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TRIAL SETUP
AND STATISTICAL ANALYSIS

Andreas Bichse, Pawel Krajewski, Kristian KristenaedWiestaw Pilarczyk

1. Introduction

1.1. Background

The response from field trials is subject to rand@mation. This means that two neighbouring
plots grown with the same variety and treated m shme way will always yield differently.
This also applies to all other recordings made oprdinuous scale. The size of the differences
will depend on several circumstances such as thabitity in the soil, variability in the applied
fertilizer, historical events and uncertainty i tfecording process. This means that a recorded
difference between e.g. two varieties may be dueitteer a true difference in the response of
the two varieties or may be due to random variatidn order to help decide whether the
difference is caused by the different varietiedoprrandom variation it is necessary to apply
some statistical methods in order to estimate thaahsize of the random variation in the field
and compare the measured difference with the dideeorandom variation. In order to do that
properly it is necessary to use properly desigmedstand the correct way of analysing the
recorded data.

This chapter gives some information on how to desigg trials in such a way that the part of
random variation that determines the uncertaintyéndifference between varieties (treatments)
is as small as possible. In designing the expefiibénessential to take into account the size of
the difference that the researcher wants to becignéficant in order to design the trial with the
number of replicates that is considered to be gp@ for the level of random variations
expected in the trial.

This chapter also gives some information on howatalyse the most common types of
measured variables in variety trials under orgamd low input systems and the conclusions
that can and cannot be drawn from the analyses.

The random variability may in some cases be mudletafor organic grown trials than for

similar conventional grown trials. In two series @dmparable trials with spring barley in

Denmark and Sweden, the random variability wasekstrin the organic grown trials in 19 out of
34 pairs of trials in Sweden and in 3 out of 4l¢rim Denmark. On average the random
variability was approximately: 5.0 (hkg/Rah the conventional grown trials and 7.2 (hkg?ha)
in the organic grown trials, but the maximum randesmiability was 2-3 times higher for the

organic grown trials than for the conventional gnotvial. This indicates that it may be

necessary to have more replicates in organic grioals than in conventional grown trials if

one wishes to maintain the same precision.

It may be expected that the competition betweeghiimiuring plots may increase when diseases
are uncontrolled. This may be handled by increatiiegguard areas between plots. However,
increasing the guard areas too much will usualtyease the random variation. Alternatively
one could compensate for the increased competifgamodelling the competitions (see the text
on dot size and shape in section 2.2)glincreasing the number of replicates.
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The validity of the statistical analyses dependsame basic assumptions.
Therefore, some information is given on how to &t the assumptions are fulfilled and
how to proceed if they are not.

The text in this chapter tries to describe theqipiles and methods to be used together with the
most important assumptions that are needed fomittods to work correctly. Details on how
to do the calculations are not provided. More detan that subject can be found in the
references and in the documentation of the stisgoftware that can be used to do the
calculations such as Genstat (Payne, 2006), SASS (8&titute, 2006), R_(http://www.r-
project.ord) and others. Examples on the applications maipiied in the references and in the
documentation of the used software.

1.2. Definitions

In the following we will define a ploas the units to which the varieties are allocateglot
may contain several plants from the same varietysdme cases a plot can be subdivided and
each part of such a plot will be called a sub-plad in such cases the plot that is subdivided is
usually called main-plofor whole-plot) Sub-plots may be used either for applying diffiere
treatments to each of these (as in a split-ploigdg¢r for taking more samples in each plot
(e.g. samples of plants for determination of dryttera A blockis a collection of plots within
which the plots are randomised. If many varietiesafments) are to be included in the design, a
block with all varieties (treatments) may be s@dathat it will be difficult (impossible) to find
blocks that are sufficiently homogeneous. In suades the varieties are collected in sub-blpcks
which are randomised within each block and subsgtyuéhe plots within each sub-block are
also randomised. This is the case in the recomnoetypes of incomplete blocks (see 2.1).

In order to describe the level and the variabitifya given variable, e.g. yield, some measures
are usually calculated. The most frequently useasme is the meamwhich is given by:

__1
:E(yi Yt Y.

The medians given by the value that separates the ordepsdreations in two groups of equal
size. The median is more robust than the mearhdmit larger uncertainty than the mean if the
data are normally distributed. The most frequenfigd measures to describe the variability are
the varianceand the standard deviatigiven by:

(V.= V)* + (¥, = ) +( x——92+...+(y——»2j

Variance:s® =
n-1

Standard deviatiors = \/?

In the recommended statistical methods it is asduthmet the recorded plot values for a variable
are independentwhich means that the observation made in one ¢¢@s not give any
information on the observation in another plot. @eegture of independent observations is that
the variance of the mean is inversely proportictmathe number of observations used for
forming the mean. So & is the estimated variance on single observatioas the variance and
standard error of the medased om independent observations is given by:
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2
: S S
Variance on the meae§ =— and thestandard error of the meas;:=T.
n n
This can be used to calculate the variance offardiice between two mearsg. for variety A
and variety B:

sed = § + ¢ and equivalently the standard deviation of théedénce:sed=,/ § + & .

If the variances can be assumed identical for Hrestres (which they most often can) this can

, / 1 1 .
be written assed= s|—+— where n, and n, represent the number of independent
n, n

observations for the two varieties. This quantday de used to calculate the minimum distance
that must be found between two varieties in ordeprove that the varieties are significantly
different for the observed character. Assuming thatdistribution of the variable in question is
normal, this minimum distance can be calculated3E =sedXx t;1.42, Wheret; .o, Is thel-al2
fractile of a t-distribution withf degrees of freedom, whefeis (n, + n, — 2).

The purpose of doing statistical analysis is uguadith to_estimatéhe parameters of interest,
such as the mean yield of each variety and the mdddarence between pairs of varieties as
well as to_teswhether some_hypothesean be accepted or have to be rejected. In a simpl
situation such as a randomised complete block desithout missing values the estimatgfs
the mean yields of a variety are simply the avesameer all observations on that variety. The
estimateddifference is simply the difference between therages of the varieties. In more
complicated designs or when some observations esng the estimation is more complicated
as it is necessary to use methods that take itmuat other factors such as the blocks in which
a given variety is present.

Statistical_testare performed in order to know whether a hypothesin be accepted or has to
be rejected. Examples of such hypotheses couldhddrypothesis that all varieties have the
same yield, that the difference between varietynd B is zero or that all varieties react in the
same way to nitrogen. The tesi® made on some predefined significance levslslly called

a (alpha). There is a strong tradition to takequal to either 5% or 1%. tf is 5%, it is said
that the test is performed on the 5% level of digmnce. A_significantresult means that the
hypothesis has to be rejected, i.e. the differdrateveen variety A and B is different from zero
at the 5% level of significance. A non-significar@sult means that the hypothesis can be
accepted, i.e. the difference between variety ABurisl not different from zero at the 5% level
of significance. Note that this does not mean thatdifference is zero; it only means that with
the used number of replicates, the chosen desidrtr@nactual random variation there is no
reason to conclude that the difference is not zero.

