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Chapter 1 

Introduction 

 

 

 

 

The aim of this thesis is to determine the properties and binding 

characteristics of a novel biopolymer-based release-on-demand (so-called 

Bioswitch [1]) microgel. This microgel consists of cross-linked negatively 

charged potato starch polymer, which interacts with positively charged 

functional ingredients through electrostatic attraction. The study addresses, 

in particular, the mechanism of the interaction between microgel and protein 

(lysozyme) by investigating effects of pH, salt concentration, and amylase 

degradation on the protein uptake and release process. Before our story 

begins, this chapter provides a survey of the background and articles review 

relevant to the topic. It includes polymer gels (emphasizing starch 

microgels), proteins as functional ingredients (especially antimicrobial 

peptides and lysozyme), and a short review on electrostatic interactions 

between (cross-linked) polyelectrolyte and oppositely charged proteins. 

Finally, the outline of this thesis is presented. 
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1.1 Polymer gels 

Gels are diluted cross-linked systems that exhibit interesting mechanical properties 

ranging from very soft to hard; many gels become fluid-like under stress. Hydrogels are cross-

linked polymeric networks capable of absorbing and retaining large quantities of water. 

Hydrogels are generally classified as two categories based on the nature of the cross-links, 

either physical or chemical (covalent). Alternatively, depending on the nature of the 

incorporated functional groups, polymer hydrogels may be classified as neutral [2], cationic 

[3], anionic [4], amphiphilic [5] or zwitterionic [6]. The use of hydrogels for controlled uptake 

and release of functional ingredients (e.g., drugs) has been a subject of great interest over the 

past decades, because their properties allow them to respond to external stimuli, such as 

temperature [7], pH [8-10], ionic strength [11, 12], solvent [7, 13, 14], or by applying an 

electric [15] or magnetic field [16]. Hydrogels can be made of both synthetic and natural 

polymers. Most reported hydrogels are based on synthetic polymers such as poly(N-

isopropylacrylamide) (PNIPAM) [16, 17] poly(methacrylic acid) (PMA) [18], poly(N-

vinylcaprolactam) (PVCL) [19], poly[2-(diethylamino) ethyl methacrylate)] (PDEA) [20] and 

poly(acrylic acid) (PAA) [21]. Hydrogels from natural polymers such as dextrans [22], 

pullulan [23], gelatine [24], chitosan [25] and sodium alginate [26] are more attractive for 

food and biomedical applications, because of their biodegradability and biocompatibility. 

Depending on their dimensions hydrogels are often termed macrogels, microgels or 

nanogels . The notion macrogel usually refers to hydrogels larger than 1 mm. Microgels are 

commonly meant hydrogels with an average diameter ranging between 50 nm and 100 µm 

[27]. Particles with sizes smaller than about 500 nm are sometimes referred to as nanogels. 

Compared to other types of carrier systems, microgels offer unique advantages such as 

superior colloid stability, fine control over particles size/shape, enhanced responsive 

behaviour and desired functionality. The first microgels were poly(divinylbenzene) (PDVB) 

particles prepared by Staudinger and Husemann over 70 years ago [28]. Pelton and Chibante 

invented the first temperature responsive poly(NIPAM) microgel in 1986 [29]. Since then 

microgel research started to grow enormously. Microgels are basically prepared by physical 

and chemical cross-linking methods. Physical cross-linking is usually based on hydrogen 

bonds, hydrophobic interactions, or electrostatic interactions. Since the crosslink bonds are 

reversible the resulting gels can restructure and flow during the sol-gel transition. Chemical 

cross-linking leads to permanent covalent bonds and stable gels. Various heterogeneous 

polymerization reactions of hydrophilic monomers in the presence of difunctional or 



Chapter 1 

3 

multifunctional cross-linkers have been utilized to prepare well-defined microgels. They 

include dispersion, precipitation, and suspension (inverse emulsion) polymerization utilizing 

an uncontrolled free radical polymerization process [30], usually under the conditions of high 

temperature, or exposure to UV light and radiation.  

The most important property of a hydrogel is its swelling capacity. The driving force for 

swelling of the gel is the free energy of mixing of polymer and solvent. The volume increase 

is opposed by the elastic energy that results from stretching of the polymer chains in the gel. 

At equilibrium, these two effects balance each other [31]. Since a large volume change of the 

gel can be triggered by a change in external conditions, this gives the responsive swelling 

properties of microgel. For instance, addition of salt can cause polyelectrolyte gels to de-swell. 

This is because of screening of the charges in the gel by the salt ions. The gel stops de-

swelling when all the charges on the gel are screened and the polyelectrolyte gel behaves as a 

neutral gel. The pH can also affect the swelling of a gel by changing the dissociation of weak 

acid or base groups on the polyelectrolyte chains. If the total charge on the gel increases, the 

swelling will increase accordingly due to the repulsion between the polymer chains [32]. The 

swelling-deswelling transition allows small drug molecules to be incorporated and then 

released from their interior. 

The unique properties of “smart” (i.e., stimuli-responsive) microgel particles make them 

very useful in all kinds of advanced technological applications such as targeted drug delivery 

[33, 34], microreactors [35], semiconductors [36], immunosensors [37], optical sensitizers [38] 

and molecular imprinting [39]. The porous structure of microgels facilitates inclusion of all 

kinds of functional ingredients. For example, the group of Malmsten encapsulated several 

positively charged peptides and proteins into negatively charged poly(acrylic acid) and 

poly(NIPAM-co-acrylic acid) microgels, hereby using these microgels as protein/peptides 

drug carriers [40]. One of the highlights in the research of the group of Hennink, active in the 

field of drug delivery, is incorporating DNA into polymeric carriers for gene therapy 

applications [41]. Ballauff and co-workers included metal ions (e.g., Au and Pd) into 

thermosensitive core-shell microgel particles. They found that the catalytic activity of the 

incorporated metal ions can be switched on and off through the volume transition of the 

microgel. In this way it can be used as a controlled microreactor [42]. Apart from the 

possibility of loading functional ingredients into microgels, the mechanical and rheological 

properties of a microgel dispersion are potentially interesting for a number of applications, in 

particular tissue engineering. Saunders et al. [43, 44] studied the fluid-to-gel transitions of 

pH-responsive microgel dispersions. They showed that the microgel dispersion can be used as 
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a matrix for load-bearing tissue regeneration. Various other applications for microgels have 

recently been reviewed by Oh et al. [30], Pich et al. [45] and Das et al. [34]. In the following 

section, the possible applications of our oxidized starch microgels, e.g., for antimicrobial 

packaging, will be addressed. 

Oxidized potato starch microgels  

Potato is a cheap source for starch. Microgels based on this natural biopolymer are 

biocompatible and biodegradable. In addition, producing them is generally more 

environmental friendly than other synthetic polymer gels. Our Bioswitch microgel particles, 

prepared from oxidized potato starch polymers, are the first of their kind reported in literature. 

In short the preparation of these microgels is as follows. The starch polymer is first selectively 

oxidized at the 6-position to obtain a polyglucuronate; the oxidation catalyst is 2,2,6,6-

tetramethyl-1-piperidinyloxy (TEMPO). For complete conversion of the primary alcohol 

groups into carboxyl groups a selectivity of more than 95% was established [46]. Following 

the procedure developed at TNO (Zeist, The Netherlands) [47], starch polymers of 30%, 50%, 

70% and 100% degree of oxidation (DO) were prepared. The DO was controlled by the 

amount of sodium hypochlorite added during oxidation. Spherical microgel particles (10 – 20 

µm in diameter) of cross-linked oxidized starch polymer were synthesized by inverse 

emulsion cross-linking (see Figure 1.1) [48]. Hexane was used as the continuous phase and 

Span 80 as the surfactant. Firstly, the starch polymer and the cross-linker sodium 

trimetaphosphate (STMP) were added to a Span 80 containing hexane solution for pre-

emulsification. Then the mixture was passed through a 10 µm (pore diameter) filter 

membrane in order to obtain a homogeneous size distribution around 10 µm. Subsequently, 

the starch in the emulsion droplets was cross-linked to make microgel particles by heating to 

40 °C while mildly stirring for 40 minutes. Finally, the microgel particles were washed with  

                    

Figure 1.1 Preparation of oxidized starch microgels by inverse emulsion polymerization  
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methanol by dispersion and centrifugation, followed by decantation of methanol and 

equilibration in excess water. 

Advantages of the Bioswitch microgel are the controlled charge- and cross-linking 

density, and hence controlled swelling and functional ingredient uptake capacity. As shown in 

Figure 1.2, the microgel is responsive to environmental changes, such as pH and salt 

concentration; hence uptake and release of functional ingredients by the gel can also be tuned 

through solvent conditions.  

In this thesis focus is on the protein lysozyme as a functional ingredient. It is anticipated 

that the lysozyme-starch system has great potential for antimicrobial food packaging [49]. The 

idea is that exposing lysozyme-containing starch particles to a microbially contaminated 

environment leads to hydrolysis of the starch by microbial enzymes. As a result, lysozyme is 

released in the environment where it inhibits microbial growth.  

             

Figure 1.2 Schematic presentation of protein release from oxidized starch microgel triggered by 

increasing the pH or salt concentration, or by amylase degradation. Responsive gel structure: gel 

swelling after increasing pH; gel shrinkage after increasing salt; gel break-down after amylase. 

 

1.2 Proteins  

Proteins are the most diverse and complicated natural polymers, composed of only about 

twenty different amino acids. A protein consists of one or more long chain molecules made up 

of amino acids linked by peptide bonds between their carboxyl and amine groups. Depending 
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on their primary structure (the amino acid sequence encoded by DNA), proteins can organize 

into a secondary structure (α-helix, β-sheet, β-turn etc.) and then into more complex three-

dimensional (tertiary) and multi-molecular (quaternary) structures. The protein structure is 

stabilized by non-covalent interactions such as hydrogen bonds, electrostatic and hydrophobic 

interactions, and sometimes also by covalent bonds such as disulfide bridges. 

Proteins provide essential functions for every living organism. To name a few, they serve 

as enzymes for catalysis of biochemical reactions, form structural elements such as collagens, 

take care of transport of for example oxygen (hemoglobin and myoglobin), of muscle 

contraction (actin and myosin), and are involved in signalling and regulation (hormones) and 

the immune system (immunoglobulins). 

Antimicrobial peptides 

Antimicrobial peptides (AMPs) are small (12 - 60 amino acid residues) peptides, which 

are effective defensive weapons for animals and plants against a wide range of microbes, 

including bacteria, fungi, virus and protozoa [50, 51]. These peptides are composed of 

hydrophilic, hydrophobic and cationic amino acids arranged in a molecule that can organize 

into an amphiphilic structure [52]. This structure allows them to attach to and insert into lipid 

membrane bilayers. The mechanism of AMPs killing bacteria is complex, and a commonly 

recognized model is the Shai-Matsuzaki-Huang (SMH) model [53-55]. This model proposes 

that positively charged AMPs interact with the negatively charged lipid cell membrane of 

bacteria through electrostatic interactions, followed by alteration of the membrane structure, 

and entry of the peptide into the interior of the cell. Investigation of AMPs is extremely 

relevant for designing new anti-infective drugs. However, AMPs may suffer from chemical 

and proteolytic degradation in many conditions associated with bacterial infections. Therefore 

encapsulation of AMPs by protective carriers, e.g., polyelectrolyte gels, can improve the 

efficacy of these antimicrobial drugs. Extensive and excellent work on the interaction between 

AMPs and oppositely charged polyelectrolyte microgels has been performed by Malmsten 

and co-workers [56-59]. 

Lysozyme 

Lysozymes are hydrolytic enzymes, able to cleave the β-(1,4)-glycosidic bond between 

N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, the major bacterial cell 

wall polymer. Because of this antimicrobial activity they are widely used as a preservative in 

foods and pharmaceuticals [60]. Lysozyme is abundant in a number of animal secretions [61], 
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such as tears, saliva, milk and mucus, and also exists in cells and tissues of virtually all living 

organisms and viruses [62]. Large amounts of lysozyme can be found in hen egg white 

(HEWL), which is the primary source for lysozyme production in industry. All of its polar 

groups are at the outside of the compact globular molecule and the majority of the 

hydrophobic groups are buried in the interior. Four disulfide bonds make this small single-

polypeptide chain enzyme unusually compact and highly stable. At least two of the S–S bonds 

must be intact to maintain its enzymatic activity and thermal stability [63]. 

Lysozyme (HEWL) has a very high isoelectric point of pH 11 (below pH 11 it carries a 

net positive charge). Its molar mass is 14.6 kDa and its dimensions are 4.5 × 3 × 3 nm
3 

[64]. 

Because of its well-known and unique physical chemical properties lysozyme has been used 

as a model protein in a variety of studies in the areas of physical-chemistry, protein chemistry, 

crystallography, enzymology and molecular biology. Because of its antimicrobial action and 

since lysozyme is highly positively charged over a wide pH range, we use lysozyme as model 

protein to investigate the interaction with the negatively charged starch microgel. After 

encapsulation of the lysozyme by the starch microgel particles, their antimicrobial activity on 

some amylase-producing bacteria strains has been tested. 

 

1.3 Electrostatic interactions between (cross-linked) polyelectrolytes and 

proteins 

Polyelectrolyte complex coacervate  

When polycations and polyanions are mixed polyelectrolyte complexes are formed. 

Depending on the relative concentrations this may lead to two separated phases, a condensed 

polyelectrolyte coacervate phase in equilibrium with a dilute polymer phase. The electrostatic 

attraction between oppositely charged polyelectrolytes contributes significantly to the 

complex formation, and for weak polyelectrolytes proton exchange also contributes. The 

behaviour of such complexes and the latest research in this field were recently reviewed by 

Van der Gucht et al.[65]. 

Proteins may be considered as weakly charged polyelectrolytes. The interaction between 

proteins and oppositely charged polyelectrolytes is important in food formulation. For 

example, systems of gum Arabic/gelatin [66], xanthan/gelatin [67], pectin/β-lactoglobulin 

[68], and carrageenan/whey protein [69] have been studied extensively because they are of 

practical interest. The stoichiometry of the complexes is (mainly) ruled by the charge 
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densities of the polyanions and polycations, which are generally pH dependent. Girod et al. 

[70] found that complexes of poly (L-lysine) and ι-carrageenan have a charge ratio of 1:1. 

The salt concentration is critical for the complex formation. Salt screens the electrostatic 

interactions between the oppositely charged macromolecules. At high salt concentration, the 

complexes dissociate completely and no phase separation occurs. On the other hand, also at 

very low salt concentration (< 10 mM), complex formation may sometimes be suppressed. 

The reason may be that when the Debye length (κ-1
) is larger than the protein (radius about 3 

nm), which is the case at low salt concentrations, an effective electrostatic repulsion between 

protein molecules exists [71]. Weinbreck et al. [72] studied the complex formation in gum 

Arabic/whey protein systems by light scattering techniques, and they found that phase 

transitions occurred at three specific pH values. Other experimental results [73] and Monte 

Carlo simulations [74] showed two critical pH values (pHc and pHφ) for the process of 

complex coacervate formation: at pHc intrapolymeric soluble complexes form, between  pHc 

and pHφ soluble and insoluble complexes exist, and at pHφ coacervates form and give rise to 

macroscopic phase separation. Weinbreck et al. [75] studied the microstructure of coacervate 

suspensions from whey protein and gum Arabic. They described the coacervate as a 

concentrated dispersion of gum Arabic chains electrostatically crosslinked with whey proteins. 

They found a high maximum in viscosity as a function of pH and this was attributed to a 

maximum in the attractive electrostatic interactions between protein and polyelectrolyte.  

Complexes are not only formed between oppositely charged proteins and 

polyelectrolytes. Wittemann et al. [76] found that anionic polyelectrolytes and proteins can 

form soluble complexes even above (“at the wrong side of”) the iso-electric point of the 

proteins. They argued that this is due to patches of positive charges on the surface of the 

proteins. An alternative (or additional) explanation is that charge regulation takes place [77]: 

one of the macromolecules adapts its charge as a response to the potential of the other so that 

the electric repulsion turns into an attraction. Complex coacervation of proteins and anionic 

polysaccharides have been excellently reviewed by de Kruif et al. [78], with respect to phase 

behaviour, composition and complex structures, rheological properties and with emphasis on 

complexes formed by milk proteins and polysaccharides. The review of Turgeon et al. [79] 

focuses on phase-ordering kinetics, thermodynamics and structural aspects of protein and 

polysaccharides, in order to identify important parameters to control phase separation of 

proteins and polysaccharides in complex mixtures. De Vries and Cohen Stuart [80] reviewed 

theories and simulations of macro-ion complex formation, emphasising linear/cylindrical 

(flexible, semi flexible polyelectrolyte) and spherical/globular macro-ions (colloids, micelles, 



Chapter 1 

9 

globular proteins). They discussed soluble complexes, dense complex phases, and micelles 

with dense complex coacervate cores, stabilized by neutral hydrophilic chains. In their review 

Cooper et al. [81] put more stress on the heterogeneity of charges in both macro-ions, arguing 

that this provides a more realistic depiction of proteins. They also discussed the interaction 

between proteins and polyelectrolyte multilayers and brushes. In addition, they described 

recent developments in investigation methods and novel applications of 

protein/polyelectrolyte complexes. 

 

Interaction between cross-linked polyelectrolyte and proteins 

 

Figure 1.3 Schematic representation of the complex formation between a microgel and an oppositely 

charged protein at a pH value below the isoelectric point of the protein. An equivalent number of 

simple counterions originally neutralizing the protein molecules (X
-
) and the microgel network (Na

+
), 

is released. 

 

As compared to complex formation between polyelectrolytes and proteins in solution, 

protein uptake by cross-linked polyelectrolytes (i.e., gels) involves a number of additional 

aspects, such as the swelling and de-swelling of the network, changes in excluded volume 

interactions, and osmotic pressure. Figure 1.3 demonstrates the interaction between a 

microgel and an oppositely charged protein. As a result of protein binding to the gel network, 

and (partial) neutralization of its charges, the gel de-swells to a certain degree. For a slightly 

cross-linked hydrogel system, Kabanov et al. [82] concluded that the driving force for protein 

uptake is similar to that for a linear polyelectrolyte: it is the increase in entropy of released 

counterions that drives formation of the cross-linked polyelectrolyte-protein complex. 

However, the combination of phase separation and gel elasticity may give rise to complicated 

effects: at intermediate stages of complex formation these authors [82] found a morphology 

consisting of an outer weakly swollen complex shell and a highly swollen hydrogel core. For 

slightly cross-linked poly (acrylic acid) microgels (60 - 80 µm), such a “core-shell” formation 
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was also found by Johansson et al. [83, 84]. They found that the uptake process of lysozyme 

could be divided into two steps, firstly the shell formation combined with de-swelling of the 

outer part of the microgel and with no protein diffusing into the core. In the second phase, 

microgel de-swelling is negligible and lysozyme diffuses into the microgel core. Bysell and 

Malmsten [85] studied the uptake of poly-L-lysine by poly(acrylic acid) (PAA) microgels (50 

- 150 µm) as a function of pH, ionic strength, size of the peptides and peptide concentration. 

They found that shell formation and de-swelling occurred, but only for poly-lysine sizes 

above 28 kDa. Eichenbaum et al. [86] reported that protein loading of poly (methacrylic acid-

co-acrylic acid) microgels (4 - 10 µm) strongly depends on the cross-link density and the pore 

size of the microgel. They showed that the protein cannot enter the gel if its size is larger than 

the average pore size of the network. Environmental conditions such as the pH and salt 

concentration affect the interaction between microgel and protein. Johansson et al. [83] found 

that the lysozyme binding capacity of their poly (acrylic acid) microgel is higher at pH 7 than 

that at pH 4.5 as a result of the higher charge contrast between the protein and microgel at pH 

7. They also found that the binding capacity increases with decreasing ionic strength, due to 

the electrostatic screening at high ionic strength.  

 

1.4 Outline of this thesis 

The work described in this thesis focuses on the uptake of the protein lysozyme in and its 

release from the Bioswitch oxidized starch microgels, the control over these processes by 

variation of environmental conditions (pH, salt concentration) and the release by (microbial) 

amylase activity. The results provide important guidelines for efficient loading and controlled 

release of functional ingredients from these novel carrier systems. 

In Chapter 2 we describe the preparation of the oxidized starch microgels; its physical-

chemical properties are characterized in terms of charge density, electrophoretic mobility and 

swelling capacity as a function of cross-link density, pH and salt concentration.  

In Chapter 3 the optimum conditions for lysozyme uptake by oxidized starch microgels 

are explored. We first determined the binding affinity of lysozyme to microgels of various 

degrees of oxidation (DO). Then we focus on the DO100% microgel, of which we measured 

the saturation uptake capacity at various pH values and salt concentrations. In addition, the 

de-swelling ratio of the gel particles as a result of protein absorption and the colloidal stability 

of the gel-protein complexes at different pH values were investigated. Finally, the charge 

regulation between microgel and protein during absorption process has been determined.  
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In Chapter 4 we extend our study to the mobility of lysozyme inside spherical DO30% 

oxidized starch microgels. For this we made use of fluorescently labelled protein and studied 

the exchange reaction between bleached and unbleached protein molecules inside the gel. To 

analyse the results we developed a model and we identified several protein fractions of 

different exchange rates. It was found that increasing the salt concentration (NaCl) or the pH 

causes a shift in the distribution towards the more mobile fractions. This is consistent with the 

binding affinity and uptake results described in Chapter 3. 

The subject of Chapter 5 is the kinetics of lysozyme uptake in and release from the 

microgel particles. The results were analysed using a model based on diffusion, taking into 

account the equilibrium exchange between protein bound to the gel matrix and free protein in 

the pores of the gel. The results are in line with the findings from the absorption and mobility 

studies in Chapter 3 and 4, showing a sharply decreasing affinity and increasing mobility with 

increasing ionic strength. We also briefly explored the effect of amylase. This enzyme was 

found to completely break down the oxidized starch microgel, which results in the release of 

the embedded protein into solution.  

In Chapter 6 we studied the antimicrobial activity of lysozyme release from amylase-

degradable DO30% microgel against several bacteria strains. The starch gel-lysozyme 

particles exhibit an antibacterial activity and they were successfully employed in both solid 

agar plates and in liquid suspension media. The promising results confirm the original 

hypothesis that the use of starch gel-lysozyme particles opens a new approach in antimicrobial 

applications. The previous studies indicate that protein release by increasing the salt 

concentration is quite fast (see minutes time scale), which is not always desirable in 

application. To slow down the protein release from the gel, we successfully built a poly-

lysine/poly-glutamic acid complex layer around lysozyme-loaded microgel. This is described 

in Chapter 7. It was found that the layer also protects the gel-lysozyme particles against 

amylase-degradation. This is extremely useful for applications where the release kinetics have 

to be controlled, and incorporated functional ingredients have to be protected from enzymatic 

degradation. Chapter 8 gives a general discussion on the results of this thesis. A summary of 

this dissertation is presented in the end. 

 

 

 



 Introduction 

 

12 

References 

 

[1] H.M.W.M. Thijssen, R. C. ;Timmermans, J. W. ;Van Veen, J. J. F. , Inducible release vehicles. 

Eur.Patent EP1628529, 2006. 

[2] M. Andersson, S.L. Maunu, Structural studies of Poly(N-isopropylacrylamide) microgels: Effect of 

SDS surfactant concentration in the microgel synthesis, J. Polym. Sci. Pt. B-Polym. Phys., 44 

(2006) 3305-3314. 

[3] K.S. Kim, B. Vincent, pH and temperature-sensitive behaviors of poly(4-vinyl pyridine-co-N-

isopropyl acrylamide) microgels, Polym. J., 37 (2005) 565-570. 

[4] T. Hoare, R. Pelton, Functional group distributions in carboxylic acid containing poly(N-

isopropylacrylamide) microgels, Langmuir, 20 (2004) 2123-2133. 

[5] H. Ni, H. Kawaguchi, T. Endo, Preparation of amphoteric microgels of 

poly(acrylamide/methacrylic acid/dimethylamino ethylene methacrylate) with a novel pH-

volume transition, Macromolecules, 40 (2007) 6370-6376. 

[6] S. Nayak, L.A. Lyon, Synthesis and characterization of zwitterionic thermosensitive microgels, 

Abstr. Pap. Am. Chem. Soc., 226 (2003) 279-287. 

[7] Q.F. Luo, P.X. Liu, Y. Guan, Y.J. Zhang, Thermally Induced Phase Transition of Glucose-

Sensitive Core-Shell Microgels, ACS Appl. Mater. Interfaces, 2 (2010) 760-767. 

[8] S. Schachschal, A. Balaceanu, C. Melian, D.E. Demco, T. Eckert, W. Richtering, A. Pich, 

Polyampholyte Microgels with Anionic Core and Cationic Shell, Macromolecules, 43 (2010) 

4331-4339. 

[9] S. Fujii, S. Kameyama, S.P. Armes, D. Dupin, M. Suzaki, Y. Nakamura, pH-responsive liquid 

marbles stabilized with poly(2-vinylpyridine) particles, Soft Matter, 6 (2010) 635-640. 

