9 Seepage and Groundwater Flow
N.A. de Ridder'} and G. Zijlstra®

9.1 Introduction

The underground flow of water can create significant problems for land drainage.
These problems can be divided into two categories: those of seepage and those of
groundwater flow. Seepage problems concern the percolation of water through dams
and into excavations, and the movement of water into and through the soil from bodies
of surface water such as canals, streams, or lakes. Groundwater-flow problems concern
the natural processes of infiltration and the subsequent flow of water through layers
of high and low permeability until the flow discharges into springs, rivers, or other
natural drainage channels. A quantitative knowledge of seepage and/or groundwater
flow is needed to determine the drainable surplus of a project area (Chapter 16).
Seepage from open watercourses can be determined by direct measurements at various
points (inflow-outflow technique), or by subjecting the flow system to a hydrodynamic
analysis (analytical approach). The latter requires that the relevant hydraulic
characteristics of the water-transmitting layers and the boundary conditions be
known. '

This chapter is mainly concerned with the analytical approach to some of the seepage
and groundwater-flow problems frequently encountered in land drainage. For a more
thorough treatment of the subject, we refer to textbooks: e.g. Harr (1962), Verruijt
(1982), Rushton and Redshaw (1979), Muskat (1946), Bear et al. (1968), Bouwer
(1978).

9.2 Seepage from a River into a Semi-Confined Aquifer

A water-bearing layer is called a semi-confined or leaky aquifer when its overlying
and underlying layers are aquitards, or when one of them is an aquitard and the other
an aquiclude. Aquitards are layers whose permeability is much less than that of the
aquifer itself. Aquicludes are layers that are essentially impermeable. These terms were
defined in Chapter 2.2.3.

Semi-confined aquifers being common in alluvial plains, we shall consider the
seepage along a river that fully penetrates a semi-confined aquifer overlain by an
aquitard and underlain by an aquiclude. We assume that the aquifer is homogeneous
and isotropic, and that its thickness, D, is constant. As the hydraulic conductivity
of the aquifer, K, is much greater than the hydraulic conductivity of the overlying
confining layer, K’, we are justified in assuming that vertical velocities in the aquifer
are small compared with the horizontal velocities. This implies that the hydraulic head
in the aquifer can be considered practically constant over its thickness. Whereas
horizontal flow predominates in the aquifer, vertical flow, either upward or downward,
occurs in the confining top layer, depending on the relative position of the watertable
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Figure 9.1 Semi-confined aquifer cut by a straight river; equilibrium conditions, groundwater at rest

in the top layer and the piezometric surface in the aquifer.

As a start, let us consider a situation where the groundwater is at rest (Figure 9.1).
The watertable in the confining layer and the piezometric surface in the aquifer
coincide with the water level in the river, y,.

At high river stages the hydraulic head, h, in the aquifer increases and may rise
above the phreatic level h’ in the confining layer, or even rise above the land surface.
The high river stage induces a seepage flow from the river into the aquifer, and from
the aquifer into the overlying confining layer (Figure 9.2). At low river stages, the
head in the aquifer decreases and may fall below the watertable in the overlying
confining layer. The low river stage induces a downward flow through the confining
layer into the aquifer, and a horizontal flow from the aquifer towards the river channel
(Figure 9.3). The upward or downward flow through the confining layer causes the
watertable in that layer to rise or fall. Rainfall and evapotranspiration also affect
the elevation of the watertable.
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Figure 9.2 Semi-confined aquifer cut by a straight river; seepage flow
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Figure 9.3 Semi-confined aquifer cut by a straight river; drainage flow

A solution to the above problem can be obtained by assuming that the watertable
in the confining layer is constant and uniform at a height, h’, above the horizontal
surface of the impermeable base, although a constant watertable in the confining layer,
independent of changes in the hydraulic head in the aquifer, is possible only when
narrowly-spaced ditches and drains are present.

Using Darcy’s law, we can express the horizontal flow in the aquifer as

dh
or, differentiating with respect to x,
dq _ d’h
&= KDW .1

where

q = the flow per unit width of the aquifer (m?/d)

Small quantities of water leave the aquifer through the confining layer of low
permeability. The principle of continuity requires that the change in the horizontal
flow in the aquifer brought about by these water losses be taken into account.

