempts have also been made to quantitatively 
establish how and to what extent the proportion of the habitat under arable 
fields in areas where tsetse had been eradicated may have affected the 
spatial distribution of wildlife (Cumming and Lynam 1997).  Existing 
work has mainly focused on how human population density and settlement 
in the Sebungwe is related to the distribution of wildlife, particularly that 
of the elephant (Hoare and Du Toit 1999) without a temporal investigation 
in the context of the tsetse eradication regime.  Therefore, it is important to 
understand how wildlife responded to varying amounts of agricultural 
incursions in their habitat over time as this may lead to solutions that lead 
to the possibility of wildlife-human coexistence.  
 In the Sebungwe, understanding the extent to which arable fields 
expanded following tsetse eradication, as well as understanding the extent 
to which this has affected the spatial distribution of wildlife is critical for 
aiding CAMPFIRE.  Previous studies have suggested a negative 
relationship between agriculture and wildlife distribution (Ottichilo 2000).  
However, for the management of programmes such as CAMPFIRE, it is 
not only important to know that there may be a negative relationship 
between wildlife presence and agriculture but it is also important to know 
the conditions under which this negative relationship might set in as this 
may lead to the establishment of possible thresholds favourable for 
wildlife-human coexistence.  Therefore, analysing the expansion of arable 
fields and their possible effect on wildlife in a spatial and temporal context 
is critical. 
 In this study, we investigated whether the proportion of the 
habitat under arable fields increased in the Sebungwe region in Zimbabwe 
in relation to the tsetse eradication process.  We also investigated whether 
and to what extent arable fields could have affected the distribution of the 
African elephant (Loxodonta africana), i.e., a keystone species (Hoare and 
Du Toit 1999), between the early 1980s and the early 1990s.  Therefore, 
based on the Sebungwe region, we specifically made three predictions.  
Firstly, we predicted a statistically significant difference in the proportion 
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of the habitat under arable fields between the zones in which tsetse had 
been eradicated by 1986 and the ones still tsetse infested by the same date.  
Secondly, we predicted a statistically significant relationship between the 
proportion of the habitat under arable fields and the probability of elephant 
presence in sampling units defined by an intersection of administrative 
ward and vegetation class boundaries in 1983 and 1995.  Finally, we 
predicted a statistically significant relationship between changes in the 
probability of elephant presence and the changes proportion of arable fields 
in sampling units defined by an intersection of administrative ward and 
vegetation class boundaries between the early 1980s and the early 1990s 

4.2 Material and methods 

Study area 
The study was based on the Sebungwe region in Zimbabwe (fig. 4.1).  The 
Sebungwe has undulating topography with the average elevation of  
700 – 800 m above sea level.  The region is characterised by a single wet 
season (November to March) with a mean annual rainfall of 680 – 700 
mm, as well as a long dry season (April to October).  Savanna woodlands 
and grasslands characterise the main natural land cover.  The natural cover 
types include, Miombo woodland dominated by Brachystegia spp. and
Julbernardia globiflora, Mopane dominated by Colophospermum mopane,
Faidherbia woodland dominated by Faidherbia albida, Miombo-Mopane 
with co-dominance of Brachystegia spp. and Julbernardia globiflora and
Colophospermum mopane, as well as Setaria grasslands dominated by 
Setaria incrassata, Ischaemum afrum and Dicathium papillosum 
(Timberlake, et al. 1993) (fig. 4.1b).  The floristic-physiognomic 
vegetation units are constant over time, representing the vegetation classes 
that would be there in an undisturbed environment (Timberlake, et al.
1993).  Therefore, the boundaries do not change within a matter of 
decades. 
 The Sebungwe consists of five wildlife reserves, interspersed 
with communal lands.  The communal lands have varying degrees of 
agriculture within the natural vegetation units and varying degrees of 
elephant presence.  Communal lands are a land category that are  
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Zimbabwe

(a)

(b)

Figure 4.1: The location of the Sebungwe region in Zimbabwe and (a) the wards, national parks and 
the history of the progression of tsetse eradication (source: Tsetse and Trypanosomiasis control 
branch, Harare) and (b) the physiognomic-floristic vegetation classes in the communal lands based 
on Timberlake and Nobanda (1993).  The square box is a 61 km x 61 km area selected for this 
study. 
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characterised by collective or community land ownership and they are 
subdivided into administrative or management units called wards  
(fig. 4.1a).  In the communal lands elephant presence is affected by 
ecological conditions, and also poaching and human disturbance rather 
than by conservation measures or laws like those enforced in wildlife 
reserves, i.e., in communal lands elephants are present provided there are 
necessities such as enough cover and water available for both elephants 
and humans.  Elephants have to cross the communal lands when moving 
between the wildlife reserves, thereby making communal lands an 
important wildlife corridor that links the national parks. 
 The Sebungwe landscape evolved from a complex of different 
historical forces linked to the eradication of tsetse fly (Glossina sp.)
(fig. 4.1a).  Historically, the Sebungwe region was home to both tsetse fly 
and a wide range of wildlife species until the 1960s when the tsetse belt 
began to continually dwindle as a consequence of the tsetse eradication 
programme that was meant to enable livestock ranging and arable 
agriculture, thereby relieving population pressure from elsewhere in the 
country.  

Agricultural fields from remote sensing  
In order to fulfil the objectives of the study, agricultural field distribution 
was extracted from land cover for 1984 and 1992 and the land cover maps 
were derived from an image classification of Landsat Thematic  
Mapper (TM).  In this case, the 1984 map was produced from a supervised 
image classification of a 19th October image performed by the authors 
while the 1992 map was sourced from the Forestry Commission of 
Zimbabwe based on a 16th April image.  Dry season imagery was used 
because elephant counts by aerial surveys were conducted in the dry 
season.  In addition, it is easier to distinguish between fallow agricultural 
fields and natural vegetation from dry season imagery.  Aerial photographs 
were used for both image classification and accuracy assessment of the 
1984 image and for accuracy assessment of the 1992 map.  Overall 
accuracies of 90% and 80% were obtained for the 1984 and 1992 maps 
respectively.  
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Elephant distribution data 
The data on the spatial distribution of elephants in the 1980s and 1990s 
were determined using respectively a GIS based combination of 1981-1983 
point data sets, and 1993-1995 point data sets.  These data were obtained 
from point location data from the analyses of Sebungwe aerial surveys by 
Cumming and Lynam (1997) and made available by the World Wildlife 
Fund (WWF) in Harare.  The recordings of the elephant sightings were 
made within 0.5 minute segments (≤ 1 km) along the flight path with an 
aircraft travelling at approximately 120 km per hour and the sightings 
could be up to 250 m on either side of the aircraft (Cumming and Lynam 
1997), suggesting that the worst case of locational error in these surveys 
would be closer to 500 m.  The aerial surveys were carried out in the dry 
season, i.e., between August and October of the relevant years.  This was 
considered an appropriate period for studying the effect of spatial 
heterogeneity on elephant distribution because the crop fields are fallow 
during the dry season.  Crop fields tend to attract the elephants outside 
their normal natural range, thus making wet season (October to March) 
data less reliable for assessing the effect of spatial heterogeneity.  In other 
words, an area that can be suitable for the elephant in the dry season can 
safely be assumed to be suitable in the wet season.  
 We considered the elephant distribution map of our study area R 
as a spatial point pattern (Diggle 1983).  Each point where elephants were 
observed is called an event.  We calculated the first-order intensity 
function λ(x) for the elephant point map to give an expected number of 
events per unit area (Fotheringham, et al. 2000): 
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where E(N) is the expected number of events in the study area considered 
and C(x,r) a circular sub-region of R located at x with a radius r.  A kernel 
function was used in this study with the radius r equal to 3000 m based on 
an exploratory analysis in S-PLUS software (Lam 2001).  This kernel 
radius was also large enough to overcome any locational errors in elephant 
sightings.  We then normalised λ(x) by dividing it by the expected number 
of events in R to produce a normalised or probability function λn(x) 
(Fotheringham, et al. 2000): 
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 We used the λn(x) to estimate the spatial distribution of elephants 
in the study area during the 1981-83 and 1993-95 periods.  This spatial 
point pattern analysis was carried out in the S-PLUS software (Lam 2001) 
and the map data were transferred to ILWIS GIS software (ITC 2002) 
where it was converted to a raster map format.  This method was used 
because it is spatially explicit and gives weight to elephant location rather 
than absolute numbers: the aim was to determine whether spatial 
heterogeneity affects the presence of at least a single elephant and since the 
elephant survey data sets were combined, adding the total number of 
observed elephants of the years would give a false impression.  

Analysis of agricultural field expansion 
We started the analysis by using GIS overlay to explore changes in the 
spatial patterns of arable fields (fields) between 1984 and 1992 relative to 
the tsetse status in 1986, i.e., by subdividing the study area into two zones 
(with tsetse and where tsetse had been eradicated) while specifically 
focussing on the communal lands.  The operation produced a map of fields 
in each tsetse status zone in 1984 and 1992.  Consequently, we calculated 
the proportion of fields in 1984 and 1992 in the two zones.  Finally, we 
statistically compared the amount of arable fields in each zone at different 
times (1984 and 1992), as well as between the two zones at each time 
based on proportions.

Analysis of agricultural fields and the probability of elephant presence  
We investigated whether there was a significant relationship between the 
proportion of fields and the probability of elephant presence by focusing 
on a 61 km by 61 km subset of the study area, specifically covering 
communal lands in the zone that had become largely free of tsetse by 1988 
(fig. 4.1a).  This was to facilitate the study of the effects of tsetse 
eradication on wildlife distribution.  This study area was considered large 
enough for studying the spatial distribution of elephants.  Specifically, 
elephants in the Sebungwe region have an estimated range of between  
83 km2 to 263 km2, approximating a horizontal (east-west) length scale 
(horizontal (east-west) dimension) of 9.1 km and 16.2 km, respectively 
(Guy 1976a, Dunham 1986).  This makes the extent of the study area, i.e., 
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3721 km2, which is at least 14 times the estimated range of the elephant in 
the Sebungwe large enough to study elephant distribution.  
 We based our analysis on 22 different land units (sampling units) 
that were defined by an intersection of ward and the physiognomic-floristic 
vegetation class boundaries.  The intersection was accomplished in a GIS.  
The sampling units were appropriate from a management and ecological 
point of view, i.e., the ward boundaries cater for the fact that arable and 
wildlife management decisions are made at ward level whereas the 
vegetation classes cater for ecological differences between sampling units.  
Fig. 4.2 illustrates the sampling units used in this study.  
 Next, the probability of elephant presence in each of the sampling 
units, which was used to measure elephant distribution, was obtained by 
crossing the probability of elephant distribution map with the sampling unit 
map (i.e., intersection of wards and vegetation classes) in a GIS and then 
calculating the mean probability of elephant presence in each sampling 
unit.  Also, the proportion of arable fields in each sampling unit was 
obtained by crossing a map of arable fields with the sampling unit map in a 
GIS and then calculating the proportion of arable fields by dividing the 
amount of arable fields with the total area of the sampling unit. 
 The next procedure involved using the 1980s and 1990s data to 
analyse the relationship between the proportion of fields and the mean 
probability of elephant presence, through regression.  The differences in 
date between the elephant data and arable field data was expected to have 
negligible effects on the results because the dates were close enough.  In a 
situation whereby a sampling unit is close to a National park, there is likely 
to be a high level of elephant persistence despite the amount of arable 
fields.  Therefore, the distance from National Parks was calculated in a GIS 
for use in aiding the proportion of the habitat under arable fields to explain 
elephant distribution.  Finally, we used regression to investigate whether 
changes in the proportion of arable fields (plus distance from the National 
parks) in each sampling unit significantly explained changes in the 
probability of elephant presence in the study area.  In order to accomplish 
this, the proportion of arable fields in the 1980s was subtracted from the 
proportion of arable fields in the 1990s for each sampling unit.  In this 
way, positive values would represent an increase while negative values  
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Figure 4.2: Sampling units (intersection of wards and vegetation classes) used in the regression of 
the probability of elephant presence on the dominant scale and intensity of spatial heterogeneity 
based on the early 1980s and the early 1990s data (Chi = Chireya 1, Chu = Chunga, Madz = 
Madzivazvido, MsA = Musambakaruma A, NaA = Nabiri A, NaB = Nabiri B, Nabu = Nabusenga, 
Nem = Nemangwe 5, Neg = Negande, Neny = Nenyunka and Sim = Simchembo). 

would represent a decrease in each factor between the two dates.  The same 
was done to obtain changes in the probability of elephant presence between 
the early 1980s and the early 1990s. 

4.3 Results 

Fig. 4.3 shows the distribution of arable fields in 1984 and 1992.  It can be 
observed that the amount of arable fields increased in the study area  
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1988 Tsetse front

1986 Tsetse front

National Park

Arable fields

bb

1984 1992

60 0 60 120 Kilometers

Figure 4.3: Maps showing the distribution of fields in relation to tsetse eradication status in 1984 
and 1992 and the 61 km by 61 km square box selected for detailed spatial analysis.  The total area of 
the tsetse zone by 1986 equals to 482 100 hectares while the total area of the eradicated zone is 
equals to 514 825 hectares (these figures exclude the nature parks).  The ellipse (b) illustrates an 
area where there was a high increase in arable fields between 1984 and 1992.

between 1984 and 1992.  The highest increase in the area under arable 
fields between 1984 and 1992 can be observed in the southeastern corner 
of the study area marked by an ellipse (b). 
 In addition, fig. 4.4 shows the proportions of arable fields in both 
tsetse-eradicated and tsetse zones in 1984 and 1992.  It can be observed 
that the proportion of the habitat under arable fields in the tsetse-eradicated 
zone was higher than the proportion of the habitat under arable fields the 
tsetse zone in both 1984 and 1992.  There were more new fields in the 
tsetse-eradicated zone than in the tsetse zone.  A comparison of the 
proportions of arable fields within each zone between 1984 and 1992, as 
well as between the zones in both 1984 and 1992, showed that the 
proportions were significantly different (p < 0.05) 
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Figure 4.4: The proportion of the habitat under arable fields in the tsetse and tsetse-eradicated zones 
in 1984 and 1992.  

 Fig. 4.5 shows the probability of elephant presence between 
1981-83 and 1993-95.  It can be observed that the probability of elephant 
presence decreased noticeably between 1981-83 and 1993-95 in areas that 
had a higher increase in the amount of arable fields (fig. 4.3), particularly 
in the southeastern corner of the study area marked by the ellipse (b).  It 
can also be observed that areas close to the National parks can have 
relatively high probabilities of elephant presence despite high proportions 
of arable fields (fig. 4.3).  
 Fig. 4.6 shows that the relationship between the probability of 
elephant presence and the proportion of arable fields in 1984 and in 1992 
revealed contrasting patterns.  In the 1980s, a non-significant (p > 0.05)  
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Figure 4.5: Maps probability of elephant presence within a 3 km radius in the study area in 1981-83 
and 1993-95 and the 61 km by 61 km square box selected for detailed spatial analysis.  The ellipse 
(b) illustrates an area where there was a major noticeable decrease in the probability of elephant 
presence between 1981-83 and 1993-95 and ellipse (a) shows an area close to the park where the 
probability of elephant presence is high. 

and weak positive relationship appeared between elephant presence and the 
proportion of fields in different sampling units.  It can be observed that in 
1984 all sampling units had less than 11 % of their area covered by arable 
fields.  In contrast, there was a significant (p < 0.05) quadratic relationship 
between the probability of elephant presence and the proportion of the 
habitat under arable fields in the 1990s.  The relationship is largely 
negative.  It can also be observed that during this period the proportions of 
arable fields in different land units ranged between 0 % and 88 %.  
 Fig. 4.7 shows the results of the investigation on whether the 
probability of elephant presence could be significantly explained by the 
interaction between the proportion of the habitat under arable fields and the 
distance to the national parks in both the 1980s and the 1990s, as well as 
whether the changes in the probability of elephant presence were also 
explained by changes in the proportion of arable fields modified by the 
distance from the national parks (fig. 4.7).  Fig. 4.7a shows that there was a 
non-significant (p > 0.05) relationship between the probability of elephant  
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Figure 4.6: Non-significant (p > 0.05) relationship between probability of elephant presence on the 
proportion of the habitat under arable fields in the (a) 1980s and significant (p < 0.05) relationship 
in the (b) 1990s in (�) Miombo, (�) Mopane, (�) Setaria Grassland and (�) Miombo-Mopane 
floristic-physiognomic vegetation classes.  The marked point is close to National parks. 

presence in the 1980s and the interaction between the proportion of the 
habitat under arable fields and the distance to the national parks while  
fig. 4.7b shows a significant (p < 0.05) largely negative relationship in the 
1990s.
 During both periods, the proportion of arable fields, modified by 
the influence of the distance to the national park explained < 1 % and 59 % 
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of the variance in the probability of elephant presence respectively.  
Fig. 4.7c shows that the changes in the probability of elephant presence 
between the early 1980s and the early 1990s were significantly (p < 0.05) 
explained by the increase in the proportion of arable fields between the two 
dates.  In fact, elephants decreased most where arable fields increased 
most.  This model predicted 47 % of the variance of the change in the 
probability of elephant presence.  For example, the Mopane vegetation 
class in Nenyunka clearly illustrates that increases in the levels of arable 
fields negatively affected the probability of elephant presence (fig. 4.6 and  
fig. 4.7).  In addition, the same sampling unit illustrates the positive 
influence of shorter distance to the national park to the probability of 
elephant presence.  

4.4 Discussion 

This study revealed a link between tsetse eradication and the expansion of 
arable fields in the Sebungwe, between 1984 and 1992.  This confirms 
reports from related work, suggesting an increasing number of farmers 
settling in the area as tsetse was being progressively eradicated in the 
Sebungwe (Cumming and Lynam 1997).  The results also support the 
widely held hypothesis that tsetse eradication drives changes in land use 
and therefore, land cover patterns (De Vos 1978, Rogers and Randolph 
1988, Jordan 1992, Reid, et al. 1997). 
 An interesting finding of this study was that elephants showed a 
variation in their reaction to the transformation of habitat by arable 
agriculture in the Sebungwe following tsetse eradication (fig. 4.6 and  
fig. 4.7).  The results suggested that in the early 1980s when the proportion 
of arable fields was between 0 % and 11 % there was no significant 
relationship between elephants and the proportion of the habitat under 
arable fields.  In contrast, the results indicated that in the early 1990s when 
the proportion of the habitat under arable fields rose up beyond 11 %, the 
relationship between elephant presence and the proportion of the habitat 
under arable fields became significantly negative.  Since the elephant data 
were collected in the dry season when arable fields are fallow, the  
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Figure 4.7: A non-significant (p > 0.05) relationship between probability of elephant presence on the 
proportion arable fields plus distance to National parks in the (a) 1980s, a significant (p < 0.05) 
relationship in the (b) 1990s, as well as a significant (p < 0.05) relationship between the change in 
the probability of elephant presence between the 1980s and the 1990s and the increase in arable 
fields plus a modification by the distance to the National the park during the same period.  The 
labelled sampling unit illustrates the decrease in the probability of elephant presence with the 
increase in the proportion of arable fields.  The graph surfaces represent relatively low probability of 
elephant presence in green and the highest probability of elephant presence in deep red.  



Tsetse eradication, arable fields and the elephant (Loxodonta africana) distribution in 
Zimbabwe: How strong is the link? 

65

relationship between elephant presence and the proportion of the habitat 
under arable fields can be explained from a cover (or shelter) perspective.  
In this regard, at low proportions of arable fields within a land unit, 
elephants still have sufficient cover to hide from humans.  However, when 
the proportion of the habitat under arable fields increases, the landscape is 
opened up and there are less hiding opportunities for the elephants.  These 
observations are supported by the findings of (Hoare and Du Toit 1999) 
that elephants are expected to persist in areas where human settlement 
occurs within a matrix of untransformed habitat.  From the results, we can 
deduce that the relationship between agricultural encroachment and 
elephant presence is not necessarily a negative one, but instead, it depends 
on the proportion the habitat transformed into arable fields.  The distance 
from the national park modifies the relationship, as places that are close to 
national parks tend to have high levels of elephant presence, even though 
the proportion of habitat under arable fields is high (figs. 4.6 and 4.7).  
 We also observed that elephants decreased most where arable 
fields increased most, suggesting that the increase in the proportion of 
habitat under arable fields had a negative impact on elephant persistence in 
the Sebungwe.  This result confirms the findings of Cumming and Lynam 
(1997) who reported that although there was an increase in the Sebungwe 
elephant population between the 1980s and 1990s, the dry season range 
shrunk by 15 %.  The decline in the elephant range has negative 
implications for CAMPFIRE, since the survival of this programme hinges 
upon wildlife species persistence in the agricultural areas.  However, the 
increase in the proportion of arable fields explained only less that half of 
the variance of the decrease in the probability of elephant presence, 
suggesting the influence of other factors that need to be investigated in 
future studies. 

4.5 Conclusions 

Three main conclusions could be drawn from this study.  Firstly, the 
expansion of arable fields was greater in areas where tsetse had been 
eradicated earlier compared with areas that were still tsetse infested in the 
Sebungwe, suggesting that tsetse eradication gave way to accelerated 
arable field expansion.  Secondly, the increase in the proportion of the 
habitat under arable fields was negatively related to elephant presence in 
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the Sebungwe but only when the proportion of the habitat under arable 
fields ranged beyond 11 % among the sampling units.  Finally, the results 
suggest that tsetse eradication lead to new ecological patterns, manifested 
in the redistribution of elephants in response to arable field expansion.  
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Chapter 5
Evaluating a new approach to predict the 
spatial distribution of elephants from 
NDVI4

Amon Murwira, Andrew K. Skidmore and Jan De Leeuw

Abstract

Spatial heterogeneity (i.e., the patchiness in the landscape) is important for understanding 
the degree of wildlife species presence in a landscape.  Remote sensing provides an 
invaluable source of data from which spatial heterogeneity can be quantified for the 
purpose of predicting ecological patterns like wildlife distribution.  However, approaches 
to quantify spatial heterogeneity remain rudimentary.  In this study we developed a new 
approach based on the concepts of intensity (i.e., the maximum variance exhibited when a 
spatially distributed landscape property such as vegetation cover is measured with a 
successively increasing window size or scale) and dominant scale (i.e., the scale or 
window size at which the intensity is displayed) to quantify spatial heterogeneity of a 
normalised difference vegetation index (NDVI) for use in predicting the probability of 
elephant (Loxodonta africana) presence in different sampling units in an agricultural 
landscape in Zimbabwe.  NDVI was estimated from Landsat TM imagery.  A novel 
wavelet transform and a variogram were used to quantify spatial heterogeneity using the 
new approach.  The specific objective was to evaluate whether the new approach can 
predict elephant distribution better than the usual NDVI average and the NDVI coefficient 
of variation that assume a constant pixel size or uniform scale.  Results showed that the 
new approach predicted the probability of elephant presence better than the usual NDVI 
average and the NDVI coefficient of variation that assume a constant pixel size or uniform 
scale.  In fact, wavelet and variogram-derived spatial heterogeneity explained 80 % and  
65 % of the variance in the probability of elephant presence respectively, compared with 
60 % and 48 % explained by the NDVI average and the NDVI coefficient of variation.  
Therefore, in this study, we found the intensity and dominant scale of spatial 
heterogeneity improves upon the usual NDVI average and NDVI coefficient of variation 
in predicting ecological patterns.  

