
I A second advantage is that the variation in K-values found is considerably less than 
those found with small-scale methods. For example, El-Mowelhi and Van Schilfgaarde 
(1982) found the K-values determined from different 100 mm drains in a clay soil 
to vary from 0.086 to O .  12 m/d. This range compares very favourably with the much 
wider ranges given in Sections 12.5.3 and 12.5.4. 

' 
Influence of Drainage Conditions 
The choice of the correct drainage formula for the calculation of K-values from 
observations on the functioning of the drains depends on: 
- The drainage conditions and the aquifer type. For example, the choice depends 

on the depth of an impermeable layer, whether the K-value increases or decreases 
with depth, and whether the aquifer is semi-confined and seepage or natural 
drainage occurs; 

- Whether one is dealing with parallel drains with overlapping zones of influence 
or with single drains; 

- Whether one analyses the drain functioning in steady or unsteady state; 
- Whether the groundwater flow is two-dimensional (which occurs when the recharge 

is evenly distributed over the area) or three-dimensional (which often occurs in 
irrigated areas where the fields are not irrigated at the same time, so that the recharge 
is not evenly distributed over the area); 

- Whether the drains are offering entrance resistance to the flow of groundwater into 
the drains or not; 

- Whether the drains are placed in flat or in sloping land, and whether they are laid 
at equal or different depths below the soil surface. 

I 
I 

1 1990b). 
I 

I 

In this chapter, not all the above situations will be discussed in detail, but a selection 
is presented in Section 12.7. Some other situations are described by Oosterbaan (1990a, 

The analysis of the functioning of existing drains in unsteady-state conditions offers 
the additional possibility of determining the drainable porosity (e.g. El-Mowelhi and 
Van Schilfgaarde 1982). This possibility is not further elaborated in this chapter. 

Anyone needing to analyze K-values under drainage conditions that deviate from 
those selected in this chapter and are not discussed elsewhere in literature, will probably 
have to develop a new method of analysis which takes into account the specific 
drainage conditions. 

12.6 

12.6.1 The Auger-Hole Method 

Principle 
The principle of the auger-hole method is as follows. A hole is bored into the soil 
with an auger to a certain depth below the watertable. When the water in the hole 
reaches equilibrium with the groundwater, part of it is removed. The groundwater 
then begins to seep into the hole and the rate at which it rises is measured. The hydraulic 
conductivity of the soil is computed with a formula or graph describing the mutual 

Examples of Small-scale In-Situ Methods 
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relationship between the rate of rise, the groundwater conditions, and the geometry 
of the hole. 

This method measures the average hydraulic conductivity of a soil column about 
30 cm in radius and extending from the watertable to about 20 cm below the bottom 
of the hole, or to a relatively impermeable layer if it occurs within 20 cm of the bottom. 

The method can also be used to measure the K-values of two separate layers. This 
is done by repeating the measurements in the same hole after it has been deepened. 
Reference is made to Van Beers (1970). 

Theory 
As reported by Van Beers (1970) and Bouwer and Jackson (1974), Ernst developed 
the following equation for the K-value of the soil in dependence of the average rate 
of rise of the water level in the hole (Figure 12.13) 

(12.9) Ho - Ht K=C- t 

where 
K = hydraulic conductivity of the saturated soil (m/d) 
C = a factor as defined in Equation 12.10 or 12.1 1 
t = time elapsed since the first measurement of the level of the rising water 

in the hole (s) 

tape 
with 
float 

soil surface 

. . . . . . . . 
. . .  . . . . . . . . . . . . . . .  . . . .  

standard reference level 

. . . . . . . . 

Figure 12. I3 Measurements for the auger-hole method 
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H, = depth of the water level in the hole below reference level at time t (cm) 
Ho = H, when t = O 

The C-factor depends on the depth of an impermeable layer below the bottom of 
the hole (D) and the average depth of the water level in the hole below the watertable 
(h’) as follows: 

When D > + D2, then 

4000 
C =  

(20 + +) (2 -%) 
When D = O, then 

r 3600 p 
C =  

(10 +$)(2-%) 

(1 2.1 O) 

(12.11) 

where 
D = depth of the impermeable layer below the bottom of the hole (cm) 
D, = depth of the bottom of the hole below the watertable (cm), with the 

r = radius of the hole (cm): 3 < r < 7 
h’ = average depth of the water level in the hole below the watertable (cm), 

with the condition: h‘ > D2/5 

condition: 20 < D2 < 200 

When O < D < 4 D2, one must interpolate between the results of the above two 
equations. 