If the vertical flow through the confining layer, v,, is taken positive in the upward
direction, then

__4dq '
V.= Ty 9.2)
Using Darcy’s law, we can write the upward flow through the confining layer as

h—h h—h
D ¢

v, =K’ (9.3)
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where

K’ = hydraulic conductivity of the confining layer for vertical flow (m/d)
D’ = saturated thickness of the confining layer (m)

¢ = D’/K’ = hydraulic resistance of the confining layer (d)

h’ = phreatic level in the overlying confining layer (m)

Combining Equations 9.1, 9.2 and 9.3 gives the general differential equation for steady
one-dimensional seepage flow

d¢h h-h"_

KDW— c

0 (9.4)

which may alternatively be written as
d’h h-N
Ero P )
where

L = ./KDcis the leakage factor of the aquifer (m)

Equation 9.5 can be solved by integration; the solution as given in handbooks on
calculus (e.g. Dwight 1971) is

h—h = C] ex/L + Cz e—x/L (96)
where C, and C, are integration constants that must be determined from the

boundary conditions

forx - oo,h =h’
forx =0, h =h,
and h’ = constant

Substituting the first condition into Equation 9.6 gives C, = 0, and substituting the
other two conditions gives C, = h,—h’. In this expression, h,, is the hydraulic head
in the aquifer at a distance x = 0 from the river, or h, = y,.

Substituting these results into Equation 9.6 gives the solution

h—h'=(h, — h)et 9.7)

which, after being rewritten, gives the relation between the hydraulic head in the
aquifer, h, and the distance from the river, x

h'="h" + (h, — by et ‘ 9.8)
The equation for the seepage can be obtained as follows. First the flow rate, v,, is
determined by differentiating Equation 9.8
K dh _ K(h, —I) -

hdx L ©-9)

The total seepage per unit width of the aquifer at distance x from the river is obtained
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by multiplying the flow rate by the aquifer thickness, D

_ KD(hﬁ* L (9.10)

X

The seepage into the aquifer at x = 0 is then found by substituting x = 0into Equation
9.10. This gives

KD ,
Qo = (b, — h) 9-11)

From Equations 9.10 and 9.11, it follows that
Q= qo ™" (9.12)

This equation shows that the spatial distribution of the seepage depends only on the
leakage factor, L. For some values of x, the corresponding ratios q,/q, and the seepage
as a percentage of the seepage entering the aquifer at the river are as follows:

Distance from the river q,/q, Seepage over
distance x
as percentage of q
x = 0.5L 0.61 39
x = 1.0L 0.37 63
x = 2.0L 0.13 87
x = 3.0L 0.05 95

These figures indicate that the seepage in a zone extending from the river over a
distance x = 3L equals 95% of the water entering the aquifer (at x = 0); only 5%
of the water appears beyond this zone. Both Equation 9.7 and Equation 9.12 contain
a damping exponential function (e*'), which means that the rate of damping is
governed by the leakage factor, L. At a distance x = 4L, the watertable in the confining
layer and the piezometric head in the aquifer will practically coincide and,
consequently, the upward flow through the confining layer will be virtually zero. Thus,
a knowledge of the value of L is of practical importance.

The question now arises: how can we determine the leakage factor? One method
is to conduct one or more aquifer tests (Chapter 10). From the data of such tests,
the transmissivity, KD, and the hydraulic resistance, ¢, can be determined, giving a
value of L = ,/KDec.

Another method is to use water-level data collected in double piezometer wells
placed in rows perpendicular to the river. Equation 9.7 gives the relation between
the hydraulic head difference, h - h’, and the distance, x

h—h" = (h, — h) et
Taking the logarithm and rewriting gives

L= X
7 2.30 {log (h, — h") — log (h — h")}

Plotting the observed data of (h — h’) against the distance x on single logarithmic

(9.13)
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paper (with h — h’ on the ordinate with logarithmic scale and x on the abscissa with
a linear scale) will give a straight line whose slope is —1/2.30L. Such plots thus allow
the value of the leakage factor to be determined (Figure 9.4).

