RICHTLIUNEN VOOR ONTWIKKELING VAN
COMPUTERPROGRAMMATUUR
IN DE HYDROLOGIE

COMMISSIE VOOR HYDROLOGISCH ONDERZOEK TNO
RAPPORTEN EN NOTA'S No. 27

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

CHECKLIST COMPUTERPROGRAMMATUUR IN DE HYDROLOGIE

ONTWIKKELMETHODIEKEN (hoofdstuk 2)

- Breng systematiek aan in het ontwikkeltraject.

- Sluit zoveel mogelijk fasen af met een rapportage voor derden.

- Gebruik zo mogelijk een standaardontwikkelmethodiek zoals SDM.

- Vooral: denk na v66r het ontwikkelen van programma’s en blijf na de ontwikkeling betrokken.

INTERNE STRUCTURERING (hoofdstuk 3)

- Splits de probleemstelling op in deelproblemen met duidelijk afgebakende taken.

- Kies voor één programma of een aantal afzonderlijke programma'’s.

- Kies een aantal niveaus voor de structuur.

- Bij het aanpassen van bestaande programma’s: weeg aansluiten bij bestaande structurering af tegen het
gebruiken van een betere structuur.

NAAMGEVING PROGRAMMA-ONDERDELEN (hoofdstuk 4)

- Vergroot de overzichtelijkheid van een programma door een logische verdeling in onderdelen.

- Geef waar mogelijk aan de onderdelen de namen die de taak van het onderdeel weerspiegelen.

= Als de structuur van het programma ingewikkeld is: voeg dan aan de naam een aanduiding toe van de
plaats (niveau) van de routine in het programma.

NAAMGEVING PROGRAMMAVARIABELEN (hoofdstuk 5)

- Besteed veel aandacht aan het bedenken van een goed werkbaar systeem.

- Vorm voor basisgrootheden stamnamen bestaande uit van 3 tot 5 letters. Reserveer voor veel
voorkomende algemene grootheden é&n of twee beginletters.

- Selecteer twee-letterige afkortingen voor veel voorkomende toevoegingen.

- Vermeld gebruikte conventies in programmahandleiding evenals complete lijst van stamnamen en
achtervoegsels.

DATABESTANDEN (hoofdstuk 6)
- Stel de volgende eisen aan databestanden:
* overzichtelijkheid;
* eenvoudig te herstructureren;
* waar relevant moet een bestand aangeboden kunnen worden aan een grafisch programma, ten
behoeve van grafische presentatie en visuele controle;
* de gegevens uit een bestand moeten in numerieke vorm leesbaar zijn (ASCll-bestand of speciaal
programma).
- Besteed aandacht aan de keuze tussen geformatteerde en ongeformatteerde files.
- Overweeg het gebruik van een database management systeem voor systematische opbouw en beheer
van bestanden.

LAY-OUT FORTRAN 77-BRONCODE (hoofdstuk 7)
- Ontwerp een consistent systeem voor lay-out van broncode.
- Wees consequent bij de implementatie van het gekozen lay-out systeem in de programmeerpraktijk.

FORTRAN 77-PROGRAMMEERASPECTEN (hoofdstuk 8)

- Maak binnen een programma iedere keer de afweging tussen duidelijkheid, foutengevoeligheid en
snelheid, waarbij duidelijkheid voorop staat (bijvoorbeeld impliciete/expliciete declaratie,
generieke/specifieke functies).

= Initialiseer alle gebruikte programmavariabelen.

- Gebruik het SAVE-statement voor lokale variabelen waarvan de waarde vastgehouden moet worden,
dan wel plaats de variabelen in een COMMON-BLOCK.

Checklist

Deel een programma op in subroutines en functions, waarbij als streefgrootte geldt maximaal 50 regels
aan statements.

FOUTENCONTROLE EN FOUTMELDINGEN (hoofdstuk 9)

Voer data overzichtelijk in en doe dit gestructureerd, dit voorkomt onnodige fouten.

Houd reeds bij de opzet van een programma(pakket) rekening met foutafhandeling.

Concentreer zo veel als mogelijk het invoeren van data, de foutencontrole wordt daardoor
vergemakkelijkt. :

Zorg voor een uitvoerige controle op fouten, zoals irreéle parameterwaarden en foutieve combinaties
van (invoer)parameters.

Foutmeldingen moeten niet alleen de aard van de fout aangeven maar, waar relevant ook een
verwijzing inhouden naar de oorzaak van de fout en de wijze waarop het probleem kan/moet worden
verholpen.

Zorg voor signalering van array-overschrijdingen.

Nummer of benoem anderszins systematisch de foutmeldingen, dit geeft de mogelijkheid om in een
gebruikershandleiding ruimere aandacht aan de foutafhandeling te besteden.

TESTEN PROGRAMMATUUR (hoofdstuk 10)

Stel een verzameling van testgevallen samen, waarbij (vaak aan de hand van invoer) rekening wordt
gehouden met zowel representatieve als extreme waarden.

Test alle onderdelen (modulen) tijdens de implementatie eerst afzonderlijk. Test vervolgens modulen
geintegreerd in subsystemen en uiteindelijk in het complete systeem.

Lees in iec'er geval zorgvuldig de code door en beproef het programma in teamverband met behulp
van testgegevens.

INTERNE DOCUMENTATIE IN COMPUTERCODE (hoofdstuk 11)

Voorzie elke routine van een kop van commentaar regels met algemene informatie.

Verduidelijk werking van het programma door commentaar regels tussen de broncode.

Scheid functionele onderdelen visueel van de broncode met behulp van regels met scheidingstekens

(* etc.) en/of lege regels.

Maak de documentatie direct bij aanvang van het programmeerwerk, niet achteraf. Het komt dan in de
verdrukking.

PROGRAMMAHANDLEIDING (hoofdstuk 12)

Ga bij de programmahandleiding uit van een globale, theoretische, technische en
gebruikersbeschrijving, en voeg een verslag van de modelevaluatie bij.

De globale programmabeschrijving moet de potentiéle gebruiker direct een idee geven over de
bruikbaarheid van de programmatuur.

De theoretische beschrijving beschrijft het rekenproces in wiskundige termen.

De technische beschrijving bevat een beschrijving van de programmastructuur, een vocabulaire van
variabelenamen, de hardware- en software-omgeving en een volledige programmacode.

De gebruikersbeschrijving bevat de invoerbeschrijving, de vitvoerbeschrijving en een lijst met
foutmeldingen en beschrijving ervan.

De programma-evaluatie doet wetenschappelijk verslag over de concrete prestaties van de
programmatuur aan de hand van case-studies.

RICHTLIJNEN VOOR ONTWIKKELING VAN
COMPUTERPROGRAMMATUUR
IN DE HYDROLOGIE

CIP DATA

Richtlijnen

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie (redactie: J.C.
Hooghart, K. Kovar en J.M.P.M. Peerboom). Delft; Commissie voor Hydrologisch
Onderzock TNO. - ill. - (Rapporten en Nota’s/Commissie voor Hydrologisch Onderzoek
TNO, no. 27). Eindrapport van de CHO-Werkgroep Richtlijnen Computerprogrammatuur
Hydrologie.

Met literatuuropgave

ISBN 90-6743-195-8

Trefwoord: model, computerprogramma, hydrologie.

Copyright ® NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUUR-WETEN-
SCHAPPELIIK ONDERZOEK, 1992

RICHTLIJNEN VOOR ONTWIKKELING VAN
COMPUTERPROGRAMMATUUR
IN DE HYDROLOGIE

EINDRAPPORT VAN DE CHO-WERKGROEP
RICHTLINEN COMPUTERPROGRAMMATUUR HYDROLOGIE

COMMISSIE VOOR HYDROLOGISCH ONDERZOEK TNO
DELFT, 1992

RAPPORTEN EN NOTA'’S No. 27

VOORWOORD

De voorliggende publikatie is opgesteld door de Werkgroep Richtlijnen Computerprogram-
matuur Hydrologie. De werkgroep was ingesteld door het Klein Comité van de Commissie

voor Hydrologisch Onderzoek TNO.

De huidige kwaliteit van computerprogrammatuur op het gebied van de hydrologie laat vaak
te wensen over voor wat betreft betrouwbaarheid, onderhoudbaarheid, overdraagbaarheid,
koppelingsmogelijkheden en efficiéntie in het gebruik van computerprogrammatuur
(modelleren) in de hydrologische praktijk. De werkgroep heeft zich over deze problematiek
gebogen. Tijdens de discussies binnen de werkgroep werd de problematiek geanalyseerd en
zijn mogelijke oplossingen naar voren gebracht. De werkgroep heeft zich uiteindelijk
beperkt tot het uitwerken van één van de oplossingen van het probleem, namelijk het
opstellen van richtlijnen voor de ontwikkeling van de computerprogrammatuur. Wat betreft
de overige factoren, worden enkele aanbevelingen tot maatregelen gedaan om in de

tockomst tot een kwalitatief hoogwaardiger programmatuur te kunnen komen.

Dit rapport heeft ten doel aanbevelingen (richtlijnen) te presenteren ten behoeve van de
ontwikkeling van computerprogrammatuur. Indien opgevolgd, zullen deze aanbevelingen op
korte termijn leiden tot de verbetering van de kwaliteit van de programmatuur en dus ook
een efficiéntere omgang met programmatuur in de praktijk mogelijk maken. Het rapport is
weliswaar toegespitst op de praktijk van de computertoepassingen in deA geohydrologie, maar
verwacht wordt, dat de aanbevelingen ook in andere vakgebieden bruikbaar zullen zijn. De
werkgroep pretendeert niet met geheel nieuwe inzichten te zijn gekomen, maar beoogt een
bruikbaar overzicht te hebben geproduceerd, dat betrekking heeft op de belangrijkste

ontwikkelfasen van computerprogrammatuur op het gebied van hydrologie.

Het rapport is bestemd voor zowel ontwikkelaars (ontwerpers en programmeurs) als voor
gebruikers van hydrologische programmatuur. Van de lezer wordt verwacht dat deze over
enige basiskennis van het programmeren beschikt. Beginnende ontwikkelaars kunnen uit het
rapport normen ontlenen voor een te hanteren programmeerstijl, meer ervaren ontwikkelaars

kunnen hun programmeerstijl toetsen en mogelijk verbeteren.

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

INHOUDSOPGAVE

1 INLEIDING
1.1. Achtergrond
1.2 Instelling werkgroep
1.3 Doel van het rapport
1.4 Leeswijzer

2 ONTWIKKELMETHODIEKEN
2.1 Inleiding
2.2. Een standaard systeemontwikkelmethodiek (SDM)
2.3 Praktisch gebruik
2.4 Resumé

3 INTERNE STRUCTURERING
3.1 Inleiding
3.2 Modulaire indeling
3.3 Voorbeeld
3.4 Moeilijkheden bij bestaande programmatuur
3.5 Mocilijkheden bij koppeling

3.6 Resumé

4 NAAMGEVING PROGRAMMA-ONDERDELEN
4.1 Inleiding
4.2 Naamgeving onderdelen
4.3 Namen van bestanden behorende bij een programma
4.4 Voorbeelden van naamgeving van programma-onderdelen

4.5 Resumé

5 NAAMGEVING PROGRAMMAVARIABELEN
5.1 Inleiding
5.2 Systeem

pag.

[O O

— O 0 N~

—

13
13
13
15
16
16
17

19
19
19
20
21
24

25
25
25

‘Inhoudsopgave

5.3 Voorbeeld: de Verklarende Hydrologische Woordenlijst

5.4

Resumé

6 DATABESTANDEN

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Inleiding
Eisen te stellen aan databestanden

Geformatteerde of ongeformatteerde databestanden

Gegevensbehandeling in database management systeem

Gegevensbehandeling in GIS

Voorbeelden geformatteerde (ASCII) bestanden

Voorbeeld bestandsstructuur DBMS
Koppeling van programma’s

Resumé

7 LAY-OUT FORTRAN 77-BRONCODE

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Inleiding

Lettertype en positionering van code
Assignment statement

Do-loop statement

Argument van subroutines en functies
If-then statement

Read en write statement

Resumé

8 FORTRAN 77-PROGRAMMEERASPECTEN

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Inleiding

Declaraties
Inijtialisering

Lokale variabelen
Argumentenoverdracht
Intrinsieke functies

Lengte subroutines en functies

pag.
27
29

31
31
31
2
35
36
38
41
43
43

45
45
45
46
47
49
50
51
53

55
55
55
57
58
59

61

10

11

12

8.8 Read and write statements
8.9 Groepering van compiler-afhankelijke functies
8.10 Resumé

FOUTENCONTROLE EN FOUTMELDINGEN

9.1
9.2
9.3
9.4
9.5
9.6

Inleiding

Invoer van data
Foutencontrole
Foutmeldingen
Foutafhandeling

Resumé

TESTEN VAN PROGRAMMATUUR

10.1
10.2
10.3
10.4

Inleiding
Aanpak bij testen
Testmethoden

Resumé

INTERNE DOCUMENTATIE IN COMPUTERCODE

11.1
11.2
11.3
11.4
11.5

Inleiding

Documentatie aan begin van routine

Documentatie tussen de regels met FORTRAN-instructies
Voorbeelden

Resumé

PROGRAMMAHANDLEIDING

12.1
12.2
12.3
12.4
12.5
12.6

Inleiding

Globale systeembeschrijving
Theoretische systeembeschrijving
Technische systeembeschrijving
Gebruikersbeschrijving

Programma-evaluatie

Inhoudsopg‘;v\e‘

pag.
61
62
62

63
63
64
64
65
66
68

69
69
69
70
72

73
73
74
74
76
80

81
81
82
82
83
86
87

Inhoudsopgave

pag.
12.7 Resumé 88
13 CONCLUSIES EN AANBEVELINGEN 89
13.1 Inleiding 89
13.2 Het probleem van de kwaliteit 89
13.3 Het opstellen van richtlijnen 90
13.4 Maatregelen op langere termijn 91
LITERATUUR 93
BIJLAGEN 95
A Samenstelling CHO-Werkgroep Richtlijnen Computer- 97
programmatuur Hydrologie
B Voorbeeld naamgeving programmavariabelen: 99
de Verklarende Hydrologische Woordenlijst
C Voorbeeld programma AQ-HL02 (RIVM) 111
D Voorbeeld programma EPOT (Staring Centrum) 127

RAPPORTEN EN NOTA’S 137

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

1 INLEIDING
1.1 Achtergrond

In Nederland wordt momenteel een groot aantal computerprogramma’s gebruikt op het
gebied van de hydrologie en het waterbeheer (SAMWAT, 1991). Steeds vaker wordt
gebruik gemaakt van deze programma’s bij het oplossen van problemen in de dagelijkse
praktijk. Naast een ontwikkeling van nieuwe programma’s vindt ook steeds vaker een
koppeling plaats van bestaande programmatuur. Terwille van een beter begrip van de in dit
rapport behandelde materie wordt het wenselijk geacht om een kort historisch overzicht te

geven van de ontwikkeling van dit type computerprogramma’s in Nederland.

De ontwikkeling van computerprogramma’s op het gebied van hydrologie is in Nederland in
het midden van de zeventiger jaren begonnen. De programma’s werden niet systematisch
ontwikkeld, maar waren meestal een ad-hoc omzetting van een bestaand hydrologisch
probleem (in navolging van elektrische analogons) in termen van FORTRAN-instructies, te

realiseren binnen de kortst mogelijke tijd.

De documentatie was zeer summier of ontbrak in het geheel. Dat gaf weinig of geen
problemen, want de ontwikkelaar was meestal ook de enige gebruiker. Wat betreft
onderhoudbaarheid was er ook geen probleem. Immers, het onderhoud en de verdere

ontwikkeling werden meestal door de oorspronkelijke maker gedaan.

Verbeteringen en veranderingen aan de programmatuur werden in de loop der tijd uitge-
voerd met behoud van de oorspronkelijke gebrekkige interne structuur en overige tekortko-
mingen. Bij het groter worden van de programma’s, door veranderingen en toevoegingen,
zijn de leesbaarheid en onderhoudbaarheid van de programmacode achteruit gegaan, Meestal
was alleen de ontwikkelaar zelf in staat om de programmacode goed te begrijpen. Wat in
het begin geen probleem was, begon later, vanwege toenemende complexiteit van
onderzoekvraagstukken, noodzaak tot koppeling wvan verschillende ("vreemde")
programma’s en de hogere eisen gesteld door de groeiende gebruikersgroep, wel problemen
op te leveren wat betreft de leesbaarheid en onderhoudbaarheid. De noodzaak van de

verhoging van de kwaliteit van programmacode, en het modelleren in het algemeen, is aan

Inleiding

het einde van de tachtiger jaren onderkend.

Daarnaast werd steeds meer onderkend dat de kwaliteit van het hydrologisch onderzoek
direct beinvioed werd door de kwaliteit van de programmatuur. Zowel ten behoeve van de
verhoging van de kwaliteit van computerprogrammatuur als van de kwaliteit van het
hydrologisch modelonderzoek werd een zekere standaardisatiec wenselijk geacht. De
problematiek van de kwaliteit van de programmatuur wordt overigens niet alleen met
betrekking tot de hydrologie, maar ook in andere vakgebieden onderkend (zie bijvoorbeeld
VROM/DGM, 1990).

Voor wat betreft de kwaliteitseisen, kan onderscheid worden gemaakt tussen:
- de eisen die de gebruiker stelt, en

- de eisen die de ontwikkelaar stelt.

Eisen die de gebruiker stelt zijn o.a.:
- betrouwbaarheid;
- toepasbaarheid voor het specificke probleem van de gebruiker (dat wil zeggen
voldoende algemene toepasbaarheid en aanpasbaarheid);
- goede handleiding;
- overdraagbaarheid (naar andere computers, wat met name een probleem kan zijn bij
de grafische toepassingen);
- koppelingsmogelijkheden:
nitvoer van andere programma’s kan eenvoudig gebruikt worden als invoer;
de uitvoer kan gemakkelijk gebruikt worden als invoer voor andere programma’s;
- efficiéntie in gebruik c.q. gebruikersvriendelijkheid waarbij gencemde koppe-
lingsmogelijkheden belangrijk zijn maar ook de volgende eigenschappen:
opsporing en signalering van fouten;
gebruikersvriendelijke invoer;
duidelijke presentatie van de resultaten, direct via tabellarische en grafische
uitvoer of indirect via een algemeen grafisch programma of spreadsheet;
commentaar in de invoerbestanden is mogelijk, bij lange invoerbestanden niet

alleen in een paar regels aan het begin, maar ook tussendoor.

De eisen van de ontwikkelaar betreffen onder meer:

Inleiding

De eisen van de ontwikkelaar betreffen onder meer:

- het beschikbaar zijn van programmastructuur-diagrammen voor diverse niveaus;

- voldoende commentaar in programmacode;

- een beschrijving van alle variabelen in het programma.

Om praktische redenen zal de informatie die de ontwikkelaar nodig heeft vaak niet in

publiceerbare vorm gegoten kunnen worden. Het zal doorgaans interne rapporten betreffen.
1.2 Instelling werkgroep

De bovenstaande problematiek is ten dele reeds in 1976 in het Klein Comité van de
Commissie voor Hydrologisch Onderzoek van TNO (CHO-TNQO) aan de orde gesteld,
waarmna de “"Ad hoc groep Grondwatermodellen en Computerprogrammatuur” werd
ingesteld. Deze groep had als taak de in Nederland beschikbare computerprogrammatuur en
de op dat gebied bestaande verlangens te inventariseren (CHO-TNO, 1978). Vervolgens is
in 1979 de Contactgroep Grondwatermodellen ingesteld met als doelstelling het bevorderen
van de samenwerking bij de ontwikkeling en toepassing van grondwatermodellen ten dienste
van het grondwaterbeheer als totaliteit (CHO-TNO, 1982).

Aan het einde van de tachtiger jaren begon men zich bij vele instanties te realiseren dat er
sprake was van een structureel gebrek aan uniformiteit en duidelijkheid van de diverse
programma’s, onder meer met betrekking tot de in computerprogramma’s voorkomende
variabelen. Ook de afstemming tussen de programma’s onderling liet te wensen over. Bij
enkele instanties werd zelfs gewag gemaakt van een ’software crisis’. Het verzoek van een
van de leden van de Commissie voor Hydrologisch Onderzoek, waarin de desbetreffende
problematiek aan de orde werd gesteld, was de aanleiding voor het Klein Comité om de
Werkgroep Standaardisatic Naamgeving Modelvariabelen in te stellen, te weten per 15 juni
1989.

Na een verkenningsperiode was de werkgroep echter tot de conclusie gekomen dat de
naamgeving van variabelen slechts een onderdeel is van de veelomvattende problematiek
van de kwaliteit van de computerprogrammatuur op het gebied van hydrologie. Tegen deze
achtergrond werd het Klein Comité door de Werkgroep vervolgens verzocht de taakstelling
van de Werkgroep dienovereenkomstig te verruimen. Het Klein Comité is met dit verzoek

akkoord gegaan en wijzigde de taakstelling tot "het opstellen van richtlijnen met betrekking

Inleiding

tot de ontwikkeling van computerprogrammatuur op het gebied van de hydrologie”. De
naam van de groep is om deze reden aangepast: Werkgroep Richtlijnen Computerprogram-
matuur Hydrologie (RCPH).

Bij de samenstelling van de werkgroep werd gestreefd naar een representatieve vertegen-
woordiging van instanties op het gebied van de hydrologie. De leden van de werkgroep zijn

vermeld in Bijlage A.
1.3 Doel van het rapport

Het rapport heeft ten doel aanbevelingen te presenteren met betrekking tot computerpro-
grammatuur op het gebied van de hydrologie. Het ter harte nemen van deze aanbevelingen
zal leiden tot een betere kwaliteit van de programmatuur en een efficiéntere omgang met

programma’s mogelijk maken.

De Werkgroep RCPH pretendeert niet met nieuwe inzichten te komen, maar hoopt een
bruikbaar overzicht te hebben geproduceerd van belangrijke aspecten bij het ontwikkelen

van hydrologische computerprogrammatuur.

Dit rapport is primair geschreven bezien vanuit de praktijk van hydrologie, niet vanuit de
optiek 'van professionele software-engineering. Dit houdt in dat in het rapport op een aantal
plaatsen wellicht iets andere terminologie wordt gebezigd dan in de bestaande literatuur

voor software ontwikkeling (normen, etc.) gebruikelijk is.

Het rapport is bestemd voor zowel programmeurs van complete programma’s als voor
tussen- en eindgebruikers. Van de lezer wordt verwacht dat deze beschikt over enige
basiskennis van het programmeren. Beginnende programmeurs kunnen uit het rapport
normen ontlenen voor een te hanteren programmeerstijl, meer ervaren programmeurs
kunnen hun programmeerstijl toetsen en mogelijk verbeteren. Het rapport is niet geschreven
als blauwdruk voor te ontwikkelen programma’s. Tijdens het schrijven bleek namelijk dat er

vele wegen naar Rome leiden.

De hoofdstukken zijn zoveel mogelijk voorzien van eenvoudige voorbeelden en een kort
resumé van de aanbevelingen aan het eind. De aanbevelingen zijn ook samengevat op een

los bijgevoegde lijst (checklist).

Hileiding

1.4 Leeswijzer

Hoofdstuk 2 gaat in op een aantal standaard ontwikkelmethodieken voor software in het
algemeen en de bruikbaarheid hiervan binnen de hydrologie. Hoofdstuk 3 behandelt de
interne structurering van computerprogramma’s. Het gestructureerd programmeren en de
modulaire opbouw van programma’s fungeert als rode draad die door het hele rapport
loopt. In hoofdstuk 4 komt de naamgeving van programma-onderdelen aan bod, waaruit ook
de modulaire opbouw duidelijk wordt. Hoofdstuk 5 handelt over de naamgeving van
programmavariabelen, waarbij uitgegaan wordt van het gebruik van stamnamen en
achtervoegsels. Als uitgebreid voorbeeld wordt een deel van de Verklarende Hydrologische
Woordenlijst voorzien van namen voor corresponderende variabelen in een programma.
Hoofdstuk 6 behandelt verschillende manieren waarop databestanden gestructureerd
aangemaakt en gewijzigd kunnen worden. In hoofdstuk 7 wordt besproken hoe de leesbaar-
heid van de broncode van een programma bevorderd kan worden door een zorgvuldige
keuze van de layout van de broncode. Hoofdstuk 8 gaat in op een aantal programmeeraspec-
ten (specifiek voor FORTRAN 77), die de kwaliteit van de programmatuur beter of juist
slechter kunnen maken. In hoofdstuk 9 komt de problematiek van de foutencontrole en het
genereren van foutmeldingen aan de orde. Hoofdstuk 10 gaat in op het organiseren van het
testen 'van een programma en behandglt enige testmethoden. Hoofdstuk 11 belicht de interne
documentatie binnen programma’s. Hoofdstuk 12 geeft een overzicht van de opbouw van
programmahandleidingen en behandelt puntsgewijs de onderwerpen die in een handleiding
aan de orde moeten komen. In hoofdstuk 13 worden de conclusies beschreven die de
werkgroep heeft geformuleerd inzake het algemene probleem van de kwaliteit van software.
Verder worden de conclusies met betrekking tot de specifieke problematiek van dit rapport

gegeven. Tenslotte volgt een aantal aanbevelingen.

In het rapport worden een aantal termen gebruikt die mogelijk aanleiding kunnen geven tot

verwarring. Voor de goede orde volgen hier enkele in dit rapport gehanteerde definities:

computerprogramma : een geheel van instructies (broncode) waarmee bij gegeven
invoer een bepaald proces kan ‘worden gemodelleerd (de
voorbeelden van broncode die in dit rapport gegeven worden
zijn allen geschreven in FORTRAN);

Inleiding

model : een computerprogramma samen met invoergegevens. Hiermee
wordt een bepaalde concrete situatie gemodelleerd;

module : een functionele eenheid in algemene zin van een computerpro-
gramma, bijvoorbeeld het verzorgen van invoer of het uitvoe-
ren van berekeningen;

routine : kleinst mogelijke eénheid in een computerprogramma (in
FORTRAN een "SUBROUTINE" of een "FUNCTION").

Bij de voorbeelden en richtlijnen in dit rapport wordt uitgegaan van FORTRAN als
programmeertaal. Dit sluit aan bij de huidige praktijk, hoewel gesteld kan worden dat ook
andere talen hun intrede gedaan hebben in het hydrologische onderzoekveld.

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

2 ONTWIKKELMETHODIEKEN

2.1 Inleiding

Het ontwikkelen van computerprogramma’s begint meestal niet bij het opschrijven van
computercode, evenzo houdt de ontwikkeling niet op als de computercode éénmaal
geschreven is. In feite is het uiteindelijk programmeren van een probleem slechts een
* betrekkelijk klein gedeelte uit een heel traject. Dit traject wordt de systeemontwikkeling
genoemd. Bij systeemontwikkeling staat het zoeken en defini€ren van problemen, het
ontwerpen en realiseren van oplossingen en omgaan met die oplossingen centraal. Eigenlijk
gaat het schrijven van computerprogramma’s altijd gepaard met systeem-ontwikkeling;
impliciet of expliciet worden eisen geformuleerd, problemen gedefinieerd, ontwerpen ge-
maakt etc. Bij het ontwikkelen van grote informatiesystemen worden de verschillende
stappen in het ontwikkelproces systematisch doorlopen, waarbij iedere stap op een vooraf
vastgestelde wijze wordt geévalueerd. Dit opsplitsen van het systeem-ontwikkelproces in

geformaliseerde stappen wordt een standaard systeemontwikkel-methodiek genoemd.

