INSTITUUT VOOR BIOLOGISCH EN SCHEIKUNDIG ONDERZOEK
 VAN LANDBOUWGEWASSEN
 WAGENINGEN

MEDEDELING
Landbouwhogeschool
91 THEORETISCHE TEELTKUNDE De Dreyen 3
Wageningen

POTENTIAL PHOTOSYNTHESIS
 OF CROP SURFACES

C. T. DE WIT

Potential photosynthesis of crop surfaces

C. T. DE WIT
Institute for Biological and Chemical Research on Field Crops and Herbage, Wageningen, Holland

POTENTIAL PHOTOSYNTHESIS OF CROP SURFACES')

C. T. DE WIT
Institute for Biological and Chemical Research on Field Crops and Herbage, Wageningen, Holland

Sumuaby

A formula is arrived at for the calculation of the photesynthesis of a closed crop surface, it being assumed that the hases of a crop surface are arranged without any preference as to direction. and that the photossuthesis curve of single leaves may be represented by a simple "Blarkana" curve.

The comrse of photosynthesis during the day is calcolated be means of this formula. The potential photocynthesis of a crop surface in the Netherlands appears to vary from about 290 kg CH:O ha ${ }^{-1}$ day ${ }^{-1}$ in Jume to about 50 kg ha-1 day ${ }^{-1}$ in December.

Actual photosynthesis is lower because dissimilation has to be subtracted a closed crop surface assimilating at its lull leaf capacity is not obtained in many cases, translocation of sugars may be a limiting factor, and the carton dioxide content of the atmosphere may be less than the nommal 0.03 .

Introduction

The relation between the photosynthesis rate of leaves and the light intensity at normal carbon dioxide concentrations of the air $(0.0, \%)$ has been determined by several investigators (Thonas and Hal, 1950); Boehnig and Burnside, 1956; Gaastra, 1958). The present author (de $W_{\text {IT }}$, 1958) has collected evidence to show that within the nomal temperature range this relation is largely unaffected by temperature and is substantially the same for several agricultural crops. The photosynthesis of a crop surface depends not only on the photosynthesis curve of the leaves but also on the position of the leaves with respect to the direction of the incident light, the direct and diffuse light intensity, the mutual shading of the leaves, the soil coverage and the carbon dioxide content of the atmosphere.

- When estimating the photosynthesis of crop surfaces it is sometimes assumed that such a surface consists of several layers of horizontally arranged leaves, or that the light of the sum is evenly distributed over the foliage of the crop surface (Gastra, 1958). The photosynthesis of crop surfaces is underestimated in the first and overestimated in the second case.

The present author based certain calculations on the hypothesis that the leaves of a crop surface are so arranged that there is no preference as to direction. Some results of these calculations were given in a previous paper (De $W_{\text {IT }}, 1958$). Makkink (1959 , in press) compared these results of calculations with actual yield data and showed that the present method was a good basis for comparing vield data. The basic hypothesis, mathematical treatment and some results relating to the Netherlands are given here.

The photosynthesis curve

The relation between the photosynthesis rate of a sugar beet leat and the incident light intensity as determined by Gaastra (1958) is shown by, curve a

[^0]
 A: Sugar beet leaves Gustma, 1958).
B: Average for haves of castor bean, smonflower solb, am, fomato, tobace cotton and bean (Boenvic and Buraside, 1956).
in figure 1 A . The photosynthesis rate is expressed ing CHI. $\left(\mathrm{om}^{-2} \mathrm{sec}^{-1}\right.$ and the light intensity in $\mathrm{crg}_{\mathrm{g}} \mathrm{cm}^{-2} \sec ^{-1}$ within the range $f(0)-\overline{\mathrm{i}}(0) \mathrm{m} \mathrm{m}^{\prime}$. The average relation between the photosynhesis rate of seven agriculturad and horticultural crops and the incident light intensity of Mazda clectric flood lamps as determined by Bothnig and Bunswe: (1956) is shown by curse a in figure 1 B The photosynthesis rate is again expressed in g (H.OO $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ and the light intensity in foot-candles; an anxiliary scale gives the estimated light intensity in erg $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$. The photosynthesis rates in figure 1 B are corrected for dissimilation which was found to be about 158 of the saturation value. The original article showed that the photosynthesis of the individual species does not differ by more than 15% of the saturation value on either side of the average curve.