4 In review: Remote sensing of Environment 
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5.1 Introduction 

Spatial heterogeneity (i.e., the patchiness in the landscape) has important 
implications for understanding the spatial distribution of wildlife species 
that inhabit landscapes (Turner, et al. 1997).  The spatial distribution of 
organisms is hypothesised to respond to the patchiness in landscape 
suitability that reflect, for instance, varying levels of resource availability 
or varying levels of human disturbance (Johnson, et al. 1992).  
Consequently, spatial heterogeneity is considered a critical determinant of 
the spatial distribution of wildlife species in the landscape (Ritchie 1997).  
However, ambiguity still surrounds the approaches to characterise spatial 
heterogeneity (Sparrow 1999), thereby making the objective 
characterisation of spatial heterogeneity a critical preamble to 
understanding spatial distribution patterns of wildlife species. 
 The quantification of spatial heterogeneity is an empirical 
approach based on observed data.  Therefore, it is a forerunner to the 
testing of specific hypotheses about ecological patterns (Perry, et al. 2002).  
In this regard, remote sensing provides an invaluable source of spatial data 
that is useful for the quantification of spatial heterogeneity in the landscape 
from a continuous landscape property perspective (Kerr and Ostrovysky 
2003).  Traditionally, ecologists have related the distribution of wildlife 
species to spatial heterogeneity measured from remote sensing images 
using the variance measure such as the coefficient of variation calculated 
from straight reflectance or reflectance indices such as the normalised 
difference vegetation index (NDVI) at the original pixel size of the image 
(Tanser and Palmer 1999, Oindo 2001).  This approach is herein defined as 
the direct image approach.  However, by assuming only a change in 
reflectance at constant and arbitrary pixel size across the image, the direct 
image approach ignores the spatial structure component of spatial 
heterogeneity (Legendre and Fortin 1989, Legendre 1998, Ettema and 
Wardle 2002).  Consequently, we feel that by ignoring the scale factor, the 
direct image approach may lack repeatability.  This is because landscapes 
are naturally patchy, and patch dimension is important, as well as the fact 
that different remote sensing imagery come with different pixel sizes.  
 In view of the limitations of the direct image approach, in this  
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Figure 5.1: Part (A) are transects with alternating spaces of trees and bare ground and part (B) 
shows the simulation tree canopy cover along each transect assuming that the cover measurements 
are made after every 1 m (i.e., grain = 1 m) and an extent of 1000 m.  For example, the (a) intensity 
(maximum variance) of transect 1 occurs at (b) a dominant scale of 100 m.  

study we propose a new approach to characterising spatial heterogeneity 
from remote sensing imagery, based on intensity and dominant scale, as a 
forerunner to predicting the spatial distribution of a wildlife species in a 
landscape.  Intensity is defined as the maximum variance exhibited when a 
spatially distributed landscape property is measured with a successively 
increasing window size or scale.  For example, measuring the variance in 
percent canopy cover along a 100 m long transect in a tree plantation with 
10 m wide tree stands (with uniformly high canopy cover) that evenly 
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interchange with 10 m wide bare ground (with zero canopy cover) at a 
successively increasing window size, starting from 1 m up to 100 m, would 
yield the maximum variance at a window size of 10 m.  This maximum 
variance is the intensity of spatial heterogeneity.  It is the scale or window 
size where the maximum variance in the landscape property is measured 
that is defined as the dominant scale of spatial heterogeneity.  In other 
words, intensity and dominant scale of spatial heterogeneity are properties 
of a landscape that are inseparable.  In this case, the dominant scale of 
spatial heterogeneity coincides with the dominant patch dimension (i.e., 
size of tree stands and bare ground) while intensity coincides with the 
degree of contrast in vegetation cover between the bare ground and the tree 
stands.  Note that our definition of scale follows that of Levin (1992) and 
Rietkerk, et al. (2002) who define scale as the window or dimension (e.g., 
m, km, m2, km2) through which the landscape may be observed either in 
remote sensing images or by direct measurement.  In this study, scale is 
treated as a linear dimension, e.g., m, km.  We therefore propose that 
spatial heterogeneity be defined and quantified using both the intensity and 
the dominant scale.  Of course, grain (i.e., the initial observation scale or 
window size at which the data is collected) and extent (overall size of the 
study area) limits the range of the dominant scale that can be detected 
(Wiens 1989). 
 In order to further clarify the centrality of intensity and dominant 
scale in the definition of spatial heterogeneity, we present a simulated 
example of tree canopy cover that is measured along three artificial 
transects (fig. 5.1).  The three artificial transects stretch over 1000 m and 
the tree canopy cover was measured at an interval of 1 m.  The sampling 
interval of 1 m defines the grain (i.e., the initial observation scale) while 
1000 m defines the extent (i.e., the transect length).  In this example, the 
transects 1 and 2 have a dominant scale of spatial heterogeneity of 100 m, 
i.e., a maximum discontinuity between high canopy cover and low canopy 
cover occurs after every 100 m whereas transect 3 has a dominant scale of 
200 m.  If we consider, transects 1 and 2, the dominant scale of spatial 
heterogeneity is equal, but the intensity of spatial heterogeneity is different 
and transect 1 and transect 3 have equal intensity of spatial heterogeneity 
but have different dominant scales of spatial heterogeneity.  We see that 
characterizing spatial heterogeneity in this example is not complete if only 
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either intensity or dominant scale of spatial heterogeneity is considered.  
Thus, we propose that both the intensity and dominant scale be used to 
describe spatial heterogeneity as a forerunner to analysing ecological 
patterns such as the spatial distribution of elephants.  
 In this study we investigated whether the spatial heterogeneity of 
NDVI analysed from the intensity and the dominant scale perspective can 
predict the probability of elephant (Loxodonta africana) presence in the 
landscape better than the usual direct image approach based on NDVI 
average or the NDVI coefficient of variation that both assume a uniform 
scale in the landscape.  A windowed variogram and a wavelet transform 
were used to characterise the intensity and dominant scale of spatial 
heterogeneity (Murwira and Skidmore. 2003). Thus, we also tested 
whether spatial heterogeneity estimated from variograms can predict the 
probability of elephant presence in the landscape better than spatial 
heterogeneity estimated from a wavelet transform or vice versa.  We based 
our analysis on different land units (sampling units) defined by 
intersections of ward (administrative unit) and vegetation class boundaries 
in the agricultural landscape of the Sebungwe in Zimbabwe.  The  
Landsat TM imagery of 19 October 1984 was used to estimate NDVI.  The 
elephant data were obtained from point location data from the analyses of 
Sebungwe aerial surveys by Cumming and Lynam (1997) and made 
available by WWF in Harare.  The African elephant was selected in this 
study because it is a keystone species that is threatened by the expansion of 
human activities, thereby constituting a serious conservation problem in 
Africa (Hoare and Du Toit 1999).  

5.2 Materials and methods 

Study area 
The study was based on the Sebungwe region in Zimbabwe (fig. 5.2).  The 
Sebungwe has undulating topography with the average elevation of 
between 700 – 800 m above sea level.  The region is characterised by a 
single wet season (November to March) with a mean annual rainfall of  
680 – 700 mm, as well as a long dry season (April to October).  Savanna 
woodlands and grasslands characterise the main natural land cover.  The  
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Zimbabwe

(a)

(b)

Figure 5.2: The location of the Sebungwe region in Zimbabwe and (a) the wards, national parks and 
the history of the progression of tsetse eradication (source: Tsetse and Trypanosomiasis control 
branch, Harare) and (b) the physiognomic-floristic vegetation classes in the communal lands based 
on (Timberlake and Nobanda 1993).  The square box is a 61 km x 61 km area selected for this 
study. 



Evaluating a new approach to predict the spatial distribution of elephants from NDVI 

73

natural cover types include, Miombo woodland dominated by Brachystegia 
spp. and Julbernardia globiflora, Mopane dominated by Colophospermum 
mopane, Faidherbia woodland dominated by Faidherbia albida, Miombo-
Mopane with co-dominance of Brachystegia spp and Julbernardia 
globiflora and Colophospermum mopane, as well as Setaria grasslands 
dominated by Setaria incrassata, Ischaemum afrum and Dicathium 
papillosum (Timberlake, et al. 1993) (fig. 5.2b).  The floristic-
physiognomic vegetation units do not change over time, representing the 
vegetation classes that would be there in an undisturbed environment 
(Timberlake, et al. 1993).  Therefore, the boundaries do not change within 
a matter of decades. 
 The Sebungwe consists of five wildlife reserves, interspersed 
with communal lands (fig. 5.2a).  The communal lands have varying 
degrees of agriculture within the natural vegetation units and varying 
degrees of elephant presence.  Communal lands are a land category that are 
characterised by collective or community land ownership and they are 
subdivided into administrative or management units called wards  
(fig. 5.2a).  In the communal lands elephant presence is affected by 
ecological conditions, and also poaching and human disturbance rather 
than by conservation measures or laws like those enforced in wildlife 
reserves.  In other words, in communal lands elephants are present 
provided there are necessities such as enough cover and water available.  
Elephants have to cross the communal lands when moving between the 
wildlife reserves. 
 In the Sebungwe landscape evolved from a complex of different 
historical forces linked to the eradication of tsetse fly (Glossina sp.) and 
the related changes in land use (fig. 5.2a).  Historically, the Sebungwe 
region was home to both tsetse fly and a wide range of wildlife species 
until the 1960s when the tsetse belt began to continually dwindle as a 
consequence of the tsetse eradication programme that was meant to enable 
livestock ranging and arable agriculture, thereby relieving population 
pressure from elsewhere in the country.  As tsetse fly was progressively 
destroyed since the 1960s, the valley began to be increasingly occupied by 
farmers (Cumming and Lynam 1997).  By the mid-1980s immigration had 
accelerated and the threat of arable agriculture on the persistence of 
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wildlife began to increase in parts of the Sebungwe (Cumming and Lynam 
1997).
 This study is based on a 61 km x 61 km landscape mainly 
covering the communal lands (fig. 5.2).  This study area was considered 
large enough for studying the spatial distribution of elephants in the 
Sebungwe.  Specifically, elephants in the Sebungwe region have an 
estimated range of between 83 km2 to 263 km2, approximating a horizontal 
length scale (horizontal dimension) of 9.1 km and 16.2 km, respectively 
(Guy 1976a, Dunham 1986).  This makes the extent of the study area, i.e., 
3721 km2, which is at least 14 times the estimated range of the elephant in 
the Sebungwe large enough to study elephant distribution.  

Determining individual sampling units 
The individual sampling units for analysing elephant-spatial heterogeneity 
relationships in this study were defined by an intersection of ward 
boundaries and floristic-physiognomic vegetation class boundaries 
(Timberlake, et al. 1993) (fig. 5.2b).  The floristic-physiognomic 
vegetation class map (fig. 5.2b) describes the potential vegetation classes, 
and is therefore constituted by floristic units that are considered constant 
over time (Timberlake, et al. 1993).  Also, by using sampling units that 
incorporate floristic-physiognomic vegetation classes and wards, our aim 
was to incorporate variation due to management and ecological factors 
respectively.  In this study, a ward with, e.g., three vegetation classes 
would yield three sampling units whereas a ward with a single vegetation 
class would yield one sampling unit.  The sampling units were obtained by 
crossing the ward and vegetation class maps in a Geographical Information 
system (GIS).  Fig. 5.3 shows the sampling units that were used in this 
study and their respective area in square kilometres. 

Elephant data
The data on the spatial distribution of elephants were determined using 
respectively, a GIS based combination of 1981-1983 point data sets.  These 
data were obtained from the point location data from the analyses of 
Sebungwe aerial surveys by Cumming and Lynam (1997) and made 
available by WWF in Harare.  The recordings of the elephant sightings 
were made within 0.5 minute segments (≤ 1 km) along the flight path with 
an aircraft travelling at approximately 120 km per hour and the sightings 
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could be up to 250 m on either side of the aircraft (Cumming and Lynam 
1997), suggesting that the worst case of locational error in these surveys 
would be closer to 500 m.  The aerial surveys were carried out in the dry 
season, i.e., between August and October of the relevant years.  This was 
considered an appropriate period for studying the effect of spatial 
heterogeneity on elephant distribution because the crop fields are fallow 
during the dry season.  Crop fields tend to attract the elephants outside 
their normal natural range, thus making wet season (October to March) 
data less reliable for assessing the effect of spatial heterogeneity.  In other 
words, an area that can be suitable for the elephant in the dry season can 
safely be assumed to be suitable in the wet season.  

Chi Chu Madz MsA NaA NaB Nabu Neg Nem Nen Neny Sim
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Figure 5.3: Sampling units (intersection of wards and vegetation classes) used in the regression of 
the probability of elephant presence on the dominant scale and intensity of spatial heterogeneity 
based on the early 1980s and the early 1990s data (Chi = Chireya 1, Chu = Chunga, Madz = 
Madzivazvido, MsA = Musambakaruma A, NaA = Nabiri A, NaB = Nabiri B, Nabu = Nabusenga, 
Nem = Nemangwe 5, Neg = Negande, Neny = Nenyunka and Sim = Simchembo).
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Figure 5.4: Map showing the probability of elephant presence within a 3 km radius in the Sebungwe 
in 1981-83 and the 61 km by 61 km square box shows the area used in this study.  

 We considered the elephant distribution map of our study area R 
as a spatial point pattern (Diggle 1983).  Each point where elephants were 
observed is called an event.  We calculated the first-order intensity 
function λ(x) for the elephant point map to give an expected number of 
events per unit area(Fotheringham, et al. 2000): 
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where E(N) is the expected number of events in the study area considered 
and C(x,r) a circular sub-region of R located at x with a radius r.  A kernel 
function was used in this study with radius r equal to 3000 m based on an 
exploratory analysis in S-PLUS software (Lam 2001).  This kernel radius 
was also large enough to overcome any locational errors in elephant  



Evaluating a new approach to predict the spatial distribution of elephants from NDVI 

77

Figure 5.5: Map showing the 1984 NDVI maps of the 61 km by 61 km square box together with 
ward boundaries and the extent of agricultural fields.  Low NDVI values indicate low vegetation 
cover and high NDVI values indicate high vegetation cover within a 0 to 255 range.  

sightings.  We then normalised λ(x) by dividing it by the expected number 
of events in R to produce a normalised or probability function λn(x)
(Fotheringham, et al. 2000): 
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We used the λn(x) to estimate the spatial distribution of elephants in the 
study area during the 1981-83 and 1993-95 periods.  This spatial point 
pattern analysis was carried out in the S-PLUS software (Lam 2001).  The 
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map was then exported to ILWIS GIS software (ITC 2002).  This method 
was used because it is spatially explicit and gives weight to elephant 
location rather than absolute numbers: the aim was to determine whether 
spatial heterogeneity affects the preference of location by elephants.  
Finally, the mean probability of elephant presence in each of the sampling 
units was used as a measure of elephant distribution by crossing the 
probability of elephant distribution map (fig. 5.4) with the sampling unit 
map (i.e., intersection of wards and vegetation classes) and by calculating 
the mean probability of elephant presence in each sampling unit. 

Remote sensing
Vegetation cover was estimated from NDVI derived from the readily 
available TM images of 19 October 1984: 

                                             
R)(NIR

R)(NIR
NDVI

++++
−−−−====                                                       (5.3) 

where NIR and R are the spectral reflectance values in the near infrared and 
the red.  Data were normalised to the range of 0 to 255 in order to facilitate 
data handing in image processing software.  Fig. 5.5 shows the NDVI 
image of the 61 km x 61 km study area.  NDVI was used because it is an 
established index for estimating vegetation quantity (Walsh, et al. 1997, 
Walsh, et al. 2001).  NDVI has been shown to provide an effective 
measure of photosynthetically active biomass (Tucker and Sellers 1986, 
Los. 1998, Turner, et al. 1999, Birky 2001, Hill and Donald 2003) and it is 
an index of total vegetation biomass (Goward and Dye 1987).  Also, NDVI 
is also strongly related to the extent of vegetation cover and therefore, can 
be used as an indicator of spatial heterogeneity in the landscape (Kerr and 
Ostrovysky 2003).  In addition, since there is no water limitation in the 
study area (Cumming 1981) due to the fact that major rivers such as the 
Sengwa drain it, and since the African elephant is a habitat generalist 
(Kingdon 2001) it has a potential of being anywhere in the study area.  
Therefore, we can hypothesise that the levels of spatial heterogeneity in 
vegetation cover introduced by the human incursion in the Sebungwe may 
strongly influence the spatial distribution of the elephant.  
 In addition, dry season imagery was used in this study because 
the elephant counts by aerial surveys were conducted in the dry season.  In 
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addition, it is easier to distinguish between fallow agricultural fields and 
natural vegetation from dry season NDVI than the wet season NDVI.  This 
is because in the dry season high NDVI values are expected for natural 
vegetation and lower NDVI values are expected for fallow agricultural 
fields.  In this regard, fig. 5.5 shows that low NDVI mainly coincided with 
agricultural fields in 1984.  The 1984 agricultural field map was produced 
using a combination of aerial photographs and Landsat TM imagery. 
 Several advantages were envisaged in using Landsat TM imagery 
to characterise the spatial heterogeneity for the study of elephant 
distribution.  Namely, the spatial resolution or grain of Landsat TM, i.e.,  
30 m was detailed enough to enable the quantification of spatial 
heterogeneity that is relevant for analysing elephant distribution.  This is 
because generally, the grain should be several magnitudes smaller than the 
total range of the organism (Sparrow 1999).  The grain of 30 m is about 
300 times smaller than the estimated range of the elephant in Sebungwe. 

Calculating the NDVI average and NDVI coefficient of variation  
In this study the direct image approach involved the use of NDVI average 
and the NDVI coefficient of variation.  Several steps were involved in 
calculating the NDVI average and NDVI coefficient of variation for each 
sampling unit.  Firstly, we crossed the NDVI map (fig. 5.5) with the map 
of the sampling units in ILWIS GIS.  Secondly, we summed the NDVI 
values of all the pixels within each sampling unit and divided the sum by 
the number of pixels in each sampling unit to obtain the NDVI average.  
Finally, we calculated the NDVI coefficient of variation within a sampling 
unit by dividing the NDVI standard deviation with the NDVI average and 
then multiplying the result by 100 %.  The advantage of using the NDVI 
coefficient of variation over the NDVI standard deviation is that it is a 
measure not dependent on the magnitude of the mean in a sampling unit. 

Characterising spatial heterogeneity using wavelets  
Wavelet energy (Bruce and Hong-Ye. 1996) was used to quantify the 
intensity of spatial heterogeneity and the dominant scale of spatial 
heterogeneity in the NDVI image.  The determination of wavelet energy 
begins with a wavelet transform (in this study a Haar wavelet was used), 
which is defined as the convolution of two wavelet functions, i.e., the 
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smooth φ(x,y) and detail ϕ(x,y) functions, and an NDVI image f(x,y) at 
successive bases, (2j), i.e., j = 0,1,2…J in the vertical (north-south), 
diagonal (northeast- southwest and southeast-northwest) and horizontal 
(east-west) directions for the 2-dimensional data.  A wavelet transform 
results in a set of coefficients and each coefficient is associated with a base 
level, i.e., j = 0,1,2…J, a direction and a particular location.  The wavelet 
approximation y)(x,f̂ of the original 2-dimensional function f(x,y) is a sum 
of the smooths and the detail functions at different bases: 

                              )y,x(
J

1j dir
dir
jD)y,x(JS)y,x(f̂ ∑

=
∑+=                             (5.4)  

SJ represents the smooth coefficients and dir
jD  are the directional (i.e., 

vertical (north-south), horizontal (east-west) and diagonal (northeast-
southwest and northwest-southeast)) detail coefficients.  By convention, 
the smallest grain of f(x,y) is equals to j = 0.  Therefore, each level j
corresponds to a grain equals 2j * s where s is the size of the original grain 
at which f(x,y) is mapped (in this case 30 m, the grain of Landsat TM).  
The decision on the magnitude of J (i.e., the broadest base or window of 
focus) is made in advance and depends on how much detail is required in 
the analysis and also on the extent of the image.  In this study we selected J
equals 7, an equivalent of a spatial dimension of 3840 m, larger than pixel 
size that we used to estimate the probability of elephant presence.  Note 
that the theory and formal treatment of wavelets has been covered 
exhaustively elsewhere (Mallat 1989, Ogden 1997). 
 Wavelet coefficients can be positive or negative but the absolute 
coefficient value measures the magnitude of contrast in f(x,y) at a specific 
location with a base of 2j.  Wavelet energy was calculated as a second 
moment of the wavelet transform defined as the sum of squares of the 
coefficients at base 2j, divided by the sum of squares of all the coefficients 
in y)(x,f̂ :
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where ),( yxjd  are the detail wavelet coefficients at j and position (x,y), E

is the total sum of squares of y)(x,f̂  and n/2j is the number of coefficients at 
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level j .  Then, wavelet energy values were plotted against scale and the 
highest local maxima in the wavelet energy function represented the 
intensity of spatial heterogeneity while the corresponding scale value 
represent the dominant scale of spatial heterogeneity (Murwira and 
Skidmore. 2003).  The detail functions rather than the smooth 
approximations were used in the analysis because the former are scale 
specific.  For example, details at j = 1 capture vegetation patches that have 
a size between 30 m and 60 m.  In contrast, smooth coefficients can only 
capture scales that are equal or greater than 2j, thus they are not scale 
specific. 
 The dominant scale and intensity in each of the sampling units 
was obtained through several steps.  Firstly, we crossed the wavelet 
coefficient maps at each j with the ward and vegetation class maps in a 
Geographical Information system (GIS).  Secondly, the wavelet functions 
of each unit were plotted.  Thirdly, the intensity of spatial heterogeneity 
and the dominant scale of spatial heterogeneity were determined by 
considering the highest local maxima in wavelet energy and the scale 
margin that corresponds to the intensity values respectively.  In other 
words, only the dominant scale and intensity defined by the highest 
maxima on the wavelet energy function was used in this analysis, i.e., the 
highest maximum on the wavelet energy function can be interpreted as the 
intensity that corresponds to the most dominant scale in the landscape.  
However, it is important to note that using a wavelet transform to estimate 
the first-order properties of NDVI enables us to deduce the dominant scale 
of spatial heterogeneity only in relation to the patch dimension at which the 
highest wavelet energy is recorded (Murwira and Skidmore. 2003).  

