
9 Seepage and Groundwater Flow 
N.A. de Ridder'? and G. Zijlstral 

9.1 Introduction 

The underground flow of water can create significant problems for land drainage. 
These problems can be divided into two categories: those of seepage and those of 
groundwater flow. Seepage problems concern the percolation of water through dams 
and into excavations, and the movement of water into and through the soil from bodies 
of surface water such as canals, streams, or lakes. Groundwater-flow problems concern 
the natural processes of infiltration and the subsequent flow of water through layers 
of high and low permeability until the flow discharges into springs, rivers, or other 
natural drainage channels. A quantitative knowledge of seepage and/or groundwater 
flow is needed to determine the drainable surplus of a project area (Chapter 16). 
Seepage from open watercourses can be determined by direct measurements at various 
points (inflow-outflow technique), or by subjecting the flow system to a hydrodynamic 
analysis (analytical approach). The latter requires that the relevant hydraulic 
characteristics of the water-transmitting layers and the boundary conditions be 
known. 

This chapter is mainly concerned with the analytical approach to some of the seepage 
and groundwater-flow problems frequently encountered in land drainage. For a more 
thorough treatment of the subject, we refer to textbooks: e.g. Harr (1962), Verruijt 
(1982), Rushton and Redshaw (1979), Muskat (1946), Bear et al. (1968), Bouwer 
(1978). 

9.2 Seepage from a River into a Semi-confined Aquifer 

A water-bearing layer is called a semi-confined or leaky aquifer when its overlying 
and underlying layers are aquitards, or when one of them is an aquitard and the other 
an aquiclude. Aquitards are layers whose permeability is much less than that of the 
aquifer itself. Aquicludes are layers that are essentially impermeable. These terms were 
defined in Chapter 2.2.3. 

Semi-confined aquifers being common in alluvial plains, we shall consider the 
seepage along a river that fully penetrates a semi-confined aquifer overlain by an 
aquitard and underlain by an aquiclude. We assume that the aquifer is homogeneous 
and isotropic, and that its thickness, D, is constant. As the hydraulic conductivity 
of the aquifer, K, is much greater than the hydraulic conductivity of the overlying 
confining layer, K', we are justified in assuming that vertical velocities in the aquifer 
are small compared with the horizontal velocities. This implies that the hydraulic head 
in the aquifer can be considered practically constant over its thickness. Whereas 
horizontal flow predominates in the aquifer, vertical flow, either upward or downward, 
occurs in the confining top layer, depending on the relative position of the watertable 
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head in the aquifer = phreatic level 1 

Figure 9.1 Semi-confined aquifer cut by a straight river; equilibrium conditions, groundwater at rest 

in the top layer and the piezometric surface in the aquifer. 
As a start, let us consider a situation where the groundwater is at rest (Figure 9.1). 

The watertable in the confining layer and the piezometric surface in the aquifer 
coincide with the water level in the river, yo. 

At high river stages the hydraulic head, h, in the aquifer increases and may rise 
above the phreatic level h’ in the confining layer, or even rise above the land surface. 
The high river stage induces a seepage flow from the river into the aquifer, and from 
the aquifer into the overlying confining layer (Figure 9.2). At low river stages, the 
head in the aquifer decreases and may fall below the watertable in the overlying 
confining layer. The low river stage induces a downward flow through the confining 
layer into the aquifer, and a horizontal flow from the aquifer towards the river channel 
(Figure 9.3). The upward or downward flow through the confining layer causes the 
watertable in that layer to rise or fall. Rainfall and evapotranspiration also affect 
the elevation of the watertable. 

Figure 9.2 Semi-confined aquifer cut by a straight river; seepage flow 
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Figure 9.3 Semi-confined aquifer cut by a straight river; drainage flow 

or, differentiating with respect to x, 
I 

A solution to the above problem can be obtained by assuming that the watertable 
in the confining layer is constant and uniform at a height, h’, above the horizontal 
surface of the impermeable base, although a constant watertable in the confining layer, 
independent of changes in the hydraulic head in the aquifer, is possible only when 
narrowly-spaced ditches and drains are present. 

Using Darcy’s law, we can express the horizontal flow in the aquifer as 

~ where 

q = the flow per unit width of the aquifer (m2/d) 

i Using Darcy’s law, we can write the upward flow through the confining layer as 

Small quantities of water leave the aquifer through the confining layer of low 
permeability. The principle of continuity requires that the change in the horizontal 
flow in the aquifer brought about by these water losses be taken into account. 