The value of h’ can be calculated from 

h = 0.5 (Ho + H,) - Dl (1 2.1 2) 

where 
D, = depth of the watertable below reference level (cm) 
H, = depth of the water level in the hole at  the end of the measurements (cm) 

Ernst also prepared graphs for the solution of the C-factor in Equation’ 12.9 (Van 
Beers 1970), which are more accurate than Equations 12.10 and 12.11. Within the 
ranges of r and H mentioned above, however, the equations give less than 20% error. 
In view of the usually large variability in K-values (of the order of 100 to 1000%, 
or more), the given equations are accurate enough. 

Other methods of determining K-values with the auger-hole method were reviewed 
by Bouwer and Jackson (1974). These methods give practically the same results as 
the Ernst method. 
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Equipment and Procedure 
The equipment used in The Netherlands is illustrated in Figure 12.14. It consists of 
a tube, 60 cm long, the bottom end of which is fitted with a clack valve so that it 
can be used as a bailer. Extension pieces can be screwed to the top end of the tube. 
A float, a light-weight steel tape, and a standard are also part of the equipment. The 
standard is pressed into the soil down to a certain mark, so that the water-level readings 
can be taken at  a fixed height above the ground surface. 

The hole must be made with a minimum disturbance to the soil. The open blade 
auger used in The Netherlands is very suitable for wet clay soils, whereas the closed 
pothole auger commonly used in the U.S.A. is excellent in dry soils. 

The optimum depth of the holes depends on the nature, thickness, and sequence 
of soil layers, on the depth of the watertable, and on the depth at  which one wishes 
to determine the hydraulic conductivity. When augering the hole in slowly permeable 
soils, one often observes that the water is entering the hole only when the depth of 
the hole is well below the watertable. As the hole is deepened further, the water enters 
faster, because the rate of inflow of the water is governed by the difference between 
the watertable and the water level in the hole, and by the depth of the hole below 
reference level (DJ. Sometimes, this phenomenon is incorrectly attributed to artesian 
pressure, but artesian pressure only exerts an influence if one pierces a completely 
or almost impermeable layer. 

When the water in the hole is in equilibrium with the groundwater, the level 'is 
recorded. Water is then bailed out to lower the level in the hole by 20 to 40 cm. 

Figure 12.14 Equipment used for the auger-hole method (courtesy Eijkelkamp b.v.) 
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I 

Measuring the rate of rise in the water level must begin immediately after bailing. 
Either the time for fixed intervals of rise, or the rise for fixed intervals of time can 
be recorded. The first technique requires the use of chronometers, while the second, 
which is customary in The Netherlands, needs only a watch with a good second hand. 
Normally, some five readings are taken, as these will give a reliable average value 
for the rate of rise and also provide a check against irregularities. The time interval 
at which water-level readings are taken is usually from 5 to 30 seconds, depending 
on the hydraulic conductivity of the soil, and should correspond to a rise of about 
1 cm in the water level. A good rule of thumb is that the rate of rise in mm/s in an 
8 cm diameter hole with a depth of 70 cm below the watertable approximately equals 
the K-value of the soil in m/d. 

Care should be taken to complete the measurements before 25% of the volume of 
water removed from the hole has been replaced by inflowing groundwater. After that, 
a considerable funnel-shaped watertable develops around the top of the hole. This 
increases resistance to the flow around and into the hole. This effect is not accounted 
for in the formulas or flow charts developed for the auger-hole method and 
consequently it should be checked that Ho - H, < 0.25 (Ho - DI). 

After the readings have been taken, the reliability of the measurements should be 
checked. The difference in water level between two readings (AH) is therefore 
computed to see whether the consecutive readings are reasonably consistent and 
whether the value of AH gradually decreases. 

It often happens that AH is relatively large for the first reading, because of water 
dripping along the walls of the hole directly after bailing. Further inconsistencies in 
AH values may be caused by the float sticking to the wall or by the wind blowing 
the tape against the wall. Consistency can be improved by tapping the tape regularly. 
An example of recorded data and the ensuing calculations is presented in Table 12.4. 

