

Naturally produced ethylene as a possibility to cause
suicidal germination of hemi-parasitic *Striga*
hermonthica seeds

a case study with soil from Cameroon

Msc. Thesis Theoretical Production Ecology (F300-702)

Supervisors:

Dr. Ir. P.A. Leffelaar

Ing. A. van Ast

September 1999

Paul Belder

Laboratory of Theoretical Production Ecology
Wageningen University, Netherlands

3. organic matter

Evolution of C_2H_4 from soils under anaerobic conditions was stimulated by amendment with cereal straw (Lynch and Harper, 1980; Goodlass and Smith, 1978). Peat and farmyard manure also resulted in enhanced C_2H_4 evolution (Goodlass and Smith, 1978). Hay had no effect for ethylene production (Goodlass and Smith, 1978), though others reported enhanced ethylene production when soils were amended with hay (Babiker and Pepper, 1984). Humus does not provide a favourable substrate for microbial growth and consequently does not affect ethylene production (Lynch and Harper, 1980). Availability of the substrate is an important factor for ethylene production in soils. The nature and quantity of crop residues may significantly affect the levels of ethylene evolved under any given set of physical conditions (Smith and Dowdell, 1974). Lynch and Harper (1980) reported that anaerobic conditions were much more favourable for ethylene production when wheat and barley straw were incorporated in the soil than aerobic conditions.

Compounds that have been shown to stimulate ethylene production when added to soils include low molecular weight aliphatic organic acids, amino acids, phenolic acids, glucose and vitamins (Arshad and Frankenberger, 1990). Methionine, in combination with glucose as an energy source, greatly stimulated ethylene production (Lynch and Harper, 1980). The C/N ratio of organic material also influences the production of ethylene. More ethylene was produced per gram of added carbon with non-composted litter (C/N 12.6) than with composted litter (C/N 9.8) (Tang and Miller, 1993).

Ethylene production is enhanced by a high organic matter content under anaerobic conditions (Goodlass and Smith 1978) or under both anaerobic and aerobic conditions (Van Cleempot *et al.*, 1983; Tang and Miller, 1993). On the contrary Arshad and Frankenberger (1990) found no relationship between ethylene evolution and soil organic matter content.

4 temperature

Temperature is among the factors that determine concentration of ethylene in the soil, because of stimulation of growth conditions of the organisms producing ethylene (Smith and Dowdell, 1974).

5 pH

Acidic soils absorb less ethylene than basic soils (Witt and Weber, 1975). Goodlass and Smith (1978) have shown that the quantities of C_2H_4 evolved under anaerobic conditions may be affected by pH.

6 redox potential

Smith and Restall (1971) found that all factors promoting reducing conditions, stimulate hydrocarbon production. Arshad and Frankenberger (1990) found that addition of oxidizers inhibited ethylene production. In the soil NO_3^- may be an important terminal electron acceptor for certain facultative anaerobic bacteria in the absence of O_2 and can poised the redox potential sufficiently to prevent activity of strict anaerobes. Smith (1976) stated that there are other redox systems in soils, including the ferric–ferrous and manganic–manganous couples, which operate over the redox range. However, compared with NO_3^- , they will have little effect because they are insoluble in the oxidised form.

When soils were amended with NO_3^- at levels of 20–200 $\mu g\ g^{-1}$, C_2H_4 was only produced after all NO_3^- was denitrified, while Van Cleempot *et al.* (1983) reported that the depressing effect on ethylene production was only pronounced at NO_3^- levels higher than 300 $\mu g\ g^{-1}$. Other researchers reported that there was never a complete suppression of C_2H_4 production even at levels up to 10,000 $\mu g\ NO_3^- g^{-1}$ soil (Goodlass and Smith, 1978; Smith and Restall, 1971).

7. Soil management

Bare, cultivated soil always produces less C₂H₄ than if under crop, which, in turn, produces less than if the soil was uncultivated (Smith, 1976). Practices that increase moisture content or impede aeration as a result of smearing, can be expected to increase the incidence of anaerobic conditions and the levels of ethylene (Smith and Dowdell, 1974).

1.3.4 Transport and accumulation of ethylene in soils

Generally, accumulation of ethylene in soils is enhanced by:

- a physical barrier to diffusion presented by a high proportion of water-filled pores (Lynch and Harper, 1980; Smith and Dowdell, 1974; Glinski and Stepniewski, 1985);
- small aggregates that inhibit gaseous exchange with the atmosphere (Lynch and Harper, 1980);
- addition of organic matter to increase the amount of substrate for C₂H₄ producers and low oxygen pressures (Hunt *et al.*, 1980).

The rate of diffusion of a gas through the soil is influenced by its molecular structure, soil temperature, presence of co-diffusing gases, continuity of soil pores, and the distribution of the gas between the air, water, and solid phases of the soil system. Ethylene rates of 0.42 kg/ha induced germination of witchweed seeds in sandy soils; heavy clay soils on the other hand require 1.1 kg/ha (Eplee, 1975).

The area on which this research is focussed is situated in the semi-arid tropics (SAT) of Africa. In the SAT soil tillage plays an important role in crop production (Hoogmoed, 1999). Tillage depth in lateritic soils is often shallow and 80-90% of the *Striga* seeds occur in the 0-5 cm top layer (Van Ast 1998). A large percentage of the soils found in these regions is light, contains non-swelling or shrinking clay minerals and has a low soil organic matter content. As a result, soils have a low structural stability and can be characterised as “sealing, crusting and hardsetting”. The formation of seals, crusts and hardset layers is aggravated by the aggressive and unpredictable nature of rainfall, which is typical for the SAT (Hoogmoed, 1999).

1.4 Problem definition

Since the discovery of ethylene as a germination stimulant for *Striga* seeds (Eplee, 1975), it was used to eradicate *Striga* infestations in the USA after sufficient conditioning (Eplee and Norris, 1995). In Kenya it has also been found that naturally produced ethylene caused suicidal germination under field conditions (Kuiper, 1997). Environmental and soil conditions as well as the economic standard of the people in the SAT are much different from the USA. The way of injecting ethylene in the soil is likely to be too expensive for most farmers.

With indications about effect of organic matter application on the ethylene production, this natural way of ethylene production is worth to be investigated. The main objective of this thesis work was to investigate whether naturally produced ethylene can be used to eradicate the *Striga* seed population.

From this main objective sub goals are defined that contains:

1. What are the main factors affecting production of ethylene for a SAT soil. What is the effect of organic matter on ethylene production. What is the effect of aerobic and anaerobic conditions and soil temperature.
2. What is the actual production of ethylene in a soil column after a simulated rainshower. What is the influence of smearing of the topsoil and amendment of the soil with organic matter.
3. What is the threshold concentration of C_2H_4 to let the *Striga* seeds germinate.
4. Do technical solutions fit within the labour schedule of the African farmers.

If the actual production in the tested SAT soil meets the threshold concentration of ethylene to let the *Striga* seeds germinate, field experiments may be designed to test new management in practice.

2.1 CHARACTERISATION OF MAIN ETHYLENE PRODUCTION AFFECTING FACTORS IN A SOIL FROM CAMEROON

2.1.1 Introduction

This experiment was designed to gain understanding about the major factors that influence ethylene production in a re-wetted soil from Cameroon. Temperature was chosen realistically compared with Cameroonese conditions. Organic matter amendments and moisture content were established at favourable, but less realistic values to test their potential influence. Types of organic matter used were available sources in Cameroon and application rates. With the results of this experiment, treatments for the following soil column experiment could be designed. This experiment was executed at the Department of Microbiology.

2.1.2 Materials and methods

2.1.2.1 Soil and organic matter characteristics

The soil used to determine the potential and actual production of ethylene was from Garoua province in northern Cameroon. All soil used in the experiments passed a 4-mm sieve. Table 1 presents some chemical properties of the soil, analysed according to the procedures described in *Soil Analysis Procedures, Extraction with 0.01 M CaCl₂* (Houba *et al.*, 1999) and C-Kurmies as described in *Other Procedures* (Houba *et al.* 1997). Table 2 presents the C/N and C/P ratio's of the types of organic matter used in this experiment and the experiment in which the actual C₂H₄ production was determined (chapter 2.2). Total C, N, and P were determined according to the procedure described by *Other Procedures* of (Houba *et al.* 1997). The texture of the soil was a

All determinations were executed by the Department of Soil Science and Plant Nutrition.

Table 1 *Chemical properties of the soil from Garoua, Cameroon*

pH	N-NO ₃ [mg/kg]	N-NH ₄ [mg/kg]	N-total [mg/kg]	P [mg/kg]	Na [mg/kg]	K [mg/kg]	C-Kurmies [g/kg]
6.4	2	4	12	1.7	0	83	6.2

Table 2 *C/N and C/P ratios of brewery sludge, cotton milling waste and cotton seed cake*

type of organic matter	brewery sludge	cotton milling waste	cotton seed cake
C/N ratio	14.4	42.0	7.2
C/P ratio	127.9	611.5	38.1

2.1.2.2 Experimental set-up

The potential C_2H_4 production of the soil was determined by incubating soil slurries in 120-ml serum bottles that were made airtight with a rubber septum. Gas samples were taken with injection needles. In order to get used to taking gas samples and to be sure the gas chromatograph could detect the C_2H_4 concentrations, a preliminary experiment was carried out. In this experiment the effect of the O_2 pressure and amendments with two different organic matter sources at two application rates were tested, see Table 3. The organic matter applications as well as the O_2 pressure had no clear effect on the C_2H_4 production. More details about experimental set-up and results of the preliminary experiment can be found in Appendix I.

Table 3 *Outline of the treatments of the preliminary experiment*

environment	organic matter	
	source	application rate [ton/ha]
anaerobe	-	-
anaerobe	CMW	1
anaerobe	CSC	1
aerobe	CMW	1
aerobe	CSC	1
anaerobe	CMW	5
anaerobe	CSC	5
aerobe	CMW	5
aerobe	CSC	5

CMW = cotton milling waste; CSC = cotton seed cake

In the main experiment available organic matter from Cameroon was tested again. The organic matter used was cotton milling waste (CMW), cotton seed cake (CSC), and brewery sludge (BS). C/N ratios of these sources are, according to Table 2, for CMW 42.0, for CSC 7.2 and for BS 14.4 respectively. The chosen application rates were fixed at 1 and 5 ton/ha. The dry bulk density $^b\rho_d$ of loose dumped soil from Cameroon was determined beforehand as 1.66 g/cm^3 . The density of the solid part of the soil $-\rho_s$ -was assumed to equal 2.65 g/cm^3 , so the porosity than was calculated as 37.4% of the soil volume. Per bottle of 120 ml, a slurry of 91.9 g was applied. This slurry consisted of 75.0 g of dry soil and 16.9 g of water to reach saturation. The mean headspace minus the septum was equal to 71.7 cm^3 . The water was mixed through the dry soil in the form of ice scales to create better mixing conditions compared with mixing liquid water with dry soil. For more details about the experimental set-up see Appendix II. Two series with a different temperature regime were used: one series with a constant temperature of 35°C and the other series was kept 12 hours at 25°C and 12 hours at 45°C to approach field circumstances in Cameroon. The non-microbiological production of C_2H_4 was determined by autoclaving the soil during 20 minutes at 120°C and 2 bar pressure to prevent boiling of the water. Anoxic conditions at both temperature regimes were tested for comparison with the initial aerobic condition of the other treatments. All treatments had four replications. An outline of the treatments is presented in Table 4.

Table 4 Outline of the treatments in which the effect of temperature regime, organic matter application, O_2 condition, and autoclaving was determined for ethylene production

initial conditions	temperature [°C]	organic matter	
		type	application rate [ton/ha]
aerobe	35	-	-
aerobe	35	BS	1
aerobe	35	CMW	1
aerobe	35	CSC	1
aerobe	35	BS	5
aerobe	35	CMW	5
aerobe	35	CSC	5
anaerobe	35	CMW	5
aerobe	25/45	-	-
aerobe	25/45	BS	1
aerobe	25/45	CMW	1
aerobe	25/45	CSC	1
aerobe	25/45	BS	5
aerobe	25/45	CMW	5
aerobe	25/45	CSC	5
anaerobe	25/45	CMW	5
autoclaved	35	-	-

Gas samples were taken 1, 6, 8, 12, 19, and 26 days after the start of the incubation. Some septa of the serum bottles were leaking after 19 days as was found by injecting He gas into the bottles and analysing at the next sampling date.

Statistical analyses were carried out by using the general linear models procedure (GLM). With GLM factor analysis was done for temperature, types of organic matter, and initial condition.

2.1.2.3 Gas chromatography

The used gas chromatograph had a Fused Silica column with a CP-PoraPLOT Q coating with a film thickness of 10 μ m. The length of the column was 27.5 m and the inside diameter was 0.32 mm. The used detector was a flame-ionisation detector. The operational temperature was kept at 60°C and the carrier gas was N₂ under a pressure of 100 kPa relative to the atmospheric pressure. The split fraction of the injected sample was 0.0934 so that about 10% of the injected sample was led through the column whereas the major part was emitted. The split flow through the column was 40 ml/min.

The sample size during all experiments was 0.2 ml. Picture 1 shows the used injection needle for sampling and Picture 2 shows the used gas chromatograph. Erlenmeyers containing 1000 and 10 ppm of C₂H₄ were prepared by dilution of pure C₂H₄ and used as calibration samples. The peak areas were integrated by means of a computer program. Retention times of the samples were compared with the calibration samples. Time and temperature were determined at the moment of sampling.

Picture 1 A 0.2 ml gas sample is injected through the septum of the gas chromatograph

2.1.3 Conversion of concentration to C_2H_4 production

C_2H_4 accumulated both in the headspace with a certain volume V_{hs} and was dissolved in the water phase θ of the incubated soil. A calculation example how to proceed from peak area of C_2H_4 at the gas chromatograph to total production of C_2H_4 in [mg/kg dry soil] and [nmol/kg dry soil] is given below:

- (1) date: June 23 (145 hours incubation)
- (2) incubation temperature: 308 K
- (3) peak area C_2H_4 by GC: 1664

(4) average peak area standard sample 10 ppm: 3339

(5) concentration C_2H_4 in head space $[C_2H_4]_{hs} = \{(3)/(4)\} 10 = 4.9835$ ppm

(6) aimed mixture of soil and water: 16.9 g water + 75.0 g dry soil; total weight of added slurry 91.9 g

(7) volume water in sample, V_w : $16.06 \cdot 10^{-6} \text{ m}^3$. Determined by drying the soil for 48 hours at 110°C. The amount of water [g] equals 16.06 g

(8) volume headspace (V_{hs}), determined after C_2H_4 determinations by filling the headspace with water: $71.60 \cdot 10^{-6} \text{ m}^3$

(9) real added amount of dry soil S_w , calculated as the total amount of slurry – the amount of water in the sample = (6) – (7) = 75.84 g

(10) $1 \text{ ppmV} = \frac{P}{RT} \cdot \frac{Mw}{10^6} \cdot 10^3 = 1.1256 \text{ mg/m}^3$,
 $P = 1 \text{ atm} = 101325 \text{ Pa}$, sampling temperature $T = 303.15 \text{ K}$, $R = 8.3142 \text{ J kg}^{-1} \text{ K}^{-1}$, Mw (molecular weight) = 28 g/mol

(11) total amount of gas in the headspace [mg], $TAOG_{hs} = [C_2H_4]_{hs} \cdot 1.1256 \cdot V_{hs} = (5) (10) (8) = 4.016 \cdot 10^{-4} \text{ mg}$

(12) distribution-constant for water and air ($K_{w,a}$) at $T = 30^\circ\text{C}$: 0.098 (Seidell, 1941). For more details, see Appendix III

(13) total amount of gas in the water phase [mg], $TAOG_w = K_{w,a} \cdot [C_2H_4]_{hs} \cdot 1.1256 \cdot V_w = (12) (10) (7) (5) = 8.180 \cdot 10^{-6} \text{ mg}$

(14) $TAOG = TAOG_{hs} + TAOG_w = (11) + (13) = 4.098 \cdot 10^{-4} \text{ mg}$

(15) $TAOG \cdot 10^3 / S_w = C_2H_4 \text{ [mg/kg dry soil]} = \{(14) / (9)\} \cdot 10^3 = 5.403 \cdot 10^{-3} \text{ mg/kg dry soil}$

(16) $TAOG \cdot 10^9 / (Mw \text{ dry weight soil}) = C_2H_4 \text{ [nmol/kg dry soil]} = 192.98 \text{ nmol/kg dry soil}$

This way of calculation involves the following assumptions:

- soil was perfectly mixed with water;
- the gas phase of the soil \mathcal{O}_g has been added to the volume of the head space V_{hs}
- a correction for withdrawal of volumina by previous sampling was negligible

2.1.4 Results

The production of ethylene was highest directly after the start of incubation of the wetted soil, see Figure 2. Under initial aerobic conditions 45% of the total C_2H_4 production took place at the first day of incubation compared with 32% for strict anoxic conditions. The total production of ethylene per kg dry soil was significant higher ($\alpha = 0.05$) for initial aerobic compared with strict anaerobic conditions during the first 12 days of incubation. Figure 1 shows the accumulated C_2H_4 production for the two conditions together with the standard deviation σ per time per treatment, represented by bars. The data points for initial aerobic and strict anaerobic conditions are based on all treatments which had initial aerobic conditions and the two treatments that had strict anaerobic conditions respectively. One exception was made for the values of accumulated ethylene after 290 hours incubation at 35°C. These values were omitted due to differing values compared with the 25°/45°C regime at the same incubation time. However, this assumption is contestable.