Alhoewel dit hoofdstuk primair de ontwikkeling van programmatuur behandelt, speelt
hierbij ook de gebruiker een belangrijke rol. Deze werkt in het begin van het
ontwikkeltraject mee aan de opstelling van het pakket van eisen, te stellen aan de
programmatuur. De behoeften van de gebruiker, en de ervaringen die de gebruiker met
diverse programma’s heeft, dienen grondig te worden geinventariseerd teneinde een

optimaal functionerend produkt te kunnen ontwikkelen.

Zoals gezegd, de standaard systeemontwikkelmethodieken zijn ontstaan en hebben hun nut
bewezen, bij het ontwikkelen van grote systemen waarbij sprake is van een compleet
ontwikkelteam en een grote pluriforme gebruikersgroep. Bij het ontwikkelen van relatief
kleine specificke systemen vindt systeemontwikkeling doorgaans veel minder gestruc-tureerd
plaats. Met name bij het ontwikkelen van wetenschappelijke programmatuur zoals binnen de
hydrologie, met vaak een kleine uniforme gebruikersgroep en een programmeur/systeemana-
list/systeemontwerper in één persoon verenigd, vindt systeem-ontwikkeling (ten onrechte)
vaak op ad-hoc basis plaats. Gebruik van standaard methodieken kan echter ook bij dit soort

systemen grote voordelent hebben, hoewel kritisch aan de verschillende stappen in het proces

Ontwikkelmethodieken

gewicht toegekend moet worden.
2.2 Een standaard systeemontwikkelmethodiek (SDM)

Hoewel er in naam meerdere methodieken voorhanden zijn, werken ze allen globaal volgens
hetzelfde concept. Een bekende en meest algemene methode is SDM (System Development
Methodology). SDM beschrijft het systeemontwikkeltraject volgens de fasen van de
levenscyclus van een informatiesysteem. Iedere fase wordt afgesloten, voordat er met de

volgende fase wordt begonnen. Globaal zijn de volgende fasen te onderscheiden:

Fase 0: Informatieplanning
Hierin wordt bepaald welke informatiesystemen nodig zijn om de gestelde doelen
van een organisatic te kunnen realiseren. Er wordt een haalbaarheidsonderzoek
uitgevoerd. Dit onderzoek omvat: plan van aanpak, belangrijkste gebruikerseisen,

ontwikkelingsstrategie enz.

Fase 1: Definitiestudie
Hierin worden de globale systeemeisen gedefinieerd. Bovendien worden de uit-
gangspunten, waaronder de fase eindprodukten, de gebruikerseisen en richtlijnen
voor de ontwerpfase vastgelegd. Tevens komt in deze fase aan de orde de

financién en tijdsplanning.

Fase 2: Basisontwerp
De architectuur van het systeem wordt gedefinieerd, zodat het voldoet aan de
eisen die zijn vastgelegd in de definitiestudie. Op basis hiervan wordt het gehele

ontwerp met zijn subsystemen vastgelegd.

Fase 3: Detailontwerp
Per subsysteem worden de systeemeisen verder verfijnd tot een niveau waarop
deze kunnen worden vervaardigd. In feite is er aan het eind van deze fase sprake

van een pakket pseudocode.

Ontwikkelmethodieken

Fase 4: Realisatie
In deze fase wordt de computercode geschreven en wordt de vervaardigde pro-
grammatuur getest, op basis van de eerder geformuleerde specifieke een
algemene systeemeisen. (Voor technisch-wetenschappelijke toepassingen worden

meestal fase 3 en fase 4 samengenomen.)

Fase 5: Invoering
Hierbij wordt het systeem door de ontwikkelaar losgelaten en vindt het systeem
zijn toepassing bij de vooraf gedefinieerde gebruiker. Fouten en afwijkingen naar

aanleiding van acceptatietesten worden gecorrigeerd.

Fase 6: Gebruik en beheer
In de laatste fase is het systeem in gebruik bij externe gebruikers en moet het
systeem in gebruik blijven. Hierbij moet voortdurend ingespeeld worden op

nieuwe wensen en ontwikkelingen.

2.3 Praktisch gebruik

De hoofdfasen van SDM zijn eigenlijk voor ieder systeem toepasbaar. In feite is SDM een
pleidooi om eerst na te denken en dan pas te doen (te programmeren) en om vervolgens
betrokken en waakzaam te blijven. lets dat overigens niet alleen de ontwikkeling van
informatiesystemen aangaat! Het verschil tussen toepassing van SDM bij bijvoorbeeld grote
administratieve systemen en toepassing voor technisch-wetenschappelijke systemen, ligt
voornamelijk in de invulling van de verschillende fasen. Bij het eerste soort systemen moet
zeer veel aandacht besteed worden aan gebruikersaspecten, management-aspecten, sociale
aspecten, kosten-/batenanalyses etc. bit zijn vaak ook de drijfveren voor het starten van
fase 0, de informatieplanning. Inhoudelijk zijn er relatief weinig vraagpunten, problemen op
het gebied van bestandsorganisatie daargelaten. Vaak is het doel, de organisatie efficiénter
te laten draaien. Bij technisch-wetenschappelijk problemen zijn het vooral inhoudelijke
aspecten die voorop staan. Technisch-wetenschappelijke programmatuur moet vaak niet op
de eerste plaats een proces efficiénter laten verlopen, maar het moet mogelijk zijn om een

bepaald inhoudelijk probleem afdoende op te lossen. Dat neemt niet weg dat ook vooraf een

Ontwikkelmethodieken

prijs-/prestatie-overweging gemaakt moet worden, die door een beoogd gebruiker

gedefinieerd wordt.

SDM zal bij technisch-wetenschappelijke systemen vooral gebruikt worden om op het juiste
moment de juiste vragen te stellen en om een probleem gestructureerd stapsgewijs te
verfijnen. Het grote voordeel daarbij is dat op logische tijdstippen tijdens het proces verslag
kan worden gedaan van de keuzes die aan de orde zijn. Een grotere groep betrokkenen (in
dit geval deskundigen) kan zo "meegroeien” in de programmatuur en kan zo nodig sturen.
Zonder het formaliseren van de stappen in de systeémontwikkeling is het systeem tijdens het
ontwikkelproces voor minder mensen toegankelijk. Met een beetje geluk kan dan op basis
van een goede documentatiec een oordeel over het complete systeem gegeven worden,

sturing is echter nauwelijks meer mogelijk.

Tenslotte enkele kritische kanttekeningen:

- Indien de ontwikkeling van een complex technisch-wetenschappelijk programma niet
door één en dezelfde persoon plaatsvindt (combinatie van materiedeskundigheid en
systeembouw), gaat relatief veel tijd zitten in de informatie-overdracht van de
materiedeskundige naar de systeemanalist en programmeur. Hierdoor kan de
ontwikkeling traag en duur worden. In het algemeen geldt aan dat ernaar gestreefd moet
worden de samenwerkingsverbanden tussen materiedeskundigen en systeem-
ontwikkelaars zo nauw mogelijk te houden. Om dezelfde reden zouden de infor-
matielijnen over zo min mogelijk mensen moeten lopen.

- Het ontwikkelen van een prototype model is wat moeilijker in te passen in het strak
gedefinieerd schema van SDM. Bij de ontwikkeling van hydrologische modellen wordt
vaak eerst een eenvoudig model ontwikkeld. Vervolgens wordt dit eenvoudig model
toegepast, waarbij blijkt dat een aantal processen gedetailleerder of op een andere wijze
beschreven moeten worden. Er wordt dan teruggesprongen naar de fase van
detailontwerp of zelfs basisontwerp. In de definitiestudie kunnen de voorwaarden en
mogelijkheden van dit soort "herhalingen” worden gesignaleerd en kan worden getracht

dit tijdens de volgende fasen in te bouwen.

10

Ontwikkelmethodieken

2.4 Resumé

- Breng systematiek aan in het ontwikkeltraject.

- Sluit zoveel mogelijk fasen af met een rapportage voor derden.

- Gebruik zo mogelijk een standaard-ontwikkelmethodiek zoals SDM.

- Vooral: denk na v66r het ontwikkelen van programma’s en blijf na de ontwikkeling

betrokken.

11

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

3 INTERNE STRUCTURERING
3.1 Inleiding

De hydrologische praktijk vraagt vaak om complexe computerprogramma’s Vvoor
berekeningen en simulaties. Deze programma’s kunnen alleen overzichtelijk gemaakt
worden door een goede structuur aan te brengen. Hierfoe worden afzonderlijke taken
onderscheiden, die binnen het programma verricht moeten worden. De hoofdtaken kunnen
vaak weer verder opgesplitst worden in kleinere onderdelen. Op deze manier wordt een
structuur van onderdelen gemaakt die elk een dusdanige omvang hebben dat ze zich in een
redelijke hoeveelheid broncode laten vertalen. Door een verdeling in duidelijk afgebakende
taken te maken, kan een programma gemakkelijker opgezet worden, wordt het gemakkelijk
leesbaar en is het eenvoudiger later aanpassingen te maken, omdat snel duidelijk is waar in

het programma een bepaalde taak verricht wordt.
3.2 Modulaire indeling

Alle computerprogramma’s bevatten dezelfde basiselementen: invoer van gegevens
(voorbewerking), berekeningen (hoofdbewerking) en uitvoer van resultaten (nabewerking).
Figuur 3.1 geeft een dergelijke indeling weer, respectievelijk voor een enkel (eenvoudig)

computerprogramma en een complexer systeem van computerprogramma’s.

a. Voorbewerking Hoofdbewerking Nabewerking
"pre-processing” "post-processing
Invoer gegevens Berekeningen Uitvoer resultaten
b. Voorb. Hoofdb. Nabewer. Voorb. Hoofdb. Nabewer. Voorb. Hoofdb. Nabewer.
Invoer selectie opslag Inlezen Bereke- Opslag Inlezen selectie plotten
van bewerking invoer- gege- ningen resul- resul- bewerking printen
gege- invoer- gegevens vens taten taten resul-
vens gegevens taten
T T
T 1
| PO - S|

Figuur 3.1 Basisstructuur voor probleemstelling
a) een enkel computerprogramma

b) de bewerkingen in een aantal computerprogramma’s ondergebracht

13

Interne structurering

De hiervoor genoemde ontleding kan gebruikt worden om een programma in onderdelen te

verdelen. De hoofdonderdelen, welke modulen genoemd worden, zijn in dit geval

voorbewerking, hoofdbewerking en nabewerking. Deze kunnen verder onderverdeeld

worden in sub-modulen, welke op hun beurt weer uiteen kunnen vallen in sub-sub-modulen

enzovoorts (zie Figuur 3.2).

hoofdprogramma subroutines subroutines subroutines
niveau 0 niveau 1 niveau 2 niveau 3

-]
—

—

besturing module sub-module sub-sub-module

Figuur 3.2 Modulaire opbouw van een computerprogramma

De voordelen van de modulaire opbouw zijn:
- complexe problemen zijn opgesplitst in eenvoudige deelproblemen;
- groepeer machine/operating-system/compiler afhankelijke functies;

- ontwerpen, coderen en testen kan per onderdeel gebeuren;

- modules voor vaak voorkomende taken behoeven slechts een keer gemaakt te worden en

kunnen vervolgens voor verschillende programma’s of programma-onderdelen gebruikt

worden.

In de praktijk komt het er op neer dat het hoofdprogramma de besturing regelt door het

aanroepen van routines. In het hoofdprogramma staan dan ook alleen de aanroepen van

modules van niveau 1. In elke module wordt een aantal functioneel afgebakende

handelingen uitgevoerd. Een module met een complexe verzameling handelingen wordt

opgesplitst in sub-modulen (niveau 2). Indien noodzakelijk om het geheel overzichtelijk te

houden roepen dergelijke routines van niveau 2 op hun beurt routines van niveau 3 (sub-

sub-modulen) aan die nog enger afgebakende taken verrichten.

14

Interne structurering

33 Voorbeeld: Programma EPOT (Staring Centrum, Wageningen)

Het berekenen van de verdamping is als voorbeeld genomen. Het programma EPOT
berekent zowel de referentie grasverdamping (Makkink-verdamping) als de open water
verdamping (Penman-verdamping). De berekening wordt telkens voor een dag uitgevoerd en
de resultaten worden gesommeerd per maand, seizoen en jaar. Het stroomschema is
gegeven in Figuur 3.3. Dit stroomschema is vertaald in de structuur van het programma

EPOT, die in Figuur 3.4 gegeven is.

l lees meteo gegevens in l

I bereken verdamping per dag I
]

bewerk de resultaten
sommatie (maand,

seizoen en jaar) en
bepaling gemiddelde

I uitvoer resultaten (print/plot)]

Figuur 3.3 Stroomschema voor berekening van verdamping

programma EPOT

call INIT initialiseer constanten en open bestanden
call READ lees meteorologische gegevens per dag
call CHECK controleer invoergegevens

call REF bereken Makkink-verdamping

call PENMAN bereken open water verdamping

call sSOM sommeer verdamping en bepaal gemiddelde
call PRINT schrijf resultaten naar printbestand

call PLOT schrijf resultaten weg in plotbestand

Figuur 3.4 Structuur van programma EPOT

15

Interne structurering

34 Moeilijkheden bij bestaande programmatuur

Bij het aanpassen van een bestaand programma ontstaat het dilemma of de bestaande
(gebrekkige) structuur aangehouden moet worden of dat met een betere structuur gewerkt
wordt. De keuze voor €én van de mogelijkheden hangt af van de specifieke situatie, waarbij
onder meer de volgende overwegingen een rol spelen:

- gaat het om een tijdelijke verandering voor één specifieke toepassing;

- kan de verandering in een afzonderlijke nieuwe (sub-)module ondergebracht worden;

- hoe gebrekkig is de bestaande structuur en hoe moeilijk is het deze te verbeteren.

Als ingrijpende wijzigingen nodig =zijn in een slecht gestructureerd en daardoor
onoverzichtelijk programma verdient het aanbeveling eerst de nieuwe structuur te ontwerpen
en vervolgens aan de hand van stroomschema’s te controleren of het programma de
oorspronkelijke taken nog naar behoren uitvoert en pas daarna de wijzigingen te
programmeren. Bij de aanpassing van bestaande programmatuur dienen de in de
oorspronkelijke broncode aangebrachte wijzigingen door middel van commentaarregels

grondig te worden gedocumenteerd.

Als het bestaande programma gestructureerd ‘is opgezet en de wijziging niet groot is, is het

beter om bij de bestaande structuur aan te sluiten.

3.5 Moeilijkheden bij koppeling

Indien programma’s op codeniveau gekoppeld moeten worden, kunnen soortgelijke
moeilijkheden optreden als bij het aanpassen van programmatuur. Vaak is het ene
programma anders van structuur, heeft een andere systematiek van variabele naamgeving
etc. dan het andere programma. In dergelijke gevallen is het raadzaam om "het contact”
tussen beide programma’s zoveel mogelijk te beperken tot speciaal daarvoor ontworpen
modules die als interface fungeren. Indien het onontkoombaar is om in de bestaande
programmatuur wijzigingen aan te brengen, moet dit duidelijk en opvallend vermeld

worden.

16

Interne structurering -

3.6 Resumé

- Splits de probleemstelling op in deelproblemen met duidelijk afgebakende taken.

- Kies voor één programma of een aantal afzonderlijke programma’s.

- Kies een aantal niveaus voor de structuur.

- Bij het aanpassen van bestaande programma’s: weeg aansluiten bij bestaande

structurering af tegen het gebruiken van een betere structuur.

17

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

4 NAAMGEVING PROGRAMMA-ONDERDELEN
4.1 Inleiding

Veel hydrologische computerprogramma’s zijn zo omvangrijk (wat de hoeveelheid broncode

betreft) en dermate ingewikkeld dat ze in onderdelen zijn gesplitst.

Als elk onderdeel een duidelijk afgebakende taak vervult, is het eenvoudig het overzicht
over het gehele programma te bewaren. Dit geldt in de fase van het programmeren, maar
nog veel sterker bij het onderhouden en aanpassen van het programma. Veranderingen
moeten namelijk vaak gebeuren als het programmeren niet meer vers in het geheugen ligt en
vaak door anderen dan de makers van het programma. De namen van de onderdelen kunnen

de plaats van die onderdelen in het geheel van het programma aangeven.

In het algemeen dient de naamgeving van de onderdelen het streven naar overzichtelijkheid

van het programma (programmastructuur) te ondersteunen.
4.2 Naamgeving onderdelen

Het ligt voor de hand de naam van elk onderdeel te enten op de taak die het desbetreffende
onderdeel verricht. Als een programma zodanig is, dat de plaats van een onderdeel in het
programma niet duidelijk is unit de taak (alleen), dan verdient het aanbeveling (ook) de

structuur van het programma te weerspiegelen in de namen van de onderdelen.

In de structuur van een programma worden verschillende niveaus onderscheiden. Hoeveel
niveaus onderscheiden worden is afhankelijk van de omvang en specifieke eigenschappen.
Een verdeling van de structuur op drie niveaus kan er als volgt uit zien, zie bijvoorbeeld
Figuur 3.2:
1 module (niveau 1);
2 sub-module (niveau 2);
3 sub-sub-module (niveau 3).

Het hoofdprogramma (niveau 0) roept een aantal modulen (niveau 1) aan. Een module bevat
| op haar beurt weer sub-modulen (niveau 2). De onderdelen van de sub-modulen, sub-sub-

modulen (niveau 3), zijn routines in dit geval. Een routine is de kleinste eenheid in de

19

Naamgeving programma-onderdelen

broncode (voor FORTRAN een SUBROUTINE of een FUNCTION). Voor het aanbrengen

van structuur in een programma wordt verwezen naar hoofdstuk 3.

Hoezeer de taak en de plaats in de structuur doorklinkt in de namen van de modulen hangt
ervan af hoe belangrijk de structuur is voor het doorgronden van het programma en in

hoeverre het mogelijk is de taken te identificeren voor de individuele modulen.
4.3 Namen van bestanden behorende bij een programma

Verbonden met de naamgeving van de onderdelen van een programma zijn de namen van de

bestanden, die gebruikt worden om een run versie van het programma te maken. Hierbij

zijn verschillende soorten bestanden te onderscheiden:

1 bestanden met broncode;

2 speciale bestanden die aanwezig moeten zijn bij het compileren of draaien van het
programma;

3 hulpbestanden, zoals een bestand dat aangeeft welke bestanden er gelinkt moeten

worden om de Tun versie te creéren.

Het “operating system’ DOS, dat op veel PC’s gebruikt wordt, staat bestandsnamen toe van
maximaal 8 lettertekens, met een extensie van maximaal 3. De extensie kan dan gebruikt
worden om de soort van het bestand aan te geven:

a voor een bestand met broncode kan een extensie gebruikt worden, die de taal aangeeft
(.FOR voor FORTRAN of .C voor C bijvoorbeeld) of de compiler (zoals .F5P voor
versie 5 van de FORTRAN-compiler van Perkin Elmer);

b voor een zogenaamd INCLUDE bestand, dat in FORTRAN gebruikt kan worden voor
onder meer COMMON BLOCKS kan de extensie .INC gebruikt worden. Voor een file
met gebruikersinformatie die bij het laden van het programma wordt gelezen, zou de
extensie .USR gekozen kunnen worden;

¢ voor een bestand dat gebruikt wordt om de files voor het linken te selecteren ligt de

extensie .LNK voor de hand.
De 8 lettertekens voor de bestandsnaam worden gebruikt om het programma en/of de

inhoud van het bestand aan te geven. Een mogelijkheid is om elke routine op te slaan in een

apart bestand (in verband met bijvoorbeeld een ’'make-facility’, een hulpprogramma

20

Naamgeving programma-onderdeleri

waarmee de runversie automatisch aangepast wordt als er iets in de broncode veranderd
wordt). In ANSI FORTRAN 77 kunnen maximaal 6 lettertekens voor de namen van
routines gebruikt worden. De naam van het bestand kan dan gemaakt worden door de twee
letters die het programma aanduiden te laten volgen door de naam van de routine. Een
andere mogelijkheid is om alle routines van een module (of anderszins verwante routines)
op te slaan in é&n bestand. De naam van het bestand kan dan weer op eenzelfde manier
gemaakt worden: twee letters voor het programma en maximaal zes letters die de module
aanduiden. Kleine programma’s (zie voorbeeld 1, hieronder) worden bij voorkeur in één

bestand opgeslagen.
4.4 Voorbeelden van naamgeving van programma-onderdelen

In het navolgende wordt een aantal voorbeelden van naamgeving voor programmamodulen
gegeven, waarbij de programma’s steeds complexer worden. Dit uit zich in het feit dat er

steeds meer structuur doorklinkt in de namen van de onderdelen.

In het eerste voorbeeld (voorbeeld 1) zijn de namen puur op grond van taak gegeven, in de
volgende twee voorbeelden zijn steeds meer delen onderscheiden in het programma en is de

structuur in meer niveaus in de namen verwerkt.
Voorbeeld 1 Programma EPOT (Staring Centrum, Wageningen)

Het hoofdprogramma draagt de naam van het programma en de routines die aangeroepen

worden hebben de namen van de taken die ze verrichten:

gehele programma
‘ EPOT I opgeslagen in EPOT.FOR

INIT

PRINT

PLOT

FAGEAAT

21

Naamgeving programma-onderdelen

Voorbeeld 2 Programma AQ-PL02 (RIVM, Bilthoven)

Het programma AQ-PLO2 is een grafisch programma dat deel uitmaakt van het AQ-pakket,
een pakket ten behoeve van de analyse van grondwatervraagstukken. De subroutines die het
programma AQ-PLO2 aanroept behoren tot de grote verzameling routines die door diverse
programma’s van het pakket gezamenlijk gebruikt worden. Het aantal is zo groot dat geen
zinvolle unieke afkortingen gemaakt konden worden. Derhalve zijn de routines genummerd.
Alle routinenamen bestaan uit 6 tekens, de bestandsnaam is gelijk aan routinenaam. Het
nummer wordt, waar nodig, gebruikt in posities 3 tot en met 6. Routines die specifiek bij
PLO2 behoren beginnen met de naam van het programma; de namen van algemene routines
beginnen met SC (met betrekking tot het scherm, AQ-programma’s werken interactief) of

met PL (voor het plotten van een figuur op een plotter).

starten programma, opgeslagen in PL0O2.FOR

PLOZ2XX centrale routine, opgeslagen in PLO2XX.FOR

zet keuzemenu op het scherm, opgeslagen in SCPGOO.FOR

SCPG30 |

maak menu voor tekenen, opgeslagen in SCPG30.FOR
PLGROO

SCPG10 lees gegevens van bestand 1, opgesiagen in SCPG10.FOR

teken figuur, opgeslagen in PLGROO.FOR

SCPG11 lees gegevens van bestanden 2, 3,..., opgeslagen in SCPG11.FOR

SCPG1A selecteer uit invoerbestand, opgeslagen in SCPGIA.FOR

SCPG20 voer besturingsgegevens in, opgestagen in $CPG20.FOR

Voorbeeld 3 Programma SL (O.D.L. Strack, Minnesota, VS)

Het programma SL is een programma voor het modelleren van grondwaterstroming in een
enkel watervoerend pakket met behulp van analytische elementen. In dit programma zijn de
volgende modulen onderscheiden: main (MN, module die de andere modules samenbun-
delt), wells (WL, module van putten), line-sinks (LS, module van lijnputten), area-sinks
(AR, module voor opperviakteputten). De sub-modules zijn: input (IN, sub-module voor
invoer), root (RT, module die algemene taken uitvoert), solution (SO, sub-moduile voor het
berekenen van de onbekenden), check (CK, sub-module voor het controleren van de oplos-

sing en het genereren van uitvoer).

22

Naamgeving programma-onderdélen’

De naam van een specifieke routine ziet er als volgt uit: SSPPRR, waarin:

- SS twee lettertekens zijn die de module aangeven;

- PP staat voor twee lettertekens van de sub-module;

- RR de routine met twee lettertekens specificeert.

Voor een algemene routine worden de letters SS vervangen door een code van twee letters,
bijvoorbeeld *UT van ’utility". De letters UT worden gevolgd door een aantal andere letters

die de functie van de routine aanduiden.

starten programma en dimensionering

MNIN centrale invoer

openen van bestand

maken van bestand

maken van figuur met contourtijnen

UTPLUN definiéren codrdinaten van hoekpunten van figuur
UTPLGR openen grafisch scherm

UTPLCN
utPLL! tekenen van 1 contourlijn

UTPLTX afsluiten grafisch scherm en terug naar text scherm
WLIN invoer van putten

LSIN invoer van lijnputten

invoer van opperviakteputten

tekenen van contourlijnen

centrale deel van oplossen

routine voor oplossingen stelsel vergelijkingen

LSO bi jdrage putten aan matrix
LSS0 bijdrage lijnputten aan matrix
bijdrage opperviakteputten aan matrix

MNCK centrale controle en uitvoer
WLeK uitvoer putten

LSCK uitvoer lijnputten
ARCK uitvoer oppervlakteputten

st opgestagen in SL.FOR
MNIN opgeslagen in SLMNIN.FOR
MNSO opgeslagen in SLMNSO.FOR
MNCK opgeslagen ‘in SLMNCK.FOR
WLIN opgeslagen in SLWL.FOR
WLSO opgeslagen in SLWL.FOR
WLCK opgeslagen in SLWL.FOR

23

Naamgeving programma-onderdelen

ARIN
ARSO
ARCK

UTOF
UTCF

uTpL

UTPLWN
UTPLGR
UTPLCN
uTPLCt
UTPLTX
uTsc

opgeslagen
opgeslagen
opgeslagen

opgeslagen
opgeslagen

opgeslagen
opgeslagen
opgeslagen
opgeslagen
opgeslagen
opgeslagen
opgeslagen

in
in
in
n
n

in
in
in
in
in
in
in

SLARIN.FOR
SLARSQO.FOR
SLARCK.FOR

UTFILE.FOR
UTFILE.FOR

UTPLOT.FOR
UTPLOT.FOR
UTPLOT.FOR
UTPLOT.FOR
UTPLOT.FOR
UTPLOT.FOR
UTSOLVE. FOR

Schema van programma SL met namen en functie van de onderdelen

4.5

Resumé

- Vergroot overzichtelijkheid van een programma door een logische verdeling in

onderdelen.

- Geef waar mogelijk de onderdelen namen die de taak van het onderdeel weerspiegelen.

- Als de structuur van het programma ingewikkeld is: voeg aan de naam een aanduiding

toe van de plaats van de routine in het programma.

24

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

5 NAAMGEVING PROGRAMMAVARIABELEN
5.1 Inleiding

Het benoemen van variabelen in een computerprogramma is bijzonder belangrijk. Een
goede systematick van benoeming van variabelen maakt een programma leesbaar en
overdraagbaar. Al is een programma nog zo goed gestructureerd en gedocumenteerd, als er
geen goed systeem van variabelenamen is toegepast, is de broncode (die de uiteindelijke
vitwerking van een oplossing is) niet goed leesbaar en kunnen wijzigingen moeilijk
doorgevoerd worden. Het bedenken van een goed systeem is moeilijk en kan tijdrovend
zijn, maar blijkt vaak meer dan de moeite waard. Als er een goed systeem bedacht is, moet
dit ook bij de documentatie gevoegd worden, zodat de gebruiker de logica van de
programmamaker kan doorgronden. Dit heeft als voordeel dat de gebruiker de betekenissen
voor een groot deel direct kan begrijpen, zonder iedere keer de lijst van variabelen te
moeten raadplegen. Dit neemt niet weg dat ook altijd een volledige lijst van gebruikte
varigbelen bij de documentatic moet worden gevoegd, zodat deze, wanneer nodig, kan

worden geraadpleegd.
5.2 Systeem

Een sluitend concept voor een systeem van variabelenamen is moeilijk te geven. Veel hangt
af van de aard van de programmatuur (onderwerp, complexiteit), de mogelijkheden van de
programmeertaal (gereserveerde letters, maximaal aantal toegestane posities) etc. Dat
iedereen hetzelfde systeem gebruikt is ook niet het belangrijkste. Het belangrijkste is dat
iedereen een logisch en gedocumenteerd systeem gebruikt. Het kan soms zelf voordelig zijn
om een, op eigen situatie toegesneden systeem te gebruiken, in plaats van krampachtig aan

een standaard systeem vast te houden.

