A second advantage is that the variation in K-values found is considerably less than
those found with small-scale methods. For example, El-Mowelhi and Van Schilfgaarde
(1982) found the K-values determined from different 100 mm drains in a clay soil
to vary from 0.086 to 0.12 m/d. This range compares very favourably with the much
wider ranges given in Sections 12.5.3 and 12.5.4.

Influence of Drainage Conditions

The choice of the correct drainage formula for the calculation of K-values from

observations on the functioning of the drains depends on:

— The drainage conditions and the aquifer type. For example, the choice depends
on the depth of an impermeable layer, whether the K-value increases or decreases
with depth, and whether the aquifer is semi-confined and seepage or natural
drainage occurs;

— Whether one is dealing with parallel drains with overlapping zones of influence
or with single drains;

— Whether one analyses the drain functlomng in steady or unsteady state;

— Whether the groundwater flow is two-dimensional (which occurs when the recharge
is evenly distributed over the area) or three-dimensional (which often occurs in
irrigated areas where the fields are not irrigated at the same time, so that the recharge
is not evenly distributed over the area);

— Whether the drains are offering entrance resistance to the flow of groundwater into
the drains or not;

— Whether the drains are placed in flat or in sloping land, and whether they are laid
at equal or different depths below the soil surface.

In this chapter, not all the above situations will be discussed in detail, but a selection
is presented in Section 12.7. Some other situations are described by Oosterbaan (1990a,
1990b).

The analysis of the functioning of existing drains in unsteady-state conditions offers
the additional possibility of determining the drainable porosity (e.g. EI-Mowelhi and
Van Schilfgaarde 1982). This possibility is not further elaborated in this chapter.

Anyone needing to analyze K-values under drainage conditions that deviate from
those selected in this chapter and are not discussed elsewhere in literature, will probably
have to develop a new method of analysis which takes into account the specific
drainage conditions.

12.6 Examples of Small-Scale In-Situ Methods
12.6.1 The Auger-Hole Method

Principle

The principle of the auger-hole method is as follows. A hole is bored into the soil
with an auger to a certain depth below the watertable. When the water in the hole
reaches equilibrium with the groundwater, part of it is removed. The groundwater
then begins to seep into the hole and the rate at which it rises is measured. The hydrautic
conductivity of the soil is computed with a formula or graph describing the mutual
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relationship between the rate of rise, the groundwater conditions, and the geometry
of the hole. :

This method measures the average hydraulic conductivity of a soil column about
30 cm in radius and extending from the watertable to about 20 cm below the bottom
of the hole, or to a relatively impermeable layer if it occurs within 20 cm of the bottom.

The method can also be used to measure the K-values of two separate layers. This
is done by repeating the measurements in the same hole after it has been deepened.
Reference is made to Van Beers (1970).

Theory

As reported by Van Beers (1970) and Bouwer and Jackson (1974), Ernst developed
the following equation for the K-value of the soil in dependence of the average rate
of rise of the water level in the hole (Figure 12.13)

K = CHo:Hz (12.9)
where
K = hydraulic conductivity of the saturated soil (m/d)
C = afactor asdefined in Equation 12.10 or 12.11
t = time elapsed since the first measurement of the level of the rising water
in the hole (s)
standard reference level
TT TN TN T /R TR
tape
with
float
soil surface L ’ D,
NZZS\

_watertable. |- - -0

impermeable layer
. KRX? HXXAKX XXX .