Gaastia's data are also smoothed in figure 1.4 by the expressly simplitied curve b (a Blackan curve) consisting of two straight lines: the same curve is shown in figme l B in order to demonstrate that the photosynthesis as determined by Gassma on ome hand and Bomavis and Buriside on the other do not greatly differ.

The saturation rate is found to be $4.7 \cdot 10^{-8} \mathrm{~g}\left(1 H_{2}\right) \mathrm{cm}^{-2} \mathrm{sec}^{-1}$ and is reached at an incident light intensity of $8.5 \cdot 10^{4}$ erg $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ or all absorbe 1 light intensity of abont $7 \cdot 10^{4}$ erg $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$. Hence inside the range in which light is a limiting factor $\frac{4.7 \cdot 10^{-8}}{7 \cdot 10^{4}}=6.7 \cdot 10^{-13} \mathrm{~g}$ (H) O) is formed from rach arg absorbed by the leaf inside the range 400 - -000 m.

The above simplified relation botween photosynthesis and light intensity is used in this paper as a standard photosynthesis umve of heaves. It is appreciated that there are plant species, e.g. "shade plants". for which the photosynthesis come differs so greatly from this standard curve that any momerical
calculations based thereon are of no value. The mathematical treatment is, however, presented in such a way that similar calculations can be made using other curves as a basis.

Estinating potentital photosisties is

Besides the photosynthesis curve of single leaves, the photosynthesis of crop surfaces depends on the position of the leaves with respect to the horizontal surface the position of the smm the amount of cloud and the carbon dioxide content of the atmosphere.

Assuming the photosyuthesis curve of single leaves to be as in figure 1 , curve b, it is possible to estimate the portion of incoming light which is neither reflected nor absorbed by leaves already at their saturation light intensity. This portion is represented by the symbol \dot{r} and expressed in erg $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$. To obtain the potential assimilation rate in ${ }^{\circ} \mathrm{CH}, \mathrm{O} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$ of a closed crop surface, represented by the symbol a_{p}, the value of r in $\mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$ should be multiptied by the value $6.7 \cdot 10^{-13}$ g (H_{2} () erg^{-1}, i.e. the gradient of the straight line through the origin in figure 1 .

Actual assimilation is always lower than this potential assimilation because dissimilation has to be smbtracted. Moreover, mider lield conditions a part of the light may be absorbed by the bare soil or by leaves which owing to water shortage, low mineral level, subnormal carbon dioxide concentrations. age, etc. are unable to assimilate at their normal rate.

The intensity of the direct sunlight. diffuse skylight and the sum of both are denoted by the symbols $h_{\text {, }}, h_{i}$ and h respectively. These values are again expressed in erg $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$; only the light energy inside the range $400-700 \mathrm{~m}, 1$ is considered. The values of $h_{\text {, }}, h_{d}, h, r$ and a_{p} integrated over the whole day are denoted by the capitals ! $, H_{d}, H, R$, and A_{i} and expressed in erg cm^{-2} day ${ }^{-1}$, respectively $\mathrm{kg} \mathrm{CH}_{2} \mathrm{O}$ ha ${ }^{-1}$ day ${ }^{-1}$.

