Growth of tomatoes under hybrid LED and HPS lighting systems

Tom Dueck, Jan Janse, Barbara Eveleens, Frank Kempkes & Leo Marcelis June 8, 2011 Wageningen UR Greenhouse Horticulture

Productschap W Tuinbouw Voor een bloeiende zaak

HPS and LED Hybrid top-lighting and interlighting

Productschap W Tuinbouw Voor een bloeiende zaak

Aims of the experiment

Investigate effects of lighting systems on tomato

Examine energy use and efficiency of lighting systems

Learn to grow tomatoes under LED's

Experimental design

Cultivar: SunstreamOct. 15, 2009 – July 1, 2010

 4 treatments: equal light intensities (170 µmol/m²/s) and light duration

- HPS-top
- LED-top

• Hybrid-top (50% HPS, 50% LED-top),

• Hybrid-interlight (50% HPS, 50% LED-interlighting)

Management focussed on optimal crop

Productschap W Tuinbouw Voor een bloeiende zaak

Crop treatments optimized:

Climate set points

- Truss pruning (sink)
- Removal of a top leaf

 Varying stem density: ending at 4.7 (Hybrid-top, HPS) or 5.2 (Interlight, LED-top) stems/m²

Greenhouse temperature set points

Daily mean temperature Oct - May in hybrid-top (20.2), interlight (20.1), LED-top (20.5 \uparrow) and HPS (20.2°C)

Plant temperature vs air temperature

LED-top

HPS

Leaf temp LED-top < air temp

Leaf temp HPS > air temp

Production up to June 10

	Flowering truss	Total set trusses	Prod. kg/m ²	Prod. %
Hybrid-top	35.4	1466	25.2	- 3%
Interlight	35.3	1433	24.3	- 6%
LED-top	34.9	1472	24.5	- 5%
HPS	36.1	1498	25.9	-

Productschap **W** Tuinbouw Voor een bloeiende zaak

Energy use of both lighting systems

LED-top light system (water-cooled)

- Energy costs: electricity for LEDs and water pump
- Energy exchange: heat from LEDs out of greenhouse, production of cool water
- LED-interlighting system (air-cooled)
 - Energy costs: electricity for LEDs
 - Energy exchange: heat from LEDs into greenhouse

Electrical energy for lighting, production of cool water

Productschap V Tuinbouw

Thermal energy input for heating

Productschap V Tuinbouw

Energy differences between lighting systems with LEDs

- Water-cooled light system
 - Used more electrical energy for light
 - Used extra energy for production of cool water (= loss of energy from greenhouse)
 - Used most energy for thermal heating (absence of radiative heat in top of crop)

Air-cooled light system

- Used least electrical energy for light
- Used least energy for thermal heating

<u>Energy efficiency (Nov. 18 – May 3)</u>

Energy use in natural gas equivalents per kg tomato

Hybrid-top 3.

Interlight

LED-top

HPS

3.87 g.e.

3.56 g.e.

4.26 g.e.

3.62 g.e.

Lessons learned from LEDs (1)

LED-top

 Crop can take a higher plant load (higher stem density, more fruits/truss)

LED-interlight

- Crop needs more top lighting for top plant temp (higher top light:interlight ratio by hybrid?),
- Less thermal heat required (works as heating tube)

Lessons learned from LEDs (2)

HPS vs. LEDs

- HPS was pushed to its limit (more experience)
- LEDs were grown more carefully (limitations unknown?)
- Cold winter was advantageous for HPS system
- Each lighting system requires its own climate set points for optimum crop growth
- The energy costs of LEDs for light do not differ greatly between air-cooled and water-cooled systems, but the costs of cooling (energy + equipment) make a large difference in energy costs between the two systems

Hybrid interlighting

with less energy

Productschap V Tuinbouw Voor een bloeiende zaak

Aims of the experiment

Optimize light distribution Placing of (height) interlighting Ratio toplighting/interlighting

30% less energy (with same production) More production?

1 (!) greenhouse 1000m2 (virtual reference only) cultivar Komeet

/oedselkwalitei

How to realise same crop with less energy

Lichtintensity: 190 μ mol/m²/s (not 210); 110 top and 80 interlighting Less light 16 hours/day (not 18)

More efficient LEDs (Production LEDs, 12% blue vs. Interlighting LEDs, 5% blue)

Next generation greenhouse cultivation Temperature integration Dehumidification and use of 2nd screen

110 µmol/m2/s

110 µmol/m2/s

40 µmol/m2/s

40 µmol/m2/s

Productschap V Tuinbouw Voor een bloeiende zaak

192

Productschap

R

For quality of life

AGENINGEN 🚺

Tuinbouw
Voor een bloeiende zaak

What did we see? production i.r.t. position of LEDs

Prod. LEDs middle i.r.t high: 50 g/m2 more

Inter. LEDs middle t.o.v. high: 960 g/m2 more !

General dip in production wk 4-6: 6-8 weeks earlier -> microelements -> poor flowers -> poor bee visiting -> less setting (2-3 poor trusses)

Productschap

Fruit weight i.r.t. position of LEDs

Interlighting LEDs: LED middle 1 g/m2 heavier fruits

Production LEDs: LED middle 5 g/m2 heavier fruits

Energy use: overview November - April

Voor een bloeiende zaak

Ministerie van Economische Zaken, Landbouw en Innovatie

Less energy use: predicted vs realised

Predicted energy saving: 30% less than reference

Febr. 10.:
March 31:
May 19:

22% energy saving27% energy saving28% energy saving

"Profit" due to less light (sunny weather), and due to better use of dehumidifyer

Productschap

Ministerie van Economische Zaken, Landbouw en Innovatie

What have we learned: evaluation April 29, 2011

Botrytis
Crop recovery
Light distribution
Climate

What dit we learn i.r.t. Botrytis?

- Crop was pushed too fast in the beginning
- We couldn't cope with humidity in a crop under artificial light (insufficient knowledge)
- Consequences: problems light a too heavy plant load, uneven crop, necrotic leaf edges, Botrytis
- Don't push the crop too hard at the start, dehumidy faster, even if it means forced ventilation

What dit we learn i.r.t. crop management?

- Crop was pushed too fast in the beginning
 Too much unevenness between plants in crop
 Weaker plants came into the shadow, recovery was
- slowed down
- Be more careful with plant density i.r.t. light interception
 Number of stems/m2 is limiting factor

What dit we learn i.r.t. light distribution?

Was 110 µmol/m2 on the top of the crop sufficient in the (dark) winter period?

 Stem density was increased too early (before Jan. 1st with increasingly less sunlight per day) – crop was pushed too hard

 Find a better balance between light and crop development in autumn/winter as sunlight decreases each day

What dit we learn i.r.t. climate?

- We do not know enough about the interaction between screens i.r.t. dehumidication, and dehumidication in a crop with artificial lighting
- Crop with lighting transpires much more than a crop without lighting. We started in a wrong (too slow) rate of dehumidification, later it became better
- The climate was sub-optimal (otherwise there would have been less Botrytis)
 Dehumidify faster, more research on use of screens

Wageninger UR Greenhouse Horticulture

Innovations for and with Horticulturi

Productschap W Tuinbouw Voor een bloeiende zaak