Figure 12.13 Measurements for the auger-hole method
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H, = depth of the water level in the hole below reference level at time t (cm)
H, = H whent=20

The C-factor depends on the depth of an impermeable layer below the bottom of
the hole (D) and the average depth of the water level in the hole below the watertable
(h") as follows:

When D > 1 D,, then

r
4000 T

(20 + —?—2> (2 —%') (12.10)

When D = 0, then

C =

I
h/

<1o + %) <2—%;) ' (12.11)

D = depth of the impermeable layer below the bottom of the hole (cm)

D, = depth of the bottom of the hole below the watertable (cm), with the
condition: 20 < D, < 200

radius of the hole (cm): 3 <r < 7

average depth of the water level in the hole below the watertable (cm),
with the condition: h’ > D,/5

3600
C =

where

T
h’

When 0 < D < 1 D,, one must interpolate between the results of the above two

equations.
The value of h’ can be calculated from
h" =0.5(H, + H,) - D, _ (12.12)
where

D, = depth of the watertable below reference level (cm)
H, = depth of the water level in the hole at the end of the measurements (cm)

Ernst also prepared graphs for the solution of the C-factor in Equation 12.9 (Van
Beers 1970), which are more accurate than Equations 12.10 and 12.11. Within the
ranges of r and H mentioned above, however, the equations give less than 20% error.
In view of the usually large variability in K-values (of the order of 100 to 1000%,
or more), the given equations are accurate enough.

Other methods of determining K-values with the auger-hole method were reviewed
by Bouwer and Jackson (1974). These methods give practically the same results as
the Ernst method.
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Equipment and Procedure

The equipment used in The Netherlands is illustrated in Figure 12.14. It consists of
a tube, 60 cm long, the bottom end of which is fitted with a clack valve so that it
can be used as a bailer. Extension pieces can be screwed to the top end of the tube.
A float, a light-weight steel tape, and a standard are also part of the equipment. The
standard is pressed into the soil down to a certain mark, so that the water-level readings
can be taken at a fixed height above the ground surface.

The hole must be made with a minimum disturbance to the soil. The open blade
auger used in The Netherlands is very suitable for wet clay soils, whereas the closed
pothole auger commonly used in the U.S.A. is excellent in dry soils.

The optimum depth of the holes depends on the nature, thickness, and sequence
of soil layers, on the depth of the watertable, and on the depth at which one wishes
to determine the hydraulic conductivity. When augering the hole in slowly permeable
soils, one often observes that the water is entering the hole only when the depth of
the hole is well below the watertable. As the hole is deepened further, the water enters
faster, because the rate of inflow of the water is governed by the difference between
the watertable and the water level in the hole, and by the depth of the hole below
reference level (D,). Sometimes, this phenomenon is incorrectly attributed to artesian
pressure, but artesian pressure only exerts an influence if one pierces a completely
or almost impermeable layer.

When the water in the hole is in equilibrium with the groundwater, the level is
recorded. Water is then bailed out to lower the level in the hole by 20 to 40 cm.

Figure 12.14 Equipment used for the auger-hole method (courtesy Eijkelkamp b.v.)
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Measuring the rate of rise in the water level must begin immediately after bailing.
Either the time for fixed intervals of rise, or the rise for fixed intervals of time can
be recorded. The first technique requires the use of chronometers, while the second,
which is customary in The Netherlands, needs only a watch with a good second hand.
Normally, some five readings are taken, as these will give a reliable average value
for the rate of rise and also provide a check against irregularities. The time interval
at which water-level readings are taken is usually from 5 to 30 seconds, depending
on the hydraulic conductivity of the soil, and should correspond to a rise of about
1 cm in the wates level. A good rule of thumb is that the rate of rise in mm/s in an
8 cm diameter hole with a depth of 70 cm below the watertable approximately equals
the K-value of the soil in m/d.

Care should be taken to complete the measurements before 25% of the volume of
water removed from the hole has been replaced by inflowing groundwater. After that,
a considerable funnel-shaped watertable develops around the top of the hole. This
increases resistance to the flow around and into the hole. This effect is not accounted
for in the formulas or flow charts developed for the auger-hole method and
consequently it should be checked that H,— H, < 0.25 (H,—D)).

After the readings have been taken, the reliability of the measurements should be
checked. The difference in water level between two readings (AH) is therefore
computed to see whether the consecutive readings are reasonably consistent and
whether the value of AH gradually decreases.