The application of statistical tests always impbesne risks of making wrong decisions. These
are usually separated into two types of risks. Taey called Type error and Type lkerror,
respectively. The type | error is the error thases when we decide the varieties to be distinct,
when they are in reality identical. The type llagris the error that arises when we decide the
varieties to be identical, when they are in reatitfferent. The risk of type | error can be
controlled easily as the risk heredswhereas the risk of type Il error, usually caletbeta), is
more difficult to control as it depends on the f¢he real difference between the varieties, the
random variabilitys, and the chosen design (number and replicatetagralt in the field).
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2. Experimental Designs

2.1. Type of designs

Randomised complete block design (CBD)

The experimental field is divided into blocks aaling to the number of replicates. Each Block
is divided into a number of plots according to thenber of treatments. The treatments are then
assigned randomly to the plots. Each treatmentrecme time per block.

A benefit of block designs over completely randadiglesigns is, that differences between
blocks (e.g. due to soil quality) do not influertbe estimates of treatment differences and can
be separated from the experimental error when panfig analysis of variance.

One drawback of the CBD is that only soil differeacin one direction can be modelled.
Possible extensions of the block design for twedlions are the Latin square, allowing for row
and column effects.

A CBD is a good choice when there are no techrasglects that restrict the randomisation.
Simple block designs are mostly used for one-fatarnals but two or more factors are also
possible. The layout of blocks on the field ha®éochosen in such a way, that soil differences
between blocks are maximised and within blocks rar@mised. Homogeneity of conditions
within blocks requires that the treatment numbaer thierefore the dimension of the blocks have
an upper limit. Depending on plot size and soildibons block designs are recommended for
trials up to 20 treatments. In block designs theuamption is usually made that there are no
interactions between treatments and blocks.

Fig. 1.  Arandomised complete block design
with 5 treatments in 4 complete blocks.

block 1 A E B D C
block 2 C D A E B
block 3 E B D C A
block 4 E D A B C

Incomplete block design (IBD)

In trials with high treatment numbers, e.g. varigigls, complete blocks are too large to give a
good control of the experimental error due to $eterogeneity. In these cases designs with
incomplete blocks are useful. Every block only eimdé a fraction of the total number of
treatments and is thereforincomplete Several incomplete blocks form one complete
replication. One type of such designs is lditice design The blocks of an incomplete block
design can be arranged in any way that is usefuldotrolling soil heterogeneity.

With an IBD the arithmetic mean of a treatmentas the best estimator for the expected mean
value. Treatment means have to be adjusted acgaalithe linear model used for data analysis.
One should use powerful software for the analysisPHA+, GenStat and SAS).
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Specialist software is also needed for the constmuof the design (e.g. Alpha+ or CycDesigN,
http://www.cycdesign.co.)z

There are several types of lattice designs:

a.

C.

Square Latticeseed a quadratic or cubic number of treatmentéd§&nd 25). The number
of plots per block (k) has to be the square roghefnumber of treatments (v). For example
36 treatments in 6 blocks of 6 plots per replicate.

Rectangular LatticesThe number of treatments has to equal k(k+1) withnumber of
treatments per block. This algorithm allows foatreent numbers like 12 or 20.

Alpha-designs More flexibility is reached with the new class afpha designs or
generalised lattices (Patterson & Williams 1976ttdPaon et al. 1978). The following
requirements have to be met: (1) The number ospber Block (k) has to be smaller or
equal to the square root of the number of treatsn@nt (2) The number of replicates has to
be smaller or equal to the ratio v/k. (3) The numifetreatments has to be a multiple of k.
Where the number of treatments does not meet tbesditions, a design for the next
possible number is developed and the redundanirtezds are discarded.

Fig. 2. Example of an incomplete block design with6 treatments

in 3 complete replications. The replications are dided into
4 incomplete blocks with 4 plots each.

Bl ocks of the design printed in rows

rep 2 ----------------
pl ot 1 2 3 4
block +----------------
1 [ 3 8 6 16
2 [ 2 10 1 13
3 | 7 4 12 5
4 | 14 15 11 9
rep 3 ----------------
pl ot 1 2 3 4
block +----------mno-n-
1 | 4 13 11 3
2 [ 1 12 6 9
3 | 10 14 8 5
4 | 15 7 16 2
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Split plot design

This type of design is often advantageous for faatdrials when one factor can not be
allocated to small plots for technical reasons bemvthe factors should be tested with different
precision.

Imagine a two factorial trial (tilage 1 and 2 avatieties A, B, C, D, E) with three replicates.
First each block is divided into two main plots.eTactor, tillage, is then allocated randomly to
the plots. Each main plot is then divided into aynsub-plots as the second factor has levels,
here 5. Then the levels of the second factor doeatkd randomly to the sub-plots within the
main plots.

In the analysis of variance the main plot factas ttabe tested against the interaction main plot
factor x block (the main plot error), whereas tibe plot factor is tested against the residual.
Because the main plot factor is tested with lessipron and with only a low number of degrees
of freedom for the error term, usually only largadences become significant. A difference in
sub plot factor means normally show much small@nddrd errors. Since more than one error
term occurs in split plot designs, the analysisutthbe performed in a mixed model framework.
A description of the analysis of split plot triggsgiven in 3.3.

Fig. 3 A split plot design with 2 treatments for tle main plot factor (1 and 2),
5 treatments for the sub plot factor (A-E) and 3 complete blocks.

blocki |[1-A 1-E 1B 1D 1C| 2-C 2D 2-A 2-E2B
block2 |[2-E 2B 2D 2C 2A| 1-E 1-D 1A 1B1(Q
block3 |[2-B 2-C 2-A 2E 2-b| 1D 1A 1-C 1-B1-H

2.2. Trial set up and design

What type of design to choose?

Depending on the plot size and soil conditions detepblock designs are recommended for
trials up to 20 treatments. With higher treatmentnhers incomplete block designs will
normally give results with a lower standard errBecause of their great flexibility we
recommend to use alpha-designs.

Complete blocks, incomplete blocks and split plesign can be combined in different ways to
meet the technical and statistical requirement® dlosen structure may not be covered by
examples in statistical textbooks. The only requiat is that the principles of replication and
randomisation are kept in mind and that the modstdufor analysis is based on the
randomisation structure of the trial (see Piephal.€2003 for details).
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Number of replicates

For single trials four replicates are often recomdwssl. But four replicates may not be enough
to give results with a standard error of mean thasmall enough to distinguish interesting
treatment means significantly. Compared with randech greenhouse or laboratory
experiments, field trials utilise an extremely simalimbers of replicates due to practical
restrictions. Table 1 presents the detectablerdifieeA as a k-fold of the standard deviation for
the two-sided t-test for different numbers of regles with a maximum false negative rate of
20% (Type Il error) and the common false positiate of 5% (Type | error). In a field trial with
replicate or plot size of four, only effect diffeiees larger than 2.02*SD will be detected with a
maximum false negative rat@)(of 20% and a maximum false positive rai¢ ¢f 5%.