The auger-hole method measures the K-value mainly around the hole. It gives no 
information about vertical K-values nor about K-values in deeper soil layers. The 
method is therefore more useful in shallow than in deep aquifers. 

12.6.2 Inversed Auger-Hole Method 

Principles and Theory of the Infiltration Process 
If one uses a steel cylinder (also called ‘infiltrometer’) to infiltrate water continuously 
into unsaturated soil, one will find after a certain time that the soil around and below 
the area becomes almost saturated and that the wetting front is a rather sharp 
boundary between wet and dry soil (Figure 12.15). 

We shall consider a point just above the wetting front at a distance z below the 
soil surface in the area where the water infiltrates. The matric head of the soil at this 
point has a (small) value h,. The head at the soil surface equals z + h (h = height 
of water level in the cylinder). The head difference between the point at depth z and 
a point at the soil surface equals z + h + IhJ, and the average hydraulic gradient 
between the two points is 

z + h + lh,l s =  
Z 

( 1  2.1 3) 
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Table 12.4 Example of measurements and calculations with the auger-hole method 

No : Date: 
Location: Details: 

Depth of auger-hole D’ : 240 cm below reference 
Depth of watertable Dl : 114 cm below reference 
D2 = D’ - DI : 126 cm 
Auger-hole radius r : 4cm 
Depth impermeable layer : D > 1/4 D2 

t H AH*) 
(s) (cm) (cm) 

O 145.2 
10 144.0 1.2 
20 142.8 1.2 
30 141.7 1 . 1  
40 140.6 1 . 1  
50 139.6 1 .o 

Try t = 50 s; AHso = Ho - H,, = 145.2 - 139.6 = 5.6 cm 

Check Ho - HsQ < 0.25 (Ho - DI); 145.2 - 139.6 < 0.25 (145.2 - 114); 
5.6 < 7.8 O.K. *) 

Equation 12.12: h’ = 0.5 (145.2 + 139.6) - 114 = 28.4 cm 

Ratio’s for Equation 12.10: D2/r = 31.5; h’/D2 = 0.225; rlh’ = 0.141 

= 6.2 4000 x 0.141 Equation 12.10: C = 
(20 + 31.5)(2 - 0.255) 

Equation 12.9: K = 6.2 x 5.6 I 5 0  = 0.7 mld 

*) per reading; AH = H,-l - H, 
**) if not O.K., try t = 40 s or less, so that AHt decreases 

If z is large enough, s approximates unity. Hence, from Darcy’s Law (Equation 12.2), 
we know that the mean flow velocity in the wetted soil below approaches the hydraulic 
conductivity (v = K), assuming the wetted soil is practically saturated. 

The inversed auger-hole method (in French literature known as the ‘Porchet 
method’) is based on these principles. If one bores a hole into the soil and fills this 
hole with water until the soil below and around the hole is practically saturated, the 
infiltration rate v will become more or less constant. The total infiltration Q will then 
be equal to v x A (where A is the surface area of infiltration). With v = K, we get: 
Q = K x A .  

For the inversed auger-hole method, infiltration occurs both through the bottom 
and the side walls of the hole (Figure 12.16). Hence we have A = 7cr2 + 27crh (where 
r is the radius of the hole and h is the height of the water column in the hole). So 
we can write Q = 2nKr(h + 4 r). 
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cylinder wall 

infiltration surface 

- - - - - - - 

soil surface 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 12. I5  Infiltration process beneath a cylinder infiltrometer 

Further, we can find Q from the rate at which the water level in the hole is lowered: 
Q = -ddh/d t .  Eliminating Q in both expressions gives 2K(h + 3 r) = -r dh/dt. 
Upon integration and'rearrangement, we obtain 

( 1 2.14) log(h0 + + r) - log@, + 3 r) 
t - to  

K = 1.15r 

where (Figure 12.17) 
t = time since the start of measuring (s) 
h, = the height of the water column in the hole at time t (cm) 
ho = h, at time t = O 

I augerhole I 
I 
I 2 r  ' 

. . . . . . . . . . . . .  
. . . . . . . . . . . .  

. . . . . . . . . .  . . . . . . . . . . .  
. . . . . . . . . .  . . . . . . . . .  . . . . . . . .  . . . . . . . . .  . . . . . . . .  . . . . . . . . .  