Characterising spatial heterogeneity using a windowed variogram  
In order to characterise the intensity of spatial heterogeneity plus the 
dominant scale of spatial heterogeneity using a variogram, we use the two 
main variogram structural parameters, the sill and the range (Curran 1988) 
respectively.  The sill is the level at which the variogram becomes flat, and 
it exists if the process being analysed is stationary (Webster 2000).  A 
spatial process is stationary when only the distance that separates points in 
space explains the difference in the values between them (Webster 2000).  
The range is normally used to measure the dominant scale of spatial 
correlation, which is the maximum distance at which spatial correlation is 
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present and beyond which spatial correlation is absent.  The sill is normally 
used to measure the amount of variability or the average variance between 
points that are the distance of the range apart.  
 The following formula is used to calculate the variogram γ(h):

                                    [ ]
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where N(h) is the number of observation pairs separated by the distance h,
z is the value of the regionalised variable at spatial position xi, and z(xi + h)
is the value of the regionalised variable at distance h from xi (Treitz and 
Howarth 2000).  The variograms were calculated using a maximum lag of 
one-third of the total distance covered by a data function (Cohen, et al.
1990).
 In this study a windowed variogram technique was used.  But, in 
order to properly explain windowed variograms, first consider a global 
variogram based on NDVI image of our 61 km by 61 km study area D.  
The image provides information about a regionalized variable (amount of 
vegetation cover) being a function z(x), within x∈∈∈∈D.  In probabilistic 
terms, z(x), is a realization of a random function Z(x), an infinite family of 
random functions constructed at all points x∈∈∈∈D (Wackernagel 1998).  
Therefore, for a global variogram, only a single dominant scale with a 
single intensity measure would characterize spatial heterogeneity in the 
NDVI image.  The global variogram masks the spatial heterogeneity in 
individual sampling units (i.e., defined by each vegetation class and ward).  
Therefore, an alternative technique is needed to unravel the dominant scale 
and intensity of spatial heterogeneity in individual sampling units. 
 In order to be able to investigate variations in dominant scale and 
intensity of spatial heterogeneity in the individual sampling units, D was 
first decomposed into congruent windows wk, k=1,2,3,…,m with size 
⏐wk⏐equals 3840 m by 3840 m in ILWIS GIS software (ITC 2002) to 
obtain localised sub-samples of Z(x).  In other words, we are subdividing 
the extent of the study area into sub areas in order to calculate localised 
variograms (Myers 1997).  This window size was selected so that it is 
larger than the distance of 3000 m used to model the probability of 
elephant presence.  In addition, the window size was determined to contain 
sufficient sample pairs for estimating a variogram based on an exploratory 
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analysis.  For each wk, an empirical variogram λk(h), the windowed 
variogram was calculated in ILWIS GIS.  The empirical variograms were 
exported to S-PLUS where for each λk(h), parameters were estimated by 
automatically fitting an appropriate theoretical variogram model using a 
non-linear least squares method (all the empirical variograms resembled a 
spherical model upon visual inspection and therefore, it was the 
appropriate theoretical model used in this study).  Thus, the variogram 
range and the sill obtained for each λk(h), were used to quantify dominant 
scale of spatial heterogeneity and intensity of spatial heterogeneity of 
NDVI respectively.  All in all, 256 windowed variograms were estimated.  
 The dominant scale and intensity in each of the sampling units 
was obtained by first crossing the variogram range and variogram sill maps 
with the sampling unit map within a GIS and then calculating the mean 
variogram range and mean variogram sill in each sampling unit (there was 
more than one variogram range and variogram sill in each unit).  The 
variogram sills were normalised to 0 – 1 by dividing each variogram sill 
value by the respective sum of all 256 variogram.  This was done to 
facilitate interpretation across different sampling units. 
 The advantages that we envisaged in using a windowed 
variogram to estimate the dominant scale and intensity of spatial 
heterogeneity are based on the stationarity assumption (Webster 2000) and 
the ability to capture variations in spatial heterogeneity among sampling 
units in the landscape.  Specifically, the intrinsic assumption upon which 
the variogram is calculated (i.e., that differences in the values of a 
landscape property between two points in space is a function of the 
distance separating them) enables us to conclude that the dominant scale 
measured by the variogram range represents both the predominant patch 
dimension in the landscape and the inter-predominant patch distance in the 
landscape.  Therefore, by analysing the probability of elephant presence in 
relation to the dominant scale of spatial heterogeneity, we are not only 
testing the hypothesis about the effect of patch dimension on the spatial 
distribution of elephants but we are also testing the hypothesis about the 
effect of inter-patch distance on the spatial distribution of elephants.  This 
is especially important for analysing elephant distribution in the 
agricultural landscapes where the distance that separates patches of suitable 
habitat is just as important as the size of patches of suitable habitat.  
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Osborn and Parker (2003) reported that habitat connectivity is important 
for elephants, based on a study in the Zambezi valley in Zimbabwe.  In 
addition, the ability to capture variations in spatial heterogeneity among 
sampling units enables the relationship between the probability of elephant 
presence and spatial heterogeneity to be tested.  

Predicting the probability of elephant distribution  
As mentioned earlier, the analysis of the relationship between the 
probability of elephant presence and: (1) NDVI average and NDVI 
coefficient of variation, as well was (2) intensity of spatial heterogeneity 
and the dominant scale of spatial heterogeneity derived from both 
windowed variograms and wavelets was conducted based on the  
61 km x 61 km study area, i.e., in the communal lands of the Sebungwe 
and the individual units of analysis were defined by an intersection of each 
ward and a vegetation class in a GIS, thereby incorporating variation due 
to management and ecological factors respectively.  The number of 
sampling units used in the analysis varied: 20 units were used for analysis 
involving spatial heterogeneity measured from windowed variogram 
whereas 22 units were used in the rest of the analysis.  The basis of 
selecting the 20 units was that each unit had to have to contain at least two 
windowed variograms (i.e., at least two estimates of the variogram range 
and sill parameters) that can be used to calculate a mean. 
 Therefore, based on the defined units of analysis, regression was 
used to relate the probability of elephant presence to: (1) NDVI average 
and NDVI coefficient of variation, (2) the wavelet-based intensity and 
dominant of spatial heterogeneity and (3) the variogram-based intensity 
and dominant of spatial heterogeneity.  To aid the explanation of the 
probability of elephant presence-intensity of spatial heterogeneity 
relationship, we conducted a confirmatory analysis to check whether the 
intensity of spatial heterogeneity (measured with both wavelets and 
variograms) was significantly correlated to the NDVI average (i.e., average 
estimate of vegetation cover) and NDVI coefficient of variation (i.e.,  
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Figure 5.6a: The spatial distribution of total wavelet energy per pixel at different scales (wavelet 
spans) across different wards, as well as in selected vegetation class polygons (The total wavelet 
energy that we used as a denominator for calculating energy was divided by 1000000 and then 
stretched between 0 and 60 to enhance the wavelet energy for visual presentation).  The polygon in 
box (S) depicts Setaria predominantly in Nenyunka ward while the polygon contained in the smaller 
box (M) is Miombo-Mopane vegetation class in Madzivazvido ward.  
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estimate of vegetation cover variability).  This was because we hypothesise 
that the intensity of spatial heterogeneity estimates both the amount and 
variability of vegetation cover (NDVI).  

5.3 Results 

The spatial heterogeneity in the study area from wavelets and variograms 
Fig. 5.6a reveals the spatial variation of wavelet energy in the study area 
based on each location at different wavelet spans or scales.  In addition,  
fig. 5.6b shows 15 wavelet energy functions that reveal the variations in 
the intensity of spatial heterogeneity and the dominant scale of spatial 
heterogeneity among 5 selected wards and four different vegetation 
classes.  The polygon within boxes (S) (fig. 5.6a) is the Setaria vegetation 
class that occurs in both Nenyunka and Madzivazvido wards.  It can be 
observed that in Nenyunka ward, the intensity of spatial heterogeneity of 
this vegetation class equal to 0.0007 and it occurs at the dominant scale of 
spatial heterogeneity that is equal to 1920 m (fig. 5.6b).  Furthermore, in 
Madzivazvido ward the Setaria vegetation class has an intensity of spatial 
heterogeneity of 0.0005 that occurs at a dominant scale of spatial 
heterogeneity of 960 m (fig. 5.6b).  Setaria is mainly dominated by 
monotonously varying grassland.  In contrast, the polygon within the box 
(M) (fig. 5.6a) is the Miombo-Mopane vegetation class in Madzivazvido 
ward.  We can observe that the intensity of spatial heterogeneity of this 
Miombo-Mopane vegetation class in Madzivazvido is relatively higher 
than Setaria (i.e., 0.0016), occurring at a relatively smaller dominant scale 
of spatial heterogeneity that is equal to 480 m (fig. 5.6b).  
 Fig. 5.7 reveals that there were spatial variations in the 
variogram-derived intensity of spatial heterogeneity and the dominant scale 
of spatial heterogeneity (i.e., represented by the variogram range and 
variogram sill respectively).  Fig. 5.7a shows the variogram parameters 
(i.e., the range and the sill) in the original way they were estimated using  
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Figure 5.6b: Selected wavelet energy functions revealing the variations in intensity and dominant 
scale in different wards and vegetation classes.  The arrow shows an example of the determination 
of the intensity and dominant scale of spatial heterogeneity from a wavelet energy function.  
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Figure 5.7: Maps showing (a) the distribution of the dominant scale of spatial heterogeneity (i.e., 
range) and the intensity of spatial heterogeneity (i.e., sill), as well as their (b) bicubic spline versions 
that clearly reveal the spatial trends in spatial heterogeneity.  The polygon in box (S) depicts Setaria 
predominantly in Nenyunka ward while the polygon contained in the smaller box (M) is Miombo-
Mopane vegetation class in Madzivazvido ward.  
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the windowed variogram method while fig. 5.7b shows the same variogram 
parameters that have been smoothed using a bicubic spline method in order 
to clearly reveal the spatial trends in spatial heterogeneity.  We can observe 
clear differences in the levels of spatial heterogeneity between vegetation 
classes and different wards.  For example, the intensity of spatial 
heterogeneity in Setaria vegetation class in Nenyunka, which is equal  
to 0.04, occurs at an estimated dominant scale of spatial heterogeneity 
equal to 900 m (fig. 5.7b) whereas, the Miombo-Mopane vegetation class 
in Madzivazvido is characterised by a relatively higher intensity of spatial 
heterogeneity (i.e., 0.05) that occur at a comparatively smaller dominant 
scale of spatial heterogeneity equal to 528 m.  
 Overall, it can be observed that the intensity of spatial 
heterogeneity and the dominant scale of spatial heterogeneity detected 
using the variogram and wavelet transform are similar.  Even though, the 
absolute estimates of the intensity and the dominant scale of spatial 
heterogeneity in both Setaria and Miombo-Mopane are different between 
the methods, the relative differences in spatial heterogeneity between the 
two vegetation classes are revealed by both methods. 

The probability of elephant presence, NDVI average and NDVI coefficient 
of variation 
Fig. 5.8 reveals significant (p < 0.05) relationships between the probability 
of elephant presence and the NDVI average as well as the NDVI 
coefficient of variation.  Both relationships are best described by a second 
order polynomial or a quadratic function.  From fig. 5.8, it can be observed 
that the probability of elephant presence initially increases with increasing 
NDVI average and NDVI coefficient of variation up to a certain level and 
then it levels off or even decrease.  The NDVI average explained 60 % of 
the variance in the probability of elephant presence while the NDVI 
coefficient of variation explained 48 % of the variance in the probability of 
elephant presence.  It can also be observed that this relationship is not a 
result of differences in vegetation class because, even in a single class such 
as Miombo, a quadratic relationship is clear. 
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Figure 5.8: Significant (p < 0.05) relationships between the probability of elephant presence and the 
(a) NDVI average and (b) NDVI coefficient of variation in (�) Miombo, (�) Mopane, (�) Setaria 
Grassland and (�) Miombo-Mopane floristic-physiognomic vegetation classes.  

The probability of elephant presence and wavelet-derived spatial 
heterogeneity
Although in reality the dominant scale and intensity of spatial 
heterogeneity are inseparable, we first related them individually to the 
probability of elephant presence before proceeding before proceeding to 
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use them in combination to explain the probability of elephant presence.  
Fig. 5.9 shows significant (p < 0.05) relationships between the probability 
of elephant presence and the individual properties of spatial heterogeneity 
(i.e., dominant scale of spatial heterogeneity and intensity of spatial 
heterogeneity) (fig. 5.9a and fig. 5.9b), as well as the relationship between 
the probability of elephant presence and the intensity of spatial 
heterogeneity plus the dominant scale of spatial heterogeneity (fig. 5.9c).  
The relationship between the probability of elephant presence and 
dominant scale of spatial heterogeneity was best described by a second 
order polynomial (fig. 5.9a).  From this relationship, it can be observed that 
the probability of elephant presence decreases with an increase in the 
dominant scale of spatial heterogeneity (fig. 5.9a).  Fig. 5.9b also shows 
that the relationship between the probability of elephant presence and the 
intensity of spatial heterogeneity is also best described by a second order 
polynomial.  However, unlike its relationship with the dominant scale of 
spatial heterogeneity, the probability of elephant presence initially 
increases with increasing intensity of spatial heterogeneity until up to a 
certain level and then it levels off.  The dominant scale of spatial 
heterogeneity explained 65 % of the variance in the probability of elephant 
presence whereas the intensity of spatial heterogeneity explained 61 % of 
the probability of elephant presence in the study area.  Again, it can be 
observed that this relationship is not a result of differences in vegetation 
class because in a single class, e.g., in Miombo; the relationship is 
consistent with the overall relationship. 
 The intensity of spatial heterogeneity and the dominant scale of 
spatial heterogeneity are inseparable properties of spatial heterogeneity.  
Therefore, we also investigated the relationship between the probability of 
elephant presence and both the intensity of spatial heterogeneity and the 
dominant scale of spatial heterogeneity.  Fig. 5.9c reveals that there was a 
significant (p < 0.05) near hump-shaped relationship between the 
probability of elephant presence and the combined effect of the intensity of 
spatial heterogeneity and the dominant scale of spatial heterogeneity.  We 
can observe that at the intermediate to the high intensity of spatial 
heterogeneity, the probability of elephant presence increases with the 
increasing dominant scale at small dominant scales of spatial heterogeneity  
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Figure 5.9: Significant (p < 0.05) relationships between the probability of elephant presence and 
wavelet-derived: (a) dominant scale of spatial heterogeneity, (b) intensity of spatial heterogeneity 
and (c) both the intensity of spatial heterogeneity and the dominant scale of spatial heterogeneity.  
The floristic-physiognomic vegetation classes: (�) Miombo, (�) Mopane, (�) Setaria Grassland 
and (�) Miombo-Mopane are shown in the bivariate relationships.  The graph surface represents 
increasing probability of elephant presence from green (lowest probability) to deep red (the highest 
probability of elephant presence).  

while at large dominant scales of spatial heterogeneity the probability of 
elephant presence decreases with the increasing dominant scale.  In this 
situation, the peak probability of elephant presence is associated with the 
intermediate to the high intensity of spatial heterogeneity that occurs at 
intermediate dominant scales of spatial heterogeneity (i.e., around 480 m).   
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Figure 5.10: Significant (p < 0.05) relationships between the probability of elephant presence and 
variogram-derived: (a) the dominant scale of spatial heterogeneity, (b) the intensity of spatial 
heterogeneity and (c) both the intensity of spatial heterogeneity and the dominant scale of spatial 
heterogeneity.  The floristic-physiognomic vegetation classes: (�) Miombo, (�) Mopane,  
(�) Setaria Grassland and (�) Miombo-Mopane are shown in the bivariate relationships.  The 
graph surface represents increasing probability of elephant presence from green (lowest probability) 
to deep red (the highest probability of elephant presence).  

For example, the high probability of elephant presence in the Miombo-
Mopane vegetation class in Madzivazvido is associated with a high 
intensity of spatial heterogeneity that occurs at the intermediate dominant 
scale of spatial heterogeneity.  In contrast, the low probabilities of elephant 
presence in the Setaria vegetation class in Simchembo ward are associated 
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with the low intensity of spatial heterogeneity that occur at large dominant 
scales of spatial heterogeneity.  The intensity of spatial heterogeneity plus 
the dominant scale of spatial heterogeneity explained 80 % of the variance 
in the probability of elephant presence.  

The probability of elephant presence and variogram-derived spatial 
heterogeneity
Finally, we analysed the relationship between the probability of elephant 
presence and the variogram-derived spatial heterogeneity measures.  Like 
in the wavelet case, we first related the probability of elephant presence to 
the intensity of spatial heterogeneity and to the dominant scale of spatial 
heterogeneity respectively (fig. 5.10a and fig. 5.10b) before proceeding to 
relate the probability of elephant presence to the combination of the two 
properties of spatial heterogeneity (fig. 5.10c).  There were significant  
(p < 0.05) relationships in all the three cases (fig. 5.10).  The relationship 
between the probability of elephant presence and the dominant scale of 
spatial heterogeneity is best described a second order polynomial that has a 
clear hump-shape.  The dominant scale of spatial heterogeneity explained 
55 % of the variance in the probability of elephant presence.  It can also be 
observed that a second order polynomial also best describes the 
relationship between the probability of elephant presence and the intensity 
of spatial heterogeneity.  However, the intensity of spatial heterogeneity in 
this case explained only 34 % of the variance in the probability of elephant 
presence.  The earlier observation that the nature of the relationships is not 
a result of differences in vegetation class still holds. 
 Fig. 5.10c depicts the relationship between the probability of 
elephant presence and the combined effect of the intensity of spatial 
heterogeneity and the dominant scale of spatial heterogeneity.  Again, we 
can observe that at the intermediate to the high intensity of spatial 
heterogeneity, the probability of elephant presence increases with the 
increasing dominant scale at small dominant scales of spatial heterogeneity 
while at large dominant scales of spatial heterogeneity the probability of 
elephant presence decreases with the increasing dominant scale, thereby 
leaving high probabilities of elephant presence at intermediate dominant 
scales of spatial heterogeneity.  We can also observe that it is the 
descending limb of the hump that is pronounced.  For example, it can be 
observed that high probabilities of elephant presence in the Miombo-
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Mopane vegetation class in Madzivazvido is associated with a high 
intensity of spatial heterogeneity that occurs at intermediate dominant 
scales (i.e., around 734 m) of spatial heterogeneity around the peak of the 
hump.  In contrast, the low probabilities of elephant presence in the Setaria 
vegetation class in Simchembo ward are associated with low intensity of 
spatial heterogeneity that occur at large dominate scales of spatial 
heterogeneity.  The combined function of the intensity of spatial 
heterogeneity and the dominant scale of spatial heterogeneity explained  
65 % of the variance in the probability of elephant presence.  

The correlation of intensity to NDVI average and NDVI coefficient of 
variation
Fig. 5.11 illustrates that the intensity of spatial heterogeneity is positively 
correlated to the NDVI average and the NDVI coefficient of variation.  It 
can be observed that the wavelet-derived intensity of spatial heterogeneity 
is significantly (p < 0.05) correlated to both the NDVI average and the 
NDVI coefficient of variation (fig. 5.11a).  In contrast, the variogram-
derived intensity of spatial heterogeneity is only correlated significantly  
(p < 0.05) to the NDVI average but not significantly (p > 0.05) to the 
NDVI coefficient of variation (fig.5.11b).  

5.4 Discussion 

Our results indicated that the intensity and the dominant scale of spatial 
heterogeneity (i.e., derived from both wavelets and variograms) predicted 
the probability of elephant presence better than the usual NDVI average 
and NDVI coefficient of variation (figs. 5.8, 5.9, 5.10, table 5.1).  This 
result is consistent with the hypothesis that by using the intensity and the 
dominant scale as inseparable properties of spatial heterogeneity, we are 
not only characterising the variability of vegetation cover that is 
emphasized by the NDVI coefficient of variation using the intensity  
(fig. 5.11), but, in addition, we are able to allocate this variability to the 
patch dimension using the dominant scale (see introduction).  Classical 
statistics such as the NDVI average and the NDVI coefficient of variation 
have been successfully used to characterise certain aspects of wildlife 
species distribution (Oindo and Skidmore 2001).  However, our new  
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Figure 5.11: Positive correlation of (a) wavelet-derived intensity of spatial heterogeneity, as well as, 
variogram-derived intensity of spatial heterogeneity to NDVI average and NDVI coefficient of 
variation.  All the correlation coefficients are significant (p < 0.05) except the one between the 
variogram-derived intensity of spatial heterogeneity and NDVI coefficient of variation.  The 
floristic-physiognomic vegetation classes: (�) Miombo, (�) Mopane, (�) Setaria Grassland and 
(�) Miombo-Mopane are shown in the bivariate correlations. 

approach improves upon this by considering the effect of spatial structure 
(i.e., dominant scale) in the distribution of ecological phenomena such as 
the spatial distribution of wildlife species (Legendre and Fortin 1989).  In 
other words, the results are consistent with the hypothesis that the effect of 
spatial heterogeneity on ecological pattern can be reliably assessed when 
the effects of scale are accounted for (Ettema and Wardle 2002).  Thus, we 
assert that the intensity and dominant scale approach to spatial 
heterogeneity, specifically the one using wavelets improves upon the direct 
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image approach for predicting ecological patterns like elephant 
distribution.
 Although we observed that the behaviour of the relationship 
between the probability of elephant presence and the wavelet and 
variogram-derived spatial heterogeneity was similar (i.e., both were best 
described by a second order (parabolic) function), the wavelet-derived 
spatial heterogeneity yielded a better prediction (fig. 5.9 and fig. 5.10).  
This confirms that wavelets quantify spatial heterogeneity better owing to 
their localised nature compared with variograms that are global functions 
(Dale and Mah. 1998).  Nevertheless, the fact that the nature of the 
relationship was similar (fig. 5.9 and fig. 5.10) is evidence of the 
ecological validity of our intensity and dominant scale perspective to 
spatial heterogeneity.  In other words, it confirms that elephants also 
respond to patch dimension rather than just the variability in vegetation 
cover (i.e. as characterised by the NDVI coefficient of variation and NDVI 
average). 

Table. 5.1. A summary comparison of the predictive power of the NDVI average and NDVI 
coefficient of variation (NDVIcv) and the wavelet and variogram based spatial heterogeneity.  All 
relationships were statistically significant (p < 0.05). 

 Overall (R2) Intensity (R2) Dominant scale 
(R2)

Wavelets 80 % 61 % 65 % 

Variogram 65 % 34 % 55 % 

NDVI average 60 %   

NDVIcv 48 %   

 Furthermore, there is evidence that the intensity and the dominant 
scale of spatial heterogeneity gave a greater insight into spatial 
heterogeneity as a limiting factor to elephant distribution in the study area 
compared with the usual NDVI average and NDVI coefficient of variation.  
Specifically, we see that when intensity is high, the probability of elephant 
presence increases with increasing dominant scale, until a certain 
threshold, and then decreases with increasing dominant scales of spatial 
heterogeneity (fig. 5.9 and fig. 5.10).  From this unimodal relationship, we 
deduce that, intensity being high, high probabilities of elephant presence 
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are associated with environments with intermediate dominant scales of 
spatial heterogeneity, (i.e., around 480 m in the wavelet case, and at 734 m 
in the variogram case), suggesting an optimal level of spatial heterogeneity 
that encourage elephant persistence in the agricultural landscape.  In 
contrast, we deduce that since the small dominant scales of spatial 
heterogeneity reflect the predominance of small patch dimensions, and 
elephants tend to avoid them.  This may be because small patch 
dimensions may not provide enough buffers from human contact in this 
agricultural landscape.  On the other hand, elephants avoid environments 
with low intensity and large dominant scales of spatial heterogeneity 
because these are environments dominated by either agricultural fields or 
grassland such as the Setaria vegetation class in Simchembo (fig. 5.5, 5.9 
and 5.10).  In these environments, elephants have neither enough high 
vegetation cover to keep them away from human contact nor high enough 
vegetation cover for thermoregulation (Guy 1976b, Guy 1976a).  However, 
because intermediate and large dominant scales of spatial heterogeneity 
dominate the study area, the descending limb of this unimodal relationship 
is more pronounced than the ascending limb.  
 Because the new approach (intensity and dominant scale) to 
spatial heterogeneity characterises the landscape comprehensively by 
giving an indication of both variability and patch dimension respectively 
(fig. 5.1), the method could help in conservation planning for the elephant 
much more than the usual approach based on the NDVI average and NDVI 
coefficient of variation.  For example, we showed in fig. 5.1 that two land 
units with different dominant scales of spatial heterogeneity can have the 
same maximum variability (intensity) in canopy cover and also that two 
land units can have different intensity of canopy cover but have the same 
dominant scale of spatial heterogeneity.  Therefore, since the NDVI 
average and NDVI coefficient of variation cannot capture a variation in the 
dominant scale of spatial heterogeneity, their use in aiding conservation 
planning is insufficient.  