To get the best fitted line the assumption was made that C_2H_4 production started after 5 hours. This was done to avoid the natural logarithm of zero and to let R^2 increase to maximum. The data points gave rise to fitting with a natural logarithm (Ln) function.

The equation for the total C_2H_4 production y [nmol/kg dry soil] for initial aerobic conditions is, when incubation time t is in hours: $y = 58.276\ln(t) - 85.156$; $R^2 = 0.993$. For strict anaerobic conditions the equation is: $y = 52.195\ln(t) - 88.603$; $R^2 = 0.9929$. The production rate y [nmol/kg dry soil * hour] is the slope of the equation for the total production and equals for initial aerobic conditions: $y = 58.276 / t$; the slope can be calculated by taking the f' of the functions for total accumulated C_2H_4 production. For strict anaerobic condition the production rate was equal to: $y = 52.195 / t$. The production rates are presented in Figure 2.

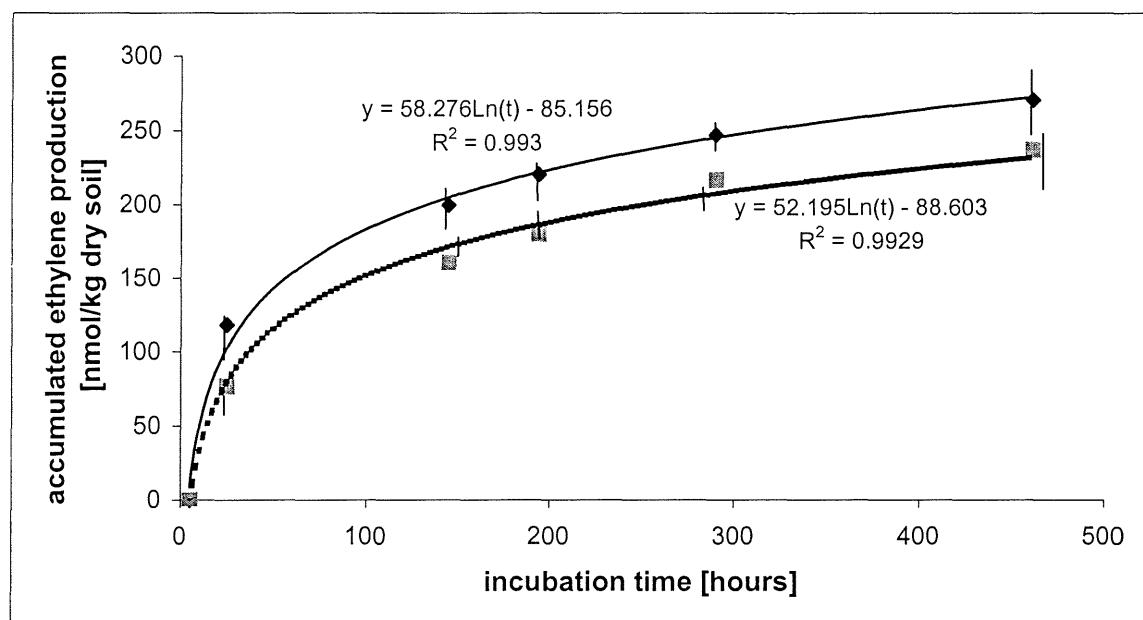


Figure 1 *Accumulated ethylene production under initial aerobic conditions as a mean of all initial aerobic treatments (continuous line) and strict anaerobic (dashed line) conditions as a mean of the two anaerobic treatments together with standard deviations*

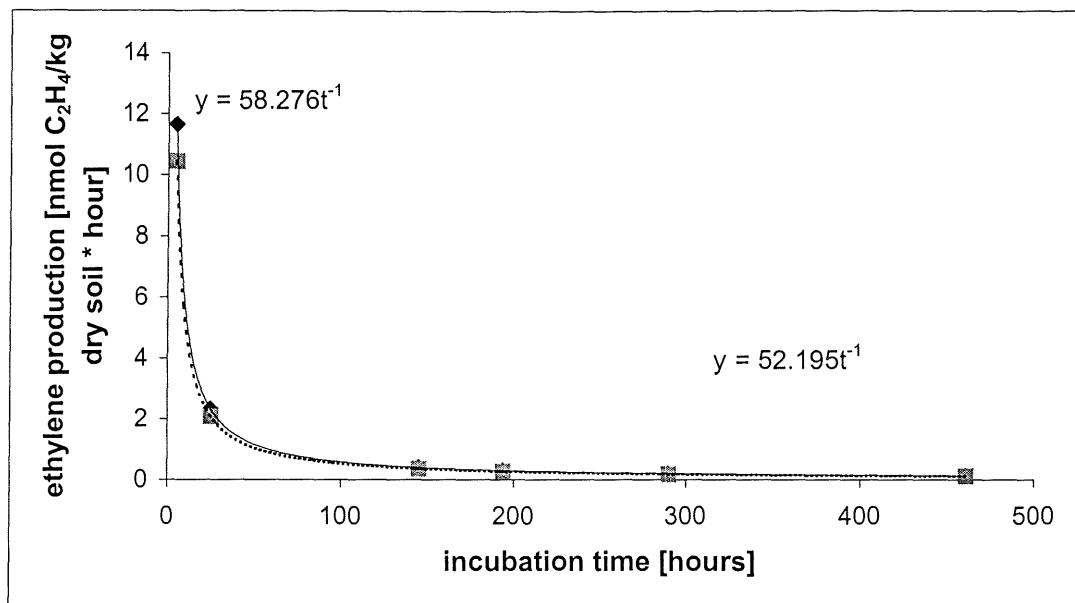


Figure 2 *Production rate of ethylene under initial aerobic (continuous line) and anaerobic conditions (dashed line)*

In general, during the whole incubation time the 25°/45°C temperature regime did not significantly differ in C₂H₄ production with the 35°C regime. Only after 8 days (192 hours) the 25°/45°C regime had a significant higher production than the 35°C regime. Results of the accumulated production of C₂H₄ for all different treatments are presented in Table 5. From 6 to 12 days after the start of incubation, the application of cotton seed cake hampered ethylene production significantly. In general the different types of organic matter and the application rates did not affect C₂H₄ production. Ethylene was of microbiological origin for the autoclaved bottles did not produce any ethylene during the first 3 days and the amounts after 3 weeks were still negligible compared with the non-autoclaved bottles, see Tables 5 and 6.

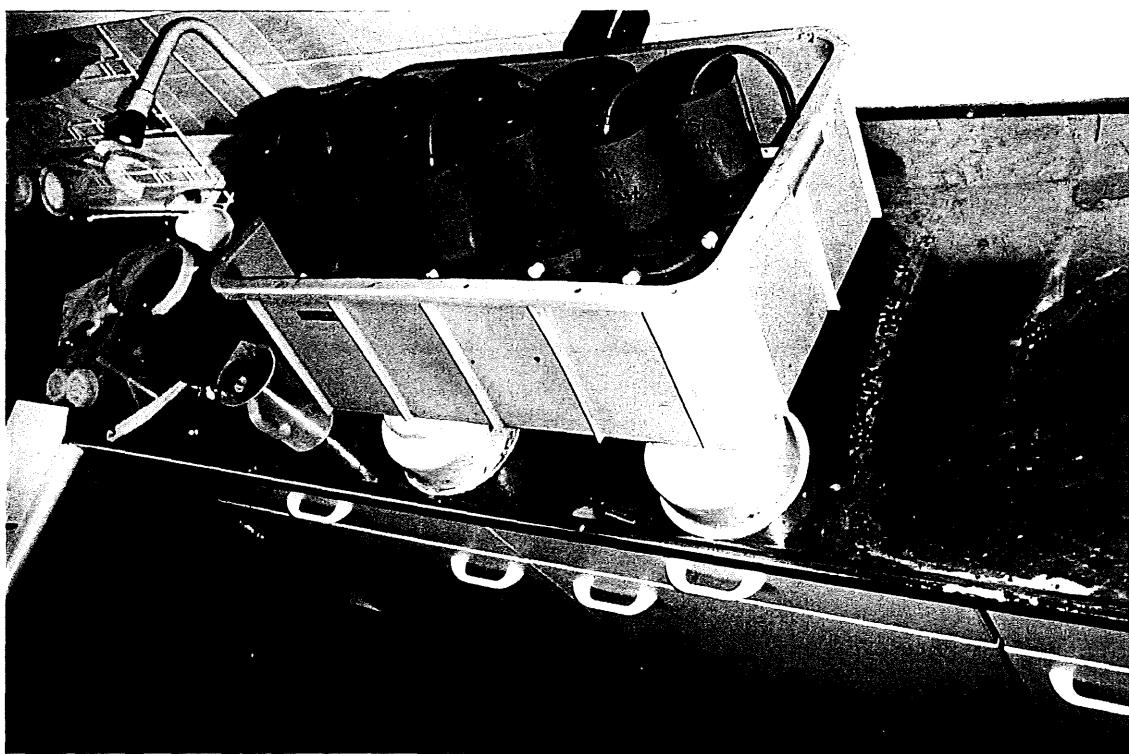
2.2 ACTUAL ETHYLENE PRODUCTION AND DIFFUSION IN A SOIL FROM CAMEROON

2.2.1 Introduction

The experiment, in which the potential ethylene production was determined, showed that production of ethylene started almost immediately after the soil was wetted, see Figures 1 and 2. This experiment is focussing on imitating the field conditions. Soil will be moistened and drained, simulating rain. Concentration of ethylene at various depths in time is important to predict its role as germination stimulant. The objectives of this experiment are:

- to determine the C_2H_4 concentrations at 2.5, 7.5 and 12.5 cm depth in a soil profile after wetting the soil;
- Are wet conditions and/or a low O_2 pressure favourable for C_2H_4 production?
- How takes C_2H_4 diffusion place in the upper 15 cm of a soil profile.

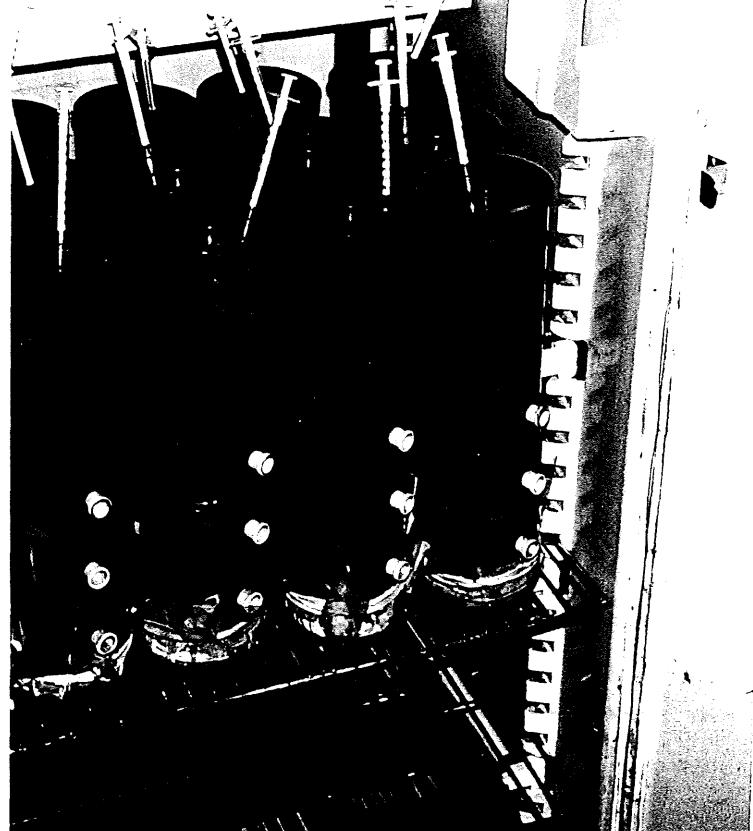
2.2.2 Materials and Methods


The soil used for this experiment was from Garoua, Cameroon from which the characteristics are enumerated in Table 1. The soil was packed in a column made of PVC with a height h of 17.5 cm and a radius r of 3.84 cm. The bottom was sealed with a piece of linen. The column was sawn in parts in order to determine the moisture content afterwards. The height of the three parts was from top to bottom 5.0, 5.0, and 7.5 cm. On top of the soil column a headspace tube with a height of 12.5 cm with the same r was put to determine the escaped ethylene from the soil. The headspace was closed with a cap with a height of 2.5 cm so that the headspace volume became 463 cm^3 . This volume was supposed to be large enough to be suitable for sampling while the diffusion rate back into the soil was assumed to be negligible. The dry bulk density $^b\rho_d$ was strived to be equal to 1.80 g/cm^3 . To achieve the fixed $^b\rho_d$ the soil was tamped down every few centimetres. Gas samples from the soil were taken from gas diffusion chambers. These chambers were made of cut syringes with an estimated volume of 0.5 cm^3 . The chambers were connected with a septum. In the wall of the PVC tube, holes with a radius of 2.9 mm were made at 2.5, 7.5, and 12.5 cm from the top of the soil. The septa just fitted in this hole and grease was used to ensure air tightness. Pictures 2-5 give an impression about the design.

The soil was moistened from below, to prevent air inclusion, at an angle of 11° with the septa at the higher side so that when the column was saturated, water could not enter the gas chambers. The height of the water level outside the columns was gradually increased from below to the top of the soil column. The soil was saturated in a time period of one hour. To equalise the outside air pressure with inside air pressure an injection needle with a small tube was pinned through the cap. Picture 5 shows the set-up at the time of wetting the soil from below.