It often happens that AH is relatively large for the first reading, because of water
dripping along the walls of the hole directly after bailing. Further inconsistencies in
AH values may be caused by the float sticking to the wall or by the wind blowing
the tape against the wall. Consistency can be improved by tapping the tape regularly.
An example of recorded data and the ensuing calculations is presented in Table 12.4.

The auger-hole method measures the K-value mainly around the hole. It gives no
information about vertical K-values nor about K-values in deeper soil layers. The
method is therefore more useful in shallow than in deep aquifers.

12.6.2 Inversed Auger-Hole Method

Principles and Theory of the Infiltration Process

If one uses a steel cylinder (also called ‘infiltrometer’) to infiltrate water continuously
into unsaturated soil, one will find after a certain time that the soil around and below
the area becomes almost saturated and that the wetting front is a rather sharp
boundary between wet and dry soil (Figure 12.15).

We shall consider a point just above the wetting front at a distance z below the
soil surface in the area where the water infiltrates. The matric head of the soil at this
point has a (small) value h,,. The head at the soil surface equals z + h (h = height
of water level in the cylinder). The head difference between the point at depth z and
a point at the soil surface equals z + h + |h,|, and the average hydraulic gradient
between the two points is

(_z+h+ihyl

Z (12.13)
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Table 12.4 Example of measurements and calculations with the auger-hole method

No: Date:
Location: Details:
Depth of auger-hole D’ : 240 cm below reference
Depth of watertable D, : 114 cm below reference
D, =D — Dy ¢ 126 cm
Auger-hole radius r : 4cm
Depth impermeable layer : D> 14D,
t " H AHY
(s) (cm) (cm)
0 145.2 -
10 144.0 1.2
20 142.8 1.2
30 141.7 1.1
40 140.6 1.1
50 139.6 1.0

Try t = 50 5; AHgy = Hy — Hgp = 145.2 — 139.6 = 5.6 cm

Check Hy — Hygg < 0.25 (Hy — Dy); 145.2 — 139.6 < 0.25 (145.2 — 114);
56 <780K."

Equation 12.12: h* = 0.5 (145.2 + 139.6) — 114 = 28.4 cm

Ratio’s for Equation 12.10: D,/r = 31.5; h'/D, = 0.225; r/h’ = 0.141

4000 x 0.141  _
(20 + 3L5)2 - 0.255)

Equation 12.9: K = 6.2 X 5.6 / 50 = 0.7 m/d

Equation 12.10: C =

*) per reading; AH = H,_; — H,
k) if not O.K., try t = 40 s or less, so that AH, decreases

If z is large enough, s approximates unity. Hence, from Darcy’s Law (Equation 12.2),
we know that the mean flow velocity in the wetted soil below approaches the hydraulic
conductivity (v = K), assuming the wetted soil is practically saturated.

The inversed auger-hole method (in French literature known as the ‘Porchet
method’) is based on these principles. If one bores a hole into the soil and fills this
hole with water until the soil below and around the hole is practically saturated, the
infiltration rate v will become more or less constant. The total infiltration Q will then
be equal to v x A (where A is the surface area of infiltration). With v = K, we get:
Q=K x A.

For the inversed auger-hole method, infiltration occurs both through the bottom
and the side walls of the hole (Figure 12.16). Hence we have A = nr? + 2rrh (where
r is the radius of the hole and h is the height of the water column in the hole). So

we can write Q = 2nKr(h + 1 r1).
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water level

- cylinder wall

soil surface infiltration surface
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Figure 12.15 Infiltration process beneath a cylinder infiltrometer

Further, we can find Q from the rate at which the water level in the hole is lowered:
Q = —nr’dh/dt. Eliminating Q in both expressions gives 2K(h + % r) = —r dh/dt.
Upon integration and rearrangement, we obtain

K = llSI‘IOg(hO + llfrt):tloog(h\ + }l’fr)