If the vertical flow through the confining layer, v,, is taken positive in the upward 
direction, then 

dq v = - -  
dx 

h - h’ - h - h‘ 
V, = K’- - - 

D‘ C (9.3) 
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where 

K’ = hydraulic conductivity of the confining layer for vertical flow (m/d) 
D’ = saturated thickness of the confining layer (m) 
c = D’/K = hydraulic resistance of the confining layer (d) 
h’ = phreatic level in the overlying confining layer (m) 

Combining Equations 9.1,9.2 and 9.3 gives the general differential equation for steady 
one-dimensional seepage flow 

dzh 
dxz C 

h - h‘ - o KD---- 

which may alternatively be written as 

d2h h - h‘ - o 
dx2 Lz 

where 

L = is the leakage factor of the aquifer (m) 

(9.4) 

(9.5) 

Equation 9.5 can be solved by integration; the solution as given in handbooks on 
calculus (e.g. Dwight 1971) is 

h - h’ = C, eX/L + C2 e-x/L (9.6) 
where C, and C2 are integration constants that must be determined from the 
boundary conditions 

f o r x + c o , h = h ’  
forx = O, h = ho 
and h’ = constant 

Substituting the first condition into Equation 9.6 gives C, = O, and substituting the 
other two conditions gives Cz = ho-h‘. In this expression, ho, is the hydraulic head 
in the aquifer at a distance x = O from the river, or ho = yo. 

Substituting these results into Equation 9.6 gives the solution 

h - h’ = (ho - h’) e-x/L (9.7) 
which, after being rewritten, gives the relation between the hydraulic head in the 
aquifer, h, and the distance from the river, x 

h ’=  h’ + (ho - h’) (9.8) 
The equation for the seepage can be obtained as follows. First the flow rate, v,, is 
determined by differentiating Equation 9.8 

(9.9) 

The total seepage per unit width of the aquifer at  distance x from the river is obtained 
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by multiplying the flow rate by the aquifer thickness, D 

(9.10) 

The seepage into the aquifer at x = O is then found by substituting x = O into Equation 
9.10. This gives 

(9.1 1) KD 
90 = +ho - h’) 

From Equations 9.10 and 9.11, it follows that 

q, = qo (9.12) 

This equation shows that the spatial distribution of the seepage depends only on the 
leakage factor, L. For some values of x, the corresponding ratios qx/qo and the seepage 
as a percentage of the seepage entering the aquifer at the river are as follows: 

Distance from the river 9x40 Seepage over 
distance x 

as percentage of qo 

x = OSL 0.61 39 
x = 1.OL 0.37 63 
x = 2.0L O. 13 87 
x = 3.0L 0.05 95 

These figures indicate that the seepage in a zone extending from the river over a 
distance x = 3L equals 95% of the water entering the aquifer (at x = O); only 5% 
of the water appears beyond this zone. Both Equation 9.7 and Equation 9.12 contain 
a damping exponential function (e”’“), which means that the rate of damping is 
governed by the leakage factor, L. At a distance x = 4L, the watertable in the confining 
layer and the piezometric head in the aquifer will practically coincide and, 
consequently, the upward flow through the confining layer will be virtually zero. Thus, 
a knowledge of the value of L is of practical importance. 

The question now arises: how can we determine the leakage factor? One method 
is to conduct one or more aquifer tests (Chapter 10). From the data of such tests, 
the transmissivit KD, and the hydraulic resistance, c, can be determined, giving a 
value o fL  = &. 

Another method is to use water-level data collected in double piezometer wells 
placed in rows perpendicular to the river. Equation 9.7 gives the relation between 
the hydraulic head difference, h - h‘, and the distance, x 

h - h’ = (ho - h’) 

Taking the logarithm and rewriting gives 

X L =  2.30 {log (ho - h’) - log (h - h’)} (9.13) 

Plotting the observed data of (h - h’) against the distance x on single logarithmic 
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paper (with h - h' on the ordinate with logarithmic scale and x on the abscissa with 
a linear scale) will give a straight line whose slope is -1/2.30L. Such plots thus allow 
the value of the leakage factor to be determined (Figure 9.4). 

