1887

Abstract

Most bacterial strains adhere poorly to poly(ethylene oxide) (PEO)-brush coatings, with the exception of a strain. The aim of this study was to find factors determining whether strains do or do not adhere to a PEO-brush coating in a parallel plate flow chamber. On the basis of their adhesion, a distinction could be made between three adhesive and three non-adhesive strains of , while bacterial motilities and zeta potentials were comparable for all six strains. However, water contact angles indicated that the adhesive strains were much more hydrophobic than the non-adhesive strains. Furthermore, only adhesive strains released surfactive extracellular substances, which may be engaged in attractive interactions with the PEO chains. Atomic force microscopy showed that the adhesion energy, measured from the retract curves of a bacterial-coated cantilever from a brush coating, was significantly more negative for adhesive strains than for non-adhesive strains (<0.001). Through surface thermodynamic and extended-DLVO (Derjaguin, Landau, Verwey, Overbeek) analyses, these stronger adhesion energies could be attributed to acid–base interactions. However, the energies of adhesion of all strains to a brush coating were small when compared with their energies of adhesion to a glass surface. Accordingly, even the adhesive strains could be easily removed from a PEO-brush coating by the passage of a liquid–air interface. In conclusion, cell surface hydrophobicity and surfactant release are the main factors involved in adhesion of strains to PEO-brush coatings.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29005-0
2006-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2673.html?itemId=/content/journal/micro/10.1099/mic.0.29005-0&mimeType=html&fmt=ahah