The soil columns were drained for 35 hours in order to create conditions that may approach those in a soil after the onset of the rainy season. A preliminary experiment was executed in order to establish the drainage rate of the column. This experiment showed a decrease of the volumetric water content θ from 0.32 to 0.26 after 35 hours draining, see Figure 1 in Appendix V. The bottomside of the columns was sealed with plastic. The gas chambers were injected with air to remove all possibly entered water. More details about built-up of the columns are shown in Appendix V.

Picture 2 Location of gas chamber at $z=7.5$ cm depth in the column



Picture 3 The columns are moistened from below under an angle of 11°

*Picture 4 Column 1 is sampled
at depth $z=12.5$*

*Picture 5 The soil columns in the
temperature regulator* →

Ethylene concentration in a soil depends on the production and the diffusion rate of ethylene. The latter is affected by physical barriers like moisture content, crust formation, and solubility of the gas in water. Crust formation was simulated in this experiment by smearing the top layer of the soil with a teaspoon. Organic matter amendments were tested again, to determine their role in the actual production of ethylene of a wetted soil. The source of organic matter used was cotton milling waste (CMW) and the application rate was fixed at 5 ton/ha only applied in the top 5 cm. For characteristics of CMW see Table 2. The soil columns were incubated at a temperature regime of 12 hours at 25°C and 12 hours at 45°C. An outline of the treatments is presented in Table 7.

Table 7 *Outline of the treatments determining the actual ethylene concentration in the soil profile*

treatment #	cotton milling waste	crust formation
1	-	-
2	+	-
3	-	+
4	+	+

Treatments were replicated 3 times. Sampling for C₂H₄ was first executed 5 hours after 35 hours of draining the soil. Experiments were executed at the Department of Microbiology using the same gas chromatograph as in the experiment investigating the potential production, see chapter 2.1.2.3. Statistical analyses were carried out by using the General Linear Models (GLM) procedure. The probability level α used, was 0.05 for all analyses. The concentrations of ethylene at the four sampling depths were analysed by application of contrasts to the GLM procedure. A contrast exists of comparing two individual treatments.

2.2.3 Diffusion theory

With the obtained C₂H₄ concentrations at depths z=2.5, 7.5 and 12.5 production rates and diffusion rates can be calculated. The results of calculating the production rates can be compared with the experiment in which the potential ethylene production was determined and literature values. Diffusion is considered the major mechanism by which gases move in soils and is described by Fick's equation:

$$q = -D_g \frac{dc}{dz} \quad (1)$$

where

q = flux of gas [kg m⁻² s⁻¹]

D_g = diffusion coefficient gas in soil [m²/s]

c = concentration of gas in the total gas phase [kg/m³]

z = depth [m]

Fick's equation can be applied because concentration and depth are known, and the diffusion coefficient for C₂H₄ in soil can be calculated (De Jong and Schappert, 1972).

The diffusion coefficient in soil D_g is related to the diffusion coefficient in air D_0 with the following equation:

$$D_g = \tau \phi_g D_0 \quad (2)$$

where

D_g = diffusion coefficient in soil [m^2/s]

τ = tortuosity factor [m/m] or unitless

ϕ_g = fraction air filled pores, calculated as (m^3 gas volume/ m^3 soil volume) and assuming isotropic soil is used as surface reduction factor through which gas diffuses

D_0 = diffusion coefficient in free air [m^2/s]

(Koorevaar *et al.*, 1983)

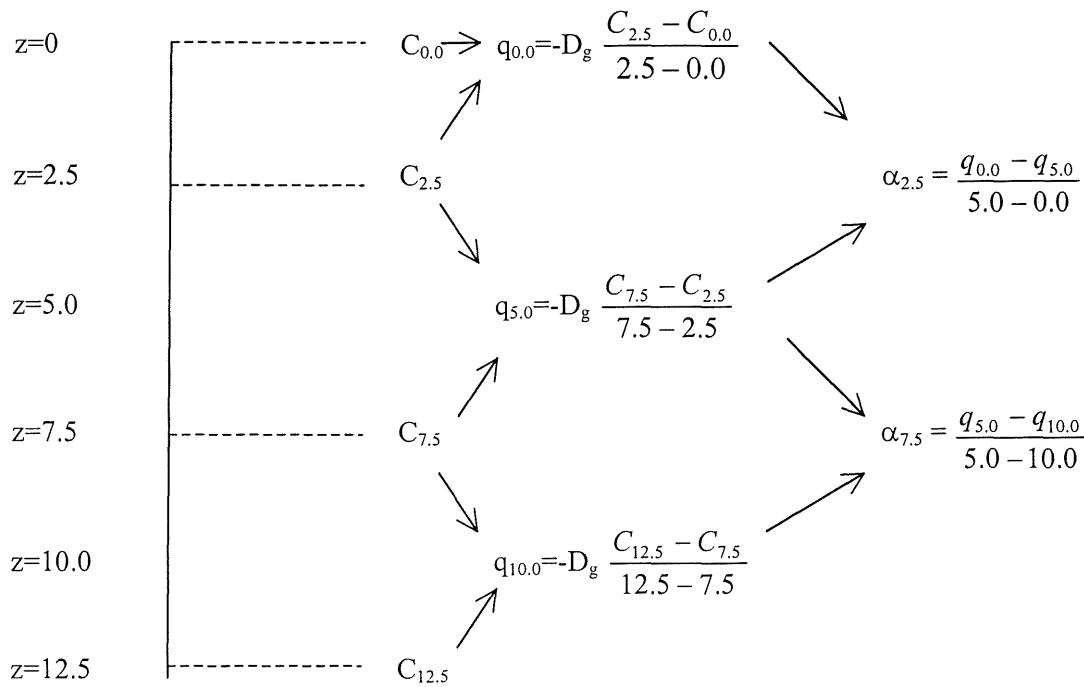
Equation (3) is valid for a quasi steady-state condition. In this experiment this state was reached after about one day.

The tortuosity τ depends on ϕ_g as is presented in Table 8. The used tortuosity was calculated by linear interpolation of the values of Table 8. The values per layer per column for ϕ_g , θ , and D_g are in Appendix VI.

Table 8 Tortuosity at various air-filled porosities according to Leistra *et al.*, cf Leffelaar (1987)

ϕ_g	0.0	0.035	0.07	0.10	0.15	0.20	0.30
τ	0.0	$2 \cdot 10^{-4}$	0.01	0.03	0.06	0.10	0.20

In a steady state process the production of C_2H_4 , $\alpha_{\text{C}_2\text{H}_4}$, can be calculated with the equation:


$$\alpha = \frac{dq}{dz} \quad \frac{\text{kg}}{\text{m}^2 \text{s}} \quad \frac{1}{\text{m}} \quad (3)$$

where

α = the consumption or respiration of a gas [$\text{kg s}^{-1} \text{m}^{-3}$]

(De Jong and Schappert, 1972)

Figure 3 shows how from the measured concentrations at depth $z=2.5$, 7.5 and 12.5 cm and the negligible C_2H_4 concentration in the headspace the flux density q and the production rate α at various depths was calculated.

the value for $q_{0.0}$ was based on the ethylene concentration at $z=2.5$ cm depth and the assumed negligible concentration in the headspace

Figure 3 *Calculation scheme for flux density at $z=0.0, 5.0$ and 10.0 cm depth and production rate at $z=2.5$ and 7.5 cm depth*

The production or respiration is positive when the gas is evolved and negative when the gas is consumed. For the D_g values at depth $z=0$ the D_g for the top 5-cm was taken. For $z=5.0$ the mean D_g of the layers $z=0$ to $z=5.0$ and $z=5.0$ to $z=10.0$ cm was taken. Similarly for $z=10.0$ the mean D_g of the layers $z=5.0$ to $z=10.0$ and $z=10.0$ to $z=12.5$ cm was taken. A calculation example is shown in Appendix 7.

calculation of diffusion coefficient for C_2H_4 in a N_2 dominant atmosphere

No experimental values could be found for the diffusion coefficient of C_2H_4 in air. The following expression is used to calculate the diffusion coefficient for gas in air:

$$D_{ij} = \frac{3}{8} \sqrt{\frac{(k^3 N)}{\pi}} \frac{\sqrt{T^3 (M_i + M_j) / (2 M_i M_j)}}{p \sigma_{ij}^2 \Omega_{ij}} \quad (4)$$

Two parameters or force constants - σ_{ij} and ε_{ii} - are characteristics of the colliding molecules with dimension length. This length is the value of the intermolecular separation distance where the potential energy is zero and may be considered as the effective molecular size. ε_{ii} is the maximum energy of attraction occurring between molecules.

$$\sigma_{ij} = (\sigma_{ii} + \sigma_{jj}) / 2$$

$$\varepsilon_{ij}/k = [(\varepsilon_{ii}/k) (\varepsilon_{jj}/k)]^{1/2}$$

Ω_{ij} comes from (Hirschfelder *et al.*, 1964)

The symbols represent:

D_{ij} : binary diffusion coefficient [m^2/s]

k : Boltzmann constant; $k=R/N=1.3805 \cdot 10^{-23}$ [J/K]

N : Avogadro's number, $N=6.0225 \cdot 10^{23}$

T : absolute temperature [K]

M_i : molecular weight of component i [kg/mol]

p : pressure [Pa]

ε_{ii} : Lennard-Jones potential parameter; maximum energy of attraction between like molecules of component i [J]

σ_{ii} : Lennard-Jones potential parameter; collision diameter for like molecules of component i [m]

Ω_{ij} : dimensionless collision integral based on the Lennard-Jones intermolecular potential field

The supposed gas next to C_2H_4 in the soil was N_2 accounting for 80% of the atmospheric pressure.

$$M_{\text{C}_2\text{H}_4} = 28 \cdot 10^{-3} \text{ kg/mol} \quad M_{\text{N}_2} = 28 \cdot 10^{-3} \text{ kg/mol}$$

$$\varepsilon_{\text{C}_2\text{H}_4}/k = 205 \text{ K} \quad \varepsilon_{\text{N}_2}/k = 91.5 \text{ K}$$

$$\sigma_{\text{C}_2\text{H}_4} = 4.232 \cdot 10^{-10} \text{ m} \quad \sigma_{\text{N}_2} = 3.681 \cdot 10^{-10} \text{ m}$$

$$\Omega_{\text{C}_2\text{H}_4/\text{N}_2} = 1.0449$$

(Leffelaar, 1987 and Hirschfelder *et al.*, 1964)

For $p = 101325 \text{ Pa}$; $T = 298 \text{ K}$ the diffusion coefficient for C_2H_4 $D_{\text{C}_2\text{H}_4}$ in N_2 dominant air equals $1.56 \cdot 10^{-5} \text{ m}^2/\text{s}$.

The value for the term $\frac{3}{8} \sqrt{(k^3 N) / \pi}$ in equation (4) equals $8.42 \cdot 10^{-24} \text{ J}^3 \text{ K}^{-3} \text{ mol}^{-1}$.

2.2.4 Results

The treatment effect for ethylene concentrations at all depths was not significant during the measuring period. The maximum C_2H_4 concentrations at $z=2.5$ and 7.5 cm depth occurred at 25 hours of incubation and were 7.1 and 21.9 ppm respectively. At $z=12.5$ cm depth the maximum measured concentration was found later and was equal to 47.3 ppm. Between 104 and 194 hours of incubation the C_2H_4 concentration at $z=2.5$ and 7.5 cm dropped below 1 ppm, while after more than two weeks at $z=12.5$ the C_2H_4 concentration was still higher than 1 ppm (361 hours after stopping drainage). There was no significant effect of the applied cotton milling waste and the simulated crust on the C_2H_4 concentration. Table 9 shows ethylene concentrations of the 4 different treatments at $z=2.5$, 7.5 and 12.5 cm calculated as averages of the replicates. In Table 10 the average ethylene concentrations per depth of the four treatments are presented together with significant differences that are expressed by different letters. All measured ethylene concentrations are in Appendix VIII and results of statistical analyses are in Appendix IX.

Table 9 Ethylene concentrations in the soil at $z=2.5$, 7.5 and 12.5 cm depth per treatment during the incubation time

treatment		time after stopping drainage [hours]					
organic matter (only in top 5 cm)	crust	5	25	54	104	194	361
C_2H_4 concentration [ppm] at $z=2.5$ cm							
-	-	1.0	2.1	3.0	0.8	0.6	0.3
+	-	3.5	4.0	3.4	2.4	0.6	0.0
-	+	1.2	2.7	3.8	2.4	0.3	0.0
+	+	5.9	5.4	3.6	2.0	0.3	0.5
C_2H_4 concentration [ppm] at $z=7.5$ cm							
-	-	12.1	27.7	13.8	6.7	0.7	0.0
+	-	6.6	25.0	3.7	1.5	0.0	0.0
-	+	5.2	21.8	9.4	2.2	0.0	0.0
+	+	2.7	13.0	5.8	1.8	0.0	0.0
C_2H_4 concentration [ppm] at $z=12.5$ cm							
-	-	10.3	36.8	40.8	35.4	11.4	0.9
+	-	8.5	27.9	48.5	34.0	5.2	4.8
-	+	7.3	30.5	48.6	30.7	5.6	0.5
+	+	7.8	34.0	51.2	37.8	2.7	0.4

Table 10 Overall ethylene concentrations in the soil at $z=2.5$, 7.5 , and 12.5 cm depth during the incubation time

depth [cm]	C_2H_4 concentration [ppm]					
	time after stopping drainage [hours]					
	5	25	54	104	194	361
2.5	2.9 a*	3.2 a	3.5 a	4.3 a	0.5 a	0.2 ab
7.5	6.7 b	21.9 b	8.2 ab	3.1 a	0.2 a	0.0 a
12.5	8.5 b	32.3 c	47.3 c	34.5 b	6.2 b	1.7 b

*Letters express significant differences. C_2H_4 concentrations in the same column with only different letters are significant different by application of General Lineair Models Procedure

In Figure 4 the C_2H_4 concentrations at 194 hours of incubation are plotted against the $\%O_2$. The figure shows that higher C_2H_4 concentrations only occur at low $\%O_2$.

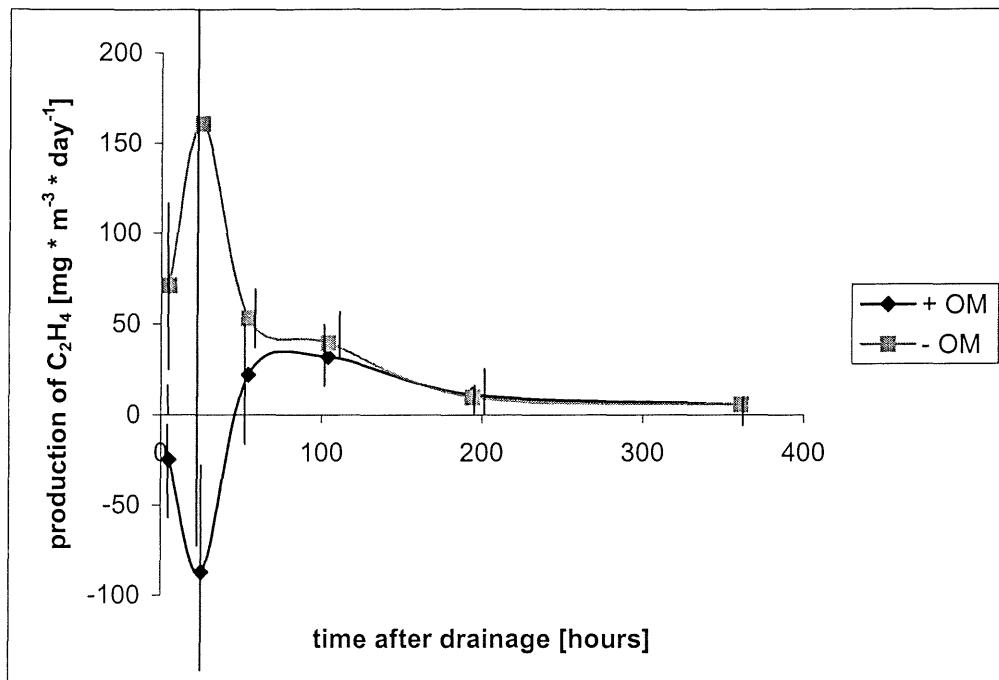


Figure 5 *Production of ethylene as calculated with equation (3) at $z=2.5$ for application of cotton milling waste at 5 ton/ha (+OM) and zero treatment (-OM), standard deviation is presented as bars*

Crust formation did not result in significant lower flux densities at $z=0$ compared with no crust formation. The flux densities were calculated by using equation (1). Figure 6 shows the results of comparing the C_2H_4 flux density at the top of the column where $z=0$. Maximum release of soil ethylene occurred at about 48 hours after stopping drainage, so about 3.5 days after wetting of the soil.