. . . . . . . . .  

. . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 12.16 Infiltration from a water-filled auger-hole into the soil (inversed auger-hole method) 
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soil surface 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -.- . . . . . . 1- . . . . . . - . . - . . 7 . . 

. . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

standard reference level 

. . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . :p‘ . . . . , . . . . . . . .  . . . . . . . . . . . . . l . :  :.:.:. I... 

. . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  

Figure 12.17 Measurements for the inversed auger-hole method 

The values of h, are obtained from 

h, = D’ - H, 

D’ = the depth of the hole below reference level (cm) 
H, = the depth of the water level in the hole below reference level (cm) 

( 12.1 5 )  

where 

When H and tare measured at appropriate intervals (as was explained in the previous 
section), K can be calculated. 

On semilog paper, plotting h, + +r on the log axis and t on the linear axis produces 
a straight line with a slope 

( 1 2.1 6) log(h, + 4 r) - log(h, + 3 r) 
t - to 

The calculation of K with Equation 12.14 can therefore also be done with the value 
of tan a. Hence, K = 1 .I5 r tan a. 

t ana  = 

Procedure 
After a hole is augered in the soil to the required depth, the hole is filled with water, 
which is left to drain away freely. The hole is refilled with water several times uhtil 
the soil around the hole is saturated over a considerable distance and the infiltration 
(rate) has attained a more or less constant value. After the last refilling of the hole, 
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Table 12.5 Example of measurements with inversed auger-hole method (r = 4 cm, D' = 90 cm) 

t Ht h,= D' - H, h, + Vir 
6) (cm) (cm) (cm) 

O 71 19 21 
140 72 18 20 
300 73 17 19 
500 74 16 18 
650 75 15 17 
900 76 14 16 

the rate of drop of the water level in the hole is measured (e.g. with the float and 
tape system as was explained for the auger-hole method). The data (h + +r and t) 
are then plotted on semi-log paper, as was explained earlier. The graph should yield 
a straight line. If the line is curved, continue to wet the soil until the graph shows 
the straight line. Now, with any two pairs of values of h + +r and t, the K value 
can be calculated according to Equation 12.14. An example of measurements is given 
in Table 12.5. 

The data of Table 12.5 are plotted in Figure 12.18, which shows that a linear relation 
exists between log(h, + +r) and t. The K-value can now be calculated from Equation 
12.14 as follows 

to= 140 log(ho + +r) = 1.30 
t = 650 h, + +r = 17 log(h, + +r) = 1.23 

ho + +r = 20 

1.30 - 1.23 
650 - 140 = 0.00063 cm/s or 0.55 m/d K = 1.15 x 4 

ht + 8 in cm 

O 500 O0 
t in s 

Figure 12.18 Fall of the water level, recorded with the inversed auger-hole method, plotted against time 
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12.7 Examples of Methods Using Parallel Drains 

12.7.1 Introduction 

When one is analyzing the relationships between hydraulic head (elevation of the 
watertable) and the discharge of pipe drainage systems to assess the soil's hydraulic 
conductivity, one needs a drainage equation in agreement with the conditions during 
which the measurements were made. Usually, the measurements are made during a 
dry period following a period of recharge by rain or irrigation (i.e. during tail 
recession). Hence, the watertable is falling after it had risen as a result of the recharge. 
Under such unsteady-state conditions, Equation 8.36 (Chapter 8) is applicable for 
ideal drains (i.e. drains without entrance resistance) 

2 n K , d h  
9 = L2 

which can be extended to include the flow above the drain level (Oosterbaan et al. 1989) 

(1 2.17) 

where 
q = drain discharge (m/d) 
Kb = hydraulic conductivity of the soil below drain level (m/d) 
Ka = hydraulic conductivity of the soil above drain level (m/d) 
d 
h 

L = drainspacing(m) 

= Hooghoudt's equivalent depth (m) 
= elevation of the watertable midway between the drains relative to drain 

level (m) 

soil surface 
/ ~ \ ~ / ~ \ \ ~ / ~ \ \ ~ / ~ \ ~ / ~ \ \ ~ / ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  water divid,e 1 .  : . :. : . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  I ' . ' .  . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  . , . . . . . . . . . . .  . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 12.19 Drains with entrance resistance (symbols as defined for Equations 12.17 ~ 12.19) 
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Since entrance resistance is not always negligible, Oosterbaan et al. (1989) showed 
that Equation 12.17 can be adjusted to take the entrance head into account (Figure 
12.19) 

