

Basin size		additional water	
 500 m³/ha 1500 	43% 63	57 37	5 4.5
3000	97	3	4.5
[Na] in additional v	vater		
0.8	44	56	4
1.8	43	57	5
2.8	40	60	12
- But dischar	go varios ho	tween 10 and	10%

Standard water

EC 3, pH 5 - 6

K = 7, Ca = 8, Mg = 3.5

Na = 6, Cl = 6

N03 = 17, S04 = 6, H2PO4 = 0.7

Trace elements (umol/l): Fe = 50, Mn = 20, Zn = 5

B=50, Cu = 2

PPP: selection

Goals for greenhouse horticulture

Reuse as long as possible
No discharge on sewage system or surface water
Reduction in costs for nutrients and water
Nursery, if discharge, then purification
Removal of PPP, nutrients
Area: combination of discharge fluxes and purification
Reuse by growers: limited support
Advantages larger scale

