
Table 6.8 Maximum daily November rainfalls (in mm), with a return period of 5 years, as calculated 
according to 3 different distributions 

Estimation method Rainfall with 90% confidence limits 
T, = 5 

Log-normal distribution 98 69 191 
(Figure 6.13) 

Gumbel distribution 104 71 173 
(Figure 6.14) 

Exponential distribution 105 71 206 
(Figure 6.15) 

Lower limit Upper limit 

The data in the two tables indicate that there is no significant difference between the 
results obtained by the different methods. 

6.5 Regression Analysis 

6.5.1 Introduction 

Regression analysis was developed to detect the presence of a mathematical relation 
between two or more variables subject to random variation, and to test if such a 
relation, whether assumed or calculated, is statistically significant. If one of these 
variables affects the other, that variable is called the independent variable. The variable 
that is affected is called the dependent variable. 

Often we do not know if one variable is directly affected by another, or if both 
variables are influenced by common causative factors that are unknown or that were 
not observed. .Then we have to choose the (in)dependent variables arbitrarily. We 
shall consider here relations with only one dependent and one independent variable. 
For this, we shall use a two-variable regression. For relations with several independent 
variables, a multivariate regression is used. 

Linear two-variable regressions are made according to one of two methods. These 
are: 
- The ratio method (Section 6.5.2); 
- The ‘least squares’ method (Section 6.5.3) .  

The ratio method is often used when the random variation increases or decreases with 
the values of the variables. If this is not the case, the least-squares method is used. 
The ratio method, as we use it here, consists of two steps, namely: 
- Calculate the ratio p = y/x of the two variables y and x; 
- Calculate the average ratio p, its standard error sp, and its upper and lower 

confidence limits Pu and is,, to obtain the expected range of p of repeated samples. 

The least squares method consists of finding a mathematical expression for the relation 
between two variables x and y, so that the sum of the squared deviations from the 
mathematical relation is minimized. This method can be used for three types of 
regressions: 
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- Regressions of y upon x; 
- Regressions of x upon y; 
- Two-way regressions. 

Regressions of y upon x are made if y is causally influenced by x, or to predict the 
value of y from a given value of x. In these regressions, the sum of the squared 
deviations of y to the regression line, i.e. in the y-direction, are minimized. 

Regressions of x upon y are made to predict the value of x from a given value of 
y. Except for the reversal of the variables, the procedure for making these regressions 
is identical to that for making regressions of y upon x. However, here it is the sum 
of the squared deviations of x that are minimized. 

Two-way regressions are made if no dependent variable can be selected, or if one 
is more interested in the parameters of the regression line than in the values of the 
variables. These are intermediate regressions that cover the territory between 
regressions of y upon x and of x upon y. 

The relation between y and x need not be linear. It can be curved. To detect a non-linear 
relation, it is common practice to transform the values of y and x. If there is a linear 
relation between the transformed values, a back-transformation will then yield the desired 
non-linear relation. The majority of these transformations are made by taking log-values 
of y and x, but other transformations are possible (e.g. square root functions, goniometric 
functions, polynomial functions, and so on). Curve fitting can be done conveniently 
nowadays with computer software packages. Further discussion of non-linear regressions 
is limited to Example 6.3 of Section 6.5.4 and Example 6.4 of Section 6.5.5. For more 
details, refer to statistical handbooks (e.g. Snedecor and Cochran 1986). 

6.5.2 The Ratio Method 

If the variation in the data (x, y) tends to increase linearly, the ratio method can be 
applied. This reads 

y = p.x + E or 9 = p.x 

or 

y/x = p + E' or (y/x) = p 

P 
9 
E and E' = a random deviation 
(f/x) 

where 
= a constant (the ratio) 
= the expected value of y according to the ratio method 

= the expected value of the ratio y/x 

Figure 6.17 suggests that there is a linear relation between y and x, with a linearly 
increasing variation. The envelopes show that the ratio method is applicable. In 
situations like this, it is best to transform the pairs of data (y, x) into ratios p = 
y/x. The average ratio for n pairs is then calculated as 

(6.26) - 1  
n p = - x p  
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drain discharoe 

height of watertable in m 
D 

midway between drains with 
respect to the drain level 

Figure 6.17 The ratio method. The variation of y increases with increasing x 

Using Equation 6.13, we find the standard deviation of p from 

1 1 PPI2  s; = - q p  - p)' = - (CP2 - n 1 n - 1  n - 1  

and using Equation 6.19, we find the standard error of p from 

(6.27) 

(6.28) 

Standard errors of y and 9 can be found from sy = xsp and ss = xsg. 

approximated by 
The confidence interval of p, i.e. the expected range of is of repeated samples, is 

- 
p" = p + tsp 

p" = p - tsp 
- -  

(6.29) 

(6.30) 

Here, the subscripts u and v denote the upper and lower confidence limits. The letter 
t stands for the variate of Student's distribution (Table 6.9) at  the frequency of 
exceedance f. If one wishes an interval with c% confidence, then one should take f 
= 0.5(100 - c)/IOO (e.g. f = 0.05 when c = 90%). The value o f t  depends on the 
number (n) of observations. For large values of n, Student's distribution approaches 
the standard normal distribution. For any value of n, the t-distribution is symmetrical 
about t = O .  