Table 1. Detectable relative difference & = Diff / SD) for various numbers of replicates
with nominal values ofa=0.05 andB=0.20 for type-l and Type-Il experimental
error respectively.

number of replicates| 2 3 4 5 6 10 20
A (for a=0.05;8=0.20) |3.07 |2.38 | 2.02 | 1.80| 1.70| 1.33] 0.91

In trial series in different environments estimgtithe genotype x environment interaction is
much more interesting than exact results in sitwgds. Therefore two or three replicates per
location will be sufficient when the number of lticas is high enough.

Block size and shape

The optimal block size and shape depends on tleedusneity of the experimental field. If no
additional information is available, a quadratiasé of the blocks is the best choice. The larger
the blocks are, the higher the experimental erithbe due to differences in the soil conditions.
With more than 20 treatments, a lattice design. (equare lattice, generalised lattice) is
recommended.

Plot size and shape (and guard areas)

A plot size larger than 20 square metres is seldmsonable in variety trials. When the total
experimental area is fixed, many small plots giveetier control of the experimental error than
a few large plots. Differences in the soil qualityl be distributed more evenly on the different
treatments. The minimum size of the plots also ddpen the dimensions of the machinery to
be used. A plot size between 5 and 20 square snistammonly recommended. Variety trials
are mostly performed in narrow plots. This has st&einical advantages. For example if the
harvester has a working width of 150 centimetriess, practical to use plots of 150 centimetres
wide.

Interplot interference can affect estimates of djiefjuality and disease resistance due to
differences in competitiveness of the tested gepesty(Talbot et al. 1995, Clarke et al. 1998).
Interference may be caused by differences in plaight with consequent competition for light,
and also by differences in disease resistance.
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How can we reduce interference?

a. Sow wider plots: harvest only the core of tha,aiscard the guard rows.

b. Grouping of cultivars: e.g. cultivars can beidgd into a “short”, “intermediate” and “tall”
groups (if height is an issue) and tested in a it like design avoiding tall cultivars
neighbouring short cultivars (see David & Kempt@98).

c. Use of covariates: correlated traits (plant hg)gcan be used as covariates, which could
have an adjustment for competition (see Goldrireged. 1994).

d. Modelling of neighbour-effects: fit linear moduelith additive effects for cultivar and
neighbour and calculate adjusted estimate for pianad

An additional problem can occur at the front oftplorhe plants located at the edge of plots
have much better conditions to grow, because ofattditional amount of light and nutrients
available at the alleys between blocks. If genatygiifferences are expected in using these
better growing conditions, the front area of thetpkhould also be discarded (see Fig. 4).

Fig. 4. Plots with core areas and different typesfdorders and guard areas.
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3. Analysis of data

3.1. Evaluation of data

3.1.1. Check for errors and assumptions
Every statistical analysis of trial data needs s@ssumptions to be fulfilled, otherwise the
conclusions may be false. Among these assumptibasnmost common (for analysis of
variance) are:

- independence of observations,

- normality of distribution,

- additivity of treatment and block effects,

- homogeneity of variances,

- lack of outliers.

Independenceln the majority of statistical methods used for lgsia of trial data, the
independence of observations is a key assumptianth® other hand, it is commonly known
that — for example in field trials — observationsnfi adjacent plots are likely to be more similar
than observations distant from each other. So,llysabservations are correlated. Luckily a
proper randomisation prevents statistical analfreis giving biased results. There are some
statistical tools to detect correlations (lack oflependence) between observations but for
above-mentioned reasons there is no need to prigsanthere.

Normality. All the tests used in analyses of variance andyaeal of regression are based on
normality assumption. Normality means that theritistion of observations is “bell shaped” for
all treatments under comparison. Mead et al. (1889)“in most situations it is impossible to
decide by examining the data whether the assumpfiormality is reasonable and one has to
rely on common sense in arguing whether the assomps$ biologically likely”. So this
assumption is rather difficult to be verified urdeébe sample size is very large. There are some
tests for checking this assumption but all of thema rather weak (in the sense that they very
rarely reject the null hypothesis) when samplessiage small and even moderately large. So
they can be applied only for large sample sizesfda size tending to infinity). As in routine
experimentation the number of replicates is smaduélly smaller than 6) and the sample size
for a particular treatment is of the same ordes, ke of such a test is not possible. Graphical
presentation of data can provide a visual inspedtio lack of normality. Luckily the tests used
in the analysis of variance (as well as regressinajnely the F-test and t-test, are resistant
against moderate deviations from normality. A mdtkimat is often used to check normality is
the Shapiro-Wilk test, which is recommended for glensizes not larger than 50 (Shapiro and
Wilk, 1965).

Additivity. In the analysis of variance of block trials (CBDIBD, see section 2.1) it is assumed
that there is no interference between blocks aedtrients. In practice this means, that
differences between any two treatments are the gaaleblocks in which they appear together
and that possible fluctuations are caused solelyexyerimental error. This assumption is
usually fulfilled if the differences between blockse not very large. When blocks differ

considerably, e.g. an average yield of 20 kg/phobme block and of 50 kg/plot in the other
block, it is not reasonable to expect that theedéfice between two varieties of 4 kg in the first
block will be of the same magnitude in the secolodlb A simple test for non-additivity in a

CBD design was proposed by Tukey (1949), known @ “degree of freedom for non-

additivity”. In this approach the sum of squares doror is subdivided into two parts. One is
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attributed to non-additivity, the other to the deml. Then, using the usual Fisher F-test with
one degree of freedom for the numerator, the hysighthat there is lack of additivity is tested.
In the case of multiplicative effects, a logaritlertriansformation can improve the situation.

Homogeneity The typical assumption in an analysis of variaiscthat the treatments do not
influence the variance of experimental error, imeotwords that the variance is the same for all
treatments. This assumption is likely to be fudfillwhen levels of expression are similar for all
treatments. When levels of expression (mean valdié&r considerably between treatments,
normality and additivity as well as homogeneityafiances can be violated. This assumption
can be verified using Bartlett’'s or the Cochrarn.tksboth tests, the estimates of variances are
calculated for all treatments and next the hypashes equal variances is tested against the
alternative that some of them (at least one) dferdnt.

If the variances (standard deviations) are reltaetie level of expression (mean values) of the
characteristic that is analysed, a logarithmic gguare root) transformation can improve the
situation.

