
MCHTLUNEN V W R  ONTWiKKELINû VAN 
COlllWTERPROORAMMATUUR 

IN DE HYDROL001E 



Richtlijnen v m r  ooi- v811 c o m ~ h i u r  ia de hydmb& 
Rappmm ai Nota's No. 27 van de CHû-TNO 

CHECKLIST COMPUTERPROGRAMMATUUR IN DE HYDROII)(;IE 



- Dd.opmprnopin ' " ealadiai.mubij.11dgmOtbIddtmuial50w 
m-. 



RICiïïLUNEN VOOR ONïWiKKELING VAN 

C O ~ R P R O G R A M M A T U U R  

IN DE HYDROLOGIE 



CIP DATA 

Richtlijnen 

Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie (redactie: J.C. 

Hooghart, K. Kovar en J.M.P.M. Peerboom). Delft; Commissie voor Hydrologisch 

Onderzoek TNO. - ill. - (Rapporten en Nota's/Commissie voor Hydrologisch Onderzoek 

TNO, no. 27). Eindrapport van de CHO-Werkgroep Richtlijnen Computerprogrammatuur 

Hydrologie. 

Met literatuuropgave 

ISBN 90-6743-195-8 

Trefwoord: model, computerprogramma, hydrologie. 

Copyright ® NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUUR-WETEN­

SCHAPPELUK ONDERZOEK, 1992 



RICHTLUNEN VOOR ONTWIKKELING VAN 

COMPUTERPROG~TUUR 

IN DE HYDROLOGIE 

EINDRAPPORT VAN DE CHO-WERKGROEP 

RICHTLUNEN COMPUTERPROGRAMMA TUUR HYDROLOGIE 

COMMISSIE VOOR HYDROLOGISCH ONDERZOEK TNO 

DELFT,1992 

RAPPORTEN EN NOTA'S No. 27 





VOORWOORD 

De voorliggende publikatie is opgesteld door de Werkgroep Richtlijnen Computerprogram­

matuur Hydrologie. De werkgroep was ingesteld door het Klein Comité van de Commissie 

voor Hydrologisch Onderzoek TNO. 

De huidige kwaliteit van computerprogrammatuur op het gebied van de hydrologie laat vaak 

te wensen over voor wat betreft betrouwbaarheid, onderhoudbaarheid, overdraagbaarheid, 

koppelingsmogelijkheden en efficiëntie in het gebruik van computerprogrammatuur 

(modelleren) in de hydrologische praktijk. De werkgroep heeft zich over deze problematiek 

gebogen. Tijdens de discussies binnen de werkgroep werd de problematiek geanalyseerd en 

zijn mogelijke oplossingen naar voren gebracht. De werkgroep heeft zich uiteindelijk 

beperkt tot het uitwerken van één van de oplossingen van het probleem, namelijk het 

opstellen van richtlijnen voor de ontwikkeling van de computerprogrammatuur. Wat betreft 

de overige factoren, worden enkele aanbevelingen tot maatregelen gedaan om in de 

toekomst tot een kwalitatief hoogwaardiger programmatuur te kunnen komen. 

Dit rapport heeft ten doel aanbevelingen (richtlijnen) te presenteren ten behoeve van de 

ontwikkeling van computerprogrammatuur. Indien opgevolgd, zullen deze aanbevelingen op 

korte termijn leiden tot de verbetering van de kwaliteit van de programmatuur en dus ook 

een efficiëntere omgang met programmatuur in de praktijk mogelijk maken. Het rapport is 

weliswaar toegespitst op de praktijk van de computertoepassingen in de geohydrologie, maar 

verwacht wordt, dat de aanbevelingen ook in andere vakgebieden bruikbaar zullen zijn. De 

werkgroep pretendeert niet met geheel nieuwe inzichten te zijn gekomen, maar beoogt een 

bruikbaar overzicht te hebben geproduceerd, dat betrekking heeft op de belangrijkste 

ontwikkelfasen van computerprogrammatuur op het gebied van hydrologie. 

Het rapport is bestemd voor zowel ontwikkelaars (ontwerpers en programmeurs) als voor 

gebruikers van hydrologische programmatuur. Van de lezer wordt verwacht dat deze over 

enige basiskennis van het programmeren beschikt. Beginnende ontwikkelaars kunnen uit het 

rapport normen ontlenen voor een te hanteren programmeerstijl, meer ervaren ontwikkelaars 

kunnen hun programmeerstijl toetsen en mogelijk verbeteren. 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRO-TNO 

INHOUDSOPGA VE 

1 INLEIDING 

1.1. Achtergrond 

1.2 Instelling werkgroep 

1.3 Doel van het rapport 

1.4 Leeswijzer 

2 ONTWIKKELMETHODIEKEN 

2.1 Inleiding 

2.2. Een standaard systeemontwikkelmethodiek (SDM) 

2.3 Praktisch gebruik 

2.4 Resumé 

3 ThITERNESTRUCTUREIDNG 

3.1 Inleiding 

3.2 Modulaire indeling 

3.3 Voorbeeld 

3.4 Moeilijkheden bij bestaande programmatuur 

3.5 Moeilijkheden bij koppeling 

3.6 Resumé 

4 NAAMGEVING PROGRAMMA-ONDERDELEN 

4.1 Inleiding 

4.2 Naamgeving onderdelen 

4.3 Namen van bestanden behorende bij een programma 

4.4 Voorbeelden van naamgeving van programma-onderdelen 

4.5 Resumé 

5 NAAMGEVING PROGRAMMAVAIDABELEN 

5.1 Inleiding 

5.2 Systeem 

pag. 

1 

1 

3 

4 

5 

7 

7 

8 

9 

11 

13 

13 

13 

15 

16 

16 

17 

19 

19 

19 

20 

21 

24 

25 

25 

25 



, Inhoudsopgave 

pag. 

5.3 Voorbeeld: de Verklarende Hydrologische Woordenlijst 27 

5.4 Resumé 29 

6 DATABESTANDEN 31 

6.1 Inleiding 31 

6.2 Eisen te stellen aan databestanden 31 

6.3 Geformatteerde of ongeformatteerde databestanden 32 

6.4 Gegevensbehandeling in database management systeem 35 

6.5 Gegevensbehandeling in GIS 36· 

6.6 Voorbeelden geformatteerde (ASCII) bestanden 38 

6.7 Voorbeeld bestandsstructuur DBMS 41 

6.8 Koppeling van programma's 43 

6.9 Resumé 43 

7 LAY-OUT FORTRAN 77-BRONCODE 45 

7.1 Inleiding 45 

7.2 Lettertype en positionering van code 45 

7.3 Assignment statement 46 

7.4 Do-loop statement 47 

7.5 Argument van subroutines en functies 49 

7.6 If-then statement 50 

7.7 Read en write statement 51 

7.8 Resumé 53 

8 FORTRAN 77-PROGRAMMEERASPECTEN 55 

8.1 Inleiding 55 

8.2 Declaraties 55 

8.3 Initialisering 57 

8.4 Lokale variabelen 58 

8.5 Argumentenoverdracht 59 

8.6 Intrinsieke functies 60 

8.7 Lengte subroutines en functies 61 



Inhoudsopgave 

pag. 

8.8 Read and write statements 61 

8.9 Groepering van compiler-afhankelijke functies 62 

8.10 Resumé 62 

9 FOUTENCONTROLE EN FOUTMELDINGEN 63 

9.1 Inleiding 63 

9.2 Invoer van data 64 

9.3 Foutencontrole 64 

9.4 Foutmeldingen 65 

9.5 Foutafhandeling 66 

9.6 Resumé 68 

10 TESTEN VAN PROGRAMMATUUR 69 

10.1 Inleiding 69 

10.2 Aanpak bij testen 69 

10.3 Testmethoden 70 

10.4 Resumé 72 

11 INTERNE DOCUMENTATIE IN COMPUTERCODE 73 

11.1 Inleiding 73 

11.2 Documentatie aan begin van routine 74 

11.3 Documentatie tussen de regels met FORTRAN-instructies 74 

11.4 Voorbeelden 76 

11.5 Resumé 80 

12 PROGRAMMAHANDLEIDING 81 

12.1 Inleiding 81 

12.2 Globale systeembeschrijving 82 

12.3 Theoretische systeembeschrijving 82 

12.4 Technische systeembeschrijving 83 

12.5 Gebruikersbeschrijving 86 

12.6 Programma-evaluatie 87 



Inhoudsopgave 

12.7 Resumé 

13 CONCLUSIES EN AANBEVELINGEN 

13.1 Inleiding 

13.2 Het probleem van de kwaliteit 

13.3 Het opstellen van richtlijnen 

13.4 Maatregelen op langere termijn 

LITERATUUR 

BULAGEN 

A Samenstelling CHO-Werkgroep Richtlijnen Computer­

programmatuur Hydrologie 

B Voorbeeld naamgeving programmavariabelen: 

de Verklarende Hydrologische Woordenlijst 

C Voorbeeld programma AQ-HL02 (RIVM) 

D Voorbeeld programma EPOT (Staring Centrum) 

RAPPORTEN EN NOTA'S 

pag. 

88 

89 

89 

89 

90 

91 

93 

95 

97 

99 

111 

127 

137 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

1 INLEIDING 

1.1 Achtergrond 

In Nederland wordt momenteel een groot aantal computerprogramma's gebruikt op het 

gebied van de hydrologie en het waterbeheer (SAMWAT, 1991) . Steeds vaker wordt 

gebruik gemaakt van deze programma's bij het oplossen van problemen in de dagelijkse 

praktijk. Naast een ontwikkeling van nieuwe programma's vindt ook steeds vaker een 

koppeling plaats van bestaande programmatuur. Terwille van een beter begrip van de in dit 

rapport behandelde materie wordt het wenselijk geacht om een kort historisch overzicht te 

geven van de ontwikkeling van dit type computerprogramma's in Nederland. 

De ontwikkeling van computerprogramma's op het gebied van hydrologie is in Nederland in 

het midden van de zeventiger jaren begonnen. De programma's werden niet systematisch 

ontwikkeld, maar waren meestal een ad-hoc omzetting van een bestaand hydrologisch 

probleem (in navolging van elektrische analogons) in termen van FORTRAN-instructies, te 

realiseren binnen de kortst mogelijke tijd. 

De documentatie was zeer summier of ontbrak in het geheel. Dat gaf weinig of geen 

problemen, want de ontwikkelaar was meestal ook de enige gebruiker. Wat betreft 

onderhoudbaarheid was er ook geen probleem. Immers, het onderhoud en de verdere 

ontwikkeling werden meestal door de oorspronkelijke maker gedaan. 

Verbeteringen en veranderingen aan de programmatuur werden in de loop der tijd uitge­

voerd met behoud van de oorspronkelijke gebrekkige interne structuur en overige tekortko­

mingen. Bij het groter worden van de programma's, door veranderingen en toevoegingen, 

zijn de leesbaarheid en onderhoudbaarheid van de programmacode achteruit gegaan. Meestal 

was alleen de ontwikkelaar zelf in staat om de programmacode goed te begrijpen. Wat in 

het begin geen probleem was, begon later, vanwege toenemende complexiteit van 

onderzoekvraagstukken, noodzaak tot koppeling van verschillende ("vreemde") 

programma's en de hogere eisen gesteld door de groeiende gebruikersgroep, wel problemen 

op te leveren wat betreft de leesbaarheid en onderhoudbaarheid. De noodzaak van de 

verhoging van de kwaliteit van programmacode, en het modelleren in het algemeen, is aan 

1 



Inleiding 

het einde van de tachtiger jaren onderkend. 

Daarnaast werd steeds meer onderkend dat de kwaliteit van het hydrologisch onderzoek 

direct beïnvloed werd door de kwaliteit van de programmatuur. Zowel ten behoeve van de 

verhoging van de kwaliteit van computerprogrammatuur als van de kwaliteit van het 

hydrologisch modelonderzoek werd een zekere standaardisatie wenselijk geacht. De 

problematiek van de kwaliteit van de programmatuur wordt overigens niet alleen met 

betrekking tot de hydrologie, maar ook in andere vakgebieden onderkend (zie bijvoorbeeld 

VROM/DOM, 1990). 

Voor wat betreft de kwaliteitseisen, kan onderscheid worden gemaakt tussen: 

de eisen die de gebruiker stelt, en 

de eisen die de ontwikkelaar stelt. 

Eisen die de gebruiker stelt zijn o.a.: 

betrouwbaarheid; 

toepasbaarheid voor het specifieke probleem van de gebruiker (dat wil zeggen 

voldoende algemene toepasbaarheid en aanpasbaarheid); 

goede handleiding; 

overdraagbaarheid (naar andere computers, wat met name een probleem kan zijn bij 

de grafische toepassingen); 

koppelingsmogelijkheden: 

uitvoer van andere programma's kan eenvoudig gebruikt worden als invoer; 

de uitvoer kan gemakkelijk gebruikt worden als invoer voor andere programma's; 

efficiëntie in gebruik c.q. gebruikersvriendelijkheid waarbij genoemde koppe­

lingsmogelijkheden belangrijk zijn maar ook de volgende eigenschappen: 

opsporing en signalering van fouten; 

gebruikersvriendelijke invoer; 

duidelijke presentatie van de resultaten, direct via tabellarische en grafische 

uitvoer of indirect via een algemeen grafisch programma of spreadsheet; 

commentaar in de invoerbestanden is mogelijk, bij lange invoerbestanden niet 

alleen in een paar regels aan het begin, maar ook tussendoor. 

De eisen van de ontwikkelaar betreffen onder meer: 

2 



Inleiding 

De eisen van de ontwikkelaar betreffen onder meer: 

het beschikbaar zijn van programmastructuur-diagrammen voor diverse niveaus; 

voldoende commentaar in programmacode; 

een beschrijving van alle variabelen in het programma. 

Om praktische redenen zal de informatie die de ontwikkelaar nodig heeft vaak niet in 

publiceerbare vorm gegoten kunnen worden. Het zal doorgaans interne rapporten betreffen. 

1.2 Instelling werkgroep 

De bovenstaande problematiek is ten dele reeds in 1976 in het Klein Comité van de 

Commissie voor Hydrologisch Onderzoek van TNO (CHO-TNO) aan de orde gesteld, 

waarna de "Ad hoc groep Grondwatermodellen en Computerprogrammatuur" werd 

ingesteld. Deze groep had als taak de in Nederland beschikbare computerprogrammatuur en 

de op dat gebied bestaande verlangens te inventariseren (CHO-TNO, 1978). Vervolgens is 

in 1979 de Contactgroep Grondwatermodellen ingesteld met als doelstelling het bevorderen 

van de samenwerking bij de ontwikkeling en toepassing van grondwatermodellen ten dienste 

van het grondwaterbeheer als totaliteit (CHO-TNO, 1982). 

Aan het einde van de tachtiger jaren begon men zich bij vele instanties te realiseren dat er 

sprake was van een structureel gebrek aan uniformiteit en duidelijkheid van de diverse 

programma's, onder meer met betrekking tot de in computerprogramma's voorkomende 

variabelen. Ook de afstemming tussen de programma's onderling liet te wensen over. Bij 

enkele instanties werd zelfs gewag gemaakt van een 'software crisis'. Het verzoek van een 

van de leden van de Commissie voor Hydrologisch Onderzoek, waarin de desbetreffende 

problematiek aan de orde werd gesteld, was de aanleiding voor het Klein Comité om de 

Werkgroep Standaardisatie Naamgeving Modelvariabelen in te stellen, te weten per 15 juni 

1989. 

Na een verkenningsperiode was de werkgroep echter tot de conclusie gekomen dat de 

naamgeving van variabelen slechts een onderdeel is van de veelomvattende problematiek 

van de kwaliteit van de computerprogrammatuur op het gebied van hydrologie. Tegen deze 

achtergrond werd het Klein Comité door de Werkgroep vervolgens verzocht de taakstelling 

van de Werkgroep dienovereenkomstig te verruimen. Het Klein Comité is met dit verzoek 

akkoord gegaan en wijzigde de taakstelling tot "het opstellen van richtlijnen met betrekking 

3 



Inleiding 

tot de ontwikkeling van computerprogrammatuur op het gebied van de hydrologie". De 

naam van de groep is om deze reden aangepast: Werkgroep Richtlijnen Computerprogram­

matuur Hydrologie (RCPH). 

Bij de samenstelling van de werkgroep werd gestreefd naar een representatieve vertegen­

woordiging van instanties op het gebied van de hydrologie. De leden van de werkgroep zijn 

vermeld in Bijlage A. 

1.3 Doel van het rapport 

Het rapport heeft ten doel aanbevelingen te presenteren met betrekking tot computerpro­

grammatuur op het gebied van de hydrologie. Het ter harte nemen van deze aanbevelingen 

zal leiden tot een betere kwaliteit van de programmatuur en een efficiëntere omgang met 

programma's mogelijk maken. 

De Werkgroep RCPH pretendeert niet met nieuwe inzichten te komen, maar hoopt een 

bruikbaar overzicht te hebben geproduceerd van belangrijke aspecten bij het ontwikkelen 

van hydrologische computerprogrammatuur. 

Dit rapport is primair geschreven bezien vanuit de praktijk van hydrologie, niet vanuit de 

optiek van professionele software-engineering. Dit houdt in dat in het rapport op een aantal 

plaatsen wellicht iets andere terminologie wordt gebezigd dan in de bestaande literatuur 

voor software ontwikkeling (normen, etc.) gebruikelijk is. 

Het rapport is bestemd voor wwel programmeurs van complete programma' s als voor 

tussen- en eindgebruikers. Van de lezer wordt verwacht dat deze beschikt over enige 

basiskennis van het programmeren. Beginnende programmeurs kunnen uit het rapport 

normen ontlenen voor een te hanteren programmeerstijl, meer ervaren programmeurs 

kunnen hun programmeerstijl toetsen en mogelijk verbeteren. Het rapport is niet geschreven 

als blauwdruk voor te ontwikkelen programma's. Tijdens het schrijven bleek namelijk dat er 

vele wegen naar Rome leiden. 

De hoofdstukken zijn zoveel mogelijk voorzien van eenvoudige voorbeelden en een kort 

resumé van de aanbevelingen aan het eind. De aanbevelingen zijn ook samengevat op een 

los bijgevoegde lijst (checklist). 

4 



lIileiding 

1.4 Leeswijzer 

Hoofdstuk 2 gaat in op een aantal standaard ontwikkelmethodieken voor software in het 

algemeen en de bruikbaarheid hiervan binnen de hydrologie. Hoofdstuk 3 behandelt de 

interne structurering van computerprogramma's. Het gestructureerd programmeren en de 

modulaire opbouw van programma's fungeert als rode draad die door het hele rapport 

loopt. In hoofdstuk 4 komt de naamgeving van programma-onderdelen aan bod, waaruit ook 

de modulaire opbouw duidelijk wordt. Hoofdstuk 5 handelt over de naamgeving van 

programmavariabelen, waarbij uitgegaan wordt van het gebruik van stamnamen en 

achtervoegsels. Als uitgebreid voorbeeld wordt een deel van de Verklarende Hydrologische 

Woordenlijst voorzien van namen voor corresponderende variabelen in een programma. 

Hoofdstuk 6 behandelt verschillende manieren waarop databestanden gestructureerd 

aangemaakt en gewijzigd kunnen worden. In hoofdstuk 7 wordt besproken hoe de leesbaar­

heid van de broncode van een programma bevorderd kan worden door een zorgvuldige 

keuze van de layout van de broncode. Hoofdstuk 8 gaat in op een aantal programmeeraspec­

ten (specifiek voor FORTRAN 77), die de kwaliteit van de programmatuur beter of juist 

slechter kunnen maken. In hoofdstuk 9 komt de problematiek van de foutencontrole en het 

genereren van foutmeldingen aan de orde. Hoofdstuk 10 gaat in op het organiseren van het 

testen van een programma en behandelt enige testmethoden. Hoofdstuk 11 belicht de interne 

documentatie binnen programma's. Hoofdstuk 12 geeft een overzicht van de opbouw van 

programmahandleidingen en behandelt puntsgewijs de onderwerpen die in een handleiding 

aan de orde moeten komen. In hoofdstuk 13 worden de conclusies beschreven die de 

werkgroep heeft geformuleerd inzake het algemene probleem van de kwaliteit van software. 

Verder worden de conclusies met betrekking tot de specifieke problematiek van dit rapport 

gegeven. Tenslotte volgt een aantal aanbevelingen. 

In het rapport worden een aantal termen gebruikt die mogelijk aanleiding kunnen geven tot 

verwarring. Voor de goede orde volgen hier enkele in dit rapport gehanteerde definities: 

computerprogramma een geheel van instructies (broncode) waarmee bij gegeven 

invoer een bepaald proces kan worden gemodelleerd (de 

voorbeelden van broncode die in dit rapport gegeven worden 

zijn allen geschreven in FORTRAN); 

5 



Inleiding 

model 

module 

routine 

een computerprogramma samen met invoergegevens. Hiermee 

wordt een bepaalde concrete situatie gemodelleerd; 

een functionele eenheid in algemene zin van een computerpro­

gramma, bijvoorbeeld het verzorgen van invoer of het uitvoe­

ren van berekeningen; 

kleinst mogelijke eenheid in een computerprogramma (in 

FORTRAN een "SUBROUTINE" of een "FUNCTION"). 

Bij de voorbeelden en richtlijnen in dit rapport wordt uitgegaan van FORTRAN als 

programmeertaal. Dit sluit aan bij de huidige praktijk, hoewel gesteld kan worden dat ook 

andere talen hun intrede gedaan hebben in het hydrologische onderzoekveld. 

6 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

2 ONTWIKKELMETHODIEKEN 

2.1 Inleiding 

Het ontwikkelen van computerprogramma's begint meestal niet bij het opschrijven van 

computercode, evenzo houdt de ontwikkeling niet op als de computercode éénmaal 

geschreven is. In feite is het uiteindelijk programmeren van een probleem slechts een 

betrekkelijk klein gedeelte uit een heel traject. Dit traject wordt de systeemontwikkeling 

genoemd. Bij systeemontwikkeling staat het zoeken en definiëren van problemen, het 

ontwerpen en realiseren van oplossingen en omgaan met die oplossingen centraal. Eigenlijk 

gaat het schrijven van computerprogramma's altijd gepaard met systeem-ontwikkeling; 

impliciet of expliciet worden eisen geformuleerd, problemen gedefinieerd, ontwerpen ge­

maakt etc. Bij het ontwikkelen van grote informatiesystemen worden de verschillende 

stappen in het ontwikkelproces systematisch doorlopen, waarbij iedere stap op een vooraf 

vastgestelde wijze wordt geëvalueerd. Dit opsplitsen van het systeem-ontwikkelproces in 

geformaliseerde stappen wordt een standaard systeemontwikkel-methodiek genoemd. 

Alhoewel dit hoofdstuk primair de ontwikkeling van programmatuur behandelt, speelt 

hierbij ook de gebruiker een belangrijke rol. Deze werkt in het begin van het 

ontwikkeltraject mee aan de opstelling van het pakket van eisen, te stellen aan de 

programmatuur. De behoeften van de gebruiker, en de ervaringen die de gebruiker met 

diverse programma's heeft, dienen grondig te worden geïnventariseerd teneinde een 

optimaal functionerend produkt te kunnen ontwikkelen. 

Zoals gezegd, de standaard systeemontwikkelmethodieken zijn ontstaan en hebben hun nut 

bewezen, bij het ontwikkelen van gn;>te systemen waarbij sprake is van een compleet 

ontwikkelteam en een grote pluriforme gebruikersgroep. Bij het ontwikkelen van relatief 

kleine specifieke systemen vindt systeemontwikkeling doorgaans veel minder gestruc-tureerd 

plaats. Met name bij het ontwikkelen van wetenschappelijke programmatuur zoals binnen de 

hydrologie, met vaak een kleine uniforme gebruikersgroep en een programmeur/systeemana­

list/systeemontwerper in één persoon verenigd, vindt systeem-ontwikkeling (ten onrechte) 

vaak op ad-hoc basis plaats. Gebruik van standaard methodieken kan echter ook bij dit soort 

systemen grote voordelen hebben, hoewel kritisch aan de verschillende stappen in het proces 

7 



Ontwikkelmethodieken 

gewicht toegekend moet worden. 

2.2 Een standaard systeemontwikkelmethodiek (SDM) 

Hoewel er in naam meerdere methodieken voorhanden zijn, werken ze allen globaal volgens 

hetzelfde concept. Een bekende en meest algemene methode is SDM (System Development 

Methodology). SDM beschrijft het systeemontwikkeltraject volgens de fasen van de 

levenscyclus van een informatiesysteem. Iedere fase wordt afgesloten, voordat er met de 

volgende fase wordt begonnen. Globaal zijn de volgende fasen te onderscheiden: 

Fase 0: Informatieplanning 

Hierin wordt bepaald welke informatiesystemen nodig zijn om de gestelde doelen 

van een organisatie te kunnen realiseren. Er wordt een haalbaarheidsonderzoek 

uitgevoerd. Dit onderzoek omvat: plan van aanpak, belangrijkste gebruikerseisen, 

ontwikkelingsstrategie enz. 

Fase 1: Definitiestudie 

Hierin worden de globale systeemeisen gedefinieerd. Bovendien worden de uit­

gangspunten, waaronder de fase eindprodukten, de gebruikerseisen en richtlijnen 

voor de ontwerpfase vastgelegd. Tevens komt in deze fase aan de orde de 

financiën en tijdsplanning. 

Fase 2: Basisontwerp 

De architectuur van het systeem wordt gedefinieerd, zodat het voldoet aan de 

eisen die zijn vastgelegd in de definitiestudie. Op basis hiervan wordt het gehele 

ontwerp met zijn subsystemen vastgelegd. 

Fase 3: Detailontwerp 

8 

Per subsysteem worden de systeemeisen verder verfijnd tot een niveau waarop 

deze kunnen worden vervaardigd. In feite is er aan het eind van deze fase sprake 

van een pakket pseudocode. 



Ontwikkelmethodieken· 

Fase 4: Realisatie 

In deze fase wordt de computercode geschreven en wordt de vervaardigde pro­

grammatuur getest, op basis van de eerder geformuleerde specifieke een 

algemene systeemeisen. (Voor technisch-wetenschappelijke toepassingen worden 

meestal fase 3 en fase 4 samengenomen.) 

Fase 5: Invoering 

Hierbij wordt het systeem door de ontwikkelaar losgelaten en vindt het systeem 

zijn toepassing bij de vooraf gedefinieerde gebruiker. Fouten en afwijkingen naar 

aanleiding van acceptatietesten worden gecorrigeerd. 

Fase 6: Gebruik en beheer 

In de laatste fase is het systeem in gebruik bij externe gebruikers en moet het 

systeem in gebruik blijven. Hierbij moet voortdurend ingespeeld worden op 

nieuwe wensen en ontwikkelingen. 

2.3 Praktisch gebruik 

De hoofdfasen van SDM zijn eigenlijk voor ieder systeem toepasbaar. In feite is SDM een 

pleidooi om eerst na te denken en dan pas te doen (te programmeren) en om vervolgens 

betrokken en waakzaam te blijven. Iets dat overigens niet alleen de ontwikkeling van 

informatiesystemen aangaat! Het verschil tussen toepassing van SDM bij bijvoorbeeld grote 

administratieve systemen en toepassing voor technisch-wetenschappelijke systemen, ligt 

voornamelijk in de invulling van de verschillende fasen. Bij het eerste soort systemen moet 

zeer veel aandacht besteed worden aan gebruikersaspecten, management-aspecten, sociale 

aspecten, kosten-/batenanalyses etc. Dit zijn vaak ook de drijfveren voor het starten van 

fase 0, de informatieplanning. Inhoudelijk zijn er relatief weinig vraagpunten, problemen op 

het gebied van bestandsorganisatie daargelaten. Vaak is het doel, de organisatie efficiënter 

te laten draaien. Bij technisch-wetenschappelijk problemen zijn het vooral inhoudelijke 

aspecten die voorop staan. Technisch-wetenschappelijke programmatuur moet vaak niet op 

de eerste plaats een proces efficiënter laten verlopen, maar het moet mogelijk zijn om een 

bepaald inhoudelijk probleem afdoende op te lossen. Dat neemt niet weg dat ook vooraf een 

9 



Ontwikkelmethodieken 

prijs-/prestatie-overweging gemaakt moet worden, die door een beoogd gebruiker 

gedefinieerd wordt. 