Alhoewel geen blauwdruk gegeven kan worden, kunnen wel enige conventies als richtlijnen

dienen:

1 Selecteer veel gebruikte algemene grootheden en ken hieraan een letter of
lettercombinatie toe. Grootheden als volumestroom (Q), hoogte (H), weerstand (R),
straling (RD) komen zo vaak in verschillende afgeleide grootheden voor, dat beter

iedere variabelenaam van dit type begonnen kan worden met een min of meer

25

Naamgeving programmavariabelen

26

gereserveerde letter(s). Om het overzicht te behouden is het raadzaam het aantal

gereserveerde beginletters te beperken tot circa 10,

In de al of niet gereserveerde beginletter moet zo mogelijk het data-type tot uitdrukking
komen. In de FORTRAN 77-standaard met betrekking tot impliciete declaraties begint
een integer variabele met letter I-, J-, K-, L+, M- of N- dus I-N-integer, en een real

variabele met één van de overige letters.

Vorm voor alle gebruikte grootheden zogenaamde stamnamen van 3 tot 5 letters. De
stamnamen kunnen aangevuld worden door achtervoegsels. Houd bij de stamnamen
rekening met de eerste twee conventies. Bij de naamgeving is de herkenbaarheid van de
variabelen het belangrijkste, niet het al of niet consequent zijn. Voorkom zoveel
mogelijk het gebruik van een karakteristicke beginletter als die niet de vastgestelde
betekenis heeft, tenzij duidelijk it het programmaverband die betekenis blijkt.

Selecteer veel gebruikie toevoegingen en ken hieraan twee-letterige afkortingen aan toe.
Voorbeelden: MN voor minimum, MX voor maximum, SM voor som, AV voor

gemiddeld.

Als de computer(-taal) het toelaat is het raadzaam om de onderscheiden delen van de
variabele naam te scheiden door bijvoorbeeld een underscore (_). Zo kan
HPHREAVMN (gemiddelde laagste phreatische grondwaterstand) geschreven worden
als HPHRE AV_MN of H#¥PHRE AV_MN. De laatste notatie heeft als voordeel dat

meteen opvalt dat de letter H een gereserveerde beginletter is.

Gebruik als DO-loop variabelen (indexvariabelen) bij voorkeur minimaal twee letterige
codes. Begin indexvariabelen steeds met I-, J-, K- of L-, gevolgd door het increment,

bijvoorbeeld IP2 (positief met stap 2), JN (negatief met stap 1) enzovoorts.

Variabelen die een aantal (number) aangeven, beginnen met de de letter N-,
bijvoorbeeld NTIM, NEL en NLAY. Dit geldt dus ook voor aantallen in een DO-loop.

Naamgeving programmiavariabéler

8 Bij array dimensie: NTIMMX, NELMX, efc.

9 Vermeld in de documentatie:
a de gehanteerde systematiek:
- een lijst met min of meer gereserveerde beginletters en de voornaamste
uitzonderingen daarop;
- een volledige lijst met stamnamen en de hierbij gebruikte conventies;
- een volledige lijst met achtervoegsels;

b een volledige lijst met variabelen thematisch en alfabetisch gerangschikt.
5.3 Voorbeeld: de Verklarende Hydrologische Woordenlijst

Als voorbeeld van een vocabulaire van variabelenamen is een deel van de Verklarende
Hydrologische Woordenlijst (CHO-TNO, 1986) omgezet naar een variabelenlijst geschikt
voor een hydrologisch computerprogramma. In bijlage B wordt een deel van de woordenlijst
inclusief programmavariabelen, weergegeven voor de rubriecken Atmosferisch Water, Water
in de Onverzadigde Zone, Water in de Verzadigde Zone, Oppervlaktewater en Diversen.
Bij de lijst is uitgegaan van stamnamen van 3 en 5 letters. De stamnamen van 3 letters
kunnen gebruikt worden in geval van conventionele (FORTRAN-)compilers waarbij slechts

6 characters per naam gebruikt mogen worden (stam + achtervoegsel).

De lijst is een goed voorbeeld hoe naamgeving aangepakt en beschreven kan worden. Het is
echter geen rigide lijst die in alle gevallen toegepast moet worden. Tijdens het samenstellen
van de lijst is gebleken hoe moeilijk het is om een consequent systeem toe te passen, de
gepresenteerde lijst is dus niet altijd consequent. Het toepassen van de conventies is echter
ook niet bedoeld om iedere variabele 100% te determineren, maar slechts een hulpmiddel

om een programma overzichtelijker en dus leesbaarder te laten maken.

27

Naamgeving programmavariabelen

De belangrijkste gebruikte conventies zullen onderstaand toegelicht worden.

Gereserveerde beginletters:

Letter Betekenis Eenheid Voorbeeld
D diepte (t.o.v. mv) cm, m DGRWT (Depth GRoundWater Table),
DDIFF (Depth DIFFerence)
E verdamping mm/d EVPAN (PAN EVaporation),
ESOIL (SOIL Evaporation)
(warmte-)flux W/m2 FLATH (LATent Heat Flux),
hoogte (t.o.v. NAP) m HPHRE (PHREatic Head),
HPRES (PRESsure Head)
P druk . Pa PTENS (TENSiometer Pressure),
PHYDR (HYDRaulic Pressure)
PR neerslag/-intensiteit mm, m3, mm/d etc. PRECI (PRECIpitation),
PRDPH (PRecipitation DePtH)
Q volumestroom/debiet mm/d, m3/d QVOLM (VOLuMe flux),
QCAPR (CAPillary Rise flux)
R weerstand s/m, d RCANY (CANopY Resistance),
RDRNG (DRaiNaGe Resistance)
T temperatuur °C of K TDEWP (DEW-Point Temperature),
TWETB (WET-Bulb Temperature)
TI tijd s, d TITRA (TRAvel TIme)
TH vochtgehalte_ - THWLT (WilTing point THeta),
‘ THFLD (FielD capacity THeta)
X X-coordinaat m XWELL (X-coordinate WELL),
XCOOR (X-COORdinate)
Y - Y-coordinaat m YWELL (Y-coordinate WELL)
YCOOR (Y-COORdinate)
Z Z-coordinaat m ZWELL (Z-coordinate WELL)

De stamnamen zijn in de meeste gevallen min of meer fonetisch vastgesteld, waarbij vaak
enige klinkers geschrapt zijn en zoveel mogelijk de laatste (betekenisvolle) medeklinker

gehandhaafd is.

28

Naamgeving programmavariabelen

Achtervoegsels:

Achtervoegsel Betekenis

AC actueel (ACtual)

AV gemiddeld (AVerage)

CL berekend (CaLculated)
DF verschil (DiFference)
MN minimum (MiNimum)

MX maximum (MaXimum)

OB gemeten (OBserved)

PO potentieel (POtential)
PR vorige (PRevious)
RL relatief (ReLative)

SM sommatie (SuM)

XD X-richting (X-Direction)
YD Y-richting (Y-Direction)
ZD Z-richting (Z-Direction)
. (etc.)

5.4 Resumé

- Besteed veel aandacht aan het bedenken van een goed werkbaar systeem.

- Yorm voor basisgrootheden stamnamen bestaande uit 3 tot 5 letters. Reserveer voor veel

voorkomende algemene grootheden €én of twee beginletters.

- Selecteer twee letterige afkortingen voor veel voorkomende toevoegingen.

- Vermeld gebruikte conventies in de programmahandleiding, evenals een complete lijst

van stamnamen en achtervoegsels.

29

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie - e
Rapporten en Nota’s No. 27 van de CHO-TNO o

6 DATABESTANDEN

6.1 Inleiding

Computerprogramma’s hebben invoer nodig om te kunnen draaien. Bij veel technische
programma’s wordt de invoer gelezen uit databestanden die met behulp van een preproces-
sor of een editor zijn aangemaakt. De uitvoer van deze programma’s wordt doorgaans weer

naar databestanden weggeschreven.

Het verzamelen van gegevens en het schematiseren van deze gegevens tot invoer voor
computerprogramma’s kost veel tijd en geld. Het verdient daarom de voorkeur deze
gegevens zo op te slaan dat deze zonder veel moeite door verschillende programma’s (in
verschillende modelstudies) kunnen worden gebruikt. Bij de opbouw van de databestanden

dient hiermee rekening te worden gehouden.

Er bestaan verschillende typen van databestanden. De in de hydrologische programma’s
meest gebruikte bestanden zijn sequenti€le geformatteerde en ongeformatteerde bestanden.
In paragraaf 6.3 wordt globaal aangegeven wat €én en ander inhoudt en wat de voor- en
nadelen zijn. Sinds de opkomst van database management systemen (Oracle, dBase,
Dataflex etc.) worden de benodigde databestanden steeds vaker binnen een database

management systeem opgebouwd. In paragraaf 6.4 wordt hierop ingegaan.

6.2 Eisen te stellen aan databestanden

Een databestand is alleen bruikbaar voor verschillende programma’s wanneer dit voldoet

aan een aantal eisen:

- het bestand moet overzichtelijk zijn;

- . het bestand moet eenvoudig te herstructureren zijn (uit te breiden, in te krimpen of
anders te ordenen);

- de gegevens moeten (waar relevant) op een relatief eenvoudige wijze aangeboden
kunnen worden aan een grafisch programma ten behoeve van grafische presentatie en
visuele controle (bijvoorbeeld via een afzonderlijke hulpprogramma dat een bestand

eerst converteert ten behoeve van een grafisch programma);

31

Databestanden

- de gegevens moeten in numerieke vorm leesbaar zijn (bijvoorbeeld ASCII-bestanden) of
leesbaar gemaakt kunnen worden (bijvoorbeeld door middel van een hulpprogramma

voor ongeformatteerde bestanden).

Aan de laatste eis wordt vaak wel voldaan. Veel programma’s gebruiken ASCII-bestanden
als in- en uitvoerbestanden. Als dat niet het geval is, zoals ongeformatteerde bestanden,
worden speciale hulpprogramma’s gemaakt, waarmee deze bestanden kunnen worden

aangemaakt, gewijzigd en gevisualiseerd (tekst op scherm of print, plot).

Aan de overige drie eisen wordt vaak niet voldaan. De structuur van de datafile wordt vaak
ad-hoc opgezet, afhankelijk van de aard van het probleem en de programmeerstijl van de
ontwikkelaar. Met het gebruik van een database management systeem kan tegemoet worden

gekomen aan alle vier eisen (zie 6.4).

6.3 Geformatteerde of ongeformatteerde databestanden

De kenmerkende eigenschappen van geformatteerde en ongeformatteerde bestanden worden

hieronder globaal omschreven.

Geformatteerde bestanden:

Geformatteerde bestanden zijn ASCII-bestanden en zijn dus visueel leesbaar, bijvoorbeeld
als printeruitvoer of op het scherm. De informatie in deze bestanden is verdeeld over regels
en staat in een bepaalde volgorde opgeslagen, bepaald door het programma dat de bestanden
gebruikt. Er bestaan twee manieren om geformatteerde bestanden op te bouwen, namelijk
zogenaamde ’fixed format input/output’ en ’free format input/output’. Bij de fixed format’
methode heeft elk gegeven een vaste plaats op een regel, de tijdstap neemt bijvoorbeeld
posities 21 tot en met 30 in op regel 3. Bij de ’free format’ methode behoeft de positie op
de regel niet meer vast te zijn. Informatie wordt in dit geval gescheiden door een komma of
een spatie. Het aantal gegevens, op een regel en het regelnummer blijven nog wel van
belang. Voordeel van een geformatteerd bestand is dat deze rechtstreeks door een professio-
neel programma, bijvoorbeeld spreadsheet, kan worden gelezen. Bovendien wordt de
overzichtelijkheid bevorderd, hetgeen soms wel gepaard gaat met extra inspanningen bij de

aanmaak van de bestanden.

32

Datz;besta;ld;n

Een ander voordeel is dat de geformatteerde bestanden op elke computer door elk
programma als regel gelezen kunnen worden, ongeacht de compiler die gebruikt werd om
een programma te ontwikkelen. Dit in tegenstelling tot ongeformatteerde bestanden waarvan
de (binaire) structuur van de file van de (FORTRAN) compiler afhangt die gebruikt werd

om het desbetreffende output-genererende programma te onwikkelen.

Tenslotte, het voordeel van geformatteerde bestanden is dat de gebruiker daarin eigen

commentaartekst kan opnemen. Dit ter verhoging van de oriéntatie in het bestand.

Ongeformatteerde bestanden:

Ongeformatteerde bestanden zijn optisch niet leesbaar. Deze bestanden bestaan niet uit
fysieke records (regels) maar uit tecords die een reeks waarden in binaire code bevatten.
Evenals bij geformatteerde bestanden staan de gegevens in een bepaalde volgorde.
Vanzelfsprekend is er een afstemming nodig tussen het programma dat deze bestanden
aanmaakt en het programma dat de gegevens leest. Om ongeformatteerde bestanden aan te
maken of te lezen is speciale programmatuur nodig (deze moet door de gebruiker zelf

geschreven worden).
Voor- en nadelen:

In de navolgende tabel worden de belangrijkste voor- en nadelen van geformatteerde en

ongeformatteerde bestanden weergegeven.

33

Databestanden

Tabel 6.1 Voor- en nadelen van geformatteerde en ongeformatteerde databestanden

geformatteerd ongeformatteerd

aanmaken en/of m.b.v. willekeurige editor noodzakelijkerwijs m.b.v.

aanpassen van file, of tekstverwerker speciale programmatuur

visuele inspectie

van inhoud

fouten typefouten zijn snel ge- weinig kans op fouten
maakt, verkeerde volgorde omdat bestand alleen te
in gegevens of verkeerde maken/aanpakken door
positie leidt tot fouten speciale programmatuur

grootte van datafiles relatief groot, relatief relatief klein, relatief

lees- en schrijfsnelheid lange lees- en schrijftijd korte lees- en schrijftijd

rechtstreekse visuele ja neen

leesbaarheid

leebaarheid door

programma’s ja neen

ontwikkeld m.b.v. (als regel) (als regel)

andere compiler

mogelijkheid

opnemen van ja neen

commentaartekst

door gebruiker

34

Databestanden

6.4 Gegevensbehandeling in database management systeem

Databestanden kunnen uitstekend worden opgebouwd binnen een database management
systeem (DBMS). Zo’n systeem biedt standaard vele mogelijkheden om gegevens te
manipuleren en te ordenen. Zo kunnen rekenkundige bewerkingen op de gegevens worden

uitgevoerd en kunnen gegevens eenvoudig worden geselecteerd en gesorteerd.

De inzet van een database management systeem bij het beheer van gegevens levert een groot

aantal voordelen op:

- dezelfde gegevens kunnen door verschillende gebruikers, eventueel tegelijkertijd
gebruikt worden;

- data inconsistentie wordt vermeden;

- controle op data redundantie;

- data onafhankelijkheid kan eenvoudiger worden bereikt;

- de hoeveelheid te produceren code wordt gereduceerd omdat veel functies (functionali-
teit) reeds beschikbaar zijn;

- onderhoud van applicatie programmatuur wordt vereenvoudigd;

- de integriteit van data kan gemakkelijker worden gewaarborgd;

- de veiligheid van data kan eenvoudiger worden gewaarborgd;

- er kan sneller en effici€nter op veranderende eisen worden gereageerd;

- het gebruik van gegevens kan worden gevolgd;

- overdraagbaarheid wordt door de DBMS leverancier gegarandeerd.

De structuur van een database wordt formeel gedefinieerd met behulp van een data
definition language (DDL). Tegenwoordig is het mogelijk om naast de entiteiten ook de
relaties tussen entiteiten en de hiervoor geldende beperkingsregels via een DDL te defini-
eren. Hiermee neemt de hoeveelheid procedurele code die geproduceerd moet worden af en

zullen een aantal datacontrole aspecten uit applicatie software verdwijnen.

Omdat een DBMS een aantal lagen definieert tussen de fysieke opslag van data en de
applicatie, zal bij het gebruik van een DBMS doorgaans niet de performance worden
gehaald die met opslag zonder tussenkomst van een DBMS mogelijk is. De voordelen die

het gebruik van een DBMS biedt, wegen echter ruimschoots op tegen dit nadeel.

35

Databestanden

Ook bij het gebruik van een database management systeem zal een keuze gemaakt moeten
worden ten aanzien van de groepering van de gegevens, bijvoorbeeld per laag, soort
parameter of element. Bij een element moet in dit verband bijvoorbeeld worden gedacht aan
een knooppunt in het eindige elementen netwerk of een tak in een waterlopenstelsel. Bij een
parameter moet bijvoorbeeld worden gedacht aan de. ruwheid van de wand van die tak, of
het doorlaatvermogen van een watervoerend pakket. Indien de groepering per element de
voorkeur verdient zal voor elk element een record worden aangemaakt. De parameters
zullen in de velden van de records worden opgeslagen. Indien gekozen wordt voor een
groepering per parameter dan zal voor elke parameter een record worden aangemaakt en zal

voor elk element een veld worden gereserveerd.

De structuur van een record kan binnen een database management systeem eenvoudig
worden gewijzigd. Velden kunnen worden toegevoegd of verwijderd, desgewenst kan de
volgorde van de velden worden gewijzigd. Er kan eenvoudig een selectie van gegevens
worden gemaakt die geconverteerd wordt naar een invoerfile van een grafisch programma,

zodat een grafische controle snel te verwezenlijken is.

De file in een database management systeem is zo overzichtelijk als de gebruiker dat zelf
wenst. Diverse overzichten kunnen op eenvoudige wijze geproduceerd worden. Files die
door een database management systeem worden aangemaakt zijn over het algemeen niet van
het ASCII type, maar elk database management systeem heeft een conversiemogelijkheid
naar ASCII. Dit ASCII-bestand kan dan rechtstreeks door een hydrologisch programma
worden ingelezen (c.q. aangemaakt), of pas nadat het door een speciaal conversie program-
ma in een benodigd modelformaat is omgezet (hetzij wederom ASCII type, hetzij

ongeformatteerd).

6.5 Gegevensbehandeling in GIS

Binnen een Geografisch Informatie Systeem (GIS) worden bestanden van een speciaal type
gehanteerd. Deze bestanden bevatten de informatie over de verdeling (variatie) van een

parameter in een twee-dimensionale ruimte, zoals de maaiveldsligging, bodemkaart of de in

punten gemeten grondwaterstanden.

36

Databestanden

De interne GIS-bestanden kunnen door een hydrologisch computerprogramma niet recht-
strecks worden gelezen, noch gemakkelijk worden aangemaakt. Wel is er binnen een GIS
meestal een optie aanwezig om een intern GIS bestand naar een ASCII-formaat bestand om
te zetten. Deze zogenaamde "export-ASCII" bestanden hebben een vastomschreven formaat

voor wat betreft de inhoud.

In de situaties waar een hydrologisch programma buiten de GIS-omgeving wordt geimple-
menteerd, zal een programma-ontwikkelaar moeten beslissen of de data-communicatie
(invoer/uitvoer) tussen een programma en GIS zal geschieden op basis van deze "export-
ASCII" bestanden of dat er een speciaal hulpprogramma wordt ontwikkeld ten behoeve van
de conversie van een "export-ASCII" bestand naar een bestand met een benodigd modelfor-
maat (hetzij wederom van het ASCII-type, hetzij ongeformatteerd). Indien toch een
conversieslag nodig is, kan ervoor worden gekozen om de ASCII-bestanden van een
benodigd modelformaat rechtstreeks binnen GIS te laten aanmaken, en wel zonder de
tussenkomst van een "export-ASCII" bestand. De figuur 6.1 geeft schematisch de mogelijke
soorten van gegevensstromen weer. In een concrete situatie zou het datatransport
bijvoorbeeld alleen door middel van ASCII bestanden plaatsvinden en niets zoals in de
figuur is gegeven, door zowel ASCII als "export-ASCII" en ongeformatteerde bestanden.

Het begrip "bestand” betreft zowel modelinput als modeloutput.

GTIS
DBMS I
A
t-ASCII haevi
export- omgevin
begtTnd & &
— e - -
. Model
>| Conversie < omgeving
programma]
v v
ongeformatteerd ASCII
estand modelbestand

>| Hydrologisch [<
MgDEL &

Figuur 6.1 Soorten gegevensstroom tussen GIS en hydrologisch model, bij gescheiden -
werkomgevingen. Neerwaarts: invoergegevens uit GIS voor model. Opwaarts:
modelresultaten naar GIS, bijvoorbeeld voor grafische presentatie.

37

Databestanden

6.6 Voorbeelden geformatteerde (ASCII) bestanden

Het grote voordeel van geformatteerde bestanden is dat deze optisch leesbaar zijn, bijvoor-

beeld op het scherm en als printuitvoer.

Bij geformatteerde bestanden is de positie van in te lezen variabelen per regel (record) en de
plaats op een regel van te voren door de programma-ontwikkelaar vastgelegd. De plaats ter
rechterzijde van de op een regel voorkomende variabelen kan door de programmagebruiker
worden benut om daar een eigen toelichtende tekst te plaatsen (toe te voegen). Een ASCII-
bestand kan met een willekeurige tekstverwerker of met een speciaal hulpprogramma
(pre/postprocessor) worden aangemaakt. In de praktijk zal een ASCII-bestand met behulp

van een tekstverwerker worden aangemaakt en aangepast.

Naast *fixed format’ invoer is het mogelijk om een geformatteerd bestand ook door middel
van ’free format’ in te lezen. Bedacht dient te worden, dat altijd het benodigde aantal
variabelen wordt ingelezen bij de "FREE FORMAT’ die in FORTRAN 77 is ingebouwd.
Dit is ongeacht hun positie binnen een bestandsrecord of zelfs de verschillende records.
Indien bijvoorbeeld 3 variabelen worden ingelezen, kunnen deze op én record aanwezig

zijn of verspreid over 2 of 3 records.

Voorbeeld 1 Topology of a sewage system

In dit voorbeeld wordt een ASCII-file geillustreerd, die door middel van een 'DO ...
CONTINUE’ programmastructuur kan worden ingelezen. Een file bestaat hierbij veelal uit
samengestelde blokken met elk een éigen blok-header en record structuur. Een voorbeeld
hiervan vormt het gebruik van een blok-header waarin titel, het aantal records en de
variabelen in een record beschreven worden. De tekst van de header wordt door de

programmeur opgegeven, zoals onderstaand voorbeeld illustreert.

- titel.... : AANTAL STROOMGEBIEDEN
- nummer... 13
- tekstregel KNOOP OPP. %o L A ete.
- records.. : 81 0070 20 30
82 439 15 200

38

Databestandert

Enkele opmerkingen met betrekking tot de structuur van een record zijn:

- records bestaan uit velden waaraan waarden worden/zijn toegekend;

- de velden welke refereren aan andere records (pointers) worden -als eerste genoemd;

- in het geval aan velden geen waarden worden/zijn toegekend blijft het veld leeg, de
hoofdstructuur van het record blijft intact;

- gebruik altijd de decimale punt (bijvoorbeeld 1.0 of 100.0) voor het aangeven van de

*real’ variabele.

39

Databestanden

Voorbeeld 2 Voorbeeld geformatteerd bestand, invoer voor programma SIMGRO.
(Staring Centrum, Wageningen)

Elke record ("regel") heeft een naam. Het programma controleert of het de juiste record
inleest, aangeduid bijvoorbeeld met tekst "ROOT" (dikte van wortelzone). Foutmeldingen
verwijzen naar deze naam. Per recordnaam wordt in de handleiding de invoer beschreven

(verwijzing mogelijk naar andere records). Recordnaam is hulpmiddel bij het aanmaken van

het bestand, of controleren van de gegevens.

40

Databestanden

Voorbeeld 3 (RIVM, K. Kovar, Bilthoven)

Voorbecld van geformatteerd bestand, ten behoeve van vastlegging van data voor grondwa-
terontrekkingen in AQ-programmatuur (computer programma AQ-APIN). Dit bestand kan
door middel van een teksteditor door de gebruiker worden aangemaakt. Het wordt echter
ook door AQ-APIN exact in deze vorm aangemaakt. Indien de data voor het eerst door de
gebruiker aan AQ-APIN worden aangeboden, dan behoeft de commentaartekst ter rechter-
zijde van de getallen (inclusief logische waarden en teksten) niet te worden opgegeven.
AQ-APIN genereert de tekst zelf ter verhoging van de optische leesbaarheid van het
bestand, Recordnummers worden door AQ-APIN automatisch toegevoegd ter oriéntatie in

de bijgevoegde gebruikershandleiding van de inhoud van het bestand, per individueel

record.

6.7 Voorbeeld bestandsstructuur DBMS
De hierna getoonde tabellen vormen een onderdeel van het bij IGG-TNO ontwikkelde

Online Grondwater Archief (OLGA). De Figuur 6.2 toont hoe de velden in de afzonderlijke

tabellen zijn gedefinieerd. Tevens worden in de figuur (een deel van) de relaties die tussen

41

Databestanden

de tabellen bestaan getoond. Hierbij geld:

= key veld

verplicht veld

niet verplicht veld

L]

Cn = character veld van maximum n posities
Nn = numeriek veld van maximaal n posities
D datum veld

Figuur 6.2 kan, evenals de definitie van de tabellen in het DBMS, automatisch worden
gegenereerd door het programma waarmee de objecten en de relaties tussen objecten

worden gedefinieerd.

Figuur 6.2 Voorbeeld bestandsstructuur

42

Databestanden

6.8 Koppeling van programma’s

Een mogelijkheid om wverschillende soorten programmatuur te koppelen is via het
vitwisselen van databestanden; uitvoer van het ene programma kan dienen als invoer voor
het andere. Hierbij is het van belang dat de programmatuur de mogelijkheid biedt om deze
bestanden indien gewenst te leveren. Ook moeten de bestanden min of meer
gestandaardiseerd worden, zodat ze eenvoudig in te lezen zijn in andere programma’s. In de
meeste gevallen zal dit concreet neerkomen op kolomgedri€nteerde bestanden van de meest
relevante rekenresultaten, gegeven in standaard Sl-eenheden, Min of meer esthetische
toevoegingen zoals tabelkopjes, bladzijde-indelingen etc. zijn niet nodig en zelfs niet

wenselijk.

6.9 Resumé

- Stel de volgende eisen aan databestanden:
* overzichtelijkheid;
* eenvoudig te herstructureren;
* waar relevant moet een bestand aangeboden kunnen worden aan een grafisch program-
ma, ten behoeve van grafische presentatie en visuele controle;
* de gegevens uit een bestand moeten in numerieke vorm leesbaar zijn (ASCII-bestand
of speciaal programma).
- Besteed aandacht aan de keuze tussen geformatteerde en ongeformatteerde files.
- Overweeg het gebruik van een database management systeem voor systematische opbouw

en beheer van bestanden.

43

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

7 LAY-OUT FORTRAN 77-BRONCODE

7.1 Inleiding

De lay-out van de broncode van FORTRAN, maar ook van andere programmeertalen, is
van groot belang voor de bevordering van de kwaliteit van software. Door een juiste lay-out
wordt niet alleen in eerste instantie de leesbaarheid van de broncode zelf verhoogd, maar in
het verlengde daarvan ook de onderhoudbaarheid van programmatuur als geheel. Bij een
(beter) leesbare code kan men zich immers beter en sneller ori€nteren, waardoor de kans op
fouten en misverstanden afneemt en het onderhoudsproces efficiénter verloopt. Het kan
verder worden verwacht dat de programmatuur die door de ontwikkelaar (of de organisatie
van oorsprong) gemakkelijk kan worden onderhouden ook zonder bijzonder veel inspanning
bij derden kan worden geimplementeerd. Met andere woorden, de lay-out werkt ook

bevorderend op de overdraagbaarheid.