(1 2.1 8) 27~ Kb (h - he) + TC Ka (h - he) (h + he) 
q =  LZ 

or 

2x Kb d h’ + x Ka h’ h* 
4 =  L2 ( 12.1 9) 

where, in addition to the previously defined symbols 
he = entrance head (i.e. the elevation of the watertable above the drains relative 

h‘ = h - he; available hydraulic head (i.e. the elevation of the watertable 

h* = h + h,(m) 

to drain level) (m) 

midway between the drains relative to drainage level) (m) 

The equivalent depth d, which is a function of the depth to the impermeable layer 
D, the drain spacing L, and the drain radius ro, can be determined according to the 
flow chart in Figure 8.4 (Chapter S), and the wet perimeter, u, can be chosen according 
to Section 8.2.2. In theory, the d-value must be calculated with an adjusted radius 
r’ = ro + he instead of ro, and the factor 8 must be replaced by 2x, but neglecting 
this does not usually lead to any appreciable error in the K-values. 

The procedures discussed in the following sections are based on Equations 12.18 
and 12.19. Statistical methods (Chapter 6, Section 6.5.4) are used to account for 
random variations. 

12.7.2 Procedures of Analysis 

To determine the K-value in an area with existing drains, one observes the depth of 
the watertable midway between the drains, and near the drains, and converts the 
measurements to hydraulic-head and entrance-head values, respectively. Observations 
should be made in one or more cross-sections over the drains, at different times during 
periods of tail recession. The drain discharge is measured at  the same time. The 
measured discharge in m3/d should be expressed per unit surface area of the zone 
of influence of the drain (i.e. the drain length multiplied by the drain spacing), 
obtaining q in m/d. 

Equation 12.19 may also be written as 

P = a h * + b  ( 1  2.20) h 

with 

7~ Ka 2n Kb d 
L2 and b =- LZ 

a = -  

Plotting the values of q/h‘ on the vertical axis against the values of h* on the horizontal 
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axis in a graph may result in one of the different lines depicted in Figure 12.20. 
According to the type of line, one follows different procedures, as will be explained 
below. 

Procedure 1 
Procedure 1 is used if q/h‘ plotted against h* yields a horizontal line (Type I in Figure 
12.20). The value of a (Equation 12.20) is close to zero, so the flow above drain level 
can be neglected. Consequently, the hydraulic resistance is mainly due to flow below 
drain level. For each set of (9, h, he) data, and the equivalent depth, d, from Chapter 
8, we calculate the hydraulic conductivity, K,, using Equation 12.20 with a = O 

L2 q L2 K, = -- = -b 
2nd h’ 2nd (12.21) 

We then determine the mean value of K,, its standard deviation, and the standard 
error of the mean. We find the upper and lower confidence limits of Kb, using Student’s 
t-distribution, as was explained in Chapter 6, Section 6.5.2. Procedure 1 will be used 
in Example 12.3 (Section 12.7.3). 

Procedure 2 
Procedure 2 is used if q/h‘ plotted against h* yields a straight line of Type I1 (Figure 
12.20). The slope of the line, a, (Equation 12.20) represents the value of the hydraulic 
conductivity above drain level. The line passes through the origin; the zero intercept 
points towards a negligible flow below drain level. These drains are resting on an 
impermeable layer. With each set of (9, h, he) data, we calculate the Ka-value, using 
Equation 12.20 with b = O 

(12.22) 

plot 01 q / h’ versus h’, (h = h - he, h’ = h + he) 

Figure 12.20 Different patterns in plotted field data on drain discharge and hydraulic head; I) No horizontal 
flow above drain level; 11) No horizontal flow below drain level; 111) Horizontal flow occurs 
above and below drain level; IV) Similar to pattern 11, but with a high entrance head and/or 
decreasing K, value with deph 
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We then determine the mean and standard error of Ka, and the standard error of 
the mean. With, Student’s t-distribution, we find confidence limits of K, and of Ka 
(Section 6.5.2). Procedure 2 will be used in Example 12.4 (Section 12.7.4). 