Ouitliers. All the statistical analyses of trial data are earout (possibly after checking all
underlying assumptions) assuming that all collectais is correct. However, this is not always
the case. Errors can occur when recording, copgingreparing data for computer processing.
When such an error observation is out of the exgaeicinge of observations it is easily detected
by a visual inspection of the data. Sometimes it lva detected after preliminary analysis, for
example if such an observation “produces” an exttgnmhigh residual. In general, an
observation is considered as an outlier if its galdiffers considerably from all other
observations. If the value of one (or more) obsgwais far from the cloud of all other
observations it is likely to be an outlier. The iessstatistical method to detect outliers is as
follows:

a. order alh observations in ascending or descending manner,

b. temporarily remove the ‘suspected’ observatimmfyour sample (it is either the smallest
or the largest observation),

c. calculate the (&) confidence limits for single observations by gsthe restrf-1) of the
observations (see footndie

d. if the ‘'suspected’ observation is out of thecakdted confidence limits, it is considered as
an outlier and the reason for this should be ctakcikghe deviation is caused by a simple
typing error, the error should be corrected. Férentreasons such as damage to the plot
caused by external factors independent of the nwmatt the observation should be
permanently rejected from the sample and be treateohissing data. If no reason can be
found for the deviation the observation should bptkinless the deviation is so large that it
will make the analysis unreliable (in such casesay be wise to run the analysis twice —
both with and without the outlying observation & $f the conclusion will change).

! For normal distribution, the lower-Xand upper Xconfidence limits are of the form:
Xe=X 'talzs X' =X +t1—:7/25'

where X is the mean value calculated over (n-1) obsenqan'ﬁwl2 and tl—o//Z are the Student t-distribution table values with

(n-2) degrees of freedom asds the standard deviation calculated ovel) observations. If there are more such “suspect”
observations, the whole procedure can be repeated.
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3.1.2. Usefulness of the data for investigations

The choice of the most appropriate data to anshemtestion put in the investigation is not

always simple and straightforward. In most casés, investigator is forced to accept a

compromise between the precision of the conclusatsthe cost of the data. Clearly, cheap
data is often sufficient to answer simple questidimvever, this does not mean that expensive
data will guarantee better reliability and accuratyesults and conclusions.

In general, the data will be useful for the invgations if the experiment in which they have
been collected was properly designed. If the erpamtal design is faulty, no data cleaning,
filtering, outlier detection or other processinghriques will be helpful. Also, no statistical
method of data analysis is going to help to makg@r conclusions. Statistical handbooks are
full of recipes of how to properly plan experimentss noteworthy that rules as old as the ones
given by Finney (1953, p. 173) are still valid.

Data used in statistical analyses are observatibrendom variables. The statistical procedures
work only if there is a variability of the obseriats. The source of this variability must be
known to the investigator if the conclusions areb®® sensible. Thus, data obtained from
carefully designed experiments are more valuabsn tHata from observational studies or
extracted from databases with an incomplete degmmipf origin. A helpful discussion of this
problem in the context of regression is given byr®a and Gomez (1984, p. 417).

3.1.3. Transformations.

When one or several of the mentioned assumptiongoiated, the performed analysis is
incorrect and decisions may be false. If, usingesstatistical tool or just after visual inspection
of the data, deviation from the standard situatiordetected, it is sometimes possible to
‘improve’ the situation by transforming data anderthanalysing the transformed data.
Depending on which assumption is violated, seveaalsformations may be applied. The most
commonly used transformations are:

Logarithmic transformation This transformation is appropriate for data inickhthere is
proportionality between mean values and standarthtiens or when effects are multiplicative.
Typical examples of such data (see Gomez and Gol®&4) are data concerning the number
of insects per plot or the number of egg massespfgeit (or per unit area). To transform
original data X), into a logarithmic scaley], simply takeY = log (X). When some observations
are small (smaller than 10), the transformatfon log (X+1) is suggested. The fulfilling of all
assumptions must be again checked for the transfbiaata. If there are no serious deviations
from assumptions, all the analyses and tests apdiedpto the transformed data. After
performing treatment comparisons the mean value®eae-transformed into original scale.

Square root transformationThis transformation is useful and effective foradbr which
variance tends to be proportional to the mean. Tifsissformation can be applied for data
consisting of small whole numbers. Such data appban rare events are counted (in limited
time or space). Typical examples are the numbevgeefds per plot (or per square metre) or the
number of insects caught in traps. The squaretransformation may also be appropriate for
percentage data where all observations are inahgerfrom 0% to 30% or in the range from
70% to 100%. For intermediate data (all observatidretween 30% and 70%) this

transformation is usually not necessary. To apply transformation simply calculate \(&

when all observations are in the range betweend®6@nand calculate Y#100- X when all
observations are in the range between 50 and 1@8inAall the analyses are performed using
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transformed data. The final results (treatment reeaan be presented on transformed scale or
can be re-transformed to original scale.

The arcsine transformation. To perform this transformation, use the formula

Y=arcsine/ X /100. This transformation is appropriate for data conicg fractions and
expressed as percentages. Usually data obtainediviing two counts (e.g. number of
deceased plants and total number of plants) camaheformed using this transformation. The
extreme values of 0% and 100% are to be substitoye(l/4n) and (100-1/4n) respectively
before usingarcsine transformation. This transformation can be eapidyformed using a
computer or the tables of C.I. Bliss (1934) repimtliin many statistical textbooks. Because
percentage data can also be transformed using w#veaformations, the practical advice is as
follows (Gomez and Gomez, 1984):

- for percentage data from the range between 3@a@¥o no transformation is needed,

- for data sets where all data are in the rangevdmt 0% and 50% (or between 50% and
100%) the square root transformation is approp(see the text above),

- for the data that do not belong to any of aboesioned ranges tharcsinetransformation

is to be used.

The logit transformationThis transformation is applicable for percentageadexpressed as
fractions. To perform this transformation simplypbpformula Y=In(X/(1-X)), where X is the
fraction to be transformed. Please note that thissformation is undefined for X=0 and X=1.
This transformation is much simpler but almost stidiguishable fronprobit transformation
described by Bliss [1934]. The logit transformatimay be used to analyse the relative number
of insects killed by different doses of an insedtc

Additional remark If there is lack of homogeneity of variance irdata set and there is no
relationship between means and variances (starmtasidtions), a possible solution is to split
treatments into groups with similar (homogeneoasjances and perform independent analyses
of variance for each of these groups or apply mdrenced methods such as weighted analyses
of variance or methods that allow the variancegdlifferent (by using some approximations).

Instead of applying transformations to the recoradddervations some characteristics e.g.
percentages and counts may alternatively be amblysimg generalised linear mixed models
(see section 3.5).
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3.2. Methods for analysis

3.2.1. Analysis of variance, F-tests, LSD-values

3.2.1.1. Randomised complete block design

Analysis of variance (ANOVA) is the main tool usied statistical interpretation of agricultural
trial data. The analysis of variance is based peali model of observation. For experiments
performed in a randomised complete block designdCBhe linear model is of the form

Yi= H+Ti+B+ g 1)

wherey; denotes the value of observed trait for the rélatmentiE1,2,...,t), received in thg-

th block {=1,2,...r) with a total number of observations= rt; 7 is the fixed effect of théth
treatment,S is the effect of thg-th block ande; is an experimental error associated with
observation of theth treatment in thgth block.

Different assumptions can be made on the bloclcsifg.

If the assumption is th& is fixed, meaning that the only random term iniglg;, the model is
called fixed. In that case all conclusions are @md to treatments and blocks used in the
analysed experiment.