The figure refers to a study (Colenbrander 1962) in an area along the River Waal, 
a branch of the River Rhine. The coarse sandy aquifer is covered by a 12 m thick 
layer of clayey fine sand, clay, and peat. Three double piezometers were placed in 
a line perpendicular to the river at distances of 120, 430, and 850 m from the dike. 
The slope of the straight line equals -0.2/800. 

The leakage factor is found from 

800 2.30L = ~ 0.2 

or 

h - h '  

1 .a 

0.8 
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Figure 9.4 Relation between hydraulic head differences and the distance from a river in three double 
piezometers placed in a semi-confined aquifer 
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In Figure 9.4 we see that there is a deviation from the straight-line relationship near 
the river dike. This is because the river channel may be some distance from the dike 
and may not fully penetrate the aquifer. The assumption of horizontal flow in the 
aquifer may not hold near the river, but a certain radial flow resistance must still 
be taken into account. This can be done either by reducing (ho - h’) to an effective 
value, or by expressing the effect of the radial flow in metres of horizontal flow. In 
Figure 9.4, the extended straight line intersects the river level at 215 m from the dike; 
hence the radial resistance due to the river’s partial penetration of the aquifer is equal 
to a horizontal flow resistance over a distance of 215 m. 

Example 9.1 
For a situation similar to the one shown in Figure 9.2, the following data are available: 
transmissivity of the aquifer KD = 2000 m2/d, hydraulic resistance of the covering 
confining layer c = 1000 days, the water level in the river yo = 10 m above mean 
sea level, and the watertable in the confining layer h’ = 8 m above mean sea level. 

Calculate the upward seepage flow in a strip of land extending 1000 m along the 
river and 500 m inland from the river. 

From the above data, we first calculate the leakage factor 

L = $Ï% = ,/- = 1414m 

The upward seepage flow per metre length of the river is found by substracting the 
flow through the aquifer at x = 500 m (Equation 9.12) from the flow through the 
aquifer below the river dike (Equation 9.1 1) 

KD 
L qo - qx = ~ (ho - h’) (1 - 

Substituting the relevant values then gives . 

For a length of river of 1000 m, the upward seepage is 

Q = 1000 x 0.843 = 843m3/d 

or an average seepage rate of 

843 
500 x 1000 = 1.7 x 10-3m/dor 1.7mm/d 

9.3 Semi-confined Aquifer with Two Different Watertables 

Figure 9.5 shows a semi-confined aquifer underlain by an aquiclude and overlain by 
an aquitard. In the covering confining aquitard, two different watertables occur, h,’ 
and h2‘; the transition between them is abrupt. In the right half, there is a vertical 
downward flow through the confining layer into the aquifer and a horizontal flow 
through the aquifer towards the left half, where there is a vertical upward flow into 
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Figure 9.5 Semi-confined aquifer with two different watertables in the overlying aquitard (after Edelman 
1972) 

the confining layer. The lower part of Figure 9.5 shows the hydraulic head distribution 
in the aquifer, which is symmetrical about the point M, where 

(9.14) 
1 h = ho = -(h{ + hi) 2 

This consideration reduces the problem to the previous one. For the right half of the 
aquifer, we thus obtain (substituting Equation 9.14 into Equation 9.7) 

(9.15) ’ 

hi - hi 
2 

h i  - h = 

and 

qx = qo e-x’L 

where 

KD hi -h; q =-- 
O L 2  

(9.16) 

(9.17) 

9.4 Seepage through a Dam and under a Dike 

9.4.1 Seepage through a Dam 

A seepage problem of some practical interest is the flow through a straight dam with 
vertical faces (Figure 9.6). It is assumed that the dam, with a length L and a width 
B, rests on an impermeable base. The water levels hpstream and downstream of the 
dam are h, and h, respectively, with h, > h,. 

This is a problem of one-dimensional flow (in the x-direction only); its basic 
differential equation reads (Chapter 7.8.2) 

d2h2 
= = O  
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Figure 9.6 Seepage through a straight dam with vertical faces 

The general solution to this equation is 

h2 = C ~ X  + C2 (9.19) 

where C ,  and C,  are constants to be determined from the boundary conditions, which 
are 

for x = O, h = h, 
x = B ,  h = h 2  

Substitution into Equation 9.19 gives: C2 = hl2 and C, = (h,Z - h12)/B. 
Substituting these expressions into Equation 9.19 yields 

(9.20) X hZ = h12 - (hl’ - h,Z) jj 

This equation indicates that the watertable in the dam is a parabola. Using Darcy’s 
law, we can express the seepage through the dam per unit length as 

Combined with Equation 9.20, this results in 

(9.21) K (h,’ - h,2) ‘= 2B 

For a given length L of the dam, the total seepage is 

KL (hI2 - h,2) 
Q =  2B (9.22) 

This equation is known as the Dupuit formula (as was already derived in Chapter 
7.8.2); it gives good results even when the width of the dam B is small and (h, - h,) 
is large (Verruijt 1982). 

