Requirements of greenhouse covering materials in different climatic locations overview available materials and (dis)advantages

Workshop, 14th of September 2011, Wageninger

Silke Hemming, Wageningen UR Greenhouse Horticulture

Requirements

- Covering materials for horticultural applications:
 - High light transmission
 - Optimum light spectrum
 - Optimum heat input low heat losses
 - Optimum condensation behaviour
 - High mechanical resistance
 - Low sensitivity to ageing (UV, temperatures, chemicals)
 - Fabrication sizes
 - Costs

WAGENINGENUR

Greenhouse coverings Greenhouse coverings Plastic films Glass • PE-UV polyethylene with UV-stabilisation • Floatglass – Greenhouse glass • PE-IR polyethylene with IR-absorption • White glass – Low-iron, Crystal Clear, Optiwhite, Clear glass, Ultrawhite, Diamantglas... • EVA ethylenvinylactetate • AR glass – Coating or surface treatment, Sunarc AR glass, • ETFE ethenetetrafluourethene Centrosol HiT, GroGlass AR... Plastic sheets • Diffuse glass – surface treatment with different structures, PMMA polymethylmethacrylate (double) Vetrasol, V&V diffuus, Centrolsol Struktur, Prismatic, • PC polycarbonate (double) Velglass, Brisa... • PVC polyvinylacetate • GRP glass-reinforced polyester (fibre glass) WAGENINGENUR WAGENINGENUR

Light quantity		Light transmissic	<u>n</u>		louded sky
More light by					
White glace (+1-2%)		Material	thickness	light transm	ission
• While glass (± 1.270)				perpendicular he	emispherical
 Modern coatings on glass (+5-8%) 		Floatglass	4 mm	89-90%	82%
 New plastic films ETFE (+3%) 	A Det	AR glass	4 mm	90-91%	00.00%
 Lighter greenhoues construction (<5%) 		Diffuse glass	4 mm	90-91%	76-82%
		PE / EVA films	200 um	85-90%	78-82%
Less installations (+1-5%)	·	ETFE (F-Clean)	100 µm	93%	86%
Roof angle (<1%)	a third and the second second	PC sheet	8-16 mm	76-80%	60-70%
Greenhouse orientation		PMMA sheet	16 mm	89-92%	ca. 76%
 Cleaning (up to 10%) 	A				
		WAGENINGEN UR			

Diffuse lig	<u>ght: producti</u>	<u>on increase</u>	
	Reference	Low haze	High haze
Spring crop 2008	Kg/m² Nr/m²	+6.5% +3.5%	+9.2% +5.2%
Autumn crop 2008	Kg/m ² Nr/m ²	+8.8% +5.3%	+9.7% +6.1%
	ENILE		

Photosynthesis

- 400-700nm photosynthetic active radiation
- Lightreceptors: chlorophyl, carotinoids
 - Plants use theoretically all colours for photosynthesis
 - Most plants use red light (≈650nm) and blue light (≈ 450nm) more efficiently
 - Plants adapt to colours during growth

WAGENINGENUR

Morphogenesis **300-800nm** Specific lightreceptors for UVB, UVA, Blue and Red:Far-red Elongation • Side shoots • Leaf area and leaf thickness • Flowering • Colour of flowers and leaves

- Germination

WAGENINGENUR

Light quality 1 UV-transparent films influence: • Hardening of crops; • Leaf and flower colour (lettuce "lollo rosso", aubergines, some flowers or flowering potplants); • Compact growth (bedding plants, some potplants) • Behaviour of insects (white fly, trips, louse, (bumble-) bee)

Lig	<u>ght q</u>	uality –	UV influe	ence	<u>on in</u>	<u>sect</u>	<u>s</u>		
 Pop 		growth of inse	cts on <i>chrysa</i>	nthemun	7 under di	fferent	UV-tran	sparant o	
after 6 w	eeks	louse		white	fly		trips		
		# mean	s.d	#	mean s.	d	#	mean	s.d.
Glas	A D	19320 2442 29521	0.5 7213.2	341 412	376.5	50.2	303 136	219.5	118.1
PMMA	B E	17528 2110 24799	3.5 5141.4	481 377	429.0	73.5	164 238	201.0	52.3
PC	C F	11421 (1300 14593	17.0 2242.9	173 311	242.0	97.6	128 198	163.0	49.5
Rep 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	roducti	PMMA	ts on leaves -	→ indirec Ma • t • s • p	t influenc ny othe empera anitatic lant vit	e of UV er influ ature / on ality	(plant) Ience / hum	as food s factor idity /	;ource) s: light