If the confidence interval j3, - pv contains a zero value, then p will not differ 
significantly from zero at  the chosen confidence level c. Although the value of p is 
then called insignificant, this does not always mean that it is zero, or unimportant, 
but only that it cannot be distinguished from zero owing to a large scatter or to an 
insufficient number of data. 
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Table 6.9 Values t of Student's distribution with d degrees of freedom* and frequency of 
exceedance f 

d f = 0.10 0.05 0.025 0.01 

5 1.48 2.02 2.57 3.37 
6 1.44 1.94 2.45 3.14 
7 1.42 1.90 2.37 3.00 
8 1.40 1.86 2.31 2.90 
9 1.38 1.83 2.26 2.82 

10 1.37 1.81 2.23 2.76 
12 1.36 1.78 2.18 2.68 
14 1.35 1.76 2.15 2.62 
16 1.34 1.75 2.12 2.58 
20 1.33 1.73 2.09 2.53 
25 1.32 1.71 2.06 2.49 
30 1.31 1.70 2.04 2.46 
40 1.30 1.68 2.02 2.42 
60 1.30 1.67 2.00 2.39 

100 1.29 1.66 1.99 2.37 
200 1.28 1.65 1.97 2.35 
00 1.28 1.65 1.96 2.33 

* For the ratio method d = n - 1, because variation starts if there is more than one data pair; 
linear regression requires more than two data pairs, so d = n - 2 

The confidence interval of 9 is found likewise from 9" = 9 + tsg and 9" = 9 - ts?. 
Figure 6.18 illustrates situations where y is not zero when x = O. When this occurs, 

the ratio method can be used if y - y,, is substituted for y, and if x - x, is substituted 
for x. In these cases, x,, and y,, should be determined first, either by eye or by 
mathematical optimization. 

Example 6.1 
A series of measurements of drain discharge and watertable depth are available on 
an experimental area. The relation between these two variables is supposedly linear, 
and the variation of the data increases approximately linearly with the x and y values. 
We shall use the ratio method to find the relation. The data are tabulated in Table 
6.10. 

u= V V O  
instead of y 

'.. 

. .  

use y-y0 and x-xo 
instead of y and x i use x-xo 

instead of x 

' \  .\ 
* \  

Figure 6.18 Adjustments of the ratio method when y and x are not zero 
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Table 6.10 Data used in Figure 6.17, where y = drain discharge (mm/d) and x = height of the watertable 
(m) midway between the drains, with respect to the drain level 

I ' Equation 6.26 : = 158.5118 = 8.8 
Ratio method : p = ylx, Cp = 158.5, Cp2 = 448, n = 18 

I 
, Equation 6.27 : sp = d(1448 - 18 X 8.8*)/17 = 1.78 

Equation 6.28 : s- = 1 78h/l8 = 0.42 
Table 6.9 : P = Oio5 and d = 17 + tgg% = 1.75 
Equation 6.29 : 5" = 8.8 + 1.75 X 0.42 = 9.5 
Eauation 6.30 : 6.. = 8.8 - 1.75 x 0.42 = 8.1 

' 

no. Y X p = ylx no. Y X p = ylx 

1 3.0 0.30 10.0 1 0 .  7.0 0.60 11.7 
2 4.0 0.35 11.4 11 6.0 0.60 10.0 
3 3.0 0.40 7.5 12 4.5 0.60 7.5 
4 4.5 0.45 10.0 13 4.0 0.60 6.7 
5 6.0 0.50 12.0 14 5.0 0.65 7.7 
6 5.0 0.50 10.0 15 4.5 0.65 6.9 
7 4.0 0.50 8.0 16 5.0 0.70 7.1 
8 5.0 0.55 9.1 17 6.0 0.75 8.0 
9 4.5 0.55 8.2 18 5.0 0.75 6.7 

The data of Table 6.10 show that parameter is estimated as 8.8, the 90% confidence 
limits being pu = 9.5 and j5, = 8.1. Hence the ratio p is significantly different from 
zero. In Chapter 12, the ratio is used to determine the hydraulic conductivity. 

