

Nutrition and resistance/resilience to parasitic infection

Bert Tolkamp, Spiridoula Athanasiadou and Jos Houdijk

Animal and Veterinary Sciences Group SAC, Edinburgh

Resistance and resilience to parasitic infection

- Cannot always be clearly distinguished but:
 - Resistance relates primarily to ability of hosts to affect parasite establishment, development, fecundity, etc.
 - Resilience relates to the degree the animal is able to maintain performance despite being infected

Parasites cause damage

Disrupted stomach function

Gut damage in small intestine

Animals feel sick and may die

- Animals feel sick and may die
- Infections reduce performance

- Animals feel sick and may die
- Infections reduce performance – reduced food intake

- Animals feel sick and may die
- Infections reduce performance
 - reduced food intake
 - impaired food digestion
 - protein leakage (needs replenishment)
 - -gut damage (needs repair)
 - immune system requires energy and nutrients

Higher infection rates, larger effects

Reduce effects by de-worming

Anthelmintics are usually effective

 (but too expensive for some systems)

Reduce effects by de-worming

- Anthelmintics are usually effective

 (but too expensive for some systems)
- Negative consequences
 - Emergence of resistant parasites
 - Drug residues in animal products/environment

Reduce effects by de-worming

- Anthelmintics are usually effective

 (but too expensive for some systems)
- Negative consequences
 - Emergence of resistant parasites
 - Drug residues in animal products/environment
- Other approaches are required

Options for non-chemical control

Options for non-chemical control

- nutrient supplementation
- bioactive forages
- vaccination
- biological control
- breeding
- grazing management

Options for non-chemical worm control

- -nutrient (protein) supplementation
- -bioactive forages
- vaccination
- biological control
- breeding
- grazing management

- Periparturient relaxation of immunity (PPRI)
 - plays an important role in parasite epidemiology
 - ewe is a major source of infection for lambs

- Periparturient relaxation of immunity (PPRI)
 - plays an important role in parasite epidemiology
 - ewe is a major source of infection for lambs
- Magnitude of PPRI has a nutritional basis
 - protein scarcity during lactation increases PPRI

- Periparturient relaxation of immunity (PPRI)
 - plays an important role in parasite epidemiology
 - ewe is a major source of infection for lambs
- Magnitude of PPRI has a nutritional basis

 protein scarcity during lactation increases PPRI
- Protein scarcity is determined by supply as well as demand
 - increased protein supply and reduced protein demand both decrease the degree of PPRI

Worms and milk yield during protein supplementation

 Protein supplementation can result in more milk and reduced worm burdens

FEC and ewe protein supplementation

 A decrease in protein demand can rapidly reduce worm egg output

Kidane et al 2010

Protein improves immune responses

Globule leukocytes

 A single lactating, under-fed susceptible ewe could be a source of infection for many lambs

- A single lactating, under-fed susceptible ewe could be a source of infection for many lambs
 - Egg excretion over 14 days: 17,000,000 eggs

- A single lactating, under-fed susceptible ewe could be a source of infection for many lambs
 - Egg excretion over 14 days: 17,000,000 eggs
 - If 25% successfully hatch: 4,300,000 larvae

- A single lactating, under-fed susceptible ewe could be a source of infection for many lambs
 - Egg excretion over 14 days: 17,000,000 eggs
 - If 25% successfully hatch: 4,300,000 larvae
 - If 25% migrate to leaf area: 1,125,000 larvae

- A single lactating, under-fed susceptible ewe could be a source of infection for many lambs
 - Egg excretion over 14 days: 17,000,000 eggs
 - If 25% successfully hatch: 4,300,000 larvae
 - If 25% migrate to leaf area: 1,125,000 larvae
 - Sub-clinical larvae exposure: 5,000 larvae/day

- A single lactating, under-fed susceptible ewe could be a source of infection for many lambs
 - Egg excretion over 14 days: 17,000,000 eggs
 - If 25% successfully hatch: 4,300,000 larvae
 - If 25% migrate to leaf area: 1,125,000 larvae
 - Sub-clinical larvae exposure: 5,000 larvae/day
 - One ewe could infect 16 lambs for 14 days