[10] G.X. Sun, M.Z. Zhang, Y. Xu, Y.M. Lu, P.H. Ni, Synthesis and Properties of pH-Responsive 

Cationic Microgels, Acta Chim. Sin., 67 (2009) 1685-1690. 

[11] W.J. Liu, Y. Zhou, H.Y. Chen, Y.M. Huang, H.L. Liu, Flocculation and aggregation Behavior of 

doubly responsive microgel, Acta Chim. Sin., 66 (2008) 449-453. 

[12] Y.R. Ren, X.S. Jiang, J. Yin, Copolymer of poly(4-vinylpyridine)-g-poly(ethylene oxide) respond 

sharply to temperature, pH and ionic strength, Eur. Polym. J., 44 (2008) 4108-4114. 

[13] V. Lapeyre, C. Ancla, B. Catargi, V. Ravaine, Glucose-responsive microgels with a core-shell 

structure, J. Colloid Interface Sci., 327 (2008) 316-323. 

[14] T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with 

physiological swelling activity, Biomacromolecules, 9 (2008) 733-740. 

[15] H. Li, R.M. Luo, K.Y. Lam, Multiphysics Modeling of Electrochemomechanically Smart 

Microgels Responsive to Coupled pH/Electric Stimuli, Macromol. Biosci., 9 (2009) 287-297. 

[16] S. Bhattacharya, F. Eckert, V. Boyko, A. Pich, Temperature-, pH-, and magnetic-field-sensitive 

hybrid microgels, Small, 3 (2007) 650-657. 

[17] R. Pelton, Temperature-sensitive aqueous microgels, Advances in colloid and interface science, 

85 (2000) 1-33. 

[18] G.M. Eichenbaum, Alkali earth metal binding properties of ionic microgels, Macromolecules, 33 

(2000) 4087-4093. 

[19] V. Boyko, Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) 

microgels: 1 - Synthesis and characterization, Polymer, 44 (2003) 7821-7827. 



Chapter 1 

13 

[20] J.I. Amalvy, Synthesis and characterization of novel pH-responsive microgels based on tertiary 

amine methacrylates, Langmuir, 20 (2004) 8992-8999. 

[21] L. Bromberg, Dually responsive microgels from polyether-modified poly(acrylic acid): Swelling 

and drug loading, Langmuir, 18 (2002) 4944-4952. 

[22] T.G. Van Thienen, Protein release from biodegradable dextran nanogels, Langmuir, 23 (2007) 

9794-9801. 

[23] G. Fundueanu, M. Constantin, P. Ascenzi, Preparation and characterization of pH- and 

temperature-sensitive pullulan microspheres for controlled release of drugs, Biomaterials, 29 

(2008) 2767-2775. 

[24] C.A. Farrugia, Gelatin behaviour in dilute aqueous solution: Designing a nanoparticulate 

formulation, Journal of Pharmacy and Pharmacology, 51 (1999) 643-649. 

[25] S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabhavi, Recent advances on chitosan-based micro- 

and nanoparticles in drug delivery, Journal of Controlled Release, 100 (2004) 5-28. 

[26] D.B. Shenoy, G.B. Sukhorukov, Microgel-based engineered nanostructures and their applicability 

with template-directed layer-by-layer polyelectrolyte assembly in protein encapsulation, 

Macromolecular Bioscience, 5 (2005) 451-458. 

[27] A.Z. Pich, Composite aqueous microgels: An overview of recent advances in synthesis, 

characterization and application, Polymer international, 56 (2007) 291-307. 

[28] H. Staudinger, E. Huseman, One highly polymeric compounds, 116(th) Announcement - On the 

limite swellable poly-styrene Berichte der deutschen chemischen gesellschaft 68 (1935) 1618. 

[29] R.H. Pelton, P. Chibante, Preparation of aqueous lattices with N-isopropylacrylamide Colloids 

and Surfaces, 20 (1986) 247-256. 

[30] J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels 

for drug delivery applications, Prog. Polym. Sci., 33 (2008) 448-477. 

[31] J. van der Gucht, Advanced soft matter, Wageningen university lecture book, 2009, pp140-143 

[32] Y. Li, R. De Vries, T. Slaghek, J. Timmermans, M.A. Cohen Stuart, W. Norde, Preparation and 

characterization of oxidized starch polymer microgels for encapsulation and controlled release of 

functional ingredients, Biomacromolecules, 10 (2009) 1931-1938. 

[33] B.G. De Geest, S. De Koker, J. Demeester, S.C. De Smedt, W.E. Hennink, Self-exploding 

capsules, Polym. Chem., 1 (2010) 137-148. 

[34] M. Das, S. Mardyani, W.C.W. Chan, E. Kumacheva, Biofunctionalized pH-responsive microgels 

for cancer cell targeting: Rational design, Adv. Mater., 18 (2006) 80-83. 

[35] Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, Thermosensitive core-shell particles as carriers for Ag 

nanoparticles: Modulating the catalytic activity by a phase transition in networks, Angew. 

Chem.-Int. Edit., 45 (2006) 813-816. 

[36] W. Park, J.S. King, C.W. Neff, C. Liddell, C.J. Summers, ZnS-based photonic crystals, Phys. 

Status Solidi B-Basic Res., 229 (2002) 949-960. 

[37] H. Yang, L.W. Qu, A. Wimbrow, X.P. Jiang, Y.P. Sun, Enhancing antimicrobial activity of 

lysozyme against Listeria monocytogenes using immunonanoparticles, J. Food Prot., 70 (2007) 

1844-1849. 

[38] G. Horner, P. Johne, R. Kunneth, G. Twardzik, H. Roth, T. Clark, H. Kisch, Heterogeneous 

photocatalysis, part XIX - Semiconductor type A photocatalysis: Role of substrate adsorption and 

the nature of photoreactive surface sites in zinc sulfide catalyzed C-C coupling reactions, Chem.-

Eur. J., 5 (1999) 208-217. 

[39] L. Ye, P.A.G. Cormack, K. Mosbach, Molecular imprinting on microgel spheres, Anal. Chim. 

Acta, 435 (2001) 187-196. 



 Introduction 

 

14 

[40] M. Malmsten, H. Bysell, P. Hansson, Biomacromolecules in microgels - Opportunities and 

challenges for drug delivery, Curr. Opin. Colloid Interface Sci., 15 (2010) 435-444. 

[41] E. Mastrobattista, W.E. Hennink, R.M. Schiffelers, Delivery of nucleic acids, Pharm. Res., 24 

(2007) 1561-1563. 

[42] M. Ballauff, Y. Lu, "Smart" nanoparticles: Preparation, characterization and applications, 

Polymer, 48 (2007) 1815-1823. 

[43] J.M. Saunders, T. Tong, C.L. Le Maitre, T.J. Freemont, B.R. Saunders, A study of pH-responsive 

microgel dispersions: from fluid-to-gel transitions to mechanical property restoration for load-

bearing tissue, Soft Matter, 3 (2007) 486-494. 

[44] B.R. Saunders, N. Laajam, E. Daly, S. Teow, X.H. Hu, R. Stepto, Microgels: From responsive 

polymer colloids to biomaterials, Adv. Colloid Interface Sci., 147-48 (2009) 251-262. 

[45] A.Z. Pich, H.J.P. Adler, Composite aqueous microgels: an overview of recent advances in 

synthesis, characterization and application, Polym. Int., 56 (2007) 291-307. 

[46] A.E.J. De Nooy, A.C. Besemer, H. vanBekkum, Highly selective nitroxyl radical-mediated 

oxidation of premary alcohol groups in water-soluble glucans Carbohydrate Research, 269 (1995) 

89-98. 

[47] A.E.J. De Nooy, Selective Oxidation of Primary Alcohol Groups in Polysaccharides, in, 

Technical University of Delft, Delft,The Netherlands, 1997. 

[48] Y. Li, J.M. Kleijn, T. Slaghek, J. Timmermans, M.A. Cohen Stuart, W. Norde, Mobility of 

lysozyme inside oxidized starch polymer microgels, Soft Matter, 7 (2011) 1926-1935. 

[49] J.W.M. Timmermans, R. C. ;Thijssen,H. M. W. M. , Antimicrobial Envelopes. Patent. WO 

03101196, 2003. 

[50] K.A. Brogden, Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?, Nat. 

Rev. Microbiol., 3 (2005) 238-250. 

[51] N.Y. Yount, A.S. Bayer, Y.Q. Xiong, M.R. Yeaman, Advances in antimicrobial peptide 

immunobiology, Biopolymers, 84 (2006) 435-458. 

[52] M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, 415 (2002) 389-395. 

[53] K. Matsuzaki, Why and how are peptide-lipid interactions utilized for self-defense? Magainins 

and tachyplesins as archetypes, Biochim. Biophys. Acta-Biomembr., 1462 (1999) 1-10. 

[54] L. Yang, T.M. Weiss, R.I. Lehrer, H.W. Huang, Crystallization of antimicrobial pores in 

membranes: Magainin and protegrin, Biophys. J., 79 (2000) 2002-2009. 

[55] Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer 

membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides, 

Biochim. Biophys. Acta-Biomembr., 1462 (1999) 55-70. 

[56] R. Mansson, H. Bysell, P. Hansson, A. Schmidtchen, M. Malmsten, Effects of Peptide Secondary 

Structure on the Interaction with Oppositely Charged Microgels, Biomacromolecules, 12 (2011) 

419-424. 

[57] H. Bysell, P. Hansson, M. Malmsten, Effect of Charge Density on the Interaction between 

Cationic Peptides and Oppositely Charged Microgels, J. Phys. Chem. B, 114 (2010) 7207-7215. 

[58] H. Bysell, P. Hansson, A. Schmidtchen, M. Malmsten, Effect of Hydrophobicity on the 

Interaction between Antimicrobial Peptides and Poly(acrylic acid) Microgels, J. Phys. Chem. B, 

114 (2010) 1307-1313. 

[59] H. Bysell, A. Schmidtchen, M. Malmsten, Binding and Release of Consensus Peptides by 

Poly(acrylic acid) Microgels, Biomacromolecules, 10 (2009) 2162-2168. 

[60] N. Benkerroum, Antimicrobial activity of lysozyme with special relevance to milk, Afr. J. 

Biotechnol., 7 (2008) 4856-4867. 



Chapter 1 

15 

[61] L. Callewaert, C.W. Michiels, Lysozymes in the animal kingdom, J. Biosci., 35 (2010) 127-160. 

[62] B. Masschalck, C.W. Michiels, Antimicrobial properties of lysozyme in relation to foodborne 

vegetative bacteria, Crit. Rev. Microbiol., 29 (2003) 191-214. 

[63] R. Huopalahti, R. López-Fandiño, M. Anton, R. Schade, G. Lesnierowski, J. Kijowski, 

Lysozyme, in:  Bioactive Egg Compounds, Springer Berlin Heidelberg, 2007, pp. 33-42. 

[64] W. Norde, F.G. Gonzalez, C.A. Haynes, Protein adsorption on polystyrene latex-particles, Polym. 

Adv. Technol., 6 (1995) 518-525. 

[65] J. van den Gucht, E. Spruijt, M. Lemmers, A.M. Cohen Stuart, Polyelectrolyte complexes: bulk 

phases and colloidal systems, J. Colloid Interface Sci., 361 (2011) 407-422. 

[66] D.J. Burgess, J.E. Carless, Microelectrophoretic studies of gelatin and acacia for the prediction of 

complex coacervation, J. Colloid Interface Sci., 98 (1984) 1-8. 

[67] C.Y. Lii, S.C. Liaw, V.M.F. Lai, P. Tomasik, Xanthan gum-gelatin complexes, Eur. Polym. J., 38 

(2002) 1377-1381. 

[68] M. Girard, S.L. Turgeon, S.F. Gauthier, Interbiopolymer complexing between beta-lactoglobulin 

and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration, 

Food Hydrocolloids, 16 (2002) 585-591. 

[69] F. Weinbreck, H. Nieuwenhuijse, G.W. Robijn, C.G. de Kruif, Complexation of whey proteins 

with carrageenan, J. Agric. Food Chem., 52 (2004) 3550-3555. 

[70] S. Girod, M. Boissere, K. Longchambon, S. Begu, C. Tourne-Petheil, J.M. Devoisselle, 

Polyelectrolyte complex formation between iota-carrageenan and poly(L-lysine) in dilute 

aqueous solutions: a spectroscopic and conformational study, Carbohydr. Polym., 55 (2004) 37-

45. 

[71] E. Seyrek, P.L. Dubin, C. Tribet, E.A. Gamble, Ionic strength dependence of protein-

polyelectrolyte interactions, Biomacromolecules, 4 (2003) 273-282. 

[72] F. Weinbreck, R. de Vries, P. Schrooyen, C.G. de Kruif, Complex coacervation of whey proteins 

and gum arabic, Biomacromolecules, 4 (2003) 293-303. 

[73] D. Leisner, T. Imae, Interpolyelectrolyte complex and coacervate formation of poly(glutamic 

acid) with a dendrimer studied by light scattering and SAXS, J. Phys. Chem. B, 107 (2003) 8078-

8087. 

[74] M. Skepo, P. Linse, Complexation, phase separation, and redissolution in polyelectrolyte-

macroion solutions, Macromolecules, 36 (2003) 508-519. 

[75] F. Weinbreck, R.H.W. Wientjes, Rheological properties of whey protein/gum arabic coacervates, 

J. Rheol., 48 (2004) 1215-1228. 

[76] A. Wittemann, B. Haupt, M. Ballauff, Polyelectrolyte-mediated protein adsorption, in: W. 

Richtering (Ed.) Smart Colloidal Materials, Springer-Verlag Berlin, Berlin, 2006, pp. 58-64. 

[77] W.M. De Vos, P.M. Biesheuvel, A. De Keizer, J.M. Kleijn, M.A.C. Stuart, Adsorption of the 

protein bovine serum albumin in a planar poly(acrylic acid) brush layer as measured by optical 

reflectometry, Langmuir, 24 (2008) 6575-6584. 

[78] C.G. de Kruif, F. Weinbreck, R. de Vries, Complex coacervation of proteins and anionic 

polysaccharides, Curr. Opin. Colloid Interface Sci., 9 (2004) 340-349. 

[79] S.L. Turgeon, M. Beaulieu, C. Schmitt, C. Sanchez, Protein-polysaccharide interactions: phase-

ordering kinetics, thermodynamic and structural aspects, Curr. Opin. Colloid Interface Sci., 8 

(2003) 401-414. 

[80] R. de Vries, M.A.Cohen Stuart, Theory and simulations of macroion complexation, Curr. Opin. 

Colloid Interface Sci., 11 (2006) 295-301. 



 Introduction 

 

16 

[81] C.L. Cooper, P.L. Dubin, A.B. Kayitmazer, S. Turksen, Polyelectrolyte-protein complexes, Curr. 

Opin. Colloid Interface Sci., 10 (2005) 52-78. 

[82] V.A. Kabanov, V.B. Skobeleva, V.B. Rogacheva, A.B. Zezin, Sorption of proteins by slightly 

cross-linked polyelectrolyte hydrogels: Kinetics and mechanism, Journal of Physical Chemistry 

B, 108 (2004) 1485-1490. 

[83] C. Johansson, P. Hansson, M. Malmsten, Interaction between lysozyme and poly(acrylic acid) 

microgels, J. Colloid Interface Sci., 316 (2007) 350-359. 

[84] C. Johansson, P. Hansson, M. Malmsten, Mechanism of lysozyme uptake in poly(acrylic acid) 

microgels, Journal of Physical Chemistry B, 113 (2009) 6183-6193. 

[85] H. Bysell, M. Malmsten, Visualizing the interaction between poly-L-lysine and poly(acrylic acid) 

microgels using microscopy techniques: Effect of electrostatics and peptide size, Langmuir, 22 

(2006) 5476-5484. 

[86] G.M. Eichenbaum, P.F. Kiser, A.V. Dobrynin, S.A. Simon, D. Needham, Investigation of the 

swelling response and loading of ionic microgels with drugs and proteins: the dependence on 

cross-link density, Macromolecules, 32 (1999) 4867-4878. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

Preparation and characterization 

of oxidized starch microgels  

 

Abstract 

A novel biocompatible and biodegradable microgel system has been 

developed for controlled uptake and release of especially proteins. It 

contains TEMPO-oxidized potato starch polymers which are chemically 

cross-linked by sodium trimetaphosphate (STMP). Physical chemical 

properties have been determined for microgels of different weight ratio of 

cross-linker to polymer (0.10, 0.15, 0.20, 0.30, and 0.40) and degree of 

oxidation (30%, 50%, 70%, and 100%). The charge density of the microgels 

as determined by proton titration is found to be in good agreement with the 

expected degree of oxidation (DO). The electrophoretic mobility of the 

microgel particles is used as a qualitative indicator of the pore size, and 

scales with microgel swelling capacity as expected. The swelling capacity 

increases with increasing pH and decreasing salt concentration. Preliminary 

data for the uptake of the globular protein lysozyme by the microgels show 

it increases with increasing DO and decreasing cross-linker to polymer ratio. 

Highly charged microgels with intermediate cross-linker to polymer ratios 

(0.15 and 0.2) are found to be optimal for encapsulating lysozyme.  

 

 

Published as: Y. Li, R. de Vries, T. Slaghek, J. Timmermans, M.A. Cohen Stuart, W. Norde, Preparation and 

Characterization of Oxidized Starch Polymer Microgels for Encapsulation and Controlled Release of Functional 

Ingredients, Biomacromolecules, 10 (2009) 1931-1938. 
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2.1 Introduction 

Microgels are widely used as drug delivery vehicles [1, 2], in coatings of functional 

ingredients [3], sensing devices [4], in biomaterials [5] and for catalysis [6]. The use of 

microgels for controlled uptake and release has been a subject of great interest over the past 

decades, since their properties allow them to respond to external stimuli, such as temperature 

[7, 8], pH [9], light [10], ionic strength [11], solvent [12], applied electric [13] or magnetic 

fields [14]. Microgels can be made of both synthetic and natural polymers. Most of the 

microgel particles are based on synthetic polymers such as poly(N-isopropylacrylamide) 

(PNIPAAm) [15], poly(methacrylic acid) (PMA) [16], poly(N-vinylcaprolactam) (PVCL) 

[17], poly[2-(diethylamino)ethyl methacrylate)] (PDEA) [18] or poly(acrylic acid) (PAA) 

[19].  

Microgels from natural polymers such as dextrans [20], pullulan [21], gelatin [22], 

chitosan [23]  and sodium alginate [24] are more attractive for food and biomedical 

applications, because of  their biodegradability and biocompatibility. There is an increasing 

demand for effective encapsulation systems consisting of natural polymers, in which the 

active compounds are well-protected, and can be released at the time and place where they are 

needed.  

We have developed a biopolymer-based release-on-demand BioSwitch [25] microgel, 

that consists of cross-linked negatively charged potato starch polymers, which interacts with 

charged functional ingredients through electrostatic interactions [26, 27]. The gel may be 

degraded by external conditions, e. g., enzymatic attacked by amylase, which switches on the 

release of the functional ingredients from the gel. Advantages of the Bioswitch microgel are 

the controlled charge- and cross-linking density, and hence controlled swelling and functional 

ingredient uptake capacity. The microgels are responsive to environmental changes, such as 

pH and salt concentration, hence uptake and release of functional ingredients inside the gels 

can also be tuned through solvent conditions. 

For the case of lysozyme (that we consider here as an example of functional ingredient), 

the starch microgel is an appropriate absorbent because the overall charges of the protein and 

gel have opposite signs. The lysozyme-starch system has great potential for antimicrobial 

food packaging [28]. Exposing lysozyme-containing starch particles to an initial microbially 

contaminated environment leads to hydrolysis of the starch by microbial enzymes. As a result, 

lysozyme is released in the environment where it inhibits microbial growth.  
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To design such applications, it is essential to establish basic physical-chemical properties 

of the microgels, in order to select optimum parameter values. In this chapter, we first present 

the TEMPO-mediated oxidization of starch polymers and the synthesis of different types of 

microgels. Next, we physically-chemically characterize the microgels, with the ultimate aim 

to select optimal gels for encapsulation applications. Potentiometric titrations are used for 

quantitative evaluation of charge densities of the microgels. Swelling capacities are 

determined as a function of degree of oxidation (DO), cross-link density, pH and salt 

concentration. Methods for determining accurate pore sizes and pore size distributions of 

hydrogels are typically involved, therefore we here use the electrophoretic mobility of the 

microgel particles as a qualitative indicator of the microgel pore size. Finally, we present 

some preliminary experiments on the uptake of lysozyme by the microgels.  

 

2.2 Material and Methods  

Materials 

Native potato starch was kindly provided by AVEBE, the Netherlands. The oxidation 

catalyst 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was purchased from Merck, 

Germany. The cross-linker Sodium trimetaphosphate (STMP) and the globular protein 

lysozyme (from chicken egg white, Mw=14.4 KD) were supplied by Sigma-Aldrich. All other 

chemicals used were of analytical grade. Purified Milli-Q water was used throughout. 

Microgel synthesis  

Starch polymer was selectively oxidized at the 6-position to obtain a polyglucuronate 

with >95% selectivity at complete conversion of the primary alcohol groups[29],by TEMPO-

mediated oxidation. In this way, starch polymers of 30%,50%,70% and 100% degree of 

oxidation (DO) were prepared, following the procedure developed at TNO Zeist[30], The 

Netherlands. The DO was controlled by the amount of sodium hypochlorite added during 

oxidation. The oxidation is performed at constant pH (pH 10.0) using 2.0 M NaOH in a pH-

stat set up, the amount of NaOH needed to keep the pH constant is used to calculate the DO. 

Microgels were prepared by cross-linking the oxidized starch polymer with STMP at pH 

10.0. According to literature, STMP reacts with two alcohol groups belonging to two different 

polymer chains [31], thus forming an intermolecular linkage. First, 20 gram of oxidized starch 

polymer was dissolved in 95 mL distilled water at room temperature, which took around 30 

minutes. Then, the cross-linker STMP and sodium hydroxide were added to the polymer 
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solution and the mixture was heated to 40 ºC, and kept at that temperature for 10 minutes 

without stirring, which leads to a gel formation. The weight ratio of cross-linker to sodium 

hydroxide was 3:1.The weight ratio of cross-linker to polymer (R cross-linker/polymer ) were 0.10, 

0.15, 0.20, 0.30 and 0.40. After the gel was formed, the gel was put into an oven at 40 ºC for 

one hour to allow the cross-linking reaction to take place. Then the gel was kept overnight in 

a cold room at 0 ºC. The whole piece of gel was grinded through a sieve (1 mm) covered with 

a nylon cloth of 200 mesh (mesh size 0.074 mm), in order to obtain reasonably uniform 

microgel particles. The gel particles were washed three times with distilled water using the 

nylon covered above a sieve again, in order to remove the salts. Thereafter the microgel 

particles were washed three times again in 100% ethanol in order to remove water, and three 

times in 100% acetone in order to remove ethanol and last traces of water. Finally, the 

microgel particles were dried in oven at 40 ºC overnight. The dried microgel powder was 

again grinded to achieve small and homogenous particles, using a sieve of  20 mesh (mesh 

size 0.841 mm).  

Size distribution of microgel particles  

The size distribution of microgel particles in suspension was determined using a Malvern  

MasterSizer 2000 (Malvern, UK). During the laser diffraction measurement, particles pass 

through a focused laser beam, and scatter light at an angle that is inversely proportional to 

their size. Dual wavelength detection system (blue light combined with red light) was used to 

enhance sizing performance and sensitivity. A software-controlled sample dispersion unit 

Hydro 2000 SM(A) was used. The size of swelled microgel particles in suspension was 

measured in water at 25 °C. The weight concentration of particles used in measurement is 

0.05mg/mL . Prior to the measurements, suspensions were sonicated for 15 minutes, in order 

to attain finely dispersed gel particles. 

Determination of charge density 

The charge density of the microgels was determined using potentiometric proton 

titration. Titrations were performed using an automated titration set up [32, 33]. The titration 

set-up consists of a titration cell with a combined pH electrode (glass–Ag/AgCl), motor 

driven burette and a Schott TR250 titration interface linked to the burettes and the electrodes. 

The titration cell was kept under Argon atmosphere at 25 °C. The base and acid solutions that 

were used in the acid-base titration or pH stat titration were 0.100 M KOH and 0.100 M HCL. 

Especially for the acid-base titration, 50 mL of microgel suspension at a concentration of 0.4 
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g/L was prepared. The ionic strength of the microgel suspension was adjusted with KCL to 

0.01M and 0.1M. The pH of the suspension was adjusted to 3.0, and equilibrated for half an 

hour. Titrations were carried out from pH 3.0 to 11.0 .The suspension was left at pH 11.0 for 

one hour, and then titrated back to pH 3.0 to check for reversibility (indicating proper 

equilibration at each pH value). The change of the charge of the microgels was calculated 

from the difference of the amount of acid-base added and the mass balance of protons in the 

suspension. In the calculations, the adapted Davies equation[34] was used to calculate the 

activity coefficients. The relative position of the titration curves at different electrolyte 

concentrations was determined by the change of pH measured after the addition of the 

electrolyte solution (KCL). Proton titration curves give relative charge densities rather than 

the absolute ones. Conversion to absolute charges is straightforward if a point of zero charge 

can be determined, but for the starch polymers this is at extremely low pH, where titrations 

are impossible. Therefore, to estimate the absolute charge density of our polymers and gels, 

we fit our data using a simple titration model, Henderson-Hasselbalch approximation. For 

detailed fitting procedure please see Appendix. 