SDM zal bij technisch-wetenschappelijke systemen vooral gebruikt worden om op het juiste 

moment de juiste vragen te stellen en om een probleem gestructureerd stapsgewijs te 

verfijnen. Het grote voordeel daarbij is dat op logische tijdstippen tijdens het proces verslag 

kan worden gedaan van de keuzes die aan de orde zijn. Een grotere groep betrokkenen (in 

dit geval deskundigen) kan zo "meegroeien" in de programmatuur en kan zo nodig sturen. 

Zonder het formaliseren van de stappen in de systeemontwikkeling is het systeem tijdens het 

ontwikkelproces voor minder mensen toegankelijk. Met een beelje geluk kan dan op basis 

van een goede documentatie een oordeel over het complete systeem gegeven worden, 

sturing is echter nauwelijks meer mogelijk. 

Tenslotte enkele kritische kanttekeningen: 

10 

Indien de ontwikkeling van een complex technisch-wetenschappelijk programma niet 

door één en dezelfde persoon plaatsvindt (combinatie van materiedeskundigheid en 

systeembouw), gaat relatief veel tijd zitten in de informatie-overdracht van de 

materiedeskundige naar de systeemanalist en programmeur. Hierdoor kan de 

ontwikkeling traag en duur worden. In het algemeen geldt dan dat ernaar gestreefd moet 

worden de samenwerkingsverbanden tussen materiedeskundigen en systeem­

ontwikkeiaars zo nauw mogelijk te houden. Om dezelfde reden zouden de infor­

matielijnen over zo min mogelijk mensen moeten lopen. 

Het ontwikkelen van een prototype model is wat moeilijker in te passen in het strak 

gedefinieerd schema van SDM. Bij de ontwikkeling van hydrologische modellen wordt 

vaak eerst een eenvoudig model ontwikkeld. Vervolgens wordt dit eenvoudig model 

toegepast, waarbij blijkt dat een aantal processen gedetailleerder of op een andere wijze 

beschreven moeten worden. Er wordt dan teruggesprongen naar de fase van 

detailontwerp of zelfs basisontwerp. In de definitiestudie kunnen de voorwaarden en 

mogelijkheden van dit soort "herhalingen" worden gesignaleerd en kan worden getracht 

dit tijdens de volgende fasen in te bouwen. 



2.4 Resumé 

Breng systematiek aan in het ontwikkeltraject. 

Sluit zoveel mogelijk fasen af met een rapportage voor derden. 

Gebruik zo mogelijk een standaard-ontwikkelmethodiek zoals SDM. 

OntwikkelmethOdieken 

Vooral: denk na voor het ontwikkelen van programma's en blijf na de ontwikkeling 

betrokken. 

11 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRO-TNO 

3 INTERNE STRUCTURERING 

3.1 Inleiding 

De hydrologische praktijk vraagt vaak om complexe computerprogramma's voor 

berekeningen en simulaties. Deze programma's kunnen alleen overzichtelijk gemaakt 

worden door een goede structuur aan te brengen. Hiertoe worden afzonderlijke taken 

onderscheiden, die binnen het programma verricht moeten worden. De hoofdtaken kunnen 

vaak weer verder opgesplitst worden in kleinere onderdelen. Op deze manier wordt een 

structuur van onderdelen gemaakt die elk een dusdanige omvang hebben dat ze zich in een 

redelijke hoeveelheid broncode laten vertalen. Door een verdeling in duidelijk afgebakende 

taken te maken, kan een programma gemakkelijker opgezet worden, wordt het gemakkelijk 

leesbaar en is het eenvoudiger later aanpassingen te maken, omdat snel duidelijk is waar in 

het programma een bepaalde taak verricht wordt. 

3.2 Modulaire indeling 

Alle computerprogramma's bevatten dezelfde basiselementen: invoer van gegevens 

(voorbewerking), berekeningen (hoofdbewerking) en uitvoer van resultaten (nabewerking). 

Figuur 3.1 geeft een dergelijke indeling weer, respectievelijk voor een enkel (eenvoudig) 

computerprogramma en een complexer systeem van computerprogramma's. 

a. Voorbewerk i ng i Hoofdbewerk i ng Nabewerk i ng 
IIpre-processingll 

I "post-processing 

I 

I 
I 

I nvoer gegevens I Serekeni ngen Ui tvoer resultaten I 
I 
I 

b. Voorb. Hoofdb. Nabewer. I Voorb. Hoofdb. Nabewer. Voorb. Hoofdb. Nabewer. I 
Invoer selectie ?pslag I Inlezen Sereke- Opslag Inlezen selectie plotten I I van bewerking lnvoer- I 

gege- ningen resul- I resul- bewerking printen 
gege- invoer- gegevens 

I 
yens taten I taten resul-

yens gegevens I I taten 

I t I t L __ ' ____ ..J L ___ ' ___ ..J 

Figuur 3.1 Basisstructuur voor probleemstelling 

a) een enkel computerprogramma 

b) de bewerkingen in een aantal computerprogramma's ondergebracht 

13 



Interne structurering 

De hiervoor genoemde ontleding kan gebruikt worden om een programma in onderdelen te 

verdelen. De hoofdonderdelen, welke modulen genoemd worden, zijn in dit geval 

voorbewerking, hoofdbewerking en nabewerking. Deze kunnen verder onderverdeeld 

worden in sub-modulen, welke op hun beurt weer uiteen kunnen vallen in sub-sub-modulen 

enzovoorts (zie Figuur 3.2). 

hoofdprogranma 
niveau 0 

besturing 

subroutines subroutines subroutines 
niveau 1 niveau 2 niveau 3 

module sub-module sub-sub-module 

Figuur 3.2 Modulaire opbouw van een computerprogramma 

De voordelen van de modulaire opbouw zijn: 

complexe problemen zijn opgesplitst in eenvoudige deelproblemen; 

groepeer machine/operating-system/compiler afhankelijke functies; 

ontwerpen, coderen en testen kan per onderdeel gebeuren; 

modules voor vaak voorkomende taken behoeven slechts een keer gemaakt te worden en 

kunnen vervolgens voor verschillende programma's of programma-onderdelen gebruikt 

worden. 

In de praktijk komt het er op neer dat het hoofdprogramma de besturing regelt door het 

aanroepen van routines. In het hoofdprogramma staan dan ook alleen de aanroepen van 

modules van niveau 1. In elke module wordt een aantal functioneel afgebakende 

handelingen uitgevoerd. Een module met een complexe verzameling handelingen wordt 

opgesplitst in sub-modulen (niveau 2). Indien noodzakelijk om het geheel overzichtelijk te 

houden roepen dergelijke routines van niveau 2 op hun beurt routines van niveau 3 (sub­

sub-modulen) aan die nog enger afgebakende taken verrichten. 

14 



Interne stniètureiing 

3.3 Voorbeeld: Programma EPOT (Staring Centrum, Wageningen) 

Het berekenen van de verdamping is als voorbeeld genomen. Het programma EPOT 

berekent zowel de referentie grasverdamping (Makkink-verdamping) als de open water 

verdamping (penman-verdamping). De berekening wordt telkens voor een dag uitgevoerd en 

de resultaten worden gesommeerd per maand, seizoen en jaar. Het stroomschema is 

gegeven in Figuur 3.3. Dit stroomschema is vertaald in de structuur van het programma 

EPOT, die in Figuur 3.4 gegeven is. 

Figuur 3.3 

Figuur 3.4 

, lees meteo gegevens i n I 
I 

I bereken verdamping per dag I 
bewerk de resul taten 
sonmatie (maand, 
seizoen en jaar) en 
bepal ing gemiddelde 

I 
I uitvoer resultaten (print/plot) I 

Stroomschema voor berekening van verdamping 

progra/11118 EPOT 

call INIT 

call READ 

call CHECK 

call REF 

call PENMAN 

call SOM 

call PRINT 

call PLOT 

initial iseer constanten en open bestanden 

lees meteorologi sche gegevens per dag 

controleer invoergegevens 

bereken Makkink-verdamping 

bereken open water verdampi ng 

sonrneer verdamping en bepaal gemiddelde 

schri jf resultaten naar printbestand 

schrijf resultaten weg in plotbestand 

Structuur van programma EPOT 

15 



Interne structurering 

3.4 Moeilijkheden bij bestaande programmatuur 

Bij het aanpassen van een bestaand programma ontstaat het dilemma of de bestaande 

(gebrekkige) structuur aangehouden moet worden of dat met een betere structuur gewerkt 

wordt. De keuze voor één van de mogelijkheden hangt af van de specifieke situatie, waarbij 

onder meer de volgende overwegingen een rol spelen: 

gaat het om een tijdelijke verandering voor één specifieke toepassing; 

kan de verandering in een afzonderlijke nieuwe (sub-)module ondergebracht worden; 

hoe gebrekkig is de bestaande structuur en hoe moeilijk is het deze te verbeteren. 

Als ingrijpende wijzigingen nodig zijn in een slecht gestructureerd en daardoor 

onoverzichtelijk programma verdient het aanbeveling eerst de nieuwe structuur te ontwerpen 

en vervolgens aan de hand van stroomschema's te controleren of het programma de 

oorspronkelijke taken nog naar behoren uitvoert en pas daarna de wijzigingen te 

programmeren. Bij de aanpassing van bestaande programmatuur dienen de in de 

oorspronkelijke broncode aangebrachte wijzigingen door middel van commentaarregels 

grondig te worden gedocumenteerd. 

Als het bestaande programma gestructureerd is opgezet en de wijziging niet groot is, is het 

beter om bij de bestaande structuur aan te sluiten. 

3.5 Moeiiijkheden bij koppeling 

Indien programma's op codeniveau gekoppeld moeten worden, kunnen soortgelijke 

moeilijkheden optreden als bij het aanpassen van programmatuur. Vaak is het ene 

programma anders van structuur, heeft een andere systematiek van variabele naamgeving 

etc. dan het andere programma. In dergelijke gevallen is het raadzaam om "het contact" 

tussen beide programma's zoveel mogelijk te beperken tot speciaal daarvoor ontworpen 

modules die als interface fungeren. Indien het onontkoombaar is om in de bestaande 

programmatuur wijzigingen aan te brengen, moet dit duidelijk en opvallend vermeld 

worden. 

16 



Interne structurering-

3.6 Resumé 

Splits de probleemstelling op in deelproblemen met duidelijk afgebakende taken. 

Kies voor één programma of een aantal afzonderlijke programma's. 

Kies een aantal niveaus voor de structuur. 

Bij het aanpassen van bestaande programma's: weeg aansluiten bij bestaande 

structurering af tegen het gebruiken van een betere structuur. 

17 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

4 NAAMGEVING PROGRAMMA-ONDERDELEN 

4.1 Inleiding 

Veel hydrologische computerprogramma's zijn zo omvangrijk (wat de hoeveelheid broncode 

betreft) en dermate ingewikkeld dat ze in onderdelen zijn gesplitst. 

Als elk onderdeel een duidelijk afgebakende taak vervult, is het eenvoudig het overzicht 

over het gehele programma te bewaren. Dit geldt in de fase van het programmeren, maar 

nog veel sterker bij het onderhouden en aanpassen van het programma. Veranderingen 

moeten namelijk vaak gebeuren als het programmeren niet meer vers in het geheugen ligt en 

vaak door anderen dan de makers van het programma. De namen van de onderdelen kunnen 

de plaats van die onderdelen in het geheel van het programma aangeven. 

In het algemeen dient de naamgeving van de onderdelen het streven naar overzichtelijkheid 

van het programma (programmastructuur) te ondersteunen. 

4.2 Naamgeving onderdelen 

Het ligt voor de hand de naam van elk onderdeel te enten op de taak die het desbetreffende 

onderdeel verricht. Als een programma zodanig is, dat de plaats van een onderdeel in het 

programma niet duidelijk is uit de taak (alleen), dan verdient het aanbeveling (ook) de 

structuur van het programma te weerspiegelen in de namen van de onderdelen. 

In de structuur van een programma worden verschillende niveaus onderscheiden. Hoeveel 

niveaus onderscheiden worden is afhankelijk van de omvang en specifieke eigenschappen. 

Een verdeling van de structuur op drie niveaus kan er als volgt uit zien, zie bijvoorbeeld 

Figuur 3.2: 

module (niveau 1); 

2 sub-module (niveau 2); 

3 sub-sub-module (niveau 3). 

Het hoofdprogramma (niveau 0) roept een aantal modulen (niveau 1) aan. Een module bevat 

op haar beurt weer sub-modulen (niveau 2). De onderdelen van de sub-modulen, sub-sub­

modulen (niveau 3), zijn routines in dit geval. Een routine is de kleinste eenheid in de 

19 



Naamgeving programma-onderdelen 

broncode (voor FORTRAN een SUBROUTINE of een FUNCTION). Voor het aanbrengen 

van structuur in een programma wordt verwezen naar hoofdstuk 3. 

Hoezeer de taak en de plaats in de structuur doorklinkt in de namen van de modulen hangt 

ervan af hoe belangrijk de structuur is voor het doorgronden van het programma en in 

hoeverre het mogelijk is de taken te identificeren voor de individuele modulen. 

4.3 Namen van bestanden behorende bij een programma 

Verbonden met de naamgeving van de onderdelen van een programma zijn de namen van de 

bestanden, die gebruikt worden om een run versie van het programma te maken. Hierbij 

zijn verschillende soorten bestanden te onderscheiden: 

1 bestanden met broncode; 

2 speciale bestanden die aanwezig moeten zijn bij het compileren of draaien van het 

programma; 

3 hulpbestanden, zoals een bestand dat aangeeft welke bestanden er gelinkt moeten 

worden om de run versie te creëren. 

Het 'operating system' DOS, dat op veel PC's gebruikt wordt, staat bestandsnamen toe van 

maximaal 8 lettertekens, met een extensie van maximaal 3. De extensie kan dan gebruikt 

worden om de soort van het bestand aan te geven: 

a voor een bestand met broncode kan een extensie gebruikt worden, die de taal aangeeft 

(.FOR voor FORTRAN of .C voor C bijvoorbeeld) of de compiler (zoals .F5P voor 

versie 5 van de FORTRAN-compiler van Perkin Elmer); 

b voor een zogenaamd INCLUDE bestand, dat in FORTRAN gebruikt kan worden voor 

onder meer COMMON BLOCKS kan de extensie .INC gebruikt worden. Voor een file 

met gebruikersinformatie die bij het laden van het programma wordt gelezen, zou de 

extensie. USR gekozen kunnen worden; 

c voor een bestand dat gebruikt wordt om de files voor het linken te selecteren ligt de 

extensie .LNK voor de hand. 

De 8 lettertekens voor de bestandsnaam worden gebruikt om het programma en/of de 

inhoud van het bestand aan te geven. Een mogelijkheid is om elke routine op te slaan in een 

apart bestand (in verband met bijvoorbeeld een 'make-facility', een hulpprogramma 

20 



Naamgeving progmmma-onderdeletl' 

waarmee de runversie automatisch aangepast wordt als er iets in de broncode veranderd 

wordt). In ANSI FORTRAN 77 kunnen maximaal 6 lettertekens voor de namen van 

routines gebruikt worden. De naam van het bestand kan dan gemaakt worden door de twee 

letters die het programma aanduiden te laten volgen door de naam van de routine. Een 

andere mogelijkheid is om alle routines van een module (of anderszins verwante routines) 

op te slaan in één bestand. De naam van het bestand kan dan weer op eenzelfde manier 

gemaakt worden: twee letters voor het programma en maximaal zes letters die de module 

aanduiden. Kleine programma's (zie voorbeeld I, hieronder) worden bij voorkeur in één 

bestand opgeslagen. 

4.4 Voorbeelden van naamgeving van programma-onderdelen 

In het navolgende wordt een aantal voorbeelden van naamgeving voor programmamodulen 

gegeven, waarbij de programma's steeds complexer worden. Dit uit zich in het feit dat er 

steeds meer structuur doorklinkt in de namen van de onderdelen. 

In het eerste voorbeeld (voorbeeld 1) zijn de namen puur op grond van taak gegeven, in de 

volgende twee voorbeelden zijn steeds meer delen onderscheiden in het programma en is de 

structuur in meer niveaus in de namen verwerkt. 

Voorbeeld 1 Programma EPOT (Staring Centrum, Wageningen) 

Het hoofdprogramma draagt de naam van het programma en de routines die aangeroepen 

worden hebben de namen van de taken die ze verrichten: 

gehele progranrna 
opgeslagen in EPOT .FOR 

21 



Naamgeving programma-onderdelen 

Voorbeeld 2 Programma AQ-PL02 (RIVM, Bilthoven) 

Het programma AQ-PL02 is een grafisch programma dat deel uitmaakt van het AQ-pakket, 

een pakket ten behoeve van de analyse van grondwatervraagstukken. De subroutines die het 

programma AQ-PL02 aanroept behoren tot de grote verzameling routines die door diverse 

programma's van het pakket gezamenlijk gebruikt worden. Het aantal is zo groot dat geen 

zinvolle unieke afkortingen gemaakt konden worden. Derhalve zijn de routines genummerd. 

Alle routinenamen bestaan uit 6 tekens, de bestandsnaam is gelijk aan routinenaam. Het 

nummer wordt, waar nodig, gebruikt in posities 3 tot en met 6. Routines die specifiek bij 

PL02 behoren beginnen met de naam van het programma; de namen van algemene routines 

beginnen met SC (met betrekking tot het scherm, AQ-programma's werken interactief) of 

met PL (voor het plotten van een figuur op een plotter). 

Voorbeeld 3 

starten prograrnna, opgeslagen in PL02.FOR 

centrale routine, opgeslagen in PL02XX.FOR 

zet keuzemenu op het scherm, opgeslagen in SCPGOO.FOR 

maak menu voor tekenen, opgeslagen in SCPG30. FOR 

teken figuur, opgeslagen in PLGROO.FOR 

lees gegevens van bestand 1, opgeslagen in SCPG10.FOR 

lees gegevens van bestanden 2, 3, .•. , opgeslagen in SCPGll. FOR 

selecteer uit invoerbestand, opgeslagen in SCPG1A.FOR 

voer besturingsgegevens in, opgeslagen in SCPG20.FOR 

Programma SL (O.D.L. Strack, Minnesota, VS) 

Het programma SL is een programma voor het modelleren van grondwaterstroming in een 

enkel watervoerend pakket mer behulp van analytische elementen. In dit programma zijn de 

volgende modulen onderscheiden: main (MN, module die de andere modules samenbun­

delt), wells (WL, module van putten), line-sinks (LS, module van lijnputten), area-sinks 

(AR, module voor oppervlakteputten). De sub-modules zijn: input (IN, sub-module voor 

invoer), root (RT, module die algemene taken uitvoert), solution (SO, sub-module voor het 

berekenen van de onbekenden), check (CK, sub-module voor het controleren van de oplos­

sing en het genereren van uitvoer). 

22 



Naamgeving programma-onderdeIen 

De naam van een specifieke routine ziet er als volgt uit: SSPPRR, waarin: 

SS twee lettertekens zijn die de module aangeven; 

PP staat voor twee lettertekens van de sub-module; 

RR de routine met twee lettertekens specificeert. 

Voor een algemene routine worden de letters SS vervangen door een code van twee letters, 

bijvoorbeeld 'UT van 'utility". De letters UT worden gevolgd door een aantal andere letters 

die de functie van de routine aanduiden. 

SL opgeslagen n Sl.FOR 
MNIN opgeslagen n SLMNIN.FOR 
MNSO opgeslagen n SLMNSO.FOR 
MNeK opgeslagen n SLMNCK.FOR 

WUN opgeslagen in SLWL.FOR 
WLSO opgeslagen in SLWl.FOR 
WLCK opgeslagen in SLIIL.FOR 

starten progranma en dimensionering 

centrale invoer 

openen van bestand 

maken van bestand 

maken van figuur met contourli jnen 

definiëren coördinaten van hoekpunten van figuur 

openen grafisch scherm 

tekenen van contour! i jnen 

tekenen van 1 contour I i jn 

afsluiten grafisch scherm en terug naar text scherm 

invoer van putten 

invoer van lijnputten 

invoer van oppervlakteputten 

centrale deel van oplossen 

routine voor oplossingen stelsel vergel ijkingen 

bi jdrage putten aan matri x 

bijdrage lijnputten aan matrix 

bi jdrage oppervlakteputten aan matrix 

centrale controle en uitvoer 

ui tvoer putten 

uitvoer I i jnputten 

uitvoer oppervlakteputten 

23 



Naamgeving programma-onderdelen 

ARIN 
ARSO 
ARCK 

UTOf 
UTCf 

UTPL 
UTPLIIN 
UTPLGR 
UTPLCN 
UTPLCl 
UTPLTX 
UTSO 

opgeslagen in SLAR!N.fOR 
opgeslagen in SLARSO.FOR 
opgeslagen in SLARCK.FOR 

opges lagen in UTF I LE. fOR 
opgeslagen in UTF!LE.FOR 

opgeslagen in UTPLOT.FOR 
opgeslagen in UTPLOT .FOR 
opgeslagen in UTPLOT .FOR 
opgeslagen in UTPLOT .FOR 
opgeslagen in UTPLOT.FOR 
opgeslagen in UTPLOT.fOR 
opgeslagen in UTSOLVE.FOR 

Schema van programma SL met namen en functie van de onderdelen 

4.5 Resumé 

24 

Vergroot overzichtelijkheid van een programma door een logische verdeling in 

onderdelen. 

Geef waar mogelijk de onderdelen namen die de taak van het onderdeel weerspiegelen. 

Als de structuur van het programma ingewikkeld is: voeg aan de naam een aanduiding 

toe van de plaats van de routine in het programma. 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRO-TNO 

5 NAAMGEVING PROGRAMMAVARIABELEN 

5.1 Inleiding 

Het benoemen van variabelen in een computerprogramma is bijzonder belangrijk. Een 

goede systematiek van benoeming van variabelen maakt een programma leesbaar en 

overdraagbaar. Al is een programma nog zo goed gestructureerd en gedocumenteerd, als er 

geen goed systeem van variabelenamen is toegepast, is de broncode (die de uiteindelijke 

uitwerking van een oplossing is) niet goed leesbaar en kunnen wijzigingen moeilijk 

doorgevoerd worden. Het bedenken van een goed systeem is moeilijk en kan tijdrovend 

zijn, maar blijkt vaak meer dan de moeite waard. Als er een goed systeem bedacht is, moet 

dit ook bij de documentatie gevoegd worden, zodat de gebruiker de logica van de 

programmamaker kan doorgronden. Dit heeft als voordeel dat de gebruiker de betekenissen 

voor een groot deel direct kan begrijpen, zonder iedere keer de lijst van variabelen te 

moeten raadplegen. Dit neemt niet weg dat ook altijd een volledige lijst van gebruikte 

variabelen bij de documentatie moet worden gevoegd, zodat deze, wanneer nodig, kan 

worden geraadpleegd. 

5.2 Systeem 

Een sluitend concept voor een systeem van variabelenamen is moeilijk te geven. Veel hangt 

af van de aard van de programmatuur (onderwerp, complexiteit), de mogelijkheden van de 

programmeertaal (gereserveerde letters, maximaal aantal toegestane posities) etc. Dat 

iedereen hetzelfde systeem gebruikt is ook niet het belangrijkste. Het. belangrijkste is dat 

iedereen een logisch en gedocumenteerd systeem gebruikt. Het kan soms zelf voordelig zijn 

om een, op eigen situatie toegesneden systeem te gebruiken, in plaats van krampachtig aan 

een standaard systeem vast te houden. 

Alhoewel geen blauwdruk gegeven kan worden, kunnen wel enige conventies als richtlijnen 

dienen: 

Selecteer veel gebruikte algemene grootheden en ken hieraan een letter of 

lettercombinatie toe. Grootheden als volumestroom (Q), hoogte (H), weerstand (R), 

straling (RD) komen zo vaak in verschillende afgeleide grootheden voor, dat beter 

iedere variabelenaam van dit type begonnen kan worden met een min of meer 

25 



Naamgeving programmavariabelen 

gereserveerde letter(s). Om het overzicht te behouden is het raadzaam het aantal 

gereserveerde beginletters te beperken tot circa 10. 

2 In de al of niet gereserveerde beginletter moet w mogelijk het data-type tot uitdrukking 

komen. In de FORTRAN 77-standaard met betrekking tot impliciete declaraties begint 

een integer variabele met letter 1-, J-, K-, L~, M- of N- dus I-N-integer, en een rea! 

variabele met één van de overige letters. 

3 Vorm voor alle gebruikte grootheden zogenaamde stamnamen van 3 tot 5 letters. De 

stamnamen kunnen aangevuld worden door achtervoegsels. Houd bij de stamnamen 

rekening met de eerste twee conventies. Bij de naamgeving is de herkenbaarheid van de 

variabelen het belangrijkste, niet het al of niet consequent zijn. Voorkom zoveel 

mogelijk het gebruik van een karakteristieke beginletter als die niet de vastgestelde 

betekenis heeft, tenzij duidelijk uit het programmaverband die betekenis blijkt. 

4 Selecteer veel gebruikte toevoegingen en ken hieraan twee-Ietterige afkortingen aan toe. 

Voorbeelden: MN voor minimum, MX voor maximum, SM voor som, A V voor 

gemiddeld. 

5 Als de computer( -taal) het toelaat is het raadzaam om de onderscheiden delen van de 

variabele naam te scheiden door bijvoorbeeld een underscore (_). Zo kan 

HPHREA VMN (gemiddelde laagste phreatische grondwaterstand) geschreven worden 

als HPHRE _A V _ MN of H#PHRE _A V _ MN. De laatste notatie heeft als voordeel dat 

meteen opvalt dat de letter H een gereserveerde beginletter is. 

6 Gebruik als DO-loop variabelen (indexvariabelen) bij voorkeur minimaal twee letterige 

codes. Begin indexvariabelen steeds met 1-, J-, K- of L-, gevolgd door het increment, 

bijvoorbeeld IP2 (positief met stap 2), JN (negatief met stap 1) enzovoorts. 

7 Variabelen die een aantal (number) aangeven, beginnen met de de letter N-, 

bijvoorbeeld NTIM, NEL en NLA Y. Dit geldt dus ook voor aantallen in een DO-loop. 

26 



Naamgeving progranutiavariabelèri 

8 Bij array dimensie: NTIMMX, NELMX, etc. 

9 Vermeld in de documentatie: 

a de gehanteerde systematiek: 

- een lijst met min of meer gereserveerde beginletters en de voornaamste 

uitzonderingen daarop; 

- een volledige lijst met stamnamen en de hierbij gebruikte conventies; 

- een volledige lijst met achtervoegsels; 

b een volledige lijst met variabelen thematisch en alfabetisch gerangschikt. 

5.3 Voorbeeld: de Verklarende Hydrologische Woordenlijst 

Als voorbeeld van een vocabulaire van variabelenamen is een deel van de Verklarende 

Hydrologische Woordenlijst (CHO-TNO, 1986) omgezet naar een variabelenlijst geschikt 

voor een hydrologisch computerprogramma. In bijlage B wordt een deel van de woordenlijst 

inclusief programmavariabelen, weergegeven voor de rubrieken Atmosferisch Water, Water 

in de Onverzadigde Zone, Water in de Verzadigde Zone, Oppervlaktewater en Diversen. 

Bij de lijst is uitgegaan van stamnamen van 3 en 5 letters. De stamnamen van 3 letters 

kunnen gebruikt worden in geval van conventionele (FORTRAN-)compilers waarbij slechts 

6 characters per naam gebruikt mogen worden (stam + achtervoegsel). 

De lijst is een goed voorbeeld hoe naamgeving aangepakt en beschreven kan worden. Het is 

echter geen rigide lijst die in alle gevallen toegepast moet worden. Tijdens het samenstellen 

van de lijst is gebleken hoe moeilijk het is om een consequent systeem toe te passen, de 

gepresenteerde lijst is dus niet altijd consequent. Het toepassen van de conventies is echter 

ook niet bedoeld om iedere variabele 100% te determineren, maar slechts een hulpmiddel 

om een programma overzichtelijker en dus leesbaarder te laten maken. 

