

Modern technology for sustainable greenhouse production in Turkey

Modern technology for sustainable greenhouse production in Turkey

Silke Hemming, Ruud Maaswinkel Wageningen UR Greenhouse Horticulture, NL silke.hemming@wur.nl, ruud.maaswinkel@wur.nl

Trends world-wide – greenhouse production

- New production areas are coming up
- From open field production to more protected systems
- Low tech and mid tech growing systems have biggest areas, but move to high tech
- Modern greenhouse industry in Western Europe and US develops more and more to year round production with high quality

Goal innovation greenhouse

- Build a sustainable Innovation Greenhouse in the scope of SeraCulture in Turkey together with Turkish investors
- Economic feasible horticultural production with Dutch technology (high production, excellent quality)
- Sustainable production (geothermal, CO₂)
- Collaboration of Dutch science & industry and Turkish investors and growers

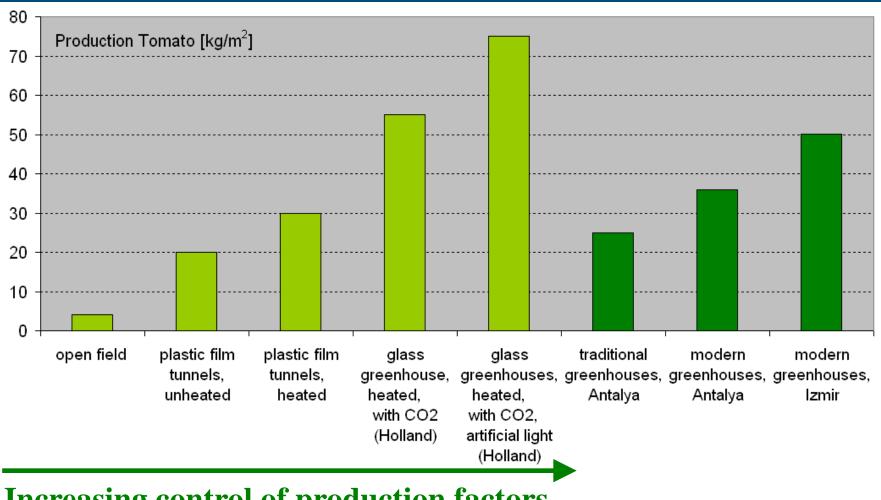
Sustainable greenhouse production in Turkey

 Design greenhouse systems which combine (economic) production efficiency with minimal input of energy, water and nutrients

- Low energy input, use of sustainble energy (geothermal)
- High production, product quality, predictability
- Low pesticide use, high food safety
- High water use efficiency, low nutrient losses
- High ratio benefit costs of the production system

Sustainable greenhouse crop production

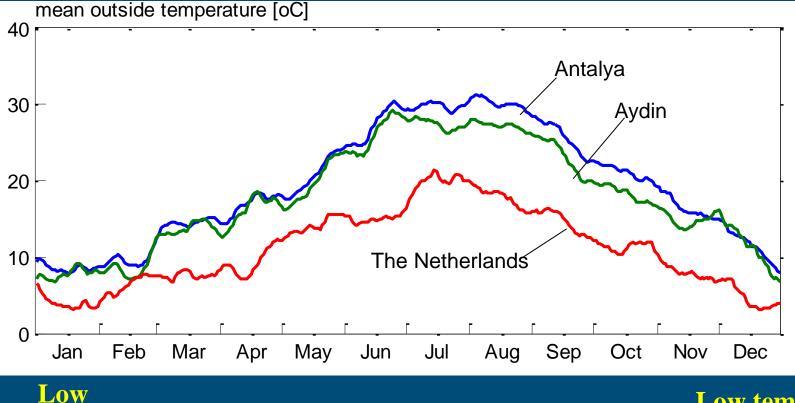
- CO_2 + water + light \rightarrow sugar + O_2
- Sugars and nutrients are used for growth
- ♦ Growth ⇒ yield
- Reactions are temperature dependent
 - control all growth factors
 technology needed



Technology for sustainable crop production

- Increasing degree of technology
- Heating
- CO₂
- Cooling
- Light control
- Soil / Soilless culture
- Open / closed water cycle
- Computer control

Technology for sustainable crop production



Increasing control of production factors

Outside climate in Antalya and Aydin

Heating in winter

temperature

EN

For quality of life

GENING

Low temp.