Electrophoretic mobility measurements 

Electrophoretic mobilities were measured by laser Doppler Velocimetry (LDV) using a 

Malvern ZetaSizer HS2000 (Malvern, UK). The rate of change of the phase shift between the 

scattered light and a reference beam is correlated to the particle velocity and thus allows for 

evaluating the particular electrophoretic mobility. The equipment was working with a 10mW 

He-Ne laser of wavelength 633nm.The applied field strength was 80 Vcm
-1

. The 

concentration of the microgel particles used in the measurement is 10 g/L. The measurements 

were performed in 0.001M, 0.01M and 0.1 M KCL solutions at pH 7 and 25 ºC. Prior to the 

measurements, suspensions were sonicated for 15 minutes, in order to get finely dispersed 

suspension.  

 Free swelling capacity  measurements 

A known weight of collapsed/dried microgel powder (around 0.01 gram) was wetted by 

a large excess of distilled water/buffer at room temperature. The swollen microgel was 

immersed in buffer for 24 hours to obtain equilibrium. Then the excess water was wiped off 

with paper until there were no visible water droplets. Gel swelling was quantified using the 

equilibrium volumetric swelling ratio SWv, defined as the ratio of the volume of swollen gel : 

volume of dry gel. By knowing the density of water (ρH2O =1 g/cm
3
, ρpolymer =1.5 g/cm

3
 for all 
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oxidized starch polymer), and the equilibrium weight swelling ratio SWw (the ratio of the 

weight of swollen gel : weight of dry gel) obtained from swelling experiment, the volumetric 

swelling ratio SWv can be calculated as: 
)1(1

2/ −+= wOHpolymerv SWSW ρρ
. 

Lysozyme uptake capacity measurements 

Prior to the measurements, suspensions were sonicated for 15 minutes, in order to attain 

finely dispersed gel particles. The uptake of lysozyme into microgel particles was studied by 

mixing gel suspension with solutions of increasing lysozyme concentration in steps of 1 mL 

with 10 minutes delay time after each step. The absorption of lysozyme in the microgel will 

become saturated after a certain time. 1 mL lysozyme solution (6.67 g/L) was added into 10 

mL microgel suspension (2 g/L) while stirring. After 10 minutes loading time, 1 mL of the 

mixture solution was sampled, and another 1mL lysozyme solution was added while 

continually stirring for 10 minutes. This was repeated for another 9 times. Finally, all the 

samples were centrifuged under 10,000 rpm for 5 minutes, and the concentration of lysozyme 

in the supernants was determined by absorbance at wavelength 280 nm measured with UV 

spectrophotometer (HITACHI, Japan). The uptake (mg lysozyme/mg of dry gel) of lysozyme 

in the microgel particles was calculated from material balance. At a gel concentration of 2 g/L, 

the volume of the swollen gel is less than 5% of the total volume. This volume fraction was 

neglected when calculating lysozyme uptake. The absorption isotherm was obtained by 

plotting the amount of the lysozyme absorbed by the microgel against the equilibrium 

lysozyme concentration in solution. 

2.3 Results and Discussion 

Size distribution of microgel particles 

As shown in figure 2.1, our starch polymer microgels have relatively wide size 

distribution, ranging between 4 and 100 micrometers, although most sizes are distributed 

between 10 and 20 micrometers. By way of example, figure 2.2 presents an optical 

microscopic picture of DO30% microgel, to show the morphology of the microgels. 

Obviously, they have irregular shapes. Since the microgel particles swell in water, they have a 

transparent appearance.  
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Figure 2.1 Size distribution curves: Numbers of starch polymer microgel particles in water vs their size (volume 

weighted mean diameter in µm), for various values of the degree of oxidation (DO%). (∆) DO30%, (▲)DO50%, 

(●)DO70%, (○) DO100%; All gels have a weight ratio cross-linker/polymer of 0.20 (4 gram STMP per 20 gram 

of oxidized polymer).  

 

Figure 2.2 Optical microscopic image of microgel particles dispersed in water (same DO30% microgel sample 

indicated in figure 2.1) ,scale bar shown in graph is 20 µm. 

Charge densities from proton titration 

 We first determined the charge density Q (C/g) of the polymers before cross-linking, as 

a function of pH at 0.1M KCL and 20 °C; results are shown in figure 2.3 A. The dissociation 

reaches a plateau value at pH around 5. The maximum charge density Qmax (C/g) obtained 

from the plateau is proportional to the degree of oxidation. 

Since proton titration only probes changes in the charge of a sample, we used the slope 

positioning method in order to obtain the absolute charge density. Figure 2.4 shows an 

example of the slope-positioning that we use to fit the data [35] (see Appendix). The fitting 

procedure leads to values of  Qmax   and pKa,eff  for each titration curve.    
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Figure 2.3 Titration curves: charge density Q (C/g) of uncross-linked and cross-linked starch polymers as a 

function of pH, for various values of the degree of oxidation (DO%). The absolute position of the curves has 

been determined using slope positioning, as explained in the text. (A) oxidized starch polymers of different 

degree of oxidation (∆) DO30%, (▲)DO50%, (●)DO70%, (○) DO100%; (B) oxidized starch polymer microgels 

of different degree of oxidation (∆) DO30%, (▲)DO50%, (●)DO70%, (○) DO100%. All gels have a weight 

ratio cross-linker/polymer of 0.15 (3 gram STMP per 20 gram of oxidized polymer). Solid lines are fits to the 

Henderson-Hasselbalch equation that are also used in the slope positioning. 

  

Figure 2.4 Example of slope positioning using the Henderson-Hasselbalch model. The slope dQ/dpH (C/g) is 

plotted versus pH. The experimental data (●) is for a DO100% starch polymer, the solid line is the model fit. 

As shown in figure 2.5A, the maximum charge density Qmax of various oxidized 

polymers increases more or less linearly with increasing DO, but for the gels of higher DO, 

the charge density is somewhat lower than that of the corresponding polymers. The pKa,eff is 

shown on Fig.2.5B. It increases with increasing DO for both polymers and gels. The simple 

titration model fits the experimental data reasonably well and the value of Qmax reaches 60-

70% of the theoretical maximum charge density of carboxylic groups on one gram starch 

polymer. The fact that Qmax of the polymer gel is lower than that of the polymers at higher DO 
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Figure 2.5 Parameters values resulting from fitting titration data to the Henderson-Hasselbalch model, for 

uncross-linked (●) and cross-linked (▲) oxidized starch polymer. Weight ratio cross-linker/polymer is 0.15 (3 

gram of STMP per 20 gram of oxidized polymer). (A)  Maximum charge density Qmax versus degree of oxidation 

(DO %). (B) pKa,eff  versus degree of oxidation (DO%). 

is mostly likely due to the fact that cross-linking the polymer makes polyelectrolyte effect 

stronger by bringing the chain close together. The dissociation of COOH groups is restricted 

by dissociation of neighboring COOH groups, which gives low Qmax of cross-linked highly 

charged polymers. The trend of pKa,eff  of both polymer and gel are the same, and are as 

expected: for increasing DO, dissociation becomes progressively more difficult. Data for the 

DO100% gel was hard to fit using the simple model (see Fig.2.3B), this may have caused 

some deviation. 

       

 

Figure 2.6 Effect of cross-link density on charge density Q (C/g) versus pH, for DO30% and DO100% oxidized 

starch polymers. (A) DO30% polymer (♦) and DO30% polymers cross-linked with 2 (∆), 3 (▲), 4 (○), and 8 (●) 

gram of STMP per 20 g of oxidized polymer.  (B) DO100% polymer (♦) and DO100% polymers cross-linked 

with 2 (∆), 3 (▲), 4 (○), and 8 (●) gram of STMP per 20 g of oxidized polymer. The weight ratio cross-

linker/polymer is 0.10, 0.15, 0.20, and 0.40 respectively. 



 Preparation and characterization of oxidized starch microgels 

 

 

26 

 

The effect of electrolyte on proton titration is not significant (results not shown). The 

results of pH stat salt titration for polymers and microgels show that the charge density in 

0.01M KCL solution is only few coulombs/gram higher than that in 0.1M KCL.  

Charge densities of the microgel are hardly influenced by amount of cross-linker. The 

difference between charge densities of DO30% polymer and DO30% microgel is insignificant 

(Fig. 2.6A). Only the DO100% polymer shows a bit higher charge density than polymer 

microgel (Fig. 2.6B), again most likely due to the polyelectrolyte effect, that the pKa,eff  of 

cross-linked polymer is shifted from pKa of uncross-linked polymer, which gives different 

behavior between cross-linked and uncross-linked polymers on dissociation of COOH groups. 

Swelling capacity  

Swelling capacities of microgels were measured as a function of DO and weight ratio of 

cross-linker STMP to oxidized starch polymer (R cross-linker/polymer) in the buffer of pH 7.0, ionic 

strength 0.05M, at room temperature. As shown in figure 2.7, the swelling capacity of 

microgels decreases with increasing weight ratio of STMP to polymer, and reaches a constant 

minimum value beyond 0.20 of R cross-linker/polymer. Lack et al. [36] also found a critical cross-

linker concentration above which rheological properties and swelling of the gel do not change 

anymore.  

Somewhat unexpectedly, at low R cross-linker/polymer, the dependence of swelling on the DO 

is opposite of what might be expected: the DO100% gels swell much less than the gels with 

lower charge densities. Since cross-linking is performed after oxidation, cross-linking 

efficiency may not be the same for gels with different degrees of oxidation. Indeed,  

31
phosphate NMR spectrometry (data not shown) shows that the DO100% microgel only has 

one single cross-linked phosphate peak, but DO30% microgel has an extra phosphate peak 

around 5 ppm. This peak is supposed to be the peak of the side reaction in which only one 

polymer chain is connected to the di/tripolyphosphate [37]. Hence it seems that the DO100% 

polymer indeed cross-links more efficiently with STMP than the DO30% polymer. A possible 

reason could be that the chains of highly charged DO100% polymers are more stretched than 

those of the DO30% polymers during cross-linking. This would increase the accessibility for 

cross-linker leading to more efficient formation of a gel. It is also possible that the DO30% 

polymer tends to form intra-molecular cross-links rather than inter-molecular cross-links. In 

this case, cross-links contribute less effectively to the network formation. This is also 

consistent with the clear appearance of the DO100% gel before grinding, indicating a 
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homogenous gel structure, whereas the fact that DO30% gels are more turbid before grinding, 

may indicate a more inhomogeneous structure.  

 

Figure 2.7 Volumetric swelling ratio SWv (-) as a function of weight ratio of STMP to oxidized polymer R cross-

linker/polymer, for starch polymers with different degree of oxidation: DO30% (∆), DO50% (▲), DO70 % (●) and 

DO100 % (○). Buffer conditions: 0.02M, pH 7.0 Citric acid-phosphate buffer, ionic strength 0.05M. 

The pH dependence of the microgel swelling is shown in Figure 2.8. Swelling increases 

with increasing pH (Fig.2.8 A), and remains constant from pH 5 to 8, as expected since at 

these pH values the dissociation of carboxylic groups is complete and the repulsion between 

the polyelectrolyte chains is maximal. The effect of salt concentration on microgel swelling 

behavior has also been investigated. Swelling decreases with increasing salt concentration 

(Fig.2.8 B), and reaches a plateau value at 0.2 M salt concentration. This is due to screening 

of electric charges of microgel by presence of salt. Apparently, nearly all charges are screened 

at 0.2M salt. This is also consistent with the salt effect on the hydrodynamic radius of free 

polymers in solution, as observed by dynamic light scattering. As shown in figure 2.8C, the 

hydrodynamic radius of the DO30% polymer does not change any more as soon as the salt 

concentration is beyond 0.2M. Similar results of swelling as a function of pH and salt are also 

found for other polyelectrolyte microgels [38]. 
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Figure 2.8 Influence of salt and pH of swelling of oxidized starch microgels. (A) Volumetric swelling ratio SWv 

(-) as a function of pH for microgels of varying degree of oxidation: DO30% (∆), DO50% (▲), DO70% (●) and 

DO100% (○). R cross-linker/polymer is 0.10 (2 gram of STMP per 20g of oxidized starch polymer). Buffer conditions: 

0.02M Citric acid-phosphate buffer (pH 2-8), ionic strength 0.05M; (B) Volumetric swelling ratio SWv as a 

function of NaCl concentration (M) for same series of microgels at pH 7.0;(C) Hydrodynamic radius Rh (nm) of 

uncross-linked DO30% starch polymer as obtained from Dynamic Light Scattering (DLS), as a function of  NaCl 

concentration (M).  

Electrophoretic mobility  

Direct measurement of the pore size of microgel particles does not yield unambiguous 

results, in part due to the irregular shape and broad size distribution of the particles. Swelling 

data suggested that at small ratios of cross-linker to polymer, the DO100% gels have smaller 

pore sizes than the more weakly charged gels. Here we test this hypothesis by using 

electrophoretic mobility as a qualitative indicator of pore size. The high salt electrophoretic 

mobility of microgel particles is related to the microgel pore size as we explain below.  

According to Oshima [39], the electrophoretic mobility (electrophoretic velocity per unit 

field strength) of charged soft particles can be divided into two parts. The first part involves a 

weighted average of potentials over the surface charge layer, which is sensitive to ionic 
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strength. The second contribution involves the fixed charge density ρfix (C/m
3
) and softness λ

-1
 

(nm) or penetrability of the microgel pores for the solvent. At high electrolyte concentration 

the first term vanishes due to screening, and only the second, ionic-strength independent term, 

remains: 

                            
2ηλ

ρ
µ fix≈    for   λκ >>                                  (2.1) 

 

Where κ (nm
-1

) is the reciprocal Debye length, ρfix (C/m
3
) is the fixed charge density and 

                             

2/1

1









=−

γ
η

λ                                                    (2.2) 

where η is the viscosity of solvent (Pa.s) and  γ is an effective friction coefficient (Nm
-4 

s) for 

the solvent in the microgel. 

 

Figure 2.9 Electrophoretic mobility (10-8m2 s-1 V-1) of microgel particles as a function of NaCl concentration (M), 

for varying degree of oxidation: DO30% (∆), DO50% (▲), DO70% (●), and DO100% (○). R cross-linker/polymer is 

0.20 (4 gram STMP per 20 g of oxidized starch polymer). 

As is clear from Figure 2.9, our microgel particles indeed show a typical soft particle 

behavior with a plateau for the electrophoretic mobilities at high salt, with the possible 

exception of the DO30% microgel for which the mobility keeps increasing slightly.  

We can derive values for the softness parameter λ
-1

 from our mobility data by combining 

it with the swelling data and proton titration data. For the calculations, we use a viscosity of 

solvent η (ηH2O: 0.001 Pa.s), the plateau mobility value µ  from figure 2.9, the volume charge 

density ρfix (which was calculated by the electric charge density from proton titration 

(Fig.2.3), and the swelling capacity (Fig.2.7) . Table 2.1 shows the values of the softness 

parameter λ
-1

 of different microgels derived from Eq. (2.1). Larger softness implies that the 



 Preparation and characterization of oxidized starch microgels 

 

 

30 

 

fluid velocity profile penetrates more easily onto the microgel structure, implying larger 

pores.  

Table 2.1 shows that the softness λ
-1

 (nm) of microgel
 
particles decreases with increasing 

degree of oxidation (DO) and increasing weight ratio cross-linker to polymer (R cross-

linker/polymer) . This is in agreement with the dependency of the swelling capacity on DO and R 

cross-linker/polymer (Fig.2.7).  If we assume that the microgel has a homogenous structure (i.e. the 

structure of outer layer is similar as that of central part), we find that highly oxidized and 

highly cross-linked polymer microgels indeed have a smaller pore size, supporting our earlier 

hypothesis that highly oxidized polymers are cross-linked more efficiently with STMP than 

the polymer with a lower degree of oxidation. 

 Table 2.1    Calculation of softness parameter λ-1 (nm) using Oshima’s theory, Eq.(2.1) and maximum internal 

salt concentration Cint, max (M) for microgles of varying degree of oxidized (DO30%, 50%, 70%, 100%) polymers 

and weight ratio of cross-linker STMP to polymer R cross-linker/polymer  of  0.1 and 0.2. Other entries are Volumetric 

swelling ratio SWv, fixed volume charge density ρ fix (106Cm-3), electrophoretic mobility µ (10-8m2s-1V-1). 
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Figure 2.10 Electrophoretic mobility (10-8m2s-1V-1) of microgels as a function of  weight ratio of cross-linker 

STMP to starch polymer R cross-linker/polymer, for increasing concentration of potassium chloride  ((●)=0.001M; 

(∆)=0.01M; ( ▲)=0.1M). (A) DO30% polymer microgels; (B) DO100% polymer microgels 

  Next, consider the dependence of the electrophoretic mobility on the weight ratio cross-

linker to polymer (R cross-linker/polymer) in somewhat more detail. Figure 2.10 shows that the 

DO30% and DO100% polymer microgel particles exhibit distinctly different electrophoresis 

behavior. The mobility of the DO100% polymer microgel particles is hardly influenced by 

added salt (Fig.2.10B), but the DO30% polymer microgel particles are clearly salt dependent, 

and move faster at low salt concentration and low R cross-linker/polymer (Fig.2.10A). The mobility 

increases with decreasing salt concentration and decreasing R cross-linker/polymer. This trend was 

also observed for other types of microgel particles [40]. 

The independence to salt of the DO100% electrophoretic mobility may be related to the 

high internal salt concentration of highly charged microgels. We have calculated the internal 

salt concentration by assuming that all carboxylic groups in the microgel contribute one 

counterion. The maximum number of COO- groups can be calculated from electric charge 

density (Fig.2.3) and swelling capacity (Fig.2.7). As can be seen in Table 2.1, the highly 

charged microgels have significantly higher internal salt concentrations than the more weakly 

charged ones. Only when the added salt concentration significantly exceeds the internal one, 

one may expect an influence of added salt.  

Lysozyme Uptake Capacity  

Finally we present some preliminary data on lysozyme uptake capacity by our microgels, 

at varying degree of oxidation (DO%), and weight ratio cross-linker to polymer (R cross-

linker/polymer).  

Dependence on degree of oxidation (DO%) 
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Figure 2.11 (A).Lysozyme uptakeΓ(prot mg/mg gel) as a function of  equilibrium lysozyme concentration in 

solution Cprot (mg/mL) at pH 7.0 Citric acid-phosphate buffer, ionic strength 0.05M for microgels of varying 

degree of oxidation ((∆)=DO30%;(▲)=DO50%;(●)=DO70%;(○)=DO100%) and R cross-linker/polymer of 0.15 (3 

gram STMP/20 gram polymer);(B) Linear relationship of maximum absorbed amount of lysozyme Γmax (prot 

mg/mg gel) (●) as a function of charge density Q gel (C/g) on microgels. 

As shown in figure 2.11A, the initial part of the curve for Γ(C) (absorption Γ in mg 

lysozyme per mg dry gel versus solution concentration Cprot of lysozyme) rises steeply which 

indicates that lysozyme absorbs with high affinity at low protein concentration. The uptake 

increases and almost reaches a plateau value when the lysozyme concentration is above a 

threshold concentration of 0.1-0.2 mg/mL. The uptake capacity, i.e. the amount of lysozyme 

absorbed per gram dry gel, increases with increasing DO that is with increasing negative 

charge density in the gel. Hence it increases the strength of interaction between microgel and 

lysozyme. The uptake experiments are done at pH 7.0 (below the isoelectric point of 

lysozyme (pH=11.0)). Microgel and lysozyme carry opposite charges leading to electrostatic 

attraction, and complexation. Figure 2.11B shows that the maximum lysozyme uptake Γmax 

(the plateau value in Fig.2.11A) increases linearly with the total amount of charges Qgel on 

each microgel.  

 

Dependence on weight ratio cross-linker to polymer 

 

For a microgel of a given charge density (e.g. DO50%), the uptake capacity of the 

microgel decreases with increasing weight ratios of cross-linker to polymer (R cross-linker/polymer) 

(Fig.2.12). At R cross-linker/polymer above 0.20, the cross-linking starts to negatively affect the 

absorption capacity, which is consistent with the swelling data. Lysozyme uptake does not 

vary a lot when the ratio is below 0.20. Probably, at low R cross-linker/polymer, the pore sizes are 



Chapter 2 

 

33 

 

much larger than the size of the lysozyme molecules. For ratios > 0.20 we are entering the 

regime where pore sizes become comparable to the size of lysozyme, which ultimately 

reduces lysozyme absorption. 

 

 

Figure 2.12 Lysozyme uptake Γ(prot mg/mg gel) as a function of  equilibrium lysozyme concentration in 

solution Cprot (mg/mL) at pH 7.0 Citric acid-phosphate buffer, ionic strength 0.05M for DO50% microgels of 

varying R cross-linker/polymer ((▲)=0.10;(∆)=0.15;(●)=0.20;(○)=0.30g;(♦)=0.40)  

2.4 Concluding remarks 

In this chapter, we have characterized the physical-chemical properties of novel 

biodegradable starch microgel particles, and their interaction with lysozyme. The system was 

developed for use in controlled-uptake-release of protein, as in antimicrobial packaging. Our 

results indicate that we have good chemical control over the charge density of the microgels, 

which is directly reflected in the lysozyme uptake capacity. The cross-linking efficiency was 

found to depend on the degree of oxidation of the polymers, with highly charged polymers 

leading to more densely cross-linked microgels. Intermediate degrees of cross-linking for 

microgels seem to be optimal for the uptake of lysozyme: at high weight ratio cross-

linker/polymer the pore sizes become too small, whereas at very low weight ratio cross-

linker/polymer, the microgels may swell enormously, which is undesirable for packaging 

application.  
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Appendix 

Titration curve positioning using the Henderson-Hasselbalch approximation. 

For fitting the titration data, we assume a simple Henderson-Hasselbalch titration curve, 

in terms of an effective pKa,eff  that determines the degree of dissociation of the COOH 

groups. This gives a pH dependent charge density Q (C/g) of the polymer: 

pHpK effa

Q
Q

−+
=

,101

max                                                      (A2.1) 

 

Where Qmax (C/g) is the charge density at full dissociation. The value of pKa,eff may 

deviate from the intrinsic pKa value of the COOH groups if dissociation of the COOH groups 

is influenced by the dissociation of neighboring COOH groups
35

. The predicted slope of the 

titration curve is 

pHpK

pHpK

effa

effa

Q

dpH

dQ −

− ⋅⋅
+

= ,

,
1010ln

)101( 2

max                (A2.2) 

 

which has a maximum at pH = pKa,eff, that is proportional to Qmax. We analyze the 

experimental titration data by numerically differentiating, and fitting to Eq. (A2.2). Titration 

data at both low and high pH has large errors, so we fit to the central part of the titration 

curve, in the vicinity of pKa. 
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Chapter 3 

Lysozyme uptake by oxidized 

starch polymer microgels 

Abstract 

With the aim of determining suitable conditions for uptake and release of 

globular proteins on microgels, we studied the interaction between 

phosphated, highly cross-linked, negatively charged oxidized potato starch 

polymer (OPSP) microgel particles and lysozyme from hen’s egg. Our 

microgel shows a typical protein-induced de-swelling behavior for charged 

microgels. The protein distributes rather homogenously through the 

microgel. We found that at low salt concentration the saturation protein 

uptake Гsat increases with increasing pH. This is because the binding 

capacity is mainly determined by charge compensation: with increasing pH 

the (positive) charge on the lysozyme molecules decreases, while the 

(negative) charge of the microgel particles increases. Therefore, more 

protein molecules are needed to compensate for the charge on the gel and 

the binding capacity increases. The protein binding affinity, however, 

decreases sharply with increasing pH, presumably because this affinity is 

mainly sensitive to the lysozyme charge density. At high pH the binding 

affinity is relatively low, and by adding salt the protein can easily be 

released from the gel. This leads to a maximum in the curves of Гsat versus 

pH, and this maximum shifts to lower pH values with increasing ionic 

strength. We conclude that for protein uptake and release applications, the 

present system works best around pH 5 due to a sufficiently high binding 

affinity and a sufficiently high binding capacity. 

 

Published as: Y. Li, R.de Vries, J.M.Kleijn, T. M. Slaghek, J. W. Timmermans M.A. Cohen Stuart, W. Norde, 

Lysozyme uptake by oxidized starch polymer microgels. Biomacromolecules 11(2010) 1754-1762 
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3.1 Introduction 

The number of protein and polypeptide drugs is increasing rapidly, and this has 

stimulated interest in the development of protein/peptide drug delivery systems. Polymer 

microgels have received a lot of attention as potential carrier system. In view of their 

biodegradability and biocompatibility, microgels from natural polymers are particularly 

interesting. An example of such microgels are systems of phosphated cross-linked amylose 

starch and these have been widely investigated for controlled drug release [1-4]. However, a 

disadvantage of these systems is that it is difficult to control the charge density on the 

polysaccharides and therefore the electrostatic binding of proteins and peptides. Previously, 

we have introduced a system based on phosphated cross-linked oxidized potato starch 

polymer (OPSP) [5], which offers full control over the polysaccharide charge density. 