6.5.3 

The linear regression of y upon x is designed to detect a relation like the following 

Regression of y upon x 

y = a x + b + s  or f = a x + b  (6.31) 

a = the linear regression coefficient, representing the slope of the regression 

b = the regression constant, giving the intercept of the regression line on the 

E = a random deviation of the y value from the regression line 
9 = the expected value of y according to the regression (9 = y - E). 

where 

line 

y axis 

This regression is used when the E values are independent of the values of y and x. 
It is used to predict the value of y from a value of x, regardless of whether they have 
a causal relation. 

Figure 6.19 illustrates a linear regression line that corresponds to 8 numbered points 
on a graph. A regression line always passes through the central point of the data (TI, 
9. A straight line through (TI,9 can be represented by 

(6.32) (Y -9 = a(x -3 
where a is the tangent of the angle CL in the figure. 
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X - + X  O X I  

y =  deviation before regression 
6 =  part of yexplained by regression 

Figure 6.19 Variations in the y-direction 

Normally, the data (x, y) do not coincide with the line, so a correct representation 
of the regression is 

(6.33) 

where E is a vertical distance .of the point (x, y) to the regression line. The sum of 
all the E values equals zero. The difference y-E gives a y value on the regression line, 
9.  Substitution of 9 = y-E in Equation 6.33 gives 

(6.34) 

where a is called the regression coefficient of y upon x. Equation 6.34 can also be 
written as 

9 = a x  +J-aF;  (6.35) 

By substituting b = J -  ax ,  we get Equation 6.31. 
(the least squares 

method). In other words the regression line must fit the points as well as possible. 
To meet this condition we must take 

( y - 2  = a(x-sr) + E 

(9 - L> = a(x - K) 

To determine the regression coefficient, one must minimize the 

where 
1 

C’yx = C(y - y) (x - sr) = C(yx) - (Xy) (Ex) 
1 
n C’x2 = X(x - 8 2  = X(x’) --(Ex)’ 

1 
C’y2 = X(y - 9’ = X(y’) - (Cy)2 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

in which the symbol C’ means ‘reduced sum’. Equation 6.39 was included for use 
in the ensuing confidence statements. 
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The coefficient a can be directly calculated from the (x, y) pairs of data. If a is positive, 
the regression line slopes upward, and an increase in x causes an increase in y, and 
vice versa. If a is negative, the regression line slopes downward. If the regression 
coefficient a is zero, then there is no linear relation between y and x, and the line 
is horizontal. 

The following equations give additional definitions (see Equation 6.13 also) 

C’x’ 
n - 1  n - 1  n - l  

C(x - j1)2 - Ex2 - (Cx)’/n - - sf = ~ - 

where s,2 is called the variance of x 

2 - - -  2’Y2 - C(Y - Y12 - - CY2 - (cY>’/n 
’Y-n-1 n - 1  n - l  

where sy2 is called the variance of y 

(6.40) 

(6.41) 

(6.42) C‘xy 
n - l  n - 1  n - l  

C(x - sr) (y - 7) - Cxy - ZxZy/n - - s,, = - - 

where sXy is called the covariance of x and y. 
Therefore, we can also write for Equation 6.36 

a = %  (6.43) 
sz 

Confidence Statements, Regression of y upon x 
The sum of the squares of the deviations (CE’) is minimum, but it can still be fairly 
large, indicating that the regression is not very successful. In an unsuccessful 
regression, the regression coefficient a is zero, meaning that variations of x do not 
explain the variation in y, and  CE^ = C(y-9’ = C‘y2 (compare with Equation 6.39). 
But if the coefficient a is different from zero, part of the y-variation is explained by 
regression, and the residual variation drops below the original variation: CE’ < Z’y2. 
In other words, the residual deviations with regression are smaller than the deviations 
without regression. The smaller the non-explained variation  CE^ becomes, the more 
successful the regression is. The ratio CE~/C‘Y~ equals I-R2, in which R2 is the coefficient 
of determination, which is a measure of the success of the regression. 

In linear regression, the coefficient R equals the absolute value of the correlation 
coefficient r. In addition, r2C’y2 equals the linearly explained variation and ( I-r2)C’y2 
is the residual variation, CE’. The value of r can be calculated from 

Z’XY %y 
J(C’X2) (C’y’) - s, sy r =  (6.44) 

This correlation coefficient is an indicator of the tendency of the y variable to increase 
(or decrease) with an increase in the x variable. The magnitude of the increase is given 
by the coefficient a. Both are related as 

(6.45) 

The correlation coefficient r can assume values of between -1 and ’+ 1. If r =- O, the 
a coefficient a is also positive. If r = 1 there is a perfect match of the regression line 

S r = a 2  
SY 
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with the (x, y) data. If r < O, the coefficient a is also negative, and if r = -1, there 
is also a perfect match, although, y increases as x decreases and vice versa. If r = 
O, the coefficient a is also zero, the regression line is parallel to the x-axis, i.e. horizontal, 
and the y variable has no linear relation with x. 