5.5 Conclusions 

The successful understanding of ecological patterns from spatial 
heterogeneity depends on the objective characterisation of spatial 
heterogeneity.  The results of this study suggest that the characterisation of 
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spatial heterogeneity of NDVI from an intensity and dominant scale 
perspective predicts ecological patterns such as the spatial distribution of 
elephant better than the usual NDVI average and NDVI coefficient of 
variation that assume a uniform scale in the landscape.  Furthermore, 
wavelet-derived spatial heterogeneity predicted the probability of elephant 
presence better than variogram-derived spatial heterogeneity.  Therefore, 
the intensity and the dominant scale approach to characterise spatial 
heterogeneity is an invaluable preamble to predicting the spatial 
distribution of wildlife species in the landscape.  In the case of the 
Sebungwe, this study provides the basis upon which elephant presence in 
the landscape can be monitored in relation to changes in spatial 
heterogeneity over time.  All in all, because the new approach (intensity 
and dominant scale) to spatial heterogeneity characterises the landscape 
comprehensively by giving an indication of both variability and patch 
dimension respectively, the method could help in conservation planning for 
the elephant much more than the usual approach based on the NDVI 
average and NDVI coefficient of variation. 



Chapter 5 

100 



101 

Chapter 6
The response of elephants to the spatial 
heterogeneity of vegetation in a Southern 
African agricultural landscape5

Amon Murwira and Andrew K. Skidmore 

Abstract

Based on the agricultural landscape of the Sebungwe in Zimbabwe, we investigated 
whether and how the spatial distribution of the African elephant (Loxodonta africana)
responded to spatial heterogeneity of vegetation cover based on data of the early 1980s 
and early 1990s.  We also investigated whether and how elephant distribution responded 
to changes in spatial heterogeneity between the early 1980s and early 1990s.  Vegetation 
cover was estimated from a normalised difference vegetation index (NDVI).  Spatial 
heterogeneity was estimated from a new approach based on the intensity (i.e., the 
maximum variance exhibited when a spatially distributed landscape property such as 
vegetation cover is measured with a successively increasing window size or scale) and 
dominant scale (i.e., the scale or window size at which the intensity is displayed).  We 
used a variogram to quantify the dominant scale (i.e., range) and intensity (i.e., sill) of 
NDVI based congruent windows (i.e., 3.84 km x 3.84 km in a 61 km x 61 km landscape).  
The results indicated that elephants consistently responded to the dominant scale of spatial 
heterogeneity in a unimodal fashion with the peak elephant presence occurring in 
environments with dominant scales of spatial heterogeneity of around 457 m to 734 m.  
Both the intensity and dominant scale of spatial heterogeneity predicted 65 % and 68 % of 
the variance in elephant presence in the early 1980s and in the early 1990s respectively.  
Also, changes in the intensity and dominant scale of spatial heterogeneity predicted 61 % 
of the variance in the change in elephant distribution.  The results imply that management 
decisions must take into consideration the influence of the levels of spatial heterogeneity 
on elephants in order to ensure elephant persistence in agricultural landscapes. 

5 In review: Landscape Ecology 
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6.1 Introduction 

Since the 1980s Zimbabwe’s wildlife management approach to elephants 
(Loxodonta africana), among other wildlife species, has shifted from a 
strategy based solely on protected areas to one involving local 
communities and encompassing conservation in agricultural landscapes 
(Cumming 1981).  This approach was formalized in 1989 through the 
government’s Communal Areas Management Programme For Indigenous 
Resources (CAMPFIRE).  Under this programme, local communities 
would treat wildlife as an economic asset rather than an impediment to 
agricultural production (Logan and Moseley 2002).  In other words, the 
programme envisions the coexistence of arable cultivation and wildlife 
management outside the protected areas.  In this study we focus on the 
elephant because: (1) it is a keystone species of the African savanna (Hoare 
and Du Toit 1999) and, (2) the African elephant is on the list of the world’s 
threatened species (IUCN 2002) and is considered a conservation priority 
(Burton 1999).  
 The success of CAMPFIRE in conserving the elephant can only 
be measured by the sustained presence or persistence of elephants in 
agricultural landscapes.  However, elephant persistence in Zimbabwe’s 
agricultural landscapes is increasingly being threatened by agricultural 
field expansion into its natural habitat (Cumming and Lynam 1997).  We 
use the term habitat in its general form, whereby it is defined as the place 
where an animal lives and this takes into consideration that all animals, 
except humans, can live in an area with basic resources such as food, water 
and cover (Yapp 1922, Southwood 1977, Morrison, et al. 1992).  An 
agricultural landscape is herein defined as a landscape where agriculture is 
the primary land use.  The critical question for wildlife managers and 
ecologists is: how can elephant persistence in agricultural landscapes be 
ensured in the face of expanding agriculture?  The answer may lie in 
understanding the kind of habitat conditions that can make elephants thrive 
within the unique context of agricultural landscapes, i.e., agricultural 
landscapes provide a unique environment in which agricultural fields 
divide natural habitats into discontinuous patches of different spatial 
arrangements.  As a result, not only the amount of natural habitat is 
important for wildlife species persistence, but also the spatial arrangement 
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(patch dimension and inter-patch distance) of habitat patches is particularly 
critical (Fahrig 2001).  Thus, to ensure elephant persistence in agricultural 
landscapes it is critical to understand how elephants respond to spatial 
heterogeneity, i.e., the patterning or patchiness in vital landscape properties 
such as vegetation cover (Legendre and Fortin 1989, Pickett and Rogers. 
1997, Gustafson 1998) that results from the imposition of agricultural 
fields onto the natural vegetation template.  
 Although the importance of spatial heterogeneity as a determinant 
of wildlife species distribution has been widely hypothesised in empirical 
and theoretical literature (Turner 1989, Johnson, et al. 1992, Kareiva and 
Wennergren 1995, Turner, et al. 1997, Lynam and Billick 1999, Adler, et 
al. 2001) an understanding of the levels of spatial heterogeneity at which 
specific wildlife species such as the African elephant can persist in 
agricultural landscapes remains rudimentary.  This may stem from the 
ambiguity surrounding the characterisation of spatial heterogeneity 
(Sparrow 1999).  Thus, the unanswered question is: at what level of spatial 
heterogeneity do wildlife species such as the African elephant thrive in 
agricultural landscapes?  However, in order to properly investigate this 
question, an objective characterisation of spatial heterogeneity is critical, 
even before the wildlife response to spatial heterogeneity can be 
understood.
 Remote sensing provides an invaluable source of spatial data that 
is useful for the quantification of spatial heterogeneity in the landscape.  
Traditionally, ecologists have quantified spatial heterogeneity from remote 
sensing images using two basic approaches: (a) the direct image approach, 
where straight reflectance or reflectance indices of remote sensing images 
are used to quantify spatial heterogeneity, using the original pixel size of 
the image (Goodchild and Quattrochi. 1997); and (b) the cartographic or 
patch mosaic approach, where the image is subdivided into homogeneous 
mapping units through classification (Gustafson 1998).  The first approach 
assumes that spatial heterogeneity is displayed at the constant pixel size of 
the image and, in this case, it is only the reflectance values that change in 
space.  The limitation of this approach is that its choice of scale is 
arbitrary, thus it is subjective.  Alternatively, using the patch mosaic 
approach to quantify spatial heterogeneity assumes a collection of discrete 
patches. Based on this approach, characterisation of spatial heterogeneity is 
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highly dependent on the initial definition of mapping units by the 
researcher (Turner 1989).  The limitation of this approach is that patches 
have abrupt boundaries and the variation within the patches is assumed to 
be irrelevant (McGrigal and Cushman 2002).  The patch mosaic model is 
parsimonious and has therefore become the operating paradigm.  It is 
particularly valid where landscape patches have crisp boundaries, as with 
the regular landscapes of Europe (Pearson 2002).  However, the model 
poorly represents spatial heterogeneity in landscapes that are characterised 
by gradients rather than discrete patches, for instance in savanna 
landscapes (Pearson 2002), and this leads to both loss of information and 
the introduction of subjectivity.  As a result of using the two 
abovementioned approaches to characterise spatial heterogeneity, 
ecological patterns such as the spatial distribution of wildlife species have 
typically been related to measured spatial heterogeneity at a single scale, 
which either reflects the scale at which the observer collected the data or 
the scale at which the observer delimited patches, unlike functional spatial 
heterogeneity (Legendre 1998), which reflects the dominant scale that 
influences the response of specific organisms in the landscape.  Therefore, 
the need for alternative approaches to characterising spatial heterogeneity 
is critical.  
 In view of the limitations of the abovementioned approaches, we 
develop a new approach to characterising spatial heterogeneity from 
remote sensing imagery, based on the intensity, as well as the dominant 
scale as a forerunner to predicting the spatial distribution of elephants in 
agricultural landscapes.  Intensity is defined as the maximum variance 
exhibited when a spatially distributed landscape property is measured with 
a successively increasing window size or scale.  For example, measuring 
the variance in percent canopy cover along a 100 m long transect in a tree 
plantation with 10 m wide tree stands (with uniformly high canopy cover) 
that evenly interchange with 10 m wide bare ground (with zero canopy 
cover) at a successively increasing window size, starting from 1 m up to 
100 m, would yield the maximum variance at a window size of 10 m.  This 
maximum variance is the intensity of spatial heterogeneity.  It is the scale 
or window size where the maximum variance in the landscape property is 
measured that is defined as the dominant scale of spatial heterogeneity.  In  
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Figure 6.1: Part (A) are transects with alternating spaces of trees and bare ground and part (B) 
shows the simulation tree canopy cover along each transect assuming that the cover measurements 
are made after every 1 m (i.e., grain = 1 m) and an extent of 1000 m.  For example, the (a) intensity 
(maximum variance) of transect 1 occurs at (b) a dominant scale of 100 m.  

other words, intensity and dominant scale of spatial heterogeneity are 
properties of a landscape that are inseparable and in this case, the dominant 
scale of spatial heterogeneity coincides with the dominant patch dimension 
(i.e., size of tree stands and bare ground) while intensity coincides with the 
degree of contrast in vegetation cover between the bare ground and the tree 
stands.  Note that our definition of scale follows that of Levin (1992) and 
Rietkerk, et al. (2002) who define scale as the window or dimension (e.g., 
m, km, m2, km2) through which the landscape may be observed either in 
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remote sensing images or by direct measurement.  In this study, scale is 
treated as a linear dimension, e.g., m, km. We therefore propose that spatial 
heterogeneity be defined and quantified using both intensity and the 
dominant scale.  Of course, grain (i.e., the initial observation scale or 
window size at which the data is collected) and extent (overall size of the 
study area) limits the range of the dominant scale that can be detected 
(Wiens 1989).  
 In order to further clarify the centrality of intensity and dominant 
scale in the definition of spatial heterogeneity, we present a simulated 
example of tree canopy cover that is measured along three artificial 
transects (fig. 6.1).  The three artificial transects stretch over 1000 m and 
the tree canopy cover was measured at an interval of 1 m.  The sampling 
interval of 1 m defines the grain (i.e., the initial observation scale) while 
1000 m defines the extent (i.e., the transect length).  In this example, the 
transects 1 and 2 have a dominant scale of spatial heterogeneity of 100 m, 
i.e., a maximum discontinuity between high canopy cover and low canopy 
cover occurs after every 100 m whereas transect 3 has a dominant scale of 
200 m.  If we consider, transects 1 and 2, the dominant scale of spatial 
heterogeneity is equal, but the intensity of spatial heterogeneity is different 
and transect 1 and transect 3 have equal intensity of spatial heterogeneity 
but have different dominant scales of spatial heterogeneity.  We see that 
characterizing spatial heterogeneity in this example is not complete if only 
either intensity or dominant scale of spatial heterogeneity is considered.  
Thus, we propose that both the intensity and dominant scale be used to 
describe spatial heterogeneity as a forerunner to analysing ecological 
patterns such as the spatial distribution of elephants.  
 In this study, we investigated whether spatial heterogeneity of a 
normalised difference vegetation index (NDVI) (a measure of vegetation 
cover and biomass) was related to the probability of African elephant 
(Loxodonta africana) presence in different parts of the agricultural 
landscape in northwestern Zimbabwe based on data from the early 1980s 
and early 1990s.  We intended to answer three questions.  Firstly, in what 
kind of agricultural landscape do elephants thrive?  Secondly, what kind of 
agricultural landscape do elephants avoid?  Finally, how do elephants 
respond to changes in the spatial heterogeneity over time?  Therefore, we 
specifically tested whether and how the probability of African elephant 
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presence was related the dominant scale and intensity of spatial 
heterogeneity of NDVI based on different sampling units defined by an 
intersection of ward and vegetation class boundaries in the agricultural 
areas of the Sebungwe.  Based on the same sampling units, we also tested 
whether and how changes in the spatial distribution of the African elephant 
between the early 1980s and early 1990s were related to changes in the 
dominant scale and intensity of spatial heterogeneity.  As a preamble to 
testing the above hypotheses, we used a novel windowed variogram 
technique to characterise spatial heterogeneity from a dominant scale and 
intensity perspective.  

6.2 Materials and methods 

Study area 
The study was based on the Sebungwe region in Zimbabwe (fig. 6.2).  The 
Sebungwe has undulating topography with the average elevation of 
between 700 – 800 m above sea level.  The region is characterised by a 
single wet season (November to March) with a mean annual rainfall of  
680 – 700 mm, as well as a long dry season (April to October).  Savanna 
woodlands and grasslands characterise the main natural land cover.  The 
natural cover types include, Miombo woodland dominated by Brachystegia 
spp. and Julbernardia globiflora, Mopane dominated by Colophospermum 
mopane, Faidherbia woodland dominated by Faidherbia albida, Miombo-
Mopane with co-dominance of Brachystegia spp. and Julbernardia
globiflora and Colophospermum mopane, as well as Setaria grasslands 
dominated by Setaria incrassata, Ischaemum afrum and Dicathium 
papillosum (Timberlake, et al. 1993) (fig. 6.2b).  The floristic-
physiognomic vegetation units do not change over time, representing the 
vegetation classes that would be there in an undisturbed environment 
(Timberlake, et al. 1993). 
 The Sebungwe consists of five wildlife reserves, interspersed 
with communal lands (fig. 6.2a).  The communal lands have varying 
degrees of agriculture within the natural vegetation units and varying  
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(a)

(b)

Figure 6.2: The location of the Sebungwe region in Zimbabwe and (a) the wards, national parks and 
the history of the progression of tsetse eradication (source: Tsetse and Trypanosomiasis control 
branch, Harare) and (b) the physiognomic-floristic vegetation classes in the communal lands based 
on (Timberlake and Nobanda 1993).  The square box is a 61 km x 61 km area selected for this 
study. 
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degrees of elephant presence.  Communal lands are a land category that are 
characterised by collective or community land ownership and they are 
subdivided into administrative or management units called wards  
(fig. 6.2a).  In the communal lands elephant presence is affected rather than 
by conservation measures or laws like those enforced in wildlife reserves, 
i.e., in communal lands elephants are present provided there are necessities 
such as enough cover and water available for both elephants and humans.  
Elephants have to cross the communal lands when moving between the 
wildlife reserves.  
 The Sebungwe landscape evolved from a complex of different 
historical forces linked to the eradication of tsetse fly (Glossina sp.) and 
the related land use (fig. 6.2a).  Historically, the Sebungwe region was 
home to both tsetse fly and a wide range of wildlife species until the 1960s 
when the tsetse belt began to continually dwindle as a consequence of the 
tsetse eradication programme that was meant to enable livestock ranging 
and arable agriculture, thereby relieving population pressure from 
elsewhere in the country.  As tsetse fly was progressively destroyed since 
the 1960s, the valley began to be -increasingly occupied by farmers 
(Cumming and Lynam 1997).  By the mid-1980s immigration had 
accelerated and the threat of arable agriculture on the persistence of 
wildlife began to increase in parts of the Sebungwe (Cumming and Lynam 
1997).
 This study is based on a 61 km x 61 km area mainly covering the 
communal lands (fig. 6.2).  This study area was considered large enough 
for studying the spatial distribution of elephants in the Sebungwe.  
Specifically, elephants in the Sebungwe region have an estimated range of 
between 83 km2 to 263 km2, approximating a horizontal length scale 
(horizontal dimension) of 9.1 km and 16.2 km, respectively (Guy 1976a, 
Dunham 1986).  This makes the extent of the study area, i.e., 3721 km2,
which is at least 14 times the estimated range of the elephant in the 
Sebungwe large enough to study elephant distribution.  The individual 
units of analysis in this study were defined by an intersection of ward 
boundaries and floristic-physiognomic vegetation class boundaries  
(fig. 6.2b).  The floristic-physiognomic vegetation class map (fig. 6.2b) 
describes the potential vegetation classes, and is therefore constituted by 
floristic units that do not change over time (Timberlake, et al. 1993).  By 
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using units that incorporate both floristic-physiognomic vegetation classes 
and wards, the aim was to incorporate variation due to management and 
ecological factors respectively.  For example, a ward with three vegetation 
classes would yield three sampling units whereas a ward with a single 
vegetation class would yield one sampling unit.  The sampling units were 
obtained by crossing the ward and vegetation class maps in a Geographical 
Information system (GIS).  

Remote sensing
Vegetation cover was estimated from NDVI derived from the readily 
available TM images of 19 October 1984 and the one of 16 April 1992: 

                                                  
R)(NIR

R)(NIR
NDVI

++++
−−−−====                                                  (6.1) 

where NIR and R are the spectral reflectance values in the near infrared and 
the red.  Data were normalised to the range of 0 to 255 in order to facilitate 
data handing in image processing software.  Relative radiometric 
correction of the two images was done using the regression method based 
on pseudo invariant objects such as water bodies, airstrips and roads 
identifiable in both images (fig. 6.3).  This method minimises differences 
between the two images that result from atmospheric differences between 
the two dates of image acquisition (Song, et al. 2001).  Fig. 6.4 shows the 
NDVI images of the 61 km x 61 km study area.  NDVI was used because it 
is an established index for estimating vegetation quantity (Walsh, et al.
1997, Walsh, et al. 2001).  We used NDVI to study elephant distribution 
because NDVI have been shown to provide an effective measure of 
photosynthetically active biomass (Tucker and Sellers 1986, Los. 1998, 
Turner, et al. 1999, Birky 2001, Hill and Donald 2003) and it is an index of 
total vegetation biomass (Goward and Dye 1987).  Also, NDVI is also 
strongly related to the extent of vegetation cover and therefore, can be used 
to detect land cover changes (e.g., woodland replacement with agriculture) 
and can also be used as an indicator of spatial heterogeneity in the 
landscape (Kerr and Ostrovysky 2003).  In addition, since there is no water 
limitation in the study area (Cumming 1981) due to the fact that major 
rivers such as the Sengwa drain it, and since the African elephant is a 
habitat generalist (Kingdon 2001) it has a potential of being anywhere in 
the study area.  Therefore, we can safely hypothesise that the levels of 



The response of elephants to the spatial heterogeneity of vegetation in a Southern African 
agricultural landscape 

111 

spatial heterogeneity in vegetation cover introduced by the human 
incursion in the Sebungwe may strongly influence the spatial distribution 
of the elephant.
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Figure 6.3: Relationship between the DN values of sampled pseudo variant objects (deep water 
body, airstrips and roads) between the Landsat TM images of 19 October 1984 and 16 April 1992. 
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1984 1992

Figure 6.4: Map showing the 1984 and 1992 NDVI maps of the 61 km by 61 km square box 
overlaid with layers of ward boundaries and agricultural fields.  Low NDVI values indicate low 
vegetation cover and high NDVI values indicate high vegetation cover within a 0 to 255 range. 

 In this study dry season imagery was used because elephant 
counts by aerial surveys were conducted in the dry season.  In addition, it 
is easier to distinguish between fallow agricultural fields and natural 
vegetation from dry season NDVI than the wet season NDVI.  This is 
because in the dry season high NDVI values are expected for natural 
vegetation and lower NDVI values are expected for fallow agricultural 
fields.  In this regard, fig. 6.4 shows that low NDVI mainly coincided with 
agricultural fields in 1984 and 1992.  The 1984 and 1992 agricultural field 
maps were produced using a combination of aerial photographs and 
Landsat TM imagery.  
 Several advantages were envisaged in using Landsat TM imagery 
to characterise the spatial heterogeneity for the study of elephant 
distribution.  Besides, being one of the oldest sensors (launched in the early 
1980s) that provide a good historical record, the spatial resolution or grain 
of Landsat TM, i.e., 30 m was detailed enough to enable the quantification 
of spatial heterogeneity that is relevant for analysing elephant distribution.  
This is because generally, the grain should be several magnitudes smaller 
than the total range of the organism (Sparrow 1999).  The grain of 30 m is 
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about 300 times smaller than the estimated range of the elephant in 
Sebungwe.  

b b

1981 - 83 1993 - 95

Figure 6.5: Maps showing the probability of elephant presence within a 3 km radius in the study 
area in 1981-83 and 1993-95.  The ellipse (b) illustrates an area where there was a major noticeable 
decrease in the probability of elephant presence between 1981-83 and 1993-95. 

Elephant data 
The data on the spatial distribution of elephants in the 1980s and 1990s 
were determined using respectively a GIS based combination of 1981-1983 
point data sets, and 1993-1995 point data sets.  These data were obtained 
from the point location data from the analyses of Sebungwe aerial surveys 
by Cumming and Lynam (1997) and made available by WWF in Harare.  
The recordings of the elephant sightings were made within 0.5 minute 
segments (≤ 1 km) along the flight path with an aircraft travelling at 
approximately 120 km per hour and the sightings could be up to 250 m on 
either side of the aircraft (Cumming and Lynam 1997), suggesting that the 
worst case of locational error in these surveys would be closer to 500 m.  
The aerial surveys were carried out in the dry season, i.e., between August 
and October of the relevant years.  This was considered an appropriate 
period for studying the effect of spatial heterogeneity on elephant 
distribution because the crop fields are fallow during the dry season.  Crop 
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fields tend to attract the elephants outside their normal natural range, thus 
making wet season (October to March) data less reliable for assessing the 
effect of spatial heterogeneity.  In other words, an area that can be suitable 
for the elephant in the dry season can safely be assumed to be suitable in 
the wet season.
 We considered the elephant distribution map of our study area R 
as a spatial point pattern (Diggle 1983).  Each point where elephants were 
observed is called an event.  We calculated the first-order intensity 
function λ (x) for the elephant point map to give an expected number of 
events per unit area(Fotheringham, et al. 2000): 
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=λ                                           (6.2) 

where E(N) is the expected number of events in the study area considered 
and C(x,r) a circular sub-region of R located at x with a radius r.  A kernel 
function was used in this study with r equal to 3000 m based on a visual 
exploratory analysis in S-PLUS software (Lam 2001).  This kernel radius 
was also large enough to overcome any locational errors in elephant 
sightings.  We then normalised λ(x) by dividing it by the expected number 
of events in R to produce a normalised or probability function λn(x)
(Fotheringham, et al. 2000): 
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We used the λn(x) to estimate the spatial distribution of elephants in the 
study area during the 1981-83 and 1993-95 periods (fig. 6.5).  This spatial 
point pattern analysis was carried out in the S-PLUS software (Lam 2001) 
and the map data were transferred to ILWIS GIS software (ITC 2002) 
where it was converted to a raster map format.  This method was used 
because it is spatially explicit and gives weight to elephant location rather 
than absolute numbers: the aim was to determine whether spatial 
heterogeneity affects the presence of at least a single elephant and since the 
elephant survey data sets were combined, adding the total number of 
observed elephants of the years would give a false impression.  The mean 
probability of elephant presence in each of the sampling units was used as 
a measure of elephant distribution by crossing the probability of elephant 
distribution map (fig. 6.5) with the sampling unit map (i.e., intersection of 



The response of elephants to the spatial heterogeneity of vegetation in a Southern African 
agricultural landscape 

115 

wards and vegetation classes) and by calculating the mean probability of 
elephant presence in each sampling unit. 

