

Ir. P.M. Slegers, prof. R.H. Wijffels, prof. G. van Straten, dr. A.J.B. van Boxtel ECAB 2011: 28 September

Need for fuels from renewable resources

- EU directive (2020):
 - 20% renewable energy
 - 10% biofuels

	Country	Shar renewab 2005	e of e energy 2020
AT	Austria	23.3	34.0
BE	Belgium	2.2	13.0
BG	Bulgaria	9.4	16.0
CY	Cyprus	2.9	13.0
CZ	Czech Republic	6.1	13.0
DE	Germany	5.8	18.0
DK	Denmark	17.0	30.0
EE	Estonia	18.0	25.0
EL	Greece	6.9	18.0
ES	Spain	8.7	20.0
FI	Finland	28.5	38.0
FR	France	18.3	23.0
HU	Hungary	4.3	13.0
IE	Ireland	3.1	16.0
IT	Italy	5.2	17.0
LT	Lithuania	15.0	23.0
LU	Luxembourg	0.9	11.0
LV	Latvia	34.9	42.0
MT	Malta	0.0	10.0
NL	Netherlands	2.4	14.0
PL	Poland	7.2	15.0
PT	Portugal	20.5	31.0
RO	Romania	17.8	24.0
SE	Sweden	39.8	49.0
SI	Slovenia	16.0	25.0
SK	Slovakia	6.7	14.0
UK	United Kingdom	1.3	15.0
EU-27	EU 27	8.5	20.0

Algae as source for biodiesel

- Algae are promising
 - Photosynthetic cell factories
 - High lipid contents & productivity

Challenge: make it economically feasible & sustainable

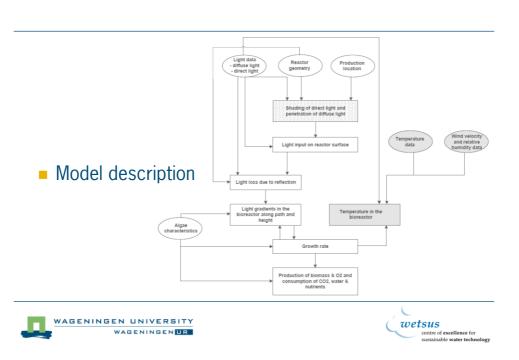
Techno-economic studies use generic

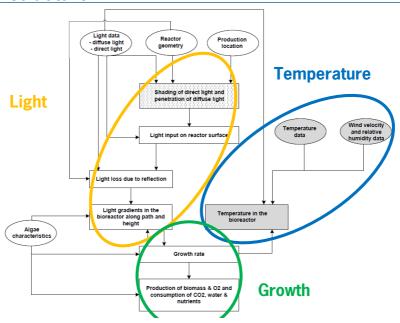
information

Used estimates: 50-110 ton ha-1 yr-1 in ponds* 40-80 ton ha-1 yr-1 in closed systems**

- How realistic?
 - Often not performed under outdoor conditions
 - Large uncertainties in assumptions
 - Lack specific information on e.g. daily production cycles and location

Focus of this presentation


- Predictive model for biomass production has been developed
 - Open ponds
 - Flat panel reactors


- Insight in dynamics of algae and their needs during the day/year
- 2. Quantify the effect of location and design variables
- 3. Determine settings for peak biomass production
- 4. Effect of algae species

Model structure

1. Quantifying the light falling on reactor wall

 $I_{surf}(t) = f(I_{sun}(t), design \ variables, dayhour)$

 $I_{sun}(t) = f(location, weather)$

2. Light gradient in reactor volume

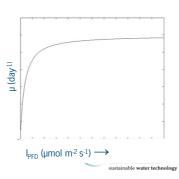
$$I(y,z,t) = I_{surf}(t) * \exp(-K_aC_x(t)z)$$

3. Algae growth according to local light gradient

Optimal growth temperature

$$\mu(y,z,t) = f(I(y,z,t), algae \ characteristics) - r_m$$

Based on pl-curves (Geider, 1997)



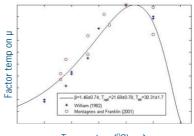
3. Algae growth according to local light gradient

Optimal growth temperature

 $\mu(y,z,t) = f(I(y,z,t), algae\ characteristics) - r_m$ Based on pl-curves (Geider, 1997)

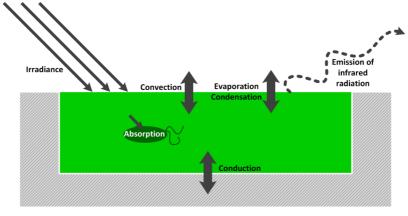
$$\mu(y,z,t) = P_m^c \left(1 - \exp\left(\frac{-\alpha I_{PFD}(y,z,t)\Theta(z,t)}{P_m^c}\right) \right)$$

3. Algae growth according to local light gradient and water temperature


Based on pl-curves (Geider, 1997) & Blanchard, 1996.