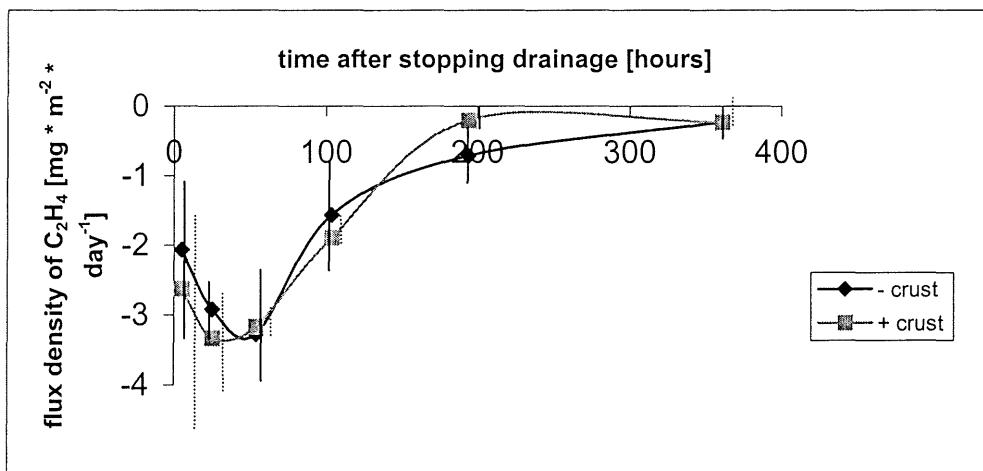


Figure 6 *Flux density of C_2H_4 at $z=0$ for crust and no crust simulation together with standard deviation bars dashed for +crust, continuous for - crust*

2.2.5 Discussion

Ethylene concentrations in the columns were dependent on depth rather than on organic matter application or crust formation. Regarding the time of maximum C_2H_4 production this experiment can be compared with the experiment using the 120-ml serum bottles. Figure 2 shows a maximum production at the very beginning of incubation. The production rate after 5 hours was about 12 nmol $kg\ dry\ soil^{-1}\ hour^{-1}$. Conversion to the unit used in Table 13 the production was equal to $14.5\ mg\ m^{-3}\ day^{-1}$. After about 100 hours the production of the experiment in which the potential production was determined, was equal to $0.67\ mg\ m^{-3}\ day^{-1}$, while production after 450 hours occurred at a rate of about $0.15\ mg\ m^{-3}\ day^{-1}$. Sampling the soil columns 5 hours after wetting was practically impossible. The first sampling time was 5 hours after stopping drainage of the soil columns so 40 hours after wetting of the soil. According to Table 13 the average production rate of $z=2.5$ and 7.5 at 40 hours after wetting the soil was $22\ mg\ m^{-3}\ day^{-1}$. The maximum calculated production rate for the column experiment at $z=2.5\ cm$ occurred 89 hours after wetting the soil, while at $z=7.5\ cm$ the maximum production rate occurred 60 hours after wetting the soil. In the soil column at $z=2.5\ cm$ the production rate 40 hours after wetting the soil was $22/1.7=13$ times higher than the experiment in which the potential C_2H_4 production was determined. The difference in production rates between $z=2.5$ and the 120-ml serum bottles increased in time. From this it may be concluded that the experiment in which the 120-ml bottles were used not resulted in potential ethylene production levels. Microbiological research is necessary to determine the producers of ethylene under a set of soil conditions. Strict anaerobic micro-organisms that do not produce ethylene might have had the upper hand in the serum bottles thus limiting ethylene production. The calculated production rates of the soil columns in Table 13, however, show a high variance, so conclusions may be premature.

The differences in C_2H_4 concentrations between $z=2.5, 7.5$ and 12.5 , see Table 10, are likely caused by the process of diffusion, and decomposition of O_2 . Glinski and Stepniewski (1985) reported that degradation of ethylene took place 50 times faster under oxic than under anoxic conditions. It is therefore interesting to know the rate of chemical oxidation of ethylene by O_2 in order to characterise the decomposition of C_2H_4 . A crust may not only hamper C_2H_4 diffusion out of the soil but also O_2 diffusion into the soil. The latter process is promoting anaerobic conditions that may lead to a slower breakdown of C_2H_4 in the soil.

The calculated diffusion coefficients D_g with equation (4) are based on a low air filled porosity caused by an imposed $^b\rho_d$ of $1.80\ g/cm^3$. An undisturbed moist soil sample had a bulk density of $1.90\ g/cm^3$. If the moisture content is 0.10, the $^b\rho_d$ would equal $1.80\ g/cm^3$, so the imposed $^b\rho_d$ is not an unrealistic value. The porosity ϕ_p decreased from 0.373 in the top 5 cm to 0.302 between $z=10.0$ and $z=17.5\ cm$. Similarly the measured air filled porosity decreased from 0.181 to 0.095. The flux density of C_2H_4 in water was not taken into account, though in a period of rain showers the top layer may become saturated again and causes a diffusion barrier. The simulated crust formation should be compared with crust formation under field conditions at the onset of the rainy season. Also gas sampling under field conditions is necessary to obtain more realistic values for ethylene concentrations and consequently diffusion parameters can be calculated more precisely.

2.3 EFFECT OF ETHYLENE ON GERMINATION OF *STRIGA* SEEDS

2.3.1 Introduction

To connect concentrations of ethylene found in re-wetted soils with its role as a germination stimulant of *Striga*, an experiment was designed to determine the germination response of *Striga* to various C₂H₄ concentrations. A similar experiment was executed by Egley and Dale in 1970. They tested the germination of *Striga lutea L.* after 14 to 21 days conditioning period at 29°C 1 and 4 days after the start of exposure to ethylene. The germination results are summarised in Table 14. A concentration of 0.01 ppm caused already a germination of 15%, while 0.1 ppm was enough to reach maximum germination of the *Striga* seeds. The concentrations used in this experiment were based on the research of Egley and Dale (1970) and on actual C₂H₄ concentrations found in re-wetted soils.

Germination of *Striga* seeds takes place only after a germination stimulant has been recognised by the *Striga* seed, normally exuded by the host plant (Logan and Stewart, 1991).

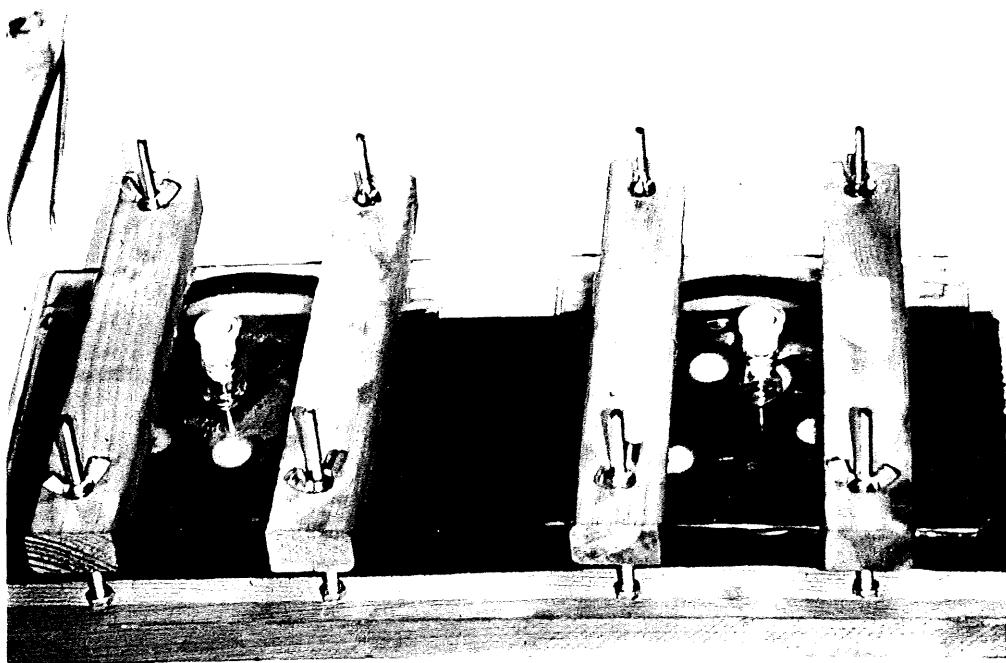
Table 14 *Germination of Striga lutea L. at different ethylene concentrations after conditioning for 14-21 days, found by Egley and Dale (1970)*

Ethylene concentration [ppm]	0	0.001	0.01	0.1	1	10	100
% germination	8	5	15	97	95	93	96

2.3.2 Materials and methods

To determine the effect of various C₂H₄ concentrations on the germination chance and rate of *Striga hermonthica* seeds, these seeds were exposed to various concentrations of C₂H₄. The seeds used were collected in 1996 in Samayana, Mali. The seeds were first sterilised during 5 minutes using a bleach water solution containing sodiumhyperchlorite (NaClO) (Weast, 1974). The active chlorite was 4 g per litre. After sterilising, the seeds were cleaned with demi-water. Then the seeds were conditioned for 14 days on moist filter paper. The conditioning temperature was kept at 30°C. After this period the seeds were exposed to different treatments, according to Table 15. From previous germination tests and from literature it was concluded that germination without a stimulant does not occur and no zero treatment was included therefore. Ethylene at concentrations of 0.01, 0.1, 1, 10 and 100 ppm was added by injection through a septum. These concentrations were based on the research carried out by Egley and Dale (1970) and the measured C₂H₄ concentrations in the soil columns, see Tables 9 and 10. GR-24 was introduced to obtain the maximum potential germination of the seeds used in this experiment. All treatments had three replications.

A preliminary test with the same seeds resulted in 79.5% germination 2 days after GR-24 was added. More details about GR-24 are found in Appendix XI. GR-24 was added as a solution in water and acetone to glass fibre punches.


Table 15 *Outline of the treatments used in the germination experiment*

treatment #	1	2	3	4	5	6	7
concentration of ethylene [ppm]	0.01	0.1	1	10	100	GR-24	0*

* previously determined

After conditioning the seeds were shortly dried to make it possible to manipulate them. Seeds were placed on moist (H_2O) glass fibre punches that were put in airtight petri dishes. These petri dishes were made airtight by using grease and a rubber ring, see Picture 6. Ethylene concentrations were established by replacing a volume of air of the petri dish by a known concentration of ethylene, see Appendix XI for more details. The dishes were stored at 30°C in the dark. At the time of scoring the germination, the dishes were opened. After closing the dishes again the concentration of ethylene was re-established. Germination was scored at 0, 1, 2, 3 and 4 days after exposure to the germination stimulant, using a binocular. A seed was scored as germinated if the germination tube had protruded through the seed coat (Okonkwo, 1987).

Statistical analysis consisted of comparing the germination fractions of the treatments. The germination fractions were distributed binomial using analyses of deviance. Each treatment was tested with all other treatments for significant differences at $\alpha=0.05$.

Picture 6 *Set-up of the petri dishes in which the moist punches containing the *Striga* seeds are located*

2.3.3 Results

Ethylene induced germination at all established concentrations. Concentrations of $C_2H_4 \leq 0.1$ ppm did not result in maximum germination. Maximal germination at C_2H_4 concentrations ≥ 1 ppm was reached between 25 and 49 hours of exposure. Ethylene concentrations of 1, 10 and 100 ppm resulted in a higher germination of *Striga* seeds than GR-24. This gives rise to the conclusion that ethylene is a better germination stimulant than GR-24 for *Striga* germination. Between 25 and 49 hours of exposure the % germination among the seeds exposed to C_2H_4 concentrations ≥ 1 ppm was significant higher than the seeds exposed to lower C_2H_4 concentrations. Results are presented in Table 16 and Figure 7. Significant differences in germination % in Table 16 at the same exposure time are expressed by only different letters. If two treatments at a certain exposure time have only different letters it means they are significant different. All germination fractions are presented in Appendix XI. Statistical analysis can be found in Appendix XII.

Table 16 Percentage of germinated *Striga hermonthica* seeds exposed to GR-24 and various ethylene concentrations during 96 hours

germination stimulant	exposure time [hours]			
	25	49	71	96
C_2H_4 0.01 ppm	14 a	29 a	28 a	26 a
C_2H_4 0.1 ppm	12 a	35 a	37 a	37 a
C_2H_4 1 ppm	35 ab	71 c	72 b	72 b
C_2H_4 10 ppm	22 ab	73 c	73 b	72 b
C_2H_4 100 ppm	38 b	76 c	76 b	75 b
GR-24	30 ab	63 b	67 b	66 b

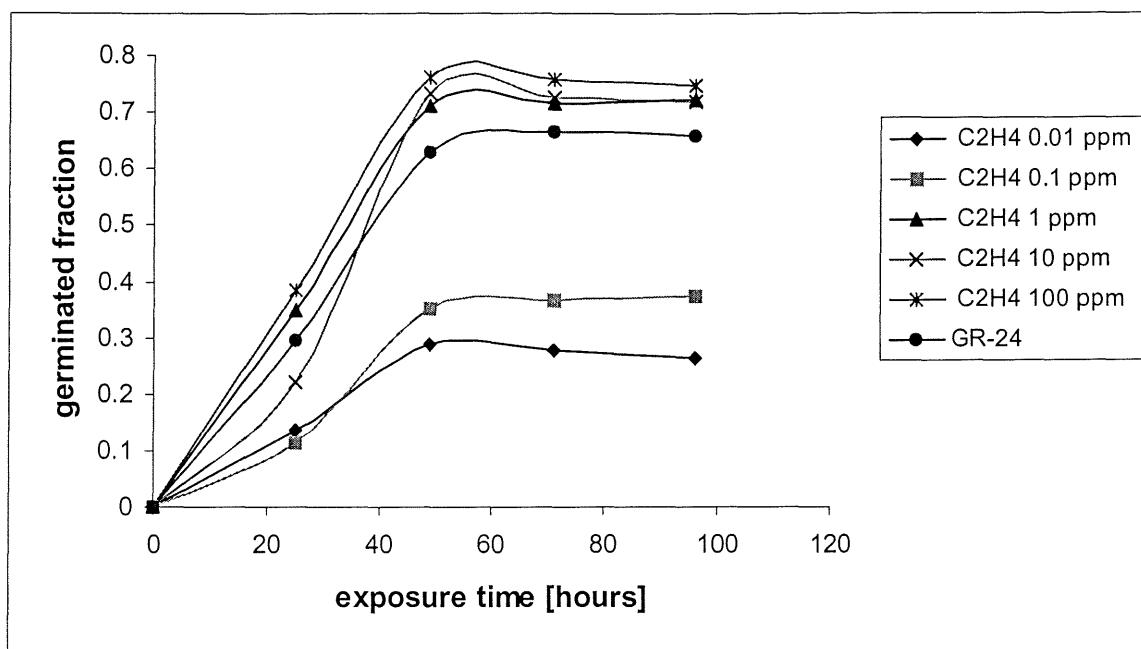


Figure 7 Germinated fractions of *Striga* seeds of the various C_2H_4 concentrations as a function of exposure time

2.3.4 Discussion

The experiment revealed that the *Striga* seeds germinated within two days when ethylene concentration was ≥ 1 ppm and when the seeds were preconditioned for 14 days. Field practices in sorghum cropping involve landpreparation almost immediately after the first rains. *Striga* seeds have to connect with a host plant within a few days after germination, if not they will die off (Van Ast, 1998). Figure 8 shows the % germination of *Striga* seeds versus the incubation time.