The figure refers to a study (Colenbrander 1962) in an area along the River Waal,
a branch of the River Rhine. The coarse sandy aquifer is covered by a 12 m thick
layer of clayey fine sand, clay, and peat. Three double piezometers were placed in
a line perpendicular to the river at distances of 120, 430, and 850 m from the dike.
The slope of the straight line equals —-0.2/800.

The leakage factor is found from
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Figure 9.4 Relation between hydraulic head differences and the distance from a river in three double
piezometers placed in a semi-confined aquifer
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In Figure 9.4 we see that there is a deviation from the straight-line relationship near
the river dike. This is because the river channel may be some distance from the dike
and may not fully penetrate the aquifer. The assumption of horizontal flow in the
aquifer may not hold near the river, but a certain radial flow resistance must still
be taken into account. This can be done either by reducing (h, — h’) to an effective
value, or by expressing the effect of the radial flow in metres of horizontal flow. In
Figure 9.4, the extended straight line intersects the river level at 215 m from the dike;
hence the radial resistance due to the river’s partial penetration of the aquifer is equal
to a horizontal flow resistance over a distance of 215 m.

Example 9.1

For a situation similar to the one shown in Figure 9.2, the following data are available:

transmissivity of the aquifer KD = 2000 m?/d, hydraulic resistance of the covering

confining layer ¢ = 1000 days, the water level in the river y, = 10 m above mean

sea level, and the watertable in the confining layer h” = 8 m above mean sea level.
Calculate the upward seepage flow in a strip of land extending 1000 m along the

river and 500 m inland from the river.

From the above data, we first calculate the leakage factor

L = /KDc = /2000 x 1000 = 1414 m

The upward seepage flow per metre length of the river is found by substracting the
flow through the aquifer at x = 500 m (Equation 9.12) from the flow through the
aquifer below the river dike (Equation 9.11)

4o — @y = 12 (hy — W) (1 — &)

Substituting the relevant values then gives

Jo — Q500 = %2(1)2 (10 8) (1 — e~500/l414) = 0.843 mz/d

For a length of river of 1000 m, the upward seepage is
Q = 1000 x 0.843 = 843 m3/d
or an average seepage rate of

843

TRV T -3
590 = 1000 = 17 % 10°m/d or 1.7mm/d

9.3 Semi-confined Aquifer with Two Different Watertables

Figure 9.5 shows a semi-confined aquifer underlain by an aquiclude and overlain by
an aquitard. In the covering confining aquitard, two different watertables occur, h,’
and h,’; the transition between them is abrupt. In the right half, there is a vertical
downward flow through the confining layer into the aquifer and a horizontal flow
through the aquifer towards the left half, where there is a vertical upward flow into
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Figure 9.5 Semi-confined aquifer with two different watertables in the overlying aquitard (after Edelman
1972) '

the confining layer. The lower part of Figure 9.5 shows the hydraulic head distribution
in the aquifer, which is symmetrical about the point M, where

h = h, = 5 (i + hY) 9.14)

This consideration reduces the problem to the previous one. For the right half of the
aquifer, we thus obtain (substituting Equation 9.14 into Equation 9.7)

by —h = 12 Mg ©.15)
and
Q. = g, e ‘ (9.16)
where
_ KD hj — hj
qo - L 2 (917)

9.4 Seepage through a Dam and under a Dike
9.4.1 Seepage through a Dam

A seepage problem of some practical interest is the flow through a straight dam with
vertical faces (Figure 9.6). It is assumed that the dam, with a length L and a width
B, rests on an impermeable base. The water levels ipstream and downstream of the
dam are h; and h, respectively, with h; > h,.

This is a problem of one-dimensional flow (in the x-direction only); its basic
differential equation reads (Chapter 7.8.2)

d?h?
dx?