27 



Naamgeving programmavariabelen 

De belangrijkste gebruikte conventies zullen onderstaand toegelicht worden. 

Gereserveerde beginletters: 

Letter Betekenis 

D diepte (t.o.v. mv) 

E 

F 

H 

P 

PR 

Q 

R 

T 

TI 

TH 

x 

Y 

Z 

verdamping 

(warmte-) flux 

hoogte (t.o.v. NAP) 

druk 

neerslag/-intensiteit 

volumestroom/debiet 

weerstand 

temperatuur 

tijd 

vochtgehalte 

X-coordinaat 

Y -,coordina'jlt 

Z-coordinaat 

Eenheid 

cm, m 

mm/d 

W/m 2 

m 

Pa 

mm, m' , mm/d etc. 

mm/d, m'/d 

slm, d 

°c of K 

s, d 

m 

m 

m 

Voorbeeld 

DGRWT (Depth GRoundWater TabIe), 

DDIFF (Depth DIFFerence) 

EVPAN (PAN EVaporation), 

ESOIL (SOIL Evapor,ation) 

FLATH (LATent Heat Flux), 

HPHRE (PHREatic Head) , 

HPRES (PRESsure Head) 

PTENS (TENSiometer Pressure), 

PHYDR (HYDRaulic Pressure) 

PRECI (PRECIpitation), 

PRDPH (PRecipitation DePtH) 

QVOLM (VOLuMe flux), 

QCAPR (CAPillary Rise flux) 

RCANY (CANopY Resistance), 

RDRNG (DRaiNaGe Resistance) 

TDEWP (DEW-Point Temperature), 

TWETB (WET-Bulb Temperature) 

TITRA (TRAvel TIme) 

THWLT (WiLTing point THeta), 

THFLD (FieLD capacity THeta) 

XWELL (X-coordinate WELL) , 

XCOOR (X-COORdinate) 

YWELL (Y-coordinate WELL) 

YCOOR (Y-COORdinqte) 

ZWELL (Z-coordinate WELL) 

De stamnamen zijn in de meeste gevallen min of meer fonetisch vastgesteld, waarbij vaak 

enige klinkers geschrapt zijn en zoveel mogelijk de laatste (betekenisvolle) medeklinker 

gehandhaafd is. 

28 



Naamgeving programmavariàbelen 

Achtervoegsels: 

Achtervoegsel Betekenis 

AC actueel (ACtual) 

AV gemiddeld (AVerage) 

CL berekend (CaLculated) 

DF verschil (DiFference) 

MN minimum (MiNimum) 

MX maximum (MaXimum) 

OB gemeten (OBserved) 

PO potentieel (POtential) 

PR vorige (PRevious) 

RL relatief (ReLative) 

SM sommatie (SuM) 

XD X-richting (X-Direction) 

YD Y-richting (Y-Direction) 

ZD Z-richting (Z-Direction) 

(etc. ) 

5.4 Resumé 

Besteed veel aandacht aan het bedenken van een goed werkbaar systeem. 

Vorm voor basisgrootheden stamnamen bestaande uit 3 tot 5 letters. Reserveer voor veel 

voorkomende algemene grootheden één of twee beginletters. 

Selecteer twee letterige afkortingen voor veel voorkomende toevoegingen. 

Vermeld gebruikte conventies in de programmahandleiding, evenals een complete lijst 

van stamnamen en achtervoegsels. 

29 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

6 DATABESTANDEN 

6.1 Inleiding 

Computerprogramma's hebben invoer nodig om te kunnen draaien. Bij veel technische 

programma's wordt de invoer gelezen uit databestanden die met behulp van een preproces­

sor of een editor zijn aangemaakt. De uitvoer van deze programma's wordt doorgaans weer 

naar databestanden weggeschreven. 

Het verzamelen van gegevens en het schematiseren van deze gegevens tot invoer voor 

computerprogramma's kost veel tijd en geld. Het verdient daarom de voorkeur deze 

gegevens zo op te slaan dat deze ronder veel moeite door verschillende programma's (in 

verschillende modelstudies) kunnen worden gebruikt. Bij de opbouw van de databestanden 

dient hiermee rekening te worden gehouden. 

Er bestaan verschillende typen van databestanden. De in de hydrologische programma's 

meest gebruikte bestanden zijn sequentiële geformatteerde en ongeformatteerde bestanden. 

In paragraaf 6.3 wordt globaal aangegeven wat één en ander inhoudt en wat de voor- en 

nadelen zijn. Sinds de opkomst van database management systemen (OracIe, dBase, 

Dataflex etc.) worden de benodigde databestanden steeds vaker binnen een database 

management systeem opgebouwd. In paragraaf 6.4 wordt hierop ingegaan. 

6.2 Eisen te stellen aan databestanden 

Een databestand is alleen bruikbaar voor verschillende programma's wanneer dit voldoet 

aan een aantal eisen: 

het bestand moet overzichtelijk zijn; 

het bestand moet eenvoudig te herstructureren zijn (uit te breiden, in te krimpen of 

anders te ordenen); 

de gegevens moeten (waar relevant) op een relatief eenvoudige wijze aangeboden 

kunnen worden aan een grafisch programma ten behoeve van grafische presentatie en 

visuele controle (bijvoorbeeld via een afzonderlijke hulpprogramma dat een bestand 

eerst converteert ten behoeve van een grafisch programma); 

31 



Databestanden 

de gegevens moeten in numerieke vorm leesbaar zijn (bijvoorbeeld ASCII-bestanden) of 

leesbaar gemaakt kunnen worden (bijvoorbeeld door middel van een hulpprogramma 

voor ongeformatteerde bestanden). 

Aan de laatste eis wordt vaak wel voldaan. Veel programma's gebruiken ASCII-bestanden 

als in- en uitvoerbestanden. Als dat niet het geval is, zoals ongeformatteerde bestanden, 

worden speciale hulpprogramma's gemaakt, waarmee deze bestanden kunnen worden 

aangemaakt, gewijzigd en gevisualiseerd (tekst op scherm of print, plot). 

Aan de overige drie eisen wordt vaak niet voldaan. De structuur van de datafile wordt vaak 

ad-hoc opgezet, afhankelijk van de aard van het probleem en de programmeerstijl van de 

ontwikkelaar. Met het gebruik van een database management systeem kan tegemoet worden 

gekomen aan alle vier eisen (zie 6.4). 

6.3 Geformatteerde of ongeformatteerde databestanden 

De kenmerkende eigenschappen van geformatteerde en ongeformatteerde bestanden worden 

hieronder globaal omschreven. 

Geformatteerde bestanden: 

Geformatteerde bestanden zijn ASCII-bestanden en zijn dus visueel leesbaar, bijvoorbeeld 

als printeruitvoer of op het scherm. De informatie in deze bestanden is verdeeld over regels 

en staat in een bepaalde volgorde opgeslagen, bepaald door het programma dat de bestanden 

gebruikt. Er bestaan twee manieren om geformatteerde bestanden op te bouwen, namelijk 

zogenaamde 'fixed format input/output' en 'free format input/output'. Bij de 'fixed format' 

methode heeft elk gegeven een vaste plaats op een regel, de tijdstap neemt bijvoorbeeld 

posities 21 tot en met 30 in op regel 3. Bij de 'free format' methode behoeft de positie op 

de regel niet meer vast te zijn. Informatie wordt in dit geval gescheiden door een komma of 

een spatie. Het aantal gegevens, op een regel en het regelnummer blijven nog wel van 

belang. Voordeel van een geformatteerd bestand is dat deze rechtstreeks door een professio­

neel programma, bijvoorbeeld spreadsheet, kan worden gelezen. Bovendien wordt de 

overzichtelijkheid bevorderd, hetgeen soms wel gepaard gaat met extra inspanningen bij de 

aanmaak van de bestanden. 

32 



Databestanden 

Een ander voordeel is dat de geformatteerde bestanden op elke computer door elk 

programma als regel gelezen kunnen worden, ongeacht de compiler die gebruikt werd om 

een programma te ontwikkelen. Dit in tegenstelling tot ongeformatteerde bestanden waarvan 

de (binaire) structuur van de file van de (FORTRAN) compiler afhangt die gebruikt werd 

om het desbetreffende output-genererende programma te onwikkelen. 

Tenslotte, het voordeel van geformatteerde bestanden is dat de gebruiker daarin eigen 

commentaartekst kan opnemen. Dit ter verhoging van de oriëntatie in het bestand. 

Ongeformatteerde bestanden: 

Ongeformatteerde bestanden zijn optisch niet leesbaar. Deze bestanden bestaan niet uit 

fysieke records (regels) maar uit records die een reeks waarden in binaire code bevatten. 

Evenals bij geformatteerde bestanden staan de gegevens in een bepaalde volgorde. 

Vanzelfsprekend is er een afstemming nodig tussen het programma dat deze bestanden 

aanmaakt en het programma dat de gegevens leest. Om ongeformatteerde bestanden aan te 

maken of te lezen is speciale programmatuur nodig (deze moet door de gebruiker zelf 

geschreven worden). 

Voor- en nadelen: 

In de navolgende tabel worden de belangrijkste voor- en nadelen van geformatteerde en 

ongeformatteerde bestanden weergegeven. 

33 



Databestanden 

Tabel 6.1 Voor- en nadelen van geformatteerde en ongeformatteerde databestanden 

geformatteerd ongeformatteerd 

aanmaken en/of m.b.v. willekeurige editor noodzakelijkerwijs m.b.v. 

aanpassen van file, of tekstverwerker speciale programmatuur 

visuele inspectie 

van inhoud 

fouten typefouten zijn snel ge- weinig kans op fouten 

maakt, verkeerde volgorde omdat bestand alleen te 

in gegevens of verkeerde maken/aanpakken door 

positie leidt tot fouten speciale programmatuur 

grootte van datafiles relatief groot, relatief relatief klein, relatief 

lees- en schrijfsnelheid lange lees- en schrijftijd korte lees- en schrijftijd 

rechtstreekse visuele ja neen 

leesbaarheid 

leebaarheid door 

programma's ja neen 

ontwikkeld m.b.v. (als regel) (als regel) 

andere compiler 

mogelijkheid 

opnemen van ja neen 

commentaartekst 

door gebruiker 

34 



Databestariden 

6.4 Gegevensbehandeling in database management systeem 

Databestanden kunnen uitstekend worden opgebouwd binnen een database management 

systeem (DBMS). Zo'n systeem biedt standaard vele mogelijkheden om gegevens te 

manipuleren en te ordenen. Zo kunnen rekenkundige bewerkingen op de gegevens worden 

uitgevoerd en kunnen gegevens eenvoudig worden geselecteerd en gesorteerd. 

De inzet van een database management systeem bij het beheer van gegevens levert een groot 

aantal voordelen op: 

dezelfde gegevens kunnen door verschillende gebruikers, eventueel tegelijkertijd 

gebruikt worden; 

data inconsistentie wordt vermeden; 

controle op data redundantie; 

data onafhankelijkheid kan eenvoudiger worden bereikt; 

de hoeveelheid te produceren code wordt gereduceerd omdat veel functies (functionali­

teit) reeds beschikbaar zijn; 

onderhoud van applicatie programmatuur wordt vereenvoudigd; 

de integriteit van data kan gemakkelijker worden gewaarborgd; 

de veiligheid van data kan eenvoudiger worden gewaarborgd; 

er kan sneller en efficiënter op veranderende eisen worden gereageerd; 

het gebruik van gegevens kan worden gevolgd; 

overdraagbaarheid wordt door de DBMS leverancier gegarandeerd. 

De structuur van een database wordt formeel gedefinieerd met behulp van een data 

definition language (DDL). Tegenwoordig is het mogelijk om naast de entiteiten ook de 

relaties tussen entiteiten en de hiervoor geldende beperkingsregels via een DDL te defini­

eren. Hiermee neemt de hoeveelheid procedurele code die geproduceerd moet worden af en 

zullen een aantal datacontrole aspecten uit applicatie software verdwijnen. 

Omdat een DBMS een aantal lagen definieert tussen de fysieke opslag van data en de 

applicatie, zal bij het gebruik van een DBMS doorgaans niet de performance worden 

gehaald die met opslag zonder tussenkomst van een DBMS mogelijk is. De voordelen die 

het gebruik van een DBMS biedt, wegen echter ruimschoots op tegen dit nadeel. 

35 



Databestanden 

Ook bij het gebruik van een database management systeem zal een keuze gemaakt moeten 

worden ten aanzien van de groepering van de gegevens, bijvoorbeeld per laag, soort 

parameter of element. Bij een element moet in dit verband bijvoorbeeld worden gedacht aan 

een knooppunt in het eindige elementen netwerk of een tak in een waterlopen stelsel. Bij een 

parameter moet bijvoorbeeld worden gedacht aan de ruwheid van de wand van die tak, of 

het doorlaatvermogen van een watervoerend pakket. Indien de groepering per element de 

voorkeur verdient zal voor elk element een record worden aangemaakt. De parameters 

zullen in de velden van de records worden opgeslagen. Indien gekozen wordt voor een 

groepering per parameter dan zal voor elke parameter een record worden aangemaakt en zal 

voor elk element een veld worden gereserveerd. 

De structuur van een record kan binnen een database management systeem eenvoudig 

worden gewijzigd. Velden kunnen worden toegevoegd of verwijderd, desgewenst kan de 

volgorde van de velden worden gewijzigd. Er kan eenvoudig een selectie van gegevens 

worden gemaakt die geconverteerd wordt naar een invoerfile van een grafisch programma, 

zodat een grafische controle snel te verwezenlijken is. 

De file in een database management systeem is zo overzichtelijk als de gebruiker dat zelf 

wenst. Diverse overzichten kunnen op eenvoudige wijze geproduceerd worden. Files die 

door een database management systeem worden aangemaakt zijn over het algemeen niet van 

het ASCII type, maar elk database management systeem heeft een conversiemogelijkheid 

naar ASCII. Dit ASCII-bestand kan dan rechtstreeks door een hydrologisch programma 

worden ingelezen (c.q. aangemaakt), of pas nadat het door een speciaal conversie program­

ma in een benodigd modelformaat is· omgezet (hetzij wederom ASCII type, hetzij 

ongeformatteerd) . 

6.5 Gegevensbehandeling in GIS 

Binnen een Geografisch Informatie Systeem (GIS) worden bestanden van een speciaal type 

gehanteerd. Deze bestanden bevatten de informatie over de verdeling (variatie) van een 

parameter in een twee-dimensionale ruimte, zoals de maaiveldsligging, bodemkaart of de in 

punten gemeten grondwaterstanden. 

36 



Databestanden 

De interne GIS-bestanden kunnen door een hydrologisch computerprogramma niet recht­

streeks worden gelezen, noch gemakkelijk worden aangemaakt. Wel is er binnen een GIS 

meestal een optie aanwezig om een intern GIS bestand naar een ASCII-formaat bestand om 

te zetten. Deze zogenaamde "export-ASCII" bestanden hebben een vastomschreven formaat 

voor wat betreft de inhoud. 

In de situaties waar een hydrologisch programma buiten de GIS-omgeving wordt geïmple­

menteerd, zal een programma-ontwikkelaar moeten beslissen of de data-communicatie 

(invoer/uitvoer) tussen een programma en GIS zal geschieden op basis van deze "export­

ASCII" bestanden óf dat er een speciaal hulpprogramma wordt ontwikkeld ten behoeve van 

de conversie van een "export-ASCII" bestand naar een bestand met een benodigd modelfor­

maat (hetzij wederom van het ASCII-type, hetzij ongeformatteerd). Indien toch een 

conversieslag nodig is, kan ervoor worden gekozen om de ASCII-bestanden van een 

benodigd modelformaat rechtstreeks binnen GIS te laten aanmaken, en wel zonder de 

tussenkomst van een "export-ASCn" bestand. De figuur 6.1 geeft schematisch de mogelijke 

soorten van gegevensstromen weer. In een concrete situatie zou het datatransport 

bijvoorbeeld alleen door middel van ASCII bestanden plaatsvinden en niets zoals in de 

figuur is gegeven, door zowel ASCII als "export-ASCII" en ongeformatteerde bestanden. 

Het begrip "bestand" betreft zowel modelinput als modeloutput. 

GIS 

D B M S 

A 

export-A cn 
bestjnd 

---- -----
v 

r

> L_c_o_nv-'-e_r_s_i_e_---' <1 programma 

v v 
ongeformatteerd ASCII 

Destand <Jmodelbestand 

l> Hydrologisch 
MODEL 

GIS 
omgeving 

Model 
omgeving 

Figuur 6.1 Soorten gegevensstroom tussen GIS en hydrologisch model, bij gescheiden 
werkomgevingen. Neerwaarts: invoergegevens uit GIS voor model. Opwaarts: 
modelresultaten naar GIS, bijvoorbeeld voor grafische presentatie. 

37 



Databestanden 

6.6 Voorbeelden geformatteerde (ASCII) bestanden 

Het grote voordeel van geformatteerde bestanden is dat deze optisch leesbaar zijn, bijvoor­

beeld op het scherm en als printuitvoer. 

Bij geformatteerde bestanden is de positie van in te lezen variabelen per regel (record) en de 

plaats op een regel van te voren door de programma-ontwikkelaar vastgelegd. De plaats ter 

rechterzijde van de op een regel voorkomende variabelen kan door de programmagebruiker 

worden benut om daar een eigen toelichtende tekst te plaatsen (toe te voegen). Een ASCII­

bestand kan met een willekeurige tekstverwerker of met een speciaal hulpprogramma 

(pre/postprocessor) worden aangemaakt. In de praktijk zal een ASCII-bestand met behulp 

van een tekstverwerker worden aangemaakt en aangepast. 

Naast 'fixed format' invoer is het mogelijk om een geformatteerd bestand ook door middel 

van 'free format' in te lezen. Bedacht dient te worden, dat altijd het benodigde aantal 

variabelen wordt ingelezen bij de 'FREE FORMAT' die in FORTRAN 77 is ingebouwd. 

Dit is ongeacht hun positie binnen een bestandsrecord of zelfs de verschillende records. 

Indien bijvoorbeeld 3 variabelen worden ingelezen, kunnen deze op één record aanwezig 

zijn of verspreid over 2 of 3 records. 

Voorbeeld 1 Topology of a sewage system 

In dit voorbeeld wordt een ASCII-file geillustreerd, die door middel van een 'DO ... 

CONTINUE' programmastructuur kan worden ingelezen. Een file bestaat hierbij veelal uit 

samengestelde blokken met elk een eigen blok-header en record structuur. Een voorbeeld 

hiervan vormt het gebruik van een blok-header waarin titel, het aantal records en de 

variabelen in een record beschreven worden. De tekst van de header wordt door de 

programmeur opgegeven, zoals onderstaand voorbeeld illustreert. 

titel.. .. AANTAL STROOMGEBIEDEN 

nummer ... 13 

tekstregel KNOOP OPP. %0 L A etc. 

records .. 81 0.070 20 30 2 

82 4.390 15 200 2 

38 



Databestanden: 

Enkele opmerkingen met betrekking tot de structuur van een record zijn: 

records bestaan uit velden waaraan waarden worden/zijn toegekend; 

de velden welke refereren aan andere records (pointers) worden als eerste genoemd; 

in het geval aan velden geen waarden wordenIzijn toegekend blijft het veld leeg, de 

hoofdstructuur van het record blijft intact; 

gebruik altijd de decimale punt (bijvoorbeeld 1.0 of 100.0) voor het aangeven van de 

'real' variabele. 

39 



Databestanden 

Voorbeeld 2 Voorbeeld geformatteerd bestand, invoer voor programma SIMGRO. 

(Staring Centrum, Wageningen) 

Elke record ("regel") heeft een naam. Het programma controleert of het de juiste record 

inleest, aangeduid bijvoorbeeld met tekst "ROOT" (dikte van wortelzone). Foutmeldingen 

verwijzen naar deze naam. Per recordnaam wordt in de handleiding de invoer beschreven 

(verwijzing mogelijk naar andere records). Recordnaam is hulpmiddel bij het aanmaken van 

het bestand, of controleren van de gegevens. 

40 



DatabestaIiden 

Voorbeeld 3 (RIVM, K. Kovar, Bilthoven) 

Voorbeeld van geformatteerd bestand, ten behoeve van vastlegging van data voor grondwa­

terontrekkingen in AQ-programmatuur (computer programma AQ-APIN). Dit bestand kan 

door middel van een teksteditor door de gebruiker worden aangemaakt. Het wordt echter 

ook door AQ-APIN exact in deze vorm àangemaakt. Indien de data voor het eerst door de 

gebruiker aan AQ-APIN worden aangeboden, dan behoeft de commentaartekst ter rechter­

zijde van de getallen (inclusief logische waarden en teksten) niet te worden opgegeven. 

AQ-APIN genereert de tekst zelf ter verhoging van de optische leesbaarheid van het 

bestand, Recordnummers worden door AQ-APIN automatisch toegevoegd ter oriëntatie in 

de bijgevoegde gebruikershandleiding van de inhoud van het bestand, per individueel 

record. 

6.7 Voorbeeld bestandsstructuur DBMS 

De hierna getoonde tabellen vormen een onderdeel van het bij IGG-TNO ontwikkelde 

Online Grondwater Archief (OLGA). De Figuur 6.2 toont hoe de velden in de afzonderlijke 

tabellen zijn gedefinieerd. Tevens worden in de figuur (een deel van) de relaties die tussen 

41 



Databestanden 

de tabellen bestaan getoond. Hierbij geld: 

'miitlHillIi:1 

I :iiMlJf.}JWltIliIm::: I 
I I 

= key veld 

= verplicht veld 

= niet verplicht veld 

en = character veld van maximum n posities 

Nn = numeriek veld van maximaal n posities 

D = datum veld 

Figuur 6.2 kan, evenals de definitie van de tabellen in het DBMS, automatisch worden 

gegenereerd door het programma waarmee de objecten en de relaties tussen objecten 

worden gedefinieerd. 

•• :.--- ! •• 

=11 

fllt.n 

DI ....... 

Figuur 6.2 Voorbeeld bestandsstructuur 

42 



6.8 Koppeling van programma's 

Een mogelijkheid om verschillende soorten programmatuur te koppelen is via het 

uitwisselen van databestanden; uitvoer van het ene programma kan dienen als invoer voor 

het andere. Hierbij is het van belang dat de programmatuur de mogelijkheid biedt om deze 

bestanden indien gewenst te leveren. Ook moeten de bestanden min of meer 

gestandaardiseerd worden, zodat ze eenvoudig in te lezen zijn in andere programma's. In de 

meeste gevallen zal dit concreet neerkomen op kolomgeöriënteerde bestanden van de meest 

relevante rekenresultaten, gegeven in standaard SI-eenheden, Min of meer esthetische 

toevoegingen zoals tabelkopjes, bladzijde-indelingen etc. zijn niet nodig en zelfs niet 

wenselijk. 

6.9 Resumé 

- Stel de volgende eisen aan databestanden: 

* overzichtelijkheid; 

* eenvoudig te herstructureren; 

* waar relevant moet een bestand aangeboden kunnen worden aan een grafisch program­

ma, ten behoeve van grafische presentatie en visuele controle; 

* de gegevens uit een bestand moeten in numerieke vorm leesbaar zijn (ASen-bestand 

of speciaal programma). 

- Besteed aandacht aan de keuze tussen geformatteerde en ongeformatteerde files. 

- Overweeg het gebruik van een database management systeem voor systematische opbouw 

en beheer van bestanden. 

43 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRO-TNO 

7 LAY-OUT FORTRAN 77-BRONCODE 

7.1 Inleiding 

De lay-out van de broncode van FORTRAN, maar ook van andere programmeertalen, is 

van groot belang voor de bevordering van de kwaliteit van software. Door een juiste lay-out 

wordt niet alleen in eerste instantie de leesbaarheid van de broncode zelf verhoogd, maar in 

het verlengde daarvan ook de onderhoudbaarheid van programmatuur als geheel. Bij een 

(beter) leesbare code kan men zich immers beter en sneller oriënteren, waardoor de kans op 

fouten en misverstanden afneemt en het onderhoudsproces efficiënter verloopt. Het kan 

verder worden verwacht dat de programmatuur die door de ontwikkelaar (of de organisatie 

van oorsprong) gemakkelijk kan worden onderhouden ook zonder bijzonder veel inspanning 

bij derden kan worden geïmplementeerd. Met andere woorden, de lay-out werkt ook 

bevorderend op de overdraagbaarheid. 

Achtereenvolgens komen aan de orde: 

lettertype en pOsitionering van de code; 

assignment statement; 

7.2 

* 

* 

* 

* 

* 

do-loop statement; 

argument van subroutines en functies; 

if-then statement; 

read en write statement. 

Lettertype en positionering van code 

Gebruik voor de tekst van de code systematisch kleine letters, deze schijnen een beter 

leesbare code op te leveren. Alleen hoofdletters voor de code is af te raden. 

De tekst van de code begint in principe in kolom 7. Indien de code verder begint, 

gebeurt dit in verband met het inspringen (zoals bij do-loop en if-then). 

De tekst van de code loopt in principe tot en met kolom 71, de kolom 72 wordt 

vrijgehouden als scheiding van de mogelijke commentaartekst in het veld 73-80. 

1 Lege (blanco) positie aanhouden tussen de variabelen, zoals in het argument van 

subroutines, declaraties van variabelen en datablocks. 

Gebruik voor de continuation van lijnen in het hele programma eenzelfde teken, 

45 



Lay-out FORTRAN 77-broncode 

bijvoorbeeld het teken '&'. Gebruik bij voorkeur geen cijfers, want het gebruik van 

cijfers (I, 2, enwvoorts) zou verwarrend kunnen zijn indien in de buurt andere cijfers 

wuden liggen, bijvoorbeeld de labels van do-loops. 

Aanbevolen: 

Afgeraden: 

7.3 Assignment statement 

* Aan linkerzijde van het ' =' teken minimaal 1 blanco positie opnemen. Dit verhoogt de 

overzichtelijkheid. 

* Aan rechterzijde van het ' =' teken altijd 1 blanco positie aanhouden. Dit verhoogt de 

overzichtelijkheid. 

* Plaats het ' = ' teken van achtereenvolgende assignment statements wveel mogelijk 

onder elkaar. Dit verhoogt de overzichtelijkheid. Indien de positie van het' =' teken in 

kolom 15 wordt gekozen zullen in het veld links van het ' =' teken variabelen passen 

met een maximale lengte van 7 posities. Als het aantal posities 7 niet toereikend is 

(bijvoorbeeld bij array-variabelen) verschuif dan het ' =' teken naar rechts wver als 

nodig is. 

46 



Lay-out FORTRAN 77-broncode 

Aanbevolen: 

Afgeraden: 

* Operators (rechterzijde statement) voor verschillende NIVEAUS van bewerkingen 

scheiden met 1 blanco positie. Dit verhoogt de overzichtelijkheid. 

Aanbevolen: 

Afgeraden: 

7.4 Do-loop statement 

* Labels bij 'continue' met 10 laten oplopen, beginnend bij 10. 

* Labels bij 'continue' rechts aansluiten bij kolom 5. 

47 



Lay-out FORTRAN 77-broncode 

Aanbevolen: 

Afgeraden: 

* De statements behorend bij een IF-THEN-ELSE of DO-blok 3 posities naar rechts laten 

inspringen ten opzichte van de IF-THEN-ELSE en DO-opdrachten. 

Aanbevolen: 

48 



Afgeraden: 

* Do-loop altijd met een 'continue' eindigen 

* Elke do-loop heeft een eigen 'continue'. 

Aanbevolen: 

Afgeraden: 

7.5 Argument van subroutines en functies 

Lay-out FORTRAN 77-broncoàe' 

* 1 Lege (blancç) positie laten tussen de variabelen. Dit verhoogt de overzichtelijkheid. 

* De beginposi,tie van de eerste argument variabele op een continuation lijn gelijk stellen 

aan die op de voorgaande lijn. 

49 



Lay-out FORTRAN 77-broncode 

Aanbevolen: 

Afgeraden: 

7.6 If-then statement 

* Gebruik in het argument geen blanco posities behalve vóór en na '.or.' en '.and.', of 

haakjes gebruiken. Deze blanco posities of haakjes, geven de visuele scheiding aan 

tussen de diverse niveaus van logische bewerkingen, zulks ter verhoging van de 

leesbaarheid. 