Characterising spatial heterogeneity using a windowed variogram 
In this study, the dominant scale and intensity of spatial heterogeneity in 
NDVI were quantified using a windowed variogram and its main structural 
parameters, the sill and the range (Curran 1988).  The sill is the level at 
which the variogram becomes flat, and it exists if the process being 
analysed is stationary.  A spatial process is stationary when only the 
distance that separates points in space explains the difference in value 
between them (Webster 2000).  The range is used to measure the dominant 
scale of spatial correlation, which is the maximum distance at which spatial 
correlation is present and beyond which spatial correlation is absent.  The 
sill measures intensity because it is the maximum variance between points 
that are the distance of the range apart.  
 The following formula was used to calculate the variogram )(hγ :

                                [ ]
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where N(h) is the number of observation pairs separated by the distance h,
z is the value of the regionalised variable at spatial position xi, and z(xi + h)
is the value of the regionalised variable at distance h from xi (Treitz and 
Howarth 2000).  The variograms were calculated using a maximum lag of 
one-third of the total distance covered by a data function (Cohen, et al.
1990).
 In this study a windowed variogram technique was used.  But, in 
order to properly explain windowed variograms, first consider a global 
variogram based on NDVI image of our 61 km by 61 km study area D.  
The image provides information about a regionalized variable (amount of 
vegetation cover) being a function z(x), within x∈∈∈∈D.  In probabilistic 
terms, z(x), is a realization of a random function Z(x), an infinite family of 
random functions constructed at all points x∈∈∈∈D (Wackernagel 1998).  
Therefore, for a global variogram, only a single dominant scale with a 
single intensity measure would characterize spatial heterogeneity in the 
NDVI image.  The global variogram masks the spatial heterogeneity in 
individual sampling units (i.e., defined by each vegetation class and ward).  
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Therefore, an alternative technique is needed to unravel the dominant scale 
and intensity of spatial heterogeneity in individual sampling units. 
 In order to be able to investigate variations in dominant scale and 
intensity of spatial heterogeneity in the individual sampling units, D was 
first decomposed into congruent windows wk, k=1,2,3...,m with size ⎮wk⎮
equals 3840 m by 3840 m in ILWIS GIS software(ITC 2002) to obtain 
localised sub-samples of Z(x).  In other words, we are subdividing the 
extent of the study area into sub areas in order to calculate localised 
variograms (Myers 1997).  This window size was selected so that it is 
larger than the distance of 3000 m used to model the probability of 
elephant presence.  In addition, the window size was determined to contain 
sufficient sample pairs for estimating a variogram based on an exploratory 
analysis.  For each wk, an empirical variogram λk(h), the windowed 
variogram was calculated in ILWIS GIS.  The empirical variograms were 
exported to S-PLUS where for each λk(h), parameters were estimated by 
automatically fitting an appropriate theoretical variogram model using a 
non-linear least squares method (all the empirical variograms resembled a 
spherical model upon visual inspection and therefore, it was the 
appropriate theoretical model used in this study).  Thus, the variogram 
range and the sill obtained for each λk(h), were used to quantify dominant 
scale of spatial heterogeneity and intensity of spatial heterogeneity of 
NDVI respectively.  All in all, 256 windowed variograms were estimated 
for both the 1984 and 1992 NDVI images (fig. 6.6).  
 The dominant scale and intensity in each of the sampling units 
was obtained by first crossing the variogram range and variogram sill maps 
with the sampling unit map within a GIS and then calculating the mean 
variogram range and mean variogram sill in each sampling unit (there was 
more than one variogram range and variogram sill in each unit).  This was 
done for both the 1984 and 1992 NDVI images.  The variogram sills in 
1984 and 1992 were normalised to 0 – 1 by dividing each variogram sill 
value by the respective sum of all 256 variogram sills in 1984 and 1992 
(fig. 6.6).  This was to ensure the comparability and the easy 
interpretability of intensity of spatial heterogeneity between the dates. 
 The advantages that we envisaged in using a windowed 
variogram to estimate the dominant scale and intensity of spatial  
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Variogram  range (Dominant scale)

Variogram  sill (Intensity)

1984 1992

1984 1992

Figure 6.6: Maps showing variations in the variogram range (m) (dominant scale of spatial 
heterogeneity) and the variogram sill (intensity of spatial heterogeneity) in the 61 km by 61 km 
square box in 1984 and 1992.  

heterogeneity are in the assumption of stationarity (Webster 2000) and the 
ability to capture variations in spatial heterogeneity among sampling units 
in the landscape.  Specifically, the intrinsic assumption upon which the 
variogram is calculated (i.e., that differences in the values of a landscape 
property between two points in space is a function of the distance 
separating them) enables us to conclude that the dominant scale measured 
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by the variogram range represents both the predominant patch dimension 
in the landscape and the inter-patch distance in the landscape.  Therefore, 
by analysing the probability of elephant presence in relation to the 
dominant scale of spatial heterogeneity, we are not only testing the 
hypothesis about the effect of patch dimension on the spatial distribution of 
elephants but we are also testing the hypothesis about the effect of inter-
patch distance on the spatial distribution of elephants.  This is especially 
important for analysing elephant distribution in the agricultural landscapes 
where the distance that separates patches of suitable habitat is just as 
important as the size of patches of suitable habitat.  Osborn and Parker 
(2003) reported that habitat connectivity is important for elephants, based 
on a study in the Zambezi valley in Zimbabwe.  In addition, the ability to 
capture variations in spatial heterogeneity among sampling units enables 
the relationship between the probability of elephant presence and spatial 
heterogeneity to be tested. 

Relating the probability of elephant presence to spatial heterogeneity 
As mentioned earlier, the analysis of the relationship between the 
probability of elephant presence and the dominant scale and intensity of 
spatial heterogeneity was conducted based on the 61 km x 61 km study 
area, i.e., in the communal lands of the Sebungwe and the individual units 
of analysis were defined by an intersection of each ward and a vegetation 
class in a GIS, thereby incorporating variation due to management and 
ecological factors respectively.  A total of 20 units were used in the 
regression analysis.  The basis of selecting the 20 units was that each unit 
had to have to contain at least two windowed variograms (i.e., at least two 
estimates of the variogram range and sill parameters).  It was assumed that 
the time differences between the dates of the wildlife surveys and the 
satellite images was close enough and therefore, had negligible negative 
effects on the analysis.  Fig. 6.7 shows the 20 units that were used in this 
analysis and their respective area in square kilometres. 
 Next, regression analysis was used to relate the probability of 
elephant presence to the dominant scale and intensity of spatial 
heterogeneity respectively, firstly based on the 1981-1983 elephant data 
and the 1984 NDVI (early 1980s data), and secondly based on the  
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Figure 6.7: Sampling units (intersection of wards and vegetation classes) used in the regression of 
the probability of elephant presence on the dominant scale and intensity of spatial heterogeneity 
based on the early 1980s and the early 1990s data (Chi = Chireya 1, Madz = Madzivazvido, MsA = 
Musambakaruma A, NaA = Nabiri A, NaB = Nabiri B, Nabu = Nabusenga, Neg = Negande, Neny = 
Nenyunka and Sim = Simchembo). 

1993-1995 elephant data with the 1992 NDVI (early 1990s data).  In 
addition, the probability of elephant presence was modelled as a function 
of both the dominant scale and intensity of spatial heterogeneity plus the 
interaction between the dominant scale of spatial heterogeneity and the 
intensity of spatial heterogeneity.  Use of data from two dates enabled us to 
check whether elephant presence was consistently related with the 
dominant scale and intensity of spatial heterogeneity. 
 Finally, regression analysis was used to test whether there was a 
relationship between the changes in both dominant scale and intensity of 
spatial heterogeneity between the early 1980s and the early 1990s and the 
concurrent changes in the probability of elephant presence.  To accomplish 
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this, the intensity and dominant scale values of 1980s were subtracted from 
the values of 1990s for each sampling unit, and in this way, positive values 
would represent an increase while negative values would represent a 
decrease in each factors between the two dates.  Then, the change in the 
probability of elephant presence was regressed on both the changes in the 
dominant scale and intensity of spatial heterogeneity plus the interaction 
between the changes in the dominant scale and intensity of spatial 
heterogeneity. 

6.3 Results 

Elephant presence and spatial heterogeneity in space  
Fig. 6.8a shows that there were significant (p < 0.05) quadratic 
relationships between the probability of elephant presence and the 
dominant scale of spatial heterogeneity both in 1980s and 1990s.  It can be 
observed that as the dominant scale of spatial heterogeneity increases, 
there is a concomitant increase in the probability of elephant presence until 
it reaches a peak, which is equal to 734 m in the early 1980s and equal to 
457 m in the early 1990s, and then the probability of elephant presence 
begins to decrease.  The regression functions for 1980s and 1990s explain 
55 % and 57 % of the variance in the probability of elephant presence 
respectively.  In addition, Fig. 6.8b shows that there were also significant 
(p < 0.05) quadratic relationships between the probability of elephant 
presence and the intensity of spatial heterogeneity both in 1980s and 
1990s.  It can be observed that as the intensity of spatial heterogeneity 
increases, there is an associated increase in the probability of elephant 
presence until a certain level and then the probability of elephant presence 
begins to either saturate (1990s) or even decrease (1980s).  The regression 
functions for 1980s and 1990s explain 34 % and 39 % of the variance in 
the probability of elephant presence respectively.  
 The encircled point (Mopane vegetation class in Chireya 1) is an 
outlier in the intensity of spatial heterogeneity and the probability of 
elephant presence regression function of the 1990s, but it is not an outlier 
in the dominant scale of spatial heterogeneity and the probability of 
elephant presence function of the 1990s.  This, it is observed, is the effect  
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Figure 6.8: Significant (p < 0.05) relationships between the probability of elephant presence and the 
(A) dominant scale of spatial heterogeneity and (B) intensity of spatial heterogeneity (intensity) in 
the study area in the 1980s and 1990s in (�) Miombo, (�) Mopane, (�) Setaria Grassland and (�)
Miombo-Mopane floristic-physiognomic vegetation classes.  The encircled point is an outlier in the 
probability of elephant presence-Intensity function but it is not an outlier in the elephant presence-
dominant scale function, thus illustrating the interactive effect of dominant scale and intensity of 
spatial heterogeneity on the probability of elephant presence. 

of the interaction between intensity of spatial heterogeneity and dominant 
scale of spatial heterogeneity on the probability of elephant presence (see 
fig. 6.8 below).  It can also be observed that the curvilinear nature of the 
relationship between the probability of elephant presence and intensity and 
dominant scale of spatial heterogeneity is not a result of difference in 
vegetation class.  For example, it is apparent in fig. 6.8 that the probability 
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of elephant presence responds in a curvilinear nature, to the variation in 
dominant scale in individual vegetation classes such as Mopane and 
Miombo.  In other words, the points belonging to different vegetation 
classes are not clumped into specific areas of the graph. 
 Fig. 6.8 shows the probability of elephant presence as a 
significant function (p < 0.05) of dominant scale and intensity of spatial 
heterogeneity plus their interaction in 1980s and 1990s.  The regression 
functions for 1980s and 1990s explain 65 % and 68 % of the variance in 
the probability of elephant presence respectively.  Several observations can 
be made from fig. 6.8.  From fig. 6.8a it can be observed that a low 
probability of elephant presence is associated with a combination of:  
(1) low or high intensity of spatial heterogeneity and small dominant scales 
of spatial heterogeneity (less than 734 m), as well as, (2) low intensity of 
spatial heterogeneity occurring at large dominant scales of spatial 
heterogeneity.  For example, the low probability of elephant presence in 
the Mopane vegetation class in Negande is associated with high intensity 
of spatial heterogeneity and small dominant scales of spatial heterogeneity, 
and the low probability of elephant presence in the Miombo-Mopane 
vegetation class in Madzivazvido is associated with a combination of a 
high intensity and small dominant scale of spatial heterogeneity (fig. 6.8a).  
In addition, the low probability of elephant presence in the Setaria 
vegetation class in Simchembo is associated with low intensity of spatial 
heterogeneity and large dominant scales of spatial heterogeneity (greater 
than 734 m) (fig. 6.8a).  In contrast, a combination of high intensity of 
spatial heterogeneity and medium dominant scales of spatial heterogeneity 
(around 734 m) are associated with a high probability of elephant presence.  
For example, the Miombo and Mopane woodland classes in Chireya 1 that 
have a combination of high intensity of spatial heterogeneity and dominant 
scales of spatial heterogeneity that are around 734 m are associated with a 
high probability of elephant presence (fig. 6.8a).  In addition, it can be 
observed that there were a few agricultural fields in Chireya 1 in the early 
1980s (fig. 6.4). 
 Fig. 6.9b shows new landscape conditions of the early 1990s 
where mostly the left part of fig. 6.9a (i.e., the 1980s landscape condition) 
is represented.  It can be observed that a combination of low intensity and 
large dominant scales of spatial heterogeneity is associated with a low 
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probability of elephant presence.  For example, in the Miombo and 
Mopane vegetation classes in Chireya 1, the low intensity of spatial 
heterogeneity occurring at large dominant scales of spatial heterogeneity is 
associated with a low probability of elephant presence in the 1990s  
(fig. 6.9b).  In addition, there was an increase amount of agricultural fields 
(fig. 6.4).  On the other hand, in the Mopane vegetation class in Negande, a 
combination of the high intensity of spatial heterogeneity occurring at 
dominant scales of spatial heterogeneity around 457 m are associated with 
a high probability of elephant presence (fig. 6.9b).  It can also be observed 
that the upper left corner of Negande has small patches of low NDVI, as 
well as small agricultural fields (fig. 6.4). 

Change in elephant presence and change in spatial heterogeneity over time 
The changes in the probability of elephant presence between 1980s and 
1990s were related with changes in dominant scale and intensity of spatial 
heterogeneity during the same period.  Fig. 6.10 shows a statistically 
significant (p < 0.05) relationship between changes in the probability of 
elephant presence and changes in the intensity of spatial heterogeneity, as 
well as changes in the dominant scale of spatial heterogeneity.  It can 
generally be observed that a combination of an increase in intensity of 
spatial heterogeneity and a decrease in the dominant scale of spatial 
heterogeneity relative to no change were generally associated with a 
decrease in the probability of elephant presence in the study area.  In 
addition, combined decreases in the intensity of spatial heterogeneity and 
the dominant scale of spatial heterogeneity were associated with a decrease 
in the probability of elephant presence between the 1980s and 1990s.  For 
example, in the Miombo vegetation classes in Chireya 1 there was a 
decrease in both intensity and dominant scale of spatial heterogeneity that 
was associated with a decrease in the probability of elephant presence 
between the 1980s and the 1990s.  In addition, fig. 6.4 shows a related 
increase in the amount of agricultural fields in Chireya 1 between the 
1980s and 1990s.
 In contrast, it can be generally observed that a combined increase 
in both the intensity of spatial heterogeneity and dominant scale of spatial 
heterogeneity was associated with an increase in the probability of elephant 
presence in the study area between the 1980s and 1990s.  In addition,  



Chapter 6 

124 

(a) (b)

Z = -10.62 + 0.013x - 0.000004x2 -7.19y+-1.68y2 0.067xy

R2 = 0. 68
p = 0.003
n = 20

Z = -11.72+ 0.008x-0.000006x2+25y-8.65x2 0.0007xy

R2 = 0.65
p = 0.006
n = 20

P
ro

b
ab

ility o
f

elep
h

an
t p

resen
ce (lo

g
 10)

P
ro

b
ab

ility o
f

elep
h

an
t p

resen
ce (lo

g
 10)

Dominant scale [m]

Dominant scale [m]
Intensity

( log 10)
Intensity

( log 10)

Chireya 1
(Mopane) Chireya 1

(Miombo)

Negande
(Mopane)

Simchembo
(Setaria)

Negande
(Mopane)

Chireya 1
(Mopane)

Chireya 1
(Miombo)

Madzivazvido
(Miombo-Mopane)

Figure 6.9: A significant (p < 0.05) relationship between the probability of elephant presence and 
the intensity and dominant scale of spatial heterogeneity plus their interaction in the study area in 
the (a) 1980s and (b) 1990s.  The graph surface represents increasing probability of elephant 
presence from green (lowest probability) to deep red (the highest probability of elephant presence).  

relative stability in the dominant scale of spatial heterogeneity and an 
increase in the intensity of spatial heterogeneity were associated with an 
increase in the probability of elephant presence.  For example, the 
Miombo-Mopane vegetation class in Simchembo had an increase in 
intensity and a constant dominant scale of spatial heterogeneity between 
1980s and 1990s and this was associated with an increase in the probability 
of elephant presence between the two periods.  Fig. 6.4 shows a related 
increase in the NDVI in Simchembo between the 1980s and 1990s.  

6.4 Discussion 

So, in what kind of agricultural landscape do elephants thrive?  Our results 
indicated that elephants do not mind an environment where there are 
scattered agricultural fields within a largely natural area.  In our analysis, 
the preferred environments, i.e., environments with the peak probabilities 
of elephant presence are associated with high intensity of spatial  
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Figure 6.10: A significant (p < 0.05) relationship between change in the probability of elephant 
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presence.  

heterogeneity (i.e., high variability in vegetation cover) that occurs at 
intermediate dominant scales of spatial heterogeneity with peaks at 734 m 
(early 1980s) and 457 m (early 1990s) (fig. 6.9).  We can deduce that the 
existence of high amounts of vegetation cover at patch dimensions, as well 



Chapter 6 

126 

as inter-patch distances of 457 m to 734 m encourage elephant persistence 
in the agricultural landscape.  For example, there was a peak probability of 
elephant presence in the Mopane and Miombo vegetation classes in 
Chireya 1 during the 1980s that was associated with a high intensity 
occurring at the dominant scales of spatial heterogeneity of 734 m and  
(fig. 6.8a) and during this time, there were little agricultural fields in these 
units.  The dominant scales of spatial heterogeneity at which the peak 
probability of elephant presence was found are close to the findings 
reported by (Guy 1976b, Guy 1976a) that the Sebungwe elephant prefers 
an environment with high variability of vegetation species cover and that 
the elephant can stay for more than 5 hours in natural vegetation patches of 
about 0.25 km2 or alternatively patches with a linear dimension of 0.5 km 
(500 m).  Therefore, given a high intensity of spatial heterogeneity, the  
457 m to 734 m dominant scales of spatial heterogeneity may define “the 
optimal range of spatial heterogeneity ” at which elephant persistence can 
be ensured in the agricultural landscape and below and above which 
elephant persistence in the Sebungwe agricultural landscapes can be 
threatened (fig. 6.11).  
 Moreover, the shift in the dominant scale of spatial heterogeneity 
at which the peak probability of elephant presence occurred (fig. 6.11) 
represents a phenomenon that reflects the changes in landscape conditions, 
particularly increased agricultural activity that occurred between the early 
1980s and the early 1990s.  Specifically, we deduce that in the 1980s, 
when there was quasi-intensive agricultural activity; elephants could roam 
“freely” across the hostile patches, e.g., agricultural fields, but with 
intensive agricultural activity in the 1990s, the peak of the probability of 
elephant presence shifted downwards to 457 m, suggesting that elephants 
could only “tolerate” relatively smaller dimensions of hostile patches.  
From this perspective, we can deduce that the 457 m to 734 m range 
constitute the “optimal range” of the dominant scale of spatial 
heterogeneity, where the lower limit (457 m) of the “optimal range” 
represents the level of spatial heterogeneity that elephants “do not mind” in 
agriculture-dominated environmental conditions while the upper limit of 
the range (734 m) represents the level of spatial heterogeneity at which 
elephants “thrive” in natural vegetation-dominated environmental  
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Figure 6.11: The regression models of the relationship between the probability of elephant presence 
and dominant scale of spatial heterogeneity in the (a) early 1980s and the (b) early 1990s extracted 
from fig. 6.8 to illustrate the effect of changes in the dominant scale of spatial heterogeneity on the 
probability of elephant presence (i.e., illustrated by the gap) due to increased agricultural activity 
between the two periods.  Also illustrated is the upper limit (734 m) and lower limit (457 m) of that 
may define the “optimal range” of spatial heterogeneity determined from the distance between the 
peaks of elephant presence in the 1980s and 1990s models.  

