Response of two Anthurium

andreanum genotypes to elevated CO₂ concentration

Nieves García Victoria, Dimitrios Fanourakis, Marcel Raaphorst, Mary Warmenhoven

Purpose of the experiment

To evaluate if the cost of continuous CO₂ supply in commercial Anthurium cultivation can be paid back by extra production and/ or improved flower quality

Background information

- CO₂ enrichment not a year round practice in commercial Anthurium cultivation in The NL
- mostly related to heat demand in the greenhouse
- efforts in energy saving lead to less heating = less CO_2 supply
- For continuous supply, CO₂ needs to be sourced additionally

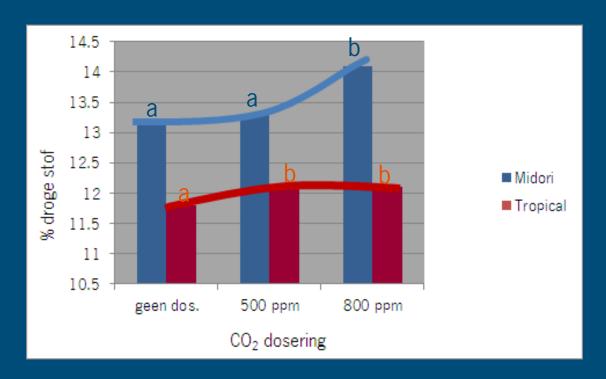
Experimental design

- 3 CO₂ levels, each level in 2 compartments
 - No enrichment outside concentration
 - 500 ppm enrichment with a maximum of 150 kg/ha.hour
 - 800 ppm enrichment with a maximum of 300 kg/ha.hour

Experimental design

- 2 genotypes
 - Tropical (red)
 - Midori (green)
- Experimental period: January 2010 till January 2011

- Plant density 18 pl / m²
- Substrate: oasis
- Watering: eb/flow
- Plants productive at start


Measurement plan

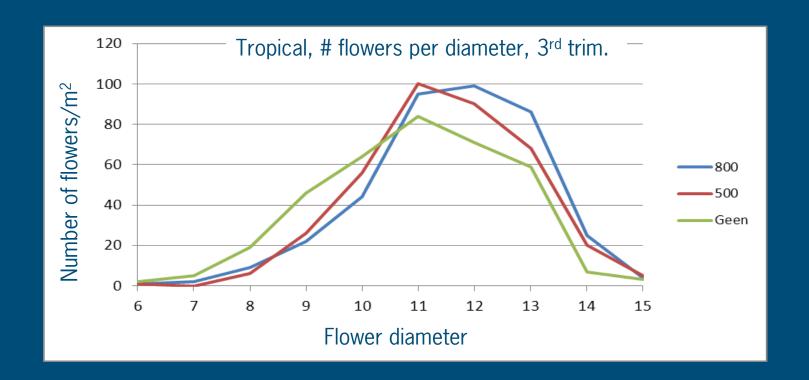
- Production and quality
 - Number of flowers, flower fresh weight, stem length, flower diameter
 - Dry matter (4 x)
 - Generation time (time from harvest flower 1 to harvest flower 2)
- Supplied CO₂
- Photosynthesis (3 x)

Results: plant growth

 Dry matter percentage shows the same trend as flower diameter and stem length

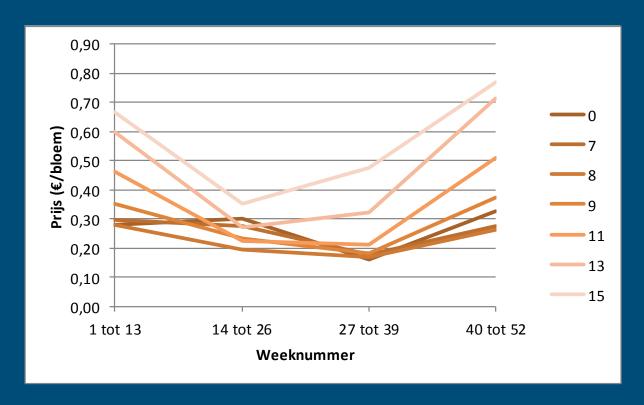
Results: plant growth

In increase % compared to the ambient level


CO ₂ level	Parameter	'Midori'	'Tropical'
500 ppm	Number of flowers	+ 4%	+ 0,9% (ns)
	Avg. flower weight (f)	+ 2,6 % (ns)	+ 6 %
	Flower diameter	+ 0,3 cm (ns)	+ 0,6 cm
	Stem length	+ 1,5 cm (ns)	+ 3,4 cm
800 ppm	Number of flowers	+ 10 %	+ 1,6 % (ns)
	Avg. flower weight (f)	+ 22,5 %	+ 11 %
	Flower diameter	+ 1,5 cm	+ 0,9 cm
	Stem length	+ 4,1 cm	+ 4,7 cm