More common is to considg as the random component of model (1). In this dasenodel is
called mixed. Such a model can be set up usingriheiple of randomisation, see Gadki and
Kageyama (2000).

In the mixed model the blocks are treated as aaranshmple of an infinite set of all possible
blocks and conclusions are not confined to the Kiloactually used in experiments. The
conclusions are “valid” in the population of blodkem which the blocks can be considered as
a random sample.

Analysis of variance of trial data is based onwasitin of the sum of squares of total variability
(S8 ) into a component attributed to blocksy) a component attributed to treatmer®s ()
and to the error§3) according to the equality

SS=SS + SS+SS (2)

Usually the main aim of the analysis of variancdogest the hypothesis, that there are no
differences between treatments under comparisonelyahe hypothesis

Ho n=n=....=15 against i "“Hqis nottrue” 3)
This hypothesis is always tested by applicatioa Bfsher F-test of the form
Fo=MS/ MS,

where MS and MS, are the mean squares for treatment and error atdaglg. Usually the
results of ANOVA are presented in an analysis oiavece table as in table 2.
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Table 2.  Analysis of variance for a randomised conipte block design (CBD)

Source of variation Degrees |@ums of square§ Mean squares F
freedom

Blocks r-1 SS MS,

Treatments t-1 SS MS; Fo

Error (r-1)(t-1) SS MS,

Total n-1 S$ - -

If Fo> F* 1) -1)e-1)y Where By e-1yw1y iS the critical value of the F distribution forX} and (r-
1)(t-1) degrees of freedom atsignificance level, the hypothesis (3) is rejectm@aning that
not all treatments are the same (some treatmefits fiom the others). If hypothesis (3) is
rejected, the researcher is usually interestedetotify which pairs of treatment are different. To
answer this question usually the so-called leagtifstant difference (LSD) is calculated. If the
researcher is interested in one particular compar{ghat was chosen before establishing the
experiment), the best way is to calculate the Fis§®", using formula

LSD" = sqrt(2*MS/r)*t “,,

where MS is taken from the analysis of variance table #hdis the two-sided t-Student
distribution critical value atx significance level forv=(r-1)(t-1) degrees of freedom. If the
absolute value of the difference between treatmmdns calculated for e.g. treatméand?2 is
bigger than LSH these two treatments are declared significanfierént ata significance
level. If more than one comparison with the use®D" is made, the general significance level
(for all comparisons) is larger than

If many comparisons between treatments are planted recommended to use a
method that minimises the risk of erroneously dawppairs significant, such as the Tukey
LSD" which is of the form

LSD' = sqrt(MS/r)*q %,

where ¢, is the critical value from studentised range distion read att significance level
for t treatments involved in comparisons andegrees of freedom (degrees of freedom for error
in the ANOVA table).

The rules of using LSDare the same as for L§but now all treatment comparisons can be
made and still ensure that the risk of erroneowsadeg any of these significant will be less
thana.

3.2.1.2. Incomplete block design (alpha design).

A slightly more complicated situation appears ia ttase of incomplete block design (which
includes the alpha designs). Because blocks amtirtests are not orthogonal to each other
(which it was in CBD), the division of the totalmuwof squares into parts attributed to blocks
and treatments is not unique. Usually the ANOVAldabstead of single sum of squares for
blocks (as in CBD), will mention two sums, the firattributed to complete replicates

(superblocks), the second attributed to blockshiwisuperblocks) — ignoring treatments.
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The linear model of observations in alpha desigyf ihe form
Yik = H+ T +p;+ Ly + € (4)

wherey; denotes the value of the observed traitifr treatment received in theth block
within j-th replicate (superblock); is the fixed effect of theth treatmenti(= 1,2,...,); g is the
effect of thej-th replicate (superblock) € 1,2,...,1); Bk is the effect of thé-th incomplete
block within thej-th replicate K = 1,2,...3 andey is an experimental error associated with the
observation of theth treatment in th&-th incomplete block within theth complete replicate.
There aren = rt observations in total. The whole experiment caasiérs incomplete blocks
forming r complete replicates. The whole discussion conngrmandomness of blocks in
randomised complete block design also appliesdomplete blocks and complete replicates in
alpha design. In accordance with the linear motiebservations (4), the analysis of variance is
usually presented in the form given in table 3.

Table 3.  Analysis of variance for alpha design

Source of variation Degrees |@ums  of Mean squares F
freedom |squares

Replicates r-1 SS MS,

Blocks (within replicates rs-r SS MS,

ignoring treatments)

Treatments(adjusted for blocks)t-1 SS MS; Fo

Error r-rs-t+1  |SS MSe

Total n-1 S$ - -

The term “ignoring treatments” means that the sfisgaares for blocks is not free of treatment
effects. Instead of the sum of squares for treatsn@s for CBD), the sum of squares for
treatments adjusted for block effects appear. Hmedhat this sum of squares is free from block
effects. The hypothesis tested is the same as D SBe (3)) and it is verified in exactly the
same manner using a Fisher F-test. The vallig=a¥S;/ MS. is now compared with the critical
Fo1 meste1 Value witht-1 andrt-rs-t+1 degrees of freedom. Treatment means are nowspt j
simple averages over replicates as in CBD but ad@usted”. This adjustment is different for a
fixed model of observation (in so-called intra-tHoanalyses) and for a mixed model (in
analyses with recovery of inter-block informatioAdditional difficulties arise when LSD is
applied for treatment comparisons. Due to the Hctrthogonality, the variances of treatment
comparisons (treatment contrasts) will often béediint for different pairs of treatments. So in
an extreme case for every pair of treatments aifgpecSD (Fisher or Turkey) should be
applied. However for moderate variations it may duseeptable to average the variance of
treatment-comparisons and then use the averageva&®. But in this situation comparisons
must be made with special caution. Usually thegies chosen so that the difference between
the largest and the smallest variance of treatrentparisons is as small as possible. This
means that balanced designs are preferable
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3.2.1.3. Split-plot design

As described in 2.1, the split-plot design is apgdble for two-factorial trials. The
mathematical model of observations reflects theatibn that experimental units (plots)
of two different sizes appear. This implies that tkfferent errors related to these plot
sizes are present in a model of the form

()

where Y denotes the observations from experimental uamfi-th block (i=1,2,...r),
concerning j-th level of main plot factor A (j =21,..,a) and k-th level of sub-plot factor
B (k=1,2,...,b). ris the random effect of i-th block; ia the fixed effect of j-th level of
factor A; Ix is the fixed effect of k-th level of factor B; (gb is the fixed effect of
interaction of j-th level of factor A with k-th le¥ of factor B, and, finallyn; and &
are the errors connected with main plots and satspéspectively.

There are n = rab observations in total. The amalykvariance of split-plot data is
based on the division of sum of squares of totalabdity SS into the following
components

S§S=5S§+ 35 +S§+ SE +Sqe + 5SS

Yik = H + i+ 3 +nj + b+ (@bj + e

(6)

where S§ SS, S§, S&, SSe and S§ denote sums of squares attributed to blocks,
factor A, main-plot error, factor B, interaction factor A and B, and sub-plot error,
respectively.