 Complex formation of polysaccharides with oppositely charged proteins has been 

studied over decades [6-8]. The main driving force for this process is the gain in entropy as a 

result of the release of counterions into the solution. Depending on conditions, soluble 

protein-polyelectrolyte complexes may be formed, or there may be macroscopic phase 

separation of the gas-liquid type in which a dilute colloidal phase coexists with a very 

concentrated colloidal phase [9]. 

As compared to complex formation in solution, protein uptake by cross-linked 

polyelectrolytes (i.e., gels) involves additional aspects: the swelling and de-swelling of the 

network, changes in excluded volume interaction, osmotic pressure, etcetera. For a slightly 

cross-linked hydrogel system, Kabanov et al. [10] concluded that the driving force for protein 

uptake is similar to that for a linear polyelectrolyte: it is the increase in entropy of released 

counterions that drives formation of the cross-linked protein-polyelectrolyte complex. 

However, the combination with phase separation and gel elasticity may give rise to 

complicated effects: at intermediate stages of complex formation these authors found a 

morphology consisting of an outer weakly swollen complex shell and a highly swollen 

hydrogel core [10]. For slightly cross-linked poly(acrylic acid) microgels (60-80 µm), such a 

“core-shell” formation was also found by Johansson et al. [11, 12]. They discovered that the 

uptake process could be divided into two steps, firstly the shell formation combined with de-

swelling of the outer part of the microgel and with no lysozyme diffusing into the core. In the 

second phase, microgel de-swelling is negligible and lysozyme diffuses into the microgel 

core. Bysell and Malmsten [13] studied the uptake of poly-L-lysine by poly(acrylic acid) 

(PAA) microgels (50-150 µm) as a function of pH, ionic strength, size of the peptides and 
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peptide concentration. Like Johansson et al., they found a peptide induced de-swelling during 

absorption. 

Compared to slightly cross-linked microgels, the knowledge on higher cross-linked 

microgels is still very limited. Eichenbaum et al. [14] reported that protein loading on 

poly(methacrylic acid-co-acrylic acid) microgels (4-10 µm) strongly depends on the cross-

link density and the pore size of the microgel. Using neutron scattering Rubio-Retama et al. 

[15] investigated the microstructure of poly(magnesium acrylate) microgels (40 µm), before 

and after loading with glucose oxidase. They found an increase of the network mesh size after 

encapsulation of enzyme. The effect of the cross-link density on the enzymatic activity of the 

encapsulated glucose oxidase was also studied. They concluded that a higher porosity of the 

polymer matrix facilitates the diffusion of the substrate towards the catalytic center of the 

enzyme. 

Since proteins and weak polyelectrolytes can adapt their charge to the local electric 

potential, another aspect that may play a role in protein uptake by polyelectrolyte gels is 

charge regulation [16-18]. Charge regulation was found to be important, for example, in the 

uptake of bovine serum albumin into poly(acrylic acid) brushes: the protein was found to 

strongly adjust its charge due to the highly negative electrostatic potential in the brush[19]. 

As mentioned, we have previously reported on the synthesis and characterization of 

oxidized potato starch polymer (OPSP) microgels [5]. From preliminary experiments on 

lysozyme uptake we concluded that the most highly charged microgels (degree of oxidation 

100%, denoted as DO100%, prepared with a cross-linker to polymer ratio of 0.20 w/w; see 

materials and methods section) have the highest protein uptake capacity, and therefore may be 

suitable for uptake and delivery applications. The present chapter reports on further studies 

with this type of microgel, focusing on the conditions that are optimal with respect to protein 

uptake and release. 

As a function of solution conditions (pH and ionic strength), we systematically measured 

binding affinity, saturation protein uptake and protein release using UV spectrophotometry. 

Microgel de-swelling due to protein uptake is determined using optical microscopy. The 

distribution of absorbed fluorescently labeled lysozyme throughout the microgel particles is 

determined using confocal laser scanning microscopy (CLSM). Finally, we also determined 

the extent to which charge regulation plays a role in protein uptake by the polyelectrolyte 

microgels by performing pH-STAT titrations.  
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The combined results allow us to provide a coherent picture of the factors that influence 

protein uptake and release by these highly charged, highly cross-linked potato starch polymer 

microgels.  

3.2 Material and Methods  

Materials 

Native starch was kindly provided by AVEBE, The Netherlands. The oxidation catalyst 

2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and ethanol (100%) were purchased from 

Merck, Germany. The cross-linker sodium trimetaphosphate (STMP), poly-DL-lysine 

hydrobromide and the globular protein lysozyme (from chicken egg white, Mw = 14,400 

g/mole) were supplied by Sigma-Aldrich. Coomassie brilliant blue R250 was purchased from 

Bio-rad, UK. Acetic acid (96%) was obtained from Acros Organics, Belgium. 

Polymer gels were synthesized by chemically cross-linking the TEMPO-oxidized potato 

starch polymers by sodium trimetaphosphate (STMP). Microscopic gel particles were made 

from the macroscopic gel. The particles bear irregular shapes after washing and drying steps; 

The details of oxidation of starch polymer and preparation of microgel particles are presented 

in Chapter 2. Unless indicated otherwise, we used gel particles of 5 to 40 µm in diameter with 

a degree of oxidation (DO) of 100% and prepared with a weight ratio of cross-linker/polymer 

of 0.20. Purified Milli-Q water was used throughout for preparing solutions. To control the 

pH, buffer solutions (0.02 M) of citric acid-phosphate buffer were used for the pH range 3 - 8. 

Sodium chloride was added to obtain the appropriate ionic strength. In the pH-STAT 

experiments, no buffer was used, but 0.01 M solutions of HCl and NaOH to adjust the pH. 

Table 3.1 shows the volumetric swelling characteristics of the DO100% microgel that is used 

in this Chapter. 

Table 3.1 Volumetric swelling (%) of the DO100% microgel particles. Data from Li et al.[5]). 

  



Chapter 3 

 

43 

 

Binding affinity measurements 

Adsorbed amount [mg/mg] of lysozyme per dry weight of polysaccharide microgel were 

measured using a UV spectrophotometer UV 2010 (Hitachi, Japan) and a flow cell. In our set-

up a beaker on a stirrer was filled with a microgel dispersion; a lysozyme solution (6.67 

mg/mL) was added in steps (50 µL each time). The solution in the beaker is pumped via a 650 

nm syringe filter (only allows the protein solution pass) to the flow-cell (a curvet with in and 

out openings) in the UV spectrometer, and then is returned into the beaker. By using this 

circulating system, we continuously measured the concentration Cprot [mg/mL] of protein in 

solution. After each addition the absorbance at 280 nm (from which one can calculate Cprot) 

was recorded until it remained constant, indicating that a steady state of saturation was 

reached. 

The amount of protein left in solution, mleft [mg], can be calculated as  

 

                                       mixtureprotleft VCm ×=
                                                 (3.1) 

 

In which Vmixture is the total volume of the microgel dispersion and the protein solution 

added. The amount of protein absorbed in the microgel, mabs [mg], can be calculated from the 

total protein added, madd [mg], and mleft,  

 

                                          leftaddabs mmm −=
                                                   (3.2)  

 

The absorbed amount per gram dry gel mass Г [mg/mg], is given by 

 

                                       geldryabs mmΓ /=
                                                 (3.3) 

 

The binding affinity is just the initial slope of the isotherm, defined as Kaff [mL/mg]: 

 

                                       prot

aff
C

Γ
K

d

d
=

                                               (3.4) 
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Saturation protein uptake capacity 

We suspended 3 mg of the dry gel particles in 7 mL buffer at various pH values, added 3 

mL of 6.67 mg/mL protein solution and gently stirred for 4 hours (enough time to reach 

saturation [5]). Subsequently, the samples were centrifuged at 10,000 rpm for 5 minutes and 

the concentration of lysozyme in the supernant was determined by UV spectrophotometry. 

The total protein adsorption at saturation level Гsat (mg protein/mg dry gel) in the microgel 

particles was calculated from mass balance.  

Protein release under dilution 

Samples of microgel-protein mixtures of different pH values were prepared in the same 

way as described above, stirred for 4 hours and centrifuged at 10,000 rpm for 5 minutes. The 

sediments (protein-gel complexes) were diluted with 10 mL fresh buffer, and mildly stirred 

for another 4 hours. After a second centrifugation, the absorbance in the supernatants was 

measured. The percentage of protein released Prelease is calculated from the measured protein 

concentration Cprot as 

 

                                    

%100
mL10

×
×

×
=

geldrysat

prot

release
mΓ

C
P

                                 (3.5) 

 

It is noted here that the released amount depends on the equilibration time (4 hours may 

not be entirely sufficient to reach equilibrium) and the volume of buffer added to the 

centrifuged protein gel-complexes, so it is a somewhat arbitrary quantity. However, by using 

the above described standard procedure, we can compare the protein release from the gel 

under different conditions. 

De-swelling ratio of single microgel particles after protein uptake 

The negatively charged microgel was fixed on a glass surface that had been modified 

using poly-DL-lysine to give it a positive charge. This was done by first cleaning the glass 

with water and methanol three times. After drying, the glass surface was wetted with a drop of 

0.01% poly-lysine and allowed to dry overnight in air. The dried slide was washed with water 

and methanol again for three times, to remove any unattached poly-lysine. A drop of 1% 

microgel dispersion was put on the glass surface and after 1 hour the slide was washed with 

water and methanol, to remove unattached gel particles.  
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To measure the de-swelling as a result of protein uptake we observed various single gel 

particles on the prepared slides by optical microscopy. We first added 50 µL buffer on top of 

the glass slide and measured the particle size, that is the length of an arbitrarily chosen cross-

section of the fixed particles. Subsequently, we added 50 µL lysozyme solution (20 mg/mL) 

and measured the particle size as a function of time. Evaporation of water was negligible 

during our short observation time, which was confirmed by the low weight loss of water 

during experiments (less than 5%). For each measurement two different gel particles were 

selected.  

We assume that the particles de-swell homogeneously, so that the degree of de-swelling 

defined as v/v0 can be calculated as 

                                                

3

0 0

 
=  
 

v L

v L
                                      (3.6) 

 

with v and v0 the volume of the gel particle before and after adding protein solution, and 

L and L0 the length of the corresponding cross-sections.  

Calculation of the average mesh size of the swollen microgel 

To estimate average mesh sizes, we used Flory and Rehner theory[20]. The effective 

cross-link density ve [mol/cm
3
] is given by [21]: 
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=
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                               (3.7) 

 

where V1 is the molar volume of the solvent [cm
3
/mol], V2 is the volume fraction of 

polymer in the swollen gel, and χ is the polymer-solvent Flory-Huggins interaction parameter 

(here we use χ = 0.2 as an estimation for the χ value for charged dextran and water). It should 

be noted that the average crosslink density calculated in this way is not better than a first 

approximation, because the Flory-Rehner model is much idealized, even for simple systems. 

However, the calculations can provide some indication on how the mesh size of the polymer 

network changes as a result of protein absorption at different pH values and we will use this 

later (Figure 3.9). 
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Following Huglin et al.[22], the effective cross-link density is related to the density of 

the dry polymer ρp (1.50 g/cm
3
) and the average molecular weight between cross-links Mc 

[g/mol] by 

                                         

ρ
= p

e

c

v
M

                                               (3.8) 

Finally, Mc was used to estimate the mesh size using[23] 

 

                                          
2/13/1

2071.0 −−= cempty MVξ
                                    (3.9) 

 

where ξempty is the mesh size [nm] for the empty gel. The mesh size of the microgel after 

protein uptake ξfilled was estimated using the measured de-swelling ratios v/v0 : 

 

                                          

1/3

0

ξ ξ
 

= ×  
 

filled empty

v

v
                                                (3.10) 

 

Protein distribution in the microgel particles 

Coomassie blue is a fluorescent dye that can only bind to the protein, not to the starch 

microgels. The protein-gel complexes were stained with coomassie blue. As a control, the 

same staining procedure was applied to empty microgel particles. 

The staining solution consisted of 0.03 g coomassie blue dissolved in 15 mL ethanol, 15 

mL water and 3 mL acetic acid (96%). To remove all unbound coomassie blue we used a de-

staining solution consisting of 5 mL acetic acid (96%) and 25 mL ethanol. An amount of 0.06 

g complex sediment (DO100% microgel with lysozyme at pH 7.0 and ionic strength 0.05 M) 

was suspended in 5 mL staining solution and mixed for 30 minutes. After centrifuging at 

10,000 rpm for 5 minutes, the supernatant was removed and the sediment was washed two 

times with water. The final sediment was washed three times with the de-staining solution by 

dispersing it in 5 mL of this solution and stirring for 1 hour. The stained protein-microgel 

complexes were observed with confocal microscopy (Carl Zeiss Axiovert 200 microscope, 

Zeiss, Germany, equipped with a LSM 5 Exciter configuration and a 40x10.6 NA objective). 

The coomassie blue was excited by a He-Ne laser (633 nm).  
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Determination of charge regulation by pH-STAT titrations 

pH-STAT titrations were carried out with a Schott titration set-up [24]. First 0.01 g of the 

microgel particles was dispersed in 50 mL KCl solutions with ionic strengths of 0.05 M, 0.10 

M and 0.20 M. The titrant was a 6.67 mg/mL solution of lysozyme. Both the dispersion of gel 

particles and the protein solution were adjusted to the desired pH using 0.01 M HCl or KOH. 

Immediately after adding 0.5 mL of protein solution to the microgel dispersion, the pH was 

observed to increase, indicating that the complex formation is accompanied by proton uptake. 

To adjust the pH value to its original value, 0.001 M HCl was added automatically. After 20 

minutes the pH did not change anymore and it was assumed that equilibrium had been 

reached. Then another 0.5 mL of the lysozyme solution was added. This was repeated in total 

five times, until finally the pH did not change anymore after protein addition. The uptake of 

protons as a consequence of adding the protein is equal to the amount of added HCl to keep 

the pH at the set fixed value. The experiments were done at pH 3.0, 4.0, 5.0 and 8.0.  

3.3 Results and Discussion 

Binding affinity of lysozyme to the microgel 

The binding affinity, the saturation protein uptake and protein release under dilution as a 

function of pH and ionic strength are crucial for determining the optimal conditions of protein 

uptake and release of the microgel particles. Figure 3.1 shows an example of an absorption 

isotherm at pH 3.0 and at ionic strengths of 0.05 M and 0.10 M. The affinity can be 

determined from the initial slope dГ/dCprot of the curve (Eq. 3.4). However, at low ionic 

strength it is difficult to determine the initial slope, since in that case at low protein 

concentration practically all protein is bound to the microgel. At higher ionic strengths the 

initial slope can be easily determined, since binding is not too strong. Figure 3.2 shows, by 

way of example, Г (Cprot) data from which the affinity of lysozyme for microgels of different 

degrees of oxidation at pH 3 and a ionic strength of 0.2 M can be obtained by single linear 

regression. 

Figure 3.3 summaries the binding affinities for DO30%, DO50% and DO100% 

microgels as a function of pH, at a ionic strength of 0.20 M. The binding affinity for all 

microgels decreases with increasing pH and this effect is most pronounced for the DO100% 

microgel. These results indicate that the affinity is mainly determined by the (positive) charge 
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Figure 3.1 Lysozyme uptake Г as a function of equilibrium lysozyme concentration in solution Cprot, for a 

DO100% microgel, at pH 3.0 for ionic strengths 0.05 M (○) and 0.10 M (●). 

  

Figure 3.2 Lysozyme uptake Г as a function of equilibrium lysozyme concentration in solution Cprot at low 

protein concentration, at pH 3.0 and ionic strength 0.20 M, for microgels of different degrees of oxidation: 

DO30% (▲), DO50% (♦), DO100% (∆) microgels. The solid lines are linear fits of the data, the slopes give the 

affinities of the protein for the microgels. 

on the protein, since this decreases with increasing pH, whereas the (negative) charge on the 

microgel increases with increasing pH. However, it may seem somewhat unexpected that the 

affinity drops so fast with increasing pH over the pH range 3-5, because the charge of free 

protein decreases only modestly over this range [25], namely by 3 or 4 charges per protein 

molecule (Z p).The charge of the protein in the complex may be different, though, because 

part of its carboxylates take up protons. This strongly adds to the electrostatic binding energy. 

We will return to this point later (see Figure 3.11 and discussion). 
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Figure 3.3 Absorption affinity as a function of pH for DO30% (●), DO50% (○) and DO100% (▲) microgels. 

Ionic strength 0.20 M. Lines are only meant as a guide to the eye. 

Figure 3.4 shows the effect of the ionic strength on the affinity between lysozyme and 

the DO100% microgel at pH 8.0. As expected, the affinity decreases with increasing salt 

concentration due to the screening of attractive electrostatic interactions. We find a linear 

relationship between log(dГ/dCprot) and logCsalt, which is in line with the findings of other 

researchers for complex formation between proteins and flexible polyelectrolytes[26]. For the 

competitive binding of monovalent salt cations and z-valent cations to DNA, Record et al.[27] 

have derived: 

                                                    

z
C

K

salt

obs −=
∂

∂

log

log

                                        (3.11) 

 

where Kobs is the observed binding constant of the z-valent cations. However, Dubin et 

al.[26] have shown that this relation does not simply apply to the case of protein-

polyelectrolyte interactions. For the lysozyme-microgel system, we find 

6.2log/)/log( −=∂Γ∂ saltprot CdCd
 which indeed is an appreciably smaller number than the 

total charge on free protein (e.g., at pH 8.0 and an ionic strength of 0.1 M, Zp = 7, i.e., the 

protein molecule carries an excess of 7 positive charges).  

In view of applications, we also studied the release of the protein from the microgels. In 

order to find out how the binding affinity influences the protein release, protein-gel 

complexes were diluted with buffer solutions of various pH values (3 - 8) and ionic strengths 

(0.05 M - 0.2 M) as described in the materials and methods section. Figure 3.5 shows that the 

degree of protein release from the complexes increases with increasing pH and ionic strength. 
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Figure 3.4 Log (dГ/dCprot) as a function of log Csalt (i.e., the total ionic strength of buffer and added salt, in M) 

for the DO100% microgel at pH 8.0. The line is the linear fit: y=-2.6x-2.2 (correlation coefficient R=0.99). 

The release curves in Figure 3.5 look like a mirror images of the absorption affinity 

curves in Figure 3.3: the protein binds with low affinity at high pH and high salt concentration 

and is under these conditions easily released by dilution. In contrast, at low pH and low salt 

concentration the protein binds so strongly that dilution does hardly result in any protein 

release. A complete release occurs for 0.2 M salt by increasing the pH from 4 to 8. 

 

Figure 3.5 Percentage of lysozyme released from DO100% microgel by dilution with buffer as a function of pH, 

at ionic strengths of 0.05 M (●), 0.10 M (○) and 0.20M (▲) (i.e., the same conditions as used to determine the 

affinity curves in Figure 3.3). 

The above results indicate that our microgels may be used in biomedical or food 

applications: e.g., protein or peptide drugs (with charge properties comparable to lysozyme) 

encapsulated by the microgel can be protected in the stomach where the pH is low, and 
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released in the intestine, where the pH is high. At suitable ionic strengths (≈0.2 M) the 

release can be almost quantitative. 

Protein distribution in the microgel particles 

For weakly cross-linked microgels it has been found that absorbed proteins/polypeptides 

do not always distribute homogeneously [11, 13]. As mentioned before, a “core-shell” 

morphology consisting of an outer protein-microgel complex shell and a highly swollen 

microgel core has been reported by Johansson et al. [11, 12]. They found that there is more 

protein present in the shell than in the core. To determine whether in our case of a highly 

cross-linked microgel, the protein molecules distribute homogenously or not, we stained 

“empty” and protein-loaded DO100% microgel particles with fluorescent coomassie blue, at 

pH 7 and a low ionic strength of 0.05 M, and examined them using confocal scanning laser 

microscopy. As expected, we find no signal for the empty microgel particles. A strong signal 

was observed only for stained protein-microgel complexes, indicating that the signal is 

exclusively due to stained protein. In contrast to Johansson et al., we found that the protein 

distributes rather homogeneously through the microgel (Figure 3.6A). Figure 3.6B shows a 

SEM micrograph of a gel particle, showing the surface morphology; it indicates the porous 

structure of the microgel. 

The microgel used by Johansson et al. is synthesized from poly-acrylic acid, which also 

contains COOH- groups. They used lysozyme as a model protein as well. Although their gel 

differs from our gel with respect to charge density and cross-link density, it is still a similar 

and simple system to compare with. Johansson et al. found that protein diffusion to the core is 

a limiting step. However, in our case protein diffusion is not a rate-determining step. The 

observation by Johansson et al. is probably due to the core-shell formation occurring during 

protein absorption in their microgel. Our confocal microscopy experiments never showed 

core-shell formation. This difference in behavior may be related to differences in surface 

structure and internal homogeneity. 

The internal structure (the average mesh size as well as the heterogeneity) may play an 

important role in the protein distribution and uptake and release kinetics. This will be 

presented in detail in a further chapters. 
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                       (A)                                                        (B) 

Figure 3.6(A). Fluorescence signal from a coomassie blue stained lysozyme-gel complex. Ionic strength 0.05 M, 

pH 7. The picture is a cross section at half the height of the DO100% microgel particle. The scan direction was 

parallel to the black line, which is 7 µm in length (from the left edge to right edge of the particle). (B) Scanning 

electron microscopic photo of the surface of a DO100% particle in the dry state. Scale bar = 50 nm. 

Saturation protein uptake capacity of the microgels 

The binding affinity is the result of the direct interaction between polysaccharide chains 

and protein molecules. The saturation protein uptake, however, is also affected by protein-

protein and polysaccharide-polysaccharide interactions, as well as the gel elasticity. Hence, it 

is a much more complex quantity. In order to determine the relation between affinity and 

saturation protein uptake, Гsat was measured as a function of pH and at various ionic strengths. 

Figure 3.7 shows that for intermediate ionic strengths (0.10 and 0.20 M) Гsat has a 

maximum at a certain pH, denoted as pHopt. For high (0.5 M) and low (0.05 M) ionic 

strengths the curves are monotonic. Their shapes suggest that there may still be a maximum 

for 0.5 M and 0.05 M, but that it is outside the pH range studied; the pHopt shifts to lower pH 

with increasing ionic strength. The saturation protein uptake at each pH decreases with 

increasing ionic strength, except around pH 3. 

The monotonous increase of the uptake capacity at low ionic strength can be understood 

on the basis of charge stoichiometry. If we assume that at low salt concentration protein 

binding is dominated by charge compensation, the total number of protein molecules that can 

bind to the gel (Nb) is approximately given by the total charge on the gel (Qgel) divided by the 
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Figure 3.7 Saturation lysozyme uptake capacity Гsat for the DO100% microgel at various ionic strengths as a 

function of pH, at ionic strengths of 0.05 M (●), 0.10 M (○), 0.20 M (▲) and 0.50 M (∆). 

 

total charge of the bound protein (Qprot). It is simple to see that Nb increases with increasing 

pH. However, with increasing salt concentration, due to the screening effect, charge 

compensation becomes less important, and this leads to a decrease in protein uptake capacity 

Γsat. This effect is strong for pH values higher than pHopt. This can be explained from the 

finding that at high pH the binding affinity is relatively low, so adding salt can easily release 

the protein from the gel. Strikingly, the saturation protein uptake at low pH is almost 

independent of ionic strength, suggesting that screening plays no role in this pH range. 

 

We calculated the charge ratio R between bound protein molecules and gel at protein 

saturation conditions, based on the charge of the protein [25, 28] and the gel [5], obtained 

from proton titrations: R = QLSZ ×Гsat : Q gel, in which QLSZ and Qgel are the net charge densities 

(C/g) of the protein and the gel (free in solution), respectively. The results are presented in 

Table 3.2. Indeed we found for the ionic strengths of 0.10 M and 0.20 M that the charge ratio 

is 1:1 at the pH value at which the protein uptake capacity Гsat has a maximum. For 0.05 M 

the maximum in Гsat seems to be outside the pH range studied: in this case the 1:1 charge ratio 

would appear at pH > 8.0; for 0.5 M the maximum may be located at the other end (pH ≈3). 

It should be noted that the large values for R at pH 3 are mainly due to the fact that we used 

the charge densities of the protein and gel free in solution; due to their interaction their actual 

charge densities in the protein-gel complex are different. We will come back to this later. 
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Table 3.2 Total charge ratio R of lysozyme to microgel at various ionic strengths and pH values, for the 

DO100% microgel. R = QLSZ × Гsat : Q Gel. Гsat is the saturation protein uptake in units of mg protein/mg gel. QLSZ 

and Q Gel are the net charge densities (C/g) from proton titration experiments, so any charge regulation is not 

taken into account. The conditions at which a maximum in protein uptake capacity occurs are indicated by a 

circle.  