(12.14)

where (Figure 12.17)
t = time since the start of measuring (s)
h, = the height of the water column in the hole at time t (cm)
h, = h,attimet =0
auger hole

|
|
|
v 2r N

soil surface

waterlevel

Figure 12.16 Infiltration from a water-filled auger-hole into the soil (inversed auger-hole method)
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standard reference level

tape
with
float

soil surface

Figure 12.17 Measurements for the inversed auger-hole method

The values of h, are obtained from
h, =D’ —H, (12.15)

where
D’ = the depth of the hole below reference level (cm)
H, = the depth of the water level in the hole below reference level (cm)

-

When H and t are measured at appropriate intervals (as was explained in the previous
section), K can be calculated.

On semilog paper, plotting h, + 4r on the log axis and t on the linear axis produces
a straight line with a slope

log(hy + 1) — log(h, + 1)

ta =
nao r—

(12.16)

The calculation of K with Equation 12.14 can therefore also be done with the value
of tana. Hence, K = 1.15rtana.

Procedure

After a hole is augered in the soil to the required depth, the hole is filled with water,
which is left to drain away freely. The hole is refilled with water several times until
the soil around the hole is saturated over a considerable distance and the infiltration
(rate) has attained a more or less constant value. After the last refilling of the hole,
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Table 12.5 Example of measurements with inversed auger-hole method (r = 4cm, D’ = 90 cm)

t H, h=D' - H, h, + Yr
(s (cm) (cm) (cm)
0 71 19 21
140 72 - 18 20
300 73 17 19
500 74 16 18
650 75 15 17
900 76 14 16

the rate of drop of the water level in the hole is measured (e.g. with the float and
tape system as was explained for the auger-hole method). The data (h + ir and t)
are then plotted on semi-log paper, as was explained earlier. The graph should yield
a straight line. If the line is curved, continue to wet the soil until the graph shows
the straight line. Now, with any two pairs of values of h + ir and t, the K value

can be calculated according to Equation 12.14. An example of measurements is given
in Table 12.5.

The data of Table 12.5 are plotted in Figure 12.18, which shows that a linear relation

exists between log(h, + 1r) and t. The K-value can now be calculated from Equation
12.14 as follows

to=140 hy+ 4r =20 log(hy + 3r) = 1.30

t =650 h, +ir=17 log(h, + 4r) = 1.23
1.30—1.23

K =1.15 x 4m— = 0.00063 cm/s or 0.55 m/d

hy +§ incm
30
25
20 P—l__,
i
18 T
~——
16 ?D‘}.: ——
14
12
10
0 500 1000

tins

Figure 12.18 Fall of the water level, recorded with the inversed auger-hole method, plotted against time
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12.7 Examples of Methods Using Parallel Drains
12.7.1 Introduction

When one is analyzing the relationships between hydraulic head (elevation of the
watertable) and the discharge of pipe drainage systems to assess the soil’s hydraulic
conductivity, one needs a drainage equation in agreement with the conditions during
which the measurements were made. Usually, the measurements are made during a
dry period following a period of recharge by rain or irrigation (i.e. during tail
recession). Hence, the watertable is falling after it had risen as a result of the recharge.
Under such unsteady-state conditions, Equation 8.36 (Chapter 8) is applicable for
ideal drains (i.e. drains without entrance resistance)

_2nK,dh
-

which can be extended to include the flow above the drain level (Oosterbaan et al. 1989)

_2rK,dh + K, h?

2 (12.17)
where
q = drain discharge (m/d)
K, = hydraulic conductivity of the soil below drain level (m/d)
K, = hydraulic conductivity of the soil above drain level (m/d)
d = Hooghoudt’s equivalent depth (m)
h = elevation of the watertable midway between the drains relative to drain
level (m)
L = drain spacing (m)
soil surface

KNS AN

". water dnwde

R RIRILLIRILLK. SRIRRRE
,0,0,0,00,000,0,0,0,00 impermeable fayersdciERIRRRNICRKS
[}
1
1