SeraCu

together for growing solutions

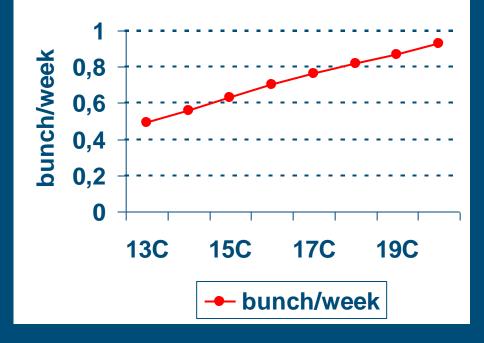
ture

High irradiation, less wind, ventilation necessary

Heating - temperature

- Why heating?
 - Less diseases, condensation – botrytis
 - Better fruit quality: low temperature bad colouring of the fruits
 - Higher production: low temperature less development of number of bunches

↓↑ botrytis



Effect of to low temperature

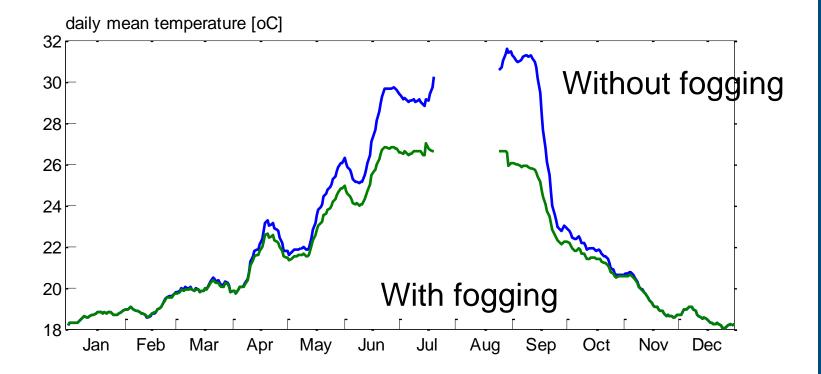
Influence of the temperature on the development of the bunches by tomato

GENINGEN UR

For quality of life

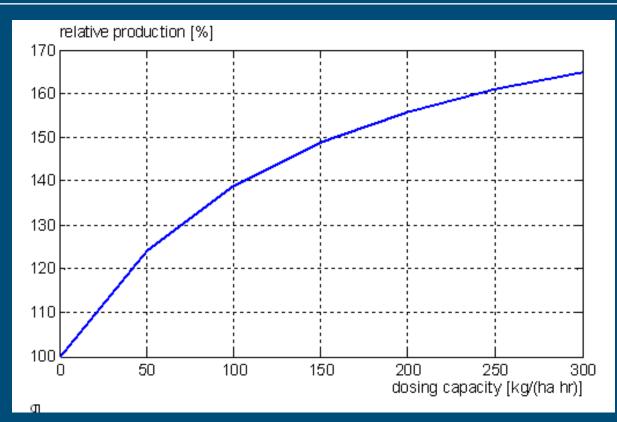
To low temperature at night

➡Too high temperature (>29 °C) may lead to injuries (blossoms, discolouring of fruits, softening, etc)


discolouring

- Effect of fogging
- Effect of active cooling
 - " (investment € 45,-/m² not beneficial)

Cooling: Effect of fogging


Cooling: Effect of fogging

Effect of CO₂ on production

Investments of ca. € 2 per m²
running costs € 17.5 ct per kg
production increase of 30-60%