=0 (9.18)
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Figure 9.6 Seepage through a straight dam with vertical faces

The general solution to this equation is
h2 = Clx + C2 (919)
where C, and C, are constants to be determined from the boundary conditions, which

are

for x =0, h =h,
x = B, h=h,

Substitution into Equation 9.19 gives: C, = h>and C, = (h,?> — h,%)/B.
Substituting these expressions into Equation 9.19 yields

h? = h2 — (h? — hy) % (9.20)

This equation indicates that the watertable in the dam is a parabola. Using Darcy’s
law, we can express the seepage through the dam per unit length as

dh _ _Kdk
dx = 2 dx

Combined with Equation 9.20, this results in
K (h? — h,?
q= _(—1_2)

q=hv, = —Kh

B A 9.21)
For a given length L of the dam, the total seepage is
_KL(h—hy)
Q=" 9.22)

This equation is known as the Dupuit formula (as was already derived in Chapter
7.8.2); it gives good results even when the width of the dam B is small and (h, — h,)
is large (Verruijt 1982).

9.4.2  Seepage under a Dike

Another seepage problem is the flow from a lake into a reclaimed area under a straight,
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impermeable dike that separates the reclaimed area from the lake. The dike rests on
an aquitard which, in turn, rests on a permeable aquifer (Figure 9.7).

On the left side of the dike, lake water percolates vertically downward through the
aquitard and into the aquifer. The flow through the aquifer is horizontal in the x-
direction only (one-dimensional flow). On the right side of the dike, water from the
aquifer flows vertically upward through the aquitard into the reclaimed area. Thus,
the problem to be solved is: what is the total seepage flow into the reclaimed area?

According to Verruijt (1982), the problem can be solved by dividing the aquifer into
three regions:

Region1: — o0 <x < — B

Region2: — B <x < + B

Region3: + B <x < + o

To obtain a solution for the flow in these three regions, it is necessary to introduce
the values h, and h,, which represent the hydraulic head in the aquifer at x = — B
and x = + B respectively. These heads are still unknown, but can be determined
later from continuity conditions along the common boundaries of the three regions.

Region 1
The flow in Region 1 is similar to that in Figure 9.3. This means that, except for
the distance x, which must be replaced by —(x + B), Equation 9.8 applies. Hence

x+B
h=h),—(,—h)e T 9.23)

The groundwater flow per metre length of the dike at x = B is

h; — h,

qKDL

(9.24)

Region 2
In Region 2, the flow rate is constant, so that according to Darcy the groundwater

——

£

Figure 9.7 Seepage underneath a straight impermeable dike
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flow per metre length of the dike in this region is

h3

q= kD™ (9.25)
Region 3
In Region 3, upward vertical flow occurs from the aquifer through the aquitard.
Equation 9.8 can'be used if x is replaced by x — B, and h” and h, by h," and h;. This
gives
x—B
h=nh4+(h,—hy)e T (9.26)

The groundwater flow at x = Bis

_h’

q=KD—=—+—% T

9.27)
The principle of continuity requires that the flows according to Equations 9.24, 9.25,
and 9.27 be the same. Thus, the three unknown quantmes in these equations (q, h,,
and h,) can be solved. The solutions are

(i —hL
=M =Spsar (.28)
, h/ _ W L
=t ©5)
_ W, -k,
4=KD3por (9.30)

Equation 9.30 gives the seepage into the reclaimed area per metre length of the dike.
With the heads h, and h; known, the hydraulic head in the aquifer at any point can
now be calculated with Equations 9.23 and 9.26.

Example 9.2
Calculate the seepage and hydraulic heads at x = —B and x = + B for a situation
as shown in Figure 9.7, using the following data: h’ = 22 m, hy = 18 m, aquifer

thickness D = 15 m, hydraulic conductivity of the aquifer K = 15 m/d, thickness
of the confining layer D’ = 3 m, hydraulic conductivity of the confining layer K’
= 0.005 m/d, and width of the dike 2B = 30 m.

The hydraulic resistance of the confining layer ¢ = D’/K’, or 3/0.005 = 600 d.
The leakage factor L = \/KDc or \/15 x 15 x 600 = 367 m.
Substituting the appropriate values into Equation 9.30 gives the seepage rate per metre
- length of the dike

15 x 15(22 — 18)

1=353 @ x36n — 18md
The hydraulic heads at x = —B and x = + B are found from Equations 9.28 and
9.29 respectively
_ ey (22 -18) 367 _
h, =22 301734 20.(08m
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and

(22 — 18) 367

hy =18 + =5~

=1992m

9.5 Unsteady Seepage in an Unconfined Aquifer

Some one-dimensional, unsteady flows of practical importance to the drainage
engineer are: the interchange of water between a stream or canal and an aquifer in
response to a change in water level in the stream or canal, seepage from canals, and
drainage flow towards a stream or ditch in response to recharge in the area adjacent
to the stream or ditch. '

Figure 9.8 shows a semi-infinite unconfined aquifer bounded on the left by a straight,
fully-penetrating stream or canal, and bounded below by an impermeable layer.