9.4.2 Seepage under a Dike 

Another seepage problem is the flow from a lake into a reclaimed area under a straight, 
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impermeable dike that separates the reclaimed area from the lake. The dike rests on 
an aquitard which, in turn, rests on a permeable aquifer (Figure 9.7). 

On the left side of the dike, lake water percolates vertically downward through the 
aquitard and into the aquifer. The flow through the aquifer is horizontal in the x- 
direction only (one-dimensional flow). On the right side of the dike, water from the 
aquifer flows vertically upward through the aquitard into the reclaimed area. Thus, 
the problem to be solved is: what is the total seepage flow into the reclaimed area? 

According to Verruijt (1982), the problem can be solved by dividing the aquifer into 
three regions: 

Region 1: - co < x .= - B 
Region2: - B < x -= + B 
Region 3: + B < x <: + co 

To obtain a solution for the flow in these three regions, it is necessary to introduce 
the values h, and h,, which represent the hydraulic head in the aquifer at x = - B 
and x = + B respectively. These heads are still unknown, but can be determined 
later from continuity conditions along the common boundaries of the three regions. 

Region I 
The flow in Region 1 is similar to that in Figure 9.3. This means that, except for 
the distance x, which must be replaced by -(x + B), Equation 9.8 applies. Hence 

x + B  
h = h’, - (h’, - h2) e 7 

The groundwater flow per metre length of the dike at x = -B is 

(9.23) 

(9.24) 

Region 2 
In Region 2, the flow rate is constant, so that according to Darcy the groundwater 

‘4 

Figure 9.7 Seepage underneath a straight impermeable dike 
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flow per metre length of the dike in this region is 

(9.25) 

Region 3 
In Region 3, upward vertical flow occurs from the aquifer through the aquitard. 
Equation 9.8 can’be used if x is replaced by x - B, and h’ and h, by h4’ and h,. This 
gives 

X - B  
h = h> + (h, - h 6 ) e - T  (9.26) 

The groundwater flow at x = B is 

(9.27) h3 - hi q=KD--- L 

The principle of continuity requires that the flows according to Equations 9.24,9.25, 
and 9.27 be the same. Thus, the three unknown quantities in these equations (9, h,, 
and h,) can be solved. The solutions are 

(hi - hi)L 
2B + 2L h, = hi - 

h; - h4 
2B + 2L q = KD 

(9.28) 

(9.29) 

(9.30) 

Equation 9.30 gives the seepage into the reclaimed area per metre length of the dike. 
With the heads h, and h, known, the hydraulic head in the aquifer at any point can 
now be calculated with Equations 9.23 and 9.26. 

Example 9.2 
Calculate the seepage and hydraulic heads at x = - B  and x = + B for a situation 
as shown in Figure 9.7, using the following data: h,’ = 22 m, h4‘ = 18 m, aquifer 
thickness D = 15 m, hydraulic conductivity of the aquifer K = 15 m/d, thickness 
of the confining layer D’ = 3 m, hydraulic conductivity of the confining layer K’ 
= 0.005 m/d, and width of the dike 2B = 30 m. 

The hydraulic resistance of the confinin la er c = D’/K’, or 3/0.005 = 600 d. 
The leakage factor L = ,/í?Ï%, or ,/& = 367 m. 
Substituting the appropriate values into Equation 9.30 gives the seepage rate per metre 
length of the dike 

The hydraulic heads at x = -B and x = + B are found from Equations 9.28 and 
9.29 respectively 
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and 

9.5 Unsteady Seepage in an Unconfined Aquifer 

Some one-dimensional, unsteady flows of practical importance to the drainage 
engineer are: the interchange of water between a stream or canal and an aquifer in 
response to a change in water level in the stream or canal, seepage from canals, and 
drainage flow towards a stream or ditch in response to recharge in the area adjacent 
to the stream or ditch. 

Figure 9.8 shows a semi-infinite unconfined aquifer bounded on the left by a straight, 
fully-penetrating stream or canal, and bounded below by an impermeable layer. 