References

  1. Azeredo J, Visser J, Oliveira R. 1999; Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Coll Surf B 14:141–148 [CrossRef]
    [Google Scholar]
  2. Bos R, Busscher H. J, Van der Mei H. C. 1999; Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230
    [Google Scholar]
  3. Cheng P, Neumann A. W. 1992; Computational evaluation of axisymmetric drop shape analysis-profile (ADSA-P). Coll Surf 62:297–305 [CrossRef]
    [Google Scholar]
  4. Desai N. P, Hossainy S. F. A, Hubbell J. A. 1992; Surface-immobilized poly(ethylene oxide) for bacterial repellance. Biomaterials 13:417–420 [CrossRef]
    [Google Scholar]
  5. Dufrene Y. F, Vermeiren H, Rouxhet P. G, Van der Leyden J. 1996; Direct evidence for the involvement of extracellular proteins in the adhesion of Azospirillum brasilense . Microbiology 142:855–865 [CrossRef]
    [Google Scholar]
  6. Dufrene Y. F, Boonaert C. J. P, Busscher H. J, Rouxhet P. G, Van der Mei H. C. 2001; Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy. Ultramicroscopy 86:113–120 [CrossRef]
    [Google Scholar]
  7. Escher A, Characklis W. G. 1990 In Biofilms pp  445–486 Edited by Characklis W. G. New York: Wiley;
    [Google Scholar]
  8. Furness E. L, Ross A, Davis T. P, King G. C. 1998; A hydrophobic interaction site for lysozyme binding to poly(ethyleneglycol) and model contact lens polymers. Biomaterials 19:1361–1369 [CrossRef]
    [Google Scholar]
  9. Gomez-Suárez C, Noordmans J, Busscher H. J, Van der Mei H. C. 1999; Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber. Phys Chem 1:4423–4427
    [Google Scholar]
  10. Gristina A. G. 1987; Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595 [CrossRef]
    [Google Scholar]
  11. Harris J. M. 1992 In Poly(ethyleneglycol) Chemistry: Biotechnical and Biomedical Applications Edited by Harris J. M. New York: Plenum;
    [Google Scholar]
  12. Hiemenz P. C. 1991 In Principles of Colloid and Surface Chemistry pp  453–487 Edited by Lagowski L. L. New York & Basel: Marcel Dekker;
    [Google Scholar]
  13. Hogt A. H, Dankert J, Feijen J. 1986; Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers. J Biomed Mater Res 20:533–545 [CrossRef]
    [Google Scholar]
  14. Holland N. B, Qiu Y. X, Ruegsegger M, Marchant R. E. 1998; Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392:799–801 [CrossRef]
    [Google Scholar]
  15. Kaper H. J, Busscher H. J, Norde W. 2003; Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis . J Biomater Sci Polym Ed 14:313–324 [CrossRef]
    [Google Scholar]
  16. Kiers P. J, Bos R, Busscher H. J, Van der Mei H. C. 2001; The electrophoretic softness of the surface of Staphylococcus epidermidis cells grown in a liquid medium and on a solid agar. Microbiology 147:757–762
    [Google Scholar]
  17. Kogure K, Ikemoto E, Morisaki H. 1998; Attachment of Vibrio alginolyticus to glass surfaces is dependent on swimming speed. J Bacteriol 180:932–937
    [Google Scholar]
  18. Kumar C. G, Anand S. K. 1998; Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27 [CrossRef]
    [Google Scholar]
  19. Lang S. 2002; Biological amphiphiles (microbial biosurfactants). Curr Opin Coll Interface Sci 7:12–20 [CrossRef]
    [Google Scholar]
  20. Lyklema J. 2005 In Fundamentals of Interface and Colloid Science vol. IV San Diego: Academic Press;
    [Google Scholar]
  21. Maas J. H, Cohen Stuart M. A, Sieval A. B, Zuilhof H, Sudholter E. J. R. 2003; Preparation of polystyrene brushes by reaction of terminal vinyl groups on silicon and silica surfaces. Thin Solid Films 426:135–139 [CrossRef]
    [Google Scholar]
  22. Morisaki H, Nagai S, Ohshima H, Ikemoto E, Kogure K. 1999; The effect of motility and cell-surface polymers on bacterial attachment. Microbiology 145:2797–2802
    [Google Scholar]
  23. Nicolella C, Van Loosdrecht M. C. M, Heijnen J. J. 2000; Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33 [CrossRef]
    [Google Scholar]
  24. Nomura S, Lundberg F, Stollenwerk M, Nakamura K, Ljungh A. 1997; Adhesion of staphylococci to polymers with and without immobilized heparin in cerebrospinal fluid. J Biomed Mater Res 38:35–42 [CrossRef]
    [Google Scholar]
  25. Norde W. 2003 In Colloid and Interfaces in Life Sciences pp  47–61 Edited by Norde W. New York: Marcel Dekker;
    [Google Scholar]
  26. Pratt-Terpstra I. H, Weerkamp A. H, Busscher H. J. 1988; On a relation between interfacial free energy-dependent and non-interfacial free energy-dependent adherence of oral streptococci to solid substrata. Curr Microbiol 16:311–313 [CrossRef]
    [Google Scholar]
  27. Razatos A, Ong Y. L, Boulay F, Elbert D. L, Hubbell J. A, Sharma M. M, Georgiou G. 2000; Force measurements between bacteria and poly(ethylene glycol)-coated surfaces. Langmuir 16:9155–9158 [CrossRef]
    [Google Scholar]
  28. Roosjen A, Kaper H. J, Norde W, Busscher H. J, Van der Mei H. C. 2003; Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide) brushes on glass in a parallel plate flow chamber. Microbiology 149:3239–3246 [CrossRef]
    [Google Scholar]
  29. Roosjen A, Busscher H. J, Norde W, Van der Mei H. C. 2004; Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20:10949–10955 [CrossRef]
    [Google Scholar]
  30. Ryle A. P. 1965; Behaviour of polyethylene glycol on dialysis and gel-filtration. Nature 206:1256
    [Google Scholar]
  31. Sauer K, Camper A. K, Ehrlich G. D, Costerton J. W, Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154 [CrossRef]
    [Google Scholar]
  32. Sheth S. R, Efremova N, Leckband D. E. 2000; Interactions of poly(ethylene oxide) brushes with chemically selective surfaces. J Phys Chem B 104:7652–7662 [CrossRef]
    [Google Scholar]
  33. Szewzyk U, Szewzyk R, Manz W, Schleifer K. H. 2000; Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127 [CrossRef]
    [Google Scholar]
  34. Vadillo-Rodriguez V, Busscher H. J, Norde W, De Vries J, Van der Mei H. C. 2003; On relations between microscopic and macroscopic physicochemical properties of bacterial cell surfaces: an AFM study on Streptococcus mitis strains. Langmuir 19:2372–2377 [CrossRef]
    [Google Scholar]
  35. Van der Mei H. C, Bos R, Busscher H. J. 1998; A reference guide to microbial cell surface hydrophobicity based on contact angles. Coll Surf B 11:213–221 [CrossRef]
    [Google Scholar]
  36. Van Hoogmoed C. G, Kuijl-Booij M, Busscher H. J, Van der Mei H. C. 2000; Inhibition of Streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant-releasing Streptococcus mitis strains. Appl Environ Microbiol 66:659–663 [CrossRef]
    [Google Scholar]
  37. Van Krevelen D. W. 1976 In Properties of Polymers Amsterdam: Elsevier;
    [Google Scholar]
  38. Van Loosdrecht M. C. M, Lyklema J, Norde W, Schraa G, Zehnder A. J. B. 1987; Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901
    [Google Scholar]
  39. Van Oss C. J. 1994 In Interfacial Forces in Aqueous Media Edited by Oss C. J. Van. New York: Marcel Dekker;
    [Google Scholar]
  40. Van Oss C. J, Good R. J, Chaudhury M. K. 1986; The role of Van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. J Coll Interf Sci 111:378–390 [CrossRef]
    [Google Scholar]
  41. Van Wagenen R. A, Andrade J. D. 1980; Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. J Coll Interf Sci 76:305–314 [CrossRef]
    [Google Scholar]
  42. Wei J, Ravn D. B, Gram L, Kingshott P. 2003; Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion. Coll Surf B 32:275–291 [CrossRef]
    [Google Scholar]
  43. Yebra D. M, Kiil S, Dam-Johansen K. 2004; Antifouling technology – past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29005-0
Loading
/content/journal/micro/10.1099/mic.0.29005-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error