CO₂ is useful

Effect of light transmission

Light transmission 70-75%

Investments plastic: € 1-1.5 every 2-4 years

Investment glass: € 4 once

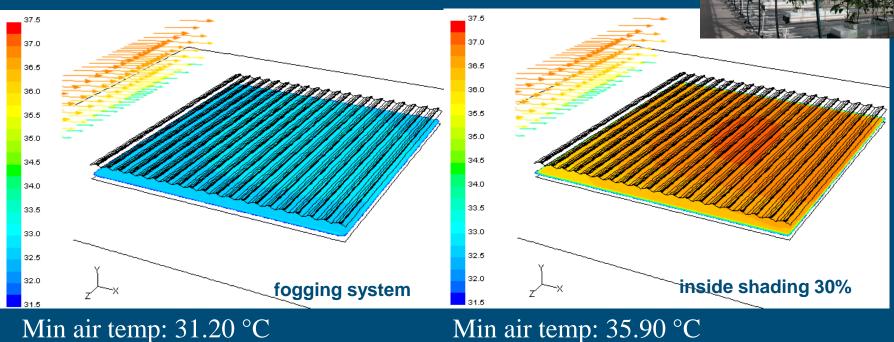
The Netherlands

Effect of light control - screens

shading fraction	water cons	umption [m ³ [[m ² yr]] production	
No shading	1.217	100%	
30% shading	1.090	94%	
40% shading	1.067	93%	
50% shading	1.034	90%	

Investment costs moving screens ca. € 5-8 per m²

• Energy saving, better winter climate, better quality

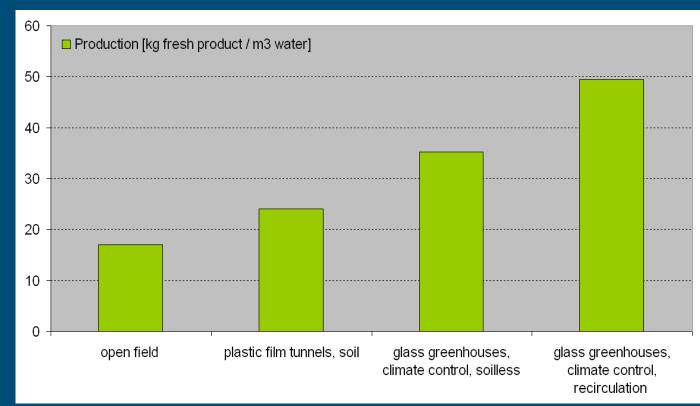

+ additional controlling summer light / - decrease production

Screens useful?

Effect of shading vs. fogging

Max air temp: 32.98 °C

Max air temp: 35.90 °C Max air temp: 37.05 °C


Hydroponics

- Independent from soil quality
- Less nematodes
- High water use efficiency
- Saving nutrients, saving costs
- Local and/or organic material?

GENINGEN UR

For quality of life

Integrated pest control

Control of pest and diseases

- Integrated pest and disease control
- Biological pest control beneficials
- Hygiene
- Insect netting

Sustainability factors

	Glass standard	Glass with CO ₂	Glass with fogging	Glass with CO ₂ & fogging	Glass with CO ₂ & fogging & closed water system	Glass CO ₂ & fogging & closed water system & lighting	Glass with CO ₂ & fogging & closed water system & insect nets & screens
Use of resources:							
Water consumption [kg produce/m ³]	28.3	41.8	27.1	38.4	49.4	62.3	51.9
Energy (heat) consumption [MJ/kg]	14.7	9.9	14.5	9.7	9.7	4.5	9.2
Produce less environmental loads:							
CO2 application per unit produce	zero	high	zero	medium	medium	high	medium
Nutrient emissions	high	high	high	high	low	low	low
Pesticides applied per unit produce	high	high	high	medium	medium	medium	low
Efficiency of production process:							
Yield per area [kg/m²]	36.0	53.3	36.4	54.7	54.7	68.9	57.5
Profit per area and year [€/m²/year]	€6.90	€14.87	€6.74	€15.56	€15.62	€(2.40)	€16.58
Payback period [years]	4.3	3.0	4.4	3.0	3.1	7.9	3.0

What is the optimum greenhouse design for Turkey?

⇒ Highest yields and shortest return of investment by heating and CO2

- ⇒ However.....
 - More technology (fogging, shading, insect nets) increasing certainty of production, return of investment comparable
 - Economic results are strongly dependent on product prices and interest rates for capital costs

Wageningen UR Glastuinbouw

Innovations for the greenhouse sector

Questions?

© Wageningen UR