]
v N
' L

NI=

Figure 12.19 Drains with entrance resistance (symbols as defined for Equations 12.17—12.19)
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Since entrance resistance is not always negligible, Oosterbaan et al. (1989) showed
that Equation 12.17 can be adjusted to take the entrance head into account (Figure
12.19)

q_ZTth(h—he)+TtKa(h—he)(h+he)

& (12.18)
or
’ 4 *
q___21thdh +nK,h'h (12.19)

L2

where, in addition to the previously defined symbols
h, = entrance head (i.e. the elevation of the watertable above the drains relative
to drain level) (m)
h’ = h — h,; available hydraulic head (i.e. the elevation of the watertable
midway between the drains relative to drainage level) (m)
h*=h + h,(m)

The equivalent depth d, which is a function of the depth to the impermeable layer
D, the drain spacing L, and the drain radius r,, can be determined according to the
flow chart in Figure 8.4 (Chapter 8), and the wet perimeter, u, can be chosen according
to Section 8.2.2. In theory, the d-value must be calculated with an adjusted radius
r’ = r, + h, instead of r,, and the factor 8 must be replaced by 2r, but neglecting
this does not usually lead to any appreciable error in the K-values.

The procedures discussed in the following sections are based on Equations 12.18
and 12.19. Statistical methods (Chapter 6, Section 6.5.4) are used to account for
random vaniations.

12.7.2 Procedures of Analysis

To determine the K-value in an area with existing drains, one observes the depth of
the watertable midway between the drains, and near the drains, and converts the
measurements to hydraulic-head and entrance-head values, respectively. Observations
should be made in one or more cross-sections over the drains, at different times during
periods of tail recession. The drain discharge is measured at the same time. The
measured discharge in m3/d should be expressed per unit surface area of the zone
of influence of the drain (i.e. the drain length multiplied by the drain spacing),
obtaining q in m/d.
Equation 12.19 may also be written as

%zah*+b (12.20)
with
a=7t]}§a and b=2n114<2bd

Plotting the values of q/h” on the vertical axis against the values of h* on the horizontal
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axis in a graph may result in one of the different lines depicted in Figure 12.20.
According to the type of line, one follows different procedures, as will be explained
below.

Procedure 1

Procedure 1 is used if g/h’ plotted against h* yields a horizontal line (Type I in Figure
12.20). The value of a (Equation 12.20) is close to zero, so the flow above drain level
can be neglected. Consequently, the hydraulic resistance is mainly due to flow below
drain level. For each set of (q, h, h,) data, and the equivalent depth, d, from Chapter
8, we calculate the hydraulic conductivity, K, using Equation 12.20 witha = 0

_Lgq_ L
" 2ndh’ T 2nd

We then determine the mean value of K, its standard deviation, and the standard
error of the mean. We find the upper and lower confidence limits of Ky, using Student’s
t-distribution, as was explained in Chapter 6, Section 6.5.2. Procedure 1 will be used
in Example 12.3 (Section 12.7.3).

K, b (12.21)

Procedure 2

Procedure 2 is used if g/h’ plotted against h* yields a straight line of Type II (Figure
12.20). The slope of the line, a, (Equation 12.20) represents the value of the hydraulic
conductivity above drain level. The line passes through the origin; the zero intercept
points towards a negligible flow below drain level. These drains are resting on an
impermeable layer. With each set of (q, h, h,) data, we calculate the K,-value, using
Equation 12.20 withb = 0

L2 q L2

K, =ahFh - w ¢ . (12.22)

q/n ing™

h*inm
plotof g/ h' versus b, (h=h-hsh* = h + hg)

Figure 12.20 Different patternsin plotted field data on drain discharge and hydraulic head; I) No horizontal
flow above drain level; IT) No horizontal flow below drain level; IIT) Horizontal flow occurs
above and below drain level; IV) Similar to pattern 11, but with a high entrance head and/or
decreasing K, value with deph
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We then determine the mean and standard error of K,, and the standard error of
the mean. With Student’s t-distribution, we find confidence limits of K, and of K,
(Section 6.5.2). Procedure 2 will be used in Example 12.4 (Section 12.7.4).