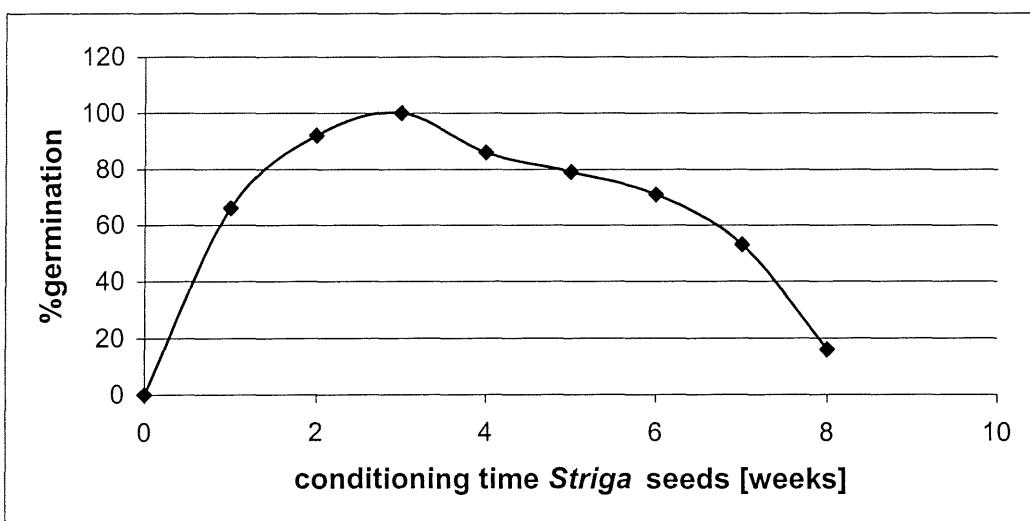


Figure 8 Percentage germination of *Striga* seeds versus the incubation time at 30 °C (Jansen, 1996)

After two weeks conditioning at 30°C 90% of the seeds are in the state are able to germinate. More research is necessary to test the effect of ethylene at shorter conditioning times.

3 DISCUSSION AND CONCLUSIONS

To make predictions and recommendations whether natural produced ethylene can be managed to cause suicidal germination of *Striga* seeds, an integration of the experiments should be made. This integration is focussing on occurring ethylene levels and chance that ethylene concentration can cause suicidal germination of *Striga* seeds. From the onset of the rainy season, if the soil becomes wet and the temperature is $\geq 25^\circ$, *Striga* seeds are in the phase of conditioning. The conditioning period takes at least 10-14 days before an optimal response to germination stimulants occurs. In connection with the latter hypothesis, Ogborn (1987) proved both in the field and in vitro, that the germination of *Striga* is depressed when the seeds are conditioned in the presence of a germination stimulant.

The experiments with soil, incubated in 120-ml serum bottles and put in columns, show that production of ethylene is maximal at the beginning of the moistening and decreases in time. The impeding effect of conditioning of *Striga* seeds exposed to natural produced ethylene may occur but it is uncertain at what levels of ethylene this hampering effect may arise. In Figures 9 and 10 the decreasing ethylene concentrations in time obtained from the column experiment are plotted versus time. Because the major fraction of *Striga* seeds occur in the top 5 cm of the soil, the C_2H_4 concentration at $z=2.5$ needs special attention. The 1 ppm level that already causes maximal germination, see chapter 2.3.3, is crossed at $z=2.5$ at about 8 days after wetting the soil. The vertical lines in Figures 9 and 10 mark this time. A *Striga* seed becomes responsive to C_2H_4 after at least several days of conditioning, see Figure 8. In Figure 10 this period is expressed by arrow A. Maximal response to C_2H_4 occurred in between 2 days after exposure, see Figure 7, and is showed by arrow B. After germination the *Striga* remains threatening for the crop to four days after germination (Van Ast, 1998), expressed by arrow C.

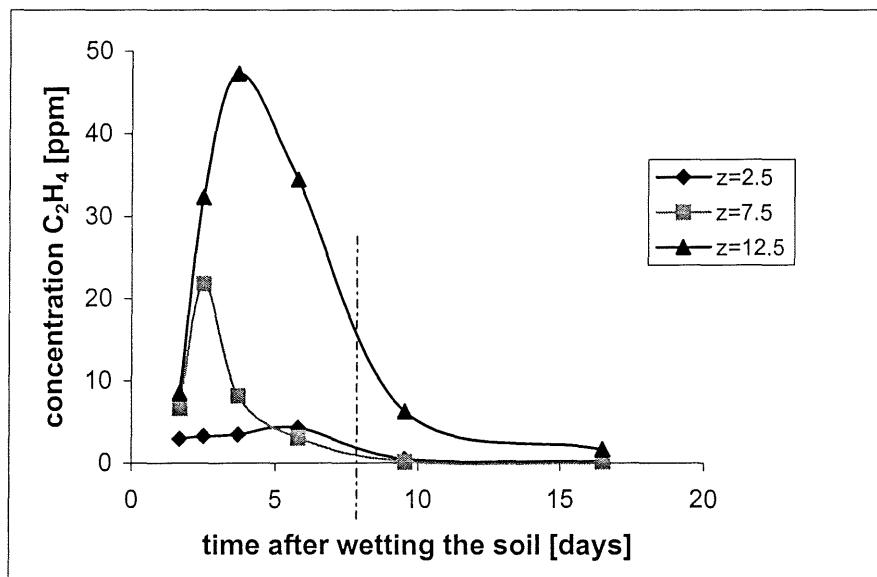


Figure 9 Ethylene concentrations per depth after wetting the soil

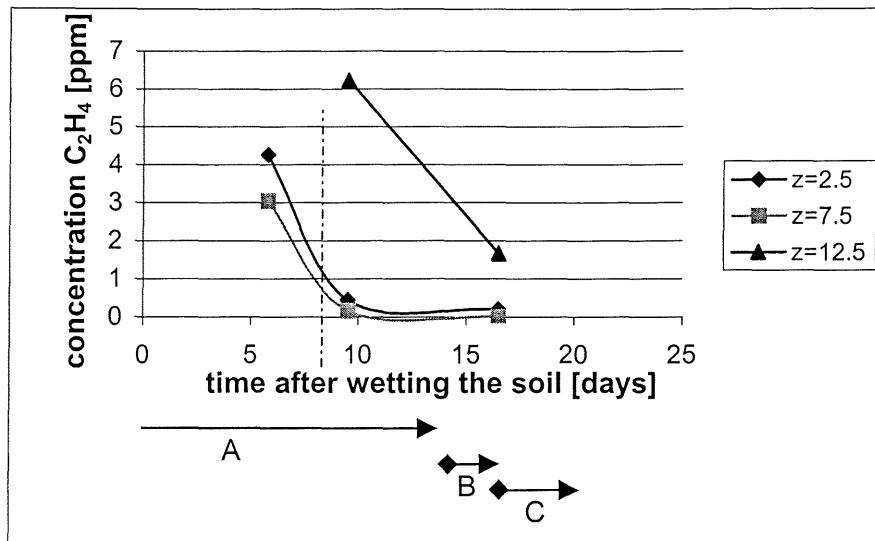


Figure 10 Ethylene concentrations in the supposed conditioning phase A, responsive phase B, and threatening phase C

According to Figure 9 before 10 days the C_2H_4 concentration is lower than the concentration that is necessary to cause maximal suicidal germination of the *Striga* seeds, see Table 16.

Comparing the C_2H_4 concentrations found in the column experiment and those required at the time of maximal conditioning, the ethylene concentrations are too low to cause the eradication of all *Striga* seeds. However, this laboratory experiment only gives an indication of C_2H_4 concentrations in the soil under certain conditions. Conditions in the field may differ because of different precipitation patterns, crust formation, different temperatures, soil management, and fertilisation. Field conditions may be initially drier so ethylene production may start later on than found in the column experiment.

The other option of managing ethylene to cause suicidal germination is injecting it into the soil. This technique, however, is too expensive for most small-scale farmers but it can probably be used for cleaning up small infestations (Van Ast, 1998). Ogborn (1987) stated that it is impossible to develop a simple recommendation, which would enable farmers to apply the germination stimulant after the correct amount of rain has been recorded to condition the *Striga* seed. In the future, it may be possible to develop a water-soluble capsule for this purpose. He also stated that at present, there is no method of application, which can be used. The application of ethylene can be made with fair accuracy after the seed has been conditioned and the consequences of an error are not so serious because the ethylene is not persistent (Ogborn, 1987). Considering the fertility status of many African soils the use of ethylene to eradicate *Striga hermonthica* is by no means economic if no fertiliser or manure is applied, especially in soils with a very low fertility. In such soils productivity is more limited by fertility than by *Striga* (Kuiper, 1997).

Finally, the experiments carried out were meant to get an impression of factors affecting the ethylene production and the production and diffusion rates of ethylene in soils. These pilot experiments should be quantitatively tested under field conditions.

Recommendations for field trials are:

- keeping fallow of cultivated land for one season and compare with land cultivated during the same period;
- testing the effect of landpreparation, tillage, ploughing, and rolling the soil to amplify crust formation;
- organic matter amendments for the long-term effect.

All trials involve testing the effect of the treatment on *Striga* seed population.

REFERENCES

Arshad M.A. and W.T. Frankenberger Jr. 1990. Ethylene accumulation in soil in response to organic amendments. *Soil Sci. Soc. Am. J.* 54:1026-1031

Ast, A. van 1998. Parasitic weeds in tropical and sub-tropical areas. In: Weed Science, syllabus Department of Theoretical Production Ecology

Babiker, H.M. and I.L. Pepper 1984. Microbial production of ethylene in desert soils. *Soil Biol. Biochem.* Vol. 16, No. 6, pp 559-564

Bebawi, F.F. and R.E. Eplee 1986. Efficacy of Ethylene as a Germination Stimulant of *Striga hermonthica* Seed. In: Weed Science, Vol. 34:694-698

Cleemput, O. van, A.S. El-Sabaay and L. Baert 1983. Evolution of gaseous hydrocarbons from soil: effect of moisture content and nitrate level. *Soil Biol. Biochem.* Vol. 15, No 5 pp 519-524

Cook R.J. and A.M. Smith 1977. Influence of water potential on production of ethylene in soil. *Canadian Journal of Microbioloy* 23, pp 811-817

Curl, E.A. and B. Truelove 1986. Rhizosphere in Relation to Plant Nutrition and Growth. In: The Rhizosphere. Springer-Verlag Berlin Heidelberg New York Tokyo

Egley G.H. and J.E. Dale 1970. Ethylene, 2-Chloroethylphosphonic Acid, and Witchweed Germination. *Weed Science* 18, pp 586-589

Egley, G.H., R.E. Eplee and R.S. Norris 1990. Discovery and testing of ethylene as a Witchweed seed germination stimulant. In: P.F. Sand, R.E. Eplee and R.G. Westbrooks, eds. Parasitic Plants. London: Chapman&Hall, pp. 125-140

Eplee, R.E. 1975 Ethylene, a witchweed seed germination stimulant. *Weed Science*, 23, 433-6

Eplee, R.E. and R.S. Norris 1995. Control of parasitic weeds. In: Parasitic Plants. Edited by M.C. Press and J.D. Graves. Chapman&Hall, UK 1995

Glinski, J. and W. Stepniewski 1985. Soil Aeration and Its Role for Plants. Institute of Agrophysics, Polish Academy of Sciences, Lublin Poland.

Goodlass G. and K.A. Smith 1978. Effects of organic amendments on evolution of ethylene and other hydrocarbons from soil. *Soil Biol. Biochem.* 10, p. 201-205

Hirschfelder, J.O.C., F. Curtiss, and R.B. Bird 1964. Molecular theory of gases and liquids. Wiley, New York.

Hoogmoed, W.B. 1999. Tillage for soil and water conservation in the semi-arid tropics. Doctoral Thesis. Wageningen University, the Netherlands.

Houba, V.J.G., E.J.M. Temminghoff, G.A. Gaikhorst and W. van Vark 1999. Soil analysis Procedures, Extraction with 0.01 M CaCl₂. In: syllabus Soil and Plant Analysis, pp. 6-17 and 45-53

Houba, V.J.G., J.J. van der Lee, I. Novozamsky 1997. Soil and Plant analysis, part 5B, pp 44, 121-128

Hunt, P.G., R.B. Campbell and R.A. Moreau 1980. Factors affecting ethylene accumulation in a Norfolk sandy loam soil. *Soil Science*, Vol. 129 pp. 22-27.

Hunt, P.G., T.A. Matheny, R.B. Campbell, and J.E. Parsons 1982. Ethylene accumulation in southeastern coastal plain soils; soil characteristics and oxidative-reductive involvement. *Soil Sci. Plant Anal.* 13(4), pp 267-278

Jong E. de, H.J.V. Schappert 1972. Calculation of soil respiration and activity from CO₂ profiles in the soil. *Soil Science*, Vol. 113, No 5, pp. 328-333

Kuiper, E. 1997. Comparative studies on the parasitism of *Striga aspera* and *Striga hermonthica* on tropical grasses. Thesis Vrije Universiteit Amsterdam.

Koorevaar, P., G. Menelik and C. Dirksen 1983. Gas transport in the soil. In: Elements of soil physics. pp.183-189 Department of Soil Science and Plant Nutrition, Agricultural University of Wageningen, Netherlands

Leffelaar, P.A. 1987. Dynamic simulation of multinary diffusion problems related to soil. *Soil Science*, Vol. 143, No 2, pp.79-91

Lynch J.M. and S.H.T. Harper 1980. Role of substrates and anoxia in the accumulation of soil ethylene. *Soil Biol. Biochem.* Vol. 12 pp. 363-367

Musselman L.J. 1987. Taxonomy of witchweeds. In: L.J. Musselman: Parasitic Weeds in Agriculture, CRC Press, Inc. Boca Raton, Florida.

Musselman, L.J. and M.C. Press 1995. Introduction to parasitic plants. In: Parasitic Plants. Edited by M.C. Press and J.D. Graves, Chapman&Hall, London, UK

Ogborn, J.E.A. 1987. *Striga* control under peasant farming conditions. In: L.J. Musselman: Parasitic Weeds in Agriculture, CRC Press, Inc. Boca Raton, Florida.

Okonkwo, S.N.C. 1987. Research techniques-Laboratory. In: L.J. Musselman: Parasitic Weeds in Agriculture, CRC Press, Inc. Boca Raton, Florida.

Sand, P.F. 1987. The American witchweed quarantine and eradication program. In: L.J. Musselman: Parasitic Weeds in Agriculture, CRC Press, Inc. Boca Raton, Florida.