Under equilibrium conditions, the watertable in the aquifer and the water level in
the canal coincide, and there is no flow out of or into the aquifer. A sudden drop
in the water level of the canal induces a flow from the aquifer towards the canal.
As a result, the watertable in the aquifer starts falling until it reaches the same level
as that in the canal. Until this new state of equilibrium has been reached, there is
an unsteady, one-dimensional flow from the aquifer into the canal. For the Dupuit
assumption to be valid (Chapter 7), we assume that the drop in the watertable is small
compared with the saturated thickness of the aquifer. Hence we can assume horizontal
flow through the aquifer, and constant aquifer characteristics. This flow problem can
be described by the following equations
— Darcy’s equation for the flow through the aquifer

Js

a=+KD (9.31)

which, after differentiation, gives

0q )

==t KD p » 9.32)
— The continuity equation

oq 0s

= tug (9.33)
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Figure 9.8 Unsteady, one-dimensional flow in a semi-infinite unconfined aquifer
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Eliminating dq/dx from these two equations gives the general differential equation

dPs _ p 0Os

a = KD at ©:34)
where

s = drawdown in the aquifer (m) positive downwards

x = distance from the canal (m)

p = specific yield of the aquifer (-)
KD = transmissivity of the aquifer (m?/d)
t = time after the change in the water level of the canal (d)

A general solution to this differential equation does not exist and integration is possible
only for specific boundary conditions. Edelman (1947, 1972) derived solutions for
four different situations:

— A sudden drop in the water level of the canal;

— The canal is discharging at a constant rate;

— The water level in the canal is lowered at a constant rate;

— The canal is discharging at an increasing rate, proportional to time.

Here we shall consider only the first and the third situations.

9.5.1  After a Sudden Change in Canal Stage
In the case of a sudden drop in the canal stage, the initial and boundary conditions
for which the partial differential equation, Equation 9.34, must be solved are

fort=0andx>0 :s=0
fort >0andx =0 : s=s,
fort >0andx > o0: s =0

Edelman (1947) solved this problem by introducing a dimensionless auxiliary variable,
u, incorporating x and t as follows

u= % /K% \% (9.35)

The partial differential Equation 9.34 can then be written as the ordinary differential
equation

and for the boundary conditions

=3 u=20
s=0 u= o
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the solution is

Se. = so<1 - \i[ | e‘“zdu> =s,E, (0) (9.37)
To
where — j e’du = erf (u) is called the error function.

ﬁ

Tables with values of this function for different values of u are available in
mathematical handbooks: e.g. Abramowitz and Stegun (1965), and Jahnke and Emde
(1945). Values of the function E,(u) are given in Table 9.1. A more elaborate table
is given by Huisman (1972).

The flow in the aquifer per unit length of canal at any distance x is found by
differentiating Equation 9.37 with respect to x, and substituting the result in Darcy’s
equation according to Equation 9.31. Disregarding the sign for flow direction, we
get

Qe = \S/E i—ﬂ‘/KDu ei? (9.38)

The discharge from the aquifer into the canal per unit length of canal is found by
substituting x = 0; thusu = 0

_ S 1
Qos = Nz \/F\/KDu (9.39)

so that Equation 9.38 reduces to

qx,t = qo,t e—u2 = qo,t E2 (u) (940)

Values of the function E,(u) are also given in Table 9.1.

Equation 9.39 gives the discharge from one side of the canal. If the drop in the water
level of the canal induces groundwater flow from two sides, the discharge given by
Equation 9.39 must be multiplied by two.

Note: The above equations can also be used if the water level in the canal suddenly
rises, inducing a flow from the canal into the aquifer, and resulting in a rise in the
watertable in the aquifer.