Procedure 3 
Procedure 3 is used if q/h‘ plotted against h* yields a straight line that does not pass 
through the origin (Type I11 in Figure 12.20). In this case, there is flow above and 
below the drain level, and neither Ka nor K, can be neglected. We then perform a 
linear two-way regression analysis with the equations 

P = a h * + b  h 

and 

9 
h h* = a’, + b’ 

(1 2.23) 

(12.24) 

Writing Equation 12.24 in the same form as Equation 12.23 gives 

(1 2.25) 

We thus find two different regression coefficients, a and l/a‘, which we can combine 
into an intermediate regression coefficient, a*, by taking their geometric mean. Also, 
we find an intermediate value b* (Chapter 6, Section 6.5.4). Using Equation 12.20, 
we can find the.K, and K, values from the intermediate values a* and b* instead 
of a and b. Following Chapter 6, the confidence limits of Ka and Kb are found from 
the confidence limits of a* and b*. The width of the confidence intervals will be 
somewhat underestimated, because the variables q/h‘ and h* are not fully independent 
since both h’ and h* contain parameters h and he. 

Often, a simpler procedure for finding the confidence limits can be used, because 
the values a (from Equation 12.23) and l/a’ (from Equation 12.25) give a reasonable 
approximation of the confidence limits of a*. Similarly, we find the approximate 
confidence limits of b* as b and b’/a’. Example 12.5 will use Procedure 3 ,  including 
these approximations of the confidence intervals. 

Procedure 4 
Procedure 4 is used if q/h’ plotted against h* yields an upward-bending curve which passes 
through the origin (Type IV in Figure 12.20). In this case, there is no flow below drain 
level and Kb can be neglected. The K,-value is not constant, but decreases with depth. 
We write Ka = h h*, so that substitution into Equation 12.19 with K, = O yields 

q - ~ h h * ~  (12.26) 

Now, a plot of q/h’ versus h*2 may yield a straight line going through the origin (Figure 
12.21). Next, for each set of (4, h, he) data, we calculate the h-value. We then determine 
its mean, X, and standard deviations of h and X. With Student’s t-distribution, we 
can find the confidence limits of h and X. An example of this procedure was given 
by Oosterbaan et al. (1989). 
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h" in m 
plot of q / h' versus W 2  

Figure 12.21 Piot of field data used in Procedure 4 

Table 12.6 Field observations on drain discharge and hydiaulic head (Example 12.3) 

No. 9 h he h' Kb 
( d d )  (m) (m> (m) (" 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

' 16 
17 
18 

0.0030 
O. 0040 
0.0030 
O. 0045 
O. 0060 
0.0050 
O. 0040 
0.0050 
0.0045 
0.0070 
O. 0060 
0.0045 
O. 0040 
0.0050 
O. 0045 
0.0050 
0.0060 
0.0050 

0.31 
0.40 
0.50 
0.50 
0.70 
0.60 
0.55 
0.63 
0.72 
0.70 
0.80 
0.75 
0.85 
0.70 
0.75 
0.85 
0.95 
0.90 

0.01 
0.05 
o. 10 
0.05 
0.20 
o. 10 
0.05 
0.08 
o. 12 
o. 10 
0.20 
O. 15 
0.25 
0.05 
o. 10 
0.15 
0.20 
O. 15 

0.30 
0.35 
0.40 
0.45 
0.50 
0.50 
0.50 
0.55 
0.60 
0.60 
0.60 
0.60 
0.60 
0.65 

0.70 
0.75 
0.75 

0.65- 

0.34 
0.39 
0.25 
0.34 
0.40 
0.34 
0.27 
0.31 
0.25 
0.39 
0.34 
0.25 
0.22 
0.26 
0.23 
0.24 
0.27 
0.22 

~~ 

12.7.3 

Example 12.3 
Table 12.6 shows the data collected on drain discharge, hydraulic head midway between 
the drains, and entrance head (9, h, and he) in an experimental field with drain spacing 
L = 20 m and a drain radius ro = 0.1 m. The impermeable layer is at great depth. 