* Bij een grote afstand tussen 'if' en 'endif' statements (bij belangrijke if-then statements) 

vlak boven de desbetreffende 'endif' ook commentaar invoegen om eraan te herinneren 

welke if-then statement er eindigt. 

50 



Lay-out FORTRAN 77-broncOdë 

Aanbevolen: 

Afgeraden: 

7.7 Read en write statement 

* Zowel afzonderlijke format statements als format in read/write zijn toegestaan. Gebruik 

ter beoordeling aan programmeur. 

* Indien format statements worden gebruikt, de labels voor read en write afzonderlijk 

nummeren, bijvoorbeeld respectievelijk bij 1000 en 2000 laten beginnen. 

Evenals bij do-loops, de labels van format statements met 10 laten oplopen. Indien de 

formats op diverse plaatsen worden gebruikt, de format statements niet onmiddellijk 

achter de read en write statements plaatsen maar aan het einde van subroutines, tussen 

de (laatste) retum- en end-statement. Bij eenmalig gebruik is de plaatsing direct bij 

schrijfopdracht handiger, vooral omdat het format vaak een aanduiding bevat van het 

soort bericht dat wordt weggeschreven. 

* Tussen de statements 'read', 'write' of 'format' en '(' altijd een blanco positie. Tussen 

de laatste ')' van read en write en lijst van te lezen/schrijven variabelen (voor zover 

aanwezig) ook een blanco positie. De te lezen/schrijven variabelen scheiden door een 

spatie. 

51 



Lay-out FORTRAN 77-broncode 

Aanbevolen: 

Afgeraden: 

52 



" 

Lay-out FORTRAN 77-broncode 

7.8 Resumé 

Ontwerp een consistent systeem voor lay-out van broncode. 

- Beschouw dit hoofdstuk als een aanbevelenswaardig voorbeeld van een dergelijk 

systeem. 

- Wees consequent bij de implementatie van het gekozen lay-out systeem in de 

programmeerpraktijk. 

53 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRa-TNO 

8 FORTRAN 77-PROGRAMMEERASPECTEN 

8.1 Inleiding 

In dit hoofdstuk worden een aantal op zichzelf staande programma-technische keuzes 

behandeld die in ieder programma aan de orde zijn, maar niet onder één van de overige 

hoofdstukken vallen en die specifiek zijn voor het gebruik van de in de hydrologie veel 

gehanteerde programmeertaal FORTRAN-77. Het betreft veelal zaken waarover niet altijd 

eenduidig vast kan worden gelegd welke lijn gevolgd moet worden. De keuze die gemaakt 

wordt hangt vaak af van het specifieke probleem dat aan de orde is, de programmeerstijl 

etc. In bijna alle gevallen geldt echter dat consequent gebruik en overzichtelijkheid 

doorslaggevend zijn. 

Terwille van de verhoging van de leesbaarheid en overdraagbaarheid wordt sterk 

aanbevolen om de compiler specifieke programmeerfaciliteiten te vermijden. Het is 

raadzaam om de geldende normen te volgen, bijvoorbeeld ANSI FORTRAN 77 (ANSI, 

1978). 

Achtereenvolgens komen aan de orde: 

declaraties; 

initialisering; 

lokale variabelen; 

argumentenoverdracht; 

gebruik van intrinsieke functies; 

lengte subroutines; 

read en write statements; 

groepering van compiler-afhankelijke functies. 

8.2 Declaraties 

Binnen FORTRAN 77 kunnen variabelen op twee manieren gedeclareerd worden: 

impliciet of expliciet. Bij impliciete declaraties is de beginletter van de variabele bepalend 

vOOr het data-type als de variabele niet expliciet gedeclareerd is. Standaard is I-N voor 

integers, en de rest van de letters voor reals en overige data-typen. De beginletters kunnen 

55 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRO-TNO 

vastgelegd worden door het IMPLICIT-statement, bijvoorbeeld: 

Bij volledig expliciete declaratie genereert de compiler een foutmelding bij iedere variabele 

die niet gedeclareerd is. Bij sommige compilers kan hiervoor het statement gegeven worden: 

of moet met behulp van een switch bij de compilatie de optie gespecificeerd worden. Zijn 

beide opties niet mogelijk, dan kan in de programmatestfase in vrijwel alle gevallen 

hetzelfde resultaat geboekt worden door het specificeren van: 

Hierbij wordt bijna altijd een compiler-foutmelding gegenereerd indien een niet 

gedeclareerde variabele gebruikt wordt. Het voordeel van impliciete declaraties is dat er 

minder programmacode geproduceerd moet worden en er dus ook nàvenant minder 

typefouten optreden tijdens de compilatie-fase. Daarnaast hebben impliciete declaraties het 

voordeel dat in een programma direct opvalt welk type de verschillende variabelen hebben, 

zonder steeds een declaratielijst te hoeven raadplegen. Het grootste nadeel van impliciete 

declaraties is echter dat gemaakte typefouten tijdens de runtime-fase moeilijk te detecteren 

fouten kunnen opleveren, aangezien een fout ingetypte variabele opgemerkt wordt als een 

nieuwe variabele met een type dat afhankelijk is van de beginletter. Zo zal bij impliciete 

declaraties het verwarren van de variabele HOLD door HOLD, tot gevolg hebben dat met 

een nieuwe variabele HOLD gerekend wordt met initiële waarde, in plaats van met de 

bestaande variabele HOLD met de bestaande waarde. Bij expliciete declaraties zou een 

dergelijke fout reeds tijdens de compilatiefase opgemerkt zijn. 

In het algemeen lijkt het raadzaam om expliciete declaraties toe te passen, waarbij wel een 

conventie gehanteerd wordt van consequente beginletters voor verschillende datatypes (bij 

voorkeur de standaard FORTRAN 77-conventie), zodat in het programma snel een 

overzicht is over de gebruikte data-typen. Voorwaarde is wel dat de gebruikte conventie 

duidelijk in de documentatie en headings vermeld wordt. 

56 



Fortran 77 -prograrnmeeraspecten . 

Het is de verwachting dat in een volgende versie van FORTRAN de default impliciete 

declaraties (lMPLICIT INTEGER (I-N), IMPLICIT REAL (A-H, O-Z) zullen verdwijnen, 

zodat de programmeur gedwongen zal worden een bewuste keuze te maken. 

8.3 Initialisering 

De initiële waarde van programmavariabelen is per compiler en per processor vaak 

verschillend. De meeste compilers kennen aan iedere variabele tijdens de compilatie een 

waarde 0, 'FALSE' of ' , toe. Bij andere compilers wordt de initiële waarde van een 

variabele bepaald door de toevallige geheugenplaats. Dat laatste heeft als gevolg dat 

bijvoorbeeld bij een eerste bewerking met de variabele vaak een zeer groot of klein niet te 

verwerken getal ontstaat en een runtime-fout optreedt. Het is daarom noodzakelijk om alle 

gebruikte variabelen te initialiseren. Dit hoeft slechts één keer plaats te vinden, namelijk 

voor de start van het rekenproces. Het kan worden gedaan met behulp van het DATA­

statement, dat ervoor zorgt dat de gebruikte variabelen (ook die binnen een procedure) reeds 

tijdens de compilatie geïnitialiseerd worden op de gespecificeerde waarde. Deze initialisatie 

vindt slechts één keer plaats, ook al wordt de procedure vaker aangeroepen. Variabelen uit 

een blank COMMON-block kunnen niet door middel van een DATA-statement 

geïnitialiseerd worden. Variabelen uit een named COMMON-block kunnen alleen door 

middel van een zogenoemde BLOCK DAT A subprogramma geïnitialiseerd worden. De 

lokale variabelen worden doorgaans geïnitialiseerd binnen een gewoon DATA-statement. 

Variabelen die onderdeel zijn van een argumentenlijst worden door de aanroep van de 

procedure geïnitialiseerd, een DATA-statement is hiervoor niet mogelijk. 

Bij het initialiseren van zeer grootte array-variabelen is het in verband met het ruimtebeslag 

van de executeerbare code raadzaam om tijdens de programmawerking een initiële waarde 

toe te kennen met behulp van een DO-loop aan het begin van een programma, in plaats van 

een DATA-statement in de broncode. 

57 



Fortran 77-programmeeraspecten 

Voorbeeld 

1 

2 

3 

8.4 Lokale variabelen 

Binnen een procedure wordt de waarde van een lokale variabele op de ene computer/­

compiler wel en op d~ andere computer niet vastgehouden. Standaard FORTRAN 77 houdt 

deze waarde niet vast. Het is daarom noodzakelijk te allen tijde het SA VE-statement te 

gebruiken voor die lokale variabelen die vastgehouden moeten worden, dan wel de 

variabelen in een COMMON-block te plaatsen. Het SAVE-statement heeft geen invloed op 

een eventueel DATA-statement. Hoewel op de meeste compilers de mogelijkheid bestaat om 

via een switch bij de compilatie aan te geven of de lokale variabelen bewaard moeten 

worden of niet, is het SAVE-statement duidelijker. Dit geldt altijd op iedere computer, 

bovendien is door het gebruik van het SA VE-statement meteen duidelijk welke waarden van 

variabelen bij een volgende aanroep van belang zijn (namelijk argumenten, variabelen van 

COMMON's en SAVE). 

58 



Fortran 77 -programmeeraspeeten 

Een SAVE-statement ziet er altijd als volgt uit: 

8.5 Argumentenoverdracht 

Voor het overdragen van argumenten op een subroutine of functie bestaan twee 

mogelijkheden: via een argumentenlijst en via een COMMON-block. Doorgaans is het 

overdragen van argumenten via een COMMON-block efficiënter (in termen van rekentijd) 

dan via argumentenlijsten. Het gebruik van argumentenlijsten heeft echter een aantal 

voordelen die het gebruik ervan in een aantal gevallen rechtvaardigt. 

Als een argumentenlijst gebruikt wordt kan een procedure eenvoudig voor meerdere 

doeleinden gebruikt worden waarbij de actuele variabelen per geval ingevuld worden. De 

lengte van CHARACTER- en ARRAY-variabelen kan daarbij variabel gemaakt worden. 

Het is in het programma ook direct duidelijk wat het interface van de procedure is. Bij veel 

argumenten in de lijst gaat deze duidelijkheid echter verloren, en kan beter een 

COMMON-block gebruikt worden. De lengte van variabelen, bijvoorbeeld CHARACTER 

en ARRAY-variabelen, in de argumentlijst wordt niet bepaald in de desbetreffende routine. 

Bij de aanroep van de routine vanuit een andere routine wordt alleen het type van 

variabelen gespecificeerd, dat wil hier zeggen CHARACTER en (bijvoorbeeld rea1) 

ARRAY, en het startadres (beginpositie) van de CHARACTER en ARRAY in de totale 

dataruimte. Om de data-overdracht flexibel te maken, wordt aanbevolen om in een routine 

bijvoorbeeld de volgende declaraties op te nemen: 

De werkbare lengte van de actuele variabele (bijvoorbeeld CHARACTER en REAL) wordt 

bepaald door de lengte van de actuele variabele waarmee de desbetreffende routine wordt 

aangeroepen. 

59 



Fortran 77-programmeeraspecten 

Het nadeel van argumentenlijsten is dat er betrekkelijk snel overdrachtsfouten gemaakt 

worden, bijvoorbeeld het vergeten van een argument, verwisselen van argumenten, 

typefouten enzovoorts. In geval van COMMON-blokken kan vaak gebruik gemaakt worden 

van een (per compiler verschillend) INCLUDE of INSERT -statement om een slechts 

éénmalig aangemaakt COMMON-BLOCK te laden in die procedures waar het blok nodig 

is. Bij het declareren van COMMON-blokken is het verstandig om verschillende data-typen 

in verschillende COMMON-blokken te plaatsen. Voor CHARACTER-variabelen is dit zelfs 

verplicht. 

Binnen een programma zal iedere keer een afweging gemaakt moeten worden tussen 

duidelijkheid, foutengevoeligheid en snelheid, waarbij duidelijkheid voorop staat. 

8.6 Intrinsieke functies 

Intrinsieke functies binnen FORTRAN 77, zoals COS, MIN, SQRT etc., kunnen op twee 

manieren aangeroepen worden: als generieke functie of als data-type atbankelijke specifieke 

functie. De generieke functie produceert meestal een uitkomst voor ieder data-type, zoals de 

functie MAX als input zowel integers als reals kan hebben en als resultaat ook een integer 

respectievelijk een real heeft. De specifieke functie kan slechts een specifiek data-type als 

input en ook één data-type als output genereren, zoals AMAXI slechts reals als input en als 

output kent, en DMAXI alleen double precision data-typen. 

Het voordeel van gebruik van generieke functies is dat een bewerking altijd een uitkomst 

geeft onatbankelijk het type van de input, hetgeen goed van pas komt bij overschakeling van 

bijvoorbeeld reals naar double precision. Het voordeel van specifieke functies is dat er een 

extra check is op het data-type en dus ook (bij expliciete declaraties) een extra check op 

typefouten. 

Het is moeilijk te zeggen welke methode de beste is. Zeker hierbij is het van belang één lijn 

te trekken. Bij het gebruik van expliciete declaraties is het overigens verplicht zowel 

specifieke als generieke functies expliciet te declareren als INTRINSIC, bijvoorbeeld: 

60 



Fortran 77-programmeeraspecten 

8.7 Lengte subroutines en functies 

Zoals in hoofdstuk 3 is uiteengezet ligt het voor de hand programma's in stukjes op te delen 

in de vorm van subroutines en functies. Een optimale grootte van functies en subroutines is 

echter moeilijk te geven. In veel leerboeken wordt uitgegaan van maximaal een A4'tje 

FORTRAN-code per routine (ongeveer 50 regels aan statements). In grote programma's, 

die, in afwijking van de optimale situatie, vaak "gaandeweg" tot stand gekomen zijn, is een 

dergelijke norm moeilijk te handhaven en ook niet altijd even gemakkelijk. 

Het opdelen van het programma moet altijd kritisch beschouwd worden. Het is bijvoorbeeld 

niet zinnig om rigide te streven naar een gelijke lengte van de subroutines. De statements 

binnen een routine moeten in de eerste plaats inhoudelijk een functionele eenheid vormen. 

Voorkomen moet worden dat er te veel code binnen een DO-loop of een IF-THEN­

ELSE statement komt te staan, zodat begin en eind van de structuur moeilijk te 

onderscheiden zijn. Als een controlestructuur langer dan circa een A4 wordt, kan de routine 

beter opgedeeld worden. 

8.8 Read en write statements 

Het is een goede gewoonte om binnen FORTRAN 77-programma's alle READ-stàtements 

te beveiligen met een ERROR-label en END-label; of met de IOSTAT-indicator. Deze 

toevoegingen zorgen er voor dat bij een inleesfout of indien het einde van de file bereikt is, 

het programma naar een bepaalde plaats springt waar bijvoorbeeld een foutmelding kan 

worden gegeven. De IOSTAT-indicator geeft meer gespecificeerd aan welke fout 

opgetreden is. 

of 

61 



Fortran 77-programmeeraspecten 

De unitnummers die in het programma gebruikt worden, kunnen het beste bovenaan in het 

hoofdprogramma vastgelegd worden met PARAMETER-statement. Het doorgeven van de 

unitnummers naar verschillende subroutines kan vervolgens via argument overdracht 

plaatsvinden. Op deze manier is het eenvoudig om een programma geschikt te maken voor 

een andere computer, met andere unitnummer-definities; het programma hoeft dan slechts 

op één plaats gewijzigd te worden. 

8.9 Groepering van compiler-afhankelijke functies 

Ten behoeve van de verhoging van overdraagbaarheid van programmatuur tussen diverse 

(FORTRAN) compilers, is het raadzaam om de in dit verband specifieke functies in aparte 

subroutines te plaatsen. Dit betreft bijvoorbeeld: 

openen van invoer- en uitvoerfiles; 

schermafhandeling; 

plotten; 

behandeling van overige randapparatuur; 

opvragen van tijd en datum. 

8.10 Resumé 

62 

Maak binnen een programma iedere keer de afweging tussen duidelijkheid, fouten­

gevoeligheid en snelheid, waarbij· duidelijkheid voorop staat (bijvoorbeeld impli­

ciete/expliciete declaratie, generieke/specifieke functies). 

Initialiseer alle gebruikte programmavariabelen. 

Gebruik het SA VE-statement voor lokale variabelen, waarvan de waarde vastgehouden 

moet worden, dan wel plaats de variabelen in een COMMON-block. 

Deel een programma op in subroutines en functions, waarbij als streef grootte geldt 

maximaal 50 regels aan statements. 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRO-TNO 

9 FOUTENCONTROLE EN FOUTMELDINGEN 

9.1 Inleiding 

Elke gebruiker zal wel eens het onverwachte en vroegtijdige beëindigen van een 

computerprogramma meegemaakt hebben. Er zijn verschillende manieren waarop de 

gebruiker op de hoogte wordt gebracht van de aard van de opgetreden fout. Wat valt er 

bijvoorbeeld te denken van de volgende melding op het beeldscherm: 

"Mathoverflow, trap in segment OA38 7003" , 

of een ander, voor de meesten even onbegrijpelijke boodschap: 

"Heap size exceeded (open file xxxx)". 

Een melding die door de gebruiker wellicht nog het beste te begrijpen valt, maar waar 

hij/zij evenmin iets mee kan beginnen, zou kunnen zijn 

"zero divide in line xxx of module YYY". 

De hiervoor gegeven meldingen zijn van het FORTRAN-systeem zelf afkomstig, dus niet 

tevoren door de programma-ontwikkelaar geprogrammeerd. 

Duidelijk is dat het anders moet. De gebruiker zal in principe een melding moeten krijgen 

over wat hij nu precies fout heeft gedaan. De programma-ontwikkelaar zal dus in de huid 

van de gebruiker moeten kruipen en zich een voorstelling moeten maken welke vergissingen 

c.q. fouten gemaakt kunnen worden. Een goede documentatie is dan een eerste stap in de 

juiste richting (hoofdstuk 12). Er is echter meer nodig. Invoergegevens zullen getoetst 

moeten worden: liggen de opgegeven waarden binnen redelijke grenzen? Zo niet, dan zal in 

ieder geval een waarschuwing afgedrukt moeten worden. Het afdrukken van enkele 

statistische gegevens over de invoergegevens kan ook helpen bij het opsporen/constateren 

van fouten. Denk bijvoorbeeld aan: minimum, maximum en gemiddelde van parameter­

waarden, som van oppervlakten van elementen in numerieke berekeningen, etc. Naast 

fouten aan gebruikerszijde kunnen er ook in de broncode 'geprogrammeerde fouten' zitten. 

Bijvoorbeeld een delen-door-nul conditie, die niet voorzien was maar wel reëel mogelijk is. 

Of denk aan matrix-operaties die onder bepaalde voorwaarden niet stabiel zijn. Bij het 

programmeren zullen deze condities ondervangen moeten worden. Niet altijd een 

eenvoudige zaak, maar wel belangrijk. In het navolgende wordt een aantal praktische 

aanwijzingen gegeven met betrekking tot foutencontrole en foutafhandeling. 

63 



Foutencontrole en foutmeldingen 

9.2 Invoer van data 

Invoer van data dient overzichtelijk en gestructureerd plaats te vinden. Dit voorkomt 

onnodige fouten. 

Een duidelijke omschrijving van invoerparameters met hun dimensies/eenheden moet in de 

documentatie worden opgenomen (hoofdstuk 12). 

Indien er sprake is van een speciaal voorbewerkingsprogramma voor de invoer van 

gegevens (zie bijvoorbeeld hoofdstuk 3, Figuur 3.1) dient er een goede afstemming te zijn 

tussen fouten controle in de voorbewerker en in het hoofdprogramma. Alleen als het 

invoerprogramma standaard onderdeel uitmaakt van het totale programmapakket kan hier 

een belangrijk deel van de foutencontrole worden uitgevoerd. Zo niet, dan dient één en 

ander (ook) in het hoofdprogramma plaats te vinden. 

Bij het opzetten van de programmastructuur dient al rekening gehouden te worden met de 

foutafhandeling. Hierdoor is een efficiënte en doorzichtige programmering mogelijk. 

9.3 Foutencontrole 

Plaats het invoeren van data zo veel mogelijk bij elkaar in het programma. Het 

programmeren van de foutencontrole wordt daardoor eenvoudiger. Daarbij moet gewerkt 

worden in drie stappen: inlezen, afdrukken en controleren. Alle ingelezen data moeten ook 

kunnen worden afgedrukt (Iet daarbij ook op interactieve invoer). Houd er bij het afdrukken 

van gegevens rekening mee dat gegevens, die ingelezen kunnen worden, ook afgedrukt 

moeten kunnen worden (in FORTRAN 77: afstemming van FORMAT statements). Door 

inlezen en afdrukken zo veel mogelijk bijeen te plaatsen, is het relatief eenvoudig controles 

in te bouwen voor de uitvoering van lees- en schrijfopdrachten. Foutcondities tijdens 

inlezen, bijvoorbeeld real getal waar integer getal wordt verwacht of end-of-file conditie, 

kunnen dan goed opgevangen worden (inbouwen van foutmelding). 

Ga voor alle invoergegevens na of reële waarden opgegeven zijn (doorlatendheid groter dan 

nul, porositeit tussen 0 en 1, etc.). Irreële waarden kunnen namelijk in een later stadium 

van het programma moeilijkheden opleveren. Zo kunnen bijvoorbeeld bij het opstellen van 

64 



Foutencontrole en foutmefdingen 

een stelsel vergelijkingen systeem-matrices ontstaan die niet voldoen aan de eisen die gesteld 

worden aan de geprogrammeerde oplosprocedure. Voor het opsporen van fouten kan het 

bijzonder nuttig zijn om enkele algemene gegevens af te drukken die toch al door het 

programma berekend worden. Denk bijvoorbeeld aan minimum en maximum coördinaten, 

oppervlakte modelgebied, kortste en langste zijde van elementen, enzovoorts. Neem waar­

schuwingen op indien er naar alle waarschijnlijkheid fouten in de invoer kunnen zitten. Stop 

de programma-executie bij ernstige fouten, natuurlijk onder vermelding van een duidelijke 

foutboodschap. 

9.4 Foutmeldingen 

Foutmeldingen dienen niet (alleen) een fout aan te geven maar moeten ook een verwijzing 

inhouden naar de oorzaak van de fout en eventueel de plaats in het programma waar de fout 

optreedt. Het melden van een 'delen-door-nul'-conditie of 'log-uit-niet-positief-getal' heeft 

weinig zin als niet aangegeven wordt welke uitdrukking nul of niet positief is. Overigens 

zouden deze condities voork6men moeten worden door een goede controle van de invoer. 

Een controle op de array-grensoverschrijdingen dient op kritieke punten uitgevoerd te 

worden, bijvoorbeeld voor de uitvoering van omvangrijke DO-loop operaties. Dit type 

condities kan tot niet-traceerbare fouten leiden. Door het gebruik van adjustable arrays en/of 

het PARAMETER statement kan een goede afstemming tussen array-dimensie en fouten­

controle plaatsvinden (zie voorbeeld 1). 

65 



Foutencontrole en foutmeldingen 

Voorbeeld 1 

Het vermelden van een foutnummer in de foutmelding schept de mogelijkheid om in een 

gebruikershandleiding ruimer aandacht te besteden aan de optredende fout. 

9.5 Foutafhandeling 

Routines met een algemeen karakter dienen een fout te signaleren en deze door te geven aan 

de aanroepende routine door middel van een foutvlag. In de routine waar de fout optreedt 

wordt wel een foutmelding afgegeven, maar de routine zelf zorgt niet voor beëindiging van 

het programma. De foutvlag kan bestaan uit een integer getal die het type fout aanduidt of 

een logical variabele. 

66 



Voorbeeld: 

IFOUT = 0 geen fout opgetreden 

IFOUT = 1 onjuiste argumentwaarden 

IFOUT = 2 geen convergentie 

of 

LERROR = .FALSE. geen fout opgetreden 

LERROR = .TRUE. fout opgetreden 

Foutencontrole en foutmeldingen 

Geef in de programmadocumentatie duidelijk aan wat de betekenis is van de verschillende 

waarden van de foutvlag. Overweeg het gebruik van een aparte subroutine voor het 

afdrukken van foutmeldingen. Dit voorkomt het herhaaldelijk programmeren van dezelfde 

melding en bevordert de herkenbaarheid van de foutmeldingen. Denk bijvoorbeeld aan 

fouten bij input/output-instructies. Elke leesopdracht kan zo bijvoorbeeld gemakkelijk 

voorzien worden van een END-OF-FILE label (zie voorbeeld 2). 

Voorbeeld 2 

67 



Foutencontrole en foutmeldingen 

9.6 Resumé 

- Voer data overzichtelijk in en doe dit gestructureerd, dit voorkomt onnodige fouten. 

- Houd reeds bij de opzet van een programma(pakket) rekening met foutafhandeling. 

- Concentreer zo veel als mogelijk het invoeren van data, de foutencontrole wordt daardoor 

vergemakkelijkt. 

- Zorg voor een uitvoerige controle op fouten, zoals irreële parameterwaarden en 

foutieve combinaties van (invoer)parameters. 

- Foutmeldingen moeten niet alleen de aard van de fout aangeven maar ook een verwijzing 

inhouden naar de oorzaak van de fout en de wijze waarop het probleem kan/moet worden 

verholpen. 

- Zorg voor signalering van array-overschrijdingen. 

- Nummer of benoem anderszins systematisch de foutmeldingen, dit geeft de mogelijkheid 

om in een gebruikershandleiding ruimere aandacht aan de foutafhandeling te besteden. 

68 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

10 TESTEN V AN PROGRAMMATUUR 

10.1 Inleiding 

Om een inzicht in de kwaliteit van programmatuur te krijgen is een goed georganiseerde 

testaanpak: vereist. Vragen met betrekking tot functionaliteit, performance, betrouwbaarheid, 

beheersbaarheid, onderhoudbaarheid, beveiliging en documentatie kunnen uitsluitend 

beantwoord worden als het testproces planmatig wordt aangepakt. Omdat de meeste fouten 

gemaakt worden in het begin van het ontwikkeltraject en de kosten om een fout te herstellen 

toenemen naarmate het tijdstip van ontdekken later valt, is het van groot belang dat in alle 

fasen van de levenscyclus (voorbereidende) testactiviteiten plaatsvinden. Dit hoofdstuk gaat 

voornamelijk in op het testen van programmatuur in software-technisch opzicht. Of de door 

de programmatuur geïmplementeerde theorie hydrologisch gezien correct is blijft hier buiten 

beschouwing. 

10.2 Aanpak: bij testen 

Al tijdens het opstellen van de programma-eisen en het globale ontwerp van de te bouwen 

programmatuur wordt aandacht besteed aan testen in de vorm van het specificeren van de 

tests die in latere stadia uitgevoerd moeten worden om de functionaliteit en performance te 

controleren (verificatie eisen) en het systeem in gebruik te nemen (acceptatie eisen). Dit 

betekent dat alle eisen die aan de programmatuur gesteld worden in principe testbaar moeten 

zijn, dat wil zeggen dat ze binnen een eindige hoeveelheid tijd gecontroleerd moeten kunnen 

worden. 

Tijdens de implementatie worden alle afzonderlijke onderdelen getest en vervolgens 

geïntegreerd in subsystemen en uiteindelijk in het complete werkende systeem (computer 

programma). Bij deze incrementele opbouw van het systeem kan met testen worden 

begonnen bij zowel de modules op het laagste niveau (bottom-up testen, waarbij de 

omgeving van de module met behulp van een test-driver wordt gesimuleerd) als bij modules 

op het hoogste niveau {top-down testen, waarbij modules op een lager niveau door 

zogenaamde teststubs (dummy routines) geëmuleerd worden). Met het testen wordt 

nagegaan of de afzonderlijke modules aan de gestelde specificaties voldoen (moduletest), of 

69 



Testen van programmatuur 

ze samen het beoogde resultaat opleveren (integratietest) en of de documentatie en 

gebruikershandleiding in overeenstemming zijn met de programmatuur (systeemtest). 