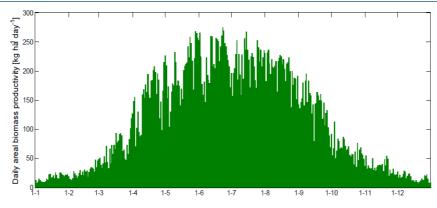
$$\mu(y,z,t) = \mu(I(y,z,t) * f(T)$$

$$f_T = \left(\frac{T_{let} - T_w}{T_{let} - T_{opt}}\right)^{\beta} \exp(-\beta \left(\frac{T_{let} - T_w}{T_{let} - T_{opt}} - 1\right)$$

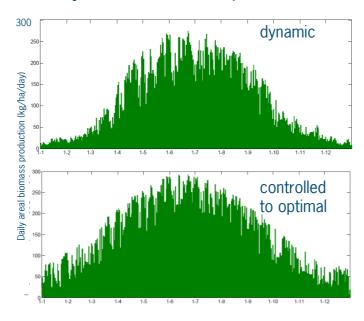


Fluxes influencing water temperature

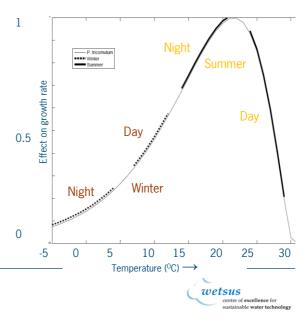
$$\begin{split} V_w \rho_w C p_w \frac{dT}{dt} \\ &= Q_{\text{irradiance}} - Q_{\text{absorption}} - Q_{\text{evaporation}} \\ &- Q_{\text{convection}} - Q_{\text{conduction}} - Q_{\text{radiation}} \end{split}$$


Results

Production in Netherlands



- P. tricornutum
- 30 cm deep pond dynamic temperature



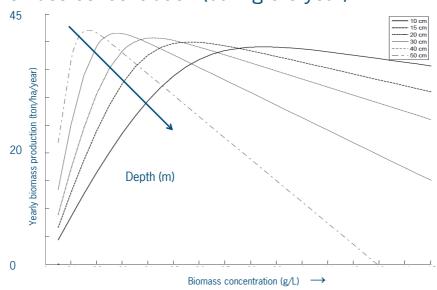
Effect of dynamic water temperature

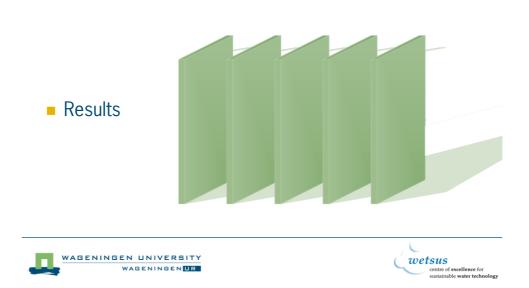
Effect temperature on growth

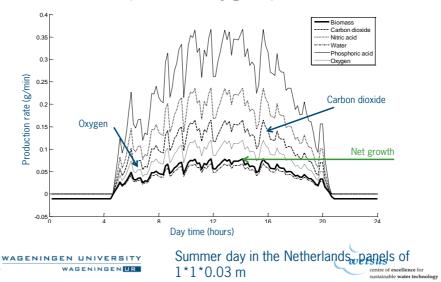
- During day light and temperature limit growth
- During night temperature has a beneficial effect -> reduced maintenance

Production with dynamic temperature

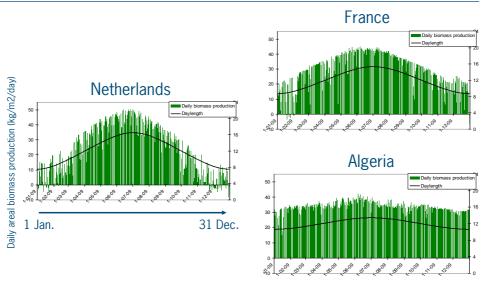
P. tricornutum	Source	Average prod. (ton ha ⁻¹ year ⁻¹)
Netherlands 52 °N	Model	41.5
Algeria 22.8 °N	Model	63.7

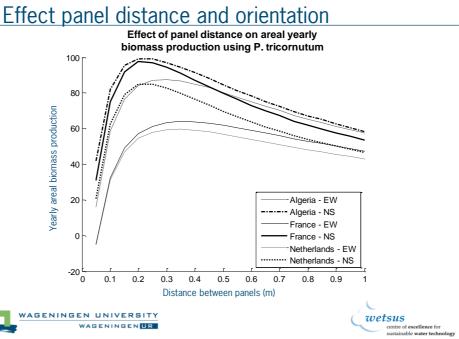

Production with dynamic temperature


P. tricornutum	Source	Average prod. (ton ha ⁻¹ year ⁻¹)
Netherlands 52 °N	Model	41.5
Algeria 22.8 °N	Model	63.7
England 50-54°N	Ansell, 1963 (40cm deep)	29.0
<u>California</u> 32.5°N	Thomas, 1984 (temp. controlled)	80.0



Achieving yearly peak production using a constant biomass concentration (during the year)





Daily production fluctuations are linked with nutrient consumption & oxygen production

Predicted daily biomass production for one year

Conclusions

- We are able to predict year round biomass production
 - Dynamic sun light input (incl. shading)
 - Dynamic water temperature
 - Design parameters and location
- More insight on influence decision variables: better opportunities for higher productivities
- Model is a good basis for further LCA and TE analysis