In order to simplify the calculations required for estimating r the following assumptions are made:
a A saturation value h, exists of the absorbed light intensity. Below this value assimilation is assumed to be proportionate to the absorbed light intensity and above this valuc independent of the light intensity (figure 1 , curve b).
b The reflection coefficient (0) and the transmission coefficient (7) of the leaves are independent of the direction of the incoming light. In subsequent calculations both are assumed to be equal to 0.1 (cf. Moss and Loonis, 1952).
c. There is no preferred direction in the arrangement of the leaves. This hypothesis is possibly not very wide of the mark. considering the constantly changing position of the sun and leaf fluttering due to wind. At any rate it is a great improvement on the hypothesis that a crop surface consists of horizontally arranged leaves, or that the light is evenly distributed over the whole leaf surface.
d The crop surface is so dense that only a negligible amount of light reaches the soil. This is the definition of a closed crop surface used in this paper.
At first it is also assmmed that there is only direct light from the sun, i.e. that $h_{d}=0$. Let $h_{,}$be the light intensity from the sun measured at
right-angles to the rays of the sun, β the height of the sun above the horizon, O the leaf surface per unit soil surface directly exposed to the rays of the sum, and a the angle between a particular leaf and the rays of the sun.

The projection of O in the direction of the rays of the sun is then

$$
\int_{0}^{\pi / 2} O \quad \sin u d u=\begin{gathered}
\pi / 2
\end{gathered}
$$

and on the other hand equal to the projection of the unit soil surface in the direction of the rats of the sum, or $\sin \beta$ times the unit soil, surface, so that

$$
O=\frac{7}{2} \sin \beta
$$

Hence the surface of the directly exposed leaves making an angle of between $"$ and $"+d \|$ with the ravs the sun is $\sin \beta d u$ and the projection of this surface in the direction of the rays of the $\sin \sin \beta \sin$ ad $\%$

$$
\text { Leaves for which " is between } \tau / 2 \text { and arcsin } \frac{h_{l}}{(1-o-\tau) h^{(p}}=\arcsin s^{\prime}
$$

$$
\text { (with } s^{\prime}=\frac{h}{(1-!-r) h,} \quad \text { are saturated with light. The portion of light }
$$

absorbed by these leaves is

$$
\begin{equation*}
(1-\because-r) h^{\prime} \int_{a=\arcsin s^{\prime}}^{7 / 2} \sin , \quad(1-\varrho-\tau) h_{n}^{\prime \prime} \sin \beta \mid 1-s^{\prime} 2 \tag{1}
\end{equation*}
$$

The portion of this light contributing to assimilation is

The portion of light absorbed by these saturated leaves but not contributing to assimilation is the difference between (2) and (1).

Apart from reflection, all other radiation is either absorbed by leaves exposed to direct sunlight but not saturated with light, or by leaves in the
shade of other leaves. Since h, is about $7 \cdot 10^{4}, h, p$ not more than $46 \cdot 10^{4}$ erg $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ and the transmission coefficient (τ) below $7 / 46=0.15$ for the leaves of most plant species, these shaded leaves are never saturated with light.

The light intensity r^{\prime} contributing to assimilation is therefore

$$
\begin{align*}
& \left.r^{\prime}=(1-\varrho) h^{\prime \prime} \sin ;(1-0-r) h \sin \beta \left\lvert\, 1-s^{\prime} 2-h \sin \beta\left(\frac{7}{2}-\arcsin s^{\prime}\right)\right.\right\} \\
& \text { and since } h^{\prime \prime}=h_{s}, \text { and } h_{i}=(1-!-r) h_{i}^{\prime \prime} s^{\prime} \\
& \left.r^{\prime}=(1-\because) h,\left\{1-(1-r)\left[11-s^{\prime} 2-s^{\prime} \int_{2}^{7}-\arcsin s^{\prime}\right)\right]\right\} \tag{3}
\end{align*}
$$

$$
\text { with } \quad s^{\prime}=\begin{gathered}
h_{1} \sin \beta \\
(1-!-r) h
\end{gathered}
$$

The diffuse radiation is not taken into account in the above treatment. The intensity of diffuse skylight measured on a horizontal surface is below $7 \cdot 10^{4}$ erg $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ and except for reflection, this light contributes fully to assimilation under conditions in which direct light is absent.