The equations can also be used to calculate either the change in watertable in the
aquifer if the hydraulic characteristics are known, or to calculate the hydraulic
characteristics if the watertable changes have been measured in a number of
observation wells placed in a row perpendicular to the canal.

Example 9.3

Using the following data, calculate the rise in the watertable at 10, 20, 40, 60, 80,
and 100 m from the canal 25 days after the water level in the canal has risen suddenly
by 1 m: saturated thickness of the aquifer D = 10 m, hydraulic conductivity K =
1 m/d, and specific yield p = 0.10.
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Table 9.1 Values of the functions E;(u), Ex(u), E3(u), and E,4(u)

u E( E)(w) E;(u) E4(u)
0.00 1.0000 1.0000 1.0000 1.0000
0.01 0.9887 0.9999 0.9824 0.9776
- 0.02 0.9774 0.9996 0.9650 0.9556
0.03 0.9662 0.9991 0.9477 0.9341
0.04 0.9549 0.9984 0.9307 0.9129
0.05 0.9436 0.9975 0.9139 0.8920
0.06 0.9324 0.9964 0.8973 0.8717
0.07 0.9211 0.9951 0.8808 0.8515
0.08 0.9099 0.9936 0.8646 0.8319
0.09 0.8987 0.9919 0.8486 0.8125
0.10 0.8875 0.9900 0.8327 0.7935
0.12 0.8652 0.9857 0.8017 0.7566
0.14 0.8431 0.9806 0.7714 0.7212
0.16 0.8210 0.9747 0.7419 0.6871
0.18 - 0.7991 0.9681 0.7132 0.6542
0.20 0.7773 0.9608 . 0.6852 0.6227
0.22 0.7557 0.9528 0.6581 0.5924
0.24 0.7343 0.9440 0.6317 0.5633
0.26 0.7131 0.9346 0.6060 0.5353
0.28 0.6921 0.9246 0.5811 0.5085
0.30 0.6714 . 0.9139 0.5569 0.4829
0.32 0.6509 0.9027 0.5335 0.4583
0.34 0.6306 0.8908 0.5108 0.4346
0.36 0.6107 0.8784 0.4888 0.4121
0.38 0.5910 0.8655 0.4675 0.3906
0.40 0.5716 . 0.8521 0.4469 0.3699
0.42 0.5525 0.8383 0.4270 0.3501
0.44 0.5338 0.8240 0.4077 0.3314
0.46 0.5153 . 0.8093 0.3891 0.3133
0.48 0.4973 0.7942 0.3712 0.2963
0.50 0.4795 0.7788 0.3539 0.2799
0.52 0.4621 0.7631 03372 . 0.2643
0.54 0.4451 0.7471 _ 0.3211 0.2495
.0.56 0.4284 0.7308 + 0.3056 0.2353
0.58 0.4121 0.7143 0.2907 0.2219
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Table 9.1 (cont.)

u E;(w) E,(u) Ey(u) Eq4(u)
0.60 0.3961 0.6977 0.2764 0.2089
0.62 0.3806 0.6809 0.2626 0.1969
0.64 0.3654 0.6639 0.2494 0.1853
0.66 0.3506 0.6469 0.2367 0.1743
0.68 0.3362 0.6298 0.2245 0.1639
0.70 0.3222 0.6126 0.2129 0.1541
0.72 0.3086 0.5955 0.2017 0.1448
0.74 0.2953 0.5783 0.1910 0.1358
0.76 0.2825 0.5612 0.1807 0.1275
0.78 0.2700 0.5442 0.1710 0.1195
0.80 0.2579 0.5273 0.1616 0.1120
0.82 0.2462 0.5105 0.1527 0.1049
0.84 0.2349 0.4938 0.1441 0.0982
0.86 0.2239 0.4773 0.1360 0.0919
0.88 0.2133 0.4610 0.1283 0.0860
0.90 0.2031 0.4449 0.1209 0.0803
0.92 0.1932 0.4290 0.1139 0.0750
0.94 0.1837 0.4133 0.1072 0.0700
0.96 0.1746 0.3979 0.1008 0.0654
0.98 0.1658 0.3827 0.0948 0.0609
1.00 0.1573 0.3679 . 0.0891 0.0568
1.02 0.1492 0.3533. 0.0836 0.0529
1.04 0.1414 0.3391 0.0785 0.0492
1.06 0.1339 0.3251 0.0736 0.0458
1.08 0.1267 0.3115 0.0690 0.0426
1.10 0.1198 0.2982 0.0646 0.0396
1.14 0.1069 0.2726 0.0566 0.0341
1.18 0.0952 0.2485 0.0494 0.0293
1.22 0.0845 0.2257 0.0431 0.0252
1.26 0.0748 0.2044 0.0374 0.0215
1.30 0.0660 0.1845 0.0325 0.0184
1.34 0.0581 0.1660 0.0281 0.0156
1.38 0.0510 0.1489 0.0242 0.0133
1.42 0.0446 0.1331 0.0208 0.0113
1.46 0.0389 0.1186 0.0179 0.0095