Na de (voorlopige) oplevering van de programmatuur wordt het systeem getest op basis van 

de gebruikers specificaties (applicatietest). Hier ligt de nadruk op het testen van de 

bruikbaarheid van de geleverde functionaliteit. Hierbij dient aangetekend te worden dat het 

voor een groter systeem onmogelijk is alle paden door de programmatuur te testen. 

Tenslotte wordt getest of het systeem zich in de produktie-omgeving net zo gedraagt als in 

de omgeving waarbinnen het ontwikkeld werd (installatietest). Hierbij dient aangegeven te 

worden onder welke condities de executable was aangemaakt (compiler, linker, etc.). 

Eventueel kan ook aandacht worden besteed aan het schatten van de betrouwbaarheid van de 

programmatuur, bijvoorbeeld met behulp van betrouwbaarheidsmodellen. 

De resultaten van alle genoemde tests dienen vastgelegd te worden in gestandaardiseerde 

documenten en beschikbaar te zijn in latere fasen van het ontwikkelingstraject. Dit houdt 

onder andere in dat in de produktiefase, nadat het programma is opgeleverd, beschikt kan 

worden over een aantal bij het programma behorende testproblemen. De documentatie van 

deze tests omvat in ieder geval een beschrijving van het probleem, een complete opsomming 

van de invoer data, alle bij het probleem behorende uitvoer en een verklaring van de 

resultaten en eventuele afwijkingen. Deze tests kunnen te allen tijden gebruikt worden om te 

controleren of het programma, bijvoorbeeld na installatie op een ander systeem, nog steeds 

het juiste gedrag vertoont. Waar mogelijk is het raadzaam om de toekomstige gebruikers bij 

het ontwerp van de tests te betrekken. 

10.3 Testmethoden 

Zoals in de vorige paragraaf al werd opgemerkt, is het in de praktijk vrijwel altijd 

onmogelijk het correct functioneren van een programma te bewijzen. Hiertoe zou de 

programmatuur namelijk uitputtend getest moeten worden, zodat alle mogelijke paden in de 

de programmatuur doorlopen zouden worden. Dit is in het bijzonder het geval bij 

geohydrologische programma's die een betrekkelijk kleine gebruikersgroep kennen en waar 

dus veel inspanning bij het testen vaak niet opweegt tegen de "opbrengst" daarvan. Dit is 

70 



Testen van programmafil1if 

overigens juist een van de gesignaleerde knelpunten die tot de instelling van de CHO-TNO 

Werkgroep RCPH (dit rapport) hebben geleid. Om economische en praktische redenen is 

het van groot belang een zo klein mogelijke (maar voldoende representatieve) verzameling 

van testgevallen vast te stellen. Uitgangspunt hierbij kan wwel de specificatie als de 

implementatie van de programmatuur zijn (functionele respectievelijk structurele analyse). In 

het eerste geval bestaat er geen theoretisch onderbouwde methode om de verzameling 

testgevallen te bepalen, maar wordt aan de hand van de eigenschappen van de invoer van 

het programma een set samengesteld. Hierbij wordt wwel met representatieve waarden 

(bijvoorbeeld klassegemiddelden) als met uitzonderingsgevallen (extreme waarden) rekening 

gehouden. Ook andere, onafhankelijk verkregen (bijvoorbeeld analytische) oplossingen 

kunnen hierbij worden gebruikt. In het tweede geval zijn de tests gebaseerd op de interne 

structuur van de programmatuur en bestaan er hulpmiddelen (computer aided testing 

(CATE), software analyse tools en dergelijke) om vast te stellen in hoeverre de tests de 

programmatuur volledig dekken. Hierbij kan geprobeerd worden met de tests 100% 

"dekking" te bereiken of om de complexiteit van de onderzochte code die van de gehele 

programmatuur te laten naderen (wat in beide gevallen overigens geen garantie voor 

correctheid is). 

In de praktijk worden in de ontwerp- en implementatiefase naast de bovengenoemde 

technieken een aantal methoden gebruikt om fouten in ontwerp en programmatuur op te 

sporen die niet theoretisch onderbouwd zijn, maar die wel op duidelijk afgesproken regels 

gebaseerd kunnen worden: 

- het wrgvuldig doorlezen van de code door de programma-ontwikkelaar zelf. Nadeel 

hierbij is de (onwillekeurige) neiging die iedere programmeur heeft om die testgevallen 

te selecteren die aantonen dat de code wèl aan de specificaties voldoet; 

- het in teamverband doorlopen en met behulp van testgegevens executeren van het 

programma. Hierbij kunnen wwel de bij het ontwerp als de bij de implementatie 

gemaakte keuzes worden verklaard en bediscussieerd. Bovendien kunnen aan de hand 

van de ervaring van de teamleden frequent voorkomende fouten gedetecteerd worden. 

71 



Testen van programmatuur 

10.4 Resumé 

- Stel een verzameling van testgevallen samen, waarbij (vaak aan de hand van invoer) 

rekening wordt gehouden met zowel representatieve als extreme waarden. 

- Test alle onderdelen (modulen) tijdens de implementatie eerst afzonderlijk. Test 

vervolgens modulen geïntegreerd in subsystemen en uiteindelijk in het complete systeem 

(programma). 

- Lees in ieder geval zorgvuldig de code door en beproef het programma in teamverband 

met behulp van testgegevens. 

72 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRO-TNO 

11 INTERNE DOCUMENTATIE IN COMPUTERCODE 

11. 1 Inleiding 

Met interne documentatie wordt de tekst bedoeld, die als commentaar wordt toegevoegd aan 

de broncode van een programma. 

De interne documentatie is een belangrijk middel om specifieke informatie van het 

programma en de werking vast te leggen voor de programma-ontwikkelaar en mogelijke 

toekomstige ontwikkelaars. De informatie kan nodig zijn voor onderhoud of wijzigingen aan 

het programma. 

De hoeveelheid informatie die gegeven wordt is afhankelijk van: 

- het gebruik van het programma en de levensduur ervan; 

- de omvang van het programma; 

- de complexiteit van het programma. 

Een programma dat eenmalig gebruikt wordt en vervolgens vernietigd, behoeft niet van 

commentaar voorzien te worden. Dit geldt in zekere mate ook als het programma alleen 

door de ontwikkelaar zelf wordt gebruikt. Bedacht dient echter te worden dat ook als het 

programma alleen door de ontwikkelaar wordt gebruikt, een redelijk niveau van 

documentatie aan te bevelen is omdat hij/zij na verloop van tijd zelf ook alle details niet 

meer weet. Een groot en ingewikkeld programma dat overgedragen zal worden aan anderen 

voor gebruik en onderhoud moet volledig gedocumenteerd worden. 

De interne documentatie wordt verdeeld in twee categorieën: 

- informatie die vooraan in de routine gegeven wordt (zogenaamde "program header"); 

- informatie tussen de programma-instructies van de routine. 

De informatie voor de routine is. algemeen van aard (zoals de naam van het programma 

waar hij deel van uit maakt, een korte omschrijving van de routine, de datum en 

programmeur). De informatie geplaatst tussen de programma-instructies verduidelijkt de 

acties die uitgevoerd worden. Dit commentaar moet met mate toegepast worden om het 

overzicht over de instructies niet te verliezen. Indien een heldere lay-out voor de instructies 

gebruikt wordt, kan met enkele aanvullende opmerkingen volstaan worden. 

73 



Interne documentatie 

De interne documentatie dient visueel gescheiden te worden van de programma-instructies. 

11.2 Documentatie aan begin van routine 

Volledige documentatie aan het begin van een routine, inclusief het hoofdprogramma bestaat 

uit: 

- naam van het programma + versienummer* + datum; 

- vermelding van het pakket als het programma deel uit maakt van een pakket; 

- doel/actie van het programma met uitgangspunten en beperkingen, invoer en uitvoer en 

bijzonderheden; 

- implementatie*: 

machine, operating system; 

compiler en linker met opties en versienummers; 

bibliotheken; 

- lijst met beperkende dimensies (van arrays bijvoorbeeld) en hoe dit aangepast kan 

worden; 

- programmeur(s) met bedrijf; 

- beheerder; 

- copyright/eigenaar; 

- update informatie: wanneer welke wijzigingen in de brontekst zijn aangebracht; 

- gebruikte methode, met zonodig referentie naar artikel of boek; 

- opsomming van argument variabelen en gebruikte common block variabelen: 

vermelding type (CHARACTER, LOGICAL, COMPLEX etc.); 

vermelding betekenis; 

- vermelding van INCLUDE files met beschrijving van inhoud; 

- opsomming van aangeroepen routines; 

- opsomming van Input/Output files. 

N.B.: Onderdelen die alleen voor een hoofdprogramma van toepassing zijn, zijn door 

middel van een * aangegeven. 

11.3 Documentatie tussen de regels met FORTRAN-instructies 

De documentatie tussen de regels met broncode moet erop gericht zijn om, in samenhang 

74 



Interne documentati.~ ... 

met de broncode de acties toe te lichten die ter plaatse door het programma worden 

uitgevoerd. De documentatie moet summier zijn, zodat de broncode niet over een 

onoverzichtelijk grote lengte wordt uitgesmeerd. Er kan verwezen worden naar de externe 

documentatie, zoals de handleiding, beschrijvingen van gebruikte algoritmen. 

Een tweede deel van de documentatie in de broncode is het aangeven van wijzigingen, bij 

voorkeur met datum en auteur. Voor toevoegingen kan bovendien een andere letter worden 

gebruikt (hoofdletters als oorspronkelijke code in kleine letters is). 

Het commentaar dient visueel gescheiden te worden van de code. Dit kan op verschillende 

manieren geschieden, bijvoorbeeld: 

- scheiding door regel met * ....... , *------, * = = = = = = etc.; 

- scheiding door regel met c ....... , c------, c = = = = = = etc.; 

- instructies in kleine letters en commentaar in hoofdletters, of andersom. 

Het eerste teken (in kolom I) van een commentaarregel dient een "*" of een "c" te zijn. 

Delen van de FORTRAN-code met verschillende taken kunnen ook visueel gescheiden 

worden met behulp van lege regels, zodat de instructies, die samen een taak vervullen als 

een groep herkenbaar zijn. 

De commentaartekst kan als volgt worden gepositioneerd: 

- Elke commentaarregel beginnen op een vaste positie (kolom), bijvoorbeeld op positie 4; 

- Commentaartekst inspringen afbankelijk van de beginpositie van de broncode, waarop 

het desbetreffende commentaar betrekking heeft. 

75 



Interne documentatie 

11. 4 Voorbeelden 

Voorbeeld 1 Subroutine SCPP06 (RIVM, Bilthoven, K. Kovar) 

Dit is een algemene routine die gebruikt wordt door diverse programma's van de 

wgenaamde AQ-programmapakketten van het RIVM. De AQ-programmapakketten worden 

niet alleen intern maar ook extern gebruikt. Onderhoud en aanpassingen zijn te voorzien en 

dus is de documentatie vrij uitgebreid. 

*********************************************************************** 
* * 
* 
* 

» SUBROUTINE SCPP06 « * 
* 

*---------------------------------------------------------------------* 
* purpose : Read 3 records from the file IIN. The data contain the * 
* following "XP" records for the profiles : * 
* 1) record XPFG * 
* 2) record YPFG * 
* 3) record MPPFG * 
*---------------------------------------------------------------------* 
* parameters : 

* 
* 
* * IIN = logical unit number of input file (i) * 

* (integer variabie) * 
* ESC = ASCII character 27 (i) * 
* (character variabie) * 
* CBLON character string for switching bold char. on (i) * 
* (character*5 variabie) * 
* CRVOF character string for switching reverse video off (1) * 
* (character*5 variabie) * 
* NPPFGO number of points along the profile IPF (i) * 
* (integer variabie, 1 < NPPFGO =< NPPFGX) * 
* XPFG x-coordinates of profile IPF (0) * 
* (real array, size >= NPPFGX) * 
* YPFG = y-coordinates of profile IPF (0) * 
* (real array, size >= NPPFGX) * 
* MPPFG = definition of original/extra points on profile IPF (0) * 
* (integer array, size >= NPPFGX) * 
* IREC = number of the "XP" record (i/a) * 
* (integer variabie, 1 =< IREC(input» * 
* FLERR = flag of whether an error message was issued (yes:t) (0) * 
* (logical variabie) * 
*---------------------------------------------------------------------* 
* subprograms : iorfai, iorfar, scmcu2 * 
*---------------------------------------------------------------------* 
* error messages : 1 * * ___________________________________ c _________________________________ * 
* implementation: 1) Ensure that 1 =< IREC(input), * 
* IREC(output) = IREC(input) + 3 * 
* 2) The input and output value of IREC concerns * 

76 



Interne documelltatie-·· 

* the next record to be loaded or skipped. * 
*---------------------------------------------------------------------* 
* Copyright RIVM, The Netherlands Last update: 21-MAR-1991 * 
*********************************************************************** 

subroutine scpp06 (iin, esc, ebion, crvof, nppfgO, xpfg, ypfg, 
& mppfg, irec, flerr) 
implicit double precision (a-h,o-z) 

*----------------------------------------------------------------------
dimension xpfg(*), ypfg(*), mppfg(*) 
character esc, cblon*5, crvo f*5, txt*37, help*49 
logical flerr 

*----------------------------------------------------------------------
* Set the text for the error message 

* 
data txt/'Error on Loading Profile Data Record 'I 

*----------------------------------------------------------------------
* Read XPFG 

* 
cal 1 iorfar (iin, xpfg, nppfgO, flerr) 
if (flerr) goto 10 
irec = irec + 1 

*----------------------------------------------------------------------
* Read YPFG 

* 
cal 1 iorfar (iin, ypfg, nppfgO, flerr) 
if (flerr) goto 10 
irec = irec + 1 

*----------------------------------------------------------------------
* Read MPPFG 

* 
call iorfai (iin, mppfg, nppfgO, flerr) 
if (flerr) goto 10 
irec = irec + 1 
return 

*----------------------------------------------------------------------
* Write error message in the message window 

* 
10 if (irec.lt.lO) then 

write (help,'(a37,"XP,"il)') txt, irec 
elseif (irec.gt.9 .and. irec.lt.lOO) then 

write (help,'(a37,"XP," ,i2)') txt, irec 
else 

write (help,'(a37,"XP," ,i3)') txt, irec 
endif 
call scmcu2 (esc, ebion, crvof, 22, 25, help, 49) 
return 
end 

77 



Interne documentatie 

Voorbeeld 2 Hoofdprogramma van FLAIRS (IW ACO B. V., Rotterdam) 

Dit is het hoofdprogramma van het centrale rekenprogramma (hoofdbewerkingsmodule) van 

het eindige elementen pakket TRIW ACO. De informatie over de werking van het 

programma is niet in de kop boven de routine verwerkt, het is in de externe documentatie 

gegeven. 

********************************************************************* 
* 
* 
* 

MAIN Program of F:lAIRS 

* part of TRIWACO (Finite Element Package for simulating 
* Groundwater Flow) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* (c) IWACO, Rotterdam 
* IWACO B.V. Consultants for Water and Environment 
* P.O. Box 183 
* 3000 AD Rotterdam 
* the Netherlands 

* 
********************************************************************* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

78 

Vers ion 
Programmer 

Operating 
System 

Compiler 

Libraries 

Routines 

2.67 1/23/1990 
A. Leijnse 
C.T. de Graaf 
M.J. Emke 

Microsoft DOS Version 3.3 
IBM DOS Vers ion 3.3 
IBM OS/2 Version 1.10 

Microsoft FORTRAN Vers ion 5.0 
(work arrays put in common block in main program 
to prevent compilation error DATA GREATER THAN 
64K) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* LLIBFORE.LIB (no C compatibility, Huge Memory * 

Model, in line Math Emulation) FlADOLIB.LIB * 
* FlAIRS, FlAWOR, START, FRPAGE, RESREA, INNUIN, * 

DIMl, INPGRD, CREBP, DETFRA, INRIUT, INSOUR, * 
INBOUN, INRIVE, INPARM, FILPAR, DIM2, POINT, * 
DIM3, GRADAT, INMAFI, INTIDA, STUMAT, RECMAT, * 
SOUMAT,·RIVMAT, BOUMAT, ADDAD, LEAMAT, CONGRA, * 
DTNEW, DEBUPD, WRIFlA, PARBAL, PARCBA, BALANS, * 
GRAFIL, CUMBAL, PROUT, RESWRI, WRlMAP, HEADER, * 
CAPITAL, PAREPR, STNEEL, AFVOER, HORPOS, STORE, * 
FRETRA, VECPRO, SCALE, PAINPR, MATVEC, WRIGRA, * 
FRESTO, TRANTR, INTFAC, CHPOAR, FILLRP, MATFLO, * 
NNDRAIN, DRAINDIT, PRECPOL, DITCH, NNEERST, * 
CAPFLOW, SOILIB, CHANNEL, PRECIP, FILLIN, DREGYP, * 
NNPOLINF, DRAIN, MOZAMBIK * 

* stored in files with the same name and extension. * 
FOR except for flairs: use FlAIRSOS.FOR for OS/2 * 



Interne documentäti~ 

* FLAIRSDOS.FOR for DOS * 
* Parameters NDR integer size of real work arrays * 
* NDI integer size of integer work arrays * 
* * 
* Variables Rl real array storage array * 
* R2 real array storage array * 
* R3 real array storage array * 
* R4 real array storage array * 
* R5 real array storage array * 
* R6 real array storage array * 
* Il integer array storage array * 
* 12 integer array storage array * 
* IN integer logical unit for input file * 
* IOUT integer logical unit for print file * 
* IGRD integer logical unit for grid file * 
* IFM integer logical unit for output file * 
* IFRS integer logical unit for restart * 
* IFIL integer logical unit for parameter file* 
* ISCRI integer logical unit for scratch file 
* 
* 
********************************************************************* 

PROGRAM FLAIRS 

* set size of work arrays (which determines the capacity of the 
program; 

* 

* the maximum number of nodes, the maximum number of layers and the 
* maximum number of equations are interrelated) 

PARAMETER (NDR=180000) 
PARAMETER (NDI-NDR) 

COMMON /Rl/ Rl(NDR) 
COMMON /R2/ R2(NDR) 
COMMON /R3/ R3(NDR) 
COMMON /R4/ R4(NDR) 
COMMON /R5/ R5(NDR) 
COMMON /R6/ R6(NDR) 

COMMON /11/ Il(NDI) 
COMMON /12/ 12(NDI) 

* set logical unit numbers 

DATA IIN, IOUT, IGRD, IFM, IFRS, IFIL, ISCRI 
DATA / 1, 2 3 4, 5 6 7 / 

* call centra 1 routine 

CALL FLAWOR(Il, 12, Rl, R2, R3, R4, R5, R6, NDI, NDR, 
IIN, IOUT, IGRD, IFM, IFRS, IFIL, ISCRl) 

STOP' end F L A I R S' 

END 

79 



Interne documentatie 

11.5 Resumé 

80 

Voorzie elke routine van een kop van commentaar regels met algemene informatie. 

Verduidelijk werking van het programma door commentaar regels tussen de broncode. 

Scheid functionele onderdelen visueel van de broncode met behulp van regels met 

scheidingstekens (*-------- etc.) en/of lege regels. 

Maak de documentatie direct bij aanvang van het programmeerwerk, niet achteraf. Het 

komt dan in de verdrukking. 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

12 PROGRAMMAHANDLEIDING 

12.1 Inleiding 

Dit hoofdstuk richt zich op de beschrijving van de documentatie-eisen die moeten gelden 

voor de algemeen toepasbare hydrologische programmatuur. Vaak is dit de programmatuur 

die aan derden als broncode beschikbaar wordt gesteld. De beschrijving heeft dus geen 

betrekking op allerlei ad-hoc programmatuur die voor eigen gebruik of voor gebruik in 

beperkte kring bedoeld is, hiervoor behoeven uiteraard minder verregaande eisen gesteld te 

worden. 

Het verschil tussen documentatie van wetenschappelijke programmatuur (waar onder 

hydrologische) en andere gebruiksprogrammatuur, is dat ervan uitgegaan moet worden dat 

bij bepaalde omgevingen de gebruiker niet alleen als "echte" gebruiker bij de programma­

tuurontwikkeling betrokken is. Dat wil zeggen dat de programmatuur geen "Black Box" 

mag zijn; niet alleen de in- en output maar ook de inhoud moet zowel theoretisch als op 

programmacode-niveau uitputtend beschreven worden. De mogelijkheid moet geboden 

worden om "verdachte" uitkomsten op codeniveau te herleiden. Daarnaast moet de 

programmatuur (wetenschappelijk!) te manipuleren zijn. De kring van gebruikers van 

hydrologische programmatuur is in vergelijking met die van andersoortige weten­

schappelijke programmatuur relatief klein, zodat modellen hoogst zelden uitputtend getest 

kunnen worden. Weliswaar is er tegenwoordig programmatuur die alle paden in een 

programma kan doorlopen en testen. Maar vanwege de tijdsinspanning die dit vergt wordt 

het meestal achterwege gelaten. De noodzaak om als gebruiker op programmaniveau kennis 

te hebben, is dan ook wenselijk. 

Het verschil tussen wetenschappeiijke programmatuur en normale gebruiksprogrammatuur 

betekent dat de gebruikersdocumentatie al gauw een complete systeemdocumentatie hoort te 

zijn. Grofweg kunnen dan vijf delen onderscheiden worden: 

globale systeembeschrijving (doelgroep = potentiële gebruiker); 

theoretische systeembeschrijving (probleemaanpak); 

technische systeembeschrijving (programmatechnische realisatie); 

gebruikersbeschrijving (doelgroep = eindgebruiker); 

programma-evaluatie (wetenschappelijk testverslag). 

81 



Programmahandleiding 

12.2 Globale systeembeschrijving 

In de globale systeembeschrijving worden de noodzakelijke formaliteiten over de 

programmatuur vermeld en wordt een beeld gegeven van wat de programmatuur globaal 

inhoudt. 

Tot de noodzakelijke formele gegevens die vermeld moeten worden behoren: 

de ontwikkelaar van de programmatuur; 

de contactpersoon en de beherende instantie; 

het versienummer en de datum; 

de minimumeisen aan de apparatuur; 

de minimumeisen aan de gebruiker (opleidingsniveau); 

basisdocumenten achter de programmatuur; 

trefwoorden. 

In de globale beschrijving van de programmatuur wordt in grote lijnen aangegeven welke 

bewerking de programmatuur uitvoert en volgens welke methode, wat de in- wat de uitvoer 

is en wat de voornaamste beperkingen bij het gebruik zijn. De beschrijving is in de eerste 

plaats bedoeld om selectie van een programma voor het oplossen van een bepaald probleem 

mogelijk te maken. De potentiële gebruiker moet in één oogopslag kunnen concluderen of 

het programma geschikt is voor het probleem. De gegevens in de beschrijving moeten 

voldoende zijn om de programmatuur op een sluitende manier in een retrieval systeem te 

plaatsen. De beschrijving heeft daarnaast als doel om voor de gebruiker een begrippen­

kader te geven, waarmee de overige documentatie beter te lezen is. In deze beschrijving 

moeten dan ook min of meer alle aspecten aan bod komen die in de rest van de 

documentatie (uitgebreid) aan de orde komen. De globale systeembeschrijving wordt ook 

vaak als folder uitgegeven om potentiële gebruikers/kopers te attenderen. 

12.3 Theoretische systeembeschrijving 

De theoretische systeembeschrijving geeft de wetenschappelijke achtergrond van de 

programmatuur. De beschrijving moet een zodanige beschrijving geven van de probleem­

aanpak in de programmatuur, dat de gebruiker op grond van de beschrijving kan beoordelen 

of zijn specifieke probleem inhoudelijk afdoende door de programmatuur opgelost kan 

82 



Programmabandleiding-

worden. In feite moet de theoretische systeembeschrijving het hele rekenproces beschrijven 

in wiskundige termen, dan wel verwijzen naar publikaties waarin (delen van) het 

rekenproces beschreven zijn. 

De beschrijving moet onder meer bevatten: 

stroomdiagrammen van de opvolging van de rekenacties en de plaats van de 

voornaamste grootheden hierin; 

beschrijving en afleiding van op te lossen differentiaal vergelijkingen; 

de oplossingsmethode van de vergelijkingen; 

alle gebruikte formules en herkomst ervan; 

een motivatie van de gebruikte methoden en hun beperkingen; 

een lijst van symbolen (zie Verklarende Hydrologische Woordenlijst (CHO-TNO, 

1986»; 

een uitgebreide literatuurlijst. 

12.4 Technische systeembeschrijving 

De technische systeembeschrijving beschrijft de vertaling van de theoretische 

systeembeschrijving naar programmatuur en wat daaraan vast zit. De beschrijving moet 

erop gericht zijn dat de gebruiker zelfstandig de programmatuur kan implementeren en de 

programmacode kan begrijpen met als doel, het traceren van (fouten in) modeluitkomsten en 

aanpassen/uitbreiden van de programmatuur. 

De technische systeembeschrijving bevat: 

een beschrijving van de programmastructuur; 

een vocabulaire van variabelenamen en modulenamen; 

een beschrijving van de hardware-omgeving; 

een beschrijving van de software-omgeving; 

de programmacode. 

Programmastructuur: 

De beschrijving van de programmastructuur dient als kader waarbinnen de programmacode 

gelezen wordt. Met behulp van de structuurbeschrijving moet het mogelijk zijn om te 

traceren in welk deel van de programmatuur met name bepaalde input-variabelen van 

83 



Programmahandleiding 

waarde veranderen, in welke volgorde de bewerkingen op de input-data zich voltrekken etc. 

Ook moet de structuurbeschrijving aangeven waarom de bewerkingen zich in de aangegeven 

volgorde voltrekken (met name belangrijk bij wijzigingen). 

De beschrijving van de programmastructuur bevat in ieder geval: 

een beschrijving van alle programmaniveaus; 

een stroomdiagram van minimaal de eerste drie niveaus van de programmatuur; 

een uitputtende lijst van subroutines en functies met documentatie van argument- en 

COMMON-variabelen. 

Variabele- en modulenamen: 

Het vocabulaire van variabele- en modulenamen dient als referentie bij het lezen van de 

programmacode. Bij het lezen van de programmacode moet op ieder moment uit het 

vocabulaire de betekenis van de variabelen en de modulen te herleiden zijn. Bij het 

samenstellen van het vocabulaire dienen de aanbevelingen hieromtrent in dit rapport 

(hoofdstuk 4 en 5), bij voorkeur nagevolgd te worden. De in- en output-variabelen en de 

variabelen behorend bij een COMMON-gebied moeten expliciet verklaard worden, evenals 

alle routinenamen. 

Het vocabulaire bestaat derhalve uit: 

een beschrijving van de conventie aan de hand waarvan variabele- en modulenamen 

zijn samengesteld (vertaalsleutel); 

een alfabetische lijst van input-, output- en COMMON-variabelen met betekenis, 

eenheid en datatype; 

een opsomming van de COMMON-gebieden en variabelen hierin; 

een opsomming van alle routines en de betekenis. 

Hardware-omgeving: 

De hardware-omgeving bepaalt of de programmatuur in zijn volle omvang geïmplementeerd 

kan worden. De beperkende factoren zijn daarbij de geheugenruimte, de snelheid en de 

beschikbare randapparatuur. 

84 



Programmahartdleidihg 

Bij de beschrijving dient te worden vermeld: 

welk type computer (parallel/sequentieel) met welke geheugenruimte minimaal vereist 

is; 

welke veranderingen het beste in de programmatuur aangebracht kunnen worden om 

het geheugenbeslag te beperken en de snelheid te vergroten (bijvoorbeeld array­

grenzen); 

welke randapparatuur benodigd is; 

welke modules uitgeschakeld kunnen worden om de hoeveelheid randapparatuur te 

beperken; 

op welke computer de programmatuur ontwikkeld en getest is. 

Software-omgeving: 

Evenals de hardware-omgeving, bepaalt de software-omgeving of de programmatuur in 

volle omvang geïmplementeerd kan worden. De beperkende factoren zijn daarbij de 

compiler, het operating systeem en externe softwarebibliotheken. 