In non-linear relations, the r coefficient is not a useful instrument for judging a relation. 
The coefficient of determination R2 = l - Z ~ ~ / x ’ y ~  is then much better (Figure 6.20). 

Because the coefficient a was determined with data of a certain random variation, it 
is unlikely that its values will be the same if it is determined again with new sets of data. 
This means that the coefficient a is subject to variation and that its confidence interval 
will have to be determined. For this purpose, one can say that it is c% probable that 
the value of a in repeated experiments will be expected in the range delimited by 

(6.46) 

(6.47) 

a, = a + ts, 
a, = a - ts, 

with 

(6.48) 

where 
a, and a, are the upper and lower confidence limits of a 
t = a variable following Student’s distribution, with d = n - 2 degrees of 

f = 0.5(100-c)/100 is the frequency with which the t value is exceeded (the 

s, = the standard error of the coefficient a 

freedom (Table 6.9) 

uncertainty) 

Theoretically, this statement is valid only if the E deviations are normally distributed 
and independent of x. But for most practical purposes, the confidence interval thus 
determined gives a fair idea of the possible variation of the regression coefficient. 

One can also say that, in repeated experiments, there is a c% probability that the 
y value found by regression (9, Equation 6.43) for a given x value, will be in the range 
limited by 

9, = 3 + tsg 
Q = j k - t s .  

(6.49) 

(6.50) 

Figure 6.20 A clear relation between y and x, although r z O 
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where 9, and Ev are the upper and lower confidence limits of 9,  and sg is the standard 
error of 9,  equal to 

(6.51) sg = JSf + (x - sI)2 sf 

Here, sL is the standard error of y, which is the value of 9 at x = J I  

s. = J""' 
y (n-2)n (6.52) 

By varying the x value, one obtains a series of 9,  and 9, values, from which the 
confidence belt of the regression line can be constructed. Taking x = O, one obtains 
the confidence limits of the regression constant b. In this case, the value of s; is often 
relatively small, and so Equation 6.51 can be simplified to 

Sb = % s a  (6.53) 

and the upper and lower confidence limits of b are 

(6.54) 

(6.55) 

To calculate the confidence interval of a predicted y value from a certain x value one 
6.49, 6.50 and 6.51, y, = 9 + ts, and y, = 

simple to compute a linear 2-variable 
regression analysis and the corresponding confidence statements because all the 
calculations can be done knowing only n, Cx, Cy, Z(xy), Ex2, Zy2. This is illustrated 
in the following example. Nowadays, personal computers are making regressions even 
easier, and general software packages like spreadsheets can be conveniently used. 

Example 6.2 Regression y upon x 
The data from Table 6.11 were used to do a linear regression of y upon x to determine 
the dependence of crop yield (y) on watertable depth (x): y = ax + b. The result 
is shown in Figure 6.21. 

From the table, we see that the confidence limits of the regression coefficient (a 
= 1.7) are a, = 2.4 and a, = 1 .O. Hence, although the coefficient is significant, its 
range is wide. Because r2 = 0.42, we know that the regression explains 42% of the 
squared variations in y. As the regression equation (Equation 6.41), we get 

(9-4.7) = a(x-0.57) 

With the calculated b, the regression result can also be written as 

9 = a x  + 3.73 (n = 18, r = 0.65) 

According to this, every O. 10 m that the watertable drops results in an average crop 
yield increase of 0.17 t/ha (using a = 1.7), with a maximum of 0.24 t/ha (using a, 
= 2.4) and a minimum of O. 10 t/ha (using a, = 1 .O). 
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Table 6.1 1 (y, x) data used in Figure 6.21, with y = crop yield (t/ha) and x = seasonal average depth 
of the watertable (m) 

no. Y X no. Y X 

1 4.0 O. 15 14 4.0 0.50 
. 2  4.5 0.20 15 4.5 0.60 

3 3.0 0.20 16 6.0 0.65 
4 ’ 4.0 0.25 17 4.5 0.65 
5 3.7 0.25 18 5.7 0.70 
6 3.5 0.32 19 5.0 0.70 
7 5.0 0.40 20 5.3 0.75 
8 4.5 0.40 21 5.5 0.90 
9 4.5 0.40 22 4.7 0.90 

10 4.8 0.45 23 5.0 0.91 
11 4.5 0.45 24 4.5 1 .o0 
12 5.5 0.47 . 25 5.7 1 .O5 
13 5.2 0.50 26 5.5 1 .O8 