The traditional form of the related analysis ofiaace table is as follow:

Table 4.  Analysis of variance for split-plot

Source of variation| Degrees |@ums of Mean squares | F
freedom squares

Blocks r-1 SS MSy
Levels of factor A |a-1 SS MSa Fa
Errorn (r-1)(a-1) |SS MS,
Levels of factor B | b-1 SE MSg Fg
Interaction A*B (a-1)(b-1) |SSs MShas Fas
Error e a(r-1)(b-1) |SS MSe
Total n-1 S$ - -

Usually, in a split-plot design three hypotheses taisted. First, the hypothesis of no
differences among effects of factor A is testedntthe hypothesis of differences among
effects of factor B is tested and finally the hypestis of no interaction between levels of
factor A and B is tested. Formally, the hypothdaseted are:

April 2007 TS16



Susvar Handbook Trial setup and Statistical amalys

no effects for factor A Hoa: “ar=a&=...=a&  against Ih: “Ha is not true”

(the appropriate F statistica E MSA/MS;, is compared with the F-distribution critical
value at chosen significance level with (a-1) and (r-1)(a-1) dezgef freedom),

no effects for factor B Hog: “bi=b,=...= b,” against kk: “Hg is not true”

(the F statistic to verify it is &= MSg/MS,, with (b-1) and a(r-1)(b-1) degrees of
freedom), and finally the hypothesis that ther@asinteraction between Factor A and
factor B, namely:

no interaction between factor A and factor BHoag: “(ab)11= (ab).=...= (ab)y’
against Hag: “Hag is not true”

(the F statistic to verify it is &g = MSas/MSe, with (a-1)(b-1) and a(r-1)(b-1) degrees of
freedom).

After rejecting these hypotheses the researchékensitled” to make comparisons
between levels of appropriate factors. The researcAn use either LSDor LSD'
values as a threshold of significance between sewéére only formulas for LSDare
given but they can easily be modified to LSS0, to compare two levels of factor A,
the appropriate LSDvalue is calculated as

LSDF = sqrt(2*MS,/rb)t%,,

where t%, is the two sided t-Student distribution criticallwe read atr significance
level for v=(r-1)(a-1) degrees of freedom. The rules to use LD are exactly the
same as in one-factorial designs (e.g. in CBD a@sig

To compare two levels of factor B, the LSD is cédted using the formula

LSD" = sqrt(2*MS/ra)t’,,

wherev are degrees of freedom associated with,M&.v = a(r-1)(b-1).

If the hypothesis kk is rejected some additional comparisons are plessiilne can
compare two levels of factor A within the partiaulavel of B, or two levels of factor B
within the particular level of factor A, or any cbmation of levels A and B. The
appropriate LSD value for comparing two levels aftbr B within a chosen level of
factor A is calculated using the formula

LSD" = sqrt(2*MS/n)t%,

where v are degrees of freedom associated with.MBhe formulas for other
comparisons can be found in the literature (see@giez and Gomez, 1984). To apply
LSD' instead of LSD, the presented formulas can be easily modified gimilar way
to the description for CBD design.
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Additional remarks on application of the split-ptissign.

When there are only two levels of factor A (or B)ere is no need to calculate LSD
values to make a comparison of these two levelejgsting the hypothesis gl (or
Hos) means that the two levels differ significantlyn@ther way of analysing the data
from split plot trial is to split the overall (dedwed here) analysis into independent
analyses made within each level of factor A. It ne#hat if there are “a” levels of
factor A, then “a” separate CBD analyses are peréat. But such an approach has two
disadvantages: (1) the number of degrees of freddoerror for each partial analysis is
smaller than the number of degrees of freedom rimr ée” in a full split plot analysis
and (2) the separate analyses do not allow tothespresence of interactions between
levels of factor A and B, which are often the miaggresting.

3.2.2. Analysis of variance including covariates (RNCOVA).

One of the aims of the researcher in the choi@naxperimental design, the choice of plot size
and shape, the choice of a mathematical model sfrghtion etc. is to decrease the variance of
the experimental error. The estimate of this vamgsis the mean square for erké®. (appearing

in the ANOVA table and in the denominator of theeBt ) and the smaller the value is, the
higher the probability of rejecting the null hypetiis of no difference between treatments and
the higher the chance of declaring significantetéhces between chosen pairs of treatments.
Analysis of co-variance (ANCOVA) is one method thaay be used to reduce the size of the
error MS.. Analysis of co-variance is a method of analyka tan be used to eliminate effects
resulting from variables in which there is no iet&tr An example of such a variable in field
experiments is the number of plants in a plot. @#ht numbers of plants for different
treatments can influence the final results andsil@es. Assuming that there are two variables
observed in an experiment, the main varialand the additional variabl¥ where X can
influenceY but X is not influenced by the treatments (e.g. measbefdre the treatments are
applied), then ANCOVA may be used to remove (attlgartly) the influence of on.

Analyses of co-variance consist of three partstyaigof variance for main variab¥ analysis
of variance for additional (also called concomijamériable X and regression analysis of
variable Y on X. The mathematical model of observations in ANCOWAthe same as for
ANOVA but is extended by a term related to regm@ssiSo, for an experiment performed in
CBD this model is of the form:

Yi = HHT+B+yx +§ @)

where the meaning of used symbols is the same fasrinula (1) with the additional symbwl
used for denoting the common (for all treatmentsfiicient of regression of the main variable
on the concomitant variable amgldenotes the value of the concomitant variable rviesefor
thei-th treatment in thgth block. Thex; is assumed to be fixed and not to be influencethby
treatments. Usually in ANCOVA three hypothesestasted in turn:

— the hypothesis of no differences between treatmientthe concomitant variable. If such
differences exist, it usually means that valueshef concomitant variable are influenced by
treatments and ANCOVA should not be applied;
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— the hypothesis that there is a significant linedatronship between variabl and X. If
there is no such relationship (regression is rgnicant), ANCOVA can formally be applied
but is ineffective in decreasing the experimentedre

- the hypothesis that there are no differences betweatment-means for the main variable
adjusted for values of the concomitant variable.

In a similar way the model for analysis of variarioe alpha designs can be extended to the
ANCOVA model. It is possible to include more condtamt variables.

When comparing treatments after an analysis of rimwvee, the variance on treatment
comparisons is additionally influenced by differeatues of the concomitant variable for each
treatment. The average influence of the concomwantable on the variance of comparisons
can often be applied. One of the possibilitieoigpply the approximation proposed by Finney
(1946). More information on the interpretation diI@OVA analysis can be found in Little and

Hills (1978).