The contribution of direct sunlight may now be superimposed on the contribution of diffuse skilight. The light intensity r contributing to assimilation in the presence of diffuse skylight is found to be with some approximation:

$$
\begin{aligned}
& r=(1-!)\left(h_{1}+h,\left\{1-(1-1)\left[11-s^{2}-s \frac{7}{2}-\arcsin s\right)\right\}_{!}^{!}\right. \\
& \quad \text { with } s=\begin{array}{l}
\left(h_{1}-\frac{2}{7}(1-0-r) h_{i}\right) \sin ; \\
(1-\varrho-r) h_{i} .
\end{array}
\end{aligned}
$$

The fraction $\frac{2}{7}, 1-(1-r) h_{d,}$ in s is due to the received ditfuse light; the factor $2 / 7$ is due to the assumption that the diffuse light is evenly distributed over a leaf surface which is equal to the surface visible from a vertical direction. The potential assimilation a_{r} in of $\mathrm{CH}_{2} \mathrm{O} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$ may now be calculated by multiplying the above value of r, expressed in erg $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ by the constant $6.7 \cdot 10^{-13} \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}$ erg${ }^{-1}$.

Potential photosinthesis on phbfectly chear days

Table 1 shows the light intensity of the sun on davs without donds and dust and with only 10 mm precipitable water in the atmosphere. The data are found by means of tables 137 and 149 of the Meteonologicat tables (1951), assuming 40% of the energy to be inside the range 400)-. 700 m .1 . The index

Table I Intensity of total (he) direct (h, and diffuse light h_{i} : inside the range 400) $700 \mathrm{~m} / \mathrm{m}^{\prime \prime}$ " pertectly dear day at different heights of the sun (;) degrees) and the vahu of r calculated from equation (4), wpressed in $10^{5} \mathrm{wgg} \mathrm{em}^{-2} \mathrm{sec}^{-1}$

j°	h_{C}	h.	h_{d}	r
10	0.70	0.39	0.31	0.45
20	1.42	1.06	0.36	0.70
30	2.16	1.74	0.42	0.92
10	2.86	2.39	0.47	1.12
50	3.48	2.95	0.53	1.26
60	3.97	3.41	0.56	1.37
70	1.34	3.76	0.58	1.46
80	1.53	3.92	0.61	1.48
90	4.58	3.97	0.61	1.48

c of h indicates that these values only apply to davs with perfectly dear skies. The fractions h, and h_{i} in the table are estimated by means of table s19 of the Puxsical tables (1956). Values of r, (o again denoting perfectly clear skies), calculated by means of formula (4) and the assumptions that
$h_{1}=7 \cdot 10^{4} \mathrm{erg} \mathrm{cm}{ }^{-2} \mathrm{sec}^{-1}, 0=0.1$ and $\tau=0.1$, are also given.
The values of h, and r during the course of the day on, for instance, lst June in latitude 52 N (the Netherlands) are estimated as follows. The height of the sun at each full hour is obtained from table 170 of the Mateorodogical tables (1951) or a similar nomogram. The values of h, and r, are then read from graphs with the height of the sun along the horizontal axis and h or r along the vertical axis (table $1 /$ and plotted against the time of the day as in tigure 2. In this figure the seales of h. and r. are such that the maximum noon values are the same.

It is found that there is 110 value of h bevond which r. does not increase with increasing h. Such a value camot exist becanse the portion of leaves of a plant cover exposed to direct sunlight increases with increasing height of the sum. In the case of single plants, the portion of leaves exposed to direct sumlight is much less dependent on the height of the sm. Hence the curve of r, against time of the dav is found to be much flatter for single plants than for crop covers. This striking difference was fom experimentally ict. de Wit, 1958).

Curves smilar to those in figure 2 were calcolated for the first of each month at latitude 52 and then mumerically integrated. The integrated values. H, and $R_{\text {a }}$, are expressed in erg cm² das ${ }^{-1}$.