  

De-swelling of the microgel as a result of complex formation 

De-swelling was monitored by observing the change in the size of microgel particles 

after adding a protein solution (pH 3, 5, and 8; 0.2 M ionic strength) using optical microscopy. 

The concentration of the protein solution (20 mg/mL) was chosen in such a way that the 

saturation protein uptake by the microgel was achieved. Since the particles are of irregular 

shape, we take the length of an (arbitrarily chosen) cross-section L of the fixed particles as a 

measure of their size. We define the relative shrinkage as 1- v/v0 (see Eq. 3.6)..  

Figure 3.8A shows that the particles obtain an equilibrium size within 10 - 20 minutes 

after adding lysozyme solution. The shrinkage is 10% for pH 8, 30% for pH 5 and 44% for 

pH 3. As an example Figures 3.8B and 3.8C show a microgel particle before and after adding 

protein solution (pH 3.0). 

The lysozyme-induced microgel de-swelling is in agreement with the finding by 

Johansson et al. [11, 12] for poly(acrylic acid) microgels. Bysell et al. [13] also found 

microgel de-swelling induced by poly-L-lysine uptake. It is noted here that, microgel swelling 

after protein incorporation has also been reported by various authors [15, 29, 30].  
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                                              (A)                                      (B)                                 (C) 

Figure 3.8 (A) De-swelling of DO100% microgel particles after protein uptake as a function of time. Protein 

concentration 20 mg/mL, ionic strength 0.2 M; pH 3.0 (●), pH 5.0 (∆), pH 8.0 (○). (B) DO100% microgel 

particle in the equilibrium swollen state at pH 3.0 before protein addition. (C) The same particle in the 

equilibrium shrunk state after adding protein. 

In order to compare the mesh size before and after protein uptake, we first calculated the 

mesh size of the empty gel ξempty [nm] according to the Flory-Rehner theory [20] (Eqs.3.7-3.9) 

Based on the experimental volumetric swelling capacity [5]
 
(also see materials and methods), 

we then calculated the cross-link density, the volume fraction of polymer in the swollen gel, 

and the average molecular weight between cross-links, and finally we obtained the mesh size 

in nanometers. The mesh size of the microgel after protein uptake ξfilled was estimated as the 

mesh size of the empty particles ξempty multiplied by the (v/v0) 
1/3

 (Eq. 3.10). Table 3.3 lists the 

results of the calculations. We stress that these results are just estimations because of the 

approximate nature of the Flory-Rehner model. 

To summarize the data that we obtained in the previous sections, Figure 3.9 shows a 

schematic representation of the fully saturated microgel at pH 3, 5 and 8 and a ionic strength 

of 0.2 M, as compared with the empty gel. The shrinkage of the gel network after protein 

uptake increases with decreasing pH.  

The electric charge density on the gel increases over the pH range 3 - 5, while the 

average mesh size is only slightly dependent on pH. It indicates that the repulsion among 

charged polymers in the network contributes little to the swelling of the gel. 

The shrinkage of the gel network upon protein uptake increases with decreasing pH. It is 

caused by the electrostatic attraction between the protein and the gel. Our results suggest that 

the binding strength depends more on the charge of protein rather than on that of the gel. 
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Lysozyme carries more charges at low pH and therefore the binding is the strongest and the 

gel shrinks most. 

Table 3.3 Calculated parameters related to the volumetric swelling capacity of the empty gel according to Flory-

Rehner theory: SWv is the volumetric swelling capacity, ve is the effective cross-link density (mol/cm3) (Eq. 3.7), 

V2 is the volume fraction of polymer in the swollen gel, Mc is the average molecular weight between cross-links 

(Eq. 3.8), ξempty (Eq.3.9) is the mesh size of the empty gel. The mesh size of the microgel after protein uptake 

ξfilled (Eq. 3.10) was estimated as ξempty * (v/v0) 
1/3. For all cases the ionic strength was 0.2 M. 

  

 

 

Figure 3.9 Schematic representation of the DO100% microgel before and after absorbing lysozyme at pH 3.0, 

5.0 and 8.0, and a ionic strength of 0.20 M. Indicated is the average distance between two cross-links (the mesh 

size), and the total charge ratio between the bound protein and the gel. The mesh size of the microgel was 

calculated by Flory-Rehner theory, for details see Table 3.3. The amount of protein molecules schematically 

represents the saturation protein uptake Гsat; +++ indicates a high charge density on the protein molecules, + a 

low charge density. For clarity, the counterions are not included in this sketch. 
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Figure 3.10 shows a picture of various microgel dispersions, which was made after 

protein saturation (pH 3, 5, 7 and 8 and at an ionic strength of 0.2 M). It is clearly visible that 

at pH 5 the solution is the most turbid. In addition, we observed that at pH 5 the complexes 

sediment faster than at pH 3, 7 and 8. The empty gel particles (range from 1 - 40 µm) can be 

dispersed in water because of the charges on their surface, and their density is similar to water. 

When protein is absorbed, the charges on the gel are neutralized and the particle density 

increases. Table 3.2 shows that the charge ratio between protein and gel is 1:1 at pH 5 and 

0.20 M, so under these conditions full charge compensation occurs and the gel particles 

aggregate and settle down. 

The faster sedimentation speed of the complexes at a pH where the complexes are 

charged-balanced is in agreement with observations of others [6, 31, 32].  

 

Figure 3.10 Photograph of protein-DO100% microgel mixtures (at saturation protein uptake and ionic strength 

0.20 M, equilibrated for 4 h). From left to right: pH 3.0, 5.0, 7.0 and 8.0.  

Charge regulation during absorption 

Charge regulation is the adjustment of the charge density of one or more species 

resulting from their mutual interaction. This process usually involves species that contain 

weak acid or weak base groups. Charge regulation commonly occurs when proteins interact 

with charged polyelectrolytes immobilized on a surface [16-18], e.g. a polymer brush [19]. It 

is to be expected that in our case of interaction between proteins and charged microgel 

particles, charge regulation may take place as well. We checked this by adding concentrated 

protein solution to a microgel solution of exactly the same pH and ionic strength in a so-called 

pH-STAT titration. Any pH change upon addition of the protein solution is caused by protons 

uptake by protein molecules or dissociation of protons from the gel particles. Thus, the 

amount of protons required to keep the pH constant is a measure for the overall charge 

adjustment that takes place upon complex formation. 

Figures 3.11A and 3.11B give the total number of protons taken up during complex 

formation (expressed per protein molecule) for a range of ionic strengths (0.05 - 0.20 M) at 

pH 5.0, and for a range of pH values (pH 4, 5, and 8) at a ionic strength of 0.05 M, 
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respectively. Figure 3.11A shows that the charge regulation decreases with increasing ionic 

strength. Figure 3.11B shows that there is a maximum in the degree of charge regulation as a 

function of pH: at pH 5 it is larger than at pH 4 and 8. 

These results indicate that under the influence of the negative electric potential of the 

microgels, the protein molecules take up protons from solution in order to increase their 

charge density, facilitating their binding to the microgel. The charge regulation occurs most 

prominently in the initial steps of the titration, and therefore largely affects the affinity. As 

more protein molecules bind to the microgel, the negative charges of the microgel become 

neutralized, so the electric potential in the gel approaches to zero and the tendency of the 

protein molecules to pick up more protons diminishes. The decrease in charge regulation with 

increasing ionic strength is due to screening of the electric potential in the gel.  

 

Figure 3.11 Number of protons taken up per protein molecule during complex formation with the DO100 % 

microgel as a function of the protein uptake Г. (A) at pH 5.0, for ionic strengths 0.05 M (●) 0.10 M (▲), and 0.2 

M (■). (B) for a ionic strength of 0.05 M, at various pH values: pH 4.0 (□), pH 5.0 (○), pH 8.0 (∆ ).  

To further clarify the effect of the pH on the degree of charge regulation, we measured 

the amount of protons taken up or released for a protein uptake Г of 0.30 mg/mg gel, as a 

function of the pH at an ionic strength of 0.05 M. The results are shown in Figure 3.12. 

Clearly, there is a maximum in the charge regulation at pH 5.0. The value at pH 3.0 (an 

approximate value, see materials and methods section) is negative, indicating that in this case 

the weakly charged microgel particles charge up more strongly when they interact with the 

highly positively charged proteins. It is a general phenomenon in charge regulation that for 

interaction between two charged species or surfaces that can adapt their charge densities, it is 

the one with the lowest electric potential (positive or negative) with respect to the bulk 

solution (hence, the highest susceptibility), that adjusts its charge density [33, 34]. At low pH, 
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this is the microgel, but with increasing pH the electric potential in the gel becomes more 

negative and the charge on the protein less positive, so charge regulation happens increasingly 

by proton uptake by the protein. The decrease in the degree of charge regulation between pH 

5 and 8 is because in this pH range the proton charge of the lysozyme is nearly invariant [25].  

 

Figure 3.12 Number of protons taken up or released during complex formation, expressed per protein molecule, 

as a function of pH. The protein uptake Г at all pH values is 0.30 mg protein /mg gel and the ionic strength is 

0.05 M. A positive value indicates that protons are taken up by the protein, a negative value means that protons 

are release from the gel. 

3.4 Concluding remarks 

The results on the interaction between oxidized potato starch polymer (OPSP) microgel 

and the protein lysozyme presented in this chapter, provide insight in the factors that control 

the uptake and release properties of this system. For application in practice protein uptake 

capacity should be high and one should be able to control the binding affinity. For our system 

the protein uptake capacity at low salt concentration is mainly determined by the charge ratio 

between protein and microgel and increases with increasing pH. For higher salt concentrations 

an optimum pH for protein uptake is observed, which shifts to lower pH values with 

increasing salt concentration. The binding affinity, on the other hand, seems to be dominated 

by the charge density on the protein and decreases with increasing pH. As a result, the protein 

binds with low affinity at high pH and high salt concentration and is under these conditions 

easily released by dilution. In contrast, at low pH and low salt concentration the protein binds 

so strongly that dilution does hardly result in any protein release. Therefore, at intermediate 

pH (around pH 5) there is an optimal balance between protein uptake capacity and binding 

affinity. Protein release can be triggered by increasing the pH and/or ionic strength.  
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In the complex formation between protein and gel, charge regulation plays a moderate 

role at low salt concentration: at low pH the gel adapts its charge density under influence of 

the highly positively charged protein molecules, while at higher pH values (pH > 3 to 4) the 

protein molecules charge up because of the negative electric potential in the gel.  

We further established that the microgel particles de-swell upon protein uptake, mainly 

caused by electrostatic attraction. The protein distributes rather homogenously through the 

microgel.  
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Chapter 4 

Mobility of lysozyme inside 

oxidized starch microgels 

Abstract 

The aim of this chapter is to determine the mobility of protein molecules inside oxidized 

potato starch polymer (OPSP) microgel particles (spherical, 10-20 µm in diameter). This 

provides relevant information for controlled uptake and release applications of such systems. 

The mobility of Alexa-488 labelled lysozyme inside the microgel is measured by fluorescence 

recovery after photo bleaching (FRAP) in combination with confocal laser scanning 

microscopy (CLSM). CLSM images show that the protein molecules distribute quite 

homogeneously over the microgel particles. By fitting the FRAP data with a model based on 

exchange between bleached and unbleached protein molecules inside the gel, we identified 

several protein fractions of different mobility. Increasing the salt concentration (NaCl) or the 

pH causes a shift in the distribution towards the more mobile fractions. This is consistent with 

earlier uptake and release measurements, which showed that the binding affinity decreases 

with increasing salt concentration and pH. At low protein concentrations, at which the 

microgel is not saturated with protein, the mobility of the bound protein molecules is more 

restricted than at protein concentrations where the uptake is complete. This is attributed to 

binding of the protein molecules to multiple binding sites. The model explains reasonably the 

mechanism of protein mobility inside the microgel, indicating that embedded ingredients with 

charge properties comparable to those of lysozyme can be protected at low salt concentration 

and low pH. Increasing the salt concentration or the pH triggers the release. 

 

Published as: Y. Li, J. M. Kleijn, T. M. Slaghek, J. W. Timmermans M.A. Cohen Stuart, W. Norde, Mobiliy of 

lysozyme inside oxidized starch polymer microgels. Soft Matter 7(2011) 1926-1935 
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4.1 Introduction 

The Controlled uptake and release of functional compounds like peptides and proteins 

from microgel carriers have been studied extensively [1-4]. Due to the stimulus-responsive 

features of such carriers, the release of ingredients may be triggered by changes in 

temperature [5], pH [1, 6, 7], ionic strength [8, 9], solvent [5, 10, 11], or by applying an 

electric [12] or magnetic field [13]. Most of these studies focus on uptake and release 

characteristics. The mobility of proteins and peptides inside the microgel has received less 

attention. Yet this may be highly important for controlled uptake and release applications. The 

mobility of protein inside the polymer network reflects its binding strength to the polymer 

network, and this, in turn, is important for triggering its release. In addition, the mobility of 

macromolecules through polymer gels is essential for macromolecule-based therapies [14, 15].  

In Chapter 2 and 3 [16, 17] we described the physical-chemical properties of oxidized 

potato starch polymer (OPSP) microgel particles and their uptake and release of lysozyme 

under different conditions. Our study presented here focuses on the mobility of positively 

charged lysozyme molecules entrapped and bound in these negatively charged oxidized 

microgel particles, as determined by fluorescence confocal laser scanning microscopy (CLSM) 

and fluorescence recovery after photo bleaching (FRAP). 

CLSM is a useful tool to study the interaction between microgels and oppositely charged 

proteins or peptides as shown by recent studies [17-23]. 

FRAP is a widely used method to measure the mobility of fluorescently labelled 

molecules inside a certain matrix or in solution. The technique has been used, for example, to 

study the mobility of macromolecules in heterogeneous biomaterials [24], cell monolayers [25] 

and gels [26, 27]. A high intensity laser is used to photo bleach the fluorescent labels at a 

defined spot in the system. The recovery of fluorescence after this photo bleaching, due to the 

neighbouring fluorescent probes diffusing into the bleached area, is measured as a function of 

time. The exchange rate of bleached with unbleached protein molecules is the measure for the 

mobility. 

Partitioning and transport of charged protein molecules in charged hydrogels has been 

studied before to some extent in order to establish the influence of electrostatic interactions on 

the diffusion process. For instance, Johnson et al. [28] found by FRAP and gel 

chromatography, that the effective diffusion coefficients, Deff, of negatively charged proteins 

in like-charged sulphated agarose gels are 2-2.5 times smaller compared to their diffusion 

coefficients in solution, D0. This was explained on the basis of a model describing the 
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diffusivity of spherical molecules within a random fibre matrix, taking into account the 

effective volumes of the fibres and the molecules (including repulsive double layer 

interactions). According to literature, the FRAP curve of polyelectrolyte capsules loaded with 

protein, indicates that deposited proteins are strongly bound to the polyelectrolyte [29].  

Van Tomme et al. [30] investigated a system of lysozyme incorporated into a gel 

consisting of oppositely charged dextran microspheres by bulk release measurements and 

FRAP. They found that possibly two fractions of protein molecules are present in the gel. One 

fraction of protein has a high mobility and represents the protein existing in the pores between 

the microspheres, another fraction of protein showed restricted mobility, due to binding to the 

dextran. 

Alternatively, the occurrence of different mobile fractions may be related to different 

affinities between the protein and the binding sites in the gel. Wang et al. [31] reported two 

kinds of binding sites (low and high affinity) for binding of caffeine to methacrylic acid 

microgel spheres. Vaughan et al. [32] found a number of binding sites for ethyladenine-9-

acetate of varying affinity in their poly(MAA-co-EGDMA) microgel. In this Chapter we 

introduce a simple model to analyse our FRAP data. It is based on the exchange between 

bleached protein and unbleached protein at sites with different binding strengths. 

The microgel particles that we used in Chapter 2 and 3 [16, 17] were irregularly shaped 

with a wide size distribution due to the preparation method, involving grinding, sieving and 

drying. For investigating the mobility of the protein inside the gel particles and the uptake and 

release kinetics, however, it is important to have spherical microgel particles with a narrow 

size distribution (10-20 µm in diameter). For this reason we adopted inverse-emulsion 

polymerization as the preparation method. The resulting spherical microgel particles have the 

same physical-chemical properties as the previous used particles. 

The partition coefficient of FITC-labelled dextran of different molecular weights in the 

hydrogel particles was used to estimate the pore size distribution of the gel [33]. This method 

is based on the phenomenon that diffusion is strongly restricted when the size of the dextran 

molecules is larger than the pore size of the gel [34]. Using CLSM we measured for single 

microgel particles the relative affinity of fluorescently labelled lysozyme as a function of pH 

and ionic strength and the distribution of the protein molecules over the particles. The 

mobility of the protein molecules inside the microgel was determined by FRAP. 
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4.2 Material and Methods  

Materials 

Native starch was kindly provided by AVEBE, The Netherlands. The oxidation catalyst 

2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) and ethanol (100%) were purchased from 

Merck, Germany. The cross-linker sodium trimetaphosphate (STMP), poly-DL-lysine 

hydrobromide, FITC-dextran (4-2000 kDa) and lysozyme (from chicken egg white, MW= 

14,400 g/mole) were supplied by Sigma-Aldrich. The fluorescent dye, Alexa Fluor 488 

carboxylic acid succinimidyl ester (mixed with isomers) was purchased from Invitrogen. Span 

80 and n-hexane were purchased from Sigma-Aldrich. Solutions were prepared using 

millipore water with a resistance = 18.3 MΩ/cm. All experiments were performed at room 

temperature. 

Microgel preparation 

For details on the oxidation of starch polymers we refer to Chapter 2 [16]. Spherical 

microgel particles of cross-linked oxidized starch polymer were synthesized by inverse 

suspension polymerization, see below. For polymers with a degree of oxidation of 30% 

(DO30%) we obtained a high yield of stable gel particles, but the preparation method was not 

successful for DO100%.  

Hexane was used as the continuous phase and Span 80 as the surfactant. Firstly, 25 mg 

Span 80 was dissolved in 10 mL hexane while stirring under nitrogen. A reaction mixture of 1 

mL DO30% polymer (200 mg/mL), 0.5 mL cross-linker sodium trimetaphosphate (STMP) 

(100 mg/mL) and 0.3 mL NaOH (1 M) was stirred, also under nitrogen. The next step was 

pre-emulsification: 1.8 mL reaction mixture was added to 10 mL Span 80 containing hexane 

solution and stirred for 10 minutes at room temperature. After pre-emulsification, the mixture 

was passed 10 times through a 10 µm (pore diameter) filter membrane in order to obtain a 

homogeneous size distribution around 10 µm. Thereafter, the starch in the emulsion droplets 

was cross-linked to make microgel particles by heating to 40 °C while mildly stirring for 40 

minutes. Finally, the microgel particles were washed with methanol three times by dispersion 

and centrifugation (3000 rpm, 3 minutes), followed by decantation of methanol and 

equilibration in excess water. The gel particles were stored in 2 mL water. Spherical 10-20 

µm sized microgel particles were obtained as confirmed by light microscopy. The yield, 

determined by freeze-drying, was 36.6%. 
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Alexa Fluor 488 labeling of lysozyme 

A 400 µL solution of 4 g/L lysozyme was prepared in 50 mM K2HPO4/KH2PO4 buffer at 

pH 7.8. Alexa Fluor 488 was dissolved in DMSO (dimethyl sulfoxide) (1 mg/100 µL) and 40 

µL of this solution was added to the lysozyme solution. The reaction mixture was left in the 

dark for one hour. Then, the mixture was centrifuged for one minute at 13000 rpm and an 

orange precipitate separated from the yellow solution. The supernatant was eluted over a Bio-

Gel P6DG (Bio-Rad) column and concentrated using a 10000 kDa spin filter. Then the 

precipitate was dissolved by adding 150 µL 7 M GuHCL in K2HPO4/KH2PO4 buffer at pH 6 

and centrifuged again. The supernatant of this mixture and the previous concentrated 

supernatant fraction were purified by gel filtration using a Superdex 75 HR column. 

The precipitates, which are rich in labelled lysozyme, were pooled and concentrated 

using a 10000 kDa spin filter. Then all the labelled protein from supernatants as well as 

precipitates was collected and stored in 20% glycerol. The average number of labels per 

lysozyme molecule was determined to be 3. The lysozyme concentration was 70 µg / mL. 

Fluorescence confocal laser scanning microscopy 

A confocal microscope (Carl Zeiss Axiovert 200 microscope, Zeiss, Germany) equipped 

with a LSM 5 Exciter configuration and a 63×/0.75 objective and an Argon laser set at 488 

nm was used. The standard settings were: pinhole 1.8 µm; gain 755; transmission 1.39%. For 

analysis the software “Zen 2008” was used. 

As flow cell (channel) under the microscope µ-Slides I Luer0.2 (50 µL; Ibidi, Germany) 

were used. Z-stack scanning was used to make 3D images of microgel particles loaded with 

fluorescent labelled protein. 

Pore size distribution  

According to Russel et al [33]., the relative uptake of dextran of various molar masses 

can be used to determine the pore size of a hydrogel. FITC-dextran powders of molar masses 

4, 70, 150, 250, 500 and 2000 kDa were dissolved in phosphate/citric acid buffer pH 7 to 

make a concentration of 0.1%. The gel particle suspension was 100× diluted using the same 

buffer and 1 mL of this diluted suspension was mixed with 1 mL of the various FITC-dextran 

solutions. The test tubes containing these mixtures were sealed using parafilm and kept in a 

box covered with aluminium foil in order to prevent exposure to light. After 2 weeks of 

equilibration, the dextran-loaded microgels were examined by confocal microscopy. The 
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evaporation of water was less than 10 wt% and was neglected, since it would hardly influence 

the uptake of the dextran in the microgel. 

Exchange reaction between labeled and unlabeled protein  

This experiment is to determine how fast protein in the bulk solution can exchange with 

protein bound to the gel. The gel particles were fixed at the flow cell surface in order to be 

able to observe one and the same particle during the whole process. The bottom surface of the 

flow cell was coated with poly-DL-lysine by adsorption from a 0.1% poly-DL-lysine solution 

for two hours. Then, unabsorbed poly-lysine was flushed away and a diluted dispersion of 

microgel particles in water was added for one hour. Subsequently, unattached gel particles 

were rinsed off, and 3 mg/mL unlabelled lysozyme solution was supplied into the cell for 30 

minutes. This high lysozyme concentration was to guarantee reaching the uptake saturation. 

The unabsorbed protein was rinsed away with water. Then 1.4 µg/mL Alexa Fluor 488 

labelled lysozyme was added into the cell to exchange with the unlabelled protein absorbed 

inside the gel particles. Time series of fluorescence scanning pictures were taken continuously. 

(The time series button was already clicked on before adding labelled protein, in order to 

observe the exchange reaction from the beginning.) 

Fluorescence recovery after photo bleaching (FRAP) 

Diluted gel dispersions were mixed with Alexa Fluor 488 lysozyme solutions (of 

different protein concentrations, pH values and salt concentrations). Equilibration was 

allowed for 2 hours and after that individual gel particles were selected under the fluorescence 

microscope. Confocal scans (512×512 pixel images) were made in the xy plane of the sample 

at a fixed z-position (through the centre of the particle). First 5 pre-bleach scanned images at 

low laser intensity (1.39%) were monitored (0.5 s each), then a selected area was bleached 

with 100 iterations (about 50 s in total) at 100% laser intensity, followed by detection of the 

fluorescence recovery again at low intensity. Scans were collected for each sample until full 

recovery was reached. 

Theoretical analysis of FRAP data 

The FRAP experiment implies an exchange process between bleached protein and 

unbleached protein. After bleaching the selected area in the gel, the bleached protein may be 

replaced by unbleached protein. At pH 11, at which the protein bears no net charge (pI = 11), 

we found that diffusion of lysozyme to the centre of the gel particles only takes 1 - 2 seconds. 
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This is in line with expectation, since at this pH the protein does not bind to the gel [17] and 

the effective diffusion coefficient of the protein in the gel network is of the same order of 

magnitude as the one in solution [28] (D0 = 1.1 x 10
-10

 m
2
/s ) [35].  

Since diffusion of unbleached protein into the pores is fast, for pH values at which the 

protein does bind to the gel, the fluorescence recovery rate of the bound protein is determined 

by the rate of the exchange reaction: 
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Here, L represents lysozyme, the subscripts u and b refer to unbleached and bleached, 

respectively, and sol and abs for free in solution and bound (absorbed) to the gel. When there 

is enough protein supply (from solution) full recovery of fluorescence can be reached. The 

time required for full recovery depends on the strength of the binding of the protein to the gel. 

The kinetics of fluorescence recovery can be written as: 
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where θu and θb are the fractions of unbleached and bleached bound protein, and Cp,b and 

Cp,u are the bleached and unbleached protein concentrations in solution, respectively. 

Experimentally, θu is calculated by 
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where I(t) is the fluorescence intensity of the bleached spot at time t; Ib is the 

fluorescence intensity of the bleached spot immediately after bleaching (t = 0) and I0 is the 

fluorescence intensity of the spot prior to bleaching.  