Under equilibrium conditions, the watertable in the aquifer and the water level in 
the canal coincide, and there is no flow out of or into the aquifer. A sudden drop 
in the water level of the canal induces a flow from the aquifer towards the canal. 
As a result, the watertable in the aquifer starts falling until it reaches the same level 
as that in the canal. Until this new state of equilibrium has been reached, there is 
an unsteady, one-dimensional flow from the aquifer into the canal. For the Dupuit 
assumption to be valid (Chapter 7), we assume that the drop in the watertable is small 
compared with the saturated thickness of the aquifer. Hence we can assume horizontal 
flow through the aquifer, and constant aquifer characteristics. This flow problem can 
be described by the following equations 
- Darcy’s equation for the flow through the aquifer 

(9.31) as 
ax q = + K D -  

which, after differentiation, gives 

- The continuity equation 

watertable 

Figure 9.8 Unsteady, one-dimensional flow in a semi-infinite unconfined aquifer 
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~ 

Eliminating aq/ax from these two equations gives the general differential equation 

(9.34) 

1 where 
I s = drawdown in the aquifer (m) positive downwards 

x = distance from the canal (m) 
p = specific yield of the aquifer (-) 
KD = transmissivity of the aquifer (m2/d) 
t = time after the change in the water level of the canal (d) 

A general solution to this differential equation does not exist and integration is possible 
only for specific boundary conditions. Edelman (1947, 1972) derived solutions for 
four different situations: 
- A sudden drop in the water level of the canal; 
- The canal is discharging at  a constant rate; 
- The water level in the canal is lowered at  a constant rate; 
- The canal is discharging at  an increasing rate, proportional to time. 
Here we shall consider only the first and the third situations. 

I 

9.5.1 After a Sudden Change in Canal Stage 

In the case of a sudden drop in the canal stage, the initial and boundary conditions 
for which the partial differential equation, Equation 9.34, must be solved are 

fort  = O a n d x > O  : s = O  
for t  > Oandx = O  : s = so 
for t  > Oandx .+ 00 : s = O 

Edelman (1 947) solved this problem by introducing a dimensionless auxiliary variable, 
u, incorporating x and t as follows 

(9.35) 

The partial differential Equation 9.34 can then be written as the ordinary differential 
equation 

d2s ds 
du dU2 + 2u- = o (9.36) 

and for the boundary conditions 

s = so u = o  
s = o  u = c o  
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the solution is 

2 "  (9.37) 

2 "  where - J e-"2du = erf (u) is called the error function. 

Tables with values of this function for different values of u are available in 
mathematical handbooks: e.g. Abramowitz and Stegun (1969, and Jahnke and Emde 
(1945). Values of the function E,(u) are given in Table 9.1. A more elaborate table 
is given by Huisman (1972). 

The flow in the aquifer per unit length of canal at any distance x is found by 
differentiating Equation 9.37 with respect to x, and substituting the result in Darcy's 
equation according to Equation 9.31. Disregarding the sign for flow direction, we 
get 1 

(9.38) 

The discharge from the aquifer into the canal per unit length of canal is found by 
substituting x = O; thus u = O 

1 q , ,  = 5 - JÍE& e-u2 JSE& 

(9.39) 

so that Equation 9.38 reduces to 

qx,, = q0,t = q , ,  E2 (u) (9.40) 

Values of the function E2(u) are also given in Table 9.1. 
Equation 9.39 gives the discharge from one side of the canal. If the drop in the water 
level of the canal induces groundwater flow from two sides, the discharge given by 
Equation 9.39 must be multiplied by two. 

Note: The above equations can also be used if the water level in the canal suddenly 
rises, inducing a flow from the canal into the aquifer, and resulting in a rise in the 
watertable in the aquifer. 
The equations can also be used to calculate either the change in watertable in the 
aquifer if the hydraulic characteristics are known, or to calculate the hydraulic 
characteristics if the watertable changes have been measured in a number of 
observation wells placed in a row perpendicular to the canal. 