The relation between H, and the time of the vear is shown in figure 3 . and that between R, and the time of the year in figure B B.anoth curves relate to perfectly clear days and therefore represent the maximum values to be found.
Reesinck and de Yries (1942) calculated from radation measurements the total daily radiation to be found on days on which the relative sunshine percentage, as measured by the Catpbell-Stones recorder, is 100 , percent. The maximum daily amount of light (Q) as calculated from their data is shown

 a IATHUDE 52°
() is the daty light total in the Notherlands provided the relatise stmobint percentage is 100 percent.
by the dotted curve in fignee 3 A and in the Vetherlands is fomal to be about 1.5 多 hower than the maximm to be expected on perfectly clear davs (mo dust. no transparent (louds. etc.).

The potential photosynthesis on a perfectly dear day in June is apparently
 $g^{-1}=370 \mathrm{~kg}\left(H_{2}\right)$ ha a^{-1} dat ${ }^{-1}$ and on a pertectly dear day in December 67 kg ha- day^{-1}.

The influeve: of chotids

To account for the effect of donds it is assmmed that where the daily total of light is reducest to $x H, x$ less than onte). H : (the ditfuse light) remains the same but direct light is redheed to $I I-(1-x) I I$. This is certainly not the case with orercast skies. but under such conditions the value of s in equation (4) is close to ouc and any assmoption will do.

By substituting actual valuse in equation (t) it is foum that irrespective of date and latitude befow 60 the relation between H and R is fairly well represented be curve a in figure f which shows the relation between il and k expressed as fractions of $l!$, and R. However. this estimate of R on cloudy days tends to he too high owing to the use of light intensity valnes integrated over one day or more.

Another assmmption is that periods of bright mmshine altermate with periods of overcast skies. During the hrigh periods the aromge light intensity is about 0.85 times the intensity with perfectly dear skies and during the periods with overcast skies abont $0.3 \quad 0.5 .5=0.25$ times the intensity with perfectly clear skies (cf. Rexsmak amf we Vmes (1942, for the momerical value 0.3). On this assumption the relation between $/ / / i^{-1}$ and $R R^{-1}$ is represented by the straight line b iuside the range 0.25 . $/ / 111^{-1}$ (0.85.

It will be readile menderstond that the admal relation between the relative values of H and k lies inside the range defined bo curves a and h it is assumed to be represented be the areate ionve o in lignere t.

The valur of R is mow calculated as follows. We can soe from ligime 31

Fig. 4 The relation between $I I$ and R, buth expressed as helative values with RESPECT TO $H_{\text {, }}$ AND $R_{\text {, }}$: (URIE c REPRESENTS THE BEST APPROXIMATION.
that on 21st June $H_{c}=14 \cdot 10^{9} \operatorname{erg} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$. The value of $H H_{c}^{-1}$ is 0.5 when the actual light total is $7 \cdot 10^{9}$ erg $\mathrm{cm}^{-2} \mathrm{dav}^{-1}$. We can now see from figure 4 that $R R_{c}{ }^{-1}$ is 0.78 , so that, when $R_{c}=5.5 \cdot 10^{9} \mathrm{erg} \mathrm{cm}^{-2}$ day ${ }^{-1}$ (figure 3 B$), R$ is tound to be $0.78 \times 5.5 \cdot 10^{9}=4.3 \cdot 10^{9} \mathrm{erg} \mathrm{cm}^{-2}$ da ${ }^{-1}$.