.
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Table 9.1 (cont.)

u E;(u) E,(u) E;(u) E,(w)

1.50 0.0339 0.1054 0.0153 0.0080
1.60 0.0237 0.0773 0.0102 0.0052
1.70 0.0162 0.0556 0.0067 0.0033
1.80 0.0109 . 0.0392 0.0044 0.0021
1.92 0.0066 0.0251 0.0025 0.0011
2.00 0.0047 0.0183 0.0017 0.0007
2.10 0.0030 0.0122 0.0011 0.0005
2.20 0.0019 0.0079 0.0006 0.0003
2.30 0.0012 0.0050 0.0004 0.0002
2.40 0.0007 0.0032 0.0002 0.0001
2.50- 0.0004 0.0019 0.0001 0.0000

The transmissivity of the aquifer KD = 1 x 10 = 10 m?/d is assumed to be constant,
although, with the rise of the watertable, the saturated thickness D, and hence KD,
increases slightly to, say, 10.5 m?/d. Substituting into Equation 9.35 gives

x /0.10 1

For the given distances of x, the value of u is calculated and the corresponding values
of E,(u) are read from Table 9.1. Substitution of these values and s, = 1 m into
Equation 9.37 yields the rise in the watertable after 25 days at the given distances
from the canal (Table 9.2).

Example 9.4

Analyzing the change in the watertable caused by a sudden rise or fall of the water
level in a canal makes it possible to determine the aquifer characteristics. For this
purpose, the change in watertable is measured in a few observation wells placed in
a line perpendicular to the canal. Suppose three observation wells are placed at
distances of 10, 20, and 40 m from the canal. Att < 0, the watertable in the aquifer
has the same elevation as the water level in the canal. At t = 0, the water level in

Table 9.2 Therise ip the watertable after 25 days

Distance x u E,(w) Watertable rise
(Table 9.1)
(m) ) ) (m)
10 0.1 0.8875 0.89
20 0.2 0.7773 0.78
40 04 0.5716 0.57
60 . 0.6 - 0.3961 0.40
. 80 0.8 0.2579 0.26
100 1.0 . 0.1573 0.16
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Table 9.3 Observed rise in the watertable (m) in three wells

Distance of Time since rise in canal stage (d)
observation well
(m) t=20.5 t=1 t=2 t=3 t=4
10 0.25 0.29 0.32 0.34 0.35
20 0.13 0.19 0.25 0.26 0.27
40 0.02 0.065 0.125 0.165 0.19

the canal suddenly rises by an amount s, = 0.50 m. The watertable measurements
made in the three observation wells are given in Table 9.3.

Calculate the transmissivity of the aquifer, assuming that its specific yield p = 0.10.
Analyze the flow in the vicinity of the canal. Calculate the seepage from the canal
att=1dandt = 4d.