conditions.  In addition to the shift in the dominant scale of spatial 
heterogeneity at which the peak probability of elephant presence occurred 
between the 1980s and the 1990s, we see that the probability of elephant 
presence dropped more sharply with increasing dominant scales of spatial 
heterogeneity in the 1990s compared with the 1980s, resulting in a gap 
between the models of the two dates (fig. 6.11).  The increased levels of 
agricultural activity in the 1990s also explain this “gap” phenomenon.  In 
other words, as stated earlier, the quasi-intensive nature of agricultural 
activity in the 1980s supported a “free movement” of elephants in the 
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landscape, whereas in the 1990s elephant movement got more “restricted” 
due to the intensified agricultural activities.  Therefore, we could 
hypothesise that if dominant scale of spatial heterogeneity continues to 
drop below the lower limit (i.e., 457 m), regardless of the level of intensity, 
elephants could increasingly disappear from the agricultural landscape of 
the Sebungwe.  In addition, we could hypothesise that if agricultural 
activity increases unchecked beyond the 1990s levels, the “gap” will 
become increasingly larger as the elephants increasingly disappear from 
those parts of the agricultural landscape where agricultural activity is 
increasing. 
 Apart from suggesting the preferable environments for elephants, 
our results also showed that elephants avoid certain environments.  
Specifically, elephants appear to avoid environments that have either low 
intensity of spatial heterogeneity that occurs at relatively large dominant 
scales of spatial heterogeneity or environments where low or high intensity 
of spatial heterogeneity occurs at small dominant scales of spatial 
heterogeneity.  In order to properly explain this, we must first understand 
the important context of the study area, i.e., it is an agricultural area 
situated in a savanna landscape where there will never arise a situation 
where a complete tree cover results in low intensity of spatial 
heterogeneity at a large dominant scale because savannas are constituted 
by a discontinuous tree cover that occurs in relatively small patches 
interspersed with patches of grassland or agriculture (Scholes 1997).  In 
other words, low intensity of spatial heterogeneity at large dominant scales 
is always associated with grassland or agriculture (fig. 6.4 and fig. 6.9).  
Thus, it is apparent that the low probability of elephant presence that is 
associated with a combination of low intensity and large dominant scale of 
spatial heterogeneity occurred within grassland areas such as Setaria  
(fig. 6.4 and fig. 6.9a) in the 1980s and areas with a relatively continuous 
coverage of agricultural fields (fig. 6.9b and fig. 6.4) in the 1990s.  Such 
environments have only scattered remnants of woodland that remain within 
a largely agricultural landscape and this repulses elephants in the 
Sebungwe.  In addition, there is evidence that elephants also avoid high 
intensity that occurs at small dominant scales of spatial heterogeneity that 
indicate high variability in vegetation cover that occurs in small patch 
dimensions in the Sebungwe landscape.  In this regard, we can deduce that 
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a landscape dominated by small patches of both high vegetation cover 
(e.g., remnants of woodland) and low vegetation cover, (e.g., patches of 
bare ground, grassland or agricultural fields) is not preferred by elephants.  
For example, the sample unit of Mopane vegetation class in the upper left 
corner of the study area in Negande had small patches of high vegetation 
cover that were interrupted with agricultural fields and patches of low 
vegetation cover in the 1980s and, it was associated with a low probability 
of elephant presence (fig. 6.4 and fig. 6.9a). 
 Having investigated how elephants respond to spatial 
heterogeneity in space, we next investigated whether elephants also 
respond to changes in the intensity of spatial heterogeneity and the 
dominant scale of spatial heterogeneity over time.  Our findings showed 
that elephants do respond to changes in spatial heterogeneity over time.  
Agricultural field expansion following the accelerated tsetse eradication 
since the early 1980s is the main driving agent for changes in the levels of 
spatial heterogeneity of vegetation in the Sebungwe (Cumming 1981,  
du Toit 1985, du Toit 1995, Cumming and Lynam 1997).  For example, a 
decrease in the probability of elephant presence was associated with: (1) a 
decrease in the intensity of spatial heterogeneity that occurred together 
with an increase in dominant scale of spatial heterogeneity in those wards 
where agricultural fields expanded as tsetse was eradicated, suggested that 
elephants were repelled when patch dimensions of low vegetation, e.g., 
agricultural fields in the landscape became larger and (2) a decrease in both 
the intensity of spatial heterogeneity and dominant scale of spatial 
heterogeneity suggested that elephants moved away when small vegetation 
cover patches constituted the agricultural landscape.  In contrast, elephant 
presence persisted and even increased in land units where there was no 
change in terms of spatial heterogeneity and increased in situations when 
there was an increase in both the intensity and the dominant scale of spatial 
heterogeneity (fig. 6.10).  In other words, elephants persisted in non-
changed environments (i.e., environments with constant levels of spatial 
heterogeneity).  Therefore, from our findings, we proved that elephants are 
sensitive to changes in the levels spatial heterogeneity in agricultural 
landscapes such as the Sebungwe over time.  
 Furthermore, we proved that the different vegetation classes do 
not influence the temporally consistent hump-shaped relationship between 
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the probability of elephant presence and the level of spatial heterogeneity, 
thereby confirming the existing knowledge that the African elephant is a 
habitat generalist (Kingdon 2001).  The hump-shaped relationship also 
confirms the existing observation that spatial fragments of resources 
(spatial heterogeneity) can produce abrupt ecological responses (With and 
Crist 1995).  However, as Jansson (2002) noted, when ecologists succeed 
in defining measures of e.g., measures of spatial heterogeneity, the next 
question is over what areas are the measures applicable or biologically 
relevant?  We feel that our method can be relevant for an area with similar 
ecological conditions and for different wildlife species.  We also feel that if 
these findings can be replicated elsewhere, this may go a long way in 
improving the understanding of the habitat space requirements of different 
wildlife species in agricultural environments, such as the Sebungwe, that 
may allow for human-wildlife coexistence.  
 Finally, where our study differs significantly from those studies 
that view spatial heterogeneity from the direct image (Oindo and Skidmore 
2001) and patch mosaic approaches (Griffith, et al. 2000, Li, et al. 2001), 
is in our intensity and dominant scale perspective to spatial heterogeneity, 
i.e., by using the intensity and the dominant scale as inseparable properties 
of spatial heterogeneity, we were able to incorporate both the variability of 
vegetation cover that is emphasized by variance measure of the direct 
image approach, as well as the patch dimension that the patch mosaic 
approach emphasizes.  Also, using the windowed variogram, we measured 
the variation in a landscape property (NDVI), as well as incorporated the 
gradient that characterises patch boundaries in the savanna landscape, 
thereby avoiding the crisp boundary approach of the patch mosaic model, 
which was criticized as inappropriate for modelling ecological patterns like 
wildlife distribution (Legendre and Fortin 1989, Legendre 1998).  Thus, 
we argue that our approach is more valid for understanding an ecological 
pattern like elephant distribution since it incorporates some characteristics 
of both the direct image approach and the patch mosaic approach, in 
addition to capturing the gradient component that is missed by the latter.  
However, we have to caution that the variogram method can only work in 
situations where there is stationarity, i.e., where a range and sill, that are 
the basis upon which the dominant scale and intensity of spatial 
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heterogeneity is quantified, can be defined.  But other methods, such as 
wavelets can also be applied (Murwira and Skidmore. 2003).  

6.5 Conclusions 

 We investigated (1) whether and how the spatial distribution of the 
African elephant was related the dominant scale and intensity of spatial 
heterogeneity in the agricultural landscape of Sebungwe, and (2) whether 
and how changes in the spatial distribution of elephants between the early 
1980s and early 1990s were related concurrent changes in the dominant 
scale and intensity of spatial heterogeneity.  Consequently, some 
conclusions and management recommendations can be drawn from the 
results.  Firstly, we concluded that the intensity and dominant scale of 
spatial heterogeneity could consistently (i.e. in the 1980s and 1990s) 
predict the spatial distribution of elephants in the agricultural landscapes, 
such as the Sebungwe.  Consequently, changes in the intensity and 
dominant scale of spatial heterogeneity can also predict changes in the 
probability of elephant presence.  Secondly, we concluded that given high 
intensity, the 457 m to 734 m dominant scale of spatial heterogeneity could 
be the “optimal landscape environment” at which elephant persistence can 
be ensured in the agricultural landscape and below and above which 
elephant persistence in the Sebungwe agricultural landscapes can be 
threatened.  Thirdly, we also concluded that although the relationship 
between the probability of elephant presence and the dominant scale of 
spatial heterogeneity in the Sebungwe was stable over time (i.e., in the 
1980s and the 1990s), the level of agricultural activity determined the rate 
of decrease in the probability of elephant presence with the increasing 
dominant scale of spatial heterogeneity.  Finally, we observed that, in 
managing the Sebungwe landscape to enhance wildlife species presence 
for the benefit of community based wildlife management programmes such 
as CAMPFIRE, management decisions must take into consideration the 
appropriate levels of spatial heterogeneity to ensure wildlife species 
persistence in the agricultural landscapes. 
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Chapter 7
Predicting elephant (Loxodonta africana)
presence in a Southern African 
agricultural landscape from the spatial 
heterogeneity of NDVI 6

Amon Murwira and Andrew K. Skidmore  

Abstract

We investigated whether and how the probability of African elephant (Loxodonta 
africana) presence was related to spatial heterogeneity of vegetation cover (estimated 
from a remotely sensed normalised difference vegetation index (NDVI) from  
Landsat TM) in space and over time in the agricultural landscape in northwestern 
Zimbabwe between the early 1980s and early 1990s.  A new approach was used to 
characterise spatial heterogeneity based on the intensity (i.e., the maximum variance 
exhibited when a spatially distributed landscape property such as vegetation cover is 
measured with a successively increasing window size or scale) and dominant scale (i.e., 
the scale or window size at which the intensity is measured).  This approach was 
implemented using a wavelet transform.  The results showed that spatial heterogeneity 
could explain 80 % and 93 % of the variance of the probability of elephant presence in the 
early 1980s and early 1990s respectively.  The changes in spatial heterogeneity predicted 
89 % of the variance of the change in elephant presence between the 1980s and 1990s.  
These results imply that if elephants are to be conserved in agricultural landscapes, it is 
important that wildlife management strategies aimed at sustaining wildlife species in 
agricultural landscapes take into account the level of spatial heterogeneity of natural 
vegetation.  In addition, the results imply the wavelet transform-derived spatial 
heterogeneity could improve the prediction of ecological patterns. 

6
Based on: The spatial distribution of elephants (loxodonta africana) in relation to the spatial heterogeneity 

of vegetation cover in a Southern African agricultural landscape, paper presented to the conference on Scales 
and Dynamics in Observing the Environment, 10-12, September 2003, Nottingham, UK. Also submitted to: 
Remote Sensing of Environment 
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7.1 Introduction 

Community based natural resource management (CBNRM) programmes in 
the agricultural landscapes of Southern Africa such as the Communal 
Areas Management Programme For Indigenous Resources (CAMPFIRE) 
in Zimbabwe (Hoare and Du Toit 1999, Hulme and Murphree 2001, Logan 
and Moseley 2002) owe their existence to the persistence of wildlife 
species throughout these landscapes.  However, wildlife species 
persistence in agricultural landscapes of Southern Africa, particularly in 
Zimbabwe, is increasingly being threatened by agricultural field expansion 
into the natural habitats (Cumming 1982, Cumming and Lynam 1997, 
Hoare 1999, Hoare and Du Toit 1999).  The critical question for wildlife 
managers and ecologists is: how can wildlife persistence outside the 
wildlife reserves be ensured in the face of expanding agriculture?  In other 
words, in what kind of agricultural landscape can wildlife species thrive?  
The answer is in understanding the kind of habitat conditions that can 
make elephants persist within the unique context of agricultural landscapes 
where arable fields cut up natural habitats into discontinuous patches of 
different spatial arrangements.  In such a landscape, it is not only the 
amount of natural habitat that is important for wildlife species persistence, 
but the spatial arrangement of habitat patches also becomes particularly 
critical.  Thus, to ensure wildlife species persistence in agricultural 
landscapes it is critical to understand how they respond to spatial 
heterogeneity (i.e., the patchiness in vital landscape properties such as 
vegetation cover (Legendre and Fortin 1989, Pickett and Rogers. 1997, 
Gustafson 1998) that is imposed by the agricultural fields onto the natural 
habitat.  Consequently, the need for research to characterise wildlife 
species response to spatial heterogeneity in agricultural landscapes is 
critical.  
 Although empirical and theoretical literature recognises the 
importance of spatial heterogeneity to wildlife distribution (Turner 1989, 
Johnson, et al. 1992, Kareiva and Wennergren 1995, Turner, et al. 1997, 
Lynam and Billick 1999, Adler, et al. 2001), an understanding of the levels 
of spatial heterogeneity at which specific wildlife species can persist in 
agricultural landscapes is still rudimentary.  This may stem from the lack 
of clarity in the characterisation of spatial heterogeneity (Sparrow 1999).  
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In other words, this suggests that spatial heterogeneity needs to be properly 
characterised even before the wildlife response to spatial heterogeneity can 
be understood. 
 The quantification of spatial heterogeneity is an empirical 
approach based on observed data, thus it is a forerunner to testing specific 
hypotheses about ecological patterns (Perry, et al. 2002).  In this regard, 
ecologists have traditionally quantified spatial heterogeneity from remote 
sensing imagery by using two basic approaches: (a) the direct image 
approach, where straight reflectance or reflectance indices of remote 
sensing images are used to quantify spatial heterogeneity, using the 
original pixel size of the image (Goodchild and Quattrochi. 1997); and  
(b) the cartographic or patch mosaic approach, where the image is 
subdivided into homogeneous mapping units through classification 
(Gustafson 1998).  The first approach assumes that spatial heterogeneity is 
at the pixel size of the image and, in this case, it is only the reflectance 
values that are important.  The limitation of this approach is that its choice 
of scale (i.e., window size) is arbitrary, thus it is subjective.  Alternatively, 
using the patch mosaic approach to quantify spatial heterogeneity assumes 
a collection of discrete patches.  Based on this approach, characterisation 
of spatial heterogeneity is highly dependent on the initial definition of 
mapping units by the researcher (Turner 1989).  The limitation of this 
approach is that patches have abrupt boundaries and the variation within 
the patches is assumed to be irrelevant (McGrigal and Cushman 2002).  
The patch mosaic model is parsimonious and has therefore become the 
operating paradigm.  It is particularly valid where landscape patches have 
crisp boundaries, as with the regular landscapes of Europe (Pearson 2002).  
However, the model poorly represents spatial heterogeneity in landscapes 
that are characterised by gradients rather than discrete patches, for instance 
in savanna landscapes (Pearson 2002), and this leads to both loss of 
information and the introduction of subjectivity.  Nevertheless, alternative 
approaches to characterise spatial heterogeneity remain underdeveloped.  
 In view of the limitations in the approaches mentioned above, we 
develop a new approach to characterising spatial heterogeneity, based on 
intensity, as well as the dominant scale and apply it to predict wildlife 
species distribution, particularly that of the African elephant (Loxodonta 
africana) in an agricultural landscape.  Intensity is defined as the 
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maximum variance exhibited when a spatially distributed landscape 
property is measured with a successively increasing window size or scale.  
For example, measuring the variance in percent canopy cover along a  
100 m long transect in a tree plantation with 10 m wide tree stands (with 
uniformly high canopy cover) that evenly interchange with 10 m wide bare 
ground (with zero canopy cover) at a successively increasing window size, 
starting from 1 m up to 100 m, would yield the maximum variance at a 
window size equal 10 m.  This maximum variance is the intensity of spatial 
heterogeneity.  It is the scale or window size where the maximum variance 
in the landscape property is measured that is defined as the dominant scale 
of spatial heterogeneity.  In other words, intensity and dominant scale of 
spatial heterogeneity are properties of a landscape that are inseparable.  In 
this case, the dominant scale of spatial heterogeneity coincides with the 
dominant patch dimension (i.e., size of tree stands and bare ground) in the 
landscape.  Note that our definition of scale follows that of Levin (1992) 
and Rietkerk, et al. (2002) who define scale as the window or dimension 
(e.g., m, km, m2, km2) through which the landscape may be observed either 
in remote sensing images or by direct measurement.  In this study, scale is 
treated as a linear dimension, e.g., m, km.  We therefore propose that 
spatial heterogeneity be defined and quantified using both intensity and the 
dominant scale.  Of course, grain (i.e., the initial observation scale or 
window size at which the data is collected) and extent (overall size of the 
study area) limits the range of the dominant scale that can be detected 
(Wiens 1989).   
 Furthermore, in order to properly elucidate the centrality of the 
intensity and the dominant scale in the characterisation of spatial 
heterogeneity, we present a simulation of tree canopy cover along three 
artificial transects (fig. 7.1).  The tree canopy cover along by the three 
artificial transects that stretch over 1000 m is sampled at an interval of 1 m.  
Thus, the interval of 1 m defines the grain (observation scale) while the 
1000 m defines the extent (overall transect length).  The transects 1 and 2 
have a dominant scale of spatial heterogeneity of 100 m, i.e., maximum 
variance is recorded at the window size of 100 m whereas transect 3 has a 
dominant scale of 200 m.  The dominant scale of spatial heterogeneity in 
transects 1 and 2 is equal but the intensity of spatial heterogeneity is 
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Figure 7.1: Part (A) are transects with alternating spaces of trees and bare ground and part (B) 
shows the simulation tree canopy cover along each transect assuming that the cover measurements 
are made after every 1 m (i.e., grain = 1 m) and an extent of 1000 m.  For example, the (a) intensity 
(maximum variance) of transect 1 occurs at (b) a dominant scale of 100 m.  

different.  Next, a look at transects 1 and 3 shows that they have equal 
intensity of spatial heterogeneity but have different dominant scales of 
spatial heterogeneity.  Therefore, characterizing spatial heterogeneity in 
this example is incomplete if only the intensity or the dominant scale of 
spatial heterogeneity is considered.  Thus, we propose that both the 
intensity and dominant scale describe the spatial heterogeneity of a 
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landscape.  This method of characterising spatial heterogeneity in the 
landscape was developed and tested by Murwira and Skidmore (2003) 
 In this study, the objective was to use a wavelet transform to 
quantify the spatial heterogeneity of a normalised difference vegetation 
index (NDVI) and then test whether the wavelet-quantified spatial 
heterogeneity consistently explain wildlife species distribution in a 
landscape, particularly that of the African elephant (Loxodonta africana) in 
northwestern Zimbabwe between the early 1980s and early 1990s.  
Specifically we tested: (1) whether the probability of African elephant 
presence in different parts of the landscape was consistently and 
significantly related the dominant scale and intensity of spatial 
heterogeneity during the two dates and, (2) whether changes in the 
probability of elephant presence in different parts of the landscape, 
between the early 1980s and early 1990s, were related with changes in the 
dominant scale and intensity of spatial heterogeneity.  Murwira and 
Skidmore (2003) demonstrated the utility of wavelets in characterising 
spatial heterogeneity from a dominant scale and intensity perspective.  
 The African elephant was selected for several reasons.  Firstly, 
the Africa elephant is a keystone species of the African savanna (Hoare 
and Du Toit 1999) that need to be conserved.  Secondly, the African 
elephant is on the list of the world’s threatened species (IUCN 2002) and is 
considered a conservation priority.  Thirdly, the study area has been the 
only agricultural landscape in Zimbabwe outside the protected wildlife 
reserves with a healthy expanding elephant population (Cumming 1981).  
Nevertheless, this situation is increasingly being threatened by agricultural 
field expansion following the continual eradication of tsetse (Glossina sp.) 
since the 1960s.  Thus, there is need of interventionist strategies to 
conserve the elephant.  Fourthly, water is not a limiting factor in the study 
area (Cumming 1981), and since the African elephant is a habitat generalist 
(Kingdon 2001) it has a potential of being anywhere in the study area and 
it can be hypothesised that the level of spatial heterogeneity mainly affect 
its distribution.  Also, good survey data exists on the spatial distribution of 
the African elephant in the study area.  
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7.2 Materials and Methods 

Study area 
This study is based on the Sebungwe region in the northwestern part of 
Zimbabwe (fig. 7.2).  The Sebungwe region is composed of undulating 
topography with the average elevation of between 700 – 800 m above sea 
level.  The region is characterised by a single wet season (November to 
March) with a mean annual rainfall of 680 – 700 mm, as well as a long dry 
season (April to October).  Savanna woodlands and grasslands characterise 
the main natural land cover, i.e., Miombo woodland dominated by 
Brachystegia spp. and Julbernardia globiflora, Mopane dominated by 
Colophospermum mopane, Faidherbia woodland dominated by Faidherbia 
albida, Miombo-Mopane with co-dominance of Brachystegia spp. and
Julbernardia globiflora and Colophospermum mopane, as well as, Setaria 
dominated by Setaria incrassata, Ischaemum afrum and Dicathium 
papillosum (Timberlake, et al. 1993) (fig. 7.2b).  The floristic-
physiognomic vegetation units do not change over time, representing the 
vegetation classes that would be there in an undisturbed environment 
(Timberlake, et al. 1993).  Therefore, the boundaries do not change within 
a matter of decades. 
 The Sebungwe contains of five wildlife reserves, interspersed 
with communal lands (fig. 7.2a) with varying degrees of agriculture and 
varying degrees of wildlife presence.  Communal lands are a land category 
characterised by collective or community land ownership and they are 
subdivided into administrative or management units called wards 
(fig. 7.2a).  In the communal lands wildlife presence is affected by the 
ecological conditions such as the availability of vegetation cover, and also 
poaching and human disturbance, and also poaching and human 
disturbance rather than by conservation measures or laws like in the 
wildlife reserves, i.e., wildlife species are present provided there are 
necessities such as enough cover and water.  Wildlife has to cross the 
communal lands when moving between the wildlife reserves.  Thus, the 
communal lands also provide wildlife corridors that link the wildlife 
reserves (Cumming and Lynam 1997). 
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Zimbabwe

(a)

(b)

Figure 7.2: The location of the Sebungwe region in Zimbabwe and (a) the wards, national parks and 
the history of the progression of tsetse eradication (source: Tsetse and Trypanosomiasis control 
branch, Harare) and (b) the physiognomic-floristic vegetation classes in the communal lands based 
on (Timberlake and Nobanda 1993).  The square box is a 61 km x 61 km area selected for this 
study. 
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 Moreover, the Sebungwe landscape evolved from a complex of 
different historical forces linked to the eradication of tsetse fly (Glossina 
sp.) and the related land use (fig. 7.2)a.  Historically, the Sebungwe region 
was home to both tsetse fly and a wide range of wildlife species until the 
1960s when the tsetse belt began to continually dwindle as a consequence 
of the tsetse eradication programme that was meant to enable livestock 
ranging and arable agriculture, thereby relieving population pressure from 
elsewhere in the country.  As tsetse fly was progressively destroyed since 
the 1960s, the valley began to be increasingly occupied by farmers 
(Cumming and Lynam 1997).  By the mid-1980s immigration had 
accelerated and the threat of arable agriculture on the persistence of 
wildlife began to increase in parts of the Sebungwe (Cumming and Lynam 
1997).  The results were the varying degrees wildlife presence as a 
function of varying levels of arable agriculture (Hoare and Du Toit 1999).  

b b

1981 - 83 1993 - 95

Figure 7.3: The probability of elephant presence within a 3 km radius in the study area in 1981-83 
and 1993-95 and the 61 km by 61 km square box selected for this study.  The ellipse (b) illustrates 
an area where there was a major noticeable decrease in the probability of elephant presence between 
1981-83 and 1993-95. 

 This study is based on a 61 km x 61 km area (square box in  
fig. 7.2), mainly covering the communal lands.  This study area was 
considered large enough for studying elephant distribution in the 
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Sebungwe.  Specifically, elephants in the Sebungwe region have an 
estimated range of between 83 km2 to 263 km2, approximating a horizontal 
length scale (horizontal dimension) of 9.1 km and 16.2 km, respectively 
(Guy 1976a, Dunham 1986).  This makes the extent of the study area, i.e., 
3721 km2, which is at least 14 times the estimated range of the elephant in 
the Sebungwe large enough to study elephant distribution. 

Elephant data 
The data on the spatial distribution of elephants in the 1980s and 1990s 
were determined using respectively a combined 1981-1983 data set, and 
1993-1995 data set.  These data were obtained from the point location data 
from the analyses of Sebungwe aerial surveys by Cumming and Lynam 
(1997) and made available by WWF in Harare.  The locational error of the 
elephant sightings was within 500 m, i.e. 250 m on the side of the aircraft 
and 1000 m along the flight path (Cumming and Lynam 1997).  The aerial 
surveys were carried out in the dry season, i.e., between August and 
October of the relevant years.  This was considered an appropriate period 
for studying the effect of spatial heterogeneity on elephant distribution 
because the crop fields are fallow during this time.  Crop fields tend to 
attract the elephants outside their normal natural range, thus making wet 
season (October to March) data much less reliable for assessing the effect 
of spatial heterogeneity.  In other words, an area that can be suitable for the 
elephant in the dry season can safely be assumed to be suitable in the wet 
season.  The data were in digital point map format.  We considered the 
elephant distribution map of our study area R as a spatial point pattern 
(Diggle 1983).  Each point where elephants were observed is called an 
event.  We calculated the first-order intensity function λ(x) for the elephant 
point map to give an expected number of events per unit 
area(Fotheringham, et al. 2000): 
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where E(N) is the expected number of events in the study area considered 
and C(x,r) a circular sub-region of R located at x with a radius r.  A kernel 
function was used in this study with r equal to 3000 m based on an 
exploratory analysis in S-PLUS software (Lam 2001).  This kernel radius 
was also large enough to overcome any locational errors in elephant 
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sightings.  We then normalised λ(x) by dividing it by the expected number 
of events in R to produce a normalised or probability function λn(x)
(Fotheringham, et al. 2000): 
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Next, λn(x) was used to estimate the spatial distribution of elephants in the 
study area during the 1980s and 1990s.  The point pattern analysis method 
was used because it is spatially explicit and gives weight to elephant 
location rather than absolute numbers: the aim was to determine whether 
spatial heterogeneity affects the presence of at least a single elephant and 
since the elephant survey data sets were combined, adding the total number 
of observed elephants of the years would give a false impression about 
absolute elephant abundance.  Fig. 7.3 shows the maps of the probability of 
elephant presence in the early 1980s and the early 1990s. 