Example 9.3 
Using the following data, calculate the rise in the watertable at 10, 20, 40, 60, 80, 
and 100 m from the canal 25 days after the water level in the canal has risen suddenly 
by 1 m: saturated thickness of the aquifer D = 10 m, hydraulic conductivity K = 
1 m/d, and specific yield p = O. 10. 
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Table 9.1 Values of the functions E,(u), E2(u), E,(u), and E4(u) 

0.00 
0.01 
0.02 
0.03 
0.04 

0.05 
0.06 
0.07 
0.08 
0.09 

o. 10 
o. 12 
O. 14 
O. 16 
O. 18 

0.20 
0.22 
0.24 
0.26 
0.28 

0.30 
0.32 
0.34 
0.36 
0.38 

0.40 
0.42 
0.44 
0.46 
0.48 

0.50 
0.52 
0.54 
0.56 
0.58 

1.0000 
0.9887 
0.9774 
O. 9662 
0.9549 

0.9436 
0.9324 
0.9211 
O. 9099 
0.8987 

0.8875 
0.8652 
0.8431 
0.8210 
0.7991 

O. 7773 
0.7557 
0.7343 
0.7131 
0.6921 

0.6714 
0.6509 
0.6306 
0.6107 
0.5910 

0.5716 
0.5525 
0.5338 
0.5153 
0.4973 

0.4795 
0.4621 
0.4451 
0.4284 
0.4121 

1 .o000 
0.9999 
O. 9996 
0.9991 
0.9984 

0.9975 
0.9964 
0.9951 
0.9936 
0.9919 

O. 9900 
0.9857 
0.9806 
0.9747 
0.9681 

0.9608 
0.9528 
O. 9440 
0.9346 
0.9246 

0.9139 
O. 9027 
0.8908 
0.8784 
0.8655 

0.8521 
0.8383 
O. 8240 
O. 8093 
0.7942 

0.7788 
0.7631 
0.7471 
0.7308 
0.7143 

1.0000 
O. 9824 
0.9650 
0.9477 
0.9307 

0.9139 
0.8973 
0.8808 
0.8646 
O. 8486 

O. 8327 
0.8017 
0.7714 
0.7419 
0.7132 

0.6852 
0.6581 
0.6317 
O. 6060 
0.5811 

0.5569 
0.5335 
0.5108 
0.4888 
0.4675 

0.4469 
0.4270 
O. 4077 
0.3891 
0.3712 

0.3539 
0.3372 
0.3211 
0.3056 
0.2907 

1.0000 
0.9776 
0.9556 
0.9341 
0.9129 

O. 8920 
0.8717 
0.8515 
0.8319 
0.8125 

0.7935 
0.7566 
0.7212 
0.6871 
0.6542 

O. 6227 
0.5924 
0.5633 
0.5353 
0.5085 , 

0.4829 
0.4583 
0.4346 
0.4121 
0.3906 

0.3699 
0.3501 
0.3314 
0.3133 
0.2963 

0.2799 
O. 2643 
0.2495 
0.2353 
0.2219 
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Table 9.1 (cont.) 

0.60 
0.62 
0.64 
0.66 
0.68 

0.70 
0.72 
0.74 
0.76 
0.78 

0.80 
0.82 
0.84 
0.86 
0.88 

0.90 
0.92 
0.94 
0.96 
0.98 

1 .o0 
1 .o2 
1.04 
1 .O6 
1 .O8 

1.10 
1.14 
1.18 
1.22 
1.26 

1.30 
1.34 
1.38 
1.42 
1.46 

0.3961 
0.3806 
0.3654 
0.3506 
0.3362 

0.3222 
0.3086 
0.2953 
0.2825 
O. 2700 

0.2579 
0.2462 
0.2349 
0.2239 
0.2133 

0.2031 
O. 1932 
O. 1857 
O. 1746 
O. 1658 

O. 1573 
O. 1492 
O. 1414 
O. 1339 
O. 1267 

O. 1198 
O. 1069 
0.0952 
0.0845 
0.0748 

O. 0660 
0.0581 
0.0510 
0.0446 
0.0389 

0.6977 
0.6809 
0.6639 
0.6469 
0.6298 

0.6126 
0.5955 
0.5783 
0.5612 
0.5442 

0.5273 
0.5105 
0.4938 
0.4773 
0.4610 

0.4449 
0.4290 
0.4133 
0.3979 
0.3827 

0.3679 
0.3533 
0.3391 
0.3251 
0.3115 

0.2982 
0.2726 
0.2485 
0.2257 
0.2044 

O. 1845 
O. 1660 
O. 1489 
0.1331 
O. 1186 

0.2764 
0.2626 
0.2494 
0.2367 
0.2245 

0.2129 
0.2017. 
O. 1910 
O. 1807 
O. 1710 

O. 1616 
O. 1527 
o. 1441 
O. 1360 
O. 1283 

O. 1209 
O. 1139 
O. 1072 
O. 1008 
0.0948 

0.0891 
0.0836 
0.0785 
0.0736 