Equations 9.35 and 9.37 indicate that log(s/s,) varies with log(x/\/ t) in the same
manner as log E,(u) varies with log u. Solving Equation 9.35 for /KD therefore
requires matching a logarithmic data plot of s/s, ratios against their corresponding
values of x/\/ t to a logarithmic type curve drawn by plotting values of E;(u) against
corresponding values of u. The type curve is drawn with the aid of Table 9.1. To
prepare the logarithmic data plot of s/s, versus x/\/ t, we use the data from Table
9.3:

Time since rise in canal stage (d)

t=20.5 t=1 t=2 t=3 t=4
Forx = 10 m
X/t 14.1 10.0 7.1 5.8 5.0
s/s, 0.50 0.58 0.64 0.68 0.70
Forx =20m
X/t 28.3 20.0 14.1 11.5 10.0
s/s, 0.26 0.38 0.50 0.52 0.54
For x = 40 m .
x/A/t 56.6 40.0 28.3 23.1 20.0
s/, 0.04 0.13 0.25 0.33 0.38

We now plot these data on another sheet of double logarithmic paper with the same
scale as that used to prepare the type curve of E (u). We then superimpose the two
sheets and, keeping the coordinate axes parallel, we find a position in which all (or
most) of the field-data points fall on a segment of the type curve (Figure 9.9). As
match point, we select the point z with logarithmic type curve coordinates u = 0.1,
E,(u) = 1.0. On the ficld-data plot, this point has the coordinates x/\/ t = 4 and
s/s, = 0.8. :
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Figure 9.9 Observed data plot s/s,, versus x/\/{ (points and dotted lines) superimposed on logarithmic type
curve E;(u)-versus-u (curve and solid lines)

Substituting these values into Equation 9.35 yields

KD _
n 2

For p = 0.10, it follows that KD = 400 x 0.1 = 40 m*/d.

|
N~

=20

1_4 1
u_ 0.1

B

According to Equation 9.37, the ratio s/s, = E,(u). If E,(u) = 1, it follows that s
= s,. Only at the edge of the canal (at x = 0) is s = s,. From the coordinates of
the match point z, however, it follows that, for E,(u) = 1, the ratio s/s, = 0.8. This
means thats = 0.8 s,,ors = 0.8 x 0.5 = 0.4 m. At the edge of the canal, the watertable
is therefore 0.5—0.4 = 0.1 m less than expected. The value of 0.1 m is the head loss
due to radial flow in the vicinity of the canal, because the canal does not fully penetrate
the aquifer.

The seepage from the canal after 1 and 4 days is found from Equation 9.39.
Substituting the appropriate values into this equation gives

fort = 1day

— S /KDp=—9% /a0 %01=045m¥d
Gor = R VRPR = e VO m’/

fort = 4 days

Qos = —3% /40 x 0.1 = 0.23m¥d
. X
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Remarks

If a canal penetrates an aquifer only partially, as is usually the case, watertable readings
from observation wells placed too close to the canal may give erroneous results. The
smaller the distance between the observation well and the canal, the greater the error
in the calculated value of u/KD. As is obvious, an instantaneous rise or fall in the
canal level can hardly occur, which makes it difficult to determine a reference or zero
time (Ferris et al. 1962). This means that observations made shortly after the change
in canal stage may be unreliable. With partially penetrating canals, therefore, more
weight should be given to data from wells at relatively great distances from the canal
and to large values of time. However, observation wells at great distances react slowly
to a relatively small change in canal stage, and it may take several days before
noticeable watertable changes occur. This may be another source of error, especially
when the aquifer is recharged by rain or is losing water through evapotranspiration.
The solution is based on the assumption that water losses or gains do not occur. A
field experiment should therefore not last longer than, say, two or three days to avoid
errors caused by such water losses or gains.

9.5.2 After a Linear Change in Canal Stage

The condition of an abrupt change in the water level of a canal or stream is rather
unrealistic, except perhaps in an irrigation area where some of the canals are alternately
dry and filled relatively quickly when irrigation is due. A more realistic situation is
a canal stage that is a function of time. In this section, a solution will be given for
the situation where the change in water level of a canal is proportional to time; in
other words, the water level changes at a linear rate, denoted by a.

Hence

S, = ot (9.41)
so that the initial and boundary conditions for which Equation 9.34 must be solved are
fort =0andx >0 :s=0

fort >0andx =0 : s=5s,=at
fort >0andx—->w:s=0

The solution then becomes

S¢0 = S0, Ea(1) ' (9.42)
where
2u 2
E,(w) = — — E)(u) + (2u* + 1) E(u)
Jr
and
Qo = ﬁi L /KDp (9.43)
ot \/E \/{ .
Qxt = Qopt E3(u) (944)
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