Bij de beschrijving dient te worden vermeld: 

voor welke compiler is de programmatuur geschreven en welke andere compilers ook 

geschikt zijn; 

welke wijzigingen moeten aangebracht worden in de programmatuur om deze voor 

andere compilers geschikt te maken; 

onder welk operating systeem de programmatuur ontwikkeld is; 

welke programmabibliotheken en welke modules hiervan zijn gebruikt; 

zijn deze modules meegeleverd of moeten ze apart aangeschaft worden (hoe, bij wie, 

prijs); 

welke programmagedeelten hoe uitgeschakeld kunnen worden indien de externe 

software niet beschikbaar is; 

literatuur met betrekking tot compiler, operating system, softwarepakket enzovoorts. 

Programmacode: 

Gezien de eerder beschreven problematiek, is bij hydrologische programmatuur het 

beschikbaar zijn van de broncode belangrijk. Deze maakt dan ook integraal deel uit van een 

goede programmadocumentatie. Voor eisen te stellen aan de FORTRAN-broncode zie 

hoofdstukken 7 en 8 van deze publikatie. 

85 



Programmahandleiding 

12.5 Gebruikersbeschrijving 

De gebruikersbeschrijving beschrijft op welke manier de programmatuur van invoer 

voorzien moet worden, hoe de uitvoer geïnterpreteerd moet worden en wat gedaan moet 

worden bij voorkomende moeilijkheden. 

De beschrijving bestaat uit 3 delen: 

invoerbeschrijving; 

uitvoerbeschrijving; 

beschrijving van de foutmeldingen. 

Invoerbeschrijving: 

De invoerbeschrijving moet ondubbelzinnig beschrijven welke gegevens nodig zijn voor het 

draaien van het programma en hoe ze ingevoerd moeten worden. 

Voor alle invoervariabelen moet aangegeven worden: 

de programmavariabele naam; 

de betekenis van variabele (bijv.optievariabele); 

het datatype; 

het input-formaat; 

de wetenschappelijke naam (zie Verklarende Hydrologische Woordenlijst); 

de (SI-)eenheid; 

een minimum en maximum grootte; 

bij optienummers: een lijst met opties; 

een verwijzing naar formules uit de theoretische beschrijving (indien van toepassing). 

Indien het interactieve invoer betreft, dienen de afzonderlijke invoerschermen (letterlijk) 

afgebeeld te worden in logische volgorde. 

Indien invoer vanuit bestanden gegeven moet worden, moet een thematisch overzicht van de 

verschillende bestanden gegeven worden. Per bestand moet de invoer regelgewijs, met 

inachtneming van bovenstaande specificaties, gegeven worden. Tevens moet het type van 

het bestand gegeven worden (geformateerd, ongeformateerd, direct access etc.). 

86 



Programmahandleidmg 

Uitvoer: 

Aan de hand van de uitvoer worden de prestaties van het model beoordeeld. Bij de uitvoer 

moet duidelijk zijn welke grootheid gepresenteerd wordt en in welke vorm dit gebeurt. 

Hierbij moet aangegeven worden: 

naar welk medium de uitvoer gaat (schijf, scherm, plotter enwvoorts); 

de programmavariabele namen waarvan de uitkomst gepresenteerd wordt; 

de wetenschappelijke naam van de variabele (zie Verklarende Hydrologische 

Woordenlijst); 

de (51-)eenheid; 

een minimum en maximum mogelijke grootte; 

een verwijzing naar formules uit de theoretische beschrijving (indien van toepassing); 

indien uitvoer naar bestand: de bestandsnaam en -type. 

Foutmeldingen: 

Foutmeldingen moeten de gebruiker wijzen op situaties waarin het programma stuk loopt, 

dan wel situaties die door het programma "verdacht" worden geacht. Het is belangrijk dat 

de gebruiker door een foutmelding direct een fout kan localiseren en herstellen. Daartoe 

moet in de beschrijving opgenomen worden: 

een alfabetische en/of thematische lijst met de letterlijke tekst van de foutmelding 

zoals het programma die geeft; 

een toelichting over de betekenis van de foutmelding; 

een concrete beschrijving van de uit te voeren actie; 

de plaats waar de foutmelding in het programma gegenereerd wordt. 

12.6 Programma-evaluatie 

De programma-evaluatie verschaft in aanvulling op de theoretische beschrijving, aan de 

gebruiker informatie over de bruikbaarheid van de programmatuur. Aan de theoretische 

beschrijving kan getoetst worden of de juiste processen in de programmatuur vervat zijn, 

aan de hand van de programma-evaluatie kan getoetst worden of de praktische uitwerking in 

de programmatuur afdoende is. De evaluatie doet wetenschappelijk verslag van een (aantal) 

test(s) die met het model uitgevoerd is/zijn. 

87 



Programmahandleiding 

In de programma-evaluatie zijn verwerkt: 

een beschrijving van de toepassingsmogelijkheden aan de hand van praktisch 

uitgewerkte voorbeeld studies; 

gevoeligheidsanalyses; 

discussie over de resultaten, met daarbij aangegeven sterke en zwakke punten; 

praktische tips bij het gebruik; 

een uitputtende lijst met literatuur van studies die met behulp van de programmatuur 

uitgevoerd zijn (steeds up to date gehouden). 

12.7 Resumé 

88 

Ga bij de programmahandleiding uit van een globale, theoretische, technische en 

gebruikersbeschrijving, en voeg een verslag van de modelevaluatie bij. 

De globale programmabeschrijving moet de potentiële gebruiker direct een idee geven 

over de bruikbaarheid van de programmatuur. 

De theoretische beschrijving beschrijft het rekenproces in wiskundige termen. 

De technische beschrijving bevat een beschrijving van de programmastructuur, een 

vocabulaire van variabelenamen, de hardware- en software-omgeving en een 

volledige programmacode. 

De gebruikersbeschrijving bevat de invoerbeschrijving, de uitvoerbeschrijving en een 

lijst met foutmeldingen en beschrijving ervan. 

De programma-evaluatie doet wetenschappelijk verslag over de concrete prestaties 

van de programmatuur aan de hand van case-studies. 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

13 CONCLUSIES EN AANBEVELINGEN 

13.1 Inleiding 

De werkgroep "Richtijnen Computerprogrammatuur in de Hydrologie" heeft zich gebogen 

over het probleem van de te kort schietende kwaliteit van computerprogrammatuur die 

binnen de hydrologie gebruikt wordt. Tijdens de discussies binnen de werkgroep is de 

problematiek steeds duidelijker geworden en hebben mogelijke oplossingen meer vorm 

gekregen. De werkgroep heeft zich uiteindelijk beperkt tot het uitwerken van één oplossing 

van het probleem, namelijk het opstellen van richtlijnen voor programmatuur. In paragraaf 

13.2 zal ingegaan worden op de conclusies van de werkgroep met betrekking tot de aard en 

de oorzaken van het probleem. Paragraaf 13.3 zal nader ingaan op de conclusies van de 

werkgroep naar aanleiding van·de opgestelde richtlijnen. In de laatste paragraaf zal ingegaan 

worden op enige aanbevelingen. 

13.2 Het probleem van de kwaliteit 

De werkgroep heeft tijdens haar werk geconstateerd dat er daadwerkelijk sprake is van een 

kwaliteitsprobleem bij de ontwikkeling en het gebruik van programmatuur binnen de hydro­

logie. Het probleem van de slechte kwaliteit uit zich onder andere in: 

1 de betrouwbaarheid; 

2 de onderhoudbaarheid; 

3 de overdraagbaarheid; 

4 de mogelijkheden tot uitbreiding; 

5 de mogelijkheden tot koppeling. 

In eerste instantie lijken deze problemen slechts een grote rol te spelen bij de gebruikers, 

die actief programmerend aan de slag gaan met bestaande programmatuur. Bij een nadere 

beschouwing blijkt echter dat ook de ontwikkelaars en de eind-gebruikers wel degelijk 

nadelen van deze moeilijkheden ondervinden. De programmatuur wordt zo complex en de 

eisen zo hoog dat zelfs de ontwikkelaars van de programmatuur moeilijkheden hebben met 

het onderhoud en het garanderen van de kwaliteit. De eind-gebruikers worden uiteraard 

geconfronteerd met problemen bij de betrouwbaarheid, maar ook met lange wachttijden bij 

89 



Conclusies en aanbevelingen 

wijziging en uitbreiding van de programmatuur. Kortom: de efficiëntie is in het geding. 

De uiteindelijke oorzaak van de problemen ligt volgens de werkgroep in het feit dat er bij 

de ontwikkeling van programmatuur weliswaar veel aandacht is voor de hydrologische 

aspecten maar veel minder voor de informatica-aspecten. Enige redenen hiervoor zijn: 

1 In het verleden was de programmatuur relatief eenvoudig. Veel aandacht voor informa­

tica-aspecten was niet nodig. 

2 Ontwikkelaars van hydrologische programmatuur zijn opgeleid als hydrologen die 

tijdens hun studie te weinig geschoold zijn in de informatica om complexe programma's 

te kunnen ontwikkelen. 

3 Instanties die programmatuur ontwikkelen beschikken vaak niet over voldoende 

informatici en/of onderkennen het belang van specifieke informaticakennis niet. 

4 Het verband tussen de kwaliteit van programmatuur en de kwaliteit van het onderzoek 

wordt in onvoldoende mate onderkend, noch door onderzoekers noch door het manage­

ment. 

Een van de mogelijkheden om het probleem te hanteren is het opstellen van richtlijnen voor 

programmatuur, waartoe in deze publikatie een poging is gedaan. Het zal· echter duidelijk 

zijn dat er meer structurele veranderingen nodig zijn. 

13.3 Het opstellen van richtlijnen 

Het opstellen van richtlijnen voor programmatuur is een moeilijke opgave gebleken. De 

werkgroep kon vaak niet tot een gelijkluidend standpunt komen. Enerzijds kwam dit omdat 

iedereen zijn eigen methoden ontwikkeld heeft en daar moeilijk vanaf te brengen is, 

anderzijds bleek dat voor het oplossen van hetzelfde probleem vaak verschillende goede 

oplossingen mogelijk waren. Vaak bleek ook dat voor het oplossen van het ene probleem 

beter de ene systematiek toegepast kon worden en voor het andere probleem een andere. 

Het formuleren van richtlijnen in detail is derhalve ook niet nagestreefd. De richtlijnen 

hebben betrekking op hoofdlijnen. De richtlijnen die geformuleerd zijn, zullen ook steeds 

kritisch bekeken moeten worden. De snelle ontwikkeling van computers en computertalen 

kunnen een aantal richtlijnen overbodig maken en andere weer meer belang geven. 

90 



Conclusies en aanbévelingen-

Het opstellen van een hydrologische variabelenlijst in analogie met de Verlarende Hydrolo­

gische Woordenlijst (de oorspronkelijke doelstelling van de werkgroep) is niet gelukt. De 

werkgroep is van mening dat een dergelijke lijst niet flexibel genoeg zou zijn en dat de 

huidige lijst niet voldoende op de (computer-)praktijk is toegespitst. Wel is bij wijze van 

voorbeeld een vertaling naar programmavariabelen van een aantal begrippen uit de lijst 

uitgevoerd. Dit is echter slechts gedaan om het toepassen van een systematische aanpak toe 

te lichten. 

De werkgroep komt tot de conclusie dat het minder belangrijk is dat iedereen op uniforme 

wijze programma's ontwikkelt. Belangrijk is wel dat iedereen een duidelijk en consequent 

systeem toepast dat voor zijn situatie het meest geschikt is en dat op een adequate wijze 

gedocumenteerd wordt. Het gebruikte systeem moet uiteraard wel voldoen aan de in dit 

rapport aangegeven basiseisen. Het gebruik van een standaard ontwikkelmethodiek, ook in 

zijn meest elementaire vorm, kan een stap in de goede richting betekenen. 

13.4 Maatregelen op langere termijn 

Zoals al eerder werd opgemerkt is het opstellen van richtlijnen voor computerprogramma­

tuur (zoals in dit rapport is gebeurd) op langere termijn niet voldoende om te komen tot een 

structurele kwaliteitsverbetering. In de toekomst zullen meer informatica-aspecten geïnte­

greerd moeten worden bij de ontwikkeling van hydrologische programmatuur. 

Teneinde een betere kwaliteit op langere termijn te garanderen beveelt de werkgroep het 

volgende aan: 

1 Bij het onderwijs in de hydrologie (HBO/Academisch en post-HBO/post-Academisch) 

moet meer dan nu het geval is aandacht besteed worden aan informatica-aspecten, in de 

vorm van op de hydrologie toegespitste (keuze-) modules. 

2 De kwaliteit van de programmatuur in de hydrologie is slecht en verdient verhoogd en 

gewaarborgd te worden. Tijdens studiedagen, cursussen en dergelijke dient hierop 

gewezen te worden en oplossingen te worden aangedragen. 

91 



Conclusies en aanbevelingen 

3 Bij instanties die hydrologische programmatuur ontwikkelen moet gestimuleerd worden 

dat ontwikkelaars en gebruikers van programmatuur voortdurend terug kunnen vallen op 

ondersteuning van ter zake kundige informatici. 

4 Op termijn zal in analogie met de sterlabs, gestreefd moeten worden naar een keurmerk 

voor hydrologische computerprogrammatuur. Het toekennen van een keurmerk staat dan 

borg voor kwaliteit. Dit uit zich dan in een systematische opbouw, betrouwbaarheid en 

uitwisselbaarheid van programmatuur. Zowel certificering van programmatuur als van 

"programmeeromgevingen " zijn een mogelijkheid. 

92 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

LITERATUUR 

AMERICAN NATIONAL STANDARDS INSTITUTE INC; 1978. Program ming Language 

FORTRAN, ANSI X 3-9-1978, ISO - 1539-1980 (E). ANSI, New York, New York. 

CHO-TNO; 1978. Verslag en aanbevelingen van de ad hoc Groep Grondwatermodellen en 

Computerprogrammatuur TNO, Serie Rapporten en Nota's no. 2. 

CHO-TNO; 1982. Rapport en aanbevelingen van de Contactgroep Grondwatermodellen, 

Serie Rapporten en Nota's no. 10. 

CHO-TNO; 1986. Verklarende Hydrologische Woordenlijst, Serie Rapporten en Nota's 

no. 16. 

GILB, T; 1988. Principles of software engineering management. 

Wokingham (England), Addison-Wesley Publishing Company. 

HAMMER, D.K EN K.M. VAN HEE; 1990. Fasering en documentatie in software 

engineering. Informatie jaargang 32 nr. 2. 

JANSEN, H.; 1984. JSP, Jackson structureel programmeren. 

Academie Service, Den Haag. 

NATIONAL RESEARCH COUNCIL; 1990. Ground Water Modeis, Scientific and 

Regulatory Applications. National Academy Press, Washington D.C. 

PBNA; 1987. Poly-Automatiserings Zakboekje, Koninklijke PBNA BV, Arnhem. 

REDISH, PH.D. J.C.; 1986. Writing and designing effective software manuals. 

American Institutes for Research. P. 5-6 

SAMWAT; 1991. Komputermodellen in het waterbeheer; het SAMWAT Modellenbestand, 

SAMWAT-Rapport no. 7. 

VROM/DGM; 1990. Kwaliteitscriteria voor modellen om luchtverontreiniging te berekenen. 

Publicatiereeks lucht, Rapport no. 90. 

93 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

BULAGEN 

A Samenstelling CHO-Werkgroep Richtlijnen Computerprogrammatuur Hydrologie 

B Voorbeeld Naamgeving Programmavariabelen: de Verklarende Hydrologische Woorden­

lijst 

C Voorbeeld Programma AQ-HL02 (RIVM) 

D Voorbeeld Programma EPOT (Staring Centrum) 

95 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de eRO-TNO 

A SAMENSTELLING CHO-WERKGROEP RICHTLUNEN COMPUTERPROGRAM­

MATUUR HYDROLOGIE 

G. van Barneveld RIZA 

R.H. Boekelman/A. Koçan - TUD (Wetenschappelijk Onderwijs) 

J.P. van der Bern KlWA N.V. 

K. Kovar RIVM (voorzitter) 

- TAUW Infra Consult B.V. A.C.W. Lambrechts 

J.M.P.M. Peerboom 

E.P. Querner 

- Staring Centrum (tot 15.4.90) daarna op persoonlijke titel 

F. Waardenburg 

W.J. Zaadnoordijk 

J.C. Hooghart 

Staring Centrum (vanaf 15.4.90) 

IGG-TNO/RGD 

IWACO B.V. 

CHO-TNO (secretaris) 

97 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

B VOORBEELD NAAMGEVING PROGRAMMAVARIABELEN: 
DE VERKLARENDE HYDROLOGISCHE WOORDENLUST (VHW) 

Variabie Description Dimension Units 

ALGEMENE TERMEN 

WUS WATUS water use 

weo WATeO water consumption 

Symbol No. 
in V.H.W. 

7 

8 

----------------------------------------------------.--------------------._-----------. 
ATMOSFERISCH WATER 

RMX RAMIX mixing ratio dim. loos r 10 

SHU SPHUM specific humidity dim. loos q 11 

AHU ABHUM absolute humidity L-3M g.m-3 dv 12 

DMA DENMA density of moist air L-3M kg.m-3 
Pv 13 

WVM WVMOF male fraction of water vapour dim. loos Xv 14 

PVP PVAPR vapour pressure L- 1M T-2 mbar of e lSa 
hPa 

PSV PSAVR saturation vapour pressure L-1M T-2 mbar of es lSb 
hPa 

RHU RLHUM relative humidity dim. loos % of - 16 

SAD SATDF saturation deficit L-1M T-2 mbar of Ae 17 
hPa 

TDP TDEWP dew-point temperature, dew-point €I oe of K Td 18 

TWB TWETB wet-bulb temperature €I oe ofK Tw 19 

TV1 TVIRT virtual temperature €I oe of K Tv 20 

GAM GAMMA psychrometric constant L-1MT-2e- l mbar.K- l y 21 
of 
hPA.K- l 

SVP SLVPR slope of the saturation water L-1MT-2e- l mbar.K- l s 22 
vapour pressure curve of 

hPa.K- l 

SHV SPHVP specific latent heat of L2T-2 J .kg- l ~ 32 
vaporization 

FLH FLATH latent heat flux'density M T-3 W -2 .m >.E 33 

99 



Naamgeving programmavariabelen 

Variabele description Dimension Units 

FSH FSENH sensible heat flux density M T'3 W.m-2 

FGH FGROH soil heat flux density (ground) M T-3 W.m-2 

FNR FNETR net radiation flux density M r-3 W.m-2 

FGR FGLOR global solar radiation flux M T-3 W.m-2 

density, global radiation, 
shortwave radiation 

FSR FNETS net solar radiation flux density M T-3 W.m-2 

FTR FTERR net terrestrial flux density M T-3 W.m-2 

BOW BOWEN Bowen ratio 

ALB ALBDO albedo, reflectivity 

PRM PRMSS precipitation mass 

PRD PRDPH precipitation depth 

PRI PRINI instantaeneous precipitation 
intensity 

PRI PRINY precipitation intensity 

PRE PRECI (gross) precipitation 

PIN PRINT interception 

PRN PRNET net precipitation 

dim. loos 

dim. loos 

M 

DPR (mx) maximum precipitation deficit L-2M T- l 

DPREC 

EPR (mx) maximum precipitation excess L-2M T- l 

EPREC 

DPR DPREC precipitation deficit L-2M r- l 

EPR EPREC precipitation excess L-2M r- l 

QRE QRECH natural groundwater recharge L-2M T- l 

PRF PREFF effective precipitation L-2M T- l 

AWD AWADE additional water demand of crops L-2M r- l 

CRT CRDRT critical rainfall duration T 

CRD CRDPH critical rainfall depth L-2M 

100 

mm 

mmo d -l 

d - l mmo 

d - l mmo 

d - l mmo 

d - l mmo 

d- l mmo 

d- l mmo 

d - l mmo 

d - l mmo 

d - l mmo 

min 

mm 

Symbol No. 
in V.H.W. 

H 34 

G 35 

Q* 36 

Kt 37 

K* 38 

L* 39 

B 41 

r 42 

50 

51 

52a 

52b 

p 53 

54 

55 

56a 

56b 

57a 

57b 

58 

59 

60 

62 

63 



Variabele Description Dimension 

SND SUMND n-day sum 

SNM SUMNM n-minute sum 

EOW EOWAT open water evaporation L-2M T-1 

EPA EVPAN pan evaporation L-2M T-1 

EIN EINTC evaporation of intercepted water L-2M T-1 

ESO ESOIL soil evaporation L-2M T-1 

EVP EVAPO 'evaporation 

ETR ETRSP transpiration 

EVT EVTRA (actual) evapotranspiration 

ESO (p) potential soil evaporation 

ETR (p) potential transpiration 

EVT (p) potential evapotranspiration 

EVT (r) relative evapotranspiration 

EWC EWETC wet crop evapotranspiration 

EGR EGREF reference grass evapo­
transpiration 

RAE RAEVP aerodynamic resistance to water 
vapour 

RCA RCANY canopy resistance 

WATER IN DE ONVERZADIGDE ZONE 

DMC DMOCY differential water (moisture)' 
capacity 

SEC SEQCT specific equilibrium soil water 
content 

SMD SMODF specific soil water deficit, 
specific moisture deficit 

STO STORG storage 

UST USTOR uns. zone storag~ 

dim. loos 

L 
L 

L 

Units 

mm 

mm 

d -1 mmo 

d -1 mmo 

d -1 mmo 

d -1 mmo 

d -1 mmo 

d -1 mmo 

d -1 mmo 

d-1 mmo 

d -1 mmo 

d -1 mmo 

d -1 mmo 

d -1 mmo 

m 
m 

m 

Naamgeving programmavariabelen 

Symbol No. 

E 

v 

in V.H.W. 

65a 

65b 

69 

70 

7la 

7lb 

7lc 

72 

73 

74a 

74b 

74c 

75 

76 

77 

78 

79 

103 

105a 
105b 

106 

(n.v.t.) 

101 



Naamgeving programmavariabelen 

Variabele description Oimension Units Symbol No. 

SOF SATOF storage capacity, saturation 
deficit 

THF THFLD field capacity 

THW THWLT wilting point 

SWC SWACY s011 water retention, water 
holding capacity 

SWA SWAVL available soil water, available 
s011 moisture 

(vrijkomend poriëngehalte) 

HCY HCNTY (hydraulic) conductivity 

PMY PERMY intrinsic permeability 

L3 
SSC SSTCY 

dim. loos 

dim. loos 

L 

L 

dim. loos 

SWD SWDIF soil water (moisture) diffusivity L2T-l 

POM POMST moisture potential, soil water 
potential 

POT POTEN tensiometer pressure potential 

POG POGRV gravitational potential 

POH POHYD hydraulic potential 

PWA PWABS absolute water pressure 

PWR PWREL water pressure (relative) 

PSU PSUCT suction 

PTE PTENS tensiometer pressure 

PMA PMATR matric(al) pressure 

PAR PAIRE air entry value 

HPR HPRES pressure head 

HEL HELEV elevation head 

102 

L 

L 

L 

in V.H.W. 

m3 108 
specific storage capacityLm-

109 

m 

m 

d -1 m. 

Pa 

m 

J. kg-1 

J . kg-1 

J .kg-1 

Pa 

Pa 

Pa 

Pa 

Pa 

Pa 

m 

m 

K,k 

k,k 

P'Pm' 
p .. 
h,hp ' 
h .. 

Pabs 

P 

P 

P 

Pae 

z 

110 

111 

112 

113 

114 

13 Ob 

131 

132 

140a 

140b 

140c 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 



Naamgeving prog1"lUlllriilväriabeien 

Variabele Description Dimension Units Symbo1 No. 
in V.H.W. 

HHY HHYDR hydrau1ic head L m h 152 

CAH CAPHT height of capi11ary fringe, L m he 153 
capi11ary height 

PEF - pF dim. loos pF 156 

QSP QSPEC specific dis charge L T-1 m. d-1 v,q 170 
Darcy flux 

VEF VEFCT effective velocity L T-1 m. d-1 ve 171 

QVO QVOLM volume flux L3T-1 m3 .d-1 Q,qv 172 

QVD QVLMD volume fluxdensity L T-1 m. d- 1 v 173 

QIF QINFT infiltration rate L T-1 m. d-1 f j 175 

QIC QINCY infiltration capacity L T-1 m. d-1 fp 176 

CIF CFINF infi1tration coefficient dim. loos 178 

QPE QPERC perco1ation L T-1 m. d-1 v* z 179b 

QCR QCAPR upward capi11ary migration, L T- 1 m. d-1 V z 180b 
capi11ary rise 

SBG SBGRD subsidence (of ground1eve1) L cm 191 

SBP SBPZH subsidence by lowering of the L cm 193 
piezometric head 

SBS SBSKG shrinkage dim. loos 194a 
subsidence by shrinkage L cm 194b 

SWL SWELL swe11ing dim. loos 195a 
L cm 195b 

CON CONCT concentration (n.v.t.) 

-----------------------------------------------------------------------------------

WATER IN DE VERZADIGDE ZONE 

EPO EFPOR effective porosity dim. loos ne 210 

STO STORG storage L3 m3 V 211 

SSY SPSTY specific storativity L-1 m- 1 Ss 214 

STC STOCF storage coeffient dim. loos S, /.l 215 

103 



Naamgeving programmavariabelen 

Variabele description 

SYD SPYLD specific yield 

HGY HCNTY (hydraulic) conductivity 

PMY PERMY (intrinsic) permeability 

TRY TRMTY transmissivity (coefficient 
of transmissibility) 

CLK CFLKG leakance, leakage coefficient 

RAQ RAQRD hydraulic resistance 
of aquitard 

RRV RRIVR river resistance 

RDR RDRNG drainage resistance 

RRF RRADF radial flow resistance 

REN RENTR entrance flow resistance 

QSP QSPEC apparent velocity, specific 
dis charge 

VEF VEFCT effective velocity 

QVO QVOLM volume flux 

QVD QVLMD volume flux density 

QGW QGRWR groundwater discharge 

QGS QSGRW specific groundwater dis charge 

QIN QINFT infiltration rate 

QSE QSEPD (kwelintensiteit) 
flux density 

QAQ QAQRD aquitard flux density 

HHY HHYDR hydraulic head, piezometric 
head, piezometric level 

HPR HPRES pressure head 

HEL HELEW elevation head 

HFW HFRWA fresh-water head 

HSW HSAWA salt-water head 

104 

Dimension Units 

dim. loos 

T 

T 

T 

L 

L 

L 

L 

L 

d -1 m. 

d 

d 

d 

d-1 m. 

d-1 m. 

d -1 m. 

d -1 m. 

d -1 m. 

m. d-1 

d-1 m. 

m 

m 

m 

m 

m 

Symbol No. 
in V.H.W. 

216 

224b 

k, K 225 

T,kD 226 

227 

c 229 

(n.v.t.) 

v 230 

231 

(n.v.t.) 

v, q 242 

243 

244 

v 245 

246 

247 

Ij 252 

259 

(n.v.t.) 

h 270 

271 

z 272 

273 

274 



Variabele Description Dimension 

HPH HPHRE phreatic level, groundwater level L 

DFH DPHRE depth of the groundwater level 
(phreatic level) below ground­
surface 

PGW PGRWA groundwater pressure 

QRV QRIVR river-groundwater dis charge 

QDR QDRNG drainage discharge rate 

QWL QWELL weIl discharge 

CON CONCT concentration 

CWL CWELL concentration in weIl 
infiltration water 

CRV CRIVR concentration in water 
infiltrating from river 
into groundwater 

CDR CDRNG concentration in water 
infiltrating by.·diffuse 
drainage into groundwater 

CRE CRECH concentration in water 
recharging aquifer 

OPPERVLAKTEWATER 

STO STORG storage 

STY STCPY storage capacity 

TID TIDIS discharge period 

HHW HHIWA high water 

HLW HLOWA low water 

HTR HTIDR tidal range 

HMS HMSEA mean sea level 

HTU HTDUP rise of the tide (up) 

HTD HTDDN fall of the tide (down) 

L 

L3 

L3 

T 

L 

L 

L 

L 

L 

L 

Naamgeving progrannDavariabelen 

Units Symbol No. 
in V.H.W. 

m h 275 

m h* 276 

Pa p 284 

(n.v.t.) 

(n.v. t.) 

(n.v.t.) 

(n.v.t.) 

(n.v.t.) 

(n.v. t.) 