O. 0690 

O. 0646 
0.0566 
O. 0494 
0.0431 
0.0374 

0.0325 
0.0281 
O. 0242 
O. 0208 
0.0179 

O. 2089 
O. 1969 
O. 1853 
O. 1743 
O. 1639 

O. 1541 
O. 1448 
O. 1358 
O. 1275 
O. 1195 

o. 1120 
O. 1049 
0.0982 
0.0919 
0.0860 

0.0803 
0.0750 
O. 0700 
O. 0654 
0.0609 

0.0568 
0.0529 
O. 0492 
0.0458 
O. 0426 

0.0396 
0.0341 
0.0293 
0.0252 
0.0215 

0.0184 
0.0156 
0.0133 
0.0113 
0.0095 
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Table 9.1 (cont.) 

2.00 O. 0047 0.0183 0.0017 O. 0007 

2.20 0.0019 0.0079 0.0006 O. 0003 
~ 2.10 0.0030 0.0122 0.0011 o. O005 

I 2.30 0.0012 0.0050 O. 0004 o. 0002 
1 2.40 0.0007 0.0032 o. 0002 0.0001 
, 2.50- o. 0004 0.0019 0.0001 o. O000 

~~ ~~~ ~~ 

U El@) E3(4 E&) 
1.50 0.0339 O. 1054 0.0153 0.0080 
1.60 0.0237 0.0773 0.0102 0.0052 
1.70 0.0162 0.0556 0.0067 0.0033 
1.80 0.0109 0.0392 0.0044 0.0021 
1.92 0.0066 0.0251 0.0025 0.0011 

The transmissivity of the aquifer KD = 1 x IO = I O  m2/d is assumed to be constant, 
although, with the rise of the watertable, the saturated thickness D, and hence KD, 
increases slightly to, say, 10.5 m2/d. Substituting into Equation 9.35 gives 

For the given distances of x, the value of u is calculated and the corresponding values 
of E,(u) are read from Table 9.1. Substitution of these values and so = 1 m into 
Equation 9.37 yields the rise in the watertable after 25 days at  the given distances 
from the canal (Table 9.2). 

Example 9.4 
Analyzing the change in the watertable caused by a sudden rise or fall of the water 
level in a canal makes it possible to determine the aquifer characteristics. For this 
purpose, the change in watertable is measured in a few observation wells placed in 
a line perpendicular to the canal. Suppose three observation wells are placed at 
distances of 10, 20, and 40 m from the canal. At t < O, the watertable in the aquifer 
has the same elevation as the water level in the canal. At t = O, the water level in 

Table 9.2 The rise in the watertable after 25 days 

Distance x U El(@ Watertable rise 
(Table 9.1) 

(m) (-) (-> (m) 
10 
20 
40 
60 
80 

1 O0 

o. 1 
0.2 
0.4 
0.6 
0.8 
1.0 . 

0.8875 
0.7773 
0.5716 
0.3961 
0.2579 
O. 1573 

0.89 
0.78 
0.57 
0.40 
0.26 
O. 16 
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Table 9.3 Observed rise in the watertable (m) in three wells 

Distance of 
observation well 

(m) 

Time since rise in canal stage (d) 

t = 0.5 t = l  t = 2  t = 3  t = 4  

10 0.25 0.29 0.32 0.34 0.35 
20 O. 13 O. 19 0.25 0.26 0.27 
40 0.02 O. 065 o. 125 O. 165 O. 19 

the canal suddenly rises by an amount so = 0.50 m. The watertable measurements 
made in the three observation wells are given in Table 9.3. 

Calculate the transmissivity of the aquifer, assuming that its specific yield p = O. 10. 
Analyze the flow in the vicinity of the canal. Calculate the seepage from the canal 
a t t =  1 d a n d t = 4 d .  