Achtereenvolgens komen aan de orde:

- lettertype en positionering van de code;
- assignment statement;

- do-loop statement;

- argument van subroutines en functies;
- if-then statement;

- read en write statement.

7.2 Lettertype en positionering van code

* Gebruik voor de tekst van de code systematisch kleine letters, deze schijnen een beter
leesbare code op te leveren. Alleen hoofdletters voor de code is af te raden.

* * De tekst van de code begint in principe in kolom 7. Indien de code verder begint,
gebeurt dit in verband met het inspringen (zoals bij do-loop en if-then).

* De tekst van de code loopt in principe tot en met kolom 71, de kolom 72 wordt
vrijgehouden als scheiding van de mogelijke commentaartekst in het veld 73-80.

* 1 Lege (blanco) positie aanhouden tussen de variabelen, zoals in het argument van
subroutines, declaraties van variabelen en datablocks.

* Gebruik voor de continuation van lijnen in het hele programma eenzelfde teken,

45

Lay-out FORTRAN 77-broncode

bijvoorbeeld het teken *&’. Gebruik bij voorkeur geen cijfers, want het gebruik van
cijfers (1, 2, enzovoorts) zou verwarrend kunnen zijn indien in de buurt andere cijfers

zouden liggen, bijvoorbeeld de labels van do-loops.

Aanbevolen:

Afgeraden:

7.3 Assignment statement
* Aan linkerzijde van het =" teken minimaal 1 blanco positie opnemen. Dit verhoogt de
overzichtelijkheid.

* Aan rechterzijde van het "=’ teken altijd 1 blanco positie aanhouden. Dit verhoogt de
overzichtelijkheid.

* Plaats het *=" teken van achtereenvolgende assignment statements zoveel mogelijk
onder elkaar. Dit verhoogt de overzichtelijkheid. Indien de positie van het *=" teken in
kolom 15 wordt gekozen zullen in het veld links van het =’ teken variabelen passen
met een maximale lengte van 7 posities. Als het aantal posities 7 niet toereikend is
(bijvoorbeeld bij array-variabelen) verschuif dan het =’ teken naar rechts zover als

nodig is.

46

Lay-out FORTRAN 77-broncode

Aanbevolen:

Afgeraden:

* Operators (rechterzijde statement) voor verschillende NIVEAUS van bewerkingen

scheiden met 1 blanco positie. Dit verhoogt de overzichtelijkheid.

Aanbevolen:

7.4 Do-loop statement

* Labels bij continue’ met 10 laten oplopen, beginnend bij 10.

* Labels bij continue’ rechts aansluiten bij kolom 5.

47

Lay-out FORTRAN 77-broncode

Aanbevolen:

Afgeraden:

* De statements behorend bij een IE-THEN-ELSE of DO-blok 3 posities naar rechts laten
inspringen ten opzichte van de IF-THEN-ELSE en DO-opdrachten.

Aanbevolen:

48

Lay-out FORTRAN 77-broncode ™

Afgeraden:

* Do-loop altijd met een *continue’ eindigen

* Elke do-loop heeft een eigen ’continue’.

Aanbevolen:

Afgeraden:

7.5 Argument van subroutines en functies

* 1 Lege (blanco) positie laten tussen de variabelen. Dit verhoogt de overzichtelijkheid.
* De beginpositie van de eerste argument variabele op een continuation lijn gelijk stellen

aan die op de voorgaande lijn.

49

Lay-out FORTRAN 77-broncode

Aanbevolen:

Afgeraden:

7.6 If-then statement

* Gebruik in het argument geen blanco posities behalve v66r en na ’.or.” en ’.and.’, of
haakjes gebruiken. Deze blanco posities of haakjes, geven de visuele scheiding aan
tussen de diverse niveaus van logische bewerkingen, zulks ter verhoging van de
leesbaarheid.

* Bij een grote afstand tussen ’if” en ’endif” statements (bij belangrijke if-then statements)
vlak boven de desbetreffende endif’ ook commentaar invoegen om ¢raan te herinneren

welke if-then statement er eindigt.

50

Aanbevolen:

Afgeraden:

Read en write statement

* Zowel afzonderlijke format statements als format in read/write zijn toegestaan. Gebruik

ter beoordeling aan programmeur.

Indien format statements worden gebruikt, de labels voor read en write afzonderlijk
nummeren, bijvoorbeeld respectievelijk bij 1000 en 2000 laten beginnen.

Evenals bij do-loops, de labels van format statements met 10 laten oplopen. Indien de
formats op diverse plaatsen worden gebruikt, de format statements niet onmiddellijk
achter de read en write statements plaatsen maar aan het einde van subroutines, tussen
de (laatste) return- en end-statement. Bij eenmalig gebruik is de plaatsing direct bij
schrijfopdracht handiger, vooral omdat het format vaak een aanduiding bevat van het
soort bericht dat wordt weggeschreven.

Tussen de statements ’read’, 'write’ of *format’ en *(’ altijd een blanco positie. Tussen
de laatste *)’ van read en write en lijst van te lezen/schrijven variabelen (voor zover
aanwezig) ook een blanco positie. De te lezen/schrijven variabelen scheiden door een

spatie.

51

Lay-out FORTRAN 77-broncode

Aanbevolen:

Afgeraden:

52

Lay-out FORTRAN 77-broncode

7.8 Resumé

- Ontwerp een consistent systeem voor lay-out van broncode.

- Beschouw dit hoofdstuk als een aanbevelenswaardig voorbeeld van een dergelijk
systeem.

- Wees consequent bij de implementatie van het gekozen lay-out systeem in de

programmeerpraktijk.

53

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie LT
Rapporten en Nota’s No. 27 van de CHO-TNO

8 FORTRAN 77-PROGRAMMEERASPECTEN
8.1 Inleiding

In dit hoofdstuk worden een aantal op zichzelf staande programma-technische keuzes
behandeld die in ieder programma aan de orde zijn, maar niet onder én van de overige
hoofdstukken vallen en die specifiek zijn voor het gebruik van de in de hydrologie veel
gehanteerde programmeertaal FORTRAN-77. Het betreft veclal zaken waarover niet altijd
eenduidig vast kan worden gelegd welke lijn gevolgd moet worden. De keuze die gemaakt
wordt hangt vaak af van het specificke probleem dat aan de orde is, de programmeerstijl
etc. In bijna alle gevallen geldt echter dat consequent gebruik en overzichtelijkheid

doorslaggevend zijn.

Terwille van de verhoging van de leesbaarheid en overdraagbaarheid wordt sterk
aanbevolen om de compiler specifieke programmeerfaciliteiten te vermijden. Het is
raadzaam om de geldende normen te volgen, bijvoorbeeld ANSI FORTRAN 77 (ANSI,
1978). '

Achtereenvolgens komen aan de orde;
- declaraties;

- initialisering;

- lokale variabelen;

- argumentenoverdracht;

- gebruik van intrinsieke functies;

- lengte subroutines;

- read en write statements;

- groepering van compiler-afhankelijke functies.

8.2 Declaraties

Binnen FORTRAN 77 kunnen variabelen op twee manieren gedeclareerd worden:

impliciet of expliciet. Bij impliciete declaraties is de beginletter van de variabele bepalend

voor het data-type als de variabele niet expliciet gedeclareerd is. Standaard is I-N voor

integers, en de rest van de letters voor reals en overige data-typen. De beginletters kunnen

55

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

vastgelegd worden door het IMPLICIT-statement, bijvoorbeeld:

Bij volledig expliciete declaratic genereert de compiler een foutmelding bij iedere variabele

die niet gedeclareerd is. Bij sommige compilers kan hiervoor het statement gegeven worden:

of moet met behulp van een switch bij de compilatie de optie gespecificeerd worden. Zijn

beide opties niet mogelijk, dan kan in de programmatestfase in vrijwel alle gevallen

hetzelfde resultaat geboekt worden door het specificeren van:

Hierbij wordt bijna altiid een compiler-foutmelding gegenereerd indien een niet
gedeclareerde variabele gebruikt wordt. Het voordeel van impliciete declaraties is dat er
minder programmacode geproduceerd moet worden en er dus ook navenant minder
typefouten optreden tijdens de compilatie-fase. Daarnaast hebben impliciete declaraties het
voordeel dat in een programma direct opvalt welk type de verschillende variabelen hebben,
zonder steeds een declaratielijst te hoeven raadplegen. Het grootste nadeel van impliciete
declaraties is echter dat gemaakte typefouten tijdens de runtime-fase moeilijk te detecteren
fouten kunnen opleveren, aangezien een fout ingetypte variabele opgemerkt wordt als een
nieuwe variabele met een type dat afhankelijk is van de beginletter. Zo zal bij impliciete
declaraties het verwarren van de variabele HOLD door HOLD, tot gevolg hebben dat met
een nieuwe variabele HOLD gerekend wordt met initi€le waarde, in plaats van met de
bestaande variabele HOLD met de bestaande waarde. Bij expliciete declaraties zou een

dergelijke fout reeds tijdens de compilatiefase opgemerkt zijn.

In het algemeen lijkt het raadzaam om expliciete declaraties toe te passen, waarbij wel een
conventie gehanteerd wordt van consequente beginletters voor verschillende datatypes (bij
voorkeur de standaard FORTRAN 77-conventie), zodat in het programma snel een
overzicht is over de gebruikte data-typen. Voorwaarde is wel dat de gebruikte conventie

duidelijk in de documentatie en headings vermeld wordt.

56

Fortran 77-programmeeraspecten’”

Het is de verwachting dat in een volgende versic van FORTRAN de default impliciete
declaraties (IMPLICIT INTEGER (I-N), IMPLICIT REAL (A-H, O-Z) zullen verdwijnen,

zodat de programmeur gedwongen zal worden een bewuste keuze te maken.
8.3 Initialisering

De initi€le waarde van programmavariabelen is per compiler en per processor vaak
verschillend. De meeste compilers kennen aan iedere variabele tijdens de compilatie een
waarde 0, 'FALSE’ of ° ’ toe. Bij andere compilers wordt de initi€le waarde van een
variabele bepaald door de toevallige geheugenplaats. Dat laatste heeft als gevolg dat
bijvoorbeeld bij een eerste bewerking met de variabele vaak een zeer groot of klein niet te
verwerken getal ontstaat en een runtime-fout optreedt. Het is daarom noodzakelijk om alle
gebruikte variabelen te initialiseren. Dit hoeft slechts €én keer plaats te vinden, namelijk
voor de start van het rekenproces. Het kan worden gedaan met behulp van het DATA-
statement, dat ervoor zorgt dat de gebruikte variabelen (ook die binnen een procedure) reeds
tijdens de compilatie geinitialiseerd worden op de gespecificeerde waarde. Deze initialisatie
vindt slechts één keer plaats, ook al wordt de procedure vaker aangeroepen. Variabelen uit
een blank COMMON-block kunnen niet door middel van een DATA-statement
geinitialiseerd worden. Variabelen uit een named COMMON-block kunnen alleen door
middel van een zogenoemde BLOCK DATA subprogramma geinitialiseerd worden. De
lokale variabelen worden doorgaans geinitialiseerd binnen een gewoon DATA-statement.
Variabelen die onderdeel zijn van een argumentenlijst worden door de aanroep van de

procedure geinitialiseerd, een DATA—Statement is hiervoor niet mogelijk.

Bij het initialiseren van zeer grootté array-variabelen is het in verband met het ruimtebeslag
van de exécuteerbare code raadzaam om tijdens de programmawerking een initi€le waarde
toe te kennen met behulp van een DO-loop aan het begin van een programma, in plaats van
een DATA-statement in de broncode.

57

Fortran 77-programmeeraspecten

Voorbeeld

8.4 Lokale variabelen

Binnen een procedure wordt de waarde van een lokale variabele op de ene computer/-
compiler wel en op dq andere computer niet vastgehouden. Standaard FORTRAN 77 houdt
deze waarde niet vast. Het is daarom noodzakelijk te allen tijde het SAVE-statement te
gebruiken voor die lokale variabelen die vastgehouden moeten worden, dan wel de
variabelen in een COMMON-block fe plaatsen. Het SAVE-statement heeft geen invloed op
een eventueel DATA-statement. Hoewel op de meeste compilers de mogelijkheid bestaat om
via een switch bij de compilatic aan te geven of de lokale variabelen bewaard moeten
worden of niet, is het SAVE-statement duidelijker. Dit geldt altijd op iedere computer,
bovendien is door het gebruik van het SAVE-statement mefeen duidelijk welke waarden van
variabelen bij een volgende aanroep van belang zijn (namelijk argumenten, variabelen van
COMMON’s en SAVE).

58

Fortran 77-programmeeraspectett

Een SAVE-statement ziet er altijd als volgt uit:

8.5 Argumentenoverdracht

Voor het overdragen van argumenten op een subroutine of functie bestaan twee
mogelijkheden: via een argumentenlijst en via een COMMON-block. Doorgaans is het
overdragen van argumenten via een COMMON-block efficiénter (in termen van rekentijd)
dan via argumentenlijsten. Het gebruik van argumentenlijsten heeft echter een aantal

voordelen die het gebruik ervan in een aantal gevallen rechtvaardigt.

Als een argumentenlijst gebruikt wordt kan een procedure eenvoudig voor meerdere
doeleinden gebruikt worden waarbij de actuele variabelen per geval ingevuld worden. De
lengte van CHARACTER- en ARRAY-variabelen kan daarbij variabel gemaakt worden.
Het is in het programma ook direct duidelijk wat het interface van de procedure is. Bij veel
argumenten in de lijst gaat deze duidelijkheid echter verloren, en kan beter een
COMMON-block gebruikt worden. De lengte van variabelen, bijvoorbeeld CHARACTER
en ARRAY-variabelen, in de argumentlijst wordt niet bepaald in de desbetreffende routine.
Bij de aanroep van de routine vanuit een andere routine wordt alleen het type van
variabelen gespecificeerd, dat wil hier zeggen CHARACTER en (bijvoorbeeld real)
ARRAY, en het startadres (beginpositie) van de CHARACTER en ARRAY in de totale

dataryimte. Om de data-overdracht flexibel te maken, wordt aanbevolen om in een routine

bijvoorbeeld de volgende declaraties op te nemen:

De werkbare lengte van de actuele variabele (bijvoorbeeld CHARACTER en REAL) wordt
bepaald door de lengte van de actuele variabele waarmee de desbetreffende routine wordt

aangeroepen.

59

Fortran 77-programmeeraspecten

Het nadeel van argumentenlijsten is dat er betrekkelijk snel overdrachtsfouten gemaakt
worden, bijvoorbeeld het vergeten van een argument, verwisselen van argumenten,
typefouten enzovoorts. In geval van COMMON-blokken kan vaak gebruik gemaakt worden
van een (per compiler verschillend) INCLUDE of INSERT-statement om een slechts
éénmalig aangemaakt COMMON-BLOCK te laden in die procedures waar het blok nodig
is. Bij het declareren van COMMON-blokken is het verstandig om verschillende data-typen
in verschillende COMMON-blokken te plaatsen. Voor CHARACTER-variabelen is dit zelfs
verplicht.

Binnen een programma zal iedere keer een afweging gemaakt moeten worden tussen

duidelijkheid, foutengevoeligheid en snelheid, waarbij duidelijkheid voorop staat.
8.6 Intrinsieke functies

Intrinsieke functies binnen FORTRAN 77, zoals COS, MIN, SQRT etc., kunnen op twee
manieren aangeroepen worden: als generieke functie of als data-type afhankelijke specifieke
functie. De generieke functie produceert meestal een uitkomst voor ieder data-type, zoals de
functie MAX als input zowel integers als reals kan hebben en als resultaat ook een integer
respectievelijk een real heeft. De specifieke functie kan slechts een specifiek data-type als
input en ook één data—tyﬁe als output genereren, zoals AMAXI1 slechts reals als input en als
output kent, en DMAX1 alleen double precision data-typen. |

Het voordeel van gebruik van generieke functies is dat een bewerking altijd een uitkomst
geeft onafhankelijk het type van de input, hetgeen goed van pas komt bij overschakeling van
bijvoorbeeld reals naar double precision. Het voordeel van specifieke functies is dat er een
extra check is op het data-type en dus ook (bij expliciete. declaraties) een extra check op
typefouten.

Het is moeilijk te zeggen welke methode de beste 1s Zeker hierbij is het van belang één lijn

te trekken. Bij het gebruik van expliciete declaraties is het overigens verplicht zowel

specifieke als generieke functies expliciet te declareren als INTRINSIC, bijvoorbecld:

Fortran 77-progmmmee;aspec:e£1

8.7 Lengte subroutines en functies

Zoals in hoofdstuk 3 is uviteengezet ligt het voor de hand programma’s in stukjes op te delen
in de vorm van subroutines en functies. Een optimale grootte van functies en subroutines is
echter moeilijk te geven. In veel leerbocken wordt uitgegaan van maximaal een A4’tje
FORTRAN-code per routine (ongeveer 50 regels aan statements). In grote programma’s,
die, in afwijking van de optimale situatie, vaak "gaandeweg" tot stand gekomen zijn, is een

dergelijke norm moeilijk te handhaven en ook niet altijd even gemakkelijk.

Het opdelen van het programma moet altijd kritisch beschouwd worden. Het is bijvoorbeeld
niet zinnig om rigide te streven naar een gelijke lengte van de subroutines. De statements
binnen een routine moeten in de eerste plaats inhoudelijk een functionele eenheid vormen.
Voorkomen moet worden dat er te veel code binnen een DO-loop of een IF-THEN-
ELSE statement komt te staan, zodat begin en eind van de structuur moeilijk te
onderscheiden zijn. Als een controlestructuur langer dan circa een A4 wordt, kan de routine

beter opgedeeld worden.
8.8 Read en write statements

Het is een goede gewoonte om binnen FORTRAN 77-programma’s alle READ-stitements
te beveiligen met een ERROR-label en END-label; of met de IOSTAT-indicator. Deze
toevoegingen zorgen er voor dat bij een inleesfout of indien het einde van de file bereikt is,
het programma naar een bepaalde plaats springt waar bijvoorbeeld een foutmelding kan

worden gegeven. De IOSTAT-indicator geeft meer gespecificeerd aan welke fout

opgetreden is.

61

Fortran 77-programmeeraspecten

De unitnummers die in het programma gebruikt worden, kunnen het beste bovenaan in het
hoofdprogramma vastgelegd worden met PARAMETER-statement. Het doorgeven van de
unitnummers naar verschillende subroutines kan vervolgens via argument overdracht
plaatsvinden. Op deze manier is het eenvoudig om een programma geschikt te maken voor

een andere computer, met andere unitnummer-definities; het programma hoeft dan slechts

op één plaats gewijzigd te worden.

8.9 Groepering van compiler-afhankelijke functies

Ten behoeve van de verhoging van overdraagbaarheid van programmatuur tussen diverse
(FORTRAN) compilers, is het raadzaam om de in dit verband specifieke functies in aparte
subroutines te plaatsen. Dit betreft bijvoorbeeld:

- openen van invoer- en uitvoerfiles;

- schermafhandeling;

- plotten;

- behandeling van overige randapparatuur;

- opvragen van tijd en datum.
8.10 Resumé

- Maak binnen een programma iedere keer de afweging tussen duidelijkheid, fouten-
gevoeligheid en snelheid, waarbij” duidelijkheid voorop staat (bijvoorbeeld impli-
ciete/expliciete declaratie, generieke/specifieke functies).

- Initialiseer alle gebruikte programmavariabelen.

- Gebruik het SAVE-statement voor lokale variabelen, waarvan de waarde vastgehouden
moet worden, dan wel plaats de variabelen in een COMMON-block.

- Deel een programma op in subroutines en functions, waarbij als streefgrootte geldt

maximaal 50 regels aan statements.

62

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

9 FOUTENCONTROLE EN FOUTMELDINGEN
9.1 Inleiding

Elke gebruiker zal wel eens het onverwachte en vroegtijdige befindigen van een
computerprogramma meegemaakt hebben. Er zijn verschillende manieren waarop de
gebruiker op de hoogte wordt gebracht van de aard van de opgetreden fout. Wat valt er
bijvoorbeeld te denken van de volgende melding op het beeldscherm:

"Mathoverflow, trap in segment 0A38 7003",
of een ander, voor de meesten even onbegrijpelijke boodschap:

"Heap size exceéded (open file xxxx)".
Een melding die door de gebruiker wellicht nog het beste te begrijpen valt, maar waar
hij/zij evenmin iets mee kan beginnen, zou kunnen zijn

"Zero divide in line xxx of module YYY".

De hiervoor gegeven meldingen zijn van het FORTRAN-systeem zelf afkomstig, dus niet

tevoren door de programma-ontwikkelaar geprogrammeerd.

Duidelijk is dat het anders moet. De gebruiker zal in principe een melding moeten krijgen
over wat hij nu precies fout heeft gedaan. De programma-ontwikkelaar zal dus in de huid
van de gebruiker moeten kruipen en zich een voorstelling moeten maken welke vergissingen
c.q. fouten gemaakt kunnen worden. Een goede documentatie is dan een eerste stap in de
juiste richting (hoofdstuk 12). Er is echter meer nodig. Invoergegevens zullen getoetst
moeten worden: liggen de opgegeven waarden binnen redelijke grenzen? Zo niet, dan zal in
ieder geval een waarschuwing afgedrukt moeten worden. Het afdrukken van enkele
statistische gegevens over de invoergegevens kan ook helpen bij het opsporen/constateren
van fouten. Denk bijvoorbeeld aan: minimum, maximum en gemiddelde van parameter-
waarden, som van oppervlakten van elementen in numerieke berekeningen, efc. Naast
fouten aan gebruikerszijde kunnen er ook in de broncode ’geprogrammeerde fouten’ zitten.
Bijvoorbeeld een delen-door-nul conditie, die niet voorzien was maar wel reéel mogelijk is.
Of denk aan matrix-operaties die onder bepaalde voorwaarden niet stabiel zijn. Bij het
programmeren zullen deze condities ondervangen moeten worden. Niet altijd een
eenvoudige zaak, maar wel belangrijk. In het navolgende wordt een aantal praktische

aanwijzingen gegeven met betrekking tot foutencontrole en foutathandeling.

63

Foutencontrole en foutmeldingen

9.2 Invoer van data

Invoer van data dient overzichtelijk en gestructureerd plaats te vinden. Dit voorkomt

onnodige fouten.

Een duidelijke omschrijving van invoerparameters met hun dimensies/eenheden moet in de

documentatie worden opgenomen (hoofdstuk 12).

Indien er sprake is van een speciaal voorbewerkingsprogramma voor de invoer van
gegevens (zie bijvoorbeeld hoofdstuk 3, Figuur 3.1) dient er een goede afstemming te zijn
tussen foutencontrole in de voorbewerker en in het hoofdprogramma. Alleen als het
invoerprogramma standaard oﬁderdeel uitmaakt van het totale programmapakket kan hier
een belangrijk deel van de foutencontrole worden uitgevoerd. Zo niet, dan dient één en

ander (ook) in het hoofdprogramma plaats te vinden.

Bij het opzetten van de programmastructuur dient al rekening gehouden te worden met de

foutathandeling. Hierdoor is een efficiénte en doorzichtige programmering mogelijk.
9.3 Foutencontrole

Plaats het invoeren van data zo veel mogelijk bij elkaar in het programma. Het
programmeren van de foutencontrole wordt daardoor eenvoudiger. Daarbij moet gewerkt
worden in drie stappen: inlezen, afdrukken en controleren. Alle ingelezen data moeten ook
kunnen worden afgedrukt (let daarbij ook op interactieve invoer). Houd er bij het afdrukken
van gegevens rekening mee dat gegevens, die ingelezen kunnen worden, ook afgedrukt
moeten kunnen worden (in FORTRAN 77: afstemming van FORMAT statements). Door
inlezen en afdrukken zo veel mogelijk bijeen te plaatsen, is het relatief eenvoudig controles
in te bouwen voor de uitvoering van lees- en schrijfopdrachten. Foutcondities tijdens
inleézen, bijvoorbeeld real getal waar integer getal wordt verwacht of end-of-file conditie,

kunnen dan goed opgevangen worden (inbouwen van foutmelding).

Ga voor alle invoergegevens na of re¢le waarden opgegeven zijn (doorlatendheid groter dan
nul, porositeit tussen 0 en 1, etc.). Irreéle waarden kunnen namelijk in een later stadium

van het programma moeilijkheden opleveren. Zo kunnen bijvoorbeeld bij het opstellen van

Foutencontrole en foutmeldingen

een stelsel vergelijkingen systeem-matrices ontstaan die niet voldoen aan de eisen die gesteld
worden aan de geprogrammeerde oplosprocedure. Voor het opsporen van fouten kan het
bijzonder nuttig zijn om enkele algemene gegevens af te drukken die toch al door het
programma berekend worden. Denk bijvoorbeeld aan minimum en maximum codrdinaten,
oppervlakte modelgebied, kortste en langste zijde van elementen, enzovoorts. Neem waar-
schuwingen op indien er naar alle waarschijnlijkheid fouten in de invoer kunnen zitten. Stop
de programma-executie bij ernstige fouten, natuurlijk onder vermelding van een duidelijke
foutboodschap.

9.4 Foutmeldingen

Foutmeldingen dienen niet (alleen) een fout aan te geven maar moeten ook een verwijzing
inhouden naar de oorzaak van de fout en eventueel de plaats in het programma waar de fout
optreedt. Het melden van een ’delen-door-nul’-conditie of ’log-uit-niet-positief-getal’ heeft
weinig zin als niet aangegeven wordt welke uitdrukking nul of niet positief is. Overigens
zbuden deze condities voorkémen moeten worden door een goede controle van de invoer.
Een controle op de array-grensoverschrijdingen dient op kriticke punten uitgevoerd te
worden, bijvoorbeeld voor de uitvoering van omvangrijke DO-loop operaties. Dit type
condities kan tot niet-traceerbare fouten leiden. Door het gebruik van adjustable arrays en/of
het PARAMETER statement kan een goede afstemming tussen array-dimensie en fouten-

controle plaatsvinden (zie voorbeeld 1).

65

Foutencontrole en foutmeldingen

Voorbeeld 1

Het vermelden van een foutnummer in de foutmelding schept de mogelijkheid om in een

gebruikershandleiding ruimer aandacht te besteden aan de optredende fout.

9.5 Foutafhandeling

Routines met een algemeen karakter dienen een fout te signaleren en deze door te geven aan
de aanroepende routine door middel van een foutvlag. In de routine waar de fout optreedt
wordt wel een foutmelding afgegeven, maar de routine zelf zorgt niet voor beéindiging van
het programma. De foutvlag kan bestaan uit een integer getal die het type fout aanduidt of

een logical variabele.

66

Foutencontrole en foutmeldinéén

Voorbeeld:

IFOUT = 0 geen fout opgetreden

IFOUT = 1 onjuiste argumentwaarden

IFOUT = 2 geen convergentie

of

LERROR = ,FALSE. geen fout opgetreden

LERROR = .TRUE. fout opgetreden

Geef in de programmadocumentatie duidelijk aan wat de betekenis is van de verschillende
waarden van de foutvlag. Overweeg het gebruik van een aparte subroutine voor het
afdrukken van foutmeldingen. Dit voorkomt het herhaaldelijk programmeren van dezelfde
melding en bevordert de herkenbaarheid van de foutmeldingen. Denk bijvoorbeeld aan
fouten bij input/output-instructies. Elke leesopdracht kan zo bijvoorbeeld gemakkelijk
voorzien worden van een END-OF-FILE label (zie voorbeeld 2).

Voorbeeld 2

67

Foutencontrole en foutmeldingen

9.6 Resumé

- Voer data overzichtelijk in en doe dit gestructureerd, dit voorkomt onnodige fouten.