Seidell, A. 1941. A compilation of quantitative solubility data from the periodical literature. In: Solubilities of organic compounds p. 94+126. National Institute of Health, Washington DC – New York

Smith A.M. 1976. Ethylene production by bacteria in reduced microsites in soil and some implications to agriculture. *Soil Biology & Biochemistry* 8, 295-298

Smith K.A. and R.J. Dowdell 1974. Field studies of the soil atmosphere. Relations between ethylene, oxygen, soil moisture content, and temperature. *Journal of Soil Science*, Vol. 25, No.2, 1974.

Tang, T. and D.M. Miller 1993. Ethylene production in anaerobically incubated soils amended with poultry litter. *Soil Science*, Vol. 156, No. 3

Weast, R.C. 1974. Density of water. In: Handbook of Chemistry and Physics p. F-11, CRC Press, Cleveland, Ohio.

Weast, R.C. 1974. Nomenclature of inorganic compounds. In: Handbook of Chemistry and Physics, p. B46, CRC Press, Cleveland, Ohio.

Witt, W.W. and J.B. Weber 1975. Ethylene adsorption and movement in soils and soil constituents. *Weed Sci.* 23:302-307

Worsham A.D. 1987. Germination of witchweed seeds. In: L.J. Musselman: Parasitic Weeds in Agriculture, CRC Press, Inc. Boca Raton, Florida.

Appendix I

Design preliminary test for experiment mentioned in chapter 2.1

bottle nr.	organic matter	
	source	application rate [ton/ha]
1-2	-	-
3-4-7-8	CMW	1
5-6-9-10	CSC	1
11-12-15-16	CMW	5
13-14-17-18	CSC	5

Temperature was constant at T=30C

75.00 gram soil was mixed with 25.00 gram water as ice.

Serum bottles were shaken continuously.

raw data preliminary experiment

date	bottle nr.	peak area C ₂ H ₄	date	bottle nr.	peak area C ₂ H ₄
31-May-99	S100*	656575	1-Jun-99	13	8478
	S100	539746			7486
	S1000*	5500154			6675
	S100	612870			6797
	S100	589429		14	4914
	S100	589612			5670
	S100	579741			4980
	S100	577626			5571
	S100	568040		1	5101
	S100	575042			4775
	S100	576808			5448
	S100	557120			5210
	S100	469719		2	5784
	S100	497411			5593
1-Jun-99	S100	503129			5879
	S100	496304			6235
	S100	491711	2-Jun-99	S10	52554
	S10	60236			56656
	S10	58336			55633
	S10	55859		11	14533
	S10	52768			9618
	S10	54137			11589
	S10	55372			10421
	11	6731	12		11214
		6065			18121
		5392			9491
		5751			10946
	12	7405		13	11187
		5913			9247
		5301			9620
		7792			

* S1000, S100 and S10 represent standard samples of 1000 ppm, 100 ppm and 10 ppm ethylene

date	bottle nr.	peak area C ₂ H ₄	date	bottle nr.	peak area C ₂ H ₄
2-Jun-99	14	13433 10069 9631 1	3-Jun-99	10	16266 14209 15806 15
		11074 11623 11396			19814 20267 16
	2	17164 14497 13505			24109 18165 17
	7	10830 10406 10535			24591 24689 18
	8	4585 4534 4192		3	15549 15578 4
	9	10110 9818 11098		5	19953 15148 19362
	10	10823 10736 11126		6	18164 17413 S10
3-Jun-99	S10	74070		S10	73132 74027
	S10	72554		S10	74495
	S10	71614		S10	74866
	S10	70527	4-Jun-99	S10	65840
	11	15346 15243 16240		S10	71093 68329 1
	12	15301 15332 14733		1	15076 14883 2
	13	16241 15160 15479		2	17938 17064 3
	14	18622 14895 14548		3	18078 17024 4
	S10	68927		4	20734 20229
	S10	73511		5	22293
	S10	72514		5	21708
	1	15484 15125 14975		6	19801
	2	20665 17812 17653		6	18956
	7	20715 18298 15637		7	20250
	8	9762 10786 10315		7	20376
	9	13533 13873 13994		8	11724 11162 9
				9	14202 14180
				S10	76098
				S10	67521
				10	19733
				10	17719
				10	19316
				10	19110
				11	18260
				11	17246
				12	17979
				12	19806

date	bottle nr.	peak area C ₂ H ₄	date	bottle nr.	peak area C ₂ H ₄
7-Jun-99	12	17368	11-Jun-99	15	29924
	13	16672		15	29080
	13	19241		16	28980
	13	15960		16	28975
	14	16263		17	32154
	14	14558		17	29032
	15	22210		17	26968
	15	22350		18	27805
	16	21994		18	22576
	16	19236		18	21820
	16	18768		S10	64488
	17	23558		S10	67099
	17	23528		S10	70857
	18	19205		4	20604
	18	18214		18	21600
	S10	75026		11	33646
	S10	72623		S10	41232
	S10	70197		S10	37541
	S10	72023		S10	33882
	S10	68772		S1000	1568371
	1	23296		S10	35677
	1	23429		S1000	4154991
	2	23893		S1000	4169704
	2	28091		S1000	4213642
	3	37852		S1000	3978582
	3	28083		S10	42822
	3	30731		S10	39235
	4	19760		2	20880
	4	21278		2	20984
	S10	78599		3	20015
	S10	71697		3	19066
	4	20339		4	17942
	5	34050		4	17699
	5	34347		5	17330
	6	28618		5	17522
	6	26107		5	16728
	7	33503		6	16239
	7	28751		6	16824
	7	26800		7	21870
	7	30365		7	21763
	8	23791		S1000	4149033
	8	19795		S1000	4071735
	9	25100		S10	34707
	9	21226		S10	37149
	10	25179		11	23273
	10	26054		11	23425
	11	36393		13	19142
	11	34744		13	18348
	12	33913		15	26685
	12	35819		15	26503
	13	30271		16	30444
	13	22061		16	30606
	13	23224		S1000	4079290
	14	20281		S1000	4049419
	14	20413			

date	bottle nr.	peak area C ₂ H ₄	date	bottle nr.	peak area C ₂ H ₄
14-Jun-99	1	21455	18-Jun-99	14	1532
	7	19080		16	3261
	9	20023		S10	3375
	9	19713		1	2259
	10	21984		2	1431
	11	20400		3	2027
	11	21019		4	1756
	12	36998		5	935
	12	35588		6	1091
	13	13042		7	1756
	13	12567		8	1637
	14	14368		9	1801
	14	14909		10	1574
	15	23910		11	1201
15	23620			12	2800
	16	29847		13	1209
	S10	38233		14	959
	S10	34438		15	2116
	S10	35700		16	2976
	17	18740		17	1116
	17	16729		18	1162
	13	12479		S10	3346
	S1000	345465	28-Jun-99	2	2444
	S10	6355		9	1857
	S10	3775		17	897
	13	1311		1	2148
	13	1304		12	3076
	1	20245		8	1299
	1	22724		6	1103
	S10	37417		18	1382
	S10	37348		10	1670
18-Jun-99	S10	2787		13	1601
	S10	2811		3	2366
	1	2404		5	751
	2	1552		11	1079
	3	2084		16	4597
	4	1994		4	2199
	5	1201		15	2377
	6	1366		7	1913
	7	2001		14	1584
	8	1684		S10	3043
	9	1734		S10	3113
	10	2157		S10	2959
	11	1554			
	12	3601			
	13	1593			
	14	1342			
	15	2004			
	16	2758			
	17	1768			
	18	1284			
	S10	3094			
	1	2146			
	11	1592			
	12	2862			

volume headspace and water content in bottles used in preliminary experiment

bottle nr.	volume	bottle nr.	water
	headspace [ml]		content [ml]
3	62.35	6	26.40
4	61.54	18	23.46
7	62.99	1	22.97
10	65.67	9	21.02
11	61.99	15	25.03
12	64.15	2	24.73
16	63.72	13	22.09
17	61.75	14	20.95
		5	27.41
mean	63.02	mean	23.78
standard	1.42	standard	2.28

For calculation of the accumulated production of ethylene in nmol/kg dry soil see chapter 2.1.3. Take in account that T was 30 C. Table 1 presents the final data of the preliminary experiment.

final results preliminary experiment

incubation time [hours]	0	24	48	72	96	168	264	336	432	504	672
treatment	C2H4 accumulation [nmol/kg soil]										
-/- (AN)	0	34.9	83.1	80.8	78.1	120.9	193.6	191.2	227.3	188.9	261.0
CMW 1 (AN)	0			77.2	89.7	127.0	167.7		238.6	190.9	254.7
CSC 1 (AN)	0			89.5	104.0	157.9	161.2		159.9	108.8	110.0
CMW 1	0		47.1	67.7	76.1	126.3	199.0	171.9	219.1	174.0	182.1
CSC1	0		66.7	69.7	80.0	119.6		189.2	232.6	172.8	199.8
CMW 5 (AN)	0	39.8	75.3	73.1	86.8	170.8	209.7	258.3	287.6	206.7	237.7
CSC 5 (AN)	0	38.7	63.9	72.8	75.9	107.9	166.9	119.7	174.5	107.7	174.9
CMW 1	0			98.7	102.4	144.4	262.8	243.7	300.4	263.2	398.1
CSC 5	0			97.7	100.0	127.6			179.1	115.4	127.9

Appendix II

Determination dry bulk density ${}^b\rho_d$ of the disturbed soil.

tare	tare + 100 ml soil	weight 100 ml soil [g]
45.36	216.92	171.56
45.61	216.8	171.19
<hr/>		
	tare + 25 ml soil	
56.32	95.26	155.76
	mean	166.17

$$\text{bulk density } {}^b\rho_d = 166.17 \text{ g/100 ml} = 1.66 \text{ kg/dm}^3$$

$$\text{solid phase in vol \%}, \phi_s = 1.66/2.65 = 0.626$$

$$\text{porosity } \phi_p = 1-0.626 = 0.374$$

Per sample 75.0 g of dry soil is used. To reach saturation : Per 100 ml soil should be added 37.4 ml water. Per 100 g of soil $37.4/1.66 = 22.5$ g water was added. Per 75 g of soil $0.75 \times 22.5 = 16.9$ g water was added.

organic matter amendments

supposed tillage depth is 5 cm, application rates are 1 and 5 ton/ha

application of 1 ton/ha involves 1000 kg OM incorporated in $0.05 \times 100 \times 100 = 500 \text{ m}^3$ soil
 500 m^3 soil equals $500 \times 1.66 = 830$ ton soil.

Per 75 g of soil the application rate is $75/830000 = 0.090$ g

An application rate of 5 ton/ha involves amending 75 g of soil with 0.452 g of OM.

Appendix III

Solubility of C_2H_4 in water

According to Seidell (1941), the solubility of gaseous C_2H_4 in water compared with solubility in air $K_{w,a}$ is described by the following equation $K_{w,a} = 1 \cdot 10^{19} T^{-8.076}$, T in [K], see Figure 1. Table 1 shows the original data and Figure 1 shows the curve fitted through the data points. The solubility of ethylene in water at 25°C has been calculated by the Bunsen Absorption Coefficient β . This coefficient represents the volume of gas (reduced to 0° and 760 mm Hg pressure) absorbed by 1 volume of the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm Hg.

Table 1 $K_{w,a}$ values at different temperatures

Temperature (°C)	$K_{w,a}$
0	0.226
5	0.191
10	0.162
15	0.139
20	0.122
25	0.108
30	0.098
37.5	0.078

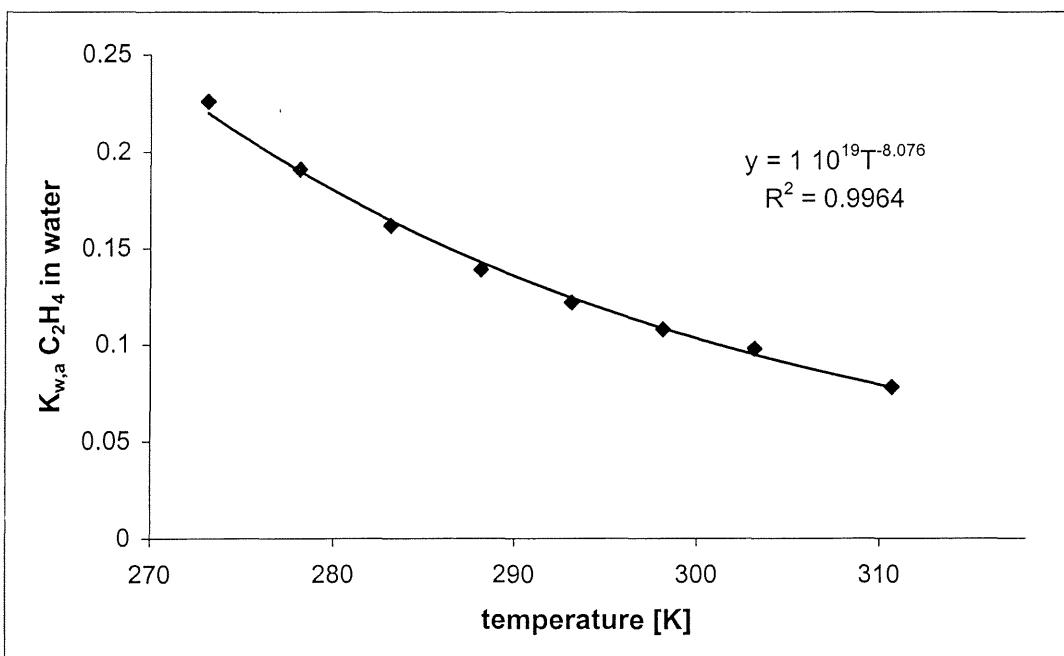


Figure 1 Solubility of ethylene as a function of temperature

Appendix IV

trt #	sample nrs	temperature [C]	organic matter	
			source	application rate [ton/ha]*
1	1-4	35	-	-
2	5-8	35	BS	1
3	9-12	35	CMW	1
4	13-16	35	CSC	1
5	17-20	35	BS	5
6	21-24	35	CMW	5
7	25-28	35	CSC	5
8	29-32	25/45	-	-
9	33-36	25/45	BS	1
10	37-40	25/45	CMW	1
11	41-44	25/45	CSC	1
12	45-48	25/45	BS	5
13	49-52	25/45	CMW	5
14	53-56	25/45	CSC	5
15	57-60	35	-	-
18	69-72	35	CMW	5
19	73-76	35	-	-

note: the treatment order is different from Table 4, chapter 2.1.2.2

serie	sample#	V_{hs}	moisture content, V_w [ml]		
			serie	sample#	V_w [ml]
25/45	55	71.40	25/45	35	16.17
25/45	44	72.82	25/45	49	15.52
25/45	51	72.33	25/45	67	15.2
25/45	52	71.23	25/45	31	18.63
25/45	36	71.34	25/45	66	15.1
25/45	43	71.42	25/45	30	15.96
25/45	64	71.36	25/45	33	15.52
25/45	34	71.99	25/45	37	15.98
25/45	54	71.72	25/45	42	15.99
25/45	48	70.93	25/45	65	15.48
25/45	38	71.74	25/45	46	16.21
35	23	72.31	25/45	40	15.77
35	72	72.30	25/45	47	16.13
35	73	70.25	25/45	53	15.79
35	2	72.23	25/45	62	16.16
35	71	71.33	25/45	63	16.15
35	11	72.54	25/45	39	15.78
35	3	71.71	25/45	61	16.41
35	58	71.11	35	21	15.42
35	14	72.19	35	27	15.56
35	8	72.41	35	5	15.67
35	16	71.60	35	10	16.01
35	9	71.57	35	60	15.99
35	28	70.98	35	20	17.22
35	6	71.16	35	15	15.66
35	75	70.79	35	7	15.77
35	26	72.07	35	74	17.33
35	12	71.23	35	70	16.4
35	22	72.05	35	13	16.05
			35	19	16.48
mean:		71.66	35	76	17.75
standard deviation:		0.60	35	17	15.4
			35	57	15.58
			35	18	15.65
mean:					16.06
standard deviation:					0.73

peak areas for 35 serie

incubation started June 17 at 15:15

sample #	treatment #	incubation time				
		22	145	194	290	461
1	1	919	1794	1619	1739	1357
2	1	881	1716	1592	1979	688
3	1	861	1735	1669	1617	0
4	1	765	1687	1607	1799	1697
5	2	936	1759	1583	1875	1990
6	2	938	1707	1590	1900	1189
7	2	905	1700	1545	1788	1968
8	2	1044	1568	1566	2284	309
9	3	871	1690	1552	2091	1955
10	3	945	1669	1706	2421	1428
11	3	844	1715	1655	1810	1743
12	3	927	1533	1501	1580	1216
13	4	797	1756	1640	3860	967
14	4	951	1784	1650	2094	1321
15	4	853	1671	1568	1412	1485
16	4	869	1664	1641	1871	489
17	5	1314	1736	1672	2436	2490
18	5	1194	1926	1674	2553	1909
19	5	1137	1865	1568	2552	1935
20	5	1213	1713	1554	2568	2537
21	6	849	1613	1603	1750	2087
22	6	753	1826	1879	1984	2623
23	6	965	1951	1838	1870	1131
24	6	977	2004	1832	3000	3231
25	7	885	1411	1355	2376	195
26	7	928	1637	1622	2590	809
27	7	865	1514	1459	11982	1737
28	7	899	1563	1481	2441	1331
57	15	2573	3476	3273	3870	4120
58	15	1726	2646	2587	2789	3259
59	15	1647	2203	2102	2493	2075
60	15	2078	3124	2966	3223	3314
69	18	637	1353	1132	2576	2086
70	18	512	1531	1487	1976	1619
71	18	492	1429	1337	1866	1497
72	18	620	1362	1214	1831	1064
			27	76	172	504
73	19		0	0	218	353
74	19		0	0	0	260
75	19		0	0	0	0
76	19		0	0	0	0