Equations 9.35 and 9.37 indicate that log(s/s,) varies with log(x/,/t) in the same 
manner as log E,(u) varies with log u. Solving Equation 9.35 for p/KD therefore 
requires matching a logarithmic data plot of s/so ratios against their corresponding 
values of x/Jt to a logarithmic type curve drawn by plotting values of E,(u) against 
corresponding values of u. The type curve is drawn with the aid of Table 9.1. To 
prepare the logarithmic data plot of s/so versus x/Jt, we use the data from Table 
9.3: 

Time since rise in canal stage (d) 

t = 0.5 t = l  t = 2  t = 3  t = 4  

For x = 10 m 
XlJt 14.1 10.0 7.1 5.8 5.0 
SIS,  0.50 0.58 0.64 0.68 0.70 

For x = 20 m 
XIJt 28.3 20.0 14.1 11.5 10.0 
SIS,  0.26 0.38 0.50 0.52 0.54 

For x = 40 m 

SIS, 0.04 O. 13 0.25 0.33 0.38 
X I J t  56.6 40.0 28.3 23.1 20.0 

We now plot these data on another sheet of double logarithmic paper with the same 
scale as that used to prepare the type curve of E,(u). We then superimpose the two 
sheets and, keeping the coordinate axes parallel, we find a position in which all (or 
most) of the field-data points fall on a segment of the type curve (Figure 9.9). As 
match point, we select the point z with logarithmic type curve coordinates u = 0.1, 
E,(u) = 1.0. On the field-data plot, this point has the coordinates x/Jt = 4 and 
S/S, = 0.8. 
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Figure 9.9 Observed data plot s /so  versus x/\/;(points and dotted lines) superimposed on logarithmic type 

U.Ul 

curve El(u)-versus-u (curve and solid lines) 

I Substituting these values into Equation 9.35 yields 

x 1 4  1 E=--- 2 f i  u - - x - - 2 0  2 0.1 

For p = 0.10, it follows that KD = 400 x 0.1 = 40 m2/d. 

According to Equation 9.37, the ratio s/so = E,(u). If E,(u) = 1, it follows that s 
= so. Only at the edge of the canal (at x = O) is s = so. From the coordinates of 
the match point z, however, it follows that, for E,(u) = 1, the ratio s/so = 0.8. This 
means that s = 0.8 so, or s = 0.8 x 0.5 = 0.4 m. At the edge of the canal, the watertable 
is therefore 0.5 - 0.4 = O. 1 m less than expected. The value of O. 1 m is the head loss 
due to radial flow in the vicinity of the canal, because the canal does not fully penetrate 
the aquifer. 

The seepage from the canal after 1 and 4 days is found from Equation 9.39. 
Substituting the appropriate values into this equation gives 

for t  = 1 day 

I 

Jm = 0.45 m2/d 
3.14 x 1 

1 fort  = 4days 

I 
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Remarks 
If a canal penetrates an aquifer only partially, as is usually the case, watertable readings 
from observation wells placed too close to the canal may give erroneous results. The 
smaller the distance between the observation well and the canal, the greater the error 
in the calculated value of p/KD. As is obvious, an instantaneous rise or fall in the 
canal level can hardly occur, which makes it difficult to determine a reference or zero 
time (Ferris et al. 1962). This means that observations made shortly after the change 
in canal stage may be unreliable. With partially penetrating canals, therefore, more 
weight should be given to data from wells at relatively great distances from the canal 
and to large values of time. However, observation wells at great distances react slowly 
to a relatively small change in canal stage, and it may take several days before 
noticeable watertable changes occur. This may be another source of error, especially 
when the aquifer is recharged by rain or is losing water through evapotranspiration. 
The solution is based on the assumption that water losses or gains do not occur. A 
field experiment should therefore not last longer than, say, two or three days to avoid 
errors caused by such water losses or gains. 

I 9.5.2 After a Linear Change in Canal Stage 

The condition of an abrupt change in the water level of a canal or stream is rather 
unrealistic, except perhaps in an irrigation area where some of the canals are alternately 
dry and filled relatively quickly when irrigation is due. A more realistic situation is 
a canal stage that is a function of time. In this section, a solution will be given for 
the situation where the change in water level of a canal is proportional to time; in 
other words, the water level changes at a linear rate, denoted by a. 
Hence 

so = a t  (9.41) 

so that the initial and boundary conditions for which Equation 9.34 must be solved are 

for t  = Oandx > O  : s = O 
for t  > Oandx = O : s = so = a t  
for t  > Oandx -, 00 : s = O 

The solution then becomes 

SXJ = SOJ 

where 

2u 
E~(u) = - E~(u) + ( 2 ~ ’  + 1) E,(u) 

J. 
and 

3 24 

(9.42) 

(9.43) 

(9.44) 
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