470 

Drains with Entrance Resistance, Deep Soil 



0.0150 

0.0125 

0.0100 

0.0075 

0.0050 

0.0025 

O 

Figure 12.22 Plot of field data indicating a negligible flow resistance above drain level (Example 12.3) 

- - .- -upperenvelope- - -- -.- i - - 
.-. - - .- -lower envelope- - --e - 2-0 -0- - 

A plot of q/h’ versus h* values (Figure 12.22) shows that the envelope lines tend to 
be horizontal, indicating that resistance to flow above drain level can be neglected. 
Hence, Procedure 1 and Equation 12.21 are applicable. According to Table 8.1 
(Chapter S), Hooghoudt’s equivalent depth d = 1.89 m. The Kb-values thus found 
are shown in Table 12.6. 

The K,-values in Table 12.6 have a mean value Kb = 0.30 m/d. The standard error 
of the mean is 0.014 m/d. Using Student’s probability distribution (Section 6.5.2) for 
a 90% confidence interval and 17 degrees of freedom (tf = 1.75), we can state with 
90% confidence that 

0.28 < K b  < 0.32m/d 

12,7.4 Drains with Entrance Resistance, Shallow Soil 

Example 12.4 
Table 12.7 shows the data collected in experimental fields in the delta of the Tagus 
River in Portugal, in which corrugated and perforated PVC pipe drains with a radius 
ro = O. 10 m were installed at a depth of 1.1 m below the soil surface and at a spacing 
L = 20 m. The soils in this delta are fine textured (heavy clay soil). 

Figure 12.23A shows the drainage intensity, q/h’, plotted against the h*-values of 
Table 12.7. The relation between q/h’ and h* shows an upward-bending curve through 
the origin of the graph. This suggests that the soil below drain level is impermeable 
and that the soil above drain level has a K-value that decreases with depth. If we 
ignore the two highest points in Figure 12.23A, however, we can make the assumption 
that the relationship between q/h’ and h* gives a straight line through the origin of 
the graph or, in other words, that the soil above drain level has a constant K-value, 
whereas the flow below the drains is neglected. This assumption is illustrated by the 
straight line in Figure 12.23A. 

Hence, Procedure 2 is used and the hydraulic conductivity Ka is calculated according 
to Equation 12.22. Table 12.7 shows the results. The mean Ka equals 0.20 m/d. The 
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Table 12.7 Field observations on drain discharge and hydraulic head (Example 12.4) 

No. Date 4 h he h' h* q/h' Ka 
(m/d) (m) (m) (m) (m) (d-') (mld) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

29/12 0.00137 
30112 0.00106 
31/12 0.00064 
02/01 0.00030 
03/01 0.00026 
07/01 0.00129 
08/01 0.00124 
09/01 0.00126 
1 OIO 1 O. 00084 
13/01 0.00035 
21/02 0.00303 
22/02 0.00263 
25/02 0.00129 
26/02 0.00086 
28/02 0.00043 
03/03 0.00027 
05/03 0.00040 
06/03 0.00031 
07/03 0.00026 

0.88 
0.85 
0.73 
0.61 
0.58 
0.82 
0.84 
0.82 
0.77 
0.50 
0.98 
0.96 
0.91 
0.88 
0.73 
0.53 
0.69 
0.61 
0.60 

O. 18 
O. 13 
0.08 
0.03 
0.02 
O. 16 
O. 18 
0.12 
o. 10 
0.01 
0.54 
0.45 
0.20 
O. 18 
0.01 
0.00 
0.02 
0.01 
0.00 

0.70 
0.72 
0.65 
0.58 
0.56 

' 0.66 
0.66 
0.70 
0.67 
0.49 
0.44 
0.51 
0.71 
0.70 
0.72 
0.53 
0.67 
0.60 
0.60 

1 .O6 
0.98 
0.81 
0.64 
0.60 
0.98 
1 .o2 
0.94 
0.87 
0.51 
1.52 
1.41 
1.11 
1 .O6 
0.74 
0.53 
0.71 
0.62 
0.60 

O. 00196 
O. 00147 
0.00098 
0.00052 
0.00046 
0.00195 
0.00188 
0.001 80 
0.00125 
0.0007 1 
0.00689 
0.00516 
O. 00182 
0.00123 
O. 00060 
0.00051 
O. 00060 
o. 00052 
0.00043 

0.235 
0.191 
0.155 
O. 103 
O. 099 
0.254 
0.235 
0.244 
O. 183 
O. 178 
0.577 
0.466 
0.208 
O. 148 
O. 103 
o. 122 
O. 107 
O. 106 
O. 092 

standard deviation of Ka equals 0.13 m/d and the standard error of Ka equals 0.032 
m/d. We can calculate the confidence interval of the mean Ka using Student's t- 
distribution (Section 6.5.2). With 90% confidence and 16 degrees of freedom 
(Observations 11 and 12 are omitted), we find it to range from O. 14 to 0.26 m/d. 