Remote sensing data 
The amount of vegetation cover or biomass was estimated from NDVI 
derived from the readily available TM images of 19 October 1984 and the 
one of 16 April 1992: 

                                                 
R)(NIR

R)(NIR
NDVI

++++
−−−−====                                                   (7.3) 

where NIR and R are respective spectral reflectance values in the near 
infrared and the red.  Data were normalised to the range of 0 to 255 in 
order to facilitate data handing in image processing software.  Relative 
radiometric correction of the two images was done using the regression 
method based on pseudo variant objects such as water bodies, airstrips and 
roads (fig. 7.4).  This was done to minimise atmospheric effects in the 
analysis of spatial heterogeneity from the NDVI images of the two 
different dates.  Fig. 7.5 shows the NDVI images of the 61 km x 61 km 
study area.  As mentioned earlier, NDVI was used because it is an 
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Figure 7.4: Relationship between the DN values of sampled pseudo variant objects between the 
Landsat TM images of 19 October 1984 and 16 April 1992. 
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1984 1992

Figure 7.5: Map showing the 1984 and 1992 NDVI maps of the 61 km by 61 km square box 
overlaid with layers of ward boundaries and agricultural fields.  Low NDVI values indicate low 
vegetation cover and high NDVI values indicate high vegetation cover within a 0 to 255 range.  The 
NDVI values were stretched the same way for display to make them comparable but the NDVI 
ranges were different for 1984 and 1992.  

established index for estimating vegetation quantity (Walsh, et al. 1997, 
Walsh, et al. 2001).  Also, NDVI have been shown to provide an effective 
measure of photosynthetically active biomass (Tucker and Sellers 1986, 
Los. 1998, Turner, et al. 1999, Birky 2001, Hill and Donald 2003) and it is 
an index of total vegetation biomass (Goward and Dye 1987).  Also, NDVI 
is also strongly related to the extent of vegetation cover and therefore, can 
be used to detect land cover changes (e.g., woodland replacement with 
agriculture) and can also be used as an indicator of spatial heterogeneity in 
the landscape (Kerr and Ostrovysky 2003).  Dry season imagery was used 
in this study because elephant data was collected in the dry season.  In 
addition, it is easier to distinguish between fallow agricultural fields and 
natural vegetation using NDVI in the dry season than in the wet season, 
i.e., high NDVI values are expected for natural vegetation and lower NDVI 
values are expected for fallow agricultural fields (fig. 7.5).  Thus, it is 
apparent in fig. 7.5 that areas with low NDVI mainly coincide with 
agricultural fields.  It was assumed that the time differences between the 
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dates of the wildlife surveys and the satellite images was close enough and 
therefore, had negligible negative effects on the analysis.  
 Several advantages were envisaged in using Landsat TM imagery 
to characterise the spatial heterogeneity for the study of elephant 
distribution.  Most importantly, the spatial resolution or grain of  
Landsat TM, i.e., 30 m by 30 m was detailed enough to enable the 
quantification of spatial heterogeneity that is relevant for analysing 
elephant distribution; generally, the grain should be several magnitudes 
smaller than the total range of the organism (Sparrow 1999).  Since 
elephants in the Sebungwe region have an estimated range of 83 km2 to 
263 km2, approximating a horizontal length scale (horizontal dimension) of 
9.1 km and 16.2 km, respectively (Guy 1976a, Dunham 1986), the grain of 
30 m makes it 300 times smaller than the minimum range of the elephant.  

Characterising spatial heterogeneity using wavelets 
Wavelet energy (Bruce and Hong-Ye. 1996) was used to quantify the 
intensity and the dominant scale of spatial heterogeneity in the NDVI 
images of 1984 and 1992.  The determination of wavelet energy begins 
with a wavelet transform (in this study a Haar wavelet was used), which is 
defined as the convolution of two wavelet functions, i.e., the smooth

),( yxφ  and detail ),( yxϕ functions, and an NDVI image y)f(x,  at successive 
bases, (2j), i.e., j = 0,1,2…J in the vertical (north-south), diagonal 
(northeast-southwest and northwest-southeast) and horizontal (east-west) 
directions for the 2-dimensional data.  A wavelet transform results in a set 
of coefficients where each coefficient is associated with a base level,  
j = 0,1,2…J, a direction and a particular location.  
The wavelet approximation y)(x,f̂ of the original 2-dimensional function 
f(x,y) is a sum of the smooths and the detail functions at different bases: 

                                  )y(x,
J

1j dir

dir
jDy)(x,JSy)(x,f ∑

====
∑++++====ˆ                                 (7.4)  

SJ represents the smooth coefficients and dir
jD  are the directional (i.e., 

vertical (north-south), horizontal (east-west) and diagonal (northeast-
southwest and northwest-southeast)) detail coefficients.  By convention, 
the grain of f(x,y) is equals to j = 0.  Therefore, each scale level j
corresponds to a window size or scale equals 2j * s where s is the size of 
the original grain at which f(x,y) is mapped (in this case 30 m, the spatial 
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resolution of Landsat TM).  The decision on the magnitude of J (i.e., the 
broadest base or window of focus) is made in advance and depends on how 
much detail is required in the analysis and also on the size of the image.  In 
this study we selected J equals 7, an equivalent of a spatial dimension of 
3840 m.  Note that the theory and formal treatment of wavelets has been 
covered exhaustively elsewhere (Mallat 1989, Ogden 1997) and is beyond 
the scope of this study. 
 Wavelet coefficients can be positive or negative but the absolute 
coefficient value measures the magnitude of contrast in f(x,y) at a specific 
location with a base of 2j.  Wavelet energy was calculated as a second 
moment of the wavelet transform defined as the sum of squares of the 
coefficients at base 2j, divided by the sum of squares of all the coefficients 
in y)(x,f̂ :

                                     Jjyxj

j

n

k

d
E

E d
j ...1,2,3),,(

2/

1

21
=∑

=
=                                       (7.5) 

where dj(x,y) are the detail wavelet coefficients at j and position (x,y), E is 

the total sum of squares of y)(x,f̂  and n/2j is the number of coefficients at 
level j.  Then, wavelet energy values were plotted against scale and the 
highest local maxima in the wavelet energy function represented the 
intensity of spatial heterogeneity while the corresponding scale value 
represent the dominant scale of spatial heterogeneity (Murwira and 
Skidmore. 2003).  The detail functions rather than the smooth 
approximations were used in the analysis because they are scale specific.  
For example, details at j = 1 capture vegetation patches that have a size 
between 30 m and 60 m.  In contrast, smooth coefficients can only capture 
scales that are equal or greater than 2j, thus they are not scale specific.  

Relating the probability of elephant presence to spatial heterogeneity 
The relationship between the probability of elephant presence and the 
dominant scale and intensity of spatial heterogeneity was tested on the  
61 km x 61 km study area, i.e., in the communal lands of the Sebungwe.  
The individual units of analysis (sampling units) were defined to be the 
intersection of the ward boundaries and vegetation class boundaries, 
thereby incorporating variation due to management and ecological factors 
respectively.  These sampling units were obtained by crossing the ward and 



Chapter 7 

148 

vegetation class maps in a Geographical Information system (GIS).  The 
floristic-physiognomic vegetation class map (fig. 7.2) describes the 
potential vegetation classes, and is therefore constituted by floristic units 
that are constant over time (Timberlake, et al. 1993).  All in all, 22 units of 
analysis were used in this study.   
 Before the probability of elephant presence was related to the 
dominant scale and intensity of spatial heterogeneity, the wavelet functions 
for separate wards, as well as physiognomic-floristic vegetation classes 
(Miombo, Mopane, Miombo-Mopane and Setaria) were plotted and the 
dominant scale and intensity information was determined for each unit of 
analysis.  The Faidherbia vegetation class was excluded in the analysis 
because it covers a very small part of the study area such that not enough 
coefficients are included in the Faidherbia unit.  Then, the probability of 
elephant presence in each sampling unit was determined by crossing the 
map of the probability of elephant presence (fig. 7.3) and the map of 
sampling units defined by wards and vegetation classes and calculating the 
average probability of elephant presence.  The mean probability of 
elephant presence for each sampling unit of analysis was used as a measure 
of elephant presence in regression analysis. 
 Next, regression analysis was used to relate the probability of 
elephant presence to the dominant scale and intensity of spatial 
heterogeneity respectively using both the 1980s and 1990s data.  In 
addition, the probability of elephant presence was analysed as a function of 
 the dominant scale and intensity of spatial heterogeneity plus the 
interaction between the two.  Use of data from two dates gave us a 
possibility to check whether elephant presence was consistently related 
with the dominant scale and intensity of spatial heterogeneity irrespective 
of time.  The final regression analysis attempted to determine whether 
there was a relationship between the spatial changes in both dominant scale 
and intensity of spatial heterogeneity between 1984 and 1992 and the 
spatial changes in the probability of elephant presence between 1981-83 
and 1993-95.  To accomplish this, the intensity and dominant scale values 
of 1984 were subtracted from the respective values of 1992 so that positive 
values would represent an increase in each respective factor while negative 
values would represent a decrease in each respective factor between the 
two periods. 
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7.3 Results 

Spatial heterogeneity in Sebungwe in 1984 and 1992 
Fig. 7.6 shows selected wavelet energy functions that illustrate changes in 
the dominant scale and the intensity of spatial heterogeneity in the study 
area between 1984 and 1992.  Generally, the wavelet energy functions in 
1992 had higher values than in 1984.  For example, the Setaria typifies 
changes in both the dominant scale of spatial heterogeneity and intensity of 
spatial heterogeneity between the two dates.  In 1984 the Setaria had larger 
dominant scales of spatial heterogeneity than in 1992, whereas the 
intensity of spatial heterogeneity in 1984 was less than in 1992. 
 Fig. 7.7 shows a multiscale wavelet energy representation of 
NDVI in the study area in 1984 and 1992.  It can be observed that there 
was a decrease in the dominant scales of spatial heterogeneity in the 
selected Setaria analysis units from 1920 m and 960 m in 1984 to 240 m 
and 480 m in 1992 respectively in Nenyunka and Madzivazvido.  In 
contrast, it can be observed that there was no change in the dominant scale 
of spatial heterogeneity for the selected Miombo-Mopane analysis unit in 
Madzivazvido between 1984 and 1992.  

Relationship between elephant presence and spatial heterogeneity in space 
Fig. 7.8 shows that there were significant (p < 0.05) quadratic relationships 
between the probability of elephant presence and the dominant of spatial 
heterogeneity, as well as between the probability of elephant presence and 
the intensity of spatial heterogeneity both in 1980s and 1990s.  The 
relationship between the dominant scale of spatial heterogeneity and the 
probability of elephant presence is such that there is an initial increase in 
the probability of elephant presence with increasing dominant scale until a 
certain level after which the probability of elephant presence declines with 
increasing dominant scale (fig. 7.8a).  The probability of elephant 
presence-dominant scale regression functions for 1980s and 1990s explain 
65 % and 68 % of the variance in the probability of elephant presence 
respectively.  Furthermore, it can also be observed that as the intensity of 
spatial heterogeneity increases, there is a concomitant increase in the 
probability of elephant presence until a certain level and then the 
probability of elephant presence begins to saturate or even decrease  
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Figure 7.6: Selected wavelet energy functions illustrating variations in intensity and dominant scale 
in different wards and vegetation classes in 1984 and 1992.  The arrow shows an example of the 
determination of the intensity and dominant scale of spatial heterogeneity from a wavelet energy 
function. 
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Figure 7.7: The spatial distribution of total wavelet energy per pixel at different scales (wavelet 
spans) across different wards in 1984 and 1992, as well as in selected vegetation class polygons (the 
total wavelet energy for the image was divided by 1000000 and then stretched between 0 and 20 to 
enhance the wavelet energy for visual presentation).  The polygon contained in a larger box depicts 
Setaria predominantly in Nenyunka ward while the polygon contained in the smaller box is 
Miombo-Mopane vegetation class in Madzivazvido ward. 

(fig. 7.8b).  The regression functions for 1980s and 1990s explain 61 % 
and 71 % of the variance in the probability of elephant presence 
respectively. 
 Fig. 7.9 shows the probability of elephant presence as a 
significant (p < 0.05) function of both the dominant scale and the intensity 
of spatial heterogeneity in 1980s and 1990s.  It can be observed that a 
combination of low intensity of spatial heterogeneity and large dominant 
scales of spatial heterogeneity is associated with a low probability of 
elephant presence.  For example, it can be observed the Setaria vegetation 
class in Simchembo ward, had a combined low intensity and large 
dominant scale in the 1980s and it was associated with a low probability of 
elephant presence (fig. 7.9a).  In addition, it can be observed that the 



Chapter 7 

152 

(a) (b)

100 300 500 700 900

Dominant scale [m]

-4.5

-4.0

-3.5

-3.0

P
ro

b
ab

ili
ty

 o
f 

el
ep

h
an

t 
p

re
se

n
ce

 (
lo

g
10

) 1980s

-3.95 -3.70 -3.45 -3.20 -2.95 -2.70 -2.45

Intensity (log10)

-4.5

-4.0

-3.5

-3.0

P
ro

b
ab

ili
ty

 o
f 

el
ep

h
an

t 
p

re
se

n
ce

 (
lo

g
10

)

100 575 1050 1525 2000

Dominant scale [m]

-12

-10

-8

-6

-4

P
ro

b
ab

ili
ty

 o
f 

el
ep

h
an

t 
p

re
se

n
ce

 (
lo

g
10

)

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0

Intensity (log10)

-13

-11

-9

-7

-5

-3

P
ro

b
ab

ili
ty

 o
f 

el
ep

h
an

t 
p

re
se

n
ce

 (
lo

g
10

)

y = -3.26 + 0.00047x - 0.000001x2,  (R2 = 0.652, p = 0.000, n = 22) y = -6.771 - 2.831x - 0.5486x2,  (R2 = 0.613, p = 0.000, n = 22)

y = -4.057+ 0.00032x - 0.0000031x2,  (R2 = 0.687, p = 0.000, n = 22) y = -26.05 -16.95x - 3.146x2,  (R2 = 0.712, p = 0.000, n = 22)

1990s

1980s 1990s

Figure 7.8: Significant (p < 0.05) relationships between the probability of elephant presence and the 
(A) dominant scale of spatial heterogeneity and (B) intensity of spatial heterogeneity (intensity) in 
the study area in the 1980s and 1990s in (�) Miombo, (�) Mopane, (�) Setaria Grassland and  
(�) Miombo-Mopane floristic-physiognomic vegetation classes.  

Miombo vegetation class in Nemangwe 5 ward had a combined low 
intensity and large dominant scale in the 1990s that was associated with a 
low probability of elephant presence (fig. 7.9b).  It can also be observed 
that agricultural fields covered most of Nemangwe 5 in 1992 (fig. 7.5). 
Next, it can be observed that the probability of elephant presence is high in 
environments where the intensity of spatial heterogeneity is high at 
intermediate dominant scales of spatial heterogeneity, namely around  
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480 m.  For example, it can be observed that the Miombo-Mopane 
vegetation class in Madzivazvido has an intermediate dominant scale of 
spatial heterogeneity and a high intensity of spatial heterogeneity that are 
associated with a high probability of elephant presence (fig. 7.9).  All in 
all, the regression functions of the 1980s and the 1990s explain 80 % and 
93 % of the variance in the probability of elephant presence respectively. 

Relationship between elephant presence and changes in spatial 
heterogeneity
After, analysing how spatial heterogeneity is related to the probability of 
elephant presence from sampling unit to sampling unit, we also analysed 
whether changes in spatial heterogeneity in the sampling units over time 
explained the changes in the probability of elephant presence between the 
early 1980s and the early 1990s.  Fig. 7.10 shows that spatial changes in 
the probability of elephant presence between the early 1980s and the early 
1990s were significantly (p < 0.05) related with changes in dominant scale 
and intensity of spatial heterogeneity in the sampling units between the 
same periods.  It can be observed that a combination of an increase in 
intensity of spatial heterogeneity and a decrease in the dominant scale of 
spatial heterogeneity were associated with a decrease in the probability of 
elephant presence in the study area.  On the other hand, a decrease in the 
intensity of spatial heterogeneity in combination with an increase in the 
dominant scale of spatial heterogeneity is also associated with the decrease 
in the probability of elephant presence.  For example, a combination of the 
decrease in the dominant scale of spatial heterogeneity and the increase in 
intensity of spatial heterogeneity in Setaria in Nenyunka ward were 
associated with a decrease in the probability of elephant presence (fig. 7.6, 
fig. 7.7 and fig. 7.10).  Concurrently, an increase in agricultural fields in 
the same land unit between 1984 and 1992 can be observed (fig. 7.5).  In 
addition, a combination of the increase in dominant scale of spatial 
heterogeneity and the decrease in intensity of spatial heterogeneity in the 
Mopane vegetation class in Nemangwe 5 ward was associated with a 
decrease in the probability of elephant presence (fig. 7.6, fig. 7.7 and  
fig. 7.10).  Also, a concurrent increase in agricultural fields in the same 
land unit between 1984 and 1992 (fig. 7.5) can be observed.  In contrast, it 
is apparent (fig. 7.10) that a combined increase in the intensity of spatial 
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heterogeneity and dominant scale of spatial heterogeneity was associated 
with an increase in the probability of elephant presence up to a certain 
level and then it decreases.  For example an increase in the intensity and 
dominant scale of spatial heterogeneity in the Miombo vegetation class in 
Nabusenga was associated with an increase in the probability of elephant 
presence (fig. 7.10) The regression function explained 89 % of the variance 
of the change in probability of elephant presence between the 1980s and 
1990s.
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Figure 7.9: A significant (p < 0.05) relationship between the probability of elephant presence and 
the intensity and dominant scale of spatial heterogeneity plus their interaction in the early (a) 1980s 
and (b) 1990s.  The graph surface represents increasing probability of elephant presence from green 
(lowest probability) to deep red (the highest probability of elephant presence).  
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Figure 7.10: A significant (p < 0.05) relationship between change in the probability of elephant 
presence and changes in the intensity and dominant scale of spatial heterogeneity between the 1980s 
and 1990s.  On all axes, positive values indicate an increase, negative (-) indicate a decrease and 
zero (0) indicates no change.  The green on the graph surface represents a greater decrease in the 
probability of elephant presence and deep red represents an increase in the probability of elephant 
presence.  

7.4 Discussion 

Spatial heterogeneity and the probability of elephant presence in space 
Murwira and Skidmore (2003) demonstrated the utility of wavelets in 
characterising spatial heterogeneity from the dominant scale and intensity 
perspective.  Using wavelets to analyse spatial heterogeneity from this 
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perspective, the findings in this study have demonstrated a temporally 
consistent (i.e., in the 1980s and the 1990s) near unimodal (i.e., the 
relationship describes mainly the descending part of a unimodal model) 
elephant presence-spatial heterogeneity relationship along the dominant 
scale and the intensity gradients across 22 land units (fig. 7.8 and fig. 7.9).  
This result is consistent with the unimodal species distribution or limiting 
factor models, such as the species-productivity (Wang, et al. 1999, Wang,
et al. 2001) and the species-altitude (Wang, et al. 2002) models, except 
that in this case, it is spatial heterogeneity that is limiting to the distribution 
of elephants.  However, the fact that only the descending part (i.e., from 
intermediate dominant scale to large dominant scale) of the unimodal 
relationship is pronounced is because the study area is largely constituted 
by intermediate to large dominant scales of spatial heterogeneity but not a 
full range of dominant scales of spatial heterogeneity that include small 
dominant scales.  This finding (i.e., unimodal relationship) is invaluable for 
landscape planning that takes elephant conservation into consideration 
because spatial heterogeneity could be manipulated to suit a threshold 
favourable for both elephants and humans. 
 Moreover, results on the bivariate elephant presence-intensity and 
the elephant presence-dominant scale relationships shade the first light on 
how elephants interact with spatial heterogeneity.  For example, the 
elephant presence-intensity relationship, demonstrates that elephants tend 
to prefer environments with high intensity of spatial heterogeneity (i.e., 
with high variability) in vegetation cover compared with areas with low 
variability (fig. 7.5, fig. 7.8b) (see Chapter 1).  An investigation by 
Murwira, et al. (2003) demonstrated that intensity of spatial heterogeneity 
correlates strongly with the NDVI average and the NDVI coefficient of 
variation that estimate the amount of cover and its variability respectively.  
Therefore, since high intensity or variability represents a spatially complex 
vegetation cover pattern, this confirms the observation that elephants in the 
Sebungwe associate with areas of high vegetation density and variability to 
maximise their chances of finding food and shelter (Guy 1976b).  
However, the fact that this relationship either saturates or even decrease at 
high intensity values imply that as the variability in vegetation cover 
increases beyond a certain level, it either no longer has an effect on 
elephant presence or it even results in a negative trend (fig. 7. 8b) just like 
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in the species richness-productivity relationship (Said 2003).  But it may as 
well be partly due to the related influence of the dominant scale of spatial 
heterogeneity, i.e., the patch dimension at which the intensity is manifested 
because the quadratic elephant presence-dominant scale relationship 
indicated that elephants prefer intermediate dominant scales of spatial 
heterogeneity but avoid relatively small and relatively large dominant 
scales of spatial heterogeneity (fig. 7.8a).  
 Furthermore, this study demonstrated that a comprehensive 
understanding of the elephant presence-spatial heterogeneity relationship 
could only be satisfactorily enhanced if both intensity and dominant scale 
are used in the analysis (see Chapter 1).  In this regard, the results showed 
that the peak probability of elephant presence is defined by high intensity 
(high variability in vegetation cover) that occur at intermediate dominant 
scales of spatial heterogeneity (i.e., around 480 m) that reflect 
environments characterised by intermediate patch dimensions of natural 
vegetation and fewer agricultural fields (fig. 7.5 and 7.10).  In contrast, 
lower probabilities of elephant presence are associated with:  
(1) environments with low intensity (low variability in vegetation cover) 
that occur at large dominant scales of spatial heterogeneity (descending 
limb of the unimodal curve), and (2) environments that have small 
dominant scales of spatial heterogeneity (ascending limb of the unimodal 
curve) (fig. 7.9).  The former coincides with environments that are 
dominated by grasslands and agricultural fields (fig. 7.5 and fig. 7.9) while 
the latter coincides with environments dominated by small patches, 
suggesting (as mentioned earlier) that elephants avoid environments that 
are largely open (grasslands and agricultural fields) and environments that 
are dominated by small vegetation patches respectively.  
 The determination of wildlife species-specific thresholds of the 
spatial distribution of habitats is critical for the effective management of 
wildlife species but the perpetual and troubling question has always been 
whether these thresholds can be ecologically relevant (Jansson 2002).  
Given the prominence of the community based wildlife management 
programmes, such as CAMPFIRE, whose existence is rooted in the 
sustainable utilisation paradigm (Hulme and Murphree 2001), we feel that 
our findings are ecologically relevant by giving an indication of the kind of 
optimum or threshold environment that may encourage human-elephant 
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coexistence, namely high intensity (i.e., high variability) in vegetation 
cover at intermediate dominant scales of spatial heterogeneity (i.e., around 
480 m), as well as environments that elephants tend to avoid (fig.7.9).   