Results

 CO₂ enrichment increases the number of flowers of higher diameter class



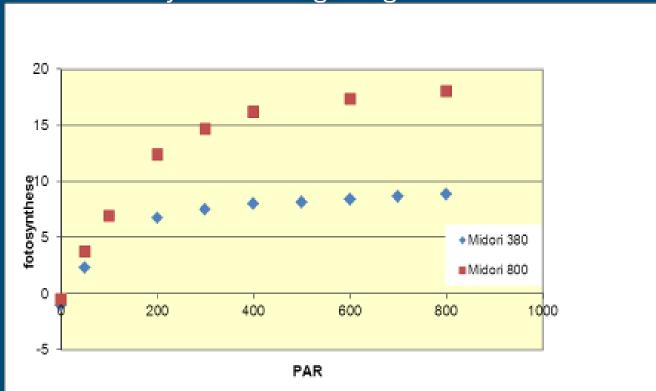
Results: economic evaluation

- CO₂ enrichment of 'Tropical' leads to better flower prices
 - flowers > diametres are better paid, also in the in 3rd quarter (no heat demand)

Results: economic evaluation

- Better prices pay the investment in CO₂ back in Tropical
 - Independently of CO₂ source, calculated for the most expensive source

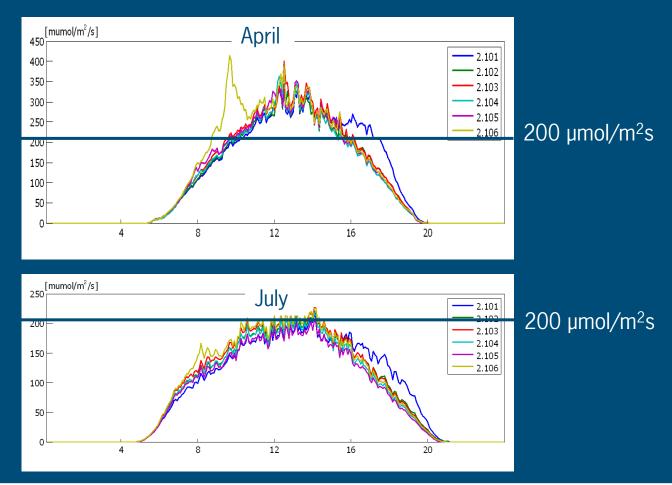
	Production	Income	Extra income	Costs CO ₂	benefit
	Flowers/m ²	€/m ²	€/m ²	€/m ²	€/m ²
No CO ₂	106.7	37.78			
500 ppm	107.7	40.60	2,83	0,80	2,03
800 ppm	108.4	41.51	3,73	1,69	2,04



Results: fotosynthesis

 Extra growth Midori result of increased net Photosynthesis at 800 ppm (compared to no enrichment)

More fotosynthesis at higher light intensities



Results: light in greenhouse

Light intensity in greenhouse limited by whitewash and screens

Conclusions

- CO₂ enrichment increases growth in both cultivars
 (more flowers, higher fw & dw, higher flower quality)
- 'Midori' is more responsive to CO₂ enrichment than 'Tropical'
- For 'Tropical' enrichment with 500 ppm is sufficient, further enrichment till 800 ppm does not improve significantly
- For 'Midori' is enrichment with 500 ppm insufficient, significant growth effects are obtained with 800 ppm
- Improvement of results might be possible if more light is allowed
- The cost of CO₂ enrichment with 800 ppm is paid back for both varieties by the improved production ('Midori') and quality ('Tropical'). 500 ppm is economically feasible for 'Tropical', provided a better price is paid for the bigger diametres.

Thanks for your attention!

This experiment was financed by the Dutch Board for Horticulture

And sponsored by