Ex = 14.87 Ex2 = 10.47 Cxy = 73.46 
Cy = 122.60 Cy2 = 591.68 n = 2 6  n - 2 = 2 4  x = Cxln = 14.87126 = 0.57 
7 = Cy/n = 122.60126 = 4.7 

Equation 6.38: C’x2 
Equation 6.39: Efy2 = 591.68 - (122.60)2/26 = 13.57 
Equation 6.37: C‘xy 
Equation 6.36: a = 3.3411.97 = 1.70 

Equation 6.44: r = 3.34fd1.97 X 13.57 = 0.65 - 9 = 0.42 
Equation 6.48: Ce2 = (1 - 0.42) 13.57 = 7.87 
Equation 6.48: sa =d7.87/24 X 1.97 = 0.41 

Equation 6.46: a,, = 1.70 + 1.71 x 0.41 = 2.4 
Equation 6.47: a, = 1.70 - 1.71 x 0.41 = 1.0 
Equation 6.53: sb = 0.57 X 0.41 = 0.23 
Equation 6.54: b, = 3.73 + 1.71 X 0.23.= 4.1 
Equation 6.55: b, = 3.73 - 1.71 X 0.23 = 3.3 

Equation 6.49: 9, 
Equation 6.50: 9 ,  

= 10.47 - (14.87)*/26 = 1.97 

= 73.46 - 14.87 X 122.60126 = 3.34 

Equation 6.35: b = 4.7 - 1.70 X 0.57 = 3.73 

Table 6.9: f = 0.05 and d = 24 + tgg% = 1.71 

’ Equation 6.52: sy =d7.87/24 X 26 = 0.11 
= 4.7 + 1.71 X 0.11 = 4.9 
= 4.7 - 1.71 X 0.11 = 4.5 

6.5.4 Linear Two-way Regression 

Linear two-way regression is based on a simultaneous regression of y upon x and 
of x upon y. It is used to estimate the parameters (regression coefficient a and intercept 
b) of linear relations between x and y, which do not have a causal relation. 

Regression of y upon x yields a regression coefficient a. If the regression of x upon 
y yields a regression coefficient a’, we get, analogous to Equation 6.34 

(i - sr> = a’(y - 9 (6.56) 

Normally, one would expect that a‘= l/a. With regression, however, this is only true 
if the correlation coefficient r = 1, because 

a’.a = r2 (6.57) 
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in Uha 

2 
watertable depth in m 

Figure 6.21 Linear regression of y upon x (Example 6.2) 

The intermediate regression coefficient a* becomes 

a* = (6.58) 

which gives the geometric mean of the coefficients a and l/a'. The expression of the 
intermediate regression line then becomes 

(y*--) = a*(x*-F) (6.59) 

or 

y* = a*x* + b* 

where 
b* = 7 - a*% 

(6.60) 

(6.61) 

The symbols y* and x* are used to indicate the y and x values on the intermediate 
regression line. 

Because the intermediate regression coefficient a* results from the regression of 
y upon x and of x upon y, one speaks here of a two-way regression. 

The intermediate regression line is, approximately, the bisectrix of the angle formed 
by the regression lines of y upon x and of x upon y in the central point (51,g. 
Confidence Interval of the Coefficient a* 
In conformity with Equations 6.46 and 6.47, the confidence limits of the intermediate 
regression coefficient a* are given by 

(6.62) 

(6.63) 

a*" = a* + t sa. 

a*" = a* - t sa. 

O 
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c 

where the standard error sa* of a* is found from 

sa* = a*& = a*+ a a (6.64) 

This shows that the relative standard error s,./a* is considered equal to the relative 
standard error s,/a or s,./a'. In general, the relative standard errors of all regression 
coefficients are equal 

Confidence Belt of the Intermediate Regression Line 
The confidence belt of the intermediate regression line can be constructed from the 
confidence intervals of y* or x*. We shall limit ourselves here to the confidence 
intervals of y*. 

In conformity with, Equations 6.49,6.50, and 6.51 we can write 

fl = y *  + ts,. (6.65) 

y*v = y* - ts,* (6.67) 

where 

sy. = JSf + (x* - sT)2 st, (6.68) 

And in conformity with Equations 6.53,6.54, and 6.55 we get 

(6.69) 

(6.70) 

b*, = b* - tSb* (6.71) 

An example of how to use these equations follows. 

Example 6.3 Two- Way Regression 
Let us assume that we wish to determine the hydraulic conductivity of a soil with 
two different layers. We have observations on drain discharge (9) and hydraulic head 
(h), and we know that q/h and h are linearly related: q/h = a*h + b*. The hydraulic 
conductivity can be determined from the parameters a* and b* (Chapter 12), whose 
values can be found from a two-way regression. 