Because the bleached protein free in solution (in the pores) is very quickly replaced by 

unbleached protein, Cp,b is extremely low so that Cp,u ≈ Cp and the reverse reaction can be 

neglected. Now k
r

 is denoted as k. Hence, Equation (4.2) simplifies to 
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Integration of this equation gives: 
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                                               (4.6) 

In practice, the protein molecules in the gel may not all be bound with the same strength 

and, hence, show different exchange kinetics. Assume that the total amount of bound protein 

consists of n fractions with different binding strengths: θ1, θ2, θ3… θn. During fluorescence 

recovery each of these fractions contains bleached as well as unbleached protein molecules: 

                                           bnunn ,, θθθ +=
.  

For each fraction an equation similar to Equation (4.5) can be written, e.g. for the 

fluorescence recovery of fraction 1: 
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with  1k  the exchange rate constant for this fraction.  

The result of integration is: 
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The total fraction of unbleached bound protein is then simply given by: 
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4.3 Results and discussion 

Pore size distribution within the gel particles 

After incubation of the gel particles with FITC-dextran for two weeks, the partition 

coefficients (ratio between the fluorescence intensities inside and outside the gel) were 

determined and the ratio between these values is plotted in Figure 4.1 as a function of the 

molar mass of the dextran. Based on the approximate Stokes’ radii of the FITC-dextran 

molecules of different molar masses, it is inferred that the sizes (radii) of most of the pores 

range between 4 and 25 nm. This size range is well beyond the dimensions of Alex-488 

labelled lysozyme (dimensions 4.6×3.0×3.0 nm) [36], so that the protein can diffuse into all 

parts of the gel network. It is worth to mention that the partition coefficient for 4 kDa dextran 

is 0.6. This may indicate that there are still some pores < 4 nm, and that some regions are 

inaccessible to lysozyme. 
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Fig. 4.1 The ratio between the fluorescence intensities inside the microgel and in solution as a function of the 

molecular weight (in kDa) of FITC-dextran incorporated. The gel particles were mixed with FITC dextran of 

different sizes in water and equilibrated for two weeks. 

 

(A)                                (B) 

Fig. 4.2 (A) 2D image of empty microgel particles in water by optical microscopy. (B) 3D image of microgel 

particles loaded with Alexa Fluor 488 labelled lysozyme by fluorescence CLSM. The protein absorption was 

done in water with a protein concentration of 2.74 µg/mL, pH 7. Equilibration was allowed for 2 hours. The 

scale bars in both figures represent 10 µm. 

Protein distribution within the gel particles 

   A homogeneous distribution of protein in the microgel is important for controlled 

release applications. Information on this distribution can be obtained by fluorescence confocal 

laser scanning microscopy (CLSM). 

Figure 4.2A shows the appearance of the optimized microgel particles dispersed in water. 

They are spherical and  transparent. The 3D image obtained by z-stack scanning fluorescence 

CLSM (Figure 4.2B) shows microgel particles loaded with Alexa-488 labeled lysozyme in 

water. Figure 4.3 gives the intensity profile along a line through the center of a particle loaded 

with protein. This profile indicates that the protein is distributed rather homogeneously over 

the microgel; the slight fluctuations may be due to variations in the density (i.e., the density of 
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protein binding sites) of the gel and the presence of small pores (see above). This confirms the 

conclusion from the pore size determination that the protein can diffuse into practically all 

parts of the microgel particles. 

 

 

Fig. 4.3 Fluorescence intensity profile (arbitrary units) along a line through the center of a microgel particle 

(same conditions as in Fig. 4.2B).The position from left to right: 0-3 µm outside the microgel; 4-25 µm inside 

the microgel; 26-28 µm outside the microgel. The curve demonstrates that the protein distributes fairly 

homogeneously throughout the microgel. 

 

Fig. 4.4 The fluorescence intensity (arbitrary units) of Alexa Fluor 488 labelled lysozyme solution (in water) as a 

function of the protein concentration (µg/mL). (○) Transmission 2.55%; (●) Transmission 1.39%. 

 This result differs from the finding of Johansson et al. [21] that lysozyme distributes 

nonuniformly within poly(acrylic acid) microgels, forming a lysozyme/microgel shell in the 

outer parts of the microgel. The authors associate this with lysozyme induced deswelling of 

the gel network, leading to effective pore sizes in the shell smaller than the size of the protein 
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molecule. The reasons that we do not observe this phenomenon are most probably that our 

microgel has much larger pore sizes and lysozyme induced deswelling of our starch polymer 

gel  is much less pronounced [17]. 

 

 

Fig. 4.5 (A) Fluorescence intensity (arbitrary units) of the gel particles as a function of the intensity of the 

protein solution in the background. With increasing Alexa-488 labelled lysozyme concentration, the microgel 

becomes more loaded with this protein until saturation is reached. The points from left to right represent the 

following protein concentrations: 1.4, 2.74, 5.5, and 11 µg/mL; pH 7. (●) 0 M NaCl; (○) 0.005 M NaCl. (B). 

Absorption isotherm obtained by calculating the protein concentrations and uptake from the intensities in Fig. 

4.5A using the calibration line in Fig. 4.4 and the density of the gel. 

Binding affinity of protein to microgel 

In order to obtain more quantitative results by fluorescence confocal laser scanning 

microscopy, a calibration curve for the fluorescence intensity as function of protein 

concentration was determined. The fluorescence label Alexa Fluor 488 is a very stable dye 

and not very sensitive to quenchers such as dissolved oxygen. Figure 4.4 shows that the 

fluorescence intensity from an Alexa-488 labelled lysozyme solution varies linearly with 

protein concentration, up to at least 16 µg/mL. Hence, quantitative results can be obtained if 

the protein concentration is within this range. 

Figure 4.5A shows that the fluorescence intensity from a protein loaded gel particle 

reaches a plateau value above a certain protein concentration in solution. Before each 

measurement equilibration was allowed for 2 hours. The concentration at which protein 

uptake reaches saturation amounts to about 2.74 µg/mL, both in water without added salt and 

in 0.005 M NaCl. At this protein concentration the fluorescence contrast between particles 

and solution (Igel - Isol) has a maximum value and therefore we used this protein concentration  
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in most of our experiments described here. As it is known that the density of polymer in a 

single swollen gel particle is approximately 0.01 mg/ml (calculated on the basis of swelling 

data [16]), the absorbed amounts can be roughly calculated from the intensity data in Fig. 

4.5A using the calibration curve in Fig. 4.4 The results are presented in Fig. 4.5B. For pH 7 

and no salt added, the saturation protein uptake is 2.8 mg/mg gel, which is comparable to our 

earlier results on protein uptake by bulk measurements[16]: 2.4 mg/mg gel for DO30% 

particles at pH 7 and an ionic strength of 0.05 M. This plateau in uptake was reached at a 

protein concentration of 0.3 mg/mL. The affinity here is much higher, since the plateau is 

reached already at a very low protein concentration. This is also consistent with previous 

results that show that the affinity strongly increases with decreasing ionic strength[17] . 

 

 

Fig. 4.6 2D image of microgel particles loaded with Alexa Fluor 488 labelled lysozyme by fluorescence CLSM 

at pH 3, 4 and 8 (from left to right). The ionic strength (buffer) is 0.05 M. The scale bar indicated is 10 µm. 

Equilibration time is 2 hours. 

 

Fig. 4.7 The ratio of fluorescence intensities inside and outside the microgel as a function of pH. The ionic 

strength (buffer) is 0.05 M. Equilibration time is 2 hours. 
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pH effect on binding affinity of protein to microgel 

The binding affinity is an important parameter for controlled release, as protein release is 

only possible from sites where the binding affinity is not too high. The partition coefficient, 

describing the distribution of protein between gel and solution, can be considered as a 

measure of the binding affinity. Figure 4.6 shows CLSM images of microgel particles loaded 

with Alexa-488 labeled lysozyme at different pH values and an ionic strength of 0.05 M. The 

contrast between the gel and the background decreases with increasing pH. The ratio between 

the intensities inside and outside the gel particles is plotted in Figure 4.7. It shows that the 

binding strength decreases with increasing pH, which is in line with the pH dependency of the 

affinity for lysozyme in DO100% microgels as reported in Chapter 3 [17], which was 

obtained from the initial slopes of binding isotherms. In Chapter 3 we concluded that the 

binding is mainly determined by electrostatic interactions; the observed trend results from the 

decrease of the (positive) charge on the protein with increasing pH. 

 

 

Fig. 4.8 2D image of microgel particles loaded with Alexa Fluor 488 labelled lysozyme by fluorescence CLSM 

for increasing NaCl concentration; from left to right: 0 M; 0.005 M; 0.01 M. The scale bar indicated is 10 µm. 

Equilibration time is 2 hours. 

 

Fig. 4.9 The ratio of intensities inside and outside the microgel as a function of increasing NaCl concentration at 

pH 7. Equilibration time is 2 hours. 
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Salt effect on binding affinity of protein to microgel  

CLSM images of lysozyme loaded microgel particles at different NaCl concentrations at 

pH 7 are shown in Figure 4.8. The solutions contained no buffer; pH variation upon protein 

absorption from the solution into the gel was found to be less than 0.3 units. (As can be seen 

from Fig. 4.7 such slight shifts in pH around pH 7 do not significantly affect the protein 

binding.) As it is shown in Fig.4.8, the intensity contrast decreases with increasing salt 

concentration. In Figure 4.9, the variation of the ratio of intensity inside/intensity outside gel 

as a function of NaCl concentration is given. As expected, and in line with results in Chapter 

3 [17], the affinity decreases with increasing salt concentration due to the screening of 

attractive electrostatic interactions. 

It is worth mentioning that the “light spots” in Figs 4.6 and 4.8 probably represent 

somewhat denser parts of the microgel particles, leading to a higher concentration of bound 

proteins. It is not very likely that these spots reflect protein aggregates, since aggregation of 

lysozyme in solution does not occur under the experimental conditions used. Lysozyme only 

forms large aggregates at pH > 10,  while it may self-associate into dimers, trimers and 

tetramers between pH 4 and 10, but only at higher salt concentrations than applied in our 

experiments[17, 21]. 

 

Fig. 4.10 (A) Change in fluorescence intensity (arbitrary units) inside the microgel after exchange of the solution 

of unlabelled lysozyme by a solution of Alexa-488 labelled lysozyme. Cp = 1.4 µg/mL, pH 7, no salt added. The 

fluorescence intensity from the solution is also indicated and is constant (I = 20 arbitrary units). (B) Fraction of 

not yet exchanged bound protein (1- θex) calculated using θex = (I(t) - Ibackg) /(Ifinal - I backg).  

Exchange of unlabeled protein with labeled protein 

In order to investigate the mobility of the protein molecules inside the gel, the gel 

particles were saturated with unlabeled lysozyme in water. Subsequently, we induced 
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exchange by changing the unlabeled protein solution by a solution containing labeled protein 

(Cp = 1.4 µg/mL, pH 7, no salt added). This exchange process was monitored by following in 

time the average fluorescence intensity for the whole section of the gel particle in the focal 

plane. During the process fluorescence images were recorded continuously. The shape of the 

radial intensity profile was found to be rather flat (as in Figure 4.3) at all times, indicating that 

the exchange rate is invariant with the position in the gel. Figure 4.10A shows that already at 

very short times (practically instantaneously) the fluorescence intensity in the gel equals that 

in the background solution (I = 20 arb. units). This proves that diffusion of protein into the 

pores is indeed very fast compared to the exchange of protein molecules bound to the gel. The 

fraction of non-exchanged bound protein molecules, 1 - θex, vs. time can be nicely fitted with 

an exponential function (Fig. 4.10B). The overall rate constant (kCp) obtained from a single 

exponential fit (Fig.4.10B) is 0.001 s
-1

. The reason that the process is relatively slow is 

probably that detachment of the unlabeled protein from the binding sites is the rate 

determining step. Only after this step labeled protein from the solution can adsorb onto the 

binding sites. 

 

 

Fig. 4.11 Left: Fluorescence CLSM image of a protein loaded microgel particle before bleaching. Middle: image 

immediately after photo bleaching. (Only the part indicated by the rectangle was bleached). Right: image after 

fluorescence recovery (full recovery takes about 5 minutes). The Alexa Fluor 488 lysozyme concentration in 

solution was 7 µg/mL, at pH 3 and ionic strength 0.05 M. The scale bar indicated is 10 µm.  

Fluorescence recovery after photo bleaching (FRAP) 

Figure 4.10 shows the exchange reaction between unlabeled protein absorbed in the gel 

and labeled protein dissolved in the surrounding bulk solution. We used fluorescence recovery 

after photo bleaching (FRAP) in combination with confocal laser scanning microscopy 

(CLSM) to study the mobility of the protein inside the gel and the exchange kinetics in more 

detail and at various pH values and ionic strengths. The gel network was loaded with 

fluorescent labeled protein molecules and a high intensity laser was used to photo bleach them 

within a defined area (usually covering the whole surface area in the center position of the gel 
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particle). The recovery of fluorescence after photo bleaching was measured as a function of 

time.  

Figure 4.11 shows that the area in the middle of the microgel particle turns black upon 

bleaching and recovers fully after about 5 minutes. The intensities of the bleached region 

(noted as “1” in Figure 4.11) and the unbleached region (“2” in Fig 4.11) were monitored and 

are given in Figure 4.12A. The intensity of the bleached region increases, while that of the 

unbleached region remains fairly constant; the slight decrease in intensity is due to gradual 

photo bleaching as a result of laser illumination during the measurements. This was checked 

by monitoring the fluorescence intensity of a gel particle loaded with protein without 

bleaching. Although there is an exchange of protein from the unbleached region to bleached 

region, there is always immediate protein supply from the solution in the pores, and therefore 

the intensity in region “2” is virtually unchanged.  

In Figure 4.12B the fraction of bound bleached protein that has been replaced by 

unbleached protein (θu, calculated according to Equation 4.3) is given. The data show that the 

recovery rate for the edge position (“3” in Figure 4.11) is the same as for the center position 

(“1”). This indicates that the FRAP results are invariant with the position in the gel. 

 

Fig. 4.12 (A) The time course of the intensity of the photo bleached region (noted as “1” in Figure 4.11 ) (∆) and 

the unbleached region ( “2” in Figure 4.11) (♦). The insert gives the fluorescence recovery curves for the initial 

12 seconds (full recovery took about 5 minutes). (B) Log value of the recovered fraction θu (the fraction of 

bound proteins that has been replaced by unbleached protein molecules; see Equation 4.3) near the outside of the 

gel particle (noted as “3”in Figure 4.11 ) (●) and for the center position ( “1” in Figure 4.11) (▲) in the bleached 

area. The insert gives the same data for the initial 20 seconds. 
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Influence of ionic strength on FRAP 

We examined the fluorescence recovery in more detail at various concentrations NaCl. 

Figure 4.13A shows the increase of the unbleached fraction θu after photobleaching for NaCl 

concentrations of 0, 0.005, 0.01 and 0.05 M, at a protein concentration in solution of 7 µg/mL 

and pH 7. The recovery rate increases with increasing salt concentration. Since the binding of 

the protein molecules is mainly determined by electrostatic interactions, this is in line with 

expectation: the screening effect of the salt enhances the rate of the exchange of bleached with 

unbleached molecules. 

Figure 4.13B shows exponential fits of the data plotted as 1 - θu versus time, which 

according to Equations (6) and (9) should reveal a one- or multi-exponential behavior. This is 

made visible in the insert of this figure, which gives the same data on a log-linear scale. At 

low NaCl concentration (0 and 0.005 M) the data can be fitted assuming three regions of 

different exchange rate; at the higher salt concentrations (0.01 and 0.05 M) two of such 

regions are visible. The corresponding exchange rate constants are given in Table 4.1 and 

Figure 4.14. 

 

Fig. 4.13 (A) Log value of the recovered fraction θu for NaCl concentrations of 0 M (▲), 0.005 M (♦), 0.01 M (■) 

and 0.05 M (●). The insert gives the same curves for the initial 20 seconds after photo bleaching. Alexa Fluor 

488 lysozyme concentration in solution was 7 µg/mL, at pH 7. (B) The same data as in (A) now plotted as 1- θu 

versus time. The lines are multi-exponential fits for each salt concentration. The insert figure shows log (1- θu ) 

as a function of time. 

Binding of the protein to the starch restricts the mobility because the molecules have to 

detach from the binding sites before they can be replaced by unbleached molecules. As the 

binding is of electrostatic nature, the affinity decreases with increasing salt concentration and, 

consequently, FRAP occurs faster. As shown in Table 4.1, the fractions of bound protein θn 
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and exchange rates kCp increase with increasing ionic strength. The slowest fraction θ3 

disappears at 0.01 and 0.05 M NaCl. The slowest exchange process involves the protein 

molecules with the lowest mobility. 

Table 4.1. Fractions of protein bound to the gel of different mobility (θ1, θ2, θ3) and their exchange rates (kCp in 

s-1) at various NaCl concentrations. The protein concentration in solution Cp = 7 µg/mL and pH =7.  

 

Binding of the protein to the starch restricts the mobility because the molecules have to 

detach from the binding sites before they can be replaced by unbleached molecules. As the 

binding is of electrostatic nature, the affinity decreases with increasing salt concentration and, 

consequently, FRAP occurs faster. As shown in Table 4.1, the fractions of bound protein θn 

and exchange rates kCp increase with increasing ionic strength. The slowest fraction θ3 

disappears at 0.01 and 0.05 M NaCl. The slowest exchange process involves the protein 

molecules with the lowest mobility. 

 It should be noted that, although our model fits the data well, the dynamics of the 

proteins in the gel might be more complex. For example, in pores comparable to or smaller 

than the dimensions of the protein, the mobility will be strongly reduced and crowding may  

 

Fig. 4.14 Fractions of bound protein in the gel with different mobilities obtained by fitting the recovery data with 

a multi-exponential function (two-exponential for 0.01 and 0.05 M NaCl; three-exponential for 0 and 0.005 M 

NaCl). Cp = 7 µg/mL, pH =7. The low, medium, and high mobility fractions are defined by the order of 

magnitude of the exchange rate kCp  (respectively 0.001 s-1, 0.01 s-1 and 0.1 s-1). The results show that the 

fraction with low mobility has disappeared at high NaCl concentration. 
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occur. We anticipate, however, that this is a minor effect, since most pores are relatively large 

and because of the pronounced effect of the salt concentration on the binding characteristics. 

 

 

Fig. 4.15 Log value of the recovered fraction θu (fraction bleached protein that has been replaced by unbleached 

protein) as a function of time for pH 3 (▲) and pH 7 (♦). The inserted figure gives the same curves in the initial 

20 seconds after photo bleaching. The Alexa-488 lysozyme concentration is 7µg/mL, the NaCl concentration is 

0.05 M. 

It is further noted that the rate of the slowest recovery process in the FRAP experiments 

is of the same order of magnitude (i.e., 0.001 s
-1

) as that of the exchange reaction between 

labeled and unlabeled protein, presented in Fig. 4.10. In that case Cp was about 5 times lower, 

and no salt was added to the solution; at this low Cp saturation uptake is not yet achieved (see 

Fig. 4.5). Apparently, under those conditions almost all protein molecules are bound to the 

highest affinity sites or, alternatively, occupied multiple binding sites in the gel. 

 

Influence of pH on FRAP 

In Figure 4.15 FRAP data collected at pH 3 and pH 7, at 0.05 M NaCl, are shown. Using 

the same model analysis, we found for pH 3 two fractions of different mobilities: one with an 

exchange rate of 0.06 s
-1

 (θ = 0.42), the other with an exchange rate of 0.01 s
-1

 (θ = 0.58). It is 

noted that the fast exchange process observed at pH 7 (see data in Table 4.1) has disappeared 

at pH 3. As was already clear from the data presented in Figs. 4.6 and 4.7, below pH 5 the 

binding strength strongly increases with decreasing pH; this agrees with the more restricted 

mobility at pH 3. 

Bysell et al. [37] also found that increasing the pH facilitates detachment and diffusion of 

peptides in a poly (acrylic acid) microgel. They state that this may be caused by swelling of 
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the gel, which implies larger pores.  Our microgel also swells upon increasing the pH, but this 

effect is relatively small. Moreover, diffusion of lysozyme through the pores does not seem to 

be a limiting factor for the exchange of bound protein. Therefore, we attribute the 

disappearance of the fast exchanging fraction in our microgel at low pH completely to an 

increased binding strength to the starch, and not to a decrease in pore volume. 

 

Fig. 4.16 The recovered fraction θu (fraction bleached protein that has been replaced by unbleached protein) as a 

function of time for pH 7 at different ionic strengths 0M (●), 0.005M (○), 0.01M (▲). Alexa-488 lysozyme 

concentration is 0.7µg/mL.  

FRAP at low protein concentration 

When the protein concentration is very low, the amount of protein molecules bound to 

the gel particles also decreases and their mobility is strongly restricted. This is illustrated by 

the results presented in Fig. 4.16 for a protein concentration of 0.7 µg/mL (pH 7). Complete 

recovery did not occur on the time scale of our experiments. The estimated recovery rates 

(overall value for kCp) from the data in Fig. 4.16 are 2×10
-4

 s
-1

 for 0 M NaCl, 0.001 s
-1

 for 

0.005 M NaCl and 0.003 s
-1

 for 0.01 M NaCl. Comparison with the values in Table 4.1 

(obtained for a 10 times higher protein concentration) shows that, indeed, the fraction of 

bound protein molecules with the lowest mobility must be larger for the low protein 

concentration. 

 

4.4 Concluding remarks 

To study the mobility of lysozyme in oxidized potato starch polymer (OPSP) microgels, 

we successfully prepared well-defined spherical gel particles with a narrow size distribution 

(10 - 20 µm diameter). The size of most of the pores are in the range of 4 to 25 nm and CLSM 
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images and intensity profiles show that the protein distributes rather homogeneously inside 

the microgel. 

The mobility of the protein in the gel was studied by following the exchange of 

unlabeled lysozyme by fluorescently labeled lysozyme, and by FRAP measurements. The 

results of both types of measurement are consistent. The data show that diffusion of free 

protein in the pores of the gel network is not a limiting factor for the rate of exchange of the 

proteins bound to the gel fibers.  We developed a simple model to analyze the data and this 

shows that there are several fractions of bound protein of different mobility in the microgel 

particles. Since it is not likely that the functional groups that provide binding sites in the gel 

(the charged carboxylic groups of the starch polymers) show themselves a broad distribution 

in binding strength, the mobility is most probably determined by the number of sites to which 

a protein molecule is bound. By way of the condition at pH 7, 50mM ionic strength (Q
+

LSZ = 

7), where the charge ratio between protein bound and gel is 1:1,it indicates that in average one 

protein molecule can bind 7 carboxyl groups [17]. The distribution over the fractions is 

affected by the pH and the salt concentration. This is in line with our previous finding that 

binding of lysozyme in the gel particles is dominated by electrostatic interactions and that the 

charge of the protein is determining the binding affinity. A high salt concentration and high 

pH lead to larger populations in the more mobile fractions, because the electrostatic 

interactions are weaker here. It implies that the ingredients embedded in the gel can be 

protected when salt concentration and pH are kept low. They can be triggered to be released at 

high salt concentration and high pH. 

At a low protein concentration in solution, at which the maximum uptake of protein by 

the gel is not yet reached, the exchange rate of the bound protein is severely limited, at low as 

well as higher salt concentrations (0 – 0.01 M), showing that it is largely present in the low 

mobility fraction, attached to multiple binding sites in the gel. 

 

 

 

 

 

 

 



 Mobility of lysozyme inside oxidized starch microgels 

 

 

84 

 

References 

[1] S. Schachschal, A. Balaceanu, C. Melian, D.E. Demco, T. Eckert, W. Richtering, A. Pich, 

Polyampholyte Microgels with Anionic Core and Cationic Shell, Macromolecules, 43 (2010) 

4331-4339. 

[2] R.K. Shah, J.W. Kim, D.A. Weitz, Monodisperse Stimuli-Responsive Colloidosomes by Self-

Assembly of Microgels in Droplets, Langmuir, 26 (2010) 1561-1565. 

[3] B.R. Saunders, N. Laajam, E. Daly, S. Teow, X.H. Hu, R. Stepto, Microgels: From responsive 

polymer colloids to biomaterials, Advances in Colloid and Interface Science, 147-48 (2009) 251-

262. 

[4] J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels 

for drug delivery applications, Progress in Polymer Science, 33 (2008) 448-477. 

[5] Q.F. Luo, P.X. Liu, Y. Guan, Y.J. Zhang, Thermally Induced Phase Transition of Glucose-

Sensitive Core-Shell Microgels, Acs Applied Materials & Interfaces, 2 (2010) 760-767. 

[6] S. Fujii, S. Kameyama, S.P. Armes, D. Dupin, M. Suzaki, Y. Nakamura, pH-responsive liquid 

marbles stabilized with poly(2-vinylpyridine) particles, Soft Matter, 6 (2010) 635-640. 