Discussion 
As stated earlier, the procedure for the calculation can be improved by accepting that 
the value of Ka decreases with depth, as occurs frequently in heavy clay soils. This 
is also suggested in Table 12.7, by the decrease in the K,-values with decreasing q- 
and h-values. Oosterbaan et al. (1989) calculated that the Ka-value is 0.77 m/d at the 
soil surface, 0.22 m/d at 0.55 m depth, and almost zero at drain level. From this 
analysis, it follows that the drains are situated in a slowly permeable soil layer, which 
explains the presence of the entrance resistance. It is likely that the entrance head 
would have been less if the drains had been placed less deeply. In soils like those found 
in the experimental plot, the optimum drain depth is probably about 0.8 m. 

Figure 12.23B, which shows a plot of q against he, indicates that the entrance head 
increases proportionally with the discharge. This corresponds to the previous 
conclusion that the K,-value is small at drain depth. 
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Figure 12.23 Plots of field data from the Leziria Grande (Example 12.4) 
A: The hydraulic conductivity above the drains decreases with depth 
B: Plot of drain discharge against entrance head 

12.7.5 Ideal Drains, Medium Soil Depth 

Example 12.5 
Table 12.8 shows data on h and q in an experimental field with drain spacing L = 
20 m and drain radius ro = O. 1 m. The entrance resistance was assumed to be negligibly 
small, so the he-values were not measured. Hence, the drains are supposed to function 
as ideal drains and he = O. Note that h' = h* = h. 

A plot of q/h versus h-values (Figure 12.24) suggests that the relationship between 
these two parameters is an upward-sloping straight line that does not pass through 
the origin, indicating that the flow to the drains occurs above and below the drain 
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Table 12.8 Data on drain discharge and available hydraulic head used in Example 12.5 

No. ¶ h q/h 
W d )  (m) (d-9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

O. 00125 
0.00099 
0.001 37 
O. O01 32 
0.00274 
O. 00342 
0.00316 
0.00483 
0.00414 
0.00342 
0.00570 
O. 00482 

O. 16 
O. 17 
o. 18 
0.20 
0.28 
0.32 
0.34 
0.35 
0.38 
0.38 
0.41 
0.43 

0.00781 
0.00582 
0.0076 1 
O. 00660 
0.00979 
O. 01069 
0.00929 
0.01380 
0.01089 
0.00900 
0.01 390 
0.01121 

q i h in d-' 

0.016 

0.014 

0.012 

0.010 

0.008 

0.006 

0.004 

0.002 

~ 

O 0.1 0.2 0.3 0.4 0.5 
hydraulic head h in m 

Figure 12.24 Plot of field data indicating flow above and below the drain level (Example 12.5) 

level. Procedure 3 can therefore be applied, and a regression analysis is made. 

12.25, we find 
Applying the principles explained in Section 12.7.3 and using Equations 12.23 to 

a) Regression of q/h upon h 

!I = 0.021 h + 0.0035 h 

b) Regression of h upon q/h 

9 h = 30.9- - 0.0058 h 
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I Or 

4 = 0.032 h - 0.000019 h 

The calculation of the K-values proceeds as follows. Using Equation 12.20, a = 0.021 
yields Ka = 2.6 m/d, and l/a’ = 0.032 yields Ka = 4.1 m/d. Using these values as 
the approximate confidence limits, we find that 2.6 < Ka < 4.1 m/d. Similarly, b 
= 0.0035 yields Kbd = 0.22 m2/d, and b’/a’ = -0.000019 yields Kbd = -0.0012 m2/d. 

A comparison of the Ka- and Kbd-values shows that the Ka-value is the dominating 
one, and that the Kbd-value is statistically insignificant. Note that if we assume that 
the flow below drain level can be neglected, we can use Procedure 2 to analyze the 
data of Example 12.5 as well. This would give Ka = 4.3 m/d, with a standard error 
of the mean of 0.26 m/d. 
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