3.2.3. Regression analysis

Regression is a statistical method to describeais®ciation between two or more observed
variables (traits) or between one observed variabtea design parameter (such as the amount
of applied nitrogen or the year in which the obaéipbn is recorded). In the situation of two
observed variables it can be used to estimateffbet @f one of them (the assumed predictor
variable) on the other (the assumed response \a@)iddy expressing the response variable as a
function of the predictor variable. Which varialdeaken as predictor and which as response is
a matter of biological knowledge; the basic regmesmethods do not check these assumptions.
The simplest choice of the function linking the twariables is a linear function. It is equivalent
to assuming a constant change of the value ofatgonse variable for each unit change of the
predictor variable in the whole range of observatiolf we denote the observations of the

predictor variable byX, i = 1,2..n, and the observations of the response variabl¥; bthe
linear regression means that
Yi=a+bX +e,

wherea andb are regression coefficients, a@ds a random deviation of theh observation of

Y from the exact linear relationship. The values@ndb are calculated using the principle of
"least squares". The process of calculation is siomes called "fitting”. Statistical significance
of the regression coefficients can be tested Ibytest. The equation implies that expectation
(mean value) of Yis equal to & + bX). In mathematical statistics expectation expreseed
terms of a variable (in this case - X) is calledaitional expectation. Thus, the fitted regression
function informs us about the expected (mean) vafube response variable for a chosen value
of the predictor variable. The valuesafandb can only be interpreted when ¥ measured
without error, as the values afandb are biased if the variable; ¥ influenced by random
variation — although the formula can be used fedfmtion in both situations.

Although regression analysis is a computationalmegion method, it has several important
connections with less formal graphical exploraforgcedures. This is not strange knowing that
any consideration concerning two observed variatdgsbe conveniently illustrated by simple
two-dimensional Y-X scatter plots. The role of dregal data exploration is two-fold:

- before computation, the scatter plot can indichéelinear relationship between variables is
plausible,
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— after computation, the plot supplemented by thediregression line can tell which of the
data points (units) are very close to the line, @htth deviate considerably.

Moreover, a scatter plot can show many data sepepties that affect the quality of the
estimated coefficients and consequently the quafityre conclusions. The analysis may, as an
example, strongly depend on some data points, wdmiehparticularly influential in the sense
that the result will be quite different without geepoints.

Or, the data points can form clusters which, whens@ered separately, would show no
significant linear relationship between variablBsus, it is strongly advised to use the graphs as
an aid and a presentation tool whenever a regrefanetion is fitted.

The regression line fitted by the computationalcpaure should be used with caution. In

addition to simple graphical procedures descridealv@, there are several diagnostic methods
which can be utilised to check if the assumptiohthe regression model are met and whether
the obtained regression equation can be used toilbes biological process. Weinsberg (1985)

describes several techniques designed to find @nmblwith the assumptions and influential

data points.

The general rules for simple linear regression alao be applied with several extensions to
more complex situations. The most important geisatibns are:

— nonlinear regression, used when the relation betwéand Y cannot be assumed to be
linear,

— multiple (linear or nonlinear) regression, used wiome wants to study the influence of
several predictor variables on the response,

— multivariate regression, used in case of more trmenresponse variable.

The regression equations in each of these thrass @ag straightforward generalisations of the
linear equation. The fitting method is in most saske same, based on the least-squares
algorithm, and the conclusions about parametersyemesimilar. However, the simple scatter-
plots cannot be used for critical assessment fowkiple or multivariate regression because a
(2-dimensional) plot of the response variable agamne predictor variable may be masked by a
second predictor variable. This makes the more razhéh diagnostic tools like the analysis of
deviations or partial leverage plots more relevant.

Due to its simplicity, regression analysis is bigadsed in all types of experimental studies.
Unfortunately, it is also misused in several maar{eee, e.g., Gomez and Gomez 1984, p. 416).
Let us mention just the most common cases.

Firstly, the user must realise, that a necessanditon for regression analysis is some
variability of the observations, both in X and Yhi3 variability must be caused by well
understood or controlled sources (factors) if tegression equation is to be interpreted in a
sound way.

Secondly, the fitted equation can be consideredatid only within the range of observed
values of the variables; generalisations outsidiisfrange are not justified.

Thirdly, in designed (replicated) experiments, tegression equation should be fitted to
treatment (variety) means instead of plot obsewwatiin order to remove experimental error
from consideration and because the interpretatiag be difficult/wrong if the regression is
calculated across several levels of variations.

Finally it should be noted that a significant resgien coefficientlf significantly different from
zero) does not prove that the predictor variablesea the variation found in the response
variable unless the predictor variable is contbldg the investigator.
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3.2.4. Generalised linear mixed models (GLMM)

Analyses of linear regression and analyses of negiaas described above, rely on models that
express the response variable (e.g., yield) asnao$u

- the so-called linear predictor, which is a lineandtion of parameters (that are fixed but
unknown, such as regression coefficients) and mandariables (such as block or sub-block
effects in a mixed model of results of replicategeziments)

- the residuals, which are assumed to have a noristeabdtion.

Such a formulation implies that the expectationtltd observed variable itself is a linear
function of the parameters and variables includedhie predictor. Although linearity and
normality are often acceptable approximations fanyn continuous variables, and many
significance testing methods are quite robust agaiiolation of these assumptions, there are
situations in which it is better to do the analysstng a more general model. The formulation of
the generalised linear mixed model (GLMM), as désdt e.g. by Engel and Keen (1994),
allows for this, because it assumes that:

— the expectation of the response variable is relatetthe linear predictor through the so-
called link function (e.g., logarithm),

- the residual variability follows one of the disuitipns belonging to the exponential family,
e.g. a binomial, Poisson or gamma distribution.

Initially, the classical linear model of observat$o involving only fixed effects, was extended

to a generalised linear model (GLM) (see e.g. Mgl and Nelder, 1989). After realising that

inclusion of random effects in GLM can be equakdful as in linear models, the generalised
linear mixed model (GLMM) was described (see Bresémd Clayton, 1993; Engel and Keen,

1994). Appropriate statistical procedures of edfiomaand hypotheses testing were developed,
and GLMMs can now be fitted and analysed usingssiedl systems such as SAS or Genstat.

Several examples of GLMM applications to biologipabblems can be found in literature. One
of them is the analysis of disease incidence datscribed by Piepho (1999). The author
considers a situation, in which an experiment sigieed with three replications to compare the
effect of six treatments against downy mildew ofigg. In each plot, five randomly chosen
shoots from each of three vines were scored fodewmilby countingm, the number of leaves
with at least one mildew lesion and the total numbkleaves per shoot). Two ways of
modelling the data are considered:

a) a linear mixed model for the observed diseasidéncenyn,

b) a generalised linear mixed model, in which tbegitl function of unknown probability of
disease incidencégg[#/(1- )], is assumed to depend linearly on the fixed treatrand block
effects, random effects of plots, random effectsinés within plots, and random errors caused
by sampling of shoots within vines.

Under b), two sub models are discussed, whichrdiffehe definition of "shoots within vines"
effect. One of them involves the so-called ovepélision parameter, which here describes the
extent to which the variances on the recorded gakieeed those expected in the binomial
distribution. The other sub model assumes a rareftent of each shoot.
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According to the author's final remarks, the analysing GLMM is not much different in
interpretation from the one using a linear modal.okder to set up the analysis, a basic
knowledge of similar rules is necessary. The acqgmis that the parameters of GLMM may
have a better interpretation; a disadvantage i$ foene statistical tests are valid only
asymptotically (for large samples).