In Table 6.12 one finds the two-way regression calculations, made according to 
the equations above, in which h replaces x and z = q/h replaces y. Although the values 
of both a* and b* are significantly different from zero, we can see that they are not 
very accurate. This is owing partly to the high scatter of the data and partly to their 
limited number (Figure 6.22). 

Figure 6.22 shows the confidence intervals of the regression line, which are based 
on the confidence intervals of b*, and a* that were calculated in Table 6.12. Despite 
the fairly high correlation coefficient (r = 0.83), the confidence intervals are quite 
wide. This problem can be reduced if we increase the number of observations. 
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Table 6.12 Values of the hydraulic head (h), the discharge (q), and their ratio (z = q/h) in a drainage 
experimental field 

Observation number q h z = qlh 
(" (m) (d-9 

1 0.0009 O. 17 0.0053 
2 0.0011 O. 19 0.0058 
3 0.0022 0.28 0.0079 
4 0.0020 0.30 0.0066 
5 0.0034 0.40 0.0085 
6 0.0032 0.40 0.0080 
7 0.0031 0.42 0.0074 
8 0.0035 0.45 0.0078 
9 0.0044 0.48 0.0092 

10 0.0042 0.51 0.0082 
11 0.0057 0.66 0.0086 

Eh = 4.26 EZ = 0.0833 n= 11 
h = Chin = 0.387 y = E d n  = 0.00757 
Eh2 = 1.86 EZ' = 0.000645 Czh = 0.0337 
,Equations 6.37, 6.38 and 6.39: 
E'h2 = 0.209 C'z' = 0.0000145 E'zh = 0,00144 

- 

Equation 6.36: 
Equation 6.44: 

Equation 6.51: 
Equation 6.53: 
Equation 6.48: 
Equation 6.48: 
Equation 6.64: 
Table 6.9: 
Equation 6.57: 
Equation 6.58: 
Equation 6.59: 
Equation 6.69: 
Equation 6.70: 
Equation 6.71: 

a ,  = 0.00144/0.209 = 0.0069 
r 

? = 0.83' = 0.69 
a' = 0.69/0.0069 = 100 
a* =d(0.0069 X 0.0100) = 0.0083 
CE* = (1-0.69) X 0.0000145 = 0.00000450 
sa = d 0.000004501(11-2) X 0.209) = 0.00155 

= 0.00144h/(0.209 X 0.0000145) = 0.83 

sat 
d 

= 0.0083 X 0.00155/0.0069 = 0.0019 
= 9; f = 0.05; tf = 1.83 

a: = 0.0083 + i.83 x 0.00186 = 0.0117 
a: = 0.0083 - 1.83 X 0.00186 = 0.0049 
b* 
~ b t  

= 0.00757 - 0.0083 X 0.387 = 0.0044 
= 0.387 X 0.0019 = 0.00074 

b: 
b; 

= 0.0044 + 1.83 X 0.00074 = 0.0058 
= 0.0046 - 1.83 X 0.00074 = 0.0030 

6.5.5 Segmented Linear Regression 

In agriculture, crops will often react to a production factor x within a certain range 
of x, but not outside this range. One might consider using curvilinear regression to 
calculate the relation between crop yield (y) and x, but the linear regression theory, 
in the form of segmented linear regression, can also be used to calculate the relation. 

Segmented linear regression applies linear regression to (x,y) data that do not have 
a linear relation. It introduces one or  more breakpoints, whereupon separate linear 
regressions are made for the resulting segments. Thus, the non-linear relation is 
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Z = q/h 
in d-1 

h i n m  

Figure 6.22 Two-way regression with the data of Table 6.12 

approximated by linear segments. Nijland and El Guindy (1986) used it to calculate 
a multi-variate regression. A critical element is the locating of the breakpoint. 
Oosterbaan et al. (1990) have presented a method for calculating confidence intervals 
of the breakpoints so that the breakpoint with the smallest interval i.e. the optimum 
breakpoint, can be selected. 

Y. 
yield in Wha 

x ,  watertable depth in m 

Figure 6.23 Segmented linear regression with the same data as in 
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Example 6.4 Segmented Linear Regression with one Breakpoint 
Segmented linearization (or broken-line regression) will be illustrated with the data from 
Figure 6.21 as shown again in Figure 6.23. In this example the optimum breakpoint 
was at  x = 0.55 m. The subsequent calculations are presented in Table 6.13. 