- A single lactating, underfed susceptible ewe could be a source of infection for many lambs
 - Egg excretion over 14 days: 17,000,000 eggs
 - If 25% successfully hatch: 4,300,000 larvae
 - If 25% migrate to leaf area: 1,125,000 larvae
 - Sub-clinical larvae exposure: 5,000 larvae/day
 - One ewe could infect 16 lambs for 14 days
- Optimal MP supply to ewes can reduce the negative effects of exposure to parasites

Ewe FEC during ewe protein supplementation (clean fields)

Lamb weight during ewe protein supplementation (clean fields)

SA

Drench need during ewe protein supplementation (dirty fields)

Kidane et al 2009

Lamb weight during ewe protein supplementation (dirty fields)

SAC

 Protein scarcity may be a reason for elevated FEC in periparturient ewes

- Protein scarcity may be a reason for elevated FEC in periparturient ewes
- Protein supplementation:
 - reduced worm burdens and worm egg output
 - reduced drench use
 - increased lamb performance

- Protein scarcity may be a reason for elevated FEC in periparturient ewes
- Protein supplementation:
 - reduced worm burdens and worm egg output
 - reduce drench use
 - increased lamb performance
- Target most susceptible ewes:
 - thin, multiple rearing (especially gimmers)
 - single-rearing ewes may not benefit from protein

Bioactive forages

Bioactive forage: a definition

- Plants are referred to as bioactive forages if their consumption results in anti-parasitic activity
- Examples of bioactive forages
 chicory
 sainfoin

lotus

Chicory

- Highly palatable
- Good nutritional value
 - Dry matter
 - Macro-nutrients
 - Micro-nutrients
- Readily grown in Scotland
- Anti-parasitic properties

Worm burdens following short term grazing on new chicory

grazing treatment

Tzamaloukas et al. (2003)

SAC

FEC during long term grazing on new chicory (pre-weaning)

Gain during long term grazing on new chicory (pre-weaning)

FEC during long term grazing on new chicory (post weaning)

Kidane et al 2009

Pasture larval counts

Kidane et al 2009

Drench need during long term grazing on dirty chicory

SAC

Mode of action

- Anti-parasitic plant secondary metabolites
 - direct anti-parasitic properties

Mode of action

- Anti-parasitic plant secondary metabolites

 direct anti-parasitic properties
- Immunonutrition
 - improved host immune responses towards incoming and established worms

Mode of action

- Anti-parasitic plant secondary metabolites

 direct anti-parasitic properties
- Immunonutrition
 - improved host immune responses towards incoming and established worms
- Plant structure
 - broad-leaved structure reduces larval migration and hence larval uptake during grazing

 Bioactive forage like chicory can assist to reduce the degree of gastrointestinal nematode parasitism

- Bioactive forage like chicory can assist to reduce the degree of gastrointestinal nematode parasitism
- Potential benefits from chicory arise from:
 - reduced worm burdens and worm egg output
 - reduce drench use
 - increased lamb performance

- Bioactive forage like chicory can assist to reduce the degree of gastrointestinal nematode parasitism
- Potential benefits from chicory arise from:
 - reduced worm burdens and worm egg output
 - reduce drench use
 - increased lamb performance
- We need to know more to understand why it works frequently but not always

- Nutritional approaches have the potential to reduce parasitism
- The use of bioactive forages has the potential to reduce parasitism
- How can they be optimally combined?

Using different approaches at the same time SAC

- How can they be optimally combined?
 - With each other?
 - With chemical control (drenches)?
 - With other measures, such as:
 - COWP
 - Breeding
 - Vaccination

- There is an urgent need to develop alternatives to chemical (anthelmintic) control of gastro-intestinal parasites
- It is likely that combinations of approaches can be useful in different circumstances

 Supplementation with nutrients (protein) and the use of bio-active forages (PSM) are promising parts of strategies for parasite control in future sustainable systems

Thank you for your attention