S10 3114 3339 2906.5 3071 2963

S10 represents the peak area of the 10 ppm standard sample

peak areas for 25/45 serie

incubation started June 16 at 12.05

sample #	treatment #	incubation time					
		29	145	194	290	461	625
29	8	965	1459	2216	2148	1927	1950
30	8	569	1984	2151	2303	2495	2179
31	8	671	1009	1742	1784	2111	1806
32	8	1069	2254	2436	2276	2485	1911
33	9	930	1450	2125	1956	1957	1735
34	9	1063	2044	2039	2115	2418	2122
35	9	745	1416	1881	1898	1983	1951
36	9	666	1832	1991	2042	2348	2055
37	10	1095	2169	2407	2317	2548	2338
38	10	917	1973	2135	2036	4035	2109
39	10	992	2014	2138	2030	2355	1601
40	10	930	1933	2124	1961	2052	1890
41	11	1525	1790	1933	1934	2102	1567
42	11	1034	1374	2045	2044	1963	1450
43	11	1071	1690	1903	1912	1926	1395
44	11	968	1307	1868	1704	2083	1768
45	12	1040	1672	1924	1885	2038	1816
46	12	991	1827	1864	1909	2575	1989
47	12	1006	1582	1704	1731	1842	1769
48	12	1305	1457	1853	1845	1942	1895
49	13	1022	2038	2075	2195	2407	2293
50	13	940	1848	2074	2122	2183	1605
51	13	862	1595	2083	2055	2111	871
52	13	1000	2122	2934	2200	2286	1539
53	14	802	1508	1589	1751	2225	1048
54	14	873	1191	1682	1694	1833	1740
55	14	991	1356	1745	1659	2037	927
56	14	833	1113	1710	1631	2037	1795
65	17	614	1398	1578	1633	2181	1725
66	17	645	1157	1638	1709	1916	1579
67	17	684	1150	1782	1900	1953	1526
68	17	643	1424	1623	1613	1742	1692

S10 2992 3150 3377.5 3038 3196 2880

S10 represents the peak area of the 10 ppm standard sample

Results of applying General Linear Models Procedure to calculated accumulated ethylene production [nmol/kg dry soil]

Factor analysis

Factor analysis determined whether the factors temperature (T) regime, type of organic matter or interaction between those, and anaerobic conditions (pO₂) had significant influence on the C₂H₄ production. The outcomes are presented as F-probabilities. Factor analysis was carried out per sampling time, according to Table 5 of chapter 2.1.4.

Factor analysis for temperature type of organic matter, anoxic conditions, and interaction between these two

T regime	BS	CMW	CSC	T * BS	T*CMW	T*CSC	PO ₂
<i>t=22 hours</i>							
-	0.000	0.0031	0.9406	-	-	-	0.000
<i>t=29 hours</i>							
-	0.113	0.130	0.786	-	-	-	0.001
<i>t=145 hours</i>							
0.452	0.376	0.886	0.003	0.486	0.903	0.111	0.000
<i>t=194 hours</i>							
0.012	0.599	0.750	0.002	0.235	0.820	0.112	0.000
<i>t=290 hours</i>							
-	0.298	0.714	0.000	-	-	-	0.000
<i>t=461 hours</i>							
0.715	0.169	0.122	0.436	0.042	0.014	0.453	0.001
<i>t=626 hours</i>							
-	0.230	0.328	0.003	-	-	-	0.656

Appendix V

Protocol column column built-up

Packing the column:

1. PVC pipe with inside $r = 38.4$ mm was sawn in pieces of 5 (2 times), 7.5 and 12.5 cm. The column was built up at the base with the 7.5-cm part followed by the two parts of 5 cm high and completed with the 12.5-cm part. The complete column was filled with soil up to the 12.5-cm part.
2. From the top of the soil column downward, at three depths gas chambers were put inside the column, namely at 2.5, 7.5 and 12.5 cm. The gas chambers were made of a sawn through syringe with an internal volume of about 0.5 ml and connected with a septum. The holes that were drilled in the PVC had a radius of 2.9 mm. The open end was closed by a piece of linen preventing soil movement inside the gas chamber.
3. When soil was put in the different parts it was tamped down to reach a homogeneous $^b\rho_d$ of 1.80 g/cm³. According to the heights of the parts this resulted in the following soil weights:

$$h = 5.0 \text{ cm} \quad \pi r^2 h \ ^b\rho_d = \pi 3.84^2 5 1.80 = 417 \text{ g}$$

$$h = 7.5 \text{ cm} \quad \pi r^2 h \ ^b\rho_d = \pi 3.84^2 7.5 1.80 = 625 \text{ g}$$

The volume of the gas chamber was neglected for this calculation.

The internal volume V_c of the column was equal to: $V_c = \pi r^2 h = \pi 3.84^2 17.5 = 810.7 \text{ cm}^3$; the weight of the soil per column was $V_c \ ^b\rho_d = 1459.2 \text{ g}$.

4. Organic matter was applied as cotton milling waste (CMW). For C/N ratio, see Table 2 of paragraph 2.1.2.1. A field application rate of 5 ton/ha resulted in adding 2.32 g of CMW to this part with a surface area of $\pi r^2 = 46.3 \text{ cm}^2 = 46.3 10^{-4} \text{ m}^2 = 46.3 10^{-8} \text{ ha}$. The application rate of OM was $5000 10^3 \text{ g}$, so $5000 10^3 46.3 10^{-8}$ resulted in application of 2.32 g per column, for a matter of fact only restricted to the upper most part of 5 cm.

Column #	Organic matter	Crust
1-3	-	-
4-6	+	-
7-9	-	+
10-12	+	+

5. The 12 columns were moistened from below in a container that was tilted to an angle of 11° in which the water level could be altered. Six columns with no crust formation on top were covered by the part with a height of 12.5 cm. The other columns with crust formation were artificially smeared using a small teaspoon at saturation and covered with the 12.5-cm part. After saturation of water, the columns were drained for 35 hours by removing a rubber stopper in the bottom of the container. The container remained tilted so that water in the gas chambers drained into the soil. For security the gas chambers

were injected with air to remove lagged water. A preliminary experiment gave an indication of the rate of drainage, see Figure 1.

6. Sampling took place 5, 25, 54, 104, 194, and 361 hours after stopping the drainage. 0.01 ml of air was injected before a gas sample was withdrawn from the gas chamber to prevent sampling liquid water.

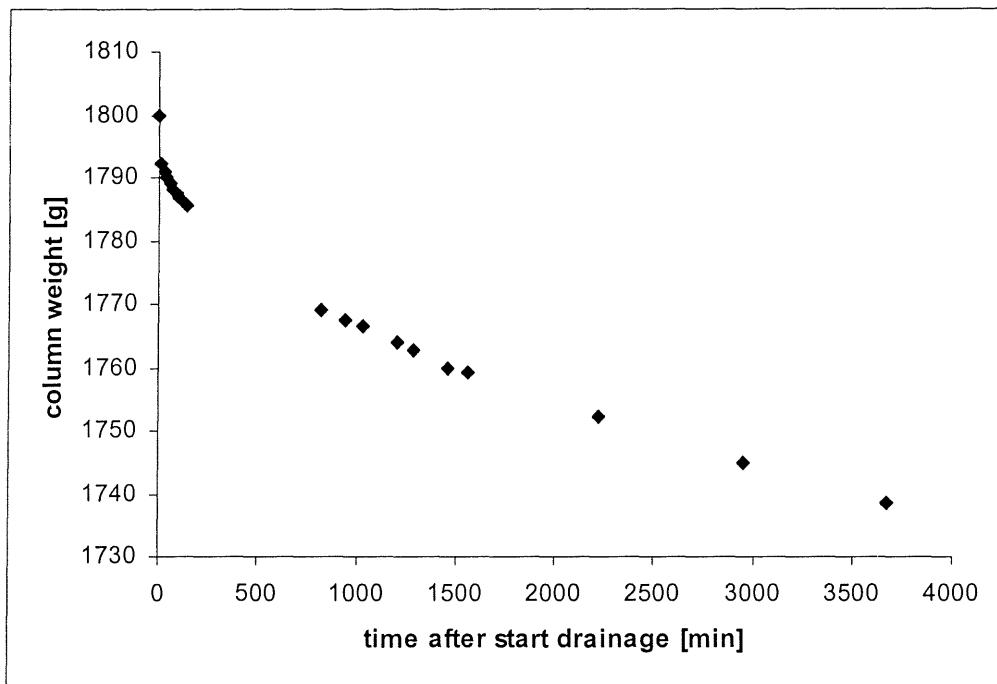


Figure 1 *Drainage rate in a test column with the same ${}^b\rho_d$ as in the experiment*

Appendix VI

Measured values for moisture content per layer per column and calculated values for volumetric moisture content, air filled porosity, tortuosity, and diffusion coefficient of ethylene in the soil.

column#	depth	tare weight [g]	tare + soil + moisture [g]	tare + dry soil [g]	moisture weight [g]	dry soil weight [g]	total weight of dry soil per column [g]
1	0-5	14.19	431.62	389.61	42.01	375.42	
1	5-10	13.75	486.47	438.33	48.14	424.58	
1	10-17.5	13.82	731.81	660.2	71.61	646.38	1446.38
2	0-5	13.91	435.68	395.05	40.63	381.14	
2	5-10	10.63	467.91	424.37	43.54	413.74	
2	10-17.5	14.31	735.78	667	68.78	652.69	1447.57
3	0-5	10.67	440.18	397.98	42.20	387.31	
3	5-10	9.57	476.49	428.4	48.09	418.83	
3	10-17.5	10.67	717.21	644.81	72.40	634.14	1440.28
4	0-5	9.61	437.30	391.66	45.64	382.05	
4	5-10	10.54	489.36	438.85	50.51	428.31	
4	10-17.5	10.55	722.25	650.27	71.98	639.72	1450.08
5	0-5	10.57	446.29	401.84	44.45	391.27	
5	5-10	8.33	469.88	423.13	46.75	414.8	
5	10-17.5	10.64	727.76	654.07	73.69	643.43	1449.5
6	0-5	10.54	440.64	393.93	46.71	383.39	
6	5-10	10.58	482.83	434.48	48.35	423.9	
6	10-17.5	9.61	722.44	650.54	71.90	640.93	1448.22
7	0-5	9.6	443.69	399.83	43.86	390.23	
7	5-10	9.7	473.66	428.07	45.59	418.37	
7	10-17.5	9.76	729.64	658.61	71.03	648.85	1457.45
8	0-5	10.71	446.72	401.02	45.70	390.31	
8	5-10	10.74	486.10	436.34	49.76	425.6	
8	10-17.5	10.73	715.00	643.12	71.88	632.39	1448.3
9	0-5	10.77	439.50	395.92	43.58	385.15	
9	5-10	10.65	462.49	416.99	45.50	406.34	
9	10-17.5	10.67	726.61	653.53	73.08	642.86	1434.35
10	0-5	10.72	450.57	403.85	46.72	393.13	
10	5-10	10.71	473.46	426.85	46.61	416.14	
10	10-17.5	10.64	720.35	649.89	70.46	639.25	1448.52
11	0-5	10.55	438.77	392.33	46.44	381.78	
11	5-10	10.68	478.00	428.32	49.68	417.64	
11	10-17.5	10.56	723.67	648.59	75.08	638.03	1437.45
12	0-5	10.56	434.30	388.58	45.72	378.02	
12	5-10	10.67	483.79	433.62	50.17	422.95	
12	10-17.5	9.28	728.36	656.15	72.21	646.87	1447.84

column#	porosity	gas phase	depth z [cm]	average gas phase	tortuosity factor	diffusion coefficient in soil [m ² /s]
1	0.388	0.207	0-2.5	0.207	0.107	3.4581E-07
1	0.308	0.100	2.5 - 7.5	0.154	0.063	1.5118E-07
1	0.298	0.092	7.5 - 12.5	0.096	0.027	4.0505E-08
2	0.379	0.204	0-2.5	0.204	0.104	3.3065E-07
2	0.326	0.138	2.5 - 7.5	0.171	0.077	2.0531E-07
2	0.291	0.093	7.5 - 12.5	0.115	0.039	7.033E-08
3	0.369	0.187	0-2.5	0.187	0.089	2.5956E-07
3	0.318	0.110	2.5 - 7.5	0.148	0.059	1.3669E-07
3	0.311	0.103	7.5 - 12.5	0.106	0.034	5.6478E-08
4	0.378	0.180	0-2.5	0.180	0.084	2.3674E-07
4	0.302	0.084	2.5 - 7.5	0.132	0.049	1.0121E-07
4	0.305	0.098	7.5 - 12.5	0.091	0.024	3.4104E-08
5	0.362	0.171	0-2.5	0.171	0.076	2.0246E-07
5	0.324	0.122	2.5 - 7.5	0.146	0.058	1.3264E-07
5	0.301	0.089	7.5 - 12.5	0.106	0.033	5.4442E-08
6	0.375	0.174	0-2.5	0.174	0.079	2.1425E-07
6	0.309	0.101	2.5 - 7.5	0.137	0.052	1.1135E-07
6	0.304	0.097	7.5 - 12.5	0.099	0.029	4.4703E-08
7	0.364	0.175	0-2.5	0.175	0.08	2.1841E-07
7	0.318	0.121	2.5 - 7.5	0.148	0.059	1.3651E-07
7	0.295	0.091	7.5 - 12.5	0.106	0.034	5.6347E-08
8	0.364	0.167	0-2.5	0.167	0.073	1.901E-07
8	0.307	0.092	2.5 - 7.5	0.129	0.048	9.6869E-08
8	0.313	0.106	7.5 - 12.5	0.099	0.029	4.481E-08
9	0.372	0.184	0-2.5	0.184	0.087	2.5042E-07
9	0.338	0.141	2.5 - 7.5	0.163	0.07	1.7808E-07
9	0.302	0.091	7.5 - 12.5	0.116	0.04	7.2725E-08
10	0.359	0.158	0-2.5	0.158	0.066	1.6259E-07
10	0.322	0.121	2.5 - 7.5	0.139	0.054	1.1742E-07
10	0.306	0.103	7.5 - 12.5	0.112	0.037	6.4584E-08
11	0.378	0.177	0-2.5	0.177	0.082	2.2724E-07
11	0.320	0.105	2.5 - 7.5	0.141	0.055	1.2131E-07
11	0.307	0.091	7.5 - 12.5	0.098	0.027	4.1294E-08
12	0.384	0.187	0-2.5	0.187	0.089	2.5948E-07
12	0.311	0.094	2.5 - 7.5	0.140	0.054	1.1846E-07
12	0.297	0.089	7.5 - 12.5	0.092	0.025	3.5871E-08