Discussion 
The total CE* = 3.57 + 3.06 = 6.63 in Table 6.13 is lower than the  ZE^ = 7.87 of 
Example 6.2, which represents the linear regression using all the data without a 
breakpoint. This means that the segmented regression gives a better explanation of 

Table 6.13 Segmented linear regression calculations with the data of Table 6.11 

1) Segment with x < 0.55 m 

EX = 4.94 Cy = 60.7 n = 14 
x = Cxln = 0.35 m y = Cyln = 4.3 tlha 
Ex2 = 1.94 Cy2 = 269.26 Cxy = 22.12 

- 

Equations 6.38, 6.39 and 6.37 give 
C'x2 = 0.19 Cry2 = 6.09 C'xy = 0.70 

Equation 6.36: a = 3.62 
Equation 6.35: b = 3.06 
Equation 6.44: I.2 = 0.41 
Table 6.10: f 
Equation 6.48: Ce2 = 3.57 
Equation 6.46: a,, = 5.83 
Equation 6.47: a, = 1.40 
Equation 6.49: x = = 4.6 tlha 
Equation 6.50: 9, 

= 0.05 and d = 12 -ho./, = 1.78 

= 4.0 tlha 

2) Segment with x > 0.55 m 

Ex = 9.93 Cy = 61.9 n = 12 
x = Cxln = 0.83 m y = Cyln = 5.2 tlha 
Ex2 = 8.54 Cy2 = 322.41 Cxy = 51.35 

- 

Equations 6.38, 6.39 and 6.37 give 
C'x2 = 0.32 Cry2 = 3.11, C'xy = 0.12 

Equation 6.36: 
Equation 6.35: 
Equation 6.44: 
Table 6.10: 
Equation 6.48: 
Equation 6.46: 
Equation 6.47: 
Equation 6.49: 
Equation 6.50: 

a = 0.38 
b = 4.84 

f = 0.05 and d = 10 - Go% = 1.81 
Ce2= 3.06 

= 2.15 

x = 9" = 5.5 tlha 
9, = 4.9 tlha 

I.2 = 0.02 

= - 1.38 
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the effect of watertable depth on crop yield than does the unsegmented regression. 
One can test whether this improvement is significant at a certain confidence level by 
comparing the reduction in ,XE~ with the residual variation after segmented linear 
regression. One then checks the variance ratio using an F-test, a procedure that is 
not discussed here. In this example, the improvement is not statistically significant. 
This difficulty could be obviated, however, by the collection of more data. 

The regression coefficient (a = 0.38) for the data with x > 0.55 is very small and 
insignificant at the 90% confidence level because a, < O < a,, meaning that no 
influence of x upon y can be established for that segment. 

On the other hand, the regression coefficient (a = 3.62) for the data with x < 0.55 
is significant at the chosen confidence. Hence, the yield (y) is significantly affected 
by watertables (x) shallower than 0.55 m. 

In accordance with Equation 6.3 1, the regression equations become 

9 = 3 = 5.2 [x > 0.55mI 

9 = 3.62(x-0.35) + 4.3 = 3.62 x + 3.1 [x < 0.55 m] 

The intersection point of the two lines need not coincide exactly with the breakpoint; 
but when the segmented regression is significant, the difference is almost negligible. 

Using n, = number of data with x < 0.55 and n, = total number of data, and 
assuming that the points in Figure 6.23 represent fields in a planned drainage area, 
one could say that n,/n, = 14/26 = 54% of the fields would benefit from drainage 
to bring the watertable depth x to a value of a t  least 0.55 m, and that 46% would 
not. An indication of the average yield increase for the project area could be 
obtained as follows, with X being the average watertable depth in the segment x 
< 0.55 

Ay = a(0.55-Sl)nV/n, = 3.62(0.55-0.35)0.54 = 0.4 tlha 

with confidence limits Ay, = 0.6 and Ay, = 0.2, which are calculated with a, = 5.83 
and a, = 1.40 instead of a = 3.62. From Example 6.2, we know that the average 
current yield is y = 4.7 t/ha. Accordingly, we have a relative yield increase of 0.4/4.7 
= 9%, with 90% confidence limits of 0.614.7 = 13% and 0.214.7 = 4%. 

6.6 Screening of Time Series 

6.6.1 Time Stability versus Time Trend 

Dahmen and Hall (1990) discuss various established methods of statistical analysis 
to detect the presence of a significant time trend in time series of hydrologic data. 
One of the methods they describe involves tests for the time stability of the mean 
of the data. Time stability can be tested in three ways. These are: 
- Spearman’s rank correlation method; 
- Student’s t-test for the means of data in consecutive periods; 
- Segmented linear regression of the cumulative data and time (mass curve analysis) 

or of the cumulative data from two measuring stations (double-mass curve 
analysis). 
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In this chapter, we discuss only Student's t-test of the means. 
In Figure 6.24, we see a time series of annual maximum water levels of the Chao 

Phraya river at  Bang Sai, Thailand, from 1967 to 1986. The figure suggests that the 
water levels are, on average, somewhat lower after 1977. The difference in the levels 
for the two different peGodsJ1967-1977 and 1978-1986) is analyzed in Table 6.14. 