- Houd reeds bij de opzet van een programma(pakket) rekening met foutafhandeling.

- Concentreer zo veel als mogelijk het invoeren van data, de foutencontrole wordt daardoor
vergemakkelijkt.

- Zorg voor een uitvoerige controle op fouten, zoals irreéle parameterwaarden en
foutieve combinaties van (invoer)parameters.

- Foutmeldingen moeten niet alleen de aard van de fout aangeven maar ook een verwijzing
inhouden naar de oorzaak van de fout en de wijze waarop het probleem kan/moet worden
verholpen.

- Zorg voor signalering van array-overschrijdingen.

- Nummer of benoem anderszins systematisch de foutmeldingen, dit geeft de mogelijkheid

om in een gebruikershandleiding ruimere aandacht aan de foutafhandeling te besteden.

68

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

10 TESTEN VAN PROGRAMMATUUR

10.1 Inleiding

Om een inzicht in de kwaliteit van programmatuur te krijgen is een goed georganiseerde
testaanpak vereist. Vragen met betrekking tot functionaliteit, performance, betrouwbaarheid,
beheersbaarheid, onderhoudbaarheid, beveiliging en documentatic kunnen uitsluitend
beantwoord worden als het testproces planmatig wordt aangepakt. Omdat de meeste fouten
gemaakt worden in het begin van het ontwikkeltraject en de kosten om een fout te herstellen
toenemen naarmate het tijdstip van ontdekken later valt, is het van groot belang dat in alle
fasen van de levenscyclus (voorbereidende) testactiviteiten plaatsvinden. Dit hoofdstuk gaat
voornamelijk in op het testen van programmatuur in software-technisch opzicht. Of de door
de programmatuur geimplementeerde theorie hydrologisch gezien correct is blijft hier buiten

beschouwing.

10.2 Aanpak bij testen

Al tijdens het opstellen van de programma-eisen en het globale ontwerp van de te bouwen
programmatuur wordt aandacht besteed aan testen in de vorm van het specificeren van de
tests die in latere stadia uitgevoerd moeten worden om de functionaliteit en performance te
controleren (verificatie eisen) en het systeem in gebruik te nemen (acceptatie eisen). Dit
betekent dat alle eisen die aan de programmatuur gesteld worden in principe testbaar moeten
zijn, dat wil zeggen dat ze binnen een eindige hoeveelheid tijd gecontroleerd moeten kunnen

worden.

Tijdens de implementatic worden alle afzonderlijke onderdelen getest en vervolgens
geintegreerd in subsystemen en uiteindelijk in het complete werkende systeem (computer
programma). Bij deze incrementele opbouw van het systecem kan met testen worden
begonnen bij zowel de modules op het laagste niveau (bottom-up testen, waarbij de
omgeving van de module met behulp van een test-driver wordt gesimuleerd) als bij modules
op het hoogste niveau (top-down testen, waarbij modules op een lager niveau door
zogenaamde teststubs (dummy routines) ge€muleerd worden). Met het testen wordt

nagegaan of de afzonderlijke modules aan de gestelde specificaties voldoen (moduletest), of

69

Testen van programmatuur

ze samen het beoogde resultaat opleveren (integratietest) en of de documentatie en

gebruikershandleiding in overeenstemming zijn met de programmatuur (systecmtest).

Na de (voorlopige) oplevering van de programmatuur wordt het systeem getest op basis van
de gebruikers specificaties (applicatietest). Hier ligt de nadruk op het testen van de
bruikbaarheid van de geleverde functionaliteit. Hierbij dient aangetekend te worden dat het

voor een groter systeem onmogelijk is alle paden door de programmatuur te testen.

Tenslotte wordt getest of het systeem zich in de produktie-omgeving net zo gedraagt als in
de omgeving waarbinnen het ontwikkeld werd (installatietest). Hierbij dient aangegeven te
worden onder welke condities de executable was aangemaakt (compiler, linker, etc.).
Eventueel kan ook aandacht worden besteed aan het schatten van de betrouwbaarheid van de

programmatuur, bijvoorbeeld met behulp van betrouwbaarheidsmodellen.

De resultaten van alle genoemde tests dienen vastgelegd te worden in gestandaardiseerde
documenten en beschikbaar te zijn in latere fasen van het ontwikkelingstraject. Dit houdt
onder andere in dat in de produktiefase, nadat het programma is opgeleverd, beschikt kan
worden over een aantal bij het programma behorende testproblemen. De documentatie van
deze tests omvat in ieder geval een beschrijving van het probleem, een complete opsomming
van de invoer data, alle bij het probleem behorende witvoer en een verklaring van de
resultaten en eventuele afwijkingen. Deze tests kunnen te allen tijden gebruikt worden om te
controleren of het programma, bijvoorbeeld na installatie op een ander systeem, nog steeds
het juiste gedrag vertoont. Waar mogelijk is het raadzaam om de toekomstige gebruikers bij
het ontwerp van de tests te betrekken.

10.3 Testmethoden

Zoals in de vorige paragraaf al werd opgemerkt, is het in de praktijk vrijwel altijd
onmogelijk het correct functioneren van een programma fe bewijzen. Hiertoe zou de
programmatuur namelijk vitputtend getest moeten worden, zodat alle mogelijke paden in de
de programmatuur doorlopen zouden worden. Dit is in het bijzonder het geval bij
geohydrologische programma’s die een betrekkelijk kleine gebruikersgroep kennen en waar

dus veel inspanning bij het testen vaak niet opweegt tegen de "opbrengst” daarvan. Dit is

70

Testen van programmatiur

overigens juist een van de gesignaleerde knelpunten die tot de instelling van de CHO-TNO
Werkgroep RCPH (dit rapport) hebben geleid. Om economische en praktische redenen is
het van groot belang een zo klein mogelijke (maar voldoende representatieve) verzameling
van testgevallen vast te stellen. Uitgangspunt hierbij kan zowel de specificatie als de
implementatie van de programmatuur zijn (functionele respectievelijk structurele analyse). In
het eerste geval bestaat er geen theoretisch onderbouwde methode om de verzameling
testgevallen te bepalen, maar wordt aan de hand van de eigenschappen van de invoer van
het programma een set samengesteld. Hierbij wordt zowel met representatieve waarden
(bijvoorbeeld klassegemiddelden) als met uitzonderingsgevallen (extreme waarden) rekening
gehouden. Ook andere, oﬁaﬂlankelijk verkregen (bijvoorbeeld analytische) oplossingen
kunnen hierbij worden gebruikt. In het tweede geval zijn de tests gebaseerd op de interne
structuur van de programmatuur en bestaan er hulpmiddelen (computer aided testing
(CATE), software analyse tools en dergelijke) om vast te stellen in hoeverre de tests de
programmatuur volledig dekken. Hierbij kan geprobeerd worden met de tests 100%
"dekking" te bereiken of om de complexiteit van de onderzochte code die van de gehele
programmatuur te laten naderen (wat in beide gevallen overigens geen garantie voor

correctheid is).

In de praktiik worden in de ontwerp- en implementatiefase naast de bovengenoemde

technieken een aantal methoden gebruikt om fouten in ontwerp en programmatuur op te

sporen die niet theoretisch onderbouwd zijn, maar die wel op duidelijk afgesproken regels

gebaseerd kunnen worden:

- het zorgvuldig doorlezen van de code door de programma-ontwikkelaar zelf. Nadeel
hierbij is de (onwillekeurige) neiging die iedere programmeur heeft om die testgevallen

te selecteren die aantonen dat de code wel aan de specificaties voldoet;

- het in teamverband doorlopen en met behulp van testgegevens executeren van het
programma. Hierbij kunnen zowel de bij het ontwerp als de bij de implementatie
gemaakte keuzes worden verklaard en bediscussieerd. Bovendien kunnen aan de hand

van de ervaring van de teamleden frequent voorkomende fouten gedetecteerd worden.

71

Testen van programmatuur

10.4 Resumé

72

Stel een verzameling van testgevallen samen, waarbij (vaak aan de hand van invoer)
rekening wordt gehouden met zowel representatieve als extreme waarden.

Test alle onderdelen (modulen) tijdens de implementatie eerst afzonderlijk. Test
vervolgens modulen geintegreerd in subsystemen en uiteindelijk in het complete systeem
(programmay).

Lees in ieder geval zorgvuldig de code door en beproef het programma in teamverband

met behulp van testgegevens.

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

11 INTERNE DOCUMENTATIE IN COMPUTERCODE
11.1 Inleiding

Met interne documentatie wordt de tekst bedoeld, die als commentaar wordt toegevoegd aan

de broncode van een programma.

De interne documentatic is een belangrijk middel om specificke informatie van het
programma en de werking vast te leggen voor de programma-ontwikkelaar en mogelijke
toekomstige ontwikkelaars. De informatie kan nodig zijn voor onderhoud of wijzigingen aan

het programma.

De hoeveelheid informatie die gegeven wordt is afhankelijk van:

- het gebruik van het programma en de levensduur ervan;

- de omvang van het programma;

- de complexiteit van het programma.

Een programma dat eenmalig gebruikt wordt en vervolgens vernietigd, behoeft niet van
commentaar voorzien te worden. Dit geldt in zekere mate ook als het programma alleen
door de ontwikkelaar zelf wordt gebruikt. Bedacht dient echter te worden dat ook als het
programma alleen door de ontwikkelaar wordt gebruikt, een redelijk niveau van
documentatie aan te bevelen is omdat hij/zij na verloop van tijd zelf ook alle details niet
meer weet. Een groot en ingewikkeld programma dat overgedragen zal worden aan anderen

voor gebruik en onderhoud moet volledig gedocumenteerd worden.

De interne documentatie wordt verdeeld in twee categorieén:
- informatie die vooraan in de routine gegeven wordt (zogenaamde "program header");

- informatie tussen de programma-instructies van de routine.

De informatie voor de routine is algemeen van aard (zoals de naam van het programma
waar hij deel van uit maakt, een korte omschrijving van de routine, de datum en
programmeur). De informatie geplaatst tussen de programma-instructies verduidelijkt de
acties die uitgevoerd worden. Dit commentaar moet met mate toegepast worden om het
overzicht over de instructies niet te verliezen. Indién een heldere lay-out voor de instructies

gebruikt wordt, kan met enkele aanvullende opmerkingen volstaan worden.

73

Interne documentatie

De interne documentatie dient visueel gescheiden te worden van de programma-instructies.

11.2 Documentatie aan begin van routine

Volledige documentatie aan het begin van een routine, inclusief het hoofdprogramma bestaat
uit:
- naam van het programma + versienummer* + datum;
- vermelding van het pakket als het programma deel uit maakt van een pakket;
- doel/actie van het programma met uitgangspunten en beperkingen, invoer en uitvoer en
bijzonderheden;
- implementatie*;
machine, operating system;
compiler en linker met opties en versienummers;
bibliotheken;
- lijst met beperkende dimensies (van arrays bijvoorbeeld) en hoe dit aangepast kan
worden;
- programmeur(s) met bedrijf;
- beheerder;
- copyright/eigenaar;
- update informatie: wanneer welke wijzigingen in de brontekst zijn aangebracht;
- gebruikte methode, met zonodig referentie naar artikel of boek;
- opsomming van argument variabelen en gebruikte common block variabelen:
vermelding type (CHARACTER, LOGICAL, COMPLEX etc.);
vermelding betekenis;
- vermelding van INCLUDE files met beschrijving van inhoud;
- opsomming van aangeroepen routines;

- opsomming van Input/Output files.

N.B.: Onderdelen die alleen voor een hoofdprogramma van toepassing zijn, zijn door

middel van een * aangegeven.

11.3 Documentatie tussen de regels met FORTRAN-instructies

De documentatie tussen de regels met broncode moet erop gericht zijn om, in samenhang

74

Interne documentatie

met de broncode de acties toe te lichten die ter plaatse door het programma worden
vitgevoerd. De documentatic moet summier zijn, zodat de broncode niet over een
onoverzichtelijk grote lengte wordt vitgesmeerd. Er kan verwezen worden naar de externe
documentatie, zoals de handleiding, beschrijvingen van gebruikte algoritmen.

Een tweede deel van de documentatie in de broncode is het aangeven van wijzigingen, bij
voorkeur met datum en auteur. Voor toevoegingen kan bovendien een andere letter worden
gebruikt (hoofdletters als oorspronkelijke code in kleine letters is).

Het commentaar dient visueel gescheiden te worden van de code. Dit kan op verschillende
manieren geschieden, bijvoorbeeld:

- scheiding door regel met *....... N , ¥====== gfc.;

- scheiding door regel met c....... , G-, C=m===== e{C,}

- instructies in kleine letters en commentaar in hoofdletters, of andersom.

Het eerste teken (in kolom 1) van een commentaarregel dient een "*" of een "c" te zijn.

Delen van de FORTRAN-code met verschillende taken kunnen ook visueel gescheiden
worden met behulp van lege regels, zodat de instructies, die samen een taak vervullen als

een groep herkenbaar zijn.

De commentaartekst kan als volgt worden gepositioneerd:

- Elke commentaarregel beginnen op een vaste positie (kolom), bijvoorbeeld op positie 4;

- Commentaartekst inspringen afhankelijk van de beginpositiec van de broncode, waarop
het desbetreffende commentaar betrekking heeft.

75

Interne documentatie

11.4 Voorbeelden

Voorbeeld 1 Subroutine SCPP06 (RIVM, Bilthoven, K. Kovar)

Dit is een algemene routine die gebruikt wordt door diverse programma’s van de
zogenaamde AQ-programmapakketten van het RIVM. De AQ-programmapakketten worden

niet alleen intern maar ook extern gebruikt. Onderhoud en aanpassingen Zzijn te voorzien en

dus is de documentatie vrij uitgebreid.

O R e s o e R R e e S e R e e e

* *
* >> SUBROUTINE SCPPO6 << *
* *
R *
* purpose : Read 3 records from the file IIN. The data contain the *
* following "XP" records for the profiles: *
* 1) record XPFG *
* 2) record YPFG *
* 3) record MPPFG *
oy S *
% parameters : *
* *
* TIN = logical unit number of input file (1) *
* (integer variable) *
* ESC = ASCII character 27 (i) *
* (character variable) *
* CBLON = character string for switching bold char. on (1) *
* (character*5 variable) *
* CRVOF = character string for switching reverse video off (1) *
* (character*5 variable) *
* NPPFGO = number of points along the profile IPF (1) *
* (integer variable, 1 < NPPFGO =< NPPFGX) *
* XPFG = x-coordinates of profile IPF (o) *
* (real array, size >= NPPFGX) *
* YPFG = y-coordinates of profile IPF (o) *
* (real array, size >= NPPFGX) *
* MPPFG = definition of original/extra points on profile IPF (o) *
* (integer array, size >= NPPFGX) *
* IREC = number of the "XP" record (i/0) *
* (integer variable, 1 =< IREC(input)) *
* FLERR = flag of whether an error message was issued (yes:t) (o) *
* (logical variable) ' *
o e m m e m m mm e e i = m = S = e m m e *
* subprograms iorfai, iorfar, scmcu2 *
e e e e mmmm S e m e S m m e = e *
* error messages : 1 *
2 O *
* implementation : 1) Ensure that 1 =< IREC(input), *
* IREC(output) = IREC(input) + 3 *
* 2) The input and output value of IREC concerns *

76

Interne docuinentatie

the next record to be loaded or skipped. *
___ *
% Copyright RIVM, The Netherlands Last update : 21-MAR-1991 *

R R e o R e R R T e SR e R R e e e e R e e

subroutine scpp06 (iin, esc, cblon, crvof, nppfg0, xpfg, ypfg,

& mppfg, irec, flerr)
implicit double precision (a-h,o0-z)

dimension xpfg(¥), ypfg(*), mppfg(*)
character esc, cblon*5, crvof*5, txt*37, help*49
logical flerr

Set the text for the error message

data txt/'Error on Loading Profile Data Record '/

Read XPFG

call iorfar (iin, xpfg, nppfgl, flerr)
if (flerr) goto 10
irec = irec + 1

Read YPFG

call iorfar (iin, ypfg, nppfg0, flerr)
if (flerr) goto 10
irec = jirec + 1

Read MPPFG

call iorfai (iin, mppfg, nppfgld, flerr)
if (flerr) goto 10

irec = irec + 1

return

Write error message in the message window

10 if (irec.lt.10) then

write (help,’(a37,''XP,''il)"') txt, irec
elseif (irec.gt.9 .and. irec.l1t.100) then

write (help,’(a37,’'XP,’’',12)') txt, irec
else

write (help,'(a37,''XP,'’',1i3)') txt, irec
endif
call scmcu2 (esc, cblon, crvof, 22, 25, help, 49)
return :
end

77

Interne documentatie

Voorbeeld 2 Hoofdprogramma van FLAIRS IWACO B.V., Rotterdam)

Dit is het hoofdprogramma van het centrale rekenprogramma (hoofdbewerkingsmodule) van
het eindige elementen pakket TRIWACO. De informatie over de werking van het
programma is niet in de kop boven de routine verwerkt, het is in de externe documentatie

gegeven.

B R R R AR e R B R R R R T S R B R SRR s S XN
MAIN Program of FLAIRS

part of TRIWACO (Finite Element Package for simulating
Groundwater Flow)
(c) IWACO, Rotterdam
IWACO B.V. Consultants for Water and Environment
P.0. Box 183
3000 AD Rotterdam
the Netherlands

% % %ok %k % % % ¥ o
% % N % % % H %k ¥ % G

R o ke T T s ey e e

Version : 2.67 1/23/1990
Programmer : A. Leijnse
C.T. de Graaf

M.J. Emke
Operating
System : Microsoft DOS Version 3.3

IBM DGS Version 3.3

IBM 0S/2 Version 1.10
Compiler : Microsoft FORTRAN Version 5.0

(work arrays put in common block in main program
to prevent compilation error DATA GREATER THAN
64K)

Libraries : LLIBFORE.LIB (no C compatibility, Huge Memory
Model, in line Math Emulation) FLADOLIB.LIB

Routines : FLAIRS, FLAWOR, START, FRPAGE, RESREA, INNUIN,
DIM1, INPGRD, CREBP, DETFRA, INRIUT, INSOUR,
INBOUN, INRIVE, INPARM, FILPAR, DIMZ, POINT,
DIM3, GRADAT, INMAFI, INTIDA, STUMAT, RECMAT,
SOUMAT, RIVMAT, BOUMAT, ADDAD, LEAMAT, CONGRA,
DTNEW, DEBUPD, WRIFLA, PARBAL, PARCBA, BALANS,
GRAFIL, CUMBAL, PROUT, RESWRI, WRIMAP, HEADER,
CAPITAL, PAREPR, STNEEL, AFVOER, HORPOS, STORE,
FRETRA, VECPRO, SCALE, PAINPR, MATVEC, WRIGRA,
FRESTO, TRANTR, INTFAC, CHPOAR, FILLRP, MATFLO,
NNDRAIN, DRAINDIT, PRECPOL, DITCH, NNEERST,
CAPFLOW, SOILIB, CHANNEL, PRECIP, FILLIN, DREGYP,
NNPOLINF, DRAIN, MOZAMBIK

stored in files with the same name and extension.
FOR except for flairs: use FLAIRSOS.FOR for 0S/2

% % W % % % N % N ek X A N ok N % X % % %k H K %k Gk Ok N N X X N ¥ N NN
% % K % X ok N W N % X N sk % b % % ¥ ok B X % %k k% ¥ ¥ X F kN ¥ %

78

Interne documentatie

* FLAIRSDOS.FOR for DOS *
* Parameters : NDR integer size of real work arrays *
* : NDI integer size of integer work arrays *
* *
* Variables : R1 real array storage array *
* R2 real array storage array *
* R3 real array storage array *
* R& real array storage array *
* R5 real array storage array *
* R6 real array storage array *
* I1 integer array storage array *
* 12 integer array storage array *
* IN integer logical unit for input file *
* IOUT integer logical unit for print file *
* IGRD integer logical unit for grid file *
* IFM integer logical unit for output file *
* IFRS integer logical unit for restart *
* IFIL dinteger logical unit for parameter file¥
* ISCR1 integer logical unit for scratch file =*
*

*

B s o e e e S e e

PROGRAM FLAIRS

* set size of work arrays (which determines the capacity of the
program;

* the maximum number of nodes, the maximum number of layers and the

* maximum number of equations are interrelated)

PARAMETER (NDR=180000)
PARAMETER (NDI=NDR)

COMMON /R1/ R1(NDR)
COMMON /R2/ R2(NDR)
COMMON /R3/ R3(NDR)
COMMON /R4/ R4(NDR)
COMMON /R5/ R5(NDR)
COMMON /R6/ R6(NDR)

COMMON /I1/ I1(NDI)
COMMON /I2/ I2(NDI)

* set logical unit numbers

DATA IIN, IOUT, IGRD, IFM, IFRS, IFIL, ISCRL
DATA /1, 2 , 3 , 4, 5 , 6 , 1 /

* call central routine

CALL FLAWOR(I1, I2, R1, R2, R3, R4, R5, R6, NDI, NDR,
IIN, IOUT, IGRD, IFM, IFRS, IFIL, ISCR1)

STOP' end FLATIRS'

END

79

Interne documentatie

11.5 Resumé

- Voorzie elke routine van een kop van commentaar regels met algemene informatie.

- Verduidelijk werking van het programma door commentaar regels tussen de broncode.

- Scheid functionele onderdelen visueel van de broncode met behulp van regels met
scheidingstekens (*-------- etc.) en/of lege regels.

- Maak de documentatie direct bij aanvang van het programmeerwerk, niet achteraf. Het

komt dan in de verdrukking.

80

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

12 PROGRAMMAHANDLEIDING
12.1 Inleiding

Dit hoofdstuk richt zich op de beschrijving van de documentatie-eisen die moeten gelden
voor de algemeen toepasbare hydrologische programmatuur. Vaak is dit de programmatuur
die aan derden als broncode beschikbaar wordt gesteld. De beschrijving heeft dus geen
betrekking op allerlei ad-hoc programmatuur die voor eigen -gebruik of voor gebruik in
beperkte kring bedoeld is, hiervoor behoeven uiteraard minder verregaande eisen gesteld te

worden.

Het verschil tussen documentatie van wetenschappelijke programmatuur (waar onder
hydrologische) en andere gebruiksprogrammatuur, is dat ervan uvitgegaan moet worden dat
bij bepaalde omgevingen de gebruiker niet alleen als "echte" gebruiker bij de programma-
tuurontwikkeling betrokken is. Dat wil zeggen dat de programmatuur geen "Black Box"
mag zijn; niet alleen de in- en output maar ook de inhoud moet zowel theoretisch als op
programmacode-niveau uitputtend beschreven worden. De mogelijkheid moet geboden
worden om "verdachte" uitkomsten op codeniveau te herleiden. Daarnaast moet de
programmatuur (wetenschappelijk!) te manipuleren zijn. De kring van gebrﬁikers van
hydrologische programmatuur is in vergelifking met die van andersoortige weten-
schappelijke programmatuur relatief klein, zodat modellen hoogst zelden uitputtend getest
kunnen worden. Weliswaar is er tegenwoordig programmatuur die alle paden in een
programma kan doorlopen en testen. Maar vanwege de tijdsinspanning die dit vergt wordt
het meestal achterwege gelaten. De noodzaak om als gebruiker op programmaniveau kennis

te hebben, is dan ook wenselijk.

Het verschil tussen wetenschappelijke programmatuur en normale gebruiksprogrammatuur
betekent dat de gebruikersdocumentatie al gauw een complete systeemdocumentatie hoort te
zijn. Grofweg kunnen dan vijf delen onderscheiden worden:

- globale systeembeschrijving (doelgroep = potenti€le gebruiker);

s _theoretische systeembeschrijving (probleemaanpak);

- technische systeembeschrijving (programmatechnische realisatie);

- gebruikersbeschrijving (doelgroep = eindgebruiker);

- programma-evaluatie (wetenschappelijk testverslag).

81

Programmahandleiding

12.2 Globale systeembeschrijving

In de globale systeembeschrijving worden de noodzakelijke formaliteiten over de
programmatuur vermeld en wordt een beeld gegeven van wat de programmatuur globaal

inhoudt.

Tot de noodzakelijke formele gegevens die vermeld moeten worden behoren;
- de ontwikkelaar van de programmatuur;

= de contactpersoon en de beherende instantie;

- het versienummer en de datum;

- de minimumeisen aan de apparatuur;

- de minimumeisen aan de gebruiker (opleidingsniveau);

- basisdocumenten achter de programmatuur;

- trefwoorden.

In de globale beschrijving van de programmatuur wordt in grote lijnen aangegeven welke
bewerking de programmatuur uitvoert en volgens welke methode, wat de in- wat de uitvoer
is en wat de voornaamste beperkingen bij het gebruik zijn. De beschrijving is in de eerste
plaats bedoeld om selectie van een programma voor het oplossen van een bepaald probleem
mogelijk te maken. De potenti€le gebruiker moet in één oogopslag kunnen concluderen of
het programma geschikt is voor het probleem. De gegevens in de beschrijving moeten
voldoende zijn om de programmatuur op een sluitende manier in een retrieval systeem te
plaatsen. De beschrijving heeft daamaast als doel om voor de gebruiker een begrippen-
kader te geven, waarmee de overige documentatie beter te lezen is. In deze beschrijving
moeten dan ook min of meer alle aspecten aan bod komen die in de rest van de
documentatie (uitgebreid) aan de orde komen. De globale systeembeschrijving wordt ook

vaak als folder uitgegeven om potentiéle gebruikers/kopers te attenderen.

12.3 Theoretische systeembeschrijving

De theoretische systeembeschrijving geeft de wetenschappelijke achtergrond van de
programmatuur. De beschrijving moet een zodanige beschrijving geven van de probleem-

aanpak in de programmatuur, dat de gebruiker op grond van de beschrijving kan beoordelen
of zijn specifiecke probleem inhoudelijk afdoende door de programmatuur opgelost kan

82

Programmahandleiding-

worden. In feite moet de theoretische systeembeschrijving het hele rekenproces beschrijven
in wiskundige termen, dan wel verwijzen naar publikaties waarin (delen van) het

rekenproces beschreven zijn,

De beschrijving moet onder meer bevatten:

- stroomdiagrammen van de opvolging van de rekenacties en de plaats van de
voornaamste grootheden hierin;

- beschrijving en afleiding van op te lossen differentiaal vergelijkingen;

- de oplossingsmethode van de vergelijkingen;

- alle gebruikte formules en herkomst ervan;

- een motivatie van de gebruikte methoden en hun beperkingen;

- een lijst van symbolen (zie Verklarende Hydrologische Woordenlijst (CHO-TNO,
1986));

- een uitgebreide literatuurlijst.

12.4 Technische systeembeschrijving

De technische systeembeschrijving beschrijft de vertaling van de theoretische
systeembeschrijving naar programmatuur en wat daaraan vast zit. De beschrijving moet
erop gericht zijn dat de gebruiker zelfstandig de programmatuur kan implementeren en de
programmacode kan begrijpen met als doel, het traceren van (fouten in) modeluitkomsten en

aanpassen/uitbreiden van de programmatuur.

De technische systeembeschrijving bevat:

- een beschrijving van de programmastructuur;

- een vocabulaire van variabelenamen en modulenamen;
- een beschrijving van de hardware-omgeving;

- een beschrijving van de software-omgeving;

- de programmacode.

Programmastructuur:
De beschrijving van de programmastructuur dient als kader waarbinnen de programmacode
gelezen wordt. Met behulp van de structuurbeschrijving moet het mogelijk zijn om te

traceren in welk deel van de programmatuur met name bepaalde input-variabelen van

83

Programmahandleiding

waarde veranderen, in welke volgorde de bewerkingen op de input-data zich voltrekken etc.
Ook moet de structuurbeschrijving aangeven waarom de bewerkingen zich in de aangegeven

volgorde voltrekken (met name belangrijk bij wijzigingen).

