Adaptive greenhouse: Greenhouse design based on local boundary conditions Dr. Ir. Anne Elings & Dr. Ir. Jouke Campen Wageningen UR Greenhouse Horticulture, Netherlands

Outside vs. inside: 17 vs. 45 kg m⁻² y⁻¹

A greenhouse protects a crop against adverse conditions

Basics needs of the crop

Light
Water
CO₂
Nutrients
Temperature
Relative humidity

homogeneous

These parameters can be optimised in a greenhouse

Major challenge

Design greenhouse systems which combine (economic) production efficiency with minimal input of energy, water and nutrients for different regions in the world:

The "Adaptive Greenhouse"

Adaptive greenhouse design scheme

Step 1 Requirements and objectives

Requirements*:

- Market size and regional infrastructure
- Local climate
- Availability, type and costs of fuels and electric power
- Availability and quality of water
- Soil quality and topography
- Availability and cost of land, zoning restrictions
- Availability of capital
- The availability and cost of labour and the level of education
- The availability of materials, equipment and service level
- Legislation in terms of food safety, residuals of chemicals, the use and emission of chemicals to soil, water and air

*Hanan, 1998 and Van Heurn and Van der Post, 2004

Step 1 Requirements and objectives

Objectives:

- Reduction of energy
- Minimal water use
- Better production
- Better quality
-

- Required functions:
 - Energy supply
 - ...
 - ...

Required functions:

- Energy supply
- Heating
- ...
- ...

Required functions:

- Energy supply
- Heating

. . .

- Dehumidification/cooling
- ...

Fogging

Required functions:

- Energy supply
- Heating
- Dehumidification/cooling
- CO₂ supply
- ...

Required functions:

- Energy supply
- Heating
- Dehumidification/cooling
- CO₂ supply
- Reduction of energy loss
- ...

. . .

Insulating materials

Required functions:

- Energy supply
- Heating
- Dehumidification/cooling
- CO₂ supply
- Reduction of energy loss
- Additional light
- ...
- ...

Required functions:

- Energy supply
- Heating
- Dehumidification/cooling
- CO₂ supply
- Reduction of energy loss
- Additional light
- Cultivation systems
- ...

Hydroponics / soilless culture

Drain collection and reuse

innogrow VERBA

Rockwool

slabs

Irrigation and fertigation

OOTOW VEREANTE-BOMCAS

innogra

Fertigation unit and water treatment

Required functions:

- Energy supply
- Heating
- Dehumidification/cooling
- CO₂ supply
- Reduction of energy loss
- Additional light
- Cultivation systems
- Crop protection
-

Chemicals or IPM

Robotics

Manually

Rc

Required functions:

- Energy supply
- Heating
- Dehumidification/cooling
- CO₂ supply
- Reduction of energy loss
- Additional light
- Cultivation systems
- Crop protection
- Labour

Implementation

Market
Management
Capacity building
Commitment
Communication

Design example: Low cost passive greenhouses

Example Lowlands of Malaysia

- Low investment cost
- High outside temperatures
- High radiation levels
- Fluctuation in wind speed and direction
- Application of biological control
- Proper fertigation using recirculation

Yearly temperature in Malaysia

Relative humidity in Malaysia

Daily temperature in Malaysia

Outside temperature is within limits but the greenhouse has to be ventilated extensively
Evaporative cooling is done by the crop

Design example: Low cost passive greenhouses

Computational fluid dynamics simulations are used in the design process

Temperature:

Configuration	3 m/s	No
	wind	wind
single greenhouses	31.3	33.5
	31.4	33.6
	31.3	33.6
multi-span	32.1	33.8

Open top en side vents for maximum ventilation

High light transmissivity with diffusing cover

Pollination using bees is possible due to the air tightness

Demonstration results

Collaboration in innovation processes

Department of Agriculture Asian Perlite Industries WUR

Farmers

Dutch government

The proof of the pudding

temperature GH < temperature outside

Business case

Pay-back time 3-4 years

Science applied

Indonesia:

• First demo

- Dr. Impron: 'A Greenhouse Crop Production System for Tropical Lowland Conditions'
 - PhD at WUR
 - 4 refereed journal articles
- Malaysia: bringing into practiceThailand: a re-design?

In short

The design of efficient greenhouses requires:

- A market analysis on products and prices
- Location specific parameters (climate, resources and legislation)
- Other goals being economically viable like sustainability and food safety

Adaptive greenhouse design: for optimal results world wide

Wageningen UR Greenhouse Horticulture www.glastuinbouw.wur.nl