Tife arerage potential photosynihesis (A_{p}) in the Netherlanes
The daily light total, averaged over the years 1943-1953 (de Vries, 1955) is shown in the first column of table 2 . The average value of R calculated by means of these data and those in figures 3 and 4 are shown in the second column. The potential photosynthesis A, in the third column is calculated by multiplying the value of R by $6.7 \cdot 10^{-13} \mathrm{~g} \mathrm{CH}_{2} \mathrm{O} \operatorname{erg}^{-1}$. It was found that the average potential photosynthesis varied from $50 \mathrm{~kg} \mathrm{CH}_{2} \mathrm{O} \mathrm{hat}^{-1}$ day ${ }^{-1}$ in December to $290 \mathrm{~kg} \mathrm{ha}^{-1}$ day ${ }^{-1}$ in June.

Table 2 The daily light total (H) averaged over the years 1943-1953, the value of (R) and the potential photosynthesis $\left(A_{p}\right)$ in the Netherlands.

This potential photosynthesis is the photosynthesis which may be reached by a closed green crop cover with healthy leaves not short of water under such conditions that translocation of sugars is not a limiting factor and the
carhondioxyde concentration of the air is normal. Moreover, dissimilation should be subtracted in order to obtain the apparent photosynthesis. It was nevertheless found (Makкink, 1959 in press) that under favourable conditions actual photosynthesis is close to the potential photosynthesis as calculated in this paper.

The potential photosynthesis from April to September inclusive is 44.8 tons per hectare, so that subtracting 20 percent for dissimilation, the maximum possible production during this period is about 36 tons per hectare. This is much more than the maximum seasonal grass production of about 15 tons per hectare reached at present. The present maximum production is probably so much lower than potential production owing to water shortage, the fact that practical management methods do not ensure a closed green crop surface. throughout the season and the carbon dioxide concentration of the atmosphere may be lower than 0.03%. Field and greenhouse experiments are in progress in order to obtain yields which are as close as possible to potential production.

Potential photosynthesis is found to be appreciable higher in the spring than in the autumn. This agrees with the experience in greenhouses that plants grow much better in the spring than in the autumn.

Calculations similar to those given in this paper may be carried out for other latitudes and countries. A nomogram with values of H and R at different dates and latitudes has been published in another paper (ne $W_{\text {IT }}$ 1958). The values in this nomogram are expressed in cal cm^{-2} day $^{-1}$ and include infrared radiation. They should be multiplied by $1.67 \cdot 10^{7} \mathrm{erg} \mathrm{cal}^{-1}$ to obtain the light total in erg cm^{-2} day ${ }^{-1}$ inside the range $400-700$.1.

References

Boefngs, R. H. and C. A. Burvside: The effect of light intensity on apparent photosynthesis in leaves of sun and shade plants. Am. Journ. of Bot. 43 (1956) 557-561.
Gastra, P.: Light encrgy conversion in field crops in comparison with the photosynthetic efficiency under laboratory conditions. Med. Landb.hogesch. Wageningen 58 (1958) 1-12.
Makrink, G. F.: Potentiële ophrengst van grasland. Jaarboek I.B.S. 1959 (in press).
Met. tabies: Sinithsonian Meteorological Tables, prepared by R, J. List. 6th rev. ed., 1951, Washington.
Moss, R. A. and W. E. Looms: Absorption spectra of leases, I. The visible spectrum. Plant Phys. 27 (1952) 370-391.
Physical tables: Smithsonian Physical Tables, prepared by W. E. Forsythe. Oth mex. ed., 1956, Washington.
Reesinck, J. J. M. and D. A. de Vaies: De jaarlijkse en dagelijkse gang van het daglicht in Nederland. Med. Landb.hogesch. Wageningen 46 (1942) 1-24.
Thomas, M. D. and C. R. Hule: Photosynthesis under field conditions 1950) 19-52. In f. Franck and W. Loomis (editors): Photosynthesis in plants. Ames (Iowa).

Vries, D. A. de : Solar radiation at Wageningen. Med. Landb.hogesch. Wageningen 55 (1955) 277-304.

Wir, C. T. de: Transpiration and crop yiclds. Vers. Landb. Onderz. 64.6 11958) 88 p .

[^0]: 1) Received for publication Mard, 19, 1959.