De beschrijving van de programmastructuur bevat in ieder geval:

- ecn beschrijving van alle programmaniveaus;

- een stroomdiagram van minimaal de eerste drie niveaus van de programmatuur;

- een uitputtende lijst van subroutines en functies met documentatie van argument- en
COMMON-variabelen.

Variabele- en modulenamen:

Het vocabulaire van variabele- en modulenamen dient als referentie bij het lezen van de
programmacode. Bij het lezen van de programmacode moet op ieder moment wuit het
vocabulaire de betekenis van de variabelen en de modulen te herleiden zijn. Bij het
samenstellen van het vocabulaire dienen de aanbevelingen hieromtrent in dit rapport
(hoofdstuk 4 en 5), bij voorkeur nagevolgd te worden. De in- en output-variabelen en de
variabelen behorend bij een COMMON-gebied moeten expliciet verklaard worden, evenals

alle routinenamen.

Het vocabulaire bestaat derhalve uit:

- een beschrijving van de conventie aan de hand waarvan variabele- en modulenamen
zijn samengesteld (vertaalsleutel);

- een alfabetische lijst van input-, output- en COMMON-variabelen met betekenis,
eenheid en datatype;

- een opsomming van de COMMON-gebieden en variabelen hierin;

- een opsomming van alle routines en de betekenis.

Hardware-omgeving:
De hardware-omgeving bepaalt of de programmatuur in zijn volle omvang geimplementeerd
kan worden. De beperkende factoren zijn daarbij de geheugenruimte, de snelheid en de

beschikbare randapparatuur.

84

Programmaharidleiding

Bij de beschrijving dient te worden vermeld:

welk type computer (parallel/sequentieel) met welke geheugenruimte minimaal vereist

is;

- welke veranderingen het beste in de programmatuur aangebracht kunnen worden om
het geheugenbeslag te beperken en de snelheid te vergroten (bijvoorbeeld array-
grenzen);

- welke randapparatuur benodigd is;

- welke modules uitgeschakeld kunnen worden om de hoeveelheid randapparatuur te

beperken;

- op welke computer de programmatuur ontwikkeld en getest is.

Software-omgeving:

Evenals de hardware-omgeving, bepaalt de software-omgeving of de programmatuur in

volle omvang geimplementeerd kan worden. De beperkende factoren zijn daarbij de

compiler, het operating systeem en externe softwarebibliotheken.

Bij de beschrijving dient te worden vermeld:

- voor welke compiler is de programmatuur geschreven en welke andere compilers ook
geschikt zijn;

- welke wijzigingen moeten aangebracht worden in de programmatuur om deze voor
andere compilers geschikt te maken;

- onder welk operating systeem de programmatuur ontwikkeld is;

- welke programmabibliotheken en welke modules hiervan zijn gebruikt;

- zijn deze modules meegeleverd of moeten ze apart aangeschaft worden (hoe, bij wie,
prijs);

- welke programmagedeelten hoe uitgeschakeld kunnen worden indien de externe
software niet beschikbaar is;

- literatuur met betrekking tot compiler, operating system, softwarepakket enzovoorts.

Programmacode:

Gezien de eerder beschreven problematiek, is bij hydrologische programmatuur het
beschikbaar zijn van de broncode belangrijk. Deze maakt dan ook integraal deel uit van een
goede programmadocumentatie. Voor eisen te stellen aan de FORTRAN-broncode zie

hoofdstukken 7 en 8 van deze publikatie.

85

Programmahandleiding

12.5 Gebruikersbeschrijving

De gebruikersbeschrijving beschrijft op welke manier de programmatuur van invoer
voorzien moet worden, hoe de uitvoer geinterpreteerd moet worden en wat gedaan moet
worden bij voorkomende moeilijkheden.

De beschrijving bestaat uit 3 delen:

- invoerbeschrijving;

- vitvoerbeschrijving;

- beschrijving van de foutmeldingen.

Invoerbeschrijving:

De invoerbeschrijving moet ondubbelzinnig beschrijven welke gegevens nodig zijn voor het
draaien van het programma en hoe ze ingevoerd moeten worden.

Voor alle invoervariabelen moet aangegeven worden:

- de programmavariabele naam;

- de betekenis van variabele (bijv. optievariabele);

- het datatype;

- het input-formaat;

- de wetenschappelijke naam (zie Verklarende Hydrologische Woordenlijst);
- de (SI-)eenheid;

- een minimum en maximum grootte;

- bij optienummers: een lijst met opties;

- een verwijzing naar formules uit de theoretische beschrijving (indien van toepassing).

Indien het interactieve invoer betreft, dienen de afzonderlijke invoerschermen (letterlijk)

afgebeeld te worden in logische volgorde.

Indien invoer vanuit bestanden gegeven moet worden, moet een thematisch overzicht van de
verschillende bestanden gegeven worden. Per bestand moet de invoer regelgewijs, met
inachtneming van bovenstaande specificaties, gegeven worden. Tevens moet het type van

het bestand gegeven worden (geformateerd, ongeformateerd, direct access etc.).

86

Programmahandleiding

Uitvoer:

Aan de hand van de uvitvoer worden de prestaties van het model beoordeeld. Bij de uitvoer

moet duidelijk zijn welke grootheid gepresenteerd wordt en in welke vorm dit gebeurt.

Hierbij moet aangegeven worden:

- naar welk medium de uitvoer gaat (schijf, scherm, plotter enzovoorts);

- de programmavariabele namen waarvan de uitkomst gepresenteerd wordt;

- de wetenschappelijke naam van de variabele (zie Verklarende Hydrologische
‘Woordenlijst);

- de (SI-)eenheid;

- een minimum en maximum mogelijke grootte;

- een verwijzing naar formules uit de theoretische beschrijving (indien van toepassing);

- indien uitvoer naar bestand: de bestandsnaam en -type.

Foutmeldingen: =

Foutmeldingen moeten de gebruiker wijzen op situaties waarin het programma stuk loopt,

dan wel situaties die door het programma "verdacht" worden geacht. Het is belangrijk dat

de gebruiker door een foutmelding direct een fout kan localiseren en herstellen. Daartoe

moet in de beschrijving opgenomen worden:

- een alfabetische en/of thematische lijst met de letterlijke tekst van de foutmelding
zoals het programma die geeft;

- een toelichting over de betekenis van de foutmelding;

- een concrete beschrijving van de uit te voeren actie;

- de plaats waar de foutmelding in het programma gegenereerd wordt.
12.6 Programma-evaluatie

De programma-evaluatie verschaft in aanvulling op de theoretische beschrijving, aan de
gebruiker informatie over de bruikbaarheid van de programmatuur. Aan de theoretische
beschrijving kan getoetst worden of de juiste processen in de programmatuur vervat zijn,
aan de hand van de programma-evaluatie kan getoetst worden of de praktische uitwerking in
de programmatuur afdoende is. De evaluatie doet wetenschappelijk verslag van een (aantal)

test(s) die met het model uvitgevoerd is/zijn.

87

' Programmahandleiding

In de programma-evaluatie zijn verwerkt:

12.7

88

een beschrijving van de toepassingsmogelijkheden aan de hand van praktisch
uitgewerkte voorbeeldstudies;

gevoeligheidsanalyses;

discussie over de resultaten, met daarbij aangegeven sterke en zwakke punten;
praktische tips bij het gebruik; :

een uitputtende lijst met literatuur van studies die met behulp van de programmatuur

uitgevoerd zijn (steeds up to date gehouden).
Resumé

Ga bij de programmahandleiding uit van een globale, theoretische, technische en
gebruikersbeschrijving, en voeg een verslag van de ‘modelevaluatie bij.

De globale programmabeschrijving moet de potenti€le gebruiker direct een idee geven
over de bruikbaarheid van de programmatuur.

De theoretische beschrijving beschrijft het rekenproces in wiskundige termen.

De technische beschrijving bevat een beschrijving van de programmastructuur, een
vocabulaire van variabelenamen, de hardware- en software-omigeving en een
volledige programmacode.

De gebruikersbeschrijving bevat de invoerbeschrijving, de uitvoerbeschrijving en een
Iijst met foutmeldingen en beschrijving ervan.

De programma-evaluatic doet wetenschappelijk verslag over de concrete prestaties

van de programmatuur aan de hand van case-studies.

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

13 CONCLUSIES EN AANBEVELINGEN
13.1 Inleiding

De werkgroep "Richtijnen Computerprogrammatuur in de Hydrologie" heeft zich gebogen
over het probleem van de te kort schietende kwaliteit van computerprogrammatuur die
binnen de hydrologie gebruikt wordt. Tijdens de discussies binnen de werkgroep is de
problematiek steeds duidelijker geworden en hebben mogelijke oplossingen meer vorm
gekregen. De werkgroep heeft zich uiteindelijk beperkt tot het uitwerken van één oplossing
van het probleem, namelijk het opstellen van richtlijnen voor programmatuur. In paragraaf
13.2 zal ingegaan worden op de conclusies van de werkgroep met betrekking tot de aard en
de oorzaken van het probleem. Paragraaf 13.3 zal nader ingaan op de conclusies van de
werkgroep naar aanleiding van-de opgestelde richtlijnen. In de laatste paragraaf zal ingegaan

worden op enige aanbevelingen.
13.2 Het probleem van de kwaliteit

De werkgroep heeft tijdens haar werk geconstateerd dat er daadwerkelijk sprake is van een
kwaliteitsprobleem bij de ontwikkeling en het gebruik van programmatuur binnen de hydro-
logie. Het probleem van de slechte kwaliteit uit zich 6nder andere in:
1 de betrouwbaarheid;

de onderhoudbaarheid;

2

3 de overdraagbaarheid;

4 de mogelijkheden tot uitbreiding;
5

de mogelijkheden tot koppeling.

In eerste instantie lijken deze problemen slechts een grote rol te spelen bij de gebruikers,
die actief programmerend aan de slag gaan met bestaande programmatuur. Bij een nadere
beschouwing blijkt echter dat ook de ontwikkelaars en de eind-gebruikers wel degelijk
nadelen van deze moeilijkheden ondervinden. De programmatuur wordt zo complex en de
eisen zo hoog dat zelfs de ontwikkelaars van de programmatuur moeilijkheden hebben met
het onderhoud en het garanderen van de kwaliteit. De eind-gebruikers worden uiteraard

geconfronteerd met problemen bij de betrouwbaarheid, maar ook met lange wachttijden bij

89

Conclusies en aanbevelingen

wijziging en uitbreiding van de programmatuur. Kortom: de efficiéntie is in het geding.

De uiteindelijke oorzaak van de problemen ligt volgens de werkgroep in het feit dat er bij
de ontwikkeling van programmatuur weliswaar veel aandacht is voor de hydrologische
aspecten maar veel minder voor de informatica-aspecten. Enige redenen hiervoor zijn:

1 In het verleden was de programmatuur relatief eenvoudig. Veel aandacht voor informa-
tica-aspecten was niet nodig.

2 Ontwikkelaars van hydrologische programmatuur zijn opgeleid als hydrologen die
tijdens hun studie te weinig geschoold zijn in de informatica om complexe programma’s
te kunnen ontwikkelen.

3 Instanties die programmatuur ontwikkelen beschikken vaak niet over voldoende
informatici en/of onderkennen het belang van specifieke informaticakennis niet.

4 Het verband tussen de kwaliteit van programmatuur en de kwaliteit van het onderzoek
wordt in onvoldoende mate onderkend, noch door onderzoekers noch door het manage-

ment.

Een van de mogelijkheden om het probleem te hanteren is het opstellen van richtlijnen voor
-programmatuur, waartoe in deze publikatie een poging is gedaan. Het zal echter duidelijk

zijn dat er meer structurele veranderingen nodig zijn.
13.3 Het opstellen van richtlijnen

Het opstellen van richtlijnen voor programmatuur is een moeilijke opgave gebleken. De
werkgroep kon vaak niet tot een gelijkluidend standpunt komen. Enerzijds kwam dit omdat
iedereen zijn eigen methoden ontwikkeld heeft en daar moeilijk vanaf te brengen is,
anderzijds bleek dat voor het oplossen van hetzelfde probleem vaak verschillende goede
oplossingen mogelijk waren. Vaak bleek ook dat voor het oplossen van het ene probleem
beter de ene systematiek toegepast kon worden en voor het andere probleem een andere.
Het formuleren van richtlijnen in detail is derhalve ook niet nagestreefd. De richtlijnen
hebben betrekking op hoofdlijnen. De richtlijnen die geformuleerd zijn, zullen ook steeds
kritisch bekeken moeten worden. De snelle ontwikkeling van computers en computertalen

kunnen een aantal richtlijnen overbodig maken en andere weer meer belang geven.

90

Conclusies en aafibévelingen”

Het opstellen van een hydrologische variabelenlijst in analogie met de Verlarende Hydrolo-
gische Woordenlijst (de oorspronkelijke doelstelling van de werkgroep) is niet gelukt. De
werkgroep is van mening dat een dergelijke lijst niet flexibel genoeg zou zijn en dat de
huidige lijst niet voldoende op de (computer-)praktijk is toegespitst. Wel is bij wijze van
voorbeeld een vertaling naar programmavariabelen van een aantal begrippen uit de lijst
vitgevoerd. Dit is echter slechts gedaan om het toepassen van een systematische aanpak toe
te lichten.

De werkgroep komt tot de conclusie dat het minder belangrijk is dat iedereen op uniforme
wijze programma’s ontwikkelt. Belangrijk is wel dat iedereen een duidelijk en consequent
systeem toepast dat voor zijn situatie het meest geschikt is en dat op een adequate wijze
gedocumenteerd wordt. Het gebruikte systeem moet uviteraard wel voldoen aan de in dit
rapport aangegeven basiseisen. Het gebruik van een standaard ontwikkelmethodiek, ook in

zijn meest elementaire vorm, kan een stap in de goede richting betekenen.
13.4 Maatregelen op langere termijn

Zoals al eerder werd opgemerkt is het opstellen van richtlijnen voor computerprogramma-
tuur (zoals in dit rapport is gebeurd) op langere termijn niet voldoende om te komen tot een
structurele kwaliteitsverbetering. In de toekomst zullen meer informatica-aspecten geinte-

greerd moeten worden bij de ontwikkeling van hydrologische programmatuur.

Teneinde een betere kwaliteit op langere termijn te garanderen beveelt de werkgroep het

volgende aan:

1 Bij het onderwijs in de hydrologic (HBO/Academisch en post-HBO/post-Academisch)
moet meer dan nu het geval is aandacht besteed worden aan informatica-aspecten, in de

vorm van op de hydrologie toegespitste (keuze-) modules.
2 De kwaliteit van de programmatuur in de hydrologie is slecht en verdient verhoogd en

gewaarborgd te worden. Tijdens studiedagen, cursussen en dergelijke dient hierop

gewezen te worden en oplossingen te worden aangedragen.

91

Conclusies en aanbevelingen

3

92

Bij instanties die hydrologische programmatuur ontwikkelen moet gestimuleerd worden
dat ontwikkelaars en gebruikers van programmatuur voortdurend terug kunnen vallen op

ondersteuning van ter zake kundige informatici.

Op termijn zal in analogie met de sterlabs, gestreefd moeten worden naar een keurmerk
voor hydrologische computerprogrammatuur. Het toekennen van een keurmerk staat dan
borg voor kwaliteit. Dit uit zich dan in een systematische opbouw, betrouwbaarheid en
uitwisselbaarheid van programmatuur. Zowel certificering van programmatuur als van

"programmeeromgevingen” zijn een mogelijkheid.

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

LITERATUUR

AMERICAN NATIONAL STANDARDS INSTITUTE INC; 1978. Programming Language
FORTRAN, ANSI X 3-9-1978, ISO - 1539-1980 (E). ANSI, New York, New York.

CHO-TNO; 1978. Verslag en aanbevelingen van de ad hoc Groep Grondwatermodellen en
Computerprogrammatuur TNO, Serie Rapporten en Nota’s no. 2.

CHO-TNO; 1982. Rapport en aanbevelingen van de Contactgroep Grondwatermodellen,
Serie Rapporten en Nota’s no. 10.

CHO-TNO; 1986. Verklarende Hydrologische Woordenlijst, Serie Rapporten en Nota’s
no. 16.

GILB, T; 1988. Principles of software engineering management.
Wokingham (England), Addison-Wesley Publishing Company.

HAMMER, D.KX EN K.M. VAN HEE; 1990. Fasering en documentatie in software
engineering. Informatie jaargang 32 nr, 2.

JANSEN, H.; 1984. JSP, Jackson structureel programmeren.
Academic Service, Den Haag.

NATIONAL RESEARCH COUNCIL; 1990. Ground Water Models, Scientific and
Regulatory Applications. National Academy Press, Washington D.C.

PBNA; 1987. Poly-Automatiserings Zakboekje, Koninklijke PBNA BV, Arnhem.

REDISH, PH.D. J.C.; 1986. Writing and designing effective software manuals.
American Institutes for Research. P, 5-6

SAMWAT; 1991. Komputermodellen in het waterbeheer; het SAMWAT Modellenbestand,
SAMWAT-Rapport no. 7.

VROM/DGM; 1990. Kwaliteitscriteria voor modellen om luchtverontreiniging te berekenen.
Publicatiereeks lucht, Rapport no. 90.

93

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

BULAGEN

A Samenstelling CHO-Werkgroep Richtlijnen Computerprogrammatuur Hydrologie

B Voorbeeld Naamgeving Programmavariabelen: de Verklarende Hydrologische Woorden-
lijst

C Voorbeeld Programma AQ-HL02 (RIVM)

D Voorbeeld Programma EPOT (Staring Centrum)

95

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

A SAMENSTELLING CHO-WERKGROEP RICHTLIDNEN COMPUTERPROGRAM-
MATUUR HYDROLOGIE

G. van Barneveld RIZA
R.H. Boekelman/A. Kocan - TUD (Wetenschappelijk Onderwijs)

J.P. van der Eem - KIWA N.V.

K. Kovar - RIVM (voorzitter)

A.C.W. Lambrechts - TAUW Infra Consult B.V.

J.M.P.M. Peerboom - Staring Centrum (tot 15.4.90) daarna op persoonlijke titel
E.P. Querner .- Staring Centrum (vanaf 15.4.90)

F. Waardenburg - IGG-TNO/RGD

W.J. Zaadnoordijk - IWACO B.V.

J.C. Hooghart - CHO-TNO (secretaris)

97

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

B VOORBEELD NAAMGEVING PROGRAMMAVARIABELEN:
DE VERKLARENDE HYDROLOGISCHE WOORDENLIIST (VHW)

Variable Description Dimension Units Symbol No.
in V.H.W.

ALGEMENE TERMEN
WUS WATUS water use L3711 7

WCO WATCO water consumption 1371 8

ATMOSFERISCH WATER

RMX RAMIX ‘mixing ratio dim.loos - r 10
SHU SPHUM specific humidity dim.loos - q 11
AHU ABHUM absolute humidity L3M g.m3 d, 12
DMA DENMA density of moist air L3M kg.m3 Py 13
WVM WVMOF mole fraction of water vapour dim.loos - x, 14
PVP PVAPR vapour pressure LM 12 mbar of e 15a
hPa
PSV PSAVR saturation vapour pressure L™ 12 mbar of e 15b
hPa
RHU RLHUM relative humidity dim.loos % of - - 16
SAD SATDF saturation deficit L' T2 mbar of Ae 17
hPa
TDP TDEWP dew-point temperature, dew-point © °Cof K Ty 18
TWB TWETB wet-bulb temperature ° °C of K T, 19
TVI TVIRT virtual temperature] ‘Cof K T, 20
GAM GAMMA psychrometric constant ' L T %! mbar.K! ¥ 21
of
hPA.X!
SVP SLVPR slope of the saturation water L Mt %071 mbar.K'! s 22
vapour pressure curve of
hPa.K™!
SHV SPHVP specific latent heat of 1212 J.kg! A 32
vaporization
FLH FLATH latent heat flux -density M T3 W.m2 AE 33

99

Naamgeving programmavariabelen

Variabele description Dimension Units Symbol No.
in V.H.W.
FSH FSENH sensible heat flux density M T3 W.m? H 34
FGH FGROH soil heat flux density (ground) M T3 W.m? G 35
FNR FNETR net radiation flux density M T3 W.m? Q* 36
FGR FGLOR global solar radiation flux M T3 W.m™2 Kt 37

density, global radiation,
shortwave radiation

FSR FNETS net solar radiation flux density M T3 W.m2 K* 38
FTR FTERR net terrestrial flux density M T3 W.m? L* 39
BOW BOWEN Bowen ratio dim.loos - B 41
ALB ALBDO albedo, reflectivity dim.loos - r 42
PRM PRMSS precipitation mass M m3 - 50
PRD PRDPH precipitation depth L2 mm - 51
PRI PRINI instantaeneous precipitation LM 1! mm.min"! - 52a
intensity
PRI PRINY precipitation intensity L2 7! mm.min"? - 52b
PRE PRECI (gross) precipitation L2 7! mm. 4! P 53
PIN PRINT interception L2 1! mm. 4! E; 54
PRN PRNET net precipitation L2 7! mm. 4! P, 55
DPR (mx) maximum precipitation deficit LM 7! mm.d! - 56a
DPREC
EPR (mx) maximum precipitation excess L2y 11 mm. & - 56b
EPREC
DPR DPREC precipitation deficit LM 11 mm.d™! - 57a
EPR EPREC precipitation excess L 1! mm. d! - 57b
QRE QRECH mnatural groundwater recharge L2 7! mm . d”! - 58
PRF PREFF effective precipitation L2 ! mm.d”! - 59
AWD AWADE additional water demand of crops L2 T°! mm. d-! - 60
CRT CRDRT critical rainfall duration » T min - 62
CRD CRDPH critical rainfall depth CoL M mm - 63

100

Naamgeving programmavariabelen

Variabele Description Dimension Units Symbol No.
in V.H.VW.
SND SUMND n-day sum LM mm - 65a
SNM SUMNM n-minute sum L2 mm - 65b
EOW EOWAT open water evaporation L2 11 mm, 4! E, 69
EPA EVPAN pan evaporation L2 1! mm, 4! Egan 70
EIN EINTC evaporation of intercepted water L2 T mm, 47! E; 71a
ESO ESOIL soil evaporation L2 7! mn, 4”1 Eg 71b
EVP EVAPO ‘evaporation L2 ! mm, d"* - 71le
ETR ETRSP tramspiration L2y 77! mm.d”! E, 72
EVT EVIRA (actual) evapotranspiration L2y 7! mm. 4! E 73
ESO (p) potential soil evaporation L2y Tt mm, d”! ESp 74a
ETR (p) potential transpiration L2y 1t mm. 4" Etp 74b
EVT (p) potential evapotranspiration L2y 7! mm, 4! Ep T4e
EVT (r) relative evapotranspiration dim.loos - - 75
EWC EWETC wet crop evapotranspiration L2 1! mm. 4! E, 76
EGR EGREF reference grass evapo- L2y 1! mm.d"1 Eqrass 77
transpiration
RAE RAEVP aerodynamic resistance to water LT s.m) r, 78
vapour
RCA RCANY canopy resistance L s.m’! r 79

WATER IN DE ONVERZADIGDE ZONE

DMC DMOCY differential water (moisture) L M'72 Pa’! Cq: C, 103
capacity

SEG SEQCT specific equilibrium soil water L m W: 105a
content L m W, 105b

SMD SMODF specific soil water deficit, L m Sy, Wy 106
specific moisture deficit

STO STORG storage L2 m3 v (n.v.t.)

UST USTOR wuns. zone storage

101

Naamgeving programmavariabelen

Variabele description Dimension Units Symbol No.
in V.H.W.
SDF SATDF storage capacity, saturation L3 m? - 108
deficit SSC SSTCY specific storage capacityLm-
109
THF THFLD field capacity dim. loos - ¢ 110
THW THWLT wilting point dim.loos - O 111
SWC SWACY soll water retention, water L m See 112

holding capacity

SWA SWAVL available soil water, available L m - 113
soil moisture

........ (vrijkomend poriéngehalte) dim.loos - - 114
HCY HCNTY (hydraulic) conductivity LTt m.d’! K,k 130b
PMY PERMY intrinsic permeability Lz m2 k,k 131
SWD SWDIF soil water (moisture) diffusivity La2T"! mz.d71 Dg 132
POM POMST moisture potential, soil water L2T2 J.kg"l ﬁ,gém, 140a
potential P..
L' 72 Pa p.p,, 140b
L m Ilz;izp, 140c¢
h..

POT POTEN tensiometer pressure potential L2172 J.kg'1 ﬂp 141
POG POGRV gravitational potential LzT"2 J. kg Qg 142
POH POHYD hydraulic potential L212 J.kg! ¥y 143
PWA PWABS absolute water pressure LM 72 Pa Pabs 144
PWR PWREL water pressure (relative) LM 12 Pa p 145
PSU PSUCT suction L'y T2 Pa P 146
PTE PTENS tensiometer pressure LM 1 Pa ‘ p 147
PMA PMATR matric(al) pressure LM 12 Pa Pn 148
PAE PAIRE air entry value Ly 172 Pa Pae 149
HPR HPRES pressure head L m hp 150
HEL HELEV elevation head L m z 151

102

Naamgeving programmavariabelen

Variabele Description Dimension Units Symbol No.
in V.H.W.
HHY HHYDR hydraulic head L m h 152
CAH CAPHT height of capillary fringe, L m h, 153
capillary height
PEF - pF dim.loos - pF 156
QSP QSPEC specific discharge L 1! m.d"} v,q 170
Darcy flux
VEF VEFCT effective velocity LT m.d"’ v, 171
QVO QVOLM volume flux 371 .4 Q.q, 172
QVD QVIMD wvolume fluxdensity LT m.d! v 173
QIF QINFT infiltration rate LTt m.d! 5 175
QIC QINCY infiltration capacity L T! m.d! fp 176
CIF CFINF infiltration coefficient dim. loos - - 178
QPE QPERC percolation L T! m.d! vk 179b
QCR QCAPR upward capillary migration, LT! m.d! v, 180b
capillary rise
SBG SBGRD subsidence (of groundlevel) L cm - 191
SBP SBPZH subsidence by lowering of the L cm - 193
piezometric head
SBS SBSKG shrinkage dim.loos - - 194a
subsidence by shrinkage L cm - 194b
SWL SWELL swelling dim.loos - - 195a
L cm - 195b
CON CONCT concentration (n.v.t.)

WATER IN DE VERZADIGDE ZONE

EPO EFPOR effective porosity dim. loos - n, 210
STO STORG storage 13 w v 211
SSY SPSTY specific storativity L m’? S 214
STC STOCF storage coeffient dim.loos - S, u 215

103

Naamgeving programmavariabelen

Variabele description Dimension Units Symbol No.
in V.H.W.
SYD SPYLD .specific yield dim.loos - S, 216
HCY HCNTY (hydraulic) conductivity LTt m.d! K, k 224b
PMY PERMY (intrinsic) permeability L2 m? k, X 225
TRY TRMTY transmissivity (coefficient 2 .1 1
of transmissibility) LT m2.d T,kD 226
CLK CFLKG leakance, leakage coefficient T_l d'l v 227
RAQ RAQRD hydraulic resistance T d c 229
of aquitard
RRV RRIVR river resistance T d (n.v.t.)
RDR RDRNG drainage resistance T d v 230
RRF RRADF radial flow resistance L't wl.d Q 231
REN RENTR entrance flow resistance LT (n.v.t.)
QSP QSPEC apparent velocity, specific L ! m.d! v, g 242
discharge
VEF VEFCT effective velocity L 1! m.d! Ve 243
QVO QVOIM volume flux 371 m.d! Q, q, 244
QVD QVIMD +volume flux density LT! m.d’! v 245
QGW QGRWR groundwater discharge 1371 m.d! Qg 246
QGS QSGRW specific groundwater discharge LT m.d”! U 247
QIN QINFT infiltration rate LTt m.d! £ 252
QSE QSEPD (kwelintensiteit) L ! m.d™! U, 259
flux density
QAQ QAQRD aquitard flux density L 1! m.d! (n.v.t.)
HHY HHYDR hydraulic head, piezometric L m h 270
head, piezometric level
HPR HPRES pressure head L m 11p 271
HEL HELEW elevation head L m z 272
HFW HFRWA fresh-water head L m h, 273
HSW HSAWA salt-water head L m h 274

104

Naamgeving programmavariabelen

Variabele Description Dimension Units Symbol No.
in V.H.W.