[7] G.X. Sun, M.Z. Zhang, Y. Xu, Y.M. Lu, P.H. Ni, Synthesis and Properties of pH-Responsive 

Cationic Microgels, Acta Chimica Sinica, 67 (2009) 1685-1690. 

[8] W.J. Liu, Y. Zhou, H.Y. Chen, Y.M. Huang, H.L. Liu, Flocculation and aggregation Behavior of 

doubly responsive microgel, Acta Chimica Sinica, 66 (2008) 449-453. 

[9] Y.R. Ren, X.S. Jiang, J. Yin, Copolymer of poly(4-vinylpyridine)-g-poly(ethylene oxide) respond 

sharply to temperature, pH and ionic strength, European Polymer Journal, 44 (2008) 4108-4114. 

[10] V. Lapeyre, C. Ancla, B. Catargi, V. Ravaine, Glucose-responsive microgels with a core-shell 

structure, Journal of Colloid and Interface Science, 327 (2008) 316-323. 

[11] T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with 

physiological swelling activity, Biomacromolecules, 9 (2008) 733-740. 

[12] H. Li, R.M. Luo, K.Y. Lam, Multiphysics Modeling of Electrochemomechanically Smart 

Microgels Responsive to Coupled pH/Electric Stimuli, Macromolecular Bioscience, 9 (2009) 

287-297. 

[13] S. Bhattacharya, F. Eckert, V. Boyko, A. Pich, Temperature-, pH-, and magnetic-field-sensitive 

hybrid microgels, Small, 3 (2007) 650-657. 

[14] R.K. Jain, Barriers to drug-delivery in solid tumors, Scientific American, 271 (1994) 58-65. 

[15] J.W. Baish, R.K. Jain, Cancer, angiogenesis and fractals, Nature Medicine, 4 (1998) 984-984. 

[16] Y. Li, R. de Vries, T. Slaghek, J. Timmermans, M.A.Cohen Stuart, W. Norde, Preparation and 

Characterization of Oxidized Starch Polymer Microgels for Encapsulation and Controlled 

Release of Functional Ingredients, Biomacromolecules, 10 (2009) 1931-1938. 

[17] Y. Li, R. de Vries, J.M.Kleijn, T. Slaghek, J. Timmermans, M.A.Cohen Stuart, W. Norde, 

Lysozyme Uptake by Oxidized Starch Polymer Microgels Biomacromolecules, 11 (2010) 1754-

1762. 

[18] H. Bysell, P. Hansson, M. Malmsten, Effect of Charge Density on the Interaction between 

Cationic Peptides and Oppositely Charged Microgels, Journal of Physical Chemistry B, 114 

(2010) 7207-7215. 

[19] H. Bysell, P. Hansson, M. Malmsten, Transport of poly-L-lysine into oppositely charged 

poly(acrylic acid) microgels and its effect on gel deswelling, Journal of Colloid and Interface 

Science, 323 (2008) 60-69. 



Chapter 4 

 

85 

 

[20] C. Johansson, P. Hansson, Distribution of cytochrome c in polyacrylate microgels, Soft Matter, 6 

(2010) 3970-3978. 

[21] C. Johansson, P. Hansson, M. Malmsten, Interaction between lysozyme and poly(acrylic acid) 

microgels, Journal of Colloid and Interface Science, 316 (2007) 350-359. 

[22] C. Johansson, J. Gernandt, M. Bradley, B. Vincent, P. Hansson, Interaction between lysozyme 

and colloidal poly(NIPAM-co-acrylic acid) microgels, Journal of Colloid and Interface Science, 

347 (2010) 241-251. 

[23] C. Johansson, P. Hansson, M. Malmsten, Mechanism of Lysozyme Uptake in Poly(acrylic acid) 

Microgels, Journal of Physical Chemistry B, 113 (2009) 6183-6193. 

[24] N. Loren, M. Nyden, A.M. Hermansson, Determination of local diffusion properties in 

heterogeneous biomaterials, Advances in Colloid and Interface Science, 150 (2009) 5-15. 

[25] N.J. Kavimandan, N.A. Peppas, Confocal microscopic analysis of transport mechanisms of 

insulin across the cell monolayer, International Journal of Pharmaceutics, 354 (2008) 143-148. 

[26] F. Brandl, F. Kastner, R.M. Gschwind, T. Blunk, J. Tessmar, A. Gopferich, Hydrogel-based drug 

delivery systems: Comparison of drug diffusivity and release kinetics, Journal of Controlled 

Release, 142 (2010) 221-228. 

[27] M.C. Branco, D.J. Pochan, N.J. Wagner, J.P. Schneider, Macromolecular diffusion and release 

from self-assembled beta-hairpin peptide hydrogels, Biomaterials, 30 (2009) 1339-1347. 

[28] E.M. Johnson, D.A. Berk, R.K. Jain, W.M. Deen, Diffusion and partitioning of proteins in 

charged agarose gels, Biophysical Journal, 68 (1995) 1561-1568. 

[29] X.D. Li, X.H. Li, J.X. Zhang, S.F. Zhao, J.C. Shen, A novel system for water soluble protein 

encapsulation with high efficiency: "Micelles enhanced" polyelectrolyte capsules, Journal of 

Biomedical Materials Research Part A, 85A (2008) 768-776. 

[30] S.R. Van Tomme, B.G. De Geest, K. Braeckmans, S.C. De Smedt, F. Siepmann, J. Siepmann, 

C.F. van Nostrum, W.E. Hennink, Mobility of model proteins in hydrogels composed of 

oppositely charged dextran microspheres studied by protein release and fluorescence recovery 

after photobleaching, Journal of Controlled Release, 110 (2005) 67-78. 

[31] D.X. Wang, S.P. Hong, G.L. Yang, K.H. Row, Caffeine molecular imprinted microgel spheres by 

precipitation polymerization, Korean Journal of Chemical Engineering, 20 (2003) 1073-1076. 

[32] A.D. Vaughan, S.P. Sizemore, M.E. Byrne, Enhancing molecularly imprinted polymer binding 

properties via controlled/living radical polymerization and reaction analysis, Polymer, 48 (2007) 

74-81. 

[33] S.M. Russell, G. Carta, Mesh size of charged polyacrylamide hydrogels from partitioning 

measurements, Industrial & Engineering Chemistry Research, 44 (2005) 8213-8217. 

[34] G.M. Eichenbaum, P.F. Kiser, A.V. Dobrynin, S.A. Simon, D. Needham, Investigation of the 

swelling response and loading of ionic microgels with drugs and proteins: The dependence on 

cross-link density (vol 32, pg 4867, 1999), Macromolecules, 34 (2001) 6526-6526. 

[35] D. Brune, S. Kim, Predicting protein diffusion-coefficients,Proceedings of the National Academy 

of Sciences of the United States of America, Proceedings of the National Academy of Sciences of 

the United States of America, 90 (1993) 3835-3839. 

[36] C.A. Haynes, E. Sliwinsky, W. Norde, Structural and electrostatic properties of globular-proteins 

at a polystyrene water interface, Journal of Colloid and Interface Science, 164 (1994) 394-409. 

[37] H. Bysell, A. Schmidtchen, M. Malmsten, Binding and Release of Consensus Peptides by 

Poly(acrylic acid) Microgels, Biomacromolecules, 10 (2009) 2162-2168. 

 

 



 Mobility of lysozyme inside oxidized starch microgels 

 

 

86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Uptake and release kinetics of 

lysozyme in and from an oxidized 

starch polymer microgel 

 
 

Abstract 

The kinetics of uptake and release of fluorescently labeled lysozyme by/from spherical 

oxidized starch polymer microgel particles (diameter 10 - 20 µm) was investigated using 

confocal laser scanning microscopy. Both the protein and the microgel have a pH dependent 

charge; in the pH range 3 - 9, the protein (pI ≈ 10) is positive and the gel is negative. Uptake 

was monitored at different protein concentrations, pH values and ionic strengths. Lysozyme 

release was triggered by changing the pH and salt concentration and measured during 

enzymatic degradation of the gel by α-amylase.To analyze the uptake and release kinetics we 

used a model based on diffusion, taking into account equilibrium exchange between protein 

bound to the gel matrix and free protein in the gel. For the uptake process the time-dependent 

evolution of the protein concentration profile in the gel phase and the medium was computed 

numerically. The calculated concentration profiles closely resemble the experimentally found 

profiles. The diffusion coefficient of free protein in the gel, Dp,g , was found to be on the order 

of 10
-11

 m
2
s

-1
, about one order of magnitude lower than the diffusion coefficient of lysozyme 

in bulk solution. The experimental release curves obtained at pH 7 yielded estimated values 

for the concentration ratio of bound and free protein in the gel and, related to this ratio, the 

effective diffusion coefficient of lysozyme in the gel, Deff. These values are extremely 

dependent on the ionic strength, ranging from ca 1000 and 10
-14

 m
2
s

-1
 at 0.025 M NaCl to 50 

and 2×10
-12

 m
2
s

-1
 at 0.05 M, respectively.  

Accepted for publication: Y. Li, Z. Zhang, H. P. van Leeuwen, M.A. Cohen Stuart, W. Norde, J.M.Kleijn, 

Uptake and release kinetics of lysozyme in and from an oxidized starch polymer microgel, soft matter, DOI: 

10.1039/C1SM06072D. 
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5.1 Introduction 

Nano- and micro-particles of hydrogels have received much attention in relation to 

encapsulation of functional ingredients, and the progress of scientific research in this field has 

been reviewed extensively [1-4]. Especially gels of biodegradable materials have long been 

recognized as suitable carriers for controlled uptake and release of active compounds (see, 

e.g., Refs [5-10]). 

In previous Chapters [11-13] we have reported on a biodegradable and biocompatible 

microgel synthesized from a natural potato starch polymer. We have a good control of its 

charge density and cross-link density. The binding affinity and uptake capacity of the gel for 

lysozyme, an antimicrobial protein, have been studied. 

Adsorption measurements and exchange experiments (between bleached and unbleached 

fluorescently labeled lysozyme) [13] showed that the affinity of lysozyme to the gel decreases 

sharply with increasing pH and salt concentration. From the exchange experiments at pH 7 we 

derived various fractions of bound protein with different exchange rates (‘mobility’); the 

distribution over these fractions is highly dependent on ionic strength. These exchange rates, 

however, do not give direct clues with respect to the kinetics of uptake by initially empty gel 

particles and release from loaded gel particles. 

In this Chapter, we focus on the kinetics of protein uptake and release, the latter triggered by 

increasing the pH and salt concentration. This is of relevance for controlled release 

applications, e.g., gastro-intestine delivery of functional ingredients or drugs. In addition, 

protein release as a result of enzymatic degradation (by α-amylase) of the microgel has been 

monitored. This kind of release is important for antimicrobial applications, e.g. in food 

packaging. 

 Fluorescence confocal laser scanning microscopy (CLSM) is used to follow the uptake and 

release process of protein for individual spherical gel particles (diameter 10 - 20 µm). We 

model the kinetics of both processes starting from basic diffusion equations. For the diffusion 

rate in the gel particle, an effective diffusion coefficient Deff, based upon the equilibrium 

exchange between protein bound to the gel matrix and free protein in the gel pores, is used. 

For the uptake experiments we take into account the evolution of a concentration profile in the 

solution around the gel particles and solve the equations numerically. Our analysis of the 

temporal release of protein from the gel to a flowing solution of zero protein concentration is 

based on Crank’s theoretical approach, holding for the case where diffusion in the medium 

can be ignored [14]. 
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5.2 Material and Methods  

Materials 

Native starch was kindly provided by AVEBE (Veendam, The Netherlands). The oxidation 

catalyst 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) and ethanol (100%) were purchased 

from Merck. The cross-linker sodium trimetaphosphate (STMP), poly-DL-lysine 

hydrobromide, lysozyme (from chicken egg white, Mw = 14,400 g/mole), Span 80 and n-

hexane were supplied by Sigma-Aldrich. The fluorescent dye, Alexa Fluor-488 carboxylic 

acid succinimidyl ester (mixed with isomers) was purchased from Invitrogen. Heat-stable α-

amylase (Termamyl® 120L, Type L, activity 120 KNU/g) was purchased from Novo 

Nordisk.  

 Solutions were prepared using millipore water with a specific resistance of 18.3 

MΩ/cm. All experiments were performed at room temperature. 

Microgel preparation  

The spherical microgel particles (diameter 10 - 20 µm) of cross-linked oxidized starch 

polymer were synthesized by inverse emulsion polymerization. First the primary alchohol 

groups on the starch polymer were oxidized into carboxyl groups; the degree of oxidation was 

30%. To form the gel a 0.20 cross-linker to polymer weight ratio was used. For more details 

on the oxidation of the starch polymers and preparation of the microgel particles we refer to 

Chapter 2 and 4 [11, 13]. 

Fluorescence confocal laser scanning microscopy 

A confocal microscope (Carl Zeiss Axiovert 200 microscope, Zeiss, Germany) equipped with 

an LSM 5 Exciter configuration, a 40×/0.6 objective and an Argon laser set at 488 nm was 

used. The standard settings were: pinhole 1.8 µm; gain 755; transmission 2.55 %. For analysis 

the software “Zen 2008” was used. The labeling of Alexa Fluor-488 to lysozyme has been 

described in Chapter 4 [13]. 

As flow cells under the microscope µ-Slides I Luer 0.8 (200 µL; Ibidi, Germany) were used. 

The kinetics of lysozyme uptake and release was measured by continuously taking 

fluorescence scanning pictures. 
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Lysozyme uptake kinetics  

The gel particles were fixed at the flow cell surface to be able to observe one and the same 

particle during the whole process. For this the negatively charged cell surface was coated with 

positively charged poly-DL-lysine by absorption from a 0.1% poly-DL-lysine solution in 

water for two hours. Subsequently, unabsorbed polylysine was flushed away and a dispersion 

of negatively charged microgel particles in water was added for attachment to the surface. 

After one hour unattached gel particles were rinsed out of the cell. One attached gel particle 

was brought into focus. Then 100 µL of an Alexa-488 labeled lysozyme solution (0.7 or 1.4 

µg/mL) was added to the cell and the protein uptake was monitored. (Recording of 

fluorescence images, 0.5 s/image, was already started before adding the labeled protein to 

observe the kinetics from the start.) Uptake kinetics were determined at pH 3 and 7 (at 0.01 M 

ionic strength) and at different NaCl concentrations (at pH 7). 

 

The fraction of protein uptake at time t is calculated from the fluorescence intensity of the gel 

particle by 

                                            b

b

eq II
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M

tM

−

−
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∞

)()(

                                                      (5.1) 

where M(t) is the protein uptake at time t, and Meq is the amount of protein in the gel when 

equilibrium uptake is reached; I(t) is the fluorescence intensity of the protein loaded gel 

particle (averaged over the whole section in the focal plane) at time t, I∞ is the intensity at 

equilibrium protein uptake, and Ib is the fluorescence background intensity in solution.  

The fluorescence label Alexa Fluor 488 is a stable dye and not sensitive to quenchers such as 

dissolved oxygen. The fluorescence intensity from an Alexa-488 labeled lysozyme solution 

varies linearly with protein concentration, up to at least 16  µg/mL [13]. Hence, quantitative 

results can be obtained if the protein concentration is within this range. Therefore, the amount 

of protein absorbed as a function of time relative to the equilibrium protein uptake, M(t)/Meq, 

as found from the fluorescence intensities is a good measure for the uptake kinetics.  

 

Lysozyme release kinetics 

For measuring the lysozyme release kinetics at different pH values and salt concentrations, 

the same experimental set-up was used as in the uptake experiments. In addition we made use 
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of a flow system to pump buffer solutions through the flow cell. Firstly, 100 µL of a 0.7 

µg/mL Alexa-488 labeled lysozyme solution was brought into contact with the fixed gel 

particles for 2 hours (in water, no salt) to allow equilibrium uptake. Then the protein in 

solution was flushed out of the flow cell with water. Protein was not released from the gel by 

this rinsing with water (this was checked once by monitoring the fluorescent intensity from a 

gel particle for two hours after rinsing). After that the flow system with buffer was switched 

on and simultaneously the recording of CLSM fluorescence images was started. The fraction 

of protein released at time t is given by 

 

                                      b
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−

−
−=

00

)(
1
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                                     (5.2) 

where Mrel(t) is defined as the amount of protein released at time t, M0 is the initial amount of 

protein in the gel (at t = 0), I0 is the initial fluorescence intensity of the gel particle and I(t) the 

fluorescence intensity at time t; Ib has the same meaning as in Eq. (5.1). 

Release kinetics was measured at various salt concentrations, i.e., 0.025 M, 0.035 M and 0.05 

M, at a fixed pH of 7. (For higher ionic strengths, release was found to occur too rapidly to 

follow by confocal microscopy.) In addition, measurements were performed at pH 3 and pH 

8, at a fixed salt concentration of 0.01 M. 

Enzyme induced protein release 

In these experiments, performed in the same set-up as described before, the fixed gel particles 

were first saturated with protein in the same way as described above. Then 100 µL of an 

amylase solution in water (10
5
×dilutions of original 120 KNU/g enzyme activities) was added 

into the protein loaded gel particle. (1 KNU - kilo Novo Unit, is defined as the amount of 

enzyme which breaks down 5.26 g of starch in one hour). The degradation of the gel was 

followed by optical microscopy. Again, a time series of fluorescence images was used to 

monitor the protein release. 

Modeling of protein uptake and release 

To analyze the uptake and release kinetics we use a comprehensive diffusion model assuming 

instantaneous equilibrium between matrix-bound and freely dissolved protein. 
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Modeling of protein uptake 

Under the conditions of our uptake experiments, the protein strongly binds to the gel network 

[12]. Local equilibrium between bound and free protein is established and effectively the 

protein is slowed down during its way of diffusing into the center. The consequence is that, 

after protein addition to the medium, a protein concentration gradient develops as depicted in 

Fig. 5.1 Initially, the solution near the gel particle is completely depleted from protein because 

of the strong binding and protein accumulates in the exterior of the gel particle; this gives rise 

to steep protein gradients near the gel/solution interface. As the gel network becomes 

saturated with protein, the concentration profiles level off again. 

The exact formulation of the time-dependent protein concentration profiles can be derived 

from the pertaining basic diffusion equations: 

                                  0 ≤ r ≤ a: 
p

gpp
c

R

D

t

c
2,
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∇
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∂

∂
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                                             r ≥ a:             
pp

p
cD

t

c
2∇=

∂

∂

                                     (5.4)  

where r is the distance from the center of the gel particle and a is the particle radius. Dp,g is 

the diffusion coefficient of the free protein molecules inside the gel. R is the ratio between 

bound and free protein in the gel, i.e., cbound /cfree. Dp is the diffusion coefficient of the protein 

molecules in solution; cp represents the total protein concentration (cbound + cfree). 

Note that Eq. (5.4) ignores convection in the medium; for particle sizes in the micrometer 

regime this is generally justified [15]. 

The typical boundary conditions for our uptake experiments are the following.  

At initial conditions: 

                                   t = 0; 0 < r < a           cp = 0          empty particles           (5.5)   

 

        r > a       cp = c*   bulk solution                

In a spherical symmetry there is no gradient at the particle center: 

                                           t > 0;             r = 0:          
0=

∂

∂

r

cp

             (5.6) 
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Figure 5.1. Development of protein concentration profiles in and around a gel particle (symbolized by the dotted 

circle) during protein uptake, after increasing the protein concentration in the bulk solution from 0 to c* at t = 0. 

The total protein concentration cp (the sum of the bound protein and freely dissolved protein concentrations) is 

depicted as a function of the position r; the distance from the centre of the gel particle; a is the particle radius; t1, 

t2, t3… indicate increasing times. The final equilibrium state, in which the protein concentration in the particle cp 

= cp
eq, is given by the lines with t∞.  

Accumulation of protein at the gel-solution interface does not occur and consequently there is 

continuity of the flux: 

                                    
ar

p
par

p
gp

dr

dc
D

dr

dc
D ↓↑ = )()(,

                                    (5.7)                           

On the basis of the set of equations (5.3 – 5.7), the time-dependent evolution of the protein 

concentration profile can be computed numerically [16]. Typical results for profiles of cp 

inside the gel particle are given in section 3. 

For spherical geometry and a particle size in the micrometer regime, the steady state protein 

supply flux Jp from the medium to the particle is given by Crank [14]: 

                                              
acDJ pp /*=

                                         (5.8) 

The time necessary to establish such a steady state is related to a
2
/Dp, the characteristic 

diffusion time τ over a distance a. Typically, for a protein with Dp of the order of 10
-10

 m
2
/s 

and a gel particle with radius a of 10 µm, τ would be of the order of 1 s. Thus, in case of 

strong binding to the gel network, within a few seconds the flux towards the particle is 

typically given by the limiting flux in the medium (Eq. 5.8).This situation completely 

invalidates treatments that ignore the diffusion in the supplying medium [17]. 
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With the accumulation progressing in time, the concentration gradients in solution and inside 

the gel start to level off (see Fig. 5.1). Finally the protein concentration in the gel particle 

reaches an equilibrium value cp
eq

.  

Modeling of protein release 

Unlike the protein uptake experiments, in which at t = 0 the protein concentration around an 

empty gel particle (r > a) is increased from 0 to a chosen value, in the release experiments 

from t = 0 a protein-loaded gel particle is flushed with buffer (cp = 0) in order to maintain a 

zero protein concentration in the medium. It is convenient to write the diffusion law for 

release of the protein from a sphere of radius a in polar coordinate form [14]: 
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                      (5.9)               

which is solved under the boundary conditions: 

                   t = 0;     0 < r < a:      cp = cp*                      (5.10)               

 

           r > a                cp = 0 

where cp* now is the initial total protein concentration inside the gel phase, and implying that 

diffusion in the medium is ignored. 

 

                            t > 0;                r > a :              cp = 0                       (5.11) 

 

In Eq. (5.9) Deff is the effective diffusion coefficient for the protein in the gel particle, 

counting both the free and the bound forms, which are supposed to be equilibrium with each 

other. The simplest case is that protein molecules are immobile when they are bound to the 

network (as was already tacitly assumed in Eq. 5.3). Then only free protein molecules 

contribute to the effective diffusion and Deff is given by: 

                                              boundfree

freegp
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The solution for Eq. (5.9) with boundary conditions (10) and (11) is given by [14]: 



Chapter 5 

 

95 

 

                                            








−−= ∑

∞

=
τ

π
π

t
n

nM

tM

n

22

1
22

0

exp
16

1
)(

                                  (5.13) 

where the characteristic time constant τ = a
2
/Deff. E.g., for a Deff of 10

-13 
m

2
/s and a particle 

radius of 10
-5

 m, τ would be 100 s. For short times this function can be approximated by 
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For t/τ < 0.01, with the diffusion layer developing in a thin outer shell of the particle sphere, 

M(t) is practically linear in t
0.5

. For longer times, with t/τ increasing to 0.1, the term in t 

counts as well and M(t) starts to level off. See references [14, 18] for more details. 

5.3 Results and discussion 

Uptake kinetics 

The steady state rate of protein uptake after establishment of a diffusion layer in solution (i.e., 

after a few seconds) should equal the limiting flux of protein at the solution side of the gel-

solution interface as given by Eq. (5.8). This limiting flux is proportional to the protein 

concentration in solution, c*. We checked this by measuring the fluorescence intensity from a 

gel particle after addition of fluorescently labeled lysozyme for two different protein 

concentrations (0.7 and 1.4 µg/mL), at pH 3 as well as at pH 7. The results for the first 100 s 

are presented in Fig. 5.2 The slope of the curve for 1.4 µg/mL protein concentration in Fig. 

5.2A, converts to 0.8 × 10
-19

 mol s
-1

 per particle using the calibration line of intensity vs. 

protein concentration [13]. This is close to the limiting diffusion flux, which for a radius of 

10
-5

 m is easily computed to be 10
-19

 mol s
-1

 per particle (Eq. 5.8). The similarity 

demonstrates that the initial rate of protein uptake is determined by the diffusion transport in 

solution.  
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Figure 5.2. Fluorescence intensity (arbitrary units) of a gel particle as a function of time after addition of protein 

(initial 100 s). (A) At pH 3, ionic strength 0.01 M. (B) At pH 7, ionic strength 0.01 M. Protein concentration in 

solution: (●) 0.7 µg/mL, (○) 1.4 µg/mL. The dotted lines are linear fits of the data. The slope is proportional to 

the rate of the protein uptake. 

At pH 3, increasing the protein concentration by a factor of two indeed results in an uptake 

rate that is twice as high (Fig. 5.2A). However, at pH 7 the uptake rate increases somewhat 

less than two times when the protein concentration is doubled (Fig. 5.2B). This can be 

explained from our previous finding that the binding strength of lysozyme to the microgel 

decreases with increasing pH [12]. Therefore the driving force for uptake in the initial regime 

(i.e., the protein concentration gradient at the solution side of the gel-solution interface) at pH 

7 is lower than at pH 3. Therefore, at pH 7 the uptake kinetics deviates slightly from the 

limiting flux of the protein in solution toward the gel particles. 

 

 

Figure 5.3 Time series of CLSM images and intensity profiles across the center of a gel particle for lysozyme 

uptake at pH 3 and ionic strength 0.01 M, at 60 s, 120 s, 180 s, 300 s, and 600 s after protein addition. 