(n.v.t.) 

(n.v.t.) 

m3 V 304 

m3 V 305 

uur 375 

cm HW 404a 

cm UI 408a 

cm 409 

m Z 412 

cm 413b 

cm 4l4b 

105 



Naamgeving programmavariabelen 

Variabele description Dimension Units Symbol No. 
in V.H.W. 

VTI VTIDL tidal volume, tidal prism L3 m3 424 

VEB VLEBB ebb volume L3 m3 425 

VFL VLFLD flood volume L3 m3 426 

FTC FETCH fetch L cm F 433 

HWD HWSDN (wind) set down L cm 434b 

HWU HWSUP (wind) set up L cm 435b 

HSU HSETU set up L cm 436 

HRU HWARU wave run up L cm z 440 

WAR WAREA wetted area L2 m2 A 507 

WPE WPERI wetted perimeter L m P 508 

CCT CCNTR coefficient of contraction, dim. loos J.l 509 
contraction coefficient 

RDH RADHY hydraulic radius L m R 510 

DPH DEPHY hydraulic dep th L m D 511 

WDH WADPH water depth L cm Y 512 

CDH CPDPH critical dep th L cm Yc 513 

EDH EQDPH equilibrium depth L cm Yn 514 

HWL HWALV water level, stage L cm h 517 

HEN HENRG energy head L cm H 518 

GHY GHYDR hydraulic gradient dim. loos s 520 

GEN GENRG energy gradient dim. loos S 521 

GCR GCROS cross gradient dim. loos s 522 

CRG CRGHS roughness coefficient var. var. diverse 524 

QVO QVOLM flow rate L3r
' 

m3.s·' Q 527 
of 
liter. s·' 

QVO QVOLM discharge L3r ' m3. s·' Q 528 

QBS QBASE base flow L3T·' m3.s·' Qo 529 

106 



Naamgeving programmlivanabelen 

Variabele Description Dimension Units Symbol No. 
in V.H.W. 

QDR QDIRC direct runoff L3T-1 m3. s-1 531 

L3T- 1 m3.s-1 "-
QPK QPEAK peak dis charge Q 532 

QDM QDOMI dominant discharge L3T- 1 m3. s-1 533 

QDS QDSGN design discharge L3T-1 m3. s-1 534 

QSP QSPEC specific dis charge L T- 1 liter. 535 
s-1. ha-1 

CDS CDISC discharge coefficient dim. loos 536 

FXD FEXCD frequency of exceedance of dim. loos P 537 
discharge 

QCY QCAPY dis charge capacity L3T-1 m3. s-1 538 

TIT TITRA travel time T d 549 

WE WIDRE regulation width L m 553 

WSR WIDSR stream width L m b 554 

WSO WIDST storage width L m B 556 

HHI HHIGH high water level L cm h 557 

HNO HNORM normal water level L cm h 558 

HFC HFCRS (flood) crest stage L cm 560 

WES WEQSW water equivalent of snow L mm 584 

EFI EFFIR irrigation efficiency dim. loos E 600 

HDB HDRBS drainage base L cm h 611 

DGW DGRWT depth to the groundwater table L cm 612 

DFR DFREB freeboard L cm 613 

DDF DDIFF differential head L cm 614 

HPO HPOLD polder water level L cm P.P. 620 

HTR HTARG target level L cm S.P. 621 

107 



Naamgeving programmavariabelen 

Variabele description Dimension Units Symbol No. 
in V.H.W. 

DIVERSEN 

DIS DISTC distance L (n.v.t.) 

THS THICS thickness L (n.v.t.) 

XCO XCOOR X-coordinate L (n.v.t.) 

YCO YCOOR Y-coordinate L (n.v.t.) 

ZCO ZCOOR Z-coordinate L (n.v.t.) 

TIM TIME time T (n.v. t.) 

NOD - number of nodes (n.v.t.) 

XNO XNODE X-coordinate of nodes L (n.v.t.) 

YNO YNODE Y-coordinate of nodes L (n.v.t.) 

NEL - number of elements (n.v.t.) 

NBP - number of boundary points (n.v.t.) 

INO - sequential number of nodes (n.v.t.) 
(array index) 

IEL - sequential number of elements (n.v.t.) 
(array index) 

IBP - sequential number of boundary (n.v.t.) 
nodes 

NWL - number of wells (n.v.t.) 

IWL - sequence number of wells (n.v.t.) 
(array index) 

XWL XWELL X-coordinate of weIl L (n.v.t.) 

YWL YWELL Y-coordinate of weU L (n.v.t.) 

QWL QWELL weU dis charge L3 T -1 

TWL TWELL time instanee for transient (n.v.t.) 
weU ra te T 

KWL - number of aquifer containing weIl - (n.v.t.) 

NRV- number of rivers (n.v.t.) 

108 



Naamgeving programmavariabelen 

Variabele Description Dimension Units Symbol No. 
in V.H.W. 

IRV - sequence number of rivers (n.v.t.) 
(array index) 

NPR - number of points on river (n.v.t.) 

XRV XRNR X-coordinate of river points L (n.v.t.) 

YRV YRIVR Y-coordinate of river points L (n.v.t.) 

HRV HRIVR river water level L (n.v.t.) 

NAQF number of aquifers (n.v. t.) 

NAQT number of aquitards (n.v.t.) 

NLAY number of layers (n.v.t.) 

IAQF sequence number of aquifers (n.v.t.) 

IAQT sequence number of aquitards (n.v.t.) 

lLAY sequence number of layers (n.v.t.) 

NSUB number of node subregions (n.v.t.) 

ISUB sequence number of subregions (n.v.t.) 

NPOL number of polygons (n.v.t.) 

IPOL sequence number of polygons (n.v.t.) 

NPPO number of points constituting (n.v.t.) 
polygon 

XPO XPOLY X-coordinate of polygon points L (n.v.t.) 

YPO YPOLY Y-coordinate of polygon points L (n.v. t.) 

VPO VPOLY value in a polygon (n.v.t.) 

NRP number of random points (n.v.t.) 

IRP sequence number of random points (n.v.t.) 

XRP XRPNT X-coordinate of random points L (n.v. t.) 

YRP YRPNT Y-coordinate of random points L (n.v.t.) 

VRP VPPNT value at random point (n.v.t.) 

NPL number of path lines (n.v.t.) 

109 



Naamgeving programmavariabelen 

Variabele description Dimension Units Symbol Noo 
in VoHoWo 

IPL sequence number of path lines (novoto) 

NPPL number of points on path lines (novoto) 

XPL X-coordinate of path lines L (novoto) 

YPL Y-coordinate of path lines L (novoto) 

ZPL Z-coordinate of path lines L (novoto) 

110 



Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

C VOORBEELD PROGRAMMA AQ-HL02 (RIVM) 

Inleiding 

Deze bijlage is in het rapport opgenomen ter illustratie van een aantal aspecten met 

betrekking tot in het bijzonder: 

a de structurering van programma's (Hoofdstuk 3); 

b de naamgeving van programma-onderdelen (Hoofdstuk 4); 

c de lay-out van de broncode (Hoofdstuk 7); 

d de foutencontrole en foutmeldingen (Hoofdstuk 9); 

e de interne documentatie in computercode (Hoofdstuk 11). 

Het programma AQ-HL02 is een onderdeel van het pakket AQ-HLP. AQ-HLP maakt deel 

uit van het omvangrijke systeem van de zogenaamde AQ-computerprogramma's ten behoeve 

van de simulatie van de vraagstukken met betrekking tot grondwater, zowel wat betreft de 

kwantiteits- als de kwaliteitsaspecten. De AQ- (voorheen AquiSoft) programmatuur is bij het 

RIVM beschikbaar. 

Het programma AQ-HL02 is ontwikkeld met behulp van de Microsoft FORTRAN F77. Het 

werkt volledig menugestuurd (gebruikmakend van de extended ASCII set) en draait onder 

het DOS en OS2 operatingsystem. Om het programma te kunnen draaien moet in de opstart­

file "config.sys" het commando "device=ansLsys" worden opgenomen. 

Het programma leest de gegevens van twee (verschillende) files, combineert deze gegevens 

tot een nieuwe datagroep, en schrijft het resultaat vervolgens naar een output file. Alle files 

zijn ongeformatteerd (dus niet ASCII), dat wil zeggen niet leesbaar met een tekst editor. 

111 



Programma AQ-HL02 

Schema van Menu's 

I Main Menu I 
l First Map Load I 

I Show Map I I 

I Second Map Load I I 

I Show Map I I 

: Enter Control Data I 
I First Map Adapt I I 

I Second Map Adapt I I 

I Combine Maps I I 

I Load FE Grid File I I 

112 



Programma AQ-I:{L02 

Schema aanroep belangrijke subroutines 

HL02 I Hain Program 

HL02XX I Control Execution Subroutine 

r---SCHLOA Process the menu "Hain Menu" 

HLO 

SCH 

SCH 

SCH 

003 Generate output file 

LlA Process the menu "First Hap Load" 

---SCPM03 
---SCHL06 
---SCHL09 

Load map data (file structure epgo.map) 
Load map data (file structure ddgop.unf) 
Process the menu "Show Map" 

LlA Process the menu "Second Map Load" 

---SCPM03 
---SCHL06 
---SCHL09 

Load map data (file structure epgo.map) 
Load map data (file structure ddgop.unf) 
Process the menu "Show Hap" 

L20 Process the menu "Enter Control Data" 

---SCHL03 
---SCHL03 
---SCHL04 
---SCHL07 

Process the menu "First Map Adapt" 
Process the menu "Second Hap Adapt" 
Process the menu "Combine Maps" 
Process the menu "Load FE Grid File" 

~, SCHL13 Quit 

113 



Programma AQ-HL02 

*********************************************************************** 
* 
* 
* 

» PROGRAM HL02 « * 
* 
* *---------------------------------------------------------------------* * purpose : Main module for program HL02 * 

*---------------------------------------------------------------------* * parameters : none * 
*---------------------------------------------------------------------* * subprograms : hl02xx * 
*--------------------------------------------------------------_ .. -----* * error messages : none * 
*---------------------------------------------------------------------* * implementation: none * 
*---------------------------------------------------------------------* * Copyright RIVM, The Netherlands Last update : 09-DEC-1989 * 
*********************************************************************** 

program hl02 
implicit double precision (a-h,o-z) 

*----------------------------------------------------------------------
data iinl/l/, iin2/2/, ife/3/, iout/4/ 

*----------------------------------------------------------------------* Call control execution subroutine 

* 

114 

call hl02xx (iinl, iin2, ife, iout) 
stop 'End Program HL02' 
end 



Programma AQ-HL02 

*********************************************************************** 
* 
* 
* 

» SUBROUTINE HL02XX « 
* 
* 
* *---------------------------------------------------------------------* * purpose : Control execution of the program HL02. * 

* Generate a file, the format identical to that of a file * 
* from the program DDGO, containg the combination of two * 
* map files which were previously made either and or: * 
* 1) as output from APGO, EPGO or ECGO * 
* 2) as output from DDGO, HL02 or HL03 * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Code number ICMFL defines the type of map file: 

ICMFL=l: file is generated by APGO, EPGO or ECGO 
ICMFL=2: file is generated by DDGO, HL02 or HL03 

The following options are available in 'Main Menu': 
IOPT Option Text IMEOO 

1 
menu» 2 
menu» 3 
menu» 4 

5 
6 
7 

Output File 
First Map Load 
Second Map Load 
Enter Control Data 
Generate Output 
Next Output 
Quit 

not relevant 
-41 
-42 

-3 
-2 
-1 
1 

(FLOUT) 
(FLFILl) 
(FLFIL2) 
(FLCNT) 

(FLNEXT) 

The following options are available in the menu 
'First Map Load': 
IOPT Option Text IMElA 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 1 

2 
3 

Input File 
Parameter Number 
Load Map 

not relevant (FLINPl, FNINPl) * 

menu» 4 
5 
6 

Show Map 
Return 
Quit 

not relevant (IPARl) * 
not relevant (FLFILl) * 
not relevant (FLFILl) * 
o * 
1 * 

The following options are available in the menu 
'Second Map Load': 

* 
* 
* 
* IOPT Option Text IMElB 

1 
2 
3 

menu» 4 
5 
6 

Input File 
Parameter Number 
Load Map 
Show Map 
Return 
Quit 

* not relevant (FLINP2, FNINP2) * 
not relevant (IPAR2) * 
not relevant (FLFIL2) * 
not relevant (FLFIL2) * 
o * 
1 * 

The following options are available in the menu 
'Enter Control Data': 

* 
* 
* 
* IOPT Option Text IME20 

* ------------------ * * 1 Title Output File not relevant (TITXT) * 
* 2 Name of Parameter not relevant (LABPAR) * 
* menu» 3 First Map Adapt not relevant (PARI, .,.) * 
* menu» 4 Second Map Adapt not relevant (PAR2, ... ) * 
* menu» 5 Combine Maps not relevant (PARC, FLCMB) ,* 
* menu» 6 Load FE Grid File not relevant (FLLDFE, FLFEM) * 
* 7 Parent Menu 0 * 
* 8 Quit 1 * 
*-----------------------------------------~---------------------------* * parameters : 

* * lINl - logical unit number of input file 1 (i) 

* 
* 
* 

115 



Programma AQ-HL02 

* (integer variable) * 
* IIN2 logical unit number of input file 2 (i) * 
* (integer variable) * 
* IFE logical unit number of the FE input data file (i) * 
* (integer variable) * 
* IOUT logical unit number of output file FNOUT (i) * 
* (integer variable) * 
*---------------------------------------------------------------------* 
* subprograms : hl0003, scg009, schlOl, schlOa, schll3, schlla, * 
* schl20, scmcu2, vnhl02 * 
*---------------------------------------------------------------------* 
* error messages : 3 * 
*---------------------------------------------------------------------* 
* implementation: none * 
*---------------------------------------------------------------------* 
* Copyright RIVM, The Netherlands Last update : 22-JAN-l99l * 
*********************************************************************** 

subroutine hl02xx (iinl, iin2, ife, iout) 
implicit double precision (a-h,o-z) 

*----------------------------------------------------------------------
* Arrays required if ICMFL=l (input file made by APGO, EPGO or ECGO) 

* parameter (nparmx=99) 
common/all itypal(nparmx), ilopal(nparmx), isypal(nparmx), 

& iunpal(nparmx), zll(nparmx) 
common/a21 itypa2(nparmx), ilopa2(nparmx), isypa2(nparmx), 

& iunpa2(nparmx), zl2(nparmx) 
commonjbll iuntil(nparmx), timl(nparmx), idl(nparmx), 

& iml(nparmx), iyl(nparmx), ihrl(nparmx), imnl(nparmx), 
& iscl(nparmx) 

commonjb21 iunti2(nparmx), tim2(nparmx), id2(nparmx), 
& im2(nparmx), iy2(nparmx), ihr2(nparmx), imn2(nparmx), 
& isc2(nparmx) 

*----------------------------------------------------------------------
* LABPAl and LABPA2 are required if ICMFL=2 (input file made by DDGO, 
* HL02 or HL03) 

* character labpal(nparmx)*30, labpa2(nparmx)*30 
*----------------------------------------------------------------------
* LABPAR is required for the output file 

* character labpar*30 
*----------------------------------------------------------------------
* Set the FE grid variable NODMX (NELMX and NBPMX and needed here) 

* $include:'fegrid.di~' 
*----------------------------------------------------------------------
* The following arrays are required to load the two parameters 

* common Icl parl(nodrnx), par2(nodmx) 
*----------------------------------------------------------------------
* Array PARC to store the combination of the two maps 

* common Idl parc(nodmx) 
*----------------------------------------------------------------------
* Arrays PAROl and PAR02 are used to store original map values, to 
* be used to reset to original setting if required. 

* common lel parol(nodmx), paro2(nodrnx) 
*-----------------~----------------------------------------------------
* IDCOR is loaded from the map parameter input file IIN (FNINP), 
* but is not used in this program 

* dimension idcor(6) 
*----------------------------------------------------------------------
* Variables relating to the FE grid data file IFE 

116 



* character fnine*30 
logical flldfe, flfem, fline 

*----------------------------------------------------------------------
character pgn*8, vn*3, fnout*30, fninpl*30, fninp2*30 
character esc, clrs*5, clrl*4, crvon*5, crvof*5, cblon*5, cv 
character titxtl*40, titxt2*40, titxt*40, titmen*18, txtbl*30 
logical flgenx, flinpl, flinp2, flout, flfill, flfi12, flcnt 
logical flnext, flzll, flz12, fltiml, fltim2, fldatl, fldat2 
logical flcmb, flchgl, flchg2 

*----------------------------------------------------------------------
* Set the text associated with the error messages 

* character txlO*45, txll*45, tx12*37, tx13*37, help*49 
character tx21*45, tx22*40, tx23*40 
character tx31*45 , tx32*43, tx33*43 
data txlO/'----------------- ER R 0 R -------------'----'1 
data txll/'----- NON IDENTICAL NUMBER OF GRID NODES ----'1 
data tx12/'Number of Nodes on First Map File ='1 
data tx13/'Number of Nodes on Second Map File = 'I 
data tx21/'----- NON IDENTICAL NUMBER OF ELEMENTS ------'1 
data tx22/'Number of Elements on First Map File ='1 
data tx23/'Number of Elements on Second Map File = 'I 
data tx31/' - - NON IDENTICAL NUMBER OF BOUNDARY NODES - - -' I 
data tx32/'Number Boundary Nodes on First Map File ='1 
data tx33/'Number Boundary Nodes on Second Map File = 'I 
data txtbl/' , I 

*----------------------------------------------------------------------
* Set program name and program vers ion 

* data pgn/'AQ-HL02'1 
eall vnhl02 (vn) 

*----------------------------------------------------------------------
* Initialize the sequence number IFILE of the file to be generated. 
* IFILE is incremented by one af ter a file is generated. 

* ifile = 1 
*----------------------------------------------------------------------
* Initialize the flag to indicate that first file be generated 

* flgenx = .false. 
*----------------------------------------------------------------------
* Set parameters for the control of the screen and cursor moving 

* cal 1 seg009 (esc, clrs, clrl, crvon, ervof, cblon) 
*----------------------------------------------------------------------
* Display the unchanging part of the menu box on 'the screen 

* cal 1 schlOl (esc, clrs, ervon, crvof, pgn, vn, cv) 
*----------------------------------------------------------------------
* Initialize project title, to be re-initialized for IFILE=l. 

* titxt = ' , 

*----------------------------------------------------------------------
* Initialize variables re lating to the FE grid data file. 
* The values relating to the grid file used for the previous 
* combination map remain valid, unless overwritten by reloading or 
* reinitialized (see below) automatically if the grid file data do not 
* fit to the map data, i.c. if NODFEM is not =NODl (error check) via 
* subroutine SCHL20. 

* fnine 
fline 
flfem 

.false. 

.false. 
*----------------------------------------------------------------------
* Initialize the error code number IERR. IERR can be reset (>0) if 

117 



Programma AQ-HL02 

* 'Enter Control Data'. Then in SCHLOA it will be reset =0 again. 

* ierr = 0 
*----------------------------------------------------------------------* Initialize number of lines in options and text window 

* 10 nlopw - 0 
nltxw = 0 

*----------------------------------------------------------------------* Initialize variables 

* flnext flgenx 
flout .false. 
fnout 
flfill .false. 
flfi12 .false. 
flcnt .false. 
fninpl , , 
flinpl .false. 
fninp2 , , 
flinp2 .false. 
labpar 

* 
* IPARI and IPAR2 must be =0 on the first entry of SCHLIA 

* iparl 0 
ipar2 0 

* * FLCMB is reset via SCHL20 and indicates whether PARC was filled. 
* FLCHGI and FLCHG2 indicate (via SCHL20) whether PARI and PAR2 were 
* adapted before PARC to be generated. 

* flcmb .false. 
flchgl .false. 
flchg2 .false. 

*----------------------------------------------------------------------* Main menu 
* 20 call schlOa (esc, clrl, crvon, crvof, cblon, cv, fnout, flout, 

& flfill, flfil2, flcnt, flnext, titxt, nlopw, nltxw, 
& ifile, imeOO, ierr, nlerr, ilerr) 

*----------------------------------------------------------------------* IMEOO--2 : option 'Generate Output' 

* if (imeOO.eq.-2) then 

* * Open the file FNOUT and generate the file 

* 

endif 
*----------------------------------------------------------------------* IMEOO-I: option 'Quit' from the 'Main Menu' 

* if (imeOO.eq.l) call schl13 (clrs, pgn, vn, ifile-l) 
*----------------------------------------------------------------------* Proceed with either 'First Map Load' (IMEOO=-41), 
* 'Second Map Load' (IMEOO--42), 
* or 'Enter Control Data' (IMEOO=-3). 

* 

*----------------------------------------------------------------------* Treat the option 'First Map Load' 

* 

118 



Programma AQ-Hb02 

* * IMEIA-O 
* IMEIA-I 

--> 'Return' (- 'Main Menu') 
'Quit' 

* if (imela.eq.O) goto 20 
if (imela.eq.l) call schl13 (clrs, pgn, vn, ifile-l) 

*----------------------------------------------------------------------* Treat the option 'Second Map Load' 

* 

* * IMEIB-O 
* IMEIB-I 

--> 'Return' (- 'Main Menu') 
'Quit' 

* if (imelb.eq.O) goto 20 
if(imelb.eq.l) cal I schl13 (clrs, pgn, vn, ifile-l) 

*----------------------------------------------------------------------* Treat the aption 'Enter Control Data' 

* 

* 

eaU schl20 
& 
& 
& 
& 
& 

(esc, clrl, crvon, crvof, cblon, cv, nodl, titxt, 
labpar, parc, icmfll, itpl, iunl, iunpol, parI, 
parol, parmnl, parmxl, paravi, icmfl2, itp2, iun2, 
iunpo2, par2, paro2, parmn2, parmx2, parav2, flldfe, 
flfem, ife, fnine, fline, nelfem, nbpfem, nlopw, 
nltxw, ime20, flcmb, flchgl, flchg2) 

* At this point IME20 is either =0 (Parent Menu) or =1 (Quit) 

* if (ime20.eq.l) call schll3 (clrs, pgn, vn, ifile-l) 

* * Re-set the flag and return to the 'Main Menu' 

* if (flcmb) flcnt = .true. 

* * 'Enter Control Data' is not fully processed if NELFEM and NBPFEM 
* have not been defined (FLFEM=false) while it was required. 
* FLFEM-false means that either the grid file IFE was not loaded 
* and/or NODFEM was not =NODI. 

* if (flldfe) then 
if (.not.flfem) flcnt 

endif 
goto 20 
end 

.false. 

119 



Programma AQ-HL02 

*********************************************************************** 
* * 
* » SUBROUTINE SCHLOA « * 
* * *---------------------------------------------------------------------* 
* purpose : Generate the 'Main Menu" for a program for generating of * 
* a file containing a combination of two map parameters. * 

* * The following options are available in 'Main Menu': 
IOPT Option Text IMECO 

1 Output File not relevant (FLOUT) 
menu » 2 First Map Load -41 (FLFIL1) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

menu » 3 Second Map Load -42 (FLFIL2) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

menu » 4 Enter Control Data -3 (FLCNT) 
5 Generate Output -2 
6 Next Output -1 (FLNEXT) 
7 Quit 1 

FLNEXT=false, permitted options are 1,2,3,4,5 and 7. 
FLNEXT=true , permitted option are 6 and 7. 

Error code number IERR: 

IERR = 0 no error was issued 

* * * IERR > 0 error was issued (NLERR lines in the text * 
* window, starting in line ILERR) * 
* Permitted options are: * 
* ' Firs t Map Load', , Second Map Load' or ' Qui t' . * 
* IERR is reset =0 before return to the calling * 
* module. * 
*---------------------------------------------------------------------* 
* parameters : * 

* * ESC 

* * CLRL 
* * CRVON 

* * CRVOF 

* * CBLON 

* * cv 
* * FNOUT 

* * FLOUT 

* * FLFILl 

* * FLFIL2 

* * FLCNT 

* * FLNEXT 

* * CTITL 

* * NLOPW 

* * NLTXW 

* * IFILE 

120 

* ASCII character 27 (i) * 
(character variable) * 
character string for clearing the line (i) * 
(character*4 variable) * 
character string for switching reverse video on (i) * 
(character*5 variable) * 
character string for switching reverse video off (i) * 
(character*5 variable) * 
character string for switching bold char. on (i) * 
(character*5 variable) * 
vertical bar for restoring menu box (i) * 
(character*l variable) * 
output file name, defined on input if FLOUT(i)=true (i/o) * 
(character*30 variable) * 
flag whether output file is defined (i/o) * 
(logical variable) * 
flag of whether file data 1 is loaded (i) * 
(logical variable) * 
flag of whether file data 2 is loaded (i) * 
(logical variable) * 
flag of whether control data is loaded (i) * 
(logical variable) * 
flag of whether option "Next Output" allowed (y:t) (i) * 
(logical variable) * 
title text (i) * 
(character*40 variable) * 
number of lines currently in option window (i/o) * 
(integer variable) * 
number of lines currently in text window (i/o) * 
(integer variable) * 
sequence number of the file to be generated (i) * 



Programma AQ-HL02 

* (integer variable) * 
* IMECO code number defining next menu to be displayed (0) * 
* (integer variable) * 
* IERR code number whether error was issued (ijo) * 
* (integer variable) * 
* NLERR number of error lines in text window (if IERR>O) (i) * 
* (integer variable, 0 < NLERR) * 
* ILERR first line of error text in text window (if IERR>O) (i) * 
* (integer variable, 0 < ILERR) * 
*---------------------------------------------------------------------* 
* subprograms : scgOOl, scg004, scg007, scg008, scgOlO, scgOl6, * 
* scmcul, scmcu2 * 
*---------------------------------------------------------------------* 
* error messages : 9 * 
*---------------------------------------------------------------------* 
* implementation: none * 
*---------------------------------------------------------------------* 
* Copyright RIVM, The Netherlands 'Last update : 06-DEC-l989 * 
*********************************************************************** 

subroutine schlOa (esc, clrl, crvon, crvof, cblon, cv, fnout, 
& flout, flfill, flfil2, flcnt, flnext, ctitl, 
& nlopw, nltxw, ifile, imeco, ierr, nlerr, 
& ilerr) 
implicit double precision (a-h,o-z) 

*----------------------------------------------------------------------
parameter (nopt=7) 
character chopt(nopt)*l8, chfst(nopt) 
logical flfst(nopt), flusac(nopt) , flfstp(nopt) 

*----------------------------------------------------------------------
character esc, clrl*4, crvon*S, crvof*S, cblon*S, cv 
character fnout*30, ctitl*40 
character txerl*49, txer2*49, txer3*49, txer4*49, txerS*49 
character txer6*49, txer7*49, txer8*49, txer9*49 
logical flout, flfill, flfil2, flcnt, flnext, flreke, flinrk 

*----------------------------------------------------------------------
* Set the options and arbitrary text 

* character chtxt*l7, txtbl*49 
character txtl*l8, txt2*l8, txt3(2)*lO 
data chopt j'Output File' ,'First Map Load', 'Second Map Load', 

& 'Enter Control Data', 'Generate Output' , 
& 'Next Output', 'Quit' j 
data chtxtj'Output File 'j 
data txtlj'Map Parameter 1 : 'j 
data txt2j'Map Parameter 2 : 'j 
data txt3j'Loaded ' ,'Not Loaded'j 
data txtblj' 'j 

*----------------------------------------------------------------------
* Set the text for error messages 

* data txerlj'Error: Option "Next Output" is Not Allowed'j 
data txer2j'Error: Select "Next Output" or "Quit"'j 
data txer3j'Error: "Output File" Must be Defined First'j 
data txer4j'Error: Permitted are "Next Output" or "Quit"'j 
data txerSj'Error: "Enter Control Data" first'j 
data txer6j'Error: Neither of 2 Map Parameters is Loaded'j 
data txer7j'Error: First Map Parameter is not Loaded'j 
data txer8j'Error: Second Map Parameter is not Loaded'j 
data txer9j'Permitted are "First or Second Map Load or "Quit'" j 

*----------------------------------------------------------------------
* Set flag whether the ASCII characters defining the options (CHFST) 
* be re-defined such that a carriage return is included af ter an 
* option is selected. 