Procedure 3

Procedure 3 is used if q/h’ plotted against h* yields a straight line that does not pass
through the origin (Type III in Figure 12.20). In this case, there is flow above and
below the drain level, and neither K, nor K, can be neglected. We then perform a
linear two-way regression analysis with the equations

% =ah*+b (12.23)
and
h* = a’% +b (12.24)

Writing Equation 12.24 in the same form as Equation 12.23 gives

q_b v '
h/ - a/ a/ X (1225)

We thus find two different regression coefficients, a and 1/a’, which we can combine
into an intermediate regression coefficient, a*, by taking their geometric mean. Also,
we find an intermediate value b* (Chapter 6, Section 6.5.4). Using Equation 12.20,
we can find the K, and K, values from the intermediate values a* and b* instead
of a and b. Following Chapter 6, the confidence limits of K, and K, are found from
the confidence limits of a* and b*. The width of the confidence intervals will be
somewhat underestimated, because the variables q/h’ and h* are not fully independent
since both h” and h* contain parameters h and h,.

Often, a simpler procedure for finding the confidence limits can be used, because
the values a (from Equation 12.23) and 1/a’ (from Equation 12.25) give a reasonable
approximation of the confidence limits of a*. Similarly, we find the approximate
confidence limits of b* as b and b’/a’. Example 12.5 will use Procedure 3, including
these approximations of the confidence intervals.

Procedure 4

Procedure 4 is used if q/h’ plotted against h* yields an upward-bending curve which passes
through the origin (Type IV in Figure 12.20). In this case, there is no flow below drain
level and K, can be neglected. The K,-value is not constant, but decreases with depth.
We write K, = A h*, so that substitution into Equation 12.19 with K, = 0 yields

q _ mAh®

&= (12.26)

Now, a plot of g/h’ versus h*? may yield a straight line going through the origin (Figure
12.21). Next, for each set of (q, h, h,) data, we calculate the A-value. We then determine
its mean, X, and standard deviations of A and X. With Student’s t-distribution, we
can find the confidence limits of A and A. An example of this procedure was given
by Oosterbaan et al. (1989).
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q/t ingd”

h'2 inm
plot of g / h' versus h+2

Figure 12.21 Piot of field data used in Procedure 4

Table 12.6 Field observations on drain discharge and hydraulic head (Example 12.3)

No. q h h, h' K,
(m/d) (m) (m) (m) (m/d)

1 0.0030 0.31 0.01 0.30 0.34
2 0.0040 0.40 0.05 0.35 0.39
3 0.0030 0.50 0.10 0.40 0.25
4 0.0045 0.50 - 0.05 0.45 . 034
5 0.0060 0.70 0.20 0.50 0.40
6 0.0050 0.60 0.10 0.50 0.34
7 0.0040 0.55 0.05 0.50 0.27
8 0.0050 0.63 0.08 0.55 0.31
9 0.0045 0.72 0.12 0.60 0.25
10 0.0070 0.70 0.10 0.60 0.39
11 0.0060 0.80 0.20 0.60 0.34
12 0.0045 0.75 0.15 0.60 0.25
13 0.0040 _ 0.85 0.25 0.60 0.22
14 0.0050 0.70 0.05 0.65 0.26
15 0.0045 0.75 0.10 0.65- 0.23
16 0.0050 0.85 0.15 0.70 0.24
17 0.0060 0.95 0.20 0.75 0.27
© 18 0.0050 0.90 0.15 0.75 0.22

12.7.3 Drains with Entrance Resistance, Deep Soil

Example 12.3

Table 12.6 shows the data collected on drain discharge, hydraulic head midway between
the drains, and entrance head (q, h, and h,) in an experimental field with drain spacing
L = 20 m and a drain radius r, = 0.1 m. The impermeable layer is at great depth.
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Figure 12.22 Plot of field data indicating a negligible flow resistance above drain level (Example 12.3)