A similar problem is considered by Madden (2002howgives some general rules on
superiority of different GLMMs in the situation ah experiment conducted over five years to
study the effects of different fungicide treatmeaots the control of Phomosis leaf blight of
strawberry. The recorded variable was the numbelisgfased leaves in a sample of 15 leaves,
representing a given plot and treatment. In thenidation of GLMM the logit function was
used.

Another example of an interesting application ofMBW is given by Candy (2000). The author
describes a study of incidence of some insecte@leaves. The experiment consists of a multi-
level sampling of plots within compartments of thlantation (trees within plots, branches
within trees and shoots within branches), to cabhatnumber of leaves on the shoot occupied
by insects. As the total number of leaves per shsotery large and counting them is
impractical, the response variable here is assumbdve a Poisson distribution. The logarithm
of the expected number of affected leaves per sisomiodelled by a linear function of fixed
compartment effects and random plot effects. Afrarh the estimation of model parameters,
the analysis described in the paper is meant ® lgints on a better design of the experiment, in
particular about an optimal relation between thenlner of sampled plots and sampled trees
within plots.

Finally, GLMM can be applied to predict weed intigni the field based on soil properties and
counts of weeds observed over years, in the comterevelopment of site-specific farming

techniques, described by Christensen and Waageprté2002). Here, the model is a spatial
one. A GLMM with the Poisson distribution and tlog llink function is used to account for a

non-normal distribution of the response variable.

3.3.  Multi-environment trials (MET)

Multi-environment data originates from replicategberiments carried out in several years, at a
number of sites, or in different environments dedirby e.g. agricultural practice. Although in
each case the observations are classified by emagnts, treatments and replications, the
required analysis may be different for differentamiegs of the word "environment". Usually,
full analysis of MET data with estimation and sfig@nce testing is completed for traits that are
continuous and normally distributed, such as yit¢lthear mixed models provide the most
general analysis framework for such traits (Sedksella and McCulloch, 1992; Denis et al.
1997). Utilisation of linear models with only fixesffects may not be satisfactory due to the
random nature of environmental sources of variation

Most of the MET data are collected to study behavaf plant genotypes (varieties, lines) in
different environments. The analysis of such datalee done using two different approaches:

April 2007 TS22



Susvar Handbook Trial setup and Statistical amalys

(a) a two-stage analysis, in which the data froinealvironments (experiments) are first
analysed separately, and the estimated mean \alee®llected for the second stage devised to
answer guestions about the treatment-environmésnaiction,

(b) a one-stage analysis, in which plot-level datanodelled and analysed to give answers
about the main effects and interaction.

Appropriate instructions for (a) are given e.g.Hatterson (1997). The methods for type (b) are
described by Smith et al. (2001) and @shi et al. (2005). The estimation method used
extensively in mixed models for MET data is the REMgorithm (Patterson, Thompson 1971).
The advantage of the recently developed approdcbvidr the more traditional one (a) is that
all observations are analysed within one modelrdeoto estimate the parameters of interest
and to test the corresponding hypotheses. A disddge of the one stage analysis (b) is that it
is computationally more intensive and that it meguire special algorithms.

Independently of the actual method of analysis, i€l data are collected to give answers
about the variety x environment interaction. Thigfaction is defined as a differential response
of genotypes to conditions in different environngenthe presence of an interaction of a
particular genotype with environment can also béewustood as a situation, in which the
genotype's reaction to the environments is diffefiemm the mean reaction of a set of reference
(standard) genotypes or the mean reaction of albtypes included in the trials. This definition
implies a practical requirement for the trials: t® of genotypes used in different trials should
be as uniform as possible. Although the REML alfponi can treat data even with a very
incomplete (non-orthogonal) structure, caution $thdne taken when the variety x environment
table contains many missing values.

The estimated genotype x environment interactioamaters, if statistically significant, can be
submitted to some additional analyses aimed ata@¥ph the nature of interaction. Very often
the joint regression analysis (JRA, Eberhart andsBRu1966; Shukla 1972) is used for that
purpose. JRA tries to explain genotype x envirorinigeraction by an environmental index,
usually calculated from the mean values for therenments. However, it should be noticed
that a good determination of interaction variapiltty regression on such a simple index is
seldom satisfactory. Therefore, more complicatedices are formed; for this task, the
knowledge of weather and soil characteristics efttlal locations is extremely helpful.

Finally, one should acknowledge the importanceeviesal explorative or analytic methods in
the analysis of MET data. An initial component gsi of genotype x environment interaction
deviations, and its graphical representation infoinen of a bi-plot (Kempton 1984), can be very
helpful in discovering advantage or disadvantagegeriotypes for particular environments.
Experience with using other geometrical methodep®rted by Westcott (1986).

3.4. Analysis of data recorded on a discrete scale

Several traits important for the behaviour and iggalf genotypes are expressed on a discrete
scale, usually from 1 to 5 or from 1 to 9. As aample we can take disease severity, which is
visually assessed as percentage of the area (uf gldeaf) affected and recorded as a number
from 1 to 9, according to a rating scale (see a@rapisease assessment page D 11). Another
example is disease incidence measured as the payeeof the affected plants in the plot (see
chapter Disease assessment page D 10). Statistizdysis of such data is not always
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straightforward, because the measurement scalecanzge problems with the assumption of
normality underlying several procedures. Therefsmme researchers do not carry out formal
significance tests for disease or quality traifsisTpractice is acceptable, because in most of the
experiments the trait of primary interest is thelgj and ranking of the treatments for additional
traits can provide sufficient basis for the bre&ddecision. However, if the statistical analysis
of the discreet scale traits is interesting, tHifgang solutions are possible.

In an analysis of replicated experiments, assurthiagthe unit of measurement is plant or leaf
as it is the case for disease severity, there eweral measurements per plot, which can be
averaged to provide the plot observation. Such meaay be assumed to behave as a variable
measured on a continuous scale, and can be subgectnalysis of variance, possibly after a
transformation. If the unit of measurement is &,pglwere is only one observation, and for such
data, analysis of variance should not be used. ssiple solution is to create replicated
observations by sampling within experimental p{@esmez and Gomez, 1984, p. 532).

In a regression analysis, estimation and testinggrfession coefficients should not be done on
plot data, but on treatment (variety) means esdchdtom the analysis of variance model.
Distribution of such values can be approximatelsnme.

In multi-environment data analysis, mean values ti@atments over replications within
environments can also be considered as approxiynataimally distributed. Therefore, the
analysis of main effects of treatments can be cetagl using the analysis of variance if the
significance of these effects is tested by comparisvith the treatment x environment
interaction.

For some of the traits there is a possibility tegkehe observations in the form of counts (of
units affected out of total number of units invgated). Very often, it is found that such
observations have a binomial or Poisson distrilbutgmd can be modelled by GLMM as
described in Section 3.5.
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