* data flus ac j7*.true.j 
flreke = .true. 

121 



Programma AQ-HL02 

*----------------------------------------------------------------------* Initialize the flag FLINRK. FLINRK is set =false af ter the flag 
* array FLFSTP is initialized later in the program. Af ter that 
* FLINRK remains -false. 

* flinrk = .true. 
*----------------------------------------------------------------------* Display the title text (normal mode) 

* eall semeul (ese, 4, 17, etitl, 40) 
*----------------------------------------------------------------------* Display the menu name in reverse video at the bottom of options box 

* eall semeu2 (ese, ervon, ervof, 22, 3, I Main Menu ',18) 
*----------------------------------------------------------------------* 1) Define the first eharaeter of options text (CHFST) 
* 2) Display the options in options window (normal eharaeters) 
* 3) Clear options window, elear text window and 
* 4) Reset NLOPW and NLTXW 

* cal 1 seg004 (ese, chopt, ehfst, nopt, nlopw, nltxw) 
nlopw = nopt 
nltxw = 1 

*----------------------------------------------------------------------* Display the loading status of the two map files (lines 17 and 18). 
* Beeause this text is not eomprised in the value of NLTXW, 
* the text is to be wiped out before eaeh return. 
* The text is written starting in position 25. 

* * Do not write if an error message was issued earlier. 
* To avoid programmimg eomplexity set ILI and IL2. 

* Hl 17 
H2 = 18 
nel - 18 
if (ierr.lt.l) then 

eall semeul (ese, Hl, ipos, txtl, nel) 
eall semeul (ese, H2, ipos, txt2, nel) 
if (flfil!) then 

eall semeul (ese, Hl, ipos+nel, txt3(1) , 10) 
else 

cal! semeul (ese, Hl, ipos+nel, txt3(2), 10) 
endif 
if (flfH2) then 

eall semeul (ese, H2, ipos+nel, txt3(1) , 10) 
else 

eall semeul (ese, i12, ipos+nel, txt3(2) , 10) 
endif 

endif 
*----------------------------------------------------------------------* Set the flag for 'Quit' that remains highlighted 

* flfst(7) = .true. 
*----------------------------------------------------------------------* Define the relevant options (FLFST) 

* * Initialize (or reset) flags 

* 10 flfst(l) = .true. 
flfst(2) - .true. 

*----------------------------------------------------------------------* Initialize the flag FLFSTP to eeonomize the re-setting of the first 

122 



Programma AQ-HI:;()2> 

* character CHFST in subroutine SCG016. 

* 20 if (flinrk) then 
flfstp(l) = .not.flfst(l) 
flfstp(2) = .not.flfst(2) 

endif 
*----------------------------------------------------------------------* Write the first character CHFST of the NOPT options 

* call scg016 (esc, ebIon, crvof, chfst, nopt, flfst, flfstp) 
*----------------------------------------------------------------------* Move cursor to select option position and select an option 

* 30 call scg008 (esc, clrl, ebIon, crvof, cv, chfst, nopt, flreke, 
1 flus ac , iopt) 

*----------------------------------------------------------------------* lf an error message of was issued elsewhere, wipe out the message 
* (NLERR text lines, starting in line lLERR) and re-set the flag 
* lERR, otherwise on the next entry of this subroutine wrong action. 

* if (ierr.gt.O) then 
do 40 i = ilerr,ilerr+nlerr-l 

call scmcul (esc, i, 25, txtbl, 49) 
40 continue 

endif 

*----------------------------------------------------------------------* For a change of the menu, set the value of lMECO to -41 (First Map 
* Load) , -42 (Second Map Load) , -3 (Enter Control Data), -2 (Generate 
* Output), -1 (Next Output) or 1 (Quit) 

* 50 if (iopt.ge.2) then 

* * lOPT = 2,3,4,5,6 or 7. 
* Option lOPT=l is to be treated separately later. 

* if (iopt.eq.2) imeco -41 
if (iopt.eq.3) imeco -42 
if (iopt.eq.4) imeco -3 
if (iopt. eq. 5) imeco -2 
if (iopt.eq.6) imeco -1 
if (iopt.eq.7) then 

* * Option 'Quit' 

* 

* 

imeco - 1 
call scmcul (esc, ill, ipos, txtbl, 49) 
call scmcul (esc, i12, ipos, txtbl, 49) 
return 

endif 

* Check whether a meaningful option was selected, lOPT=4,5 or 6 

* if (iopt.eq.4 .and. (.not.flfill .and .. not.flfi12» then 
call scmcu2 (esc, ebIon, crvof, 22, 25, txer6, 49) 
goto 30 

endif 
if (iopt.eq.4 .and .. not.flfill) then 

call scmcu2 (esc, ebIon, crvof, 22, 25, txer7, 49) 
goto 30 

endif 
if (iopt.eq.4 .and .. not.flfi12) then 

call scmcu2 (esc, ebIon, crvof, 22, 25, txer8, 49) 

123 



Programma AQ-HL02 

goto 30 
endif 
if (iopt.eq.5 .and .. not.flout) then 

cal 1 scmcu2 (esc, cblon, crvof, 22, 25, txer3, 49) 
goto 30 

endif 

return 
endif 

*----------------------------------------------------------------------* IOPT=l: Check whether FLNEXT=true, illegal option 

* 

* 

if (flnext) then 
call scmcu2 (esc, cblon, crvof, 22, 25, txer4, 49) 
goto 30 

endif 

* Define the output file 

* 

*----------------------------------------------------------------------* Return to re-paint the options window 

* 

124 

goto 10 
end 



Programma AQ-HI.:.02' 

HL-subroutines: 
HLnnXX control execution in programs HLnn, nn=Ol, 02 and 03 
HLOOnn : generally applicable procedures in all HL-programs 

IO-subroutines: 
IORFtt re ad a record from unformatted file 
IOSUtt : set up the text string defining units of parameter 
IOXXnn : setting of the basic parameters for all AQ-programs 

SC-subroutines: 
SCDDnn 
SCGOnn 
SCHLnn 
SCMCUn 
SCPMnn 

screen handling in all AQ-programs treating DD-data 
generally applicable screen handling in all AQ-programs 
screen handling in programs HLOl, HL02 and HL03 
basic screen manipulation, applicable in all AQ-programs 
screen handling in all AQ-programs treating map-data 

VN-subroutines: 
VNHLnn : set program version for programs HLnn, nn=Ol, 02 and 03 

Toelichting: n = cijfer (0, 1, 2, etc) 
t = letter (a, b, c, etc) 

'nn' increases sequentially, starting from Ol 
'n' increases sequentially, starting fr om 1 

125 





Richtlijnen voor computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

D VOORBEELD PROGRAMMA EPOT (STARING CENTRUM) 

C 
C 
C 
C 
C 

PROGRAM EPOT 

PROGRAMMA READER 

C 
C*********************************************************************** 
C 
C CALCULATE EVAPOTRANSPIRATION FROM METEO DATA ON A DAILY BASE 
C 
C*********************************************************************** 
C********************************************************* COMMON **** 
C 
C PARAMETERS, COMMON AND CHARACTERS 

INCLUDE 'EPOT.INC' 
C 
C****************************************************** PRE-PROC. **** 
C 
C INITIALIZE - CONSTANTS AND OPEN FILES 

CALL INIT 
C 
C READ INPUT DATA 

CALL READ 
C 
C CHECK INPUT DATA 

CALL CHECK 
C 
C****************************************************** MAIN PROG **** 
C 
C CALC. REFERENCE EVAPOTRANSPIRATION (MAKKINK) 

CALL REF 
C 
C CALC EVAPOTR. (Eo-PENMAN) 

CALL PENMAN 
C 
C CALG. EVAPOTR. FOR PINE AND DECIDIOUS FOREST 

CALL FOREST 
C 
C**************************************************** OUTPUT DATA **** 
C 
C SUMMATION OF DAILY DATA PER MONTH, SEASON, ETC. 

CALL SUM 
C 
C PRINT OUTPUT 

CALL PRINT 
C 
C SAVE DATA TO PLOT 

CALL PLOT 
C 

127 



Programma EPOT 

C*********************************************************************** 
C 

C 

CLOSE (IN) 
CLOSE (10) 

CLOSE (IS) 

C END OF PROGRAMME 
WRITE(IW, 1) 

C 
C******************************************************** FORMATS **** 
C 
C 

1 FORMAT(/' READY'// 
&' The accumu1ated resu1ts per half year are a1so written to' , 
& ' file: METEO.SuM'/) 

C 
C 
C 
C 
C 
C 

END 
SUBROUTINE INIT 

****** SUBROUTINE READER 

INITIALIZE AND OPEN FILES 

****** 

C********************************************************* COMMON **** 
C 
C PARAMETERS, COMMON AND CHARACTERS 

INCLUDE 'EPOT.INC' 
C 
C*********************************************************************** 
C 
C CONSTANTS 
C 

C 

DATA GAMMA/0.66713/ 
DATA BETA/2.00/ 
DATA IMND/0,31,59,90,120,151,181,212,243,273,304,334,365/ 

C INTERCEPTION RESERVOIR PINE FOREST 
RES = 0.15 

C 
C CONVERS ION FACTOR FOR INPUT METEO DATA TO CM 
C PRESENT SETTING METEO DATA IN MM 

C 
C 

MFAC - 10. 

C**************************************************** OPEN FILES **** 
C 
C IN - meteo data on dai1y base 
C 10 - output evapotr. (dai1y base) 
C IS - file to save resu1ts for plot of data and resu1ts 
C IR - read from screen 
C IW - write to screen 
C 
C FILE CODES 

C 
C 

C 

IN - 01 
10 - 02 
IS - 04 
IR - 05 
IW - 06 

WRITE(IW, 1) 

100 WRITE(IW,2) 
READ(IR,'(A20)') FILEIN 

128 



Programma .EI'OT 

C 

C 

C 

C 
C 

WRITE(IW,3) 
READ(IR,'(A20)') FILEIO 

OPEN(IN,FILE=FILEIN,STATUS='OLD' ,ERR-110) 

OPEN(IO,FILE-FILEIO,STATUS='NEW' ,CARRIAGECONTROL='LIST') 
OPEN(IO,FILE-FILEIO,STATUS='UNKNOWN') 

VAX 
MIC 

C 
OPEN(IS,FILE-'METEO.SUM' ,STATUS-'NEW' ,CARRIAGECONTROL='LIST') 

OPEN(IS,FILE='METEO.SUM' ,STATUS-'UNKNOWN') 
VAX 
MIC 

GO TO 120 
C 
C INPUT METEO FILE NOT FOUND 

110 WRITE(IW,4) FILEIN 
GO TO 100 

C 
120 CONTINUE 

C 
RETURN 

C 
C******************************************************** FORMATS **** 
C 

C 
C 
C 
C 
C 
C 

1 FORMAT(//5X,'CALCULATION OF EVAPOTRANSPIRATION DATA'// ) 
2 FORMAT(/' Give filename with meteo data ------------------? ' ,$) 
3 FORMAT(!' Give filename for resu1ts ----------------------?' ,$) 
4 FORMAT(/' File :' ,A20,' cou1d not be attached ? - tryagain' ) 

END 
SUBROUTINE READ 

****** SUBROUTINE HEADER ****** 

READ TYPE OF DATA AND ACTUAL METEO DATA (PER DAY) 

C********************************************************* COMMON **** 
C 
C PARAMETERS, COMMON AND CHARACTERS 

INCLUDE 'EPOT.INC' 
C 
C*********************************************************************** 
C 
C 
C 
C 

C 

C 

ISUMB - begin of summer period at day 90 
ISUME - end of summer period at day 270 

The Netherlands 
ISUMB = 90 
ISUME = 270 

WRITE(IW, 1) 
READ *, IHEM 

IF ( IHEM .EQ. 2 ) THEN 

129 



Programma EPOT 

C Southern hemisphere 
ISUMB = 270 
ISUME = 90 

ENDIF 
C 

WRITE(IW,2) ISUMB,ISUME 
C 
C*********************************************************************** 
C 
C 
C 
C 
C 

NSK 
!DI 
IPR 

- number of records to skip in input file with text 
- type of input data 
- output half year accumulated results to screen (I-yes) 

C 

C 

100 WRITE(IW,3) 
READ *, NSK 

DO 110 I-l,NSK 
READ(IN,'(Al)') TXT 

110 CONTINUE 

C INPUT TYPE OF METEO DATA 
120 WRITE(IW,4) 

READ *, !DI 
IF ( IDI .LE. 0 .OR. IDI .GT. 5 ) GO TO 120 

C 
IF ( IDI .EQ. 5 ) THEN 

C SHOW TEXT AND FIRST DATA RECORD 
REWIND(IN) 
WRITE(IW,5) 

C TEXT 
DO 130 I=l,NSK 
READ(IN,6) AREC 
WRITE(IW,7) AREC 

130 CONTINUE 
C FIRST DATA RECORD 

C 

READ(IN,6) AREC 
WRITE(IW,7) AREC 
BACKSPACE (IN) 
GO TO 120 

ENDIF 

C RESULTS PER HALF YEAR TO SCREEN ? 

C 

WRITE(IW, 8) 
READ(IR,'(Al)') ANT 

IPR - 0 
IF ( ANT .EQ. 'Y' .OR. ANT .EQ. 'y' ) THEN 

IPR = 1 
WRITE(IW,9) 

ENDIF 
C 
C*********************************************************************** 
C 
C 

130 

WRITE HEADING FOR OUTPUT FILE AND 
IF ( IPR .EQ. 1 ) THEN 

IF ( IDI .EQ. 4 ) THEN 
WRITE(IW,11) 

ELSE 

FOR SCREEN 



Programma EP6'l" ' 

C 

WRITE(IW, 10) 
ENDIF 

ENDIF 
IF ( IDI .EQ. 4 ) THEN 

WRITE(IO,ll) 
WRITE(IS,ll) 

ELSE 
WRITE(IO,lO) 
WRITE(IS,lO) 

END IF 

C********************************************** READ DATA PER DAY **** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

IDAG - day number 
!JAAR - year 
PREC - precipitation (mm) 
TEM - temperature (degrees) 
RH - relative humidity 
DCL - degree of cloud cover (n/N) (-) 
WIND - windspeed ( not used ) 
HSH - incoming global ( short wave ) radiation ( W/m2 ) 
HNT - nett radiation ( W/m2 ) 

ID = 0 

140 CONTINUE 

C RECORDS COUNTER 
ID-ID+l 

C 
IF ( IDI .EQ. 1 ) THEN 

C 
READ(IN,*,END=lSO) IDG,MND,IJAAR(ID),PREC(ID),TEM(ID),RH(ID), 

& WIND(ID),HSH(ID),HNT(ID) 
C 
C CONVERT DAY AND MONTH TO DAY NUMBER 

C 

C 

C 

C 

C 

C 

C 

C 

C 

IDAG(ID) = IDG + IMND(MND) 

ELSElF ( IDI .EQ. 2 ) THEN 

READ(IN,*,END-lSO) IDAG(ID),PREC(ID),TEM(ID),RH(ID),HSH(ID) 

ELSElF ( IDI .EQ. 3 ) THEN 

READ(IN,*,END-lSO) 1 DAG (ID),IJAAR(ID),PREC(ID),TEM(ID), 
& RH(ID),HSH(ID) 

ELSElF ( IDI .EQ. 4 ) THEN 

READ(IN,*,END-lSO) IDAG(lD),IJAAR(ID),PREC(ID),TEM(ID), 
& RH(ID) ,HSH(ID) ,DCL(ID) ,WIND(ID) 

ENDIF 

GO TO 140 

C END OF FILE REACHED 
150 CONTINUE 

131 



Programma EPOT 

C 
C NUMBER OF DAYS WITH METEO DATA 

NUMD-ID-l 
C 

RETURN 
C******************************************************** FORMATS **** 
C 

C 
C 
C 
C 
C 
C 
C 

1 FORMAT(/' Starting date of summer (l=Northern; 2=Southern) , ,$) 
2 FORMAT(/' Summer period from day: ' ,14,' to' ,14 ) 
3 FORMAT(/' How many records must be skipped with text -----?' ,$) 
4 FORMAT (I' Which parameters must be read'l 
& 5X,'1 - IDAG,MND,IJAAR,PREC,TEM,RH,WIND,HSH,HNT 
& 5X,'2 - IDAG,PREC,TEM,RH,HSH 
& 5X,'3 - IDAG,IJAAR,PREC,TEM,RH,HSH 

(Makkink) , I 
(Makkink)'1 
(Makkink)'1 

& 5X,'4 - IDAG,IJAAR,PREC,TEM,RH,HSH,DCL,WIND 
& 5X,'5 - unknown, show first data record and 
& ENTER CHOICE 

(penman)' I 
start again'll 
----------- ? ' ,$) 

5 FORMAT(/' Data of first record is : 'I ) 
6 FORMAT(A70) 
7 FORMAT(2X,A70) 
8 FORMAT(/' Accumu1ated half year resu1ts to screen 'I 
& ' (Y or N ) 

9 FORMAT(/ I) 
10 FORMAT(' Day Year 

& evap. fac.' I 
& ' 
& ' fa1low soi1' ) 

11 FORMAT(' Day Year 
& evap. fac.' I 
& ' 
& ' fa110w soi1' 

END 
SUBROUTINE REF 

Rainfall 

[mm] 

Rainfall 

[mm] 

****** SUBROUTINE HEADER 

ETp gras 

[mm] 

Eo (Pen) 

[mm] 

****** 

CALC. REFERENCE EvAPOTR. (MAKKINK) 

ETp pine 

[mm] 

ETp pine 

[mm] 

? " $) 

ETp deci' , 

[mm] 

ETp deci', 

[mm] 

C********************************************************* COMMON **** 
C 
C PARAMETERS, COMMON AND CHARACTERS 

INCLUDE 'EPOT.INC' 
C 
C*********************************************************************** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

132 

NUMD 
TEM 
HSH 
MFAC 

TEMP 
EV 
DEL 

- number of records (days) with data 
- temperature (degrees) 
- incoming global ( short wave ) radiation ( W/m2 
- convers ion from cm to default unit (Subr. INIT) 

- temperature in K 
- verzadigingsdampdruk 
- helling van de verzadigingsdampdrukcurve 

DO 100 ID=l,NUMD 



C 
TEMP = TEM(ID) + 273.15 
WED = .0583 * TEMP - 2.1938 
EV = 1.3332 * EXP( (1.08872*TEMP-276.4884) / WED) 
DEL = 13.7315 * EV / (WED**2) 

C 
C EQUATION OF MAKKINK - EVAPOTRANSPIRATION IN CM 
C CONVERSION TO DEFAULT UNIT (MM OR M) BY clFAC 

C 

C 

EPG - 0.65 * HSH(ID) * DEL / (DEL+GAMMA) 
EPGRAS(ID) = 0.00352 * EPG * MFAC 

100 CONTINUE 

RETURN 
END 

Programma EPo.T· 

133 





Aantekeningen 

135 





Richtlijnen voor ontwikkeling van computerprogrammatuur in de hydrologie 
Rapporten en Nota's No. 27 van de CHO-TNO 

COMMISSIE VOOR HYDROLOGISCH ONDERZOEK TNO 

RAPPORTEN EN NOTA'S 

No. 1. Tweede rapport en aanbevelingen 
van de Contactgroep Archivering en Automatische Verwerking van hydrologi­
sche gegevens TNO. 
Januari 1977. 

No. 2. Verslag en aanbevelingen 
van de ad hoc-Groep Grondwatermodellen en Computerprogrammatuur TNO. 
Juli 1978. 

No. 3. De droogte in 1976. 
Een samenvatting en overzicht van de over de droogte van 1976 verschenen 
literatuur - P .K.M. v.d. Heijde. 
Augustus 1978. 

No. 4. Nederlandse activiteiten in internationaal hydrologisch verband. 
Lezingserie, gehouden op 25 april 1978 te Delft, aangevuld met (schema­
tische) overzichten van internationale organisaties en een overzicht van hun 
vertegenwoordigers in Nederland. 
Augustus 1978. 

No. 5. Waterkwaliteit in grondwaterstromingsstelsels. 
Verslag van de Workshop op 1 en 2 april 1980 te Wageningen - (red. 
J.C. Hooghart), aangevuld met discussiebijdragen en een inventarisatie van 
het onderzoek in Nederland. 
Augustus 1980. 

No. 6. Derde rapport en aanbevelingen 
van de Contactgroep Archivering en Automatische verwerking van hydrologi­
sche gegevens TNO. 
Februari 1981. 

No. 7. Overzicht van de wensen van hydrologen en waterbeheerders ten aanzien van 
het operationele regenwaamemingennet van het KNMI - J.C. Hooghart. 
Oktober 1981. 

No. 8.*) Verklarende Hydrologische Woordenlijst van de Gespreksgroep Hydrolo­
gische Terminologie. 
8a. I. Water in de onverzadigde zone 

11. Water in de verzadigde zone 
Januari 1982. 

8b. 111. Atmosferisch water 
Juni 1983. 

8c. IV. Oppervlaktewater 
Maart 1985. 

*) Verouderd: vervangen door Rapporten + Nota's no. 16. 

137 



Rapporten en Nota's 

No. 9. Waterkwaliteit en waterkwantiteit in het Usselmeergebied. 
Verslag van de 2e CHO-studiebijeenkomst op 2 en 3 november 1981, De 
Eemhof, Zuidelijk Flevoland - (red. J.C. Hooghart), aangevuld met discussie­
bijdragen. 
Februari 1982. 

No. 10. Rapport en aanbevelingen 
van de Contactgroep Grondwatermodellen, CHO-TNO. 
April 1982. 

No. 11. Inventarisatie Grondwaterkwaliteitsmodellen. 
L.J.M. Boumans. 
Oktober 1982. 

No. 12. Grondwaterkwaliteit in relatie met onderzoek en beleid. 
Verslag van de 3e CHO-studiebijeenkomst op 15 maart 1983 te Wageningen -
(red. J.C. Hooghart), aangevuld met discussiebijdragen. 
Juni 1983. 

No. 12a. Voorlopig overzicht van inventarisaties waarin grondwater(kwaliteits)modellen 
voorkomen of hiermee in verband staan. 
J.C. Hooghart. 
Januari 1984. 

No. 13. Vergelijking van modellen voor het onverzadigd grondwatersysteem en de 
verdamping. 
Verslag van de 4e CHO-studiebijeenkomst op 24 oktober 1984, georganiseerd 
in samenwerking met de Studiegroep Hupselse.Beek - (red. J.C. Hooghart). 
Maart 1985. 

No. 14. Meten, meetnetten en optimale meetnetontwerpen ten dienste van het waterbe­
heer. 
Verslag van: 
- Voorjaarsbijeenkomst van de KIvI Sectie Waterbeheer: 

"Meten voor waterbeheer", mei 1984. 
- Colloquium van de Studiegroep Statistiek in de hydrologie CHO-TNO: 

"Meetontwerp en optimalisatie", november 1984. 
(red. P. v.d. Kloet en J.C. Hooghart). 
Januari 1986. 

No. 15. Het hydrologisch systeem in het grensgebied Luik-Maasbracht. 

138 

Le système hydrologique dans la région frontalière Liège- Maasbracht. 
Verslag van de 5e CHO-studiebijeenkomst op 13 december 1985, georgani­
seerd in samenwerking met de Nationale IHP-comité's van België en Neder­
land en de Contactgroep Hydrologie van het Nationaal Fonds voor Weten­
schappelijk Onderzoek uit België. 
(red. J.C. Hooghart). 
April 1986. 



Rapporten en Noia"s 

No. 16. Verklarende Hydrologische Woordenlijst van de Gespreksgroep Hydrologi­
sche Terminologie, waarin opgenomen de hoofdstukken: 
I Algemene termen 
11 Atmosferisch Water 
III Water in de onverzadigde zone 
IV Water in de verzadigde zone 
V Oppervlaktewater 
Oktober 1986, hernieuwde uitgave. 

No. 17. *) Duurzaamheid rioolleidingen; een literatuurstudie naar aantastingsmecha­
nismen. 

No. 18. 

No. 19. 

No. 20. 

No. 21. 

No. 22. 

R.B. Polder. 
Februari 1987. 
*) Uitverkocht. 

Ruimtelijke variabiliteit van bodem en water. 
Verslag van de 6e CHO-studiebijeenkomst op 22 oktober 1986. 
(red. J.C. Hooghart). 
Februari 1987. 

Van Penman naar Makkink; een nieuwe berekeningswijze voor de klimatolo­
gische verdampingsgetallen. 
Eindrapport van de KNMI-Projectgroep en de CHO-Begeleidingsgroep 
Verdampingsberekeringen. 
(red. J.C. Hooghart en W.N. Lablans). 
December 1988. 

Tijdreeksen in bodem en water. 
Inleidingen van de lezingendag op 25 januari 1989 van de NRLO-Werkgroep 
Ruimtelijke variabiliteit in bodem en water en de Studiegroep Statistiek in de 
Hydrologie van de CHO-TNO. 
December 1988. 

Neerslagmeting en -voorspelling; toepassing van modern technieken, zoals 
radar- en satellietwaarnemingen. 
Verslag van de 7e CHO-studiebijeenkomst, georganiseerd in samenwerking 
met SAMWAT, op 16 november 1988. 
(red. J.C. Hooghart). 
Februari 1989. 

Integraal Waterbeheer in het Goois/Utrechts stuwwallen- en plassengebied. 
Verslag van de op 7 april 1989 in Bussum gehouden themadag, georganiseerd 
door het Zuiveringschap Amstel en Gooiland en de Provincie Utrecht, in 
samenwerking met de CHO-TNO. 
(red. L. van Liere, R.M.M. Roijackers en P.J.T. Verstraelen). 
Augustus 1989. 

139 



Rapporten en Nota's 

No. 23. 

No. 24. 

No. 25. 

No. 26. 

No. 27. 

No. 28 

No.29 

Bodemwaterkwaliteit in wisselwerking met biologische, chemische en hydro­
logische processen. 
Verslag van de 8e CHO-studiebijeenkomst op 8 mei 1990. 
(red. J.C. Hooghart) 
September 1990. 

Ruimtelijke statistiek van bodem en water. 
Inleidingen van de lezingendag op 24 januari 1991 van de NRLO-werkgroep 
Ruimtelijke variabiliteit van bodem en water en de Studiegroep Statistiek in de 
Hydrologie van de CHO-TNO. 
(red. J.C. Hooghart) 
Januari 1991. 

Geo-informatie in Nederland. 
Inleidingen van de lezingendag op 2 mei 1991 in samenwerking met het 
Samenwerkingsverband Aardkundige Gegevensverstrekkende Instituten 
(SAG II). 
(red. J.C. Hooghart) 
Mei 1991. 

Het hydrologisch systeem in het grensgebied Luik-Maasbracht; onderzoeks­
resultaten 1985-1990. 
Le système hydrologique dans la région frontalière Liège-Maasbracht; 
résultats des recherche 1985-1990. 
Verslag van de ge CHO-studiebijeenkomst op 9 januari 1991, georganiseerd 
in samenwerking met de Nationale IHP-comité's van België en Nederland en 
de Contactgroep Hydrologie van het Nationaal Fonds voor Wetenschappelijk 
Onderwek uit België. 
(red. J.C. Hooghart). 
Augustus 1991. 

Richtlijnen voor computerprogrammatuur in de hydrologie. 
Eindrapport van de CHO-Werkgroep Richtlijnen Computerprogrammatuur 
Hydrologie. 
(red. J.C. Hooghart, K. Kovar en J.M.P.M. Peerboom) 
Oktober 1992. 

Integraal (water)beheer in de praktijk haalbaar? 
Verslag van de op 7 april 1992 in Amsterdam gehouden themadag, met 
aanvullingen. 
(red. R.M.M. Roijackers, P.J.T. Verstraelen en L. van Liere). 
(in druk). 

HYDRO - LOGISCH; wetenschap en toepassing. 
Verslag van het symposium op 5 oktober 1992 ter gelegenheid van het 
afscheid van H.J. Colenbrander van de CHO-TNO. 
(red. J.C. Hooghart en C.W.S. Posthumus). 
Oktober 1992. 

Voor bestellingen en informatie: CHO-TNO 

140 

Postbus 6067 
2600 JA DELFT 
Telefoon: 015 - 69 72 81 