A plot of g/h’ versus h* values (Figure 12.22) shows that the envelope lines tend to
be horizontal, indicating that resistance to flow above drain level can be neglected.
Hence, Procedure 1 and Equation 12.21 are applicable. According to Table 8.1
(Chapter 8), Hooghoudt’s equivalent depth d = 1.89 m. The K,-values thus found
are shown in Table 12.6. '

The K,-values in Table 12.6 have a mean value K, = 0.30 m/d. The standard error
of the mean is 0.014 m/d. Using Student’s probability distribution (Section 6.5.2) for
a 90% confidence interval and 17 degrees of freedom (t; = 1.75), we can state with
90% confidence that

0.28 < K, < 0.32m/d

12.7.4 Drains with Entrance Resistance, Shallow Soil

Example 12.4

Table 12.7 shows the data collected in experimental fields in the delta of the Tagus
River in Portugal, in which corrugated and perforated PVC pipe drains with a radius
I, = 0.10 m were installed at a depth of 1.1 m below the soil surface and at a spacing
L = 20 m. The soils in this delta are fine textured (heavy clay soil).

Figure 12.23A shows the drainage intensity, q/h’, plotted against the h*-values of
Table 12.7. The relation between q/h” and h* shows an upward-bending curve through
the origin of the graph. This suggests that the soil below drain level is impermeable
and that the soil above drain level has a K-value that decreases with depth. If we
ignore the two highest points in Figure 12.23A, however, we can make the assumption
that the relationship between q/h” and h* gives a straight line through the origin of
the graph or, in other words, that the soil above drain level has a constant K-value,
whereas the flow below the drains is neglected. This assumption is illustrated by the
straight line in Figure 12.23A.

Hence, Procedure 2 is used and the hydraulic conductivity K, is calculated according
to Equation 12.22. Table 12.7 shows the results. The mean K, equals 0.20 m/d. The
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Table 12.7 Field observations on drain discharge and hydraulic head (Example 12.4)

No. Date q h h, h' h g/h’ K,
(m/d) (m) (m) (m) (m) @h (m/d)

*

1 29/12  0.00137  0.88 0.18 0.70 - 1.06 0.00196  0.235
2 30/12  0.00106  0.85 0.13 0.72 0.98 0.00147 0.191
3 31/12  0.00064  0.73 0.08 0.65 0.81 0.00098  0.155
4 02/01  0.00030  0.61 0.03 0.58 0.64 0.00052 0.103
5 03/01  0.00026  0.58 0.02 0.56 0.60  0.00046  0.099
6 07/01 0.00129 0.82 0.16 - 0.66 0.98 0.00195 0.254
7 08/01 0.00124  0.84 0.18 0.66 1.02  0.00188  0.235
8 09/01 0.00126  0.82 0.12 0.70 0.94 0.00180 0.244
9 10/01  0.00084  0.77 0.10 0.67 0.87 0.00125  0.183
10 13/01 0.00035  0.50 0.01 0.49 0.51 0.00071 0.178
11 21/02 0.00303 0.98 0.54 0.44 1.52  0.00689  0.577
12 22/02 0.00263  0.96 0.45 0.51 1.41 0.00516  0.466
13 25/02 0.00129 0.91 0.20 0.71 1.1 0.00182  0.208
14. 26/02 0.00086  0.88 0.18 0.70 1.06  0.00123  0.148
15 28/02 0.00043  0.73 0.01 0.72 0.74  0.00060  0.103
16 03/03 0.00027 0.53 0.00 0.53 0.53  0.00051 0.122
17 05/03 0.00040 0.69 0.02 0.67 0.71 0.00060  0.107
18 06/03  0.00031 0.61 0.01 0.60 0.62 0.00052  0.106
19  07/03 0.00026  0.60 0.00 0.60 0.60  0.00043  0.092

standard deviation of K, equals 0.13 m/d and the standard error of K, equals 0.032
m/d. We can calculate the confidence interval of the mean K, using Student’s t-
distribution (Section 6.5.2). With 90% confidence and 16 degrees of freedom
(Observations 11 and 12 are omitted), we find it to range from 0.14 to 0.26 m/d.