Heat losses

• Thermicity:

- Unheated greenhouses:
- in cold, clear nights greenhouse inside temperature can fall below outside temperature
- Heated greenhouses:
- Insulation effect, energy saving
- Especially night temperatures are higher

WAGENINGENUR

Heat losses

- Transmission for infrared radiation (heat) is depending on:
- Material/Polymer
- Thickness of material
- Number of layers
- Film surface dry wet
- IR absorbing pigments/coatings

WAGENINGENUR

Compa	rison other mat	<u>erials</u> nt mater	ials	
	Material	thickness	FIR-transmission	
	Glass PE film PE film thermic EVA film ETFE film PC double sheet PMMA double sheet	4 mm 200 μm 200 μm 180 μm 100 μm 12 mm 16 mm	0% 40-60% 20-40% 20-40% 15-20% 0%	
U WAGEN			0%	

Heat losses Thermicity: PE-film are not thermic Mineral fillers EVA-Co-Polymer-film are thermic ("co-ex") Extrusion of several polymer layers High EVA-content -> Good thermal properties

Energy saving: coverings

 Optical properties of different greenhouse glasses (GG) with anti-reflection and/or low-emission coatings for perpendicular PAR (400-700nm)

greenhouse	Type coating	Transmission perpendicular	Transmission hemispherical	Emission coefficients	NIR reflection	k-value materia
glass		τ _{PAE.p} [-]	τ _{PAR.h} [-]	E _{up} / E _{ins ide up} / Einside dewn / Edewn [-],	factor [-]	[Wm [°] K ⁴
single (ref)	no	0.897	0.822	0.89/-/-/0.89	0	7.60
single	AR-AR	0.965	0.905	0.85/-/-/0.85	0.24	7.14
single	AR-lows	0.901	0.838	0.85/-/-/0.11	0.32	5.73
double	AR-AR-AR-AR	0.934	0.850	0.85/0.85/0.85/0.85	0.36	3.61
double	AR-AR-lows-AR	0.872	0.785	0.85/0.17/0.85/0.85	0.42	2.37

<u>Results</u> Year-roun concentra CO ₂ use i	d energy consumption, dry ation under different green from boiler only and additic	y weig house onal Co	ht proc glasse O ₂ use i	duction of s calcul from an	and CO lated by externa	2 / KASPRO, al source.
CO ₂ source		Ref	GG single AR-AR	GG single AR-lowz	GG double AR-AR- AR-AR	GG double AR- AR- lovy - AR
boiler	CO2 concentration 11:00-16:00 h [ppm]	747	750	7 1	415	04
00101	gas use from boiler [m ³ .m ⁻²]	34.5	35.5	21.4	25.7	23.1
	Dry weight production [kg.m ⁻²]	8.3	9.0	80	.3	1.6
	dosage CO ₂ [kg.m ⁻²]	26.1	27.1	24.4	25.2	2 <mark>4</mark> .8
boiler &	CO ₂ concentration 11:00-16:00 h [ppm]	798	800	74	90	87
external	gas use from boiler [m ³ .m ⁻²]	33.7	34.7	2.7	25.0	22.4
	Dry weight production [kg.m ⁻²]	9.0	9.8	90	.3	.5
	dosage CO ₂ [kg.m ⁻²]	43.5	43.8	4.1	47.3	43.3
			max.	18%	25%	33%
			decre	asing	k-value	9

Condensation

- Water drops or film:
 - Reduction of light transmission up to 15%
 - Damage of crops due to dripping off
 - Anti-drop-additives reduce surface tension
 - Durability of anti-drop-effect often max. 2 years

Ageing

- Plastic materials are ageing due to several factors:
 - UV-radiation
 - Chemical influences
 - Thermal influences
 - Mechanical influences

WAGENINGENUR

Ageing

- Ageing due to UV-radiation:
 - UV(B) destroys polymer
 - UV-absorbers: used in PE-UV and EVA films
 - UV-stabilisizers: NI-Quencher or HALS
 - UV-reflektionn: PVDF and ETFE films
- WAGENINGENUR

Ageing

Reduction of transmission due to material ageing

Material	Reduction in light transmission	Per year
PMMA	max. 6% in 10 years	3%
PC	max. 6% in 10 years	3%
PE and EVA	ca. 6% in 4-5 years	3%
ETFE	2-3% in 10 years	1.5%
Glass	almost 0%	0%

WAGENINGENUR

Wageningen UR Glastuinbouw Innovations in Horticulture