HPH HPHRE phreatic level, groundwater level L m h 275
DFH DPHRE depth of the groundwater level L m h* 276

(phreatic level) below ground-

surface
PGW PGRWA groundwater pressure LM 12 Pa p 284
QRV QRIVR river-groundwater discharge 1371 (n.v.t.)
QDR QDRNG drainage discharge rate LT! (n.v.t.)
QWL QWELL well discharge L31! (n.v.t.)
CON CONCT concentration (n.v.t.)
CWL CWELL concentration in well (n.v.t.)

infiltration water

CRV CRIVR concentration in water (n.v.t.)
infiltrating from river
into groundwater

CDR CDRNG concentration in water (n.v.t.)
infiltrating by, diffuse

drainage into groundwater

CRE CRECH concentration in water (n.v.t.)
recharging aquifer

OPPERVLAKTEWATER
STO STORG storage 13 o % 304
STY STCPY storage capacity 13 o "4 305
TID TIDIS discharge period T uur - 375
HHW HHIWA high water L cm HW 404a
HLW HLOWA low water L cm LW 408a
HTR HTIDR tidal range L cm - 409
HMS HMSEA mean sea level L m z 412
HTU HTDUP rise of the tide (up) L cm - 413b
HTD HIDDN fall of the tide (down) L cm - 414b

105

Naamgeving programmavariabelen

Variabele description Dimension Units Symbol No.
in V.H.W.
VTI VTIDL tidal volume, tidal prism i3 o’ - 424
VEB VLEBB ebb volume 13 w’ - 425
VFL VLFLD flood volume 13 o - 426
FTC FETCH fetch L cm F 433
HWD HWSDN (wind) set down L cm - 434b
HWU HWSUP (wind) set up L cm - 435bh
HSU HSETU set up L cm - 436
HRU HWARU wave run up L cm z 440
WAR WAREA wetted area 12 m? A 507
WPE WPERI wetted perimeter L m P 508
CCT CCNTR coefficient of contraction, dim.loos - o 509
contraction coefficient
RDH RADHY hydraulic radius L m R 510
DPH DEPHY hydraulic depth L m D 511
WDH WADPH water depth L cm b4 512
CDH CPDPH critical depth L cm Ve 513
EDH EQDPH equilibrium depth L cm Yn 514
HWL HWALV water level, stage L cm h 517
HEN HENRG energy head L cm H 518
GHY GHYDR hydraulic gradient dim.loos - s 520
GEN GENRG energy gradient dim.loos - S 521
GCR GCROS cross gradient dim.loos - s 522
CRG CRGHS roughness coefficient var. var. diverse 524
QUO QUOLM flow rate 137! m.s"t Q 527
of
liter.s™!
QVO QVOLM discharge 137 m.s! Q 528
QBS QBASE base flow 3! m.s"! Q 529

106

Naamgeving programmavariabelen

Variabele Description Dimension Units Symbol No.
in V.H.W.
QDR QDIRC direct runoff L3711 o.st - 531
QPK QPEAK peak discharge 1371 w5 Q 532
QDM QDOMI dominant discharge 1371 w.s? - 533
QDS QDSGN design discharge 1371 m3.s"1 - 534
QSP QSPEC specific discharge L 1! liter. - 535
s V. ha”!
CDS CDISC discharge coefficient dim.loos - - 536
FXD FEXCD frequency of exceedance of dim, loos - P 537
discharge
QCY QCAPY discharge capacity 1371 m.s1 - 538
TIT TITRA travel time T d - 549
WRE WIDRE regulation width L m - 553
WSR WIDSR stream width L m b 554
WSO WIDST storage width L m B 556
HHI HHIGH high water level L cm h 557
HNO HNORM normal water level L cm h 558
HFC HFCRS (flood) crest stage L cm - 560
WES WEQSW water equivalent of snow L mm - 584
EFI EFFIR irrigation efficiency dim.loos - E 600
HDB HDRBS drainage base L cm h 611
DGW DGRWT depth to the groundwater table L cm - 612
DFR DFREB freeboard L cm - 613
DDF DDIFF differential head L cm - 614
HPO HPOLD polder water level L cm P.P. 620
HTR HTARG target level L cm S.P. 621

107

Naamgeving programmavariabelen

Variabele description Dimension Units Symbol No.
in V.

DIVERSEN

DIS DISTC distance L (n.v

THS THICS thickness L (n.v

XCO XCOOR X-coordinate L (n.v.

YCO YCOOR 7Y-coordinate L » (n.v.

ZCO ZCOOR Z-coordinate L (n.v

TIM TIME time T (n.v

NOD - number of nodes (n.v,

XNO XNODE X-coordinate of nodes L (n.v.

YNO YNODE Y-coordinate of nodes L (n.v

NEL - number of elements - (n.v

NBP - number of boundary peints - (n.v

INO - sequential number of nodes - (n.v
(array index)

IEL - sequential number of elements - (n.v
(array index)

IBP - sequential number of boundary - (n.v
nodes

NWL - number of wells - (n.v

IWL - sequence number of wells - (n.v
(array index)

XWL XWELL X-coordinate of well L (n.v.

YWL YWELL Y-coordinate of well L (n.v.

QWL QWELL well discharge L3 T -1

TWL TWELL time instance for transient - (n.v
well rate T

KWL - number of aquifer containing well - (n.v.

NRV - number of rivers - (n.v

108

Naamgeving programmavariabelen *

Variabele Description Dimension Units Symbol No.

in V.H.W
IRV - sequence number of rivers - (n.v.t.)

(array index)
NPR - number of points on river - (n.v.t.)
XRV XRNR X-coordinate of river points L (n.v.t.)
YRV YRIVR Y-coordinate of river points L (n.v.t.)
HRV HRIVR river water level L (n.v.t.)
NAQF number of aquifers - (n.v.t.)
NAQT number of aquitards - (n.v.t.)
NLAY number of layers - (n.v.t.)
IAQF sequence number of aquifers - (n.v.t.)
IAQT sequence number of aquitards - (n.v.t.)
ILAY sequence number of layers - (n.v.t.)
NSUB number of node subregions = (n.v.t.)
ISUB sequence number of subregions - (n.v.t.)
NPOL number of polygons - (n.v.t.)
IPOL sequence number of polygons - (n.v.t.)
NPPO number of points constituting - (n.v.t.)
polygon

XPO XPOLY X-coordinate of polygon points L (n.v.t.)
YPO YPOLY Y-coordinate of polygon points L (n.v.t.)
VPO VPOLY value in a polygon - (n.v.t.)
NRP number of random points - (n.v.t.)
IRP sequence number of random points - (n.v.t.)
XRP XRPNT X-coordinate of random points L (n.v.t.)
YRP YRPNT Y-coordinate of random points L (n.v.t.)
VRP VPPNT value at random point - (n.v.t.)
NPL number of path lines - (n.v.t.)

109

Naamgeving programmavariabelen

Variabele description Dimension Units Symbol No.

in V.H.W.
IPL sequence number of path lines - (n.v.t.)
NPPL number of points on path lines - (n.v.t.)
XPL X-coordinate of path lines L (n.v.t.)
YPL Y-coordinate of path lines L (n.v.t.)
ZPL Z-coordinate of path lines L (n.v.t.)

110

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie .
Rapporten en Nota’s No. 27 van de CHO-TNO

C VOORBEELD PROGRAMMA AQ-HLO02 (RIVM)
Inleiding

Deze bijlage is in het rapport opgenomen ter illustratie van een aantal aspecten met
betrekking tot in het bijzonder:

a de structurering van programma’s (Hoofdstuk 3);

de naamgeving van programma-onderdelen (Hoofdstuk 4);

de lay-out van de broncode (Hoofdstuk 7);

de foutencontrole en foutmeldingen (Hoofdstuk 9);

o & o6 o

de interne documentatie in computercode (Hoofdstuk 11).

Het programma AQ-HLO2 is een onderdeel van het pakket AQ-HLP. AQ-HLP maakt deel
uit van het omvangrijke systeerri van de zogenaamde AQ-computerprogramma’s ten behoeve
van de simulatie van de vraagstukken met betrekking tot grondwater, zowel wat betreft de
kwantiteits- als de kwaliteitsaspecten. De AQ- (voorheen AquiSoft) programmatuur is bij het
RIVM beschikbaar.

Het programma AQ-HLO2 is ontwikkeld met behulp van de Microsoft FORTRAN F77. Het
werkt volledig menugestuurd (gebruikmakend van de extended ASCII set) en draait onder
het DOS en OS2 operatingsystem. Om het programma te kunnen draaien moet in de opstart-

file "config.sys" het commando "device=ansi.sys" worden opgenomen.
Het programma leest de gegevens van twee (verschillende) files, combineert deze gegevens

tot een nieuwe datagroep, en schrijft het resultaat vervolgens naar een output file. Alle files

zijn ongeformatteerd (dus niet ASCIT), dat wil zeggen niet leesbaar met een tekst editor.

111

Programma AQ-HLO2

Schema van Menu’s

Main Menu

Tl

First Map Load]

L——{ Show Map —l

Second Map Load I

l—————‘ Show Map ‘l

Enter Control Dataw

—————L First Map Adapt I
————| Second Map Adapt I

:

|

Combine Maps I

—————{ Load FE Grid File l

112

Programma AQ-HL02
Schema aanrcep belangrijke subroutines

HLO2 Main Program

HLO2XX Control Execution Subroutine

——SCHLOA Process the menu "Main Menu”
~—;—~—HL0003 Generate output file

t—————SCHL1A Process the menu "First Map Load"

--~-SCPM03 Load map data (file structure epgo.map)
---SCHLO6 Load map data (file structure ddgop.unf)
---SCHLO9 Process the menu "Show Map"

I————SCHL1A Process the menu "Second Map Load"

~---SCPM03 Load map data (file structure epgo.map)
---SCHLO6 Load map data (file structure ddgop.unf)
~~-~-SCHLO9 Process the menu "Show Map"

SCHL20 Process the menu "Enter Control Data"

---SCHLO3 Process the menu "First Map Adapt"
~---SCHLO3 Process the menu "Second Map Adapt"
---SCHLO4 Process the menu "Combine Maps"
--~8SCHLO7 Process the menu "Load FE Grid File"

—SCHL13 Quit

113

Programma AQ-HLO2

T g g e e L o e e e e S e e T e e e

*) *
* >> PROGRAM HL02 << *
* *
e e i e S S e m e e e mm e e m S = = e *
* purpose : Main module for program HLO2 *
o *
% parameters none *
g *
* subprograms h102xx *
T o i m S m ki mm m mmm o e o o *
* error messages : none *
L *
* implementation : none *
K e e e o o i *
* Copyright RIVM, The Netherlands Last update : 09-DEC-1989 *

B R E e e T)
program hl102
implicit double precision (a-h,o0-z)

K oo me s e e e e = = i e o T = e e A o i e e T e M e e S S e i A e = e
data iinl/1/, iin2/2/, ife/3/, iout/4/

B e e e e e o e e e e e m e e e e e e m e e e m e

* Call control execution subroutine

*

call hl02xx (iinl, iin2, ife, iout)
stop 'End Program HLO2'
end

114

Programma AQ-HLO2

E e e s R R R R R e R R R P R S R R e e

menu >>

menu >>

S % M Ok %k b 3 ok e ok % e % % bk %k N ke ok sk ok N b N b M 3k N %tk ok M ok %k ¥ N b ¥ N b N N % % % N % ok N N ok % Koo AN %

I0PT
1
menu >> 2
menu >> 3
menu >> &4
5
6
7

1
2
3
4
5
6

I0PT

1

2

menu >> 3
menu >> 4
menu >> 5
menu >> 6

7

8

parameters :

>> SUBROUTINE HLO2XX <<

Option Text
Qutput File

First Map Load
Second Map Load
Enter Control Data
Generate Output
Next Output

Quit

The following options are
'‘First Map Load’:
I0PT

Option Text
Input File
Parameter Number
Load Map

Show Map

Return

Quit

The following options are
'Second Map Load’:
IOPT

Option Text
Input File
Parameter Number
Load Map

Show Map

Return

Quit

The following options are
'Enter Control Data’:

Option Text
Title Output File
Name of Parameter
First Map Adapt
Second Map Adapt
Combine Maps
Load FE Grid File
Parent Menu

Quit

IMEOO
not
-41
-42
-3
-2
-1
1

relevant

Code number ICMFL defines the type of map file:

ICMFL=1: file is generated by APGO, EPGO or ECGO
ICMFL=2: file is generated by DDGO, HLO2 or HLO3

(FLOUT)
(FLFIL1)
(FLFIL2)
(FLCNT)

(FLNEXT)

available in the menu

relevant
relevant
relevant
relevant

(FLINP1, FNINP1)

(IPARL)
(FLFIL1)
(FLFIL1)

available in the menu

relevant
relevant
relevant
relevant

(FLINP2, FNINP2)

(IPAR2)
(FLFIL2)
(FLFIL2)

available in the menu

relevant
relevant
relevant
relevant
relevant
relevant

IIN1 = logical unit number of inmput file 1

(TITXT)
(LABPAR)
(PAR1,
(PAR2,

The following options are available in ‘Main Menu’:

2
-)

purpose : Control execution of the program HLO2.
Generate a file, the format identical to that of a file
from the program DDGO, containg the combination of two
map files which were previously made either and or:
1) as output from APGO, EPGO or ECGO
2) as output from DDGO, HLO2 or HLO3

(PARC, FLCMB)

(FLLDFE, FLFEM)

A R R R R I A T T 2 2E I R R I I A I N REURE R SR

115

Programma AQ-HLO2

(integer variable)

1IN2 = logical unit number of input file 2 (i)
(integer variable)

IFE = logical unit number of the FE input data file (i)
(integer variable)

IOUT = logical unit number of output file FNOUT (i)

(integer variable)

subprograms : h10003, scg009, schlOl, schlOa, schll3, schlla,
schl120, scmcu2, vnhl0Q2

Copyright RIVM, The Netherlands Last update : 22-JAN-1991
B T T e T S T

subroutine h1l02xx (iinl, iin2, ife, iout)
implicit double precision (a-h,0-2)

LR B R R R R R
ECRE I I R IR R R N

* Arrays required if ICMFL-1 (input file made by APGO, EPGO or ECGO)
*

parameter (nparmx=99)

common/al/ itypal(nparmx), ilopal(nparmx), isypal(nparmx),
iunpal (nparmx), zll(nparmx)

common/a2/ itypa2(nparmx), ilopa2(nparmx), isypa2(nparmx),

’sd

& iunpa2 (nparmx), zl2(nparmx)

common/bl/ iuntil(nparmx), timl(nparmx), idl(nparmx),
& iml(nparmx), iyl(nparmx), ihrl(nparmx), imnl(nparmx),
& iscl(nparmx)

common/b2/ iunti2(nparmx), tim2(nparmx), id2(nparmx),
& im2 (nparmx), iy2(nparmx), ihr2(nparmx), imn2(nparmx),
& isc2(nparmx)

*

* LABPAl and LABPA2 are required if ICMFL=2 (input file made by DDGO,
* HLO2 or HLO3)
*

character labpal(nparmx)*30, labpa2(nparmx)*30
+ TIABPAR is required for the ewtput file T
* ' character labpar*30
* Set the FE grid variable NODMX (NELMX and NBPMX and needed here)
$include:’fegrid.dim’
* The following arrays are required to load the two parameters
¥ common /c/ parl(nodmx), par2(nodmx)

* Array PARC to store the combination of the two maps

common /d/ parc(nodmx)

K m e e m e e m mmm e e e e e Cimmm e m e oo m e e e oo m e s e e e e e e
* Arrays PAROl and PARO2 are used to store original map values, to
* be used to reset to original setting if required.
*
common /e/ parol(nodmx), paro2(nodmx)
R e e o e e = m e e e e m e e e e e e e e
* IDCOR is loaded from the map parameter input file IIN (FNINP),
* but is not used in this program
*

dimension ideor(6)

*
* Variables relating to the FE grid data file IFE

116

*
*

* W% %

% ¥ %

L I N

Programma AQ-HL02

character fnine*30
logical flldfe, flfem, fline

character pgn*8, vn*3, fnout*30, fninpl*30, fninp2%*30
character esc, clrs*5, clrl*4, crvon*5, crvof*5, cblon*5, cv
character titxtl¥®40, titxt2*40, titxt*40, titmen*18, txtbl#*30
logical flgenx, flinpl, flinp2, flout, f1fill, f1fil2, flcnt
logical flnext, flzll, f1z12, fltiml, fltim2, fldatl, fldat2
logical flemb, flchgl, flchg2

Set the text associated with the error messages

character tx10%45, tx1l*45, tx12%37, tx13*37, help*49
character tx21*45, tx22%40, tx23%40

character tx31%45, tx32*%43, tx33%43

data tx10/'----rmrmccmmenann- ERROR ----vcmun-nn N4
data txl1l/'----- NON IDENTICAL NUMBER OF GRID NODES ----'/
data tx12/'Number of Nodes on First Map File = '/

data tx13/'Number of Nodes on Second Map File = '/

data tx21/'----- NON IDENTICAL NUMBER OF ELEMENTS ------ '/
data tx22/'Number of Elements on First Map File = '/

data tx23/'Number of Elements on Second Map File = '/

data tx31/'-- NON IDENTICAL NUMBER OF BOUNDARY NODES ---'/
data tx32/'Number Boundary Nodes on First Map File
data tx33//Number Boundary Nodes on Second Map File
data txtbl/' '/

Set program name and program version

data pgn/’'AQ-HLO2'/
call vnhl02 (vn)

Initialize the sequence number IFILE of the file to be generated.’
IFILE is incremented by one after a file is generated.

Initialize the flag to indicate that first file be generated

flgenx = .false.

Set parameters for the control of the screen and cursor moving

call scg009 (esc, clrs, clrl, crvon, crvof, cblon)

Display the unchanging part of the menu box on the screen

call schlOl (ese, clrs, crvon, crvof, pgn, vn, cv)

Initialize variables relating to the FE grid data file.

The values relating to the grid file used for the previous
combination map remain valid, unless overwritten by reloading or
reinitialized (see below) automatically if the grid file-data do mnot -
fit to the map data, i.c. if NODFEM is not =NOD1 (error check) via
subroutine SCHL20.

fnine ="' "'
fline = ,false.
flfem =

Initialize the error code number IERR. IERR can be reset (>0) if

117

Programma AQ-HLO02

* 'Enter Control Data’. Then in SCHLOA it will be reset =0 again.

* Initialize number of lines in options and text window

10 nlopw =0
nltxw =0

SR e i i - o - e S e e e e e e B A e e e e L A e - W -
* 1Initialize wvariables
*
flnext = flgenx
flout = .false.
foout ="' "'
f1fill = .false.
f1£fil2 = .false.
flent = .false.
fninpl = ' !
flinpl = .false.
fninp2 = ' !
flinp2 = .false.
labpar = ' /
*
* TPAR1 and IPAR2 must be =0 on the first entry of SCHL1A
*
iparl =0
ipar2 =0
*
* FLCMB is reset via SCHL20 and indicates whether PARC was filled.
* FLCHGl and FLCHG2 indicate (wvia SCHL20) whether PAR1 and PAR2 were
* adapted before PARC to be generated.
*
flemb = .false.
flchgl = .false.
flchg2 = .false.
B o oo o m o m o e o e e e e e e == e e e e e m e = s e e mm e e m e
* Main menu
*
20 call schlOa (esc, clrl, crvon, crvof, cblon, cv, fnout, flout,
& f1£i11, £f1£fil12, flent, flnext, titxt, nlopw, nltxw,
& ifile, ime00, ierr, nlerr, ilerr)
B et et e e i o e . i e = e S e e i e - m e e i e e e e e e e e -
* IME0O=-2 : option ’‘Generate OQutput’
*
if (ime00.eq.-2) then
*
* Open the file FNOUT and generate the file
*
.'.éﬁéif
B o o e o e e o e e e e e e m e e o e = e e e S e e e e e e e m
% IMEOO=1 : option 'Quit’' from the ‘Main Menu’
*
if (ime00.eq.1l) call schll3 (clrs, pgn, vn, ifile-1)
e e e e e e e m e o e e mem e m e S e e mam e e me oo imm e m e e
* Proceed with either 'First Map Load’ (IMEOO=-41),
* ‘Second Map Load' (IMEOO=-42),
* or 'Enter Control Data’ (IMEOO=-3).
*
sem L e
* Treat the option 'First Map Load’
*

118

* % X % % * % % % % %

% % %

* % %

% % X

% % ¥ % A%

Programma AQ-HL02-

IME1A=0 : --> 'Return’ (= 'Main Menu')
IME1A=1 : ‘Quit’

if (imela.eq.0) goto 20
if (imela.eq.l) call schll3 (clirs, pgn, vn, ifile-1)

IME1B=0 : --> 'Return’ (= 'Main Menu’)
IME1B=1 : 'Quit’

if (imelb.eq.0) goto 20
if ‘(imelb.eq.1l) call schll3 (clrs, pgn, vn, ifile-1)

call schl20 (esc, clrl, crvon, crvof, cblon, cv, nodl, titxt,
labpar, parc, icmfll, itpl, iunl, iunpol, parl,
parol, parmnl, parmxl, paravl, icmfl2, itp2, iun2,
iunpo2, par2, paro2, parmn2, parmx2, parav2, flldfe,
flfem, ife, fnine, fline, nelfem, nbpfem, nlopw,
nltxw, ime20, flcmb, flchgl, flchg?2)

Rrere

At this point IME20 is either =0 (Parent Menu) or =1 (Quit)
if (ime20.eq.1l) call schll3 (clrs, pgn, vn, ifile-1)
Re-set the flag and return to the ’‘Main Menu’
if (flcmb) flent = | true.

'Enter Control Data’ is not fully processed if NELFEM and NBPFEM
have not been defined (FLFEM-=false) while it was required.
FLFEM=false means that either the grid file IFE was not loaded
and/or NODFEM was not =NOD1.

if (flldfe) then
if (.not.flfem) flent = .false.
endif
goto 20
end

119

Programma AQ-HLO02

FRRAR AR T A e AR o e R b A R b R e Ao e b e e b R e ek b ket

ESC
CLRL
CRVON
CRVOF
CBLON
cv
FNOUT
FLOUT
FLFIL1
FLFIL2
FLCNT
FLNEXT
CTITL
NLOPW

NLTXW

B 3 ok ¥ ok ok % % % 3 ok N N N ok % % b 3 e %k N Ok N ¥ W b N o % N %k % ok N % S ok b o ¥ ok M ok N e b M o bk % % ¥k N o % % o N %

IFILE

120

purpose

1

menu >> 2

menu >> 3
menu >> 4 Enter Control Data -3 (FLCNT)

5

6

7

>> SUBROUTINE SCHLOA <<

: Generate the 'Main Menu" for a program for generating of

a file containing a combination of two map parameters.

The following options are available in ’'Main Menu':
IOPT Option Text IMECO

Output File not relevant (FLOUT)
First Map Load -41 (FLFIL1)
Second Map Load -42 (FLFIL2)

Generate Output -2
Next Output -1 (FLNEXT)
Quit 1

FLNEXT=false, permitted options are 1,2,3,4,5 and 7.
FLNEXT=true , permitted option are 6 and 7.

Error code number IERR:

IERR = 0 : no error was issued

IERR > 0 : error was issued (NLERR lines in the text
window, starting in line ILERR)
Permitted options are:
'First Map Load’, ’'Second Map Load’ or 'Quit’.
IERR is reset =0 before return to the calling
module.

parameters

ASCII character 27 (i)
(character variable) .

character string for clearing the line (¢N)
(character¥*4 variable)

character string for switching reverse video on (i)
(character*5 variable)

character string for switching reverse video off (i)
(character*5 variable)

character string for switching bold char. on (i)
(character*5 variable)

vertical bar for restoring menu box (1)
(character*l ‘variable)

output file name, defined on input if FLOUT(i)=true (i/o)
(character*30 variable)

flag whether output file is defined (i/0)
(logical wvariable)

flag of whether file data 1 is loaded (i)
(logical variable)

flag of whether file data 2 is loaded (1)
(logical wvariable)

flag of whether control data is loaded (i)
(logical wariable)

flag of whether option "Next Qutput" allowed (y:t) (i)
(logical variable)

title text (i)
(character*40 variable)

number of lines currently in option window (i/0)
(integer variable) -

number of lines currently in text window (i/0)
(integer variable)

sequence number of the file to be generated (i)

W N N W N N N W M N W Ok N N R B N K N ok kN X N N B N H N Nk ok N % N b b % W N ok ok b b Sk N % W bk ok o % ¥ M % ok o o %

Programma AQ»HI:O&

(integer variable)

IMECO = code number defining next menu to be displayed (o)
(integer variable)

IERR = code number whether error was issued (i/0)
(integer wvariable)

NLERR = number of error lines in text window (if IERR>0) (1)

(integer variable, O < NLERR)
ILERR = first line of error text in text window (if IERR>0) (i)
(integer variable, 0 < ILERR)
subprograms : scg001, scg004, scgl07, scgl08, scg0l0, scgll6,
semcul, scmcu? o

Copyright RIVM, The Netherlands Last update : 06-DEC-1989
B T R e
subroutine schlOa (esc, clrl, ¢rvon, crvof, cblon, cv, fnout,
& flout, f1£ill, f1fil2, flent, flnext, ctitl,
& nlopw, nltxw, ifile, imeco, ierr, nlerr,
& ilerr)
implicit double precision (a-h,o-z)

% % K % N K N % K % Nk N N XK
S W K % e R Ok K ¥ % ok F %k X K N % X

parameter (nopt=7)
character chopt(nopt)*18, chfst(nopt)
logical flfst(nopt), flusac(nopt), flfstp(nopt)

character esc, clrl*4, crvon*5, crvof*5, cblon*5, cv

character fnout*30, ctitl*40

character txerl*49, txer2*49, txer3*49, txerd*49, txer5*%49
character txer6*49, txer7*49, txer8*49, txer9#*49

logical flout, f1fill, f1fil2, flent, flnext, flreke, flinrk

* Set the options and arbitrary text

character chtxt*1l7, txtbl*49
character txtl*18, txt2%18, txt3(2)*10 :

data chopt /’'Output File’,’First Map Load’, 'Second Map Load’,
& 'Enter Control Data’, ’Generate Output’,
& 'Next Output’,'Quit’/

data chtxt/’'Output File ="'/

data txtl/’'Map Parameter 1 : '/

data txt2/’Map Parameter 2 : ‘'

data txt3/'Loaded ','Not Loaded’/

data txtbl/' '/

* Set the text for error messages

data txerl/'Error: Option "Next OQutput" is Not Allowed'/

data txer2/'Error: Select "Next Output" or "Quit"'/

data txer3/'Error: "Output File" Must be Defined First'/

data txer4/'Error: Permitted are "Next Output" or "Quit"'/

data txer5/'Error: "Enter Control Data" first'/

data txer6/'Error: Neither of 2 Map Parameters is Loaded'/

data txer7/'Error: First Map Parameter is not Loaded’/

data txer8/'Error: Second Map Parameter is not Loaded’/

data txer9/'Permitted are "First or Second Map Load or "Quit"'/
g g U R A
* Set flag whether the ASCII characters defining the options (CHFST)
* be re-defined such that a carriage return is included after an
* option is selected.
*

data flusac /7*%.true./
flreke = .true.