Changes in spatial heterogeneity and the probability of elephant presence 
Our findings demonstrated that the changes in elephant presence between 
the early 1980s and the early 1990s were unimodally related to changes in 
spatial heterogeneity, suggesting that elephants are repulsed by extreme 
changes of spatial heterogeneity while intermediate changes of spatial 
heterogeneity may encourage elephant persistence in the landscape.  In 
fact, the results demonstrated that elephants relocate when an increase or 
decrease in the intensity of spatial heterogeneity occurs together with a 
decrease in dominant scale of spatial heterogeneity, or a decrease in 
intensity occurs together with an increase in the dominant scale of spatial 
heterogeneity.  This suggests that elephants avoid areas that are 
increasingly being dominated by either: (1) small patches irrespective of 
the level of the intensity or maximum variability in vegetation cover or  
(2) large patches with a predominantly low intensity or maximum 
variability in vegetation cover, e.g., grasslands or agricultural fields. In 
contrast, elephant presence increased or remained constant with 
intermediate increases or no change in both intensity and the dominant 
scale of spatial heterogeneity, suggesting that elephants prefer 
environments that remain unchanged in terms of the levels of spatial 
heterogeneity.  Consequently, we deduce that a combined change in the 
intensity and dominant scale of spatial heterogeneity had a significant 
effect on the probability of elephant presence in the communal lands of the 
Sebungwe region between the 1980s and 1990s. 

7.5 Conclusions 

We tested whether and how elephants were related to the wavelet 
transform derived-intensity and dominant scale of spatial heterogeneity.  
We also tested whether and how changes in elephant presence were related 
to changes in the intensity and the dominant scale of spatial heterogeneity 
across different sampling units in the study area between the early 1980s 
and the early 1990s.  Therefore, some conclusions and management 
recommendations were drawn from the results.  Firstly, we concluded that 
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the wavelet transform-based intensity and dominant scale of spatial 
heterogeneity could reliably and consistently predict elephant distribution 
in an agricultural landscape.  Secondly, we concluded that changes in the 
intensity and dominant scale of spatial heterogeneity could also reliably 
predict changes in elephant distribution.  Furthermore, we could 
recommend from the results that management decisions must take into 
consideration the factor of spatial heterogeneity when planning the amount 
and spatial arrangements of agricultural fields that could enhance wildlife 
species persistence for the benefit of CAMPFIRE.  Finally, we assert that 
considering the dominant scale and intensity factors improves the 
characterisation of spatial heterogeneity from remote sensing that can be 
useful in predicting other ecological patterns such as the distribution of 
different wildlife species. 
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Chapter 8
A synthesis: Spatial heterogeneity and the 
persistence of wildlife in an agricultural 
landscape 

8.1 Introduction 

The sustenance of the community based natural resource management 
(CBNRM) programmes such as the Communal Areas Management 
Programme For Indigenous Resources (CAMPFIRE) in Zimbabwe (Hoare 
and Du Toit 1999, Hulme and Murphree 2001, Logan and Moseley 2002) 
will depend on the understanding of factors that promote the persistence of 
wildlife species outside of the national parks, i.e. in communally managed 
agricultural landscapes, or in landscapes that are used for other purposes 
such as pastoralism, timber production or mining.  This is in the light of the 
assertion that wildlife conservation is best served by converting wildlife 
into an economic asset (Child 2000).  However, agricultural landscapes 
provide unique environments where agricultural fields subdivide a 
continuous habitat into discontinuous habitat patches of different quality 
and spatial arrangements.  In other words, agricultural activity results in a 
landscape that is uniquely spatially heterogeneous (patchy).  In this 
situation, the critical question for ecologists and wildlife managers 
responsible for the CAMPFIRE will always be: in what kind of non-
protected agricultural landscapes can wildlife species persist or thrive?  
This question can only be satisfactorily answered on the premise that the 
spatial distribution of organisms is a response to the spatial heterogeneity 
that reflect, for instance, varying levels of resource availability or varying 
levels of human disturbance (Johnson, et al. 1992).  To this end, spatial 
heterogeneity needs to be characterised in a way that is ecologically 
relevant to the species under consideration (Gustafson 1998) and in this 
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regard, remote sensing provides an important source of spatial data.  
However, approaches and associated techniques to quantify spatial 
heterogeneity for predicting different ecological patterns remain 
rudimentary (Ettema and Wardle 2002).  
 In this thesis, the objectives were: (1) to develop a new approach 
to quantify spatial heterogeneity from remote sensing imagery, based on 
the intensity and the dominant scale approach, and (2) to investigate 
whether this new approach can be used to reliably predict the probability of 
elephant (Loxodonta africana) presence in the agricultural areas of the 
Sebungwe between 1983 and 1995.  The general motivation of this thesis 
was that: the maintenance of wildlife species in agricultural landscapes 
could depend on an understanding of the levels of spatial heterogeneity at 
which specific wildlife species can persist.  Also, the scientific community 
has realised that current approaches used to characterise spatial 
heterogeneity for the purposes of predicting ecological patterns such as 
wildlife distribution largely remain underdeveloped.  This thesis fits within 
the context of a wider scientific debate about the role of scale in 
understanding ecological patterns (Turner 1989, Wiens 1989, Levin 1992), 
as well as falling within the context of a wider societal debate, especially in 
Southern Africa that aims to attain a mutually beneficial human-wildlife 
co-existence in increasingly agricultural landscapes such as the Sebungwe.  

8.2 Spatial heterogeneity from the intensity and dominant 
scale perspective 

The objective and ecologically relevant quantification of spatial 
heterogeneity is a critical forerunner to testing spatial heterogeneity-related 
hypotheses (Perry, et al. 2002).  In this regard, the principal assertion in 
this thesis was that the success in understanding how spatial heterogeneity 
explains other ecological patterns relies on its objective characterisation 
(McGrigal and Cushman 2002).  
 The development of remote sensing has provided an invaluable 
source of spatial data to quantify spatial heterogeneity through the 
unparalleled capacity of remote sensing to provide spatial data at scales 
beyond our innate capacities or experience (Hay, et al. 2002).  However, 
the interpretation of spatial heterogeneity from remote sensing imagery for 
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ecological applications has largely remained within the constraints of our 
anthropocentric focus (Burnett and Blaschke, 2003).  Specifically, 
researchers have traditionally quantified spatial heterogeneity from remote 
sensing images using two basic approaches: (a) the direct image approach, 
where straight reflectance or reflectance indices of remote sensing images 
are used to quantify spatial heterogeneity (e.g., based on the variance 
measure), using the original pixel size or grain of the image (Goodchild 
and Quattrochi. 1997); and (b) the cartographic or patch mosaic approach, 
where the image is subdivided into homogeneous mapping units through 
classification prior to determining the spatial heterogeneity (Gustafson 
1998).  The limitation of the former is that its choice of scale (window 
size) is arbitrary while the latter is based on arbitrary criteria for the 
delineation of patches, forcing boundaries where they do not always exist.  
In addition, the direct image approach emphasises variability at the 
expense of patch size in the image while the patch mosaic model (Pearson 
2002) emphasises the patch size at the expense of variability within and 
between the patches.  However, in reality, both variability and patch size 
characterise the landscape inseparably.  Therefore, the way traditional 
approaches characterise spatial heterogeneity may have limited relevance 
in analysing other ecological patterns such as the distribution of organisms 
in the landscape because they either predefine the scale of observation or 
the range of intensity within patch classes, often using subjective rules.  In 
addition, the scale of any (semi-) natural environment varies in space and 
the variance of an environmental variable also changes in space.  
Furthermore, it is important to note that different organisms may perceive 
spatial heterogeneity differently (Hostetler 1999).  Therefore, the need for 
a measure of spatial heterogeneity that is objective, spatially adaptive and 
incorporates both scale and local variance is critical.  
 In this thesis, we developed a new approach to quantify spatial 
heterogeneity based on the intensity (i.e., the maximum variance exhibited 
when a spatially distributed landscape property such as vegetation cover is 
measured with a successively increasing window size or scale) and the 
dominant scale (i.e., the scale or window size at which the intensity is 
displayed).  The core of this new approach is that when the landscape is 
observed (using either remote sensing or biological vision) the dominant 
scale(s) of spatial heterogeneity that correspond to significant landscape 
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features (e.g., patches of different tree canopy cover) in the landscape lie 
somewhere between the grain (initial observation scale) and the extent (the 
range over which observations at a particular grain are made) (Chapter 1, 
Chapter 2 and Chapter 3).  Conceptually, this means that patches in the 
landscape that are expressed through the dominant scale of spatial 
heterogeneity are independent objects (not necessarily having sharp 
boundaries) that can be resolved only when the grain is smaller and the 
extent is larger than them.  The consequence of this assertion is that we can 
conceptualise spatial heterogeneity as a natural expression of the 
landscape, i.e., it is expressed through ecologically meaningful features 
(see fig.1.1 in Chapter 1).  By applying this new measure of spatial 
heterogeneity that uses the intensity and the dominant scale as inseparable 
properties of spatial heterogeneity, we are able to incorporate both the 
variability of vegetation cover that is emphasized by variance measure of 
the direct image approach, as well as the patch size that the patch mosaic 
approach emphasizes.  Thus, we deduced that quantifying spatial 
heterogeneity using the intensity and dominant scale is invaluable since it 
incorporates characteristics of both the direct image approach and the patch 
mosaic approach.  
 A key finding in this thesis is that we can use variograms and 
wavelets to quantify spatial heterogeneity based on the intensity and 
dominant scale, in a way that excludes the a priori determination of the 
scale at which spatial heterogeneity is analysed such as being done when 
analysing spatial heterogeneity at a fixed grain in the direct image 
approach (Chapter 2).  However, unlike variograms that can only 
characterise the largest dominant scale of spatial heterogeneity, we see that 
the localised nature of wavelets enable them to characterise more than a 
single intensity and dominant scale of spatial heterogeneity (Chapter 2).  
Furthermore, we could use wavelets to extract the features at different 
scales (Chapter 2 and Chapter 3).  To this end, we also found that we can 
characterise temporal changes in spatial heterogeneity within the 
framework the intensity and dominant scale approach (Chapter 3).  

8.3 Elephant presence relates well with spatial heterogeneity  

In this thesis, we found that the results (Chapter 5, Chapter 6 and  
Chapter 7) largely confirmed the hypothesis, as stated in Chapter 1  
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(fig. 8.1c), that the probability of elephant presence yields a unimodal and 
a positive asymptotic response to the dominant scale and the intensity of 
spatial heterogeneity respectively, plus their interaction.  The unimodal 
component of the model with regards to the dominant scale of spatial 
heterogeneity (fig. 8.1a) is a result of small patch sizes “repelling” 
elephants due to inadequate cover against human disturbance while at 
larger dominant scales, the enlarged hostile patches “repel” elephants.  The 
latter patches can be, for instance, agricultural fields.  In addition, the 
hypothesised positive asymptotic response of elephant presence to the 
intensity of spatial heterogeneity is because at high variability of 
vegetation cover, the chances of the elephant to find food and shelter 
increase, but as the variability becomes increasingly higher, it tends to 
have no effect on the elephant presence (fig. 8.3b).  
 It is apparent that the hypothesised relationship between the 
probability of elephant presence and spatial heterogeneity was largely 
confirmed; independent of whether variograms (Chapter 6) and wavelets 
(Chapter 7) were used to quantify spatial heterogeneity.  Nevertheless, 
wavelets yielded better predictions (fig. 8.2), confirming that wavelets 
quantify spatial heterogeneity better owing to their localised nature 
compared with variograms that are global functions (Dale and Mah. 1998).  
However, the descending limb of the hump-shaped relationship with 
respect to the dominant scale is pronounced, suggesting the domination of 
the landscape by intermediate to large dominant scales of spatial 
heterogeneity. 
 We also see that the parts of the empirical model in fig. 8.2 
correspond to the hypothetical parts in the model in fig. 8.1.  For example, 
part E has a peak probability of elephant presence that corresponds to an 
environment with an intermediate dominant scale of spatial heterogeneity 
and a high intensity of spatial heterogeneity (i.e., an optimal environment 
for elephants).  In contrast, part C has the lowest probability of elephant 
presence that corresponds to an environment with a large dominant scale of 
spatial heterogeneity and low intensity of spatial heterogeneity (i.e., a sub-
optimal environment for elephants).  It is however, important to note that 
the explanation given above about the pronounced descending limb 
phenomenon of the empirical model has to be treated with caution since 
the absence of the full range model in this case could also be a result of the 
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dyadic nature of wavelets that lumps dominant scales of spatial 
heterogeneity into a range rather than a precise value, as is the case with 
variograms (Chapter 2), especially in 1980s (see Chapter 6 for the 1980s 
relationship when spatial heterogeneity was quantified using variograms). 
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Figure 8.1: Hypothetical relationship: between elephant presence and: (a) the dominant scale of 
spatial heterogeneity, (b) the intensity of spatial heterogeneity, plus (c) both the dominant scale and 
intensity of spatial heterogeneity.  The bars in (a) with gray levels representing woody cover in 
indicate variations in the dominant scale of spatial heterogeneity in different parts of the landscape, 
i.e., from (A) small a dominant scale of spatial heterogeneity, (B) medium dominant scale of spatial 
heterogeneity, to a large dominant scale of spatial heterogeneity (C).  The bars in (b) represent the 
same dominant scale of spatial heterogeneity with increasing levels of intensity, from (D) low,  
(E) medium to (F) high. 

 Moreover, in this thesis we demonstrated that spatial 
heterogeneity quantified using the intensity and dominant scale approach 
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explained more variance in the probability of elephant presence than the 
proportion of agricultural fields following the eradication of tsetse  
(Chapter 4).  The effect of arable field cover on the probability of elephant 
presence was not consistent over time.  For example, when the field cover 
was low in the early 1980s, i.e., 0 % - 11 %, we found no significant effect 
of arable fields on elephant presence (Chapter 4).  A negative relationship 
only emerged when the amount of arable fields increased beyond this 
range (i.e., when it became 0 % - 88%) during the 1990s (Chapter 4).  In 
contrast, the intensity and dominant scale of spatial heterogeneity 
consistently explained the probability of elephant presence between the 
early 1980s and  the early 1990s, suggesting that, with this approach, we 
can improve the understanding of ecological patterns such as the spatial 
distribution of elephants. 
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Figure 8.2: Significant (p < 0.05) relationships between the probability of elephant presence and (a) 
wavelet transform quantified spatial heterogeneity in the Sebungwe during the 1980s and 1990s.  
The labels C and E, are an example showing the parts of the model that correspond to the 
hypothetical case in fig. 8.1.  The graph surface represents relatively increasing probability of 
elephant presence from green (lowest probability) to deep red (the highest probability of elephant 
presence).  
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 In this thesis, we also found that the intensity and dominant scale 
approach to quantify spatial heterogeneity improves upon the usual direct 
image approaches in predicting ecological patterns (Chapter 5).  The 
results of an investigation on whether spatial heterogeneity quantified from 
the intensity and dominant scale approach using both variograms and 
wavelets can predict elephant distribution better than the usual NDVI 
average and the NDVI coefficient of variation that assume a constant pixel 
size or uniform scale (Chapter 5), strongly indicated that the new approach 
predicted the probability of elephant presence better than the usual NDVI 
average and the NDVI coefficient of variation.  Specifically, the wavelet 
and variogram-derived spatial heterogeneity explained 80 % and 65 % of 
the variance in the probability of elephant presence respectively, compared 
with 60 % and 48 % explained by the NDVI average and the NDVI 
coefficient of variation.  This meant that the new approach improves the 
understanding of the spatial distribution of wildlife species.  

8.4 Elephant redistribution relates to changes in spatial 
heterogeneity  

We found that changes in the probability of elephant presence between 
1980s and 1990s could be reliably explained by the changes in the intensity 
and dominant scale of spatial heterogeneity in the agricultural areas 
(Chapter 6 and Chapter 7).  For example, we found that although the nature 
of the relationship between the probability of elephant presence and spatial 
heterogeneity was consistent between the 1980s and the 1990s, there was a 
shift in the dominant scale of spatial heterogeneity at which the peak 
probability of elephant presence occurred between the two periods  
(fig. 8.3).  For instance, in the 1980s, the peak probability of elephant 
presence in the landscape occurred at the dominant scale of spatial 
heterogeneity equal to 734 m, whereas in the 1990s, the peak had shifted 
down to 457 m.  We attributed this phenomenon to the increasing levels of 
agricultural activity, whereby during the 1980s when there was quasi- 
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Figure 8.3: The regression models of the relationship between the probability of elephant presence 
and dominant scale of spatial heterogeneity in the (a) early 1980s and the (b) early 1990s extracted 
from fig. 6.8 (Chapter 6) to illustrate the effect of changes in the dominant scale of spatial 
heterogeneity on the probability of elephant presence (i.e., illustrated by the gap) due to increased 
agricultural activity between the two periods.  Also illustrated is the upper limit (734 m) and lower 
limit (457 m) of that may define the “optimal range” of spatial heterogeneity determined from the 
distance between the peaks of elephant presence in the 1980s and 1990s models.   

intensive agricultural activity; elephants could roam “freely” across the 
hostile patches, e.g., agricultural fields, but given the intensive agricultural 
activity in the 1990s, the peak probability of elephant presence shifted 
downwards to 457 m, suggesting that elephants could only “tolerate” 
relatively smaller dimensions of hostile patches.  Thus, we deduced that 
the 457 m - 734 m range could constitute the “optimal range” of the 
dominant scale of spatial heterogeneity, whereby the lower limit (457 m) 
of the “optimal range” represents the level of spatial heterogeneity that 
elephants “do not mind” in agriculture-dominated environmental 
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conditions while the upper limit of the range (734 m) represents the level 
of spatial heterogeneity at which elephants “thrive” in natural vegetation-
dominated environmental conditions.  Therefore, we could hypothesise that 
if dominant scale of spatial heterogeneity continues to drop below the 
lower limit (i.e., 457 m), regardless of the level of intensity, elephants 
could increasingly disappear from the agricultural landscape of the 
Sebungwe.   
 Moreover, we found that the probability of elephant presence 
dropped more sharply with increasing dominant scales of spatial 
heterogeneity in the 1990s compared with the 1980s (fig. 8.3), thereby 
further confirming the initial hypothesis that changes in the levels of 
spatial heterogeneity resulting from increased agricultural activity, had a 
strong bearing on the redistribution of elephants.  Specifically, the quasi-
intensive nature of agricultural activity in the 1980s supported a freer 
movement of elephants in the landscape.  In contrast, in the 1990s 
elephants could not roam as freely compared with the 1980s due to the 
intensified agricultural activities.  Therefore, although the unimodal nature 
of the relationship between the probability of elephant presence and the 
dominant scale of spatial heterogeneity did not change over time (i.e., in 
the 1980s and the 1990s), the increased levels of agricultural activity 
accelerated the rate of decrease in the probability of elephant presence with 
the increasing dominant scale of spatial heterogeneity in the 1990s.  
Therefore, we can hypothesise that if agricultural activity increases 
unchecked beyond the 1990s levels, the “gap” will become larger as the 
elephants increasingly disappear from those parts of the agricultural 
landscape where agricultural activity is increasing. 
 We further showed in this thesis that absolute changes in the in 
the probability of elephant presence between the early 1980s and the early 
1990s were significantly explained by the absolute changes in the levels of 
spatial heterogeneity (fig. 8.4).  Specifically, the hump-shape of the 
relationship between the absolute changes in the probability of elephant 
presence and the absolute changes in the intensity and dominant scale of 
spatial heterogeneity suggest that elephants relocate from environments 
that are increasingly being dominated by either: (1) relatively small 
dominant scales of spatial heterogeneity, or (2) or relatively very large  
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Figure 8.4: Significant (p < 0.05) relationships between change in the probability of elephant 
presence and changes in the wavelet transform-quantified spatial heterogeneity between the 1980s 
and 1990s.  On all axes, positive values indicate an increase, negative (-) indicate a decrease and 
zero (0) indicates no change.  The green on the graph surface represents a greater decrease in the 
probability of elephant presence and deep red represents an increase in the probability of elephant 
presence.  

dominant scales of spatial heterogeneity that are associated with a low 
intensity of spatial heterogeneity.  In contrast, the probability of elephant 
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presence increased or remained constant in environments where both 
intensity of spatial heterogeneity and the dominant scale of spatial 
heterogeneity remained the same.  Therefore, it could be concluded that 
dynamics in the intensity and dominant scale of spatial heterogeneity over 
time have a significant effect on the persistence of elephants in the 
agricultural landscape.  This further confirms the relevance of the 
dominant scale and intensity of spatial heterogeneity in predicting the 
probability of elephant presence. 

8.5 A summary of the findings  

 In this thesis, we developed a new approach to the definition and 
quantification of spatial heterogeneity based on dominant scale and 
intensity.  We proposed two techniques to quantify spatial heterogeneity 
based on dominant scale and intensity, i.e. the windowed variogram and a 
wavelet transform.  Finally, we established through statistical tests that the 
probability of elephant presence in the landscape is a function of dominant 
scale and intensity of spatial heterogeneity.  A number of conclusions were 
drawn.  Firstly, we observed that variograms, and particularly wavelets 
proved to be invaluable tools for quantifying spatial heterogeneity from a 
dominant scale and intensity perspective, thus making hypothesis 
regarding the effect of dominant scale and intensity of spatial heterogeneity 
on ecological patterns (in this case elephant distribution) testable.  
Secondly, we concluded that, intensity being high, the intermediate 
dominant scales of spatial heterogeneity may be the “optimal or threshold 
landscape environment” at which elephant persistence can be ensured in 
the agricultural landscape and below and above which elephant persistence 
in the Sebungwe agricultural landscapes may be threatened.  Thirdly, we 
recommend that in order to be able to conserve wildlife outside the 
national parks, land use planning should take into consideration optimum 
levels of spatial heterogeneity, i.e. dominant scale and intensity that are 
optimal for specific wildlife species.  We also recommend that further 
research should concentrate on testing whether dominant scale thresholds 
of spatial heterogeneity can be detected for elephants in agricultural 
landscapes elsewhere, as well as for different wildlife species for the 
purpose of promoting CBNRM programmes such as the CAMPFIRE.  
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8.6 Spatial heterogeneity and wildlife-human coexistence  

What emanates from this thesis is the notion that spatial theories and 
models in ecology need to include realistic assumptions about the spatial 
heterogeneity of ecological phenomena in order to improve an 
understanding of the determinants of species distribution and species 
persistence in human dominated landscapes (Legendre 1998, Sparrow 
1999).  The ultimate goal is to enhance the chances of human-wildlife 
coexistence.  The hypothesis on which this has to be based is that each 
wildlife species has a specific range of optimal dominant scales of spatial 
heterogeneity, at which it can persist in the landscape, and that human 
decisions that impact the landscape at different dominant scales would 
affect different wildlife species (Hostetler and Knowles-Yanez 2003).  This 
could be an appropriate area for future research.  
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