The difference A = h, -h2 = 0.69, from Table 6.14, has a standard error S ,  that 
can be found from 

SA = J(si! + Shz2) 

Hence, it follows that S ,  = 0.22 m. 

(Av) confidence limits of A, we use 
From Equations 6.46 and 6.47, we know that to calculate the upper (A,) and lower 

A, = A + tS, and Av = A - tSA 

For the 90% confidence interval, Table 6.9 gives, t = 1.83, with f = 0.05 and d = 
n-1 = 10-1 =9 .ThusAU= 1.09andAV=0.28. 

Because both Au and Av are positive, the difference in water levels before and after 
1976 is significant. In fact, the difference is the result of the construction of a storage 
reservoir and electric power station in a tributary of the Chao Phraya river. This should 
be taken into account if one uses the data of all 20 years to make a frequency analysis. 
Due to construction and operation of the reservoir, the return period of a certain 
high water level is underestimated and the water level for a certain return period is 
overestimated. 

max. annual 
water level in m 

year 

Figure 6.24 Time series of annual maximum water levels of the Chao Phraya river at Bang Sai, Thailand 
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Table 6.14 Regression analysis of the water levels (m) used in Figure 6.24 to test the difference of the 
decade means 

First decade Second decade 

Year Maximum annual Year Maximum annual 
water level (hl) water level (h2) 

1967 2.49 1977 1.88 
1968 2.80 1978 2.54 
1969 2.78 1979 1.98 
1970 1.95 1980 1.42 
1971 3.29 1981 2.63 
1972 2.30 1982 3.16 
1973 3.14 1983 1.78 
1974 3.20 1984 1.76 
1975 2.92 1985 2.04 
1976 3.51 1986 2.31 

n = 10 
- Eh, = 28.38 

Eh: = 82.63 
hl = 2.84 

s ~ I  = 0.48 
=z 0.15 

n = 10 

h2 = 2.15 (Equation 6.12) 
Eh; = 48.59 
sh2 = 0.51 (Equation 6.13) 
sh = 0.16 (Equation 6.20) 

- Eh2 = 21.50 

6.6.2 Periodicity of Time Series 

The periodicity, i.e. the periodic fluctuations, of time series can be tested with the 
serial correlation coefficient, but only after proving that there is no definite time trend. 
The serial correlation coefficient (r,) is defined as 

r, = C’(xixi+ J/C’x? 

where xi is the observation at time i and xi+l  is the observation at time i + I .  This 
is comparable to Equation 6.44. So if r, is significant, and a time trend is absent, then 
one can conclude that there must be a periodicity. 

6.6.3 Extrapolation of Time Series 

A time series of data from one measuring station can be extended with the help of 
a series from another station if both series overlap and if there is a good relation 
between them during the period of overlap. The relation can be determined by the 
ratio method, by the linear regression method, and by any non-linear regression 
method, depending on the characteristics of the data. 

If the regression shows a significant relation, extrapolation of the shorter data record 
makes it possible to increase the reliability of frequency predictions. Nevertheless, 
much depends on the reliability of the ratio or the regression coefficient. 
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, 6.6.4 Missing and Incorrect Data 

When certain data in a time series are missing or are undoubtedly incorrect, one 
sometimes tries to fill the gaps by interpolation or by inserting average values. Or 
one tries to fill in the missing data or to change the incorrect data, using the relation 
with another, complete, set of data. Although there is, in principle, no objection to 
such practices, it must be stressed that the supplementary data should not be used 
in an analysis of confidence or in tests of statistical significance, the reason being that 
they are not independent. They enlarge correlations (this is called spurious correlation) 
and lead to statistical bias. Therefore, it is necessary to clearly earmark supplementary 
data and to omit them from the statistical tests. 

The decision to declare certain data with exceptionally large deviations as incorrect 
must be taken very carefully, because there are always correct data that, due to random 
variation, deviate strongly from their expected value. If, based on certain non- 
statistical criteria, it has been decided that some data should be eliminated, it will 
be necessary to check all data against the same criteria, because there may be seemingly 
normal data whose values have evolved under the same conditions implied in the 
criteria of rejection. 

For example, if one decides to exclude certain extremely high or low crop yields 
from a data series on the grounds of specific soil conditions, then all the non- 
exceptional yields that have been realized under the same soil conditions will have 
to be eliminated as well. Otherwise, the conclusions drawn from the data series will 
be incorrect. The remaining data can be analyzed statistically, but it should be 
stipulated for which conditions the conclusions are valid. For the crop yield data, 
this means that the conclusion is not valid for the excluded soil conditions. 
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