121

Programma AQ-HL02

*
* Initialize the flag FLINRK. FLINRK is set =false after the flag
* array FLFSTP is initialized later in the program. After that

% FLINRK remains =false.

*

B e e e i = mm e e e e m e m m e e e e e m e = m e m o mm e e e
* Display the title text (normal mode)
*
call scmcul (esc, 4, 17, ctitl, 40)
i e m e mm e mm e e e = == . e = = = i e e = = - -
* Display the menu name in reverse video at the bottom of options box
*
call scmeu? (esc, crvon, crvof, 22, 3, Main Menu ', 18)
H e e e o o e o e e e e e m e o e m e e e m e — e m
* 1) Define the first character of options text (CHFST)
* 2) Display the options in options window (normal characters)
* 3) Clear options window, clear text window and
* 4) Reset NLOPW and NLTXW
*
call scg004 (esc, chopt, chfst, nopt, nlopw, nltxw)
nlopw = nopt
nltxw =1
oo em o L e
* Display the loading status of the two map files (lines 17 and 18).
* Because this text is not comprised in the value of NLTXW,
* the text is to be wiped out before each return.
* The text is written starting in position 25.
*
* Do not write if an error message was issued earlier.
% To avoid programmimg complexity set IL1 and IL2.
*
i1l =17
i12 = 18
ncl = 18
if (ierr.lt.1l) then
call scmcul (esc, ill, ipos, txtl, ncl)
call scmcul (esc, il2, ipos, txt2, ncl)
if (f1£ill) then
call scmcul (esc, ill, ipos+nel, txt3(1l), 10)
else
call semcul (ese, ill, ipos+nel, txt3(2), 10)
endif
if (£f1£i12) then
call scmcul (esc, il2, ipos+ncl, txt3(1l), 10)
else
call scmcul (esc, 112, ipos+ncl, txt3(2), 10)
endif
endif
i s o e = = = = e e e i e = = = e e i = = = e e e e e = = e e e e e
* Set the flag for ’'Quit’ that remains highlighted
*
fifst(7) = .true.
K e e e oo e e e e e e e e e m e e
* Define the relevant options (FLFST)
*
* Initialize (or reset) flags
*
10 flfst(l) = .true.
fifst(2) = .true.
B L e

* Initialize the flag FLFSTP to economize the re-setting of the first

122

% % %

% % % o % % * % ¥ %k % % % % ¥ %

% % %

Programma AQ-HI-02"

character CHFST in subroutine SCGO16.

20 if (flinrk) then
flfstp(l) = .not.flfst(l)
flfstp(2) = .not.flfst(2)

Write the first character CHFST of the NOPT options

call scg0l6 (esc, cblon, crvef, chfst, nopt, flfst, flfstp)

Move cursor to select option position and select an option

30 call scg008 (esc, clrl, cblon, crvof, cv, chfst, nopt, flreke,
1 flusac, iopt)

If an error message of was issued elsewhere, wipe out the message

(NLERR text lines, starting in line ILERR) and re-set the flag

IERR, otherwise on the next entry of this subroutine wrong action.

if (ierr.gt.0) then
do 40 i = ilerr,ilerrinlerr-1
call scmcul (esc, i, 25, txtbl, 49)
40 continue
endif

For a change of the menu, set the value of IMECO to -41 (First Map
Load), -42 (Second Map Load), -3 (Enter Control Data), -2 (Generate
Output), -1 (Next Output) or 1 (Quit)

50 if (iopt.ge.2) then

I0PT = 2,3,4,5,6 or 7.
Option TOPT=1 is to be treated separately later.
if (iopt.eq.2) imeco = -41
if (iopt.eq.3) imeco = -42
if (iopt.eq.4) 1imeco = -3
if (iopt.eq.5) imeco = -2
if (iopt.eq.6) 1imeco = -1

if (iopt.eq.7) then
Option 'Quit’

imeco =1
call scemcul (esc, ill, ipos, txtbl, 49)
call scmcul (esc, il2, ipos, txtbl, 49)
return

endif

Check whether a meaningful option was selected, I0PT=4,5 or 6

if (iopt.eq.4 .and. (.not.flfill .and. .not.flfil2)) then
call scmeu?2 (esc, cblon, crvof, 22, 25, txer6, 49)
goto 30

endif

if (iopt.eq.4 .and. .not.flfill) then
call scmcu? (esc, cblon, crvof, 22, 25, txer7, 49)
goto 30 :

endif

if (iopt.eq.4 .and. .not.fl1fil2) then
call scmcu2 (esc, cblon, crvof, 22, 25, txer8, 49)

123

Programma AQ-HL02

goto 30
endif
if (iopt.eq.5 .and. .not.flout) then
call scmcu2 (esc, cblon, crvof, 22, 25, txer3, 49)

goto 30
endif
AL
endif
R e e e e e e e e e e o e o e e e m m e e mmm e m e m e —
* TOPT=1 : Check whether FLNEXT=true, illegal option
*
if (flnext) then
call scmcu? (esc, cblon, crvof, 22, 25, txer4, 49)
goto 30
endif
*
* Define the output file
*
Fommm e L e
* Return to re-paint the options window
*
goto 10
end

124

Programma AQ-HE0Z

HL-subroutines:
HLnnXX : control execution in programs HLon, nn=01, 02 and 03
HLOOnn : generally applicable procedures in all HL-programs

I0-subroutines:

IORFtt : read a record from unformatted file

I0SUtt : set up the text string defining units of parameter
IOXXnn : setting of the basic parameters for all AQ-programs

SC-subroutines:

SCDDnn : screen handling in all AQ-programs treating DD-data
SCGOnn : generally applicable screen handling in all AQ-programs
SCHLnn : screen handling in programs HLOl, HLO2 and HLO3

SCMCUn : basic screen manipulation, applicable in all AQ-programs
SCPMnn : screen handling in all AQ-programs treating map-data

VN-subroutines:
VNHLon : set program version for programs HLnn, nn=01, 02 and 03

Toelichting: n = cijfer (0, 1, 2, ete)
t = letter (a, b, c, etc)

‘nn’ increases sequentially, starting from 01
'n’ increases sequentially, starting from 1

125

Richtlijnen voor computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

D VOORBEELD PROGRAMMA EPOT (STARING CENTRUM)
PROGRAM EPOT
c
C
C
C PROGRAMMA HEADER
C
c
o R R R
G
Cc CALCULATE EVAPOTRANSPIRATION FROM METEO DATA ON A DAILY BASE
G

Chihdkkkkhhbhtlhkidiihibhkkkiikiiiiddiddidkiiikikdkkifikkidikidkdkkitiikk
Chikkdkkkikiklkiilikhkikkikkdbibiikbddbobbidiiddbddistt COMMON ddsd

C

C PARAMETERS, COMMON AND CHARACTERS
INCLUDE 'EPOT.INC’

C

Chrkkkkkhkhhkhhkbddidbdbbirdhbdbohddddribbrbiibtidddiiitr PRE-PROC. #®%*%

INITIALIZE - CONSTANTS AND OPEN FILES
CALL INIT

READ INPUT DATA
CALL READ

CHECK INPUT DATA
CALL CHECK

Fhkkhdhhkkhkdbdbhidhidddbdiddirdbbbbdddiddddbiriddbidds MAIN PROG wi%%

CALC. REFERENCE EVAPOTRANSPIRATION (MAKKINK})
CALL REF

CALC EVAPOTR. (Eo-PENMAN)
CALL PENMAN

CALC. EVAPOTR. FOR PINE AND DECIDIOUS FOREST
CALL FOREST

FRREARETEERLIELTX AT R LT E AR AAAT AR h bkt dddk QUTPUT DATA *&%t

SUMMATION OF DAILY DATA PER MONTH, SEASON, ETC.
CALL SUM

PRINT OUTPUT
CALL PRINT

SAVE DATA TO PLOT
CALL PLOT

a aa aon aaaQon aan Qo aaQo aa oo aao

127

Programma EPOT

Cddddddh kit dihrio ki i ki oo o d ok o bbb b bk b ko ok
c

CLOSE (IN)

CLOSE (I0)

CLOSE (IS)

END OF PROGRAMME
WRITE(IW,1)

A X AKX FIIRAL AL AT TR LA TR A TRk b bbbkttt FORMATS sdsd

aaaa aa

1 FORMAT(/’' READY' //
& ! The accumulated results per half year are also written to',
& ' file : METEO.SUM'/)

END

SUBROUTINE INIT

FEAXEK SUBROUTINE HEADER Fekkkdk
INITIALIZE AND OPEN FILES

FAXAT AR AL TR AR AR R R b e kb A bkt COMMON . %

PARAMETERS, COMMON AND CHARACTERS
INCLUDE 'EPOT.INC’

R R o R R e R R e e e e e R Ty e e e o

CONSTANTS

aoaaa aaoQaaaaoan

DATA GAMMA/O.66713/
DATA BETA/2.00/
DATA IMND/0,31,59,90,120,151,181,212,243,273,304, 334,365/

c
[INTERCEPTION RESERVOIR PINE FOREST
RES = 0.15
c
c CONVERSION FACTOR FOR INPUT METEO DATA TO CM
C PRESENT SETTING METEO DATA IN MM :
MFAC = 10.
C
Cc
ChFdededoddedddoddekohdeh ko dododedod fododofodododokdofofekkdodokkdokdkokkkokkdkd% QPEN FILES #%+%
C
C IN - meteo data on daily base
Cc I0 - output evapotr. (daily base)
C IS - file to save results for plot of data and results
C IR - read from screen
C IW - write to screen
C
C FILE CODES
IN = 01
I0 = 02
IS = 04
IR = 05
IV = 06
C
C
WRITE(IW,1)
C

100 WRITE(IW,2)
READ(IR,’ (A20)') FILEIN

128

Progranima EPOT

C
WRITE(IW,3)
READ(IR,’(A20)') FILEIO
C
OPEN(IN,FILE=FILEIN, STATUS='OLD’ ,ERR=110)
C
OPEN(IO,FILE=FILEIO,STATUS='NEW’ ,CARRIAGECONTROL~='LIST') VAX
G OPEN(10,FILE=FILEIO, STATUS='UNKNOWN') MIC
C
OPEN(IS,FILE~='METEO.SUM’ ,STATUS='NEW’ , CARRIAGECONTROL~'LIST') VAX
C OPEN(IS,FILE='METEO.SUM’,STATUS='UNKNOWN') MIC
GO TO 120
G
G INPUT METEO FILE NOT FOUND
110 WRITE(IW,4) FILEIN
GO TO 100
G
120 CONTINUE
C
RETURN
C

Ciedddiobhhikhdddhtihrhhhbhttkdthbhtbhdthkirrrrrrdrdrrrrsc FORMATS H**%*
C

FORMAT(//5X, ' CALCULATION OF EVAPOTRANSPIRATION DATA'//)
FORMAT(/' Give filename with meteo data +<--=---wc-ecuo-uonn ? 1,
FORMAT(/' Give filename for results ------c-cccccmacnnnnn. ? !,
FORMAT(/* File :',A20,’ could not be attached ? - try again’)
END

SUBROUTINE READ

SwN R
9

Fkdkkk SUBROUTINE HEADER FdkkFEK

READ TYPE OF DATA AND ACTUAL METEO DATA (PER DAY)

ek kb kR R R R R AR AR AR COMMON dvdd

PARAMETERS, COMMON AND CHARACTERS
INCLUDE 'EPOT.INC'

R e S T o s e e e R e e e ey e e e

ISUMB - begin of summer period at day 90
ISUME - end of summer period at day 270
The Netherlands

90

270

aaoaaoaon aaaoaoaaaoon

ISUMB
ISUME

WRITE(IV,1)
READ *, THEM

IF (IHEM .EQ. 2) THEN

129

Programma EPOT

aaoaaoaaaaa [o}

100

110

120

130

c

Southern hemisphere

ISUMB = 270
ISUME = 90
ENDIF

WRITE(IW,2) ISUMB,ISUME

Kk khkkkkkhkkhkhbhbhhhkkikkikkkdhhkikkkihkkikkikkiokikkikikkkidkiikhkiiik

NSK - number of records to skip in input file with text
IDI - type of input data
IPR - output half year accumulated results to screen (l=yes)

WRITE(IW,3)
READ *, NSK

DO 110 I=1,NSK
READ(IN, * (Al1)') TXT
CONTINUE

INPUT TYPE OF METEO DATA
WRITE(IW,4)
READ *, IDI
IF (IDI .LE. 0 .OR. IDI .GT. 5) GO TO 120

IF (IDI .EQ. 5) THEN
SHOW TEXT AND FIRST DATA RECORD
REWIND (IN)
WRITE(IW,5)
TEXT
DO 130 I=1,NSK
READ(IN,6) AREG
WRITE(IW,7) AREC
CONTINUE
FIRST DATA RECORD
READ(IN,6) AREC
WRITE(IW,7) AREC
BACKSPACE (IN)
GO TO 120
ENDIF

RESULTS PER HALF YEAR TO SCREEN ?
WRITE(IV,8)
READ(IR, ‘' (A1)') ANT

IPR = 0

IF (ANT .EQ. 'Y’ .OR. ANT .EQ. 'y’) THEN
IPR = 1
WRITE(IV,9)

ENDIF

Chkrkkkkikdikkkkkikdkkkhrkikkkkiihkkikikiihkikikikikkiddhhkikikidhddiik

c
C

130

WRITE HEADING FOR OUTPUT FILE AND FOR SCREEN
IF (IPR .EQ. 1) THEN
IF (IDI .EQ. 4) THEN
WRITE(IW,11)
ELSE

Programma EPOT

WRITE(IW,10)
ENDIF

ENDIF

IF (IDI .EQ. &) THEN
WRITE(IO,11)
WRITE(IS,11)

ELSE
WRITE(IO,10)
WRITE(IS,10)

END IF

Kedkkfek ek ki kkkkkkkkkdkkkhhkiifhkkkkkkkkkkkhidkkk READ DATA PER DAY ###i

IDAG - day number

IJAAR - year

PREC - precipitation (mm)

TEM - temperature (degrees)

RH - relative humidity

DCL - degree of cloud cover (n/N) (-)

WIND - windspeed (not used)

HSH - incoming global (short wave) radiation (W/m2)
HNT - mett radiation (W/m2)

ID=20
140 CONTINUE

RECORDS COUNTER
ID=1ID + 1

IF (IDI .EQ. 1) THEN

a O o a aaaaoaaaaoaaoQ0

READ(IN,*,END=150) IDG,MND,IJAAR(ID),PREC(ID),TEM(ID),RH(ID),
& WIND(ID) ,HSH(ID),HNT(ID)

CONVERT DAY AND MONTH TO DAY NUMBER
IDAG(ID) = IDG + IMND(MND)

ELSEIF (IDI .EQ. 2) THEN
READ(IN,*,END=150) IDAG(ID),PREC(ID),TEM(ID),RH(ID),HSH(ID)
ELSEIF (IDI .EQ. 3) THEN

a O ao a aqQ

READ(IN,* ,END=150) IDAG(ID),IJAAR(ID),PREC(ID),TEM(ID),
& RH(ID),HSH(ID)

(5]

ELSEIF (IDI .EQ. 4) THEN

Q

READ(IN,*, END=150) IDAG(ID),IJAAR(ID),PREC(ID),TEM(ID),
& RH(ID) ,HSH(ID),DCL(ID),WIND(ID)

ENDIF
GO TO 140

aa a O

END OF FILE REACHED
150 CONTINUE

131

Programma EPOT

C
G

c

NUMBER OF DAYS WITH METEO DATA
NUMD = ID - 1

RETURN

Crkkkkkkkkkikdiikiidkihhhkkikkiikikkhkkikkidhkiikkkkihkkkkk PFPORMATS #®%%x%

C

QaoaoaaoaaaaaQo Qaoaaaoaaoanao

132

1 FORMAT(/' Starting date of summer (l=Northern; 2=Southern) ’,$)

2 FORMAT(/' Summer period from day: ',I4,' to’,I4)

3 FORMAT(/’' How many records must be skipped with text ----- ?7,%
4 FORMAT(/' Which parameters must be read'/

& 5X,’1 - IDAG,MND,IJAAR,PREC,TEM,RH,WIND, HSH, HNT (Makkink)’/

& 5X,*2 - IDAG,PREC,TEM,RH,HSH (Makkink) '/

& 5X,'3 - IDAG,IJAAR,PREC,TEM,RH,HSH (Makkink) '/

& 5X,'4 - 1DAG,IJAAR,PREC,TEM,RH,HSH,DCL,WIND (Penman) ' /

& 5X,’5 - unknown, show first data record and start again’//

& ! ENTER CHOICE ~----------- 2,9

5 FORMAT(/' Data of first record is : '/)

6 FORMAT(A70)

7 FORMAT (2X,A70)

8 FORMAT(/' Accumulated half year results to screen '/

(Y Or N) c-cemcmm oo a e ? .8
9 FORMAT(//)

10 FORMAT(' Day Year Rainfall ETp gras ETp pine ETp deci’,

' evap. fac.'/

g

&
& [mm] [mm] [mm] [mm] ',
& * fallow soil’)

11 FORMAT(' Day Year Rainfall Eo (Pen) ETp pine ETp deci’,
& ! evap. fac.'/
& ! [mm] [mm] [mm] [mm] ',
& ' fallow soil’)

END

SUBROUTINE REF
Fkdkkk SUBROUTINE HEADER Fkkkkk

CALC. REFERENCE EVAPOTR. (MAKKINK)

Kk ok ko k kAR kR Ak A dk kA d R R R TR R AR TR TR AR TR R TR A AR RARR COMMON *kt

PARAMETERS, COMMON AND CHARACTERS
INCLUDE 'EPOT.INC’

o oy 2 S R PR R R R R X R R Y e e R R e R R e e

NUMD - number of records (days) with data

TEM - temperature (degrees)

HSH - incoming global (short wave) radiation (W/m2)
MFAC - conversion from cm to default unit- (Subr. INIT)
TEMP - temperature in K

EV - verzadigingsdampdruk
DEL - helling van de verzadigingsdampdrukcurve

DO 100 ID=1,NUMD

aoan

100

Programma EPQT. -

TEMP = TEM(ID) + 273.15

WED = .0583 * TEMP - 2.1938

EV = 1.3332 * EXP((1.08872*TEMP-276.4884) / WED)
DEL = 13.7315 * EV / (WED**2)

EQUATION OF MAKKINK - EVAPOTRANSPIRATION IN CM
CONVERSION TO DEFAULT UNIT (MM OR M) BY MFAC
EPG = 0.65 * HSH(ID) * DEL / (DEL+GAMMA)
EPGRAS(ID) = 0.00352 * EPG * MFAC

CONTINUE

RETURN
END

133

Aantekeningen

135

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie
Rapporten en Nota’s No. 27 van de CHO-TNO

No.

No.

No.

No.

No.

No.

No.

No.

8.%

COMMISSIE VOOR HYDROLOGISCH ONDERZOEK TNO
RAPPORTEN EN NOTA’S

Tweede rapport en aanbevelingen

van de Contactgroep Archivering en Automatische Verwerking van hydrologi-
sche gegevens TNO.

Januari 1977.

Verslag en aanbevelingen
van de ad hoc-Groep Grondwatermodellen en Computerprogrammatuur TNO.
Juli 1978.

De droogte in 1976.

Een samenvatting en overzicht van de over de droogte van 1976 verschenen
literatuur - P.K.M. v.d. Heijde.

Augustus 1978.

Nederlandse activiteiten in internationaal hydrologisch verband.
Lezingserie, gehouden op 25 april 1978 te Delft, aangevuld met (schema-
tische) overzichten van internationale organisaties en een overzicht van hun
vertegenwoordigers in Nederland.

Augustus 1978.

Waterkwaliteit in grondwaterstromingsstelsels.

Verslag van de Workshop op 1 en 2 april 1980 te Wageningen - (red.

J.C. Hooghart), aangevuld met discussiebijdragen en een inventarisatie van
het onderzoek in Nederland.

Augustus 1980.

Derde rapport en aanbevelingen

van de Contactgroep Archivering en Automatische verwerking van hydrologi-
sche gegevens TNO.

Februari 1981.

Overzicht van de wensen van hydrologen en waterbeheerders ten aanzien van
het operationele regenwaarnemingennet van het KNMI - J.C. Hooghart.
Oktober 1981.

Verklarende Hydrologische Woordenlijst van de Gespreksgroep Hydrolo-
gische Terminologie.
8a. I. Water in de onverzadigde zone

II. Water in de verzadigde zone

Januari 1982.

8b. III. Atmosferisch water
Juni 1983,

8c. 1V. Opperviaktewater
Maart 1985.

*) Verouderd: vervangen door Rapporten + Nota’s no. 16.

137

Rapporten en Nota’s

No.

No.

No.

No.

No.

No.

No.

No.

138

10.

11.

12.

12a.

13.

14.

15.

Waterkwaliteit en waterkwantiteit in het IJsselmeergebied.

Verslag van de 2e CHO-studiebijeenkomst op 2 en 3 november 1981, De
Eembhof, Zuidelijk Flevoland - (red. J.C. Hooghart), aangevuld met discussie-
bijdragen.

Februari 1982.

Rapport en aanbevelingen
van de Contactgroep Grondwatermodellen, CHO-TNO.
April 1982.

Inventarisatie Grondwaterkwaliteitsmodellen.
L.J.M. Boumans.
Oktober 1982.

Grondwaterkwaliteit in relatie met onderzoek en beleid.

Verslag van de 3e CHO-studiebijeenkomst op 15 maart 1983 te Wageningen -
(red. J.C. Hooghart), aangevuld met discussiebijdragen.

Juni 1983.

Voorlopig overzicht van inventarisaties waarin grondwater(kwaliteits)modellen
voorkomen of hiermee in verband staan.

J.C. Hooghart.

Januari 1984.

Vergelijking van modellen voor het onverzadigd grondwatersysteem en de
verdamping.

Verslag van de 4¢ CHO-studiebijeenkomst op 24 oktober 1984, georganiseerd
in samenwerking met de Studiegroep Hupselse.Beek - (red. J.C. Hooghart).
Maart 1985.

Meten, meetnetten en optimale meetnetontwerpen ten dienste van het waterbe-
heer.
Verslag van:
- Voorjaarsbijeenkomst van de KIvI Sectie Waterbeheer:
"Meten voor waterbeheer”, mei 1984.
- Colloquium van de Studiegroep Statistiek in de hydrologie CHO-TNO:
"Meetontwerp en optimalisatie”, november 1984.
(red. P. v.d. Kloet en J.C. Hooghart).
Januari 1986.

Het hydrologisch systeem in het grensgebied Luik-Maasbracht.

Le systéme hydrologique dans la région frontaliere Li¢ge- Maasbracht.
Verslag van de 5e CHO-studiebijeenkomst op 13 december 1985, georgani-
seerd in samenwerking met de Nationale IHP-comité’s van Belgié en Neder-
land en de Contactgroep Hydrologie van het Nationaal Fonds voor Weten-
schappelijk Onderzoek uit Belgié.

(red. J.C. Hooghart).

April 1986.

No.

No.

No.

No.

No.

No.

. 16.

17.%)

19.

20.

21.

22.

Rapporten en Nota’s

Verklarende Hydrologische Woordenlijst van de Gespreksgroep Hydrologi-
sche Terminologie, waarin opgenomen de hoofdstukken:

I Algemene termen

II Atmosferisch Water

III Water in de onverzadigde zone

IV Water in de verzadigde zone

V Oppervlaktewater

Oktober 1986, hernieuwde uitgave.

Duurzaamheid rioolleidingen; een literatuurstudie naar aantastingsmecha-
nismen.

R.B. Polder.

Februari 1987.

*) Uitverkocht.

Ruimtelijke variabiliteit van bodem en water.

Verslag van de 6e CHO-studiebijeenkomst op 22 oktober 1986.
(red. J.C. Hooghart).

Februari 1987.

Van Penman naar Makkink; een nieuwe berekeningswijze voor de klimatolo-
gische verdampingsgetallen.

Eindrapport van de KNMI-Projectgroep en de CHO-Begeleidingsgroep
Verdampingsberekeringen.

(red. J.C. Hooghart en W.N. Lablans).

December 1988.

Tijdreeksen in bodem en water.

Inleidingen van de lezingendag op 25 januari 1989 van de NRLO-Werkgroep
Ruimtelijke variabiliteit in bodem en water en de Studiegroep Statistiek in de
Hydrologie van de CHO-TNO.

December 1988.

Neerslagmeting en -voorspelling; toepassing van modern technieken, zoals
radar- en satellietwaarnemingen.

Verslag van de 7e CHO-studiebijeenkomst, georganiseerd in samenwerking
met SAMWAT, op 16 november 1988.

(red. J.C. Hooghart).

Februari 1989.

Integraal Waterbeheer in het Goois/Utrechts stuwwallen- en plassengebied.
Verslag van de op 7 april 1989 in Bussum gehouden themadag, georganiseerd
door het Zuiveringschap Amstel en Gooiland en de Provincie Utrecht, in
samenwerking met de CHO-TNO.

(red. L. van Liere, R.M.M. Roijackers en P.J.T. Verstraelen).

Augustus 1989.

139

Rapporten en Nota’s

No. 23.

No. 24.

No. 25.

No. 27.

No. 28

No.29

Bodemwaterkwaliteit in wisselwerking met biologische, chemische en hydro-
logische processen.

Verslag van de 8¢ CHO-studiebijeenkomst op 8 mei 1990.

(red. J.C. Hooghart)

September 1990.

Ruimtelijke statistiek van bodem en water.

Inleidingen van de lezingendag op 24 januari 1991 van de NRLO-werkgroep
Ruimtelijke variabiliteit van bodem en water en de Studiegroep Statistiek in de
Hydrologie van de CHO-TNO.

(red. J.C. Hooghart)

Januari 1991,

Geo-informatie in Nederland.

Inleidingen van de lezingendag op 2 mei 1991 in samenwerking met het
Samenwerkingsverband Aardkundige Gegevensverstrekkende Instituten
(SAG ID).

(red. J.C. Hooghart)

Mei 1991.

Het hydrologisch systeem in het grensgebied Luik-Maasbracht; onderzoeks-
resultaten 1985-1990.

Le systeme hydrologique dans la région frontaliere Liege-Maasbracht;
résultats des recherche 1985-1990.

Verslag van de 9¢e CHO-studiebijeenkomst op 9 januari 1991, georganiseerd
in samenwerking met de Nationale ITHP-comité’s van Belgié en Nederland en
de Contactgroep Hydrologie van het Nationaal Fonds voor Wetenschappelijk
Onderzoek uit Belgié.

(red. J.C. Hooghart).

Augustus 1991,

Richtlijnen voor computerprogrammatuur in de hydrologie.

Eindrapport van de CHO-Werkgroep Richtlijnen Computerprogrammatuur
Hydrologie.

(red. J.C. Hooghart, K. Kovar en J.M.P.M. Peerboom)

Oktober 1992.

Integraal (water)beheer in de praktijk haalbaar?

Verslag van de op 7 april 1992 in Amsterdam gehouden themadag, met
aanvullingen.

(red. R.M.M. Roijackers, P.J.T. Verstraelen en L. van Liere).

(in druk).

HYDRO - LOGISCH; wetenschap en toepassing.

Verslag van het symposium op 5 oktober 1992 ter gelegenheid van het
afscheid van H.J. Colenbrander van de CHO-TNO.

(red. J.C. Hooghart en C.W.S. Posthumus).

Oktober 1992, :

Voor bestellingen en informatie: CHO-TNO

140

Postbus 6067
2600 JA DELFT
Telefoon: 015 - 69 72 81