Fig. 5.3 shows the distribution of the lysozyme over the microgel particle at various times 

after protein addition at pH 3. The protein diffuses from the gel-solution interface  
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Figure 5.4 (A) Protein uptake concentration profiles in the gel particle (radius 10 µm), normalized to the 

equilibrium protein uptake cp
eq at t = t∞. Uptake conditions: pH 3, ionic strength 0.01 M. (B) cp/ cp

eq profiles 

obtained from numerical solutions of the diffusion equation considering the concentration gradient at the gel-

solution interface and the accumulation of the protein inside the gel (Eqs.(5.3-5.7)).The ratio between bound and 

free protein inside the gel, R, was taken as 300; for the diffusion coefficient of the protein inside the gel, Dp,g , a 

value of 3×10-11 m2s-1 was used. 

towards the gel center with a diffusion front. In the final situation the protein molecules are 

distributed rather homogenously over the gel. 

Fig. 5.4A shows the protein concentration, normalized to the equilibrium concentration in the 

gel cp/cp
eq

, as a function to position r in the gel particle. Fig. 5.4B gives the normalized 

concentration profiles obtained from numerical solution of Eqs (5.4 - 5.7) based on the 

comprehensive uptake model taking into account the diffusion in the medium. With respect to 

the shape of the curves and the characteristic times, the numerical solutions and the 

experimental data are rather close, implying that the model is quite applicable to our data. For 

instance, the experimental protein uptake cp/cp
eq

 in the center of the particle is 0.4 at 200 s, 0.6 

at 300 s and 1.0 at 600 s in Fig. 5.4A, which is consistent with the calculated values in Fig. 

5.4B. However, near the outer boundary of the gel particle, the experimental concentration 

profiles are somewhat less steep than the calculated ones. The available data seem to suggest 

that in equilibrium protein distribution is fairly homogeneous throughout the gel particles, 

except for the outer shell (about 1 µm) of the gel particle (see e.g. Fig. 5.2 in Ref. [13]). This 

shell behaves like a transition layer of lower density with increased mobility of the protein. 

Taking into account such a gradual decrease of the density in the outer layer in this diffusion-

based model, would greatly complicate the numerical simulation (see e.g. the paper of 

Duval[19] on diffusion and binding of metal ions in soft particles with spatially 
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inhomogeneous binding site distribution). In view of the uncertainties concerning the gel 

density as a function of position, it does not make sense to further refine the fits in Fig. 5.4. 

Such a refinement of the model would not lead to drastically different findings concerning 

time dependence of the diffusion-controlled protein uptake. 

The numerical calculations of the concentration profiles as depicted in Fig. 5.4B, provide the 

best agreement for a ratio between bound and free protein inside the gel, R, on the order of a 

few hundreds. This result is in good accordance with lysozyme absorption isotherm data for 

our microgel at pH 3 and 0.01 M ionic strength [unpublished data], for which in the linear 

regime (below saturation) the ratio between the protein concentration in the gel particles and 

free protein in solution is several hundreds. The ensuing diffusion coefficient of free 

lysozyme in the gel Dp,g derived from the model is on the order of 10
-11

 m
2
s

-1
, well below its 

value in solution (10
-10

 m
2
s

-1
), which is expected since obstruction by the gel network 

increases the diffusion path length [20, 21]. 

We now focus on the effect of pH and salt concentration on the uptake kinetics over a longer 

time period.  

In Fig. 5.5 the uptake kinetics is displayed for two concentrations of NaCl (0 M and 0.01 M, 

pH 7) and two pH values (pH 3 and pH 7, 0.01 M buffer). Fig. 5.5A shows that for 0.01 M 

NaCl the gel reaches equilibrium protein uptake faster than for the case without NaCl. 

However, the absolute fluorescence intensity at equilibrium (large t) was found to be lower by 

a factor of 2 for 0.01 M than for 0 M NaCl, which is consistent with the earlier observation 

that equilibrium uptake decreases with increasing ionic strength [12, 13]. Therefore, although 

the initial slopes for 0.01 M and 0 M NaCl in Fig. 5.5A are practically the same, the absolute 

uptake rate is lower for 0.01 M than in the case of no added salt (the initial changes in 

fluorescence intensity were 0.23 a.u. s
-1

 and 0.56 a.u. s
-1

, respectively). This is because the 

presence of NaCl reduces the affinity between the protein and the gel network, leading to a 

smaller protein concentration gradient in the solution during uptake. 

Fig. 5.5B shows the uptake as a function of time at pH 3 and pH 7 at an ionic strength of 0.01 

M. The final absolute fluorescence intensities, and therefore the equilibrium protein 

concentrations in the gel, were found to be approximately the same for the two pH values. 

The initial uptake rate is much higher for pH 3 than for pH 7. This is consistent with our 

previous finding that the binding affinity increases with decreasing pH [12]. It was concluded 
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Figure 5.5 Protein uptake kinetics (i.e., fraction of protein taken up by a gel particle, M(t)/Meq, as a function of 

time). Protein concentration in solution is 0.7 µg/ml. (A) (▲) 0 M and (■) 0.01 M NaCl in water (pH ≈ 7); (B) 

ionic strength 0.01 M, (▲) pH 3 and (■) pH 7. The insets show the onsets of the curves, for (A) and (B) over the 

same time interval. 

that the binding affinity is mainly determined by the charge on the protein, while the total 

uptake capacity is determined by charge compensation, i.e., the (negative) charge on the gel 

decreases with pH while the (positive) protein charge increases, so that less protein molecules 

can be accommodated in the gel at low pH. 

Release kinetics 

For lysozyme bound inside the gel particles we identified several fractions of different 

binding strengths reflected by different exchange rates between bleached and unbleached 

fluorescently labeled lysozyme molecules [13]. It was found that increasing the salt 

concentration or the pH cause a shift in the distribution of the bound protein molecules 

towards more mobile fractions (i.e., more easily exchangeable fractions). Therefore protein 

release can be triggered by increasing the salt concentration and / or the pH. In this section, 

salt and pH triggered lysozyme release from the microgel is further investigated. 

 

 

Figure 5.6 Time series of CLSM images taken during protein release from a microgel particle at pH 7 and ionic 

strength 0.035 M at time 0 s, 6 s, 60 s, 600 s, and 1800 s. 

The release kinetics was determined by first saturating the gel particles (immobilized on the 

polylysine coated surface) with lysozyme in water. After removing the unabsorbed lysozyme 
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by flushing with water, the flow cell was flushed continuously with buffer of a specific ionic 

strength and pH. A time series of CLSM images of a gel particle was made to record the 

release process.  

Fig. 5.6 shows that for solution conditions of 0.035 M NaCl and pH 7, the lysozyme is 

gradually released from the gel to the solution. The full protein concentration profiles at 

different times are shown in Fig. 5.7. 

 

Figure 5.7 Protein concentration profiles (normalized to the initial protein concentration in the gel at t = 0, cp = cp 

*). The microgel radius is 10 µm. At t = 0 the protein release was started by switching the ionic strength from 0 

to 0.035 M at pH 7. 

The concentration profile in the particle just before flushing with buffer (at t = 0) shows a 

steep protein concentration gradient between the gel and solution. The fact that the initial 

concentration profile is not a step function between gel and solution, again reflects the 

heterogeneity of the gel cross-link density, which seems to be lower at the gel boundary 

(probably the heterogeneity extends over 1 µm). As soon as the buffer is flowing, the protein 

molecules are driven to leave the particle into the solution.  

The temporal evolution of the profile in Fig. 5.7 shows that over the first 60 s close to 50% of 

the protein has already left the outer 3 µm of the particle sphere. However, with increasing 

time the profile seems to remain flat without further growth of the depletion shell. This might 

point to a limited rate of release of the protein from the gel matrix, and/or a gradual decrease 

of the effective protein diffusion coefficient towards the heart of the gel particle. Further 

investigations of this behavior seem to be relevant for controlled-release applications. 
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Figure 5.8 Release kinetics of lysozyme from the microgel at pH 7 and ionic strength (▲) 0.025 M (■) 0.035 M 

(●) 0.05 M. (A) Fraction of protein released Mrel(t)/M0 as a function of t 
0.5

. Dotted lines indicate for each ionic 

strength the characteristic time t50 at which 50% of the protein was released. (B) The modelling of release 

kinetics according to Eq. 5.13. (C) Fraction of protein released as a function of (t/t50)
0.5. The values for t50 are: 

480 s at 0.025 M, 90 s at 0.035 M, and 18 s at 0.05 M.  

The release kinetics data at different ionic strengths were fitted with Eq. (5.13), the solution of 

the diffusion equation for release under our specified conditions. The experimental data are 

shown in Fig. 5.8A, and the fits in Fig.5.8B. It seems our data almost obey the t
1/2

 

functionality, and the fits can be used as a first approximation for the characteristic diffusion 

timesτ.  

In Fig. 5.8C the data are re-plotted as a function of (t/t50)
1/2

, in which t50 is the characteristic 

time for each particular salt concentration at which 50% of the protein is released from the 

gel. In this way the release data for different salt concentrations give rise to one single master 

curve. This provides strong evidence that in all cases there is equilibrium between bound and 

free protein in the gel phase as assumed in the model, and that diffusion is indeed the limiting 
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step during protein release. This can be understood considering that in case of no equilibrium, 

at the start of the release process the concentration ratio of free and bound protein in the gel 

would become time and position dependent. Therefore, Deff would no longer be a constant but 

decrease in time in a way dictated by the rate of desorption of the protein from the gel 

network. This effect would be dependent on the salt concentration (the stronger the binding, 

the stronger the time dependence of Deff) and therefore the normalized curves for different salt 

concentrations would not overlap (note that the time axis is normalized with respect to the 

characteristic diffusion time), showing that the diffusion model would not be valid. 

From the characteristic times τ the effective diffusion coefficients in the gel, Deff, at the 

different ionic strengths can be derived. The magnitude of the diffusion coefficient of free 

protein molecules inside the gel was already estimated from the modeling of the protein 

uptake: Dp,g ≈ 10
-11 

m
2
s

-1
. Now the corresponding values for R = cbound/cfree can be calculated 

as well through Eq. (5.12). The results are shown in Table 1. The ratio between bound and 

free amounts of protein in the gel phase decreases dramatically with increasing ionic strength, 

due to screening of the electrostatic attraction between protein and gel. It should be noted that 

the values in Table 1 are estimates, not exact data. Especially the uncertainty in the R values is 

high, since these are based on Deff as well as on Dp,g, which are both only first 

approximations. For comparison, from the absorption isotherm of lysozyme to the microgel 

obtained at pH 7 and 0.05 M ionic strength [12] we find R to be in the range 100-200. 

Table 5.1 Data obtained from the release kinetics at pH 7: the characteristic diffusion time τ = a
2
/Deff and 

effective diffusion coefficient Deff in the gel, and the ratio R = cbound/cfree. The diffusion coefficient for the free 

protein molecules in the gel phase Dfree is approximately 10-11 m2s-1, estimated from the protein uptake kinetics.  

I (M) τ (s) Deff (m
2
s

-1
) R 

0.025 10
4
 10

-14
 1000 

0.035 2×10
3
 5×10

-14
 200 

0.05 5×10
2
 2×10

-12
 50 

 

 

The pH dependence of the release was investigated by measuring the release at pH 3 and pH 8 

(0.01 M buffer) (data not shown). These two pH values were chosen because they correspond 

to the acid environment in the human stomach and the basic conditions in the small intestine 

or colon, relevant for possible applications as a carrier for intestine/colon specific drugs. It 

was found that at pH 3 no significant release takes place at the time scale of our experiments 
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(1 - 2 hours), except for a small instantaneous release of about 10 % just after switching to the 

buffer solution. This may be caused by release of free and loosely bound protein at the 

exterior of the particles. Because of the high affinity between lysozyme and the gel at low pH 

and ionic strength, the very slow release is in line with expectation. The protein loaded gel 

particles at pH 3 are stable for 24 hours in buffer. The long-time stability of the protein loaded 

gel particles at low pH deserves further study. At pH 8 and 0.01 M buffer a release curve was 

found comparable to the ones in Fig. 5.8, with a value for R of 250, Deff  of 4×10
-14

 m
2
s

-1
, and 

a characteristic diffusion time τ of 2500 s. Since at pH 7 and 0.025 M NaCl the characteristic 

time is higher (see Table 5.1) than this, the effect of the pH difference seems to outweigh the 

effect of the difference in ionic strength (τ increases with decreasing pH and with decreasing 

ionic strength). 

Amylase triggered lysozyme release kinetics 

Our microgel is composed of cross-linked starch polymer; 30% of the primary alcohol groups 

on the glucose units have been oxidized into carboxyl groups. Therefore, a large fraction of 

the alpha-1,4 glucose linkages is still degradable by amylase. When loaded with lysozyme, 

this protein should be released into the surrounding solution when the gel is enzymatically 

broken down. To test this, first the empty microgel particles were incubated with α-amylase in 

water at room temperature. Optical microscopy images were taken to follow the gel 

degradation in time. Fig. 5.9 shows that the gel is gradually broken down by amylase and 

degradation is nearly complete after 1000 s. Then lysozyme loaded microgel particles were 

incubated with the same amount of amylase, and the release of the protein was monitored by 

CLSM. Fig.5.10 shows that at the location of a microgel particle the protein fluorescence 

intensity decreases as a function of time. The protein release kinetics after adding amylase is 

depicted in Fig. 5.11. In the first 300 s the release rate is slow and this is probably because the 

amylase molecules need some time to access and adjust their conformation to the substrate. 

After about 500 s the rate increases. The release is complete and reaches a plateau after 1200 s 

when all the starch has been degraded. This result is comparable to the observation of Brandl 

et al. [22]  that bovine serum albumin (BSA) molecules detach from a PEG-polypeptides 

hydrogel when there is an enzymatic degradation of that gel. It strongly supports our idea of 

using the starch microgel for antimicrobial packaging as mentioned in the introduction 

section. To further test the potential for such an application we perform microbiological 

experiments and will report on this in Chapter 6. 
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Figure 5.9 Optical light microscopy time series images of the degradation of empty gel particles in water at 0 s, 

300 s, 1000 s after addition of amylase. 

 

Figure 5.10 CLSM time series images of a protein loaded gel particle at 0 s, 300 s, 600 s, 800 s, 1000 s after 

addition of amylase. 

 

Figure 5.11 Fraction of protein released Mrel(t)/M0 as a function of time during enzymatic degradation of the gel 

particles by α-amylase. 

5.4 Concluding remarks 

Our experimental data on lysozyme uptake and release kinetics in starch microgel particles 

can be very well modeled on the basis of diffusion equations, taking into account the 

equilibrium between protein bound to the gel network and protein free in the gel particles. 

The diffusion coefficient of lysozyme in the gel particles (Dp,g) is found to be on the order of 

10
-11

 m
2
s

-1
, an order of magnitude lower than in solution, due to binding of protein to the gel 

and obstruction by the gel network. From fitting of the release data at pH 7 the effective 

diffusion coefficient Deff of the protein in the gel and the ratio concentration R between bound 

and free protein have been estimated. These quantities are extremely sensitive to the ionic 

strength, which is consistent with previously obtained data. 
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In addition, the time evolution of the experimental protein concentration profiles in the gel 

particle on release seems to reflect gel inhomogeneity (i.e., the particles are somewhat denser 

in the center than near the gel/solution interface). Further investigation of the influence of gel 

homogeneity on the release behavior is relevant for the use of the particles in controlled 

release applications.  

Lysozyme is released from the gel particles at pH 8, but not at pH 3 (0.01 M NaCl). This 

provides opportunities for use of the microgel in food and pharma controlled-delivery 

applications, since a functional ingredient can be protected in the stomach, and released in the 

small intestine. 

The enzyme α-amylase degrades the oxidized starch microgel resulting into the release of 

their protein content into solution. This is an important result, since it demonstrates the 

feasibility of the use of the microgel in, for example, antimicrobial packaging. The presence 

of amylase producing bacteria would lead to degradation of the gel and subsequently the 

lysozyme released would kill the bacteria. In chapter 6 the antimicrobial activity of the 

lysozyme loaded gel particles tested on amylase-producing bacteria is in preparation.  
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Chapter 6 

The antimicrobial activity of 

lysozyme-loaded oxidized starch 

microgel 

Abstract 

The aim of this study is to determine the release of lysozyme from oxidized starch microgels 

and subsequently test its antimicrobial activity. The gels are made of oxidized potato starch 

polymers, which are chemically cross-linked by sodium trimetaphosphate (STMP). The 

microgel is negatively charged and interacts with positively charged lysozyme by electrostatic 

attraction. Application of the lysozyme-containing starch particles to environments 

contaminated with microbes, may lead to hydrolysis of the starch by microbial enzymes. As a 

result, lysozyme is released in the environment where it inhibits microbial growth. In this 

study, first bacteria were screened for amylase production and lysozyme sensitivity. Then, the 

bacteria were mixed with empty gel particles (i.e., without lysozyme) in a Nutrient Broth 

liquid medium to test whether the bacteria that can produce amylase are also able to degrade 

oxidized starch gel. Subsequently the amylase-producing lysozyme sensitive bacteria, 

Bacillus licheniformis 7558 and Bacillus subtilis 168, were selected for further quantification 

of the antimicrobial activity of the gel-lysozyme particles after incubation with these bacteria 

in Nutrient Broth liquid suspensions. The results prove that the starch microgel has a potential 

as antimicrobial carrier targeting amylase-producing and lysozyme-sensitive bacteria. The 

controlled antimicrobial delivery for killing undesired micro-organisms may find applications 

in food related systems, where amylase-producing bacteria may be abundantly present. 

 

Submitted for publication: Y. Li, S. Kadam, T. Abee, T. M. Slaghek, J. W. Timmermans M.A. Cohen Stuart, W. 

Norde, J.M.Kleijn, Antimicrobial starch microgel to detect and kill amylase-producing microorganism. 
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6.1 Introduction 

      Control of microbiological food safety is a very important issue in food industry and 

therefore innovation in antimicrobial technology has a high priority. Encapsulation of 

antimicrobial compounds is a promising option since it can effectively reduce undesirable 

interaction between these compounds and food components, and improves the stability and 

activity of antimicrobials in complex food systems. For example, encapsulation of Nisin and 

lysozyme in liposomes [1] enhances activity against Listeria monocytogenes [2] and 

Escherichia coli O157:H7
 
[3] chitosan-lysozyme films and coatings improve microbial safety 

of Mozzarella cheese [4], and incorporation of antimicrobial peptides into mesoporous silica 

films inhibits growth of both Gram-positive Staphylococcus aureus and Gram-negative E. coli 

bacteria [5]. However, only few of these carriers have a “release-on-demand” functionality for 

enclosed ingredients. We have developed a so-called “Bioswitch” microgel carrier
 
[6-9] 

which consists of cross-linked negatively charged potato starch polymer. It can absorb and 

bind positively charged antimicrobial compounds, e.g., lysozyme, through electrostatic 

attraction. The antimicrobial activity can be switched on by amylase secretion from 

microorganisms, causing hydrolysis of the starch, and leading to release of lysozyme into the 

environment that subsequently hydrolyses cell walls of sensitive bacteria finally leading to 

cell death. Thus, the system detects and subsequently kills amylase-producing 

microorganisms. 

      Because of its biodegradability by α-amylase, this starch gel carrier is targeted in 

particular against amylase-producing microorganisms. Amylase-producing microorganisms 

widely exist in nature. Several bacillus strains produce extracellular amylases and are of 

considerable industrial importance [10-12].
 
For instance, Bacillus licheniformis produces a 

thermostable α-amylase, which is widely used for starch liquefaction [13]. Various 

lactobacillus (LAB) strains [14]
 
are also capable of producing amylase. However, some of 

these amylase-producing microorganisms are pathogenic, e.g., Aeromonas hydrophila is a 

pathogenic bacteria in fish and Guignardia citricarpa is a plant pathogenic fungus that causes 

citrus diseases. Antimicrobial compounds encapsulated in starch microgel particles can 

specifically target and inactivate such amylase-producing pathogens. Several starch gels 

designed for this purpose have already been presented in literature [15-18]. However, our 

“Bioswitch” microgels (10-20 µm in diameter) are novel with respect to their controlled 

degree of oxidation and cross-link density [6, 7] and, hence, their controlled swelling and 

controlled uptake of the functional ingredient. 
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      Lysozyme is an antimicrobial protein that is naturally present in egg white, in plants and 

in animal secretions [1]. Its antimicrobial properties are associated with hydrolysis of 

peptidoglycan layers in the bacterial cell wall and also to membrane perturbation [19]. Our 

previous studies show that the starch microgel can accommodate a large amount of lysozyme 

[6], while the uptake and release kinetics can be tuned by varying the charge, the degree of 

oxidation and the cross-link density in the gel [7]. These features are important because they 

may also be applicable to other positively charged water-soluble antimicrobials. 

      The objective of this study is to test the antimicrobial activity of lysozyme-loaded 

oxidized starch gel particles. A selection of food spoilage and pathogenic gram-positive 

bacteria including Bacillus. licheniformis 7558 and Bacillus. licheniformis 6993, Bacillus 

subtilis 168, Bacillus cereus 14579 and Bacillus. cereus 10957, and Listeria. monocytogenes 

LR991 and Listeria. monocytogenes 001 were screened for their amylase-production and 

lysozyme sensitivity. The selected bacteria were used for quantification of the antimicrobial 

activity of the lysozyme-gel particles. Our study opens a new approach to using lysozyme 

containing gels in antimicrobial applications. 

 

6.2 Material and Methods  

Materials 

Native potato starch was kindly provided by AVEBE, the Netherlands. The oxidation 

catalyst 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was purchased from Merck, 

Germany. The cross-linker sodium trimetaphosphate (STMP) and the globular protein 

lysozyme (from chicken egg white, Mw = 14.4 kDa) were supplied by Sigma-Aldrich. The 

fluorescent dye, Alexa Fluor 488 carboxylic acid succinimidyl ester (mixed with isomers), 

was purchased from Invitrogen. Alexa Fluor 488 labelled lysozyme was prepared as described 

previously [8]. B. licheniformis 7558 and B. licheniformis 6993 were obtained from TNO 

Quality of Life, Netherlands. The bacterial strains B. subtilis 168, B. cereus 14579 and B. 

cereus 10987, L .monocytogenes LR991 and L. monocytogenes 001 were kindly provided by 

the Food Microbiology department of Wageningen University, Netherlands. Brain Heart 

Infusion (BHI) medium is from Bacton Dickinson, France. (Composition BHI in Appendix) 

Agar bacteriological (Agar no.1), Nutrient Broth (NB), Nutrient Agar (NA) were purchased 

from Oxoid, England. (Composition NB and NA in Appendix) Iodine solution (Color gram 2 

(R2-F) Stabilized Lugol) is obtained from Biomerieux, France. Solutions were all prepared 

using sterilized distilled water. All experiments were replicated at least twice. 
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Microgel preparation  

The spherical microgel particles (diameter 10 - 20 µm) of cross-linked oxidized starch 

polymer were synthesized by inverse emulsion polymerization. First the primary alcohol 

groups on the starch polymer were oxidized into carboxyl groups; the degree of oxidation was 

30%.To form the gel a 0.20 cross-linker to polymer weight ratio was used. For more details 

on the oxidation of the starch polymers and preparation of the microgel particles we refer to 

Chapter 2 [6]and 4 [8]. 

Encapsulation of lysozyme by DO30 microgel 

We suspended 40 mg of the dry gel particles [6, 7] in 4 mL sterilized distilled water (pH 

7, no salt),  added 1 mL of 50 mg/mL protein solution and gently stirred for 2 hours (enough 

time to reach equilibrium). Subsequently, the samples were divided over 4 tubes and 

centrifuged at 10,000 rpm for 5 minutes and the concentration of lysozyme in the supernant 

was determined by UV spectrophotometry. The sediment of protein-gel particles was 

separated from the supernant to remove the unabsorbed lysozyme. The protein absorbed in 

equilibrium (mg protein/mg dry gel) in the microgel particles was calculated from mass 

balance. It is around 1.2 mg protein / mg dry gel. The experiment was performed in a 

sterilized environment in a microbiology hood.  

Enzyme induced protein release 

Gel particles were first saturated with fluorescent (Alexa Fluor 488) labeled protein for 2 

hours. Then 100 µL of an amylase solution in water (10
5
 × dilutions of original 120 KNU/g 

enzyme activity) was added to the protein loaded gel particle. (1 KNU - kilo Novo Unit, is 

defined as the amount of enzyme which breaks down 5.26 g of starch in one hour). The 

degradation of the gel was followed by optical microscopy. A time series of fluorescence 

images was used to monitor the protein release. 

Assay of bacterial amylase production 

Bacterial strains were stored at -80°C in the presence of 26% (v/v) glycerol. Before each 

experiment, strain cultures were grown overnight in BHI broth at 30 °C while shaking (200 

rpm). The overnight cultures (around 10
6
 CFU/mL) were spot-inoculated on BHI-Agar plates 

containing 1% of soluble starch (starch plates). Starch plates were incubated for