Discussion .
As stated earlier, the procedure for the calculation can be improved by accepting that
the value of K, decreases with depth, as occurs frequently in heavy clay soils. This
is also suggested in Table 12.7, by the decrease in the K,-values with decreasing g-
and h-values. Oosterbaan et al. (1989) calculated that the K,-value is 0.77 m/d at the
soil surface, 0.22 m/d at 0.55 m depth, and almost zero at drain level. From this
analysis, it follows that the drains are situated in a slowly permeable soil layer, which
explains the presence of the entrance resistance. It is likely that the entrance head
would have been less if the drains had been placed less deeply. In soils like those found
in the experimental plot, the optimum drain depth is probably about 0.8 m.

Figure 12.23B, which shows a plot of q against h,, indicates that the entrance head
increases proportionally with the discharge. This corresponds to the previous
conclusion that the K, -value is small at drain depth.
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Figure 12.23 Plots of field data from the Leziria Grande (Example 12.4)
A: The hydraulic conductivity above the drains decreases with depth
B: Plot of drain discharge against entrance head

12.75 Ideal Drains, Medium Soil Depth

Example 12.5
Table 12.8 shows data on h and q in an experimental field with drain spacing L =
20 m and drain radius r, = 0.1 m. The entrance resistance was assumed to be negligibly
small, so the h.-values were not measured. Hence, the drains are supposed to function
asideal drains and h, = 0. Note thath” = h* = h.

A plot of g/h versus h-values (Figure 12.24) suggests that the relationship between
these two parameters is an upward-sloping straight line that does not pass through
the origin, indicating that the flow to the drains occurs above and below the drain
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Table 12.8 Data on drain discharge and available hydraulic head used in Example 12.5

No. q h q/h
(m/d) (m) (dh
1 0.00125 0:.16 0.00781
2 0.00099 0.17 0.00582
3 0.00137 0.18 0.00761
4 0.00132 0.20 0.00660
5 0.00274 0.28 0.00979
6 0.00342 0.32 0.01069
7 0.00316 0.34 0.00929
8 0.00483 0.35 ©0.01380
9 0.00414 0.38 0.01089
10 0.00342 0.38 0.00900
11 0.00570 0.41 0.01390
12 0.00482 0.43 0.01121
q/hin d’
0.016
0o14| . .
0.012]
0.010] = *
0.008| s / c e
0.006 . _/
- —~
0.004
-
0.002
ol
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hydraulic head hin m

Figure 12.24 Plot 6f field data indicating flow above and below the drain level (Example 12.5)

level. Procedure 3 can therefore be applied, and a regression analysis is made.
Applying the principles explained in Section 12.7.3 and using Equations 12.23 to
12.25, we find

a) Regression of g/h upon h

% = 0.021 h + 0.0035

b) Regression of h upon g/h

h= 30.9% — 0.0058

474




or

9 _ 0.032h ~ 0.000019

=

The calculation of the K-values proceeds as follows. Using Equation 12.20,a = 0.021
yields K, = 2.6 m/d, and l/a’ = 0.032 yields K, = 4.1 m/d. Using these values as
the approximate confidence limits, we find that 2.6 < K, < 4.1 m/d. Similarly, b
= 0.0035 yields K,d = 0.22 m?/d, and b’/a’ = —0.000019 yields K,d = -0.0012 m?/d.

A comparison of the K,- and K, d-values shows that the K,-value is the dominating
one, and that the K,d-value is statistically insignificant. Note that if we assume that
the flow below drain level can be neglected, we can use Procedure 2 to analyze the
data of Example 12.5 as well. This would give K, = 4.3 m/d, with a standard error
of the mean of 0.26 m/d.
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