Appendix VII

Calculation scheme for production and diffusion of ethylene at various depths in the column

- (1) date: August 13 (25 hours incubation)
- (2) column : 2
depth : $z = 7.5 \text{ cm}$
temperature at analysing : 298 K
- (3) peak area C_2H_4 by gas chromatograph: 2745
- (4) average peak area standard sample 10 ppm: 2724
- (5) concentration C_2H_4 in the soil at $z=7.5 \text{ cm}$ was equal to 10.08 ppm
The concentration in mg/m^3 is could be derived using the equation:
$$1 \text{ ppmV} = \frac{P}{RT} \frac{Mw}{10^6} 10^3 = 1.145 \text{ mg}/\text{m}^3$$
and was equal to $11.54 \text{ mg}/\text{m}^3$.
- (6) moisture weight layer between $z=5.0$ and $z=10.0 \text{ cm}$: 48.35 g
volume part of column between $z=5.0$ and $z=10.0$: $\pi 3.84^2 5 = 231.6 \text{ cm}^3$
dry weight soil layer between $z=5.0$ and $z=10.0 \text{ cm}$: 423.90 g
- (7) porosity $\phi_p = 1 - \text{dry weight soil [g] / density solid parts of the soil [g}/\text{cm}^3]$ / volume soil $[\text{cm}^3]$; $\phi_p = 1 - \{(423.90/2.65)/231.6 = 0.310$
- (8) air filled porosity, ϕ_g , is related with ϕ_p with the equation: $\phi_p = \phi_g + \theta$; θ can be derived from the moisture content of the layer between $z=5.0$ and $z=10.0 \text{ cm}$ and equals 48.35 g.
The moisture content θ is the result of the division: (moisture volume/total volume);
$$\phi_g \text{ at } z = 5.0 = \frac{\phi_g \text{ of layer } z = 0.0 \text{ to } z = 5.0 + \phi_g \text{ of layer } z = 5.0 \text{ to } z = 10.0}{2}$$
- (9) The tortuosity factor, τ , for the layers between $z=2.5$ and $z=7.5 \text{ cm}$ and $z=7.5$ and $z=12.5 \text{ cm}$ were calculated by linear interpolation by using Table 8, chapter 2.2.3. The values for τ were equal to 0.052 and 0.029 respectively.
- (10) The diffusion coefficient was calculated by using equation (2) of chapter 2.2.3.
$$D_g = \tau \phi_g D_0$$
; the value for D_g for the layer between $z=2.5$ and $z=7.5 \text{ cm}$ was $1.11 \cdot 10^{-7} \text{ m}^2/\text{s}$.

(11) With equation (1) of chapter 2.2.3 the flux density was calculated at a depth of $z=5.0$ cm. The concentration gradient dc/dz for $z=2.5$ and $z=7.5$ was equal to:

$C_{C_2H_4(7.5)} - C_{C_2H_4(2.5)} / 7.5 - 2.5$; the C_2H_4 concentration at $z=7.5$ cm was equal to 11.54 mg/m^3 and the C_2H_4 concentration at $z=2.5$ cm was equal to 5.38 mg/m^3 . The concentration gradient dc/dz was equal to 123.25 mg/m^4 . The flux density q was calculated as:

$$q = -D_g \frac{dc}{dz} \text{ and found equal to } -1.37 \cdot 10^{-5} \text{ mg m}^{-2} \text{ s}^{-1}$$

(12) With the flux density at $z=5.0$ and $z=10.0$ the production α of C_2H_4 was calculated with equation (3) of chapter 2.2.3. Flux density at $z=10.0$ was equal to $-3.48 \cdot 10^{-5} \text{ mg m}^{-2} \text{ s}^{-1}$. The production was found equal to $-4.22 \cdot 10^{-4} \text{ mg m}^{-3} \text{ s}^{-1}$. A negative sign before the amount of C_2H_4 production indicates absorption or consumption of the C_2H_4 .

Appendix VIII

ACTUAL PRODUCTION OF ETHYLENE IN A SOIL COLUMN AT DEPTHS OF 2.5, 7.5 AND 12.5 cm.

column#	depth [cm]	treatment		peak area	C2H4 conc. [ppm]	5		25	
		CMW 5 ton/ha	crust			peak area	C2H4 conc. [ppm]	peak area	C2H4 conc. [ppm]
1	headspace	-	-	282	1.02	296	1.09		
	2.5	-	-	216	0.78	485	1.78		
	7.5	-	-	5813	21.04	11734	43.08		
	12.5	-	-	2898	10.49	9308	34.17		
2	headspace	-	-	349	1.26	574	2.11		
	2.5	-	-	361	1.31	373	1.37		
	7.5	-	-	3939	14.26	10316	37.87		
	12.5	-	-	1688	6.11	8208	30.13		
3	headspace	-	-	290	1.05	440	1.62		
	2.5	-	-	276	1.00	874	3.21		
	7.5	-	-	309	1.12	550	2.02		
	12.5	-	-	3979	14.40	12589	46.22		
4	headspace	+	-	362	1.31	636	2.33		
	2.5	+	-	297	1.08	904	3.32		
	7.5	+	-	1679	6.08	7750	28.45		
	12.5	+	-	1814	6.57	7045	25.86		
5	headspace	+	-	268	0.97	619	2.27		
	2.5	+	-	2196	7.95		-		
	7.5	+	-	3003	10.87	9892	36.31		
	12.5	+	-	2970	10.75	3777	13.87		
6	headspace	+	-	507	1.84	1028	3.77		
	2.5	+	-	406	1.47	1280	4.70		
	7.5	+	-	794	2.87	2745	10.08		
	12.5	+	-	2285	8.27	12011	44.09		
7	headspace	-	+	0	-	414	1.52		
	2.5	-	+	344	1.25	840	3.08		
	7.5	-	+	1242	4.50	6851	25.15		
	12.5	-	+	1163	4.21	1738	6.38		
8	headspace	-	+	377	1.36	445	1.63		
	2.5	-	+	289	1.05	703	2.58		
	7.5	-	+	1619	5.86	8127	29.83		
	12.5	-	+	3529	12.77	12246	44.96		
9	headspace	-	+	220	0.80	448	1.64		
	2.5	-	+	386	1.40	698	2.56		
	7.5	-	+	1440	5.21	2854	10.48		
	12.5	-	+	1331	4.82	10955	40.22		
10	headspace	+	+	278	1.01	0	-		
	2.5	+	+	3919	14.19	2367	8.69		
	7.5	+	+	1905	6.90	8835	32.43		
	12.5	+	+	2631	9.52	12406	45.54		
11	headspace	+	+	141	0.51	220	0.81		
	2.5	+	+	481	1.74	787	2.89		
	7.5	+	+	0	-	337	1.24		
	12.5	+	+	1680	6.08	3162	11.61		
12	headspace	+	+	252	0.91	435	1.60		
	2.5	+	+	488	1.77	1236	4.54		
	7.5	+	+	301	1.09	1423	5.22		
	12.5	+	+	2116	7.66	12185	44.73		
standard 10 ppm →				2762.5		2724			

	54	104	194	361			
peak area	C2H4 conc. [ppm]						
209	0.83	0	-	0	-	0	-
337	1.34	0	-	253	0.91	201	1.01
6509	25.88	656	2.50	260	0.93	0	-
11500	45.72	17355	66.09	7690	27.60	323	1.62
565	2.25	2422	9.22	318	1.14		-
1183	4.70		-	268	0.96	0	-
3453	13.73	4386	16.70	314	1.13	0	-
13362	53.12	9713	36.99	1803	6.47	237	1.19
540	2.15	0	-	0	-		-
732	2.91	426	1.62	0	-	0	-
425	1.69	214	0.81	0	-	0	-
5936	23.60	806	3.07	0	-	0	-
328	1.30	0	-	0	-	0	-
800	3.18	888	3.38	530	1.90	0	-
959	3.81	368	1.40		-	0	-
14097	56.04	8985	34.22	2160	7.75	232	1.16
563	2.24	0	-	0	-	0	-
1113	4.42	981	3.74	0	-	0	-
1280	5.09	542	2.06		-	0	-
10674	42.44	5314	20.24	844	3.03	0	-
531	2.11	289	1.10	0	-		-
637	2.53	0	-	0	-	0	-
576	2.29	297	1.13	0	-	0	-
11855	47.13	12515	47.66	1376	4.94	2652	13.31
623	2.48	0	-	0	-	0	-
1208	4.80	765	2.91	218	0.78	0	-
3667	14.58	830	3.16	0	-	0	-
10423	41.44	12681	48.29	3764	13.51	306	1.54
403	1.60	310	1.18	0	-	0	-
867	3.45	438	1.67	0	-	0	-
2888	11.48	547	2.08	0	-	0	-
13299	52.87	6553	24.95	688	2.47	0	-
348	1.38	0	-	0	-		-
824	3.28	705	2.68	0	-	0	-
500	1.99	317	1.21	0	-	0	-
12929	51.40	4978	18.96	211	0.76	0	-
0	-	0	-	0	-	0	-
1023	4.07	788	3.00	232	0.83	0	-
3381	13.44	883	3.36	0	-	0	-
15471	61.51	15058	57.34	684	2.46	0	-
0	-	0	-	0	-	0	-
945	3.76	417	1.59	0	-	0	-
430	1.71	344	1.31	0	-	0	-
10622	42.23	9577	36.47	430	1.54	0	-
334	1.33	0	-	0	-		-
744	2.96	405	1.54	0	-	267	1.34
556	2.21	217	0.83	0	-	0	-
12524	49.79	5153	19.62	1158	4.16	210	1.05
2515.333	→	2626		2786		1992.167	
	standard 10 ppm						

data representative for t=54, t=104, t=194

peak area supposed anoxic sample	2247
peak area atmospheric sample	11384.67
slope peak area vs O ₂ concentration	436.1655

data representative for t=361

peak area supposed anoxic sample	3936.667
peak area atmospheric sample	12364.75
slope peak area vs O ₂ concentration	402.2951

Because the syringe with which O₂ was sampled contained atmospheric O₂ a correction was made. Samples taken from prepared strict anaerobe serum bottles were analyzed for peak area. Also atmospheric samples were injected for the peak area. A sample taken from the column was then corrected for the occurring O₂ and then related with the atmospheric %O₂ that equals 20.95%.

column #	depth [cm]	194		361		% O ₂ in sample	C ₂ H ₄ [ppm]
		peak area	O ₂	peak area	O ₂		
1	h.s.	9356	16.30	-	10853	17.19	-
1	2.5	8986	15.45	0.91	9637	14.17	1.01
1	7.5	7861	12.87	0.93	9277	13.27	-
1	12.5	2155	0.00	27.60	4153	0.54	1.62
2	h.s.	3822	3.61	1.14	7473	8.79	-
2	2.5	5430	7.30	0.96	7034	7.70	-
2	7.5	4352	4.83	1.13	6674	6.80	-
2	12.5	2346	0.23	6.47	4511	1.43	1.19
3	h.s.	7450	11.93	-	8959	12.48	-
3	2.5	7056	11.03	-	8458	11.24	-
3	7.5	6154	8.96	-	8041	10.20	-
3	12.5	4413	4.97	-	7625	9.17	-
4	h.s.	7636	12.36	-	9384	13.54	-
4	2.5	7052	11.02	1.90	8538	11.44	-
4	7.5	7123	11.18	-	8964	12.50	-
4	12.5	2575	0.75	7.75	4275	0.84	1.16
5	h.s.	3130	2.02	-	4731	1.97	-
5	2.5	4432	5.01	-	7052	7.74	-
5	7.5	6392	9.50	-	7689	9.33	-
5	12.5	2675	0.98	3.03	4576	1.59	-
6	h.s.	3973	3.96	-	6102	5.38	-
6	2.5	5744	8.02	-	7815	9.64	-
6	7.5	6155	8.96	-	7722	9.41	-
6	12.5	2593	0.79	4.94	4598	1.64	13.31
7	h.s.	7839	12.82	-	10014	15.11	-
7	2.5	7217	11.39	0.78	8966	12.50	-
7	7.5	3673	3.27	-	8572	11.52	-
7	12.5	2576	0.75	13.51	4217	0.70	1.54
8	h.s.	9048	15.59	-	9997	15.06	-
8	2.5	8379	14.06	-	9346	13.45	-
8	7.5	8165	13.57	-	9410	13.61	-
8	12.5	2699	1.04	2.47	6980	7.56	-
9	h.s.	9281	16.13	-	9922	14.88	-
9	2.5	8908	15.27	-	9446	13.69	-
9	7.5	8151	13.54	-	8466	11.26	-
9	12.5	4847	5.96	0.76	7121	7.92	-
10	h.s.	11352	20.88	-	11636	19.14	-
10	2.5	8907	15.27	0.83	9545	13.94	-
10	7.5	7472	11.98	-	8542	11.45	-
10	12.5	3717	3.37	2.46	7140	7.96	-
11	h.s.		-	13753		24.40	-
11	2.5	10041	17.87	-	11877	19.74	-
11	7.5	9616	16.89	-	6815	7.15	-
11	12.5	6456	9.65	1.54	9743	14.43	-
12	h.s.	8192	13.63	-	8563	11.50	-
12	2.5	6915	10.70	-	8111	10.38	1.34
12	7.5	7866	12.88	-	8069	10.27	-
12	12.5	2843	1.37	4.16	4559	1.55	1.05

Table 4 *t* probabilities of pairwise differences at 71 days exposure

contrast treatments*	t-prob	contrast	t-prob
0.01 vs 0.1	0.325	0.1 vs GR-24	0.001
0.01 vs 1	0.000	1 vs 10	0.873
0.01 vs 10	0.000	1 vs 100	0.403
0.01 vs 100	0.000	1 vs GR-24	0.333
0.01 vs GR-24	0.000	10 vs 100	0.600
0.1 vs 1	0.000	10 vs GR-24	0.352
0.1 vs 10	0.000	100 vs GR-24	0.092
0.1 vs 100	0.000		

Table 5 *t* probabilities of pairwise differences at 96 days exposure

contrast treatments*	t-prob	contrast	t-prob
0.01 vs 0.1	0.186	0.1 vs GR-24	0.001
0.01 vs 1	0.000	1 vs 10	0.889
0.01 vs 10	0.000	1 vs 100	0.724
0.01 vs 100	0.000	1 vs GR-24	0.210
0.01 vs GR-24	0.000	10 vs 100	0.663
0.1 vs 1	0.000	10 vs GR-24	0.343
0.1 vs 10	0.000	100 vs GR-24	0.128
0.1 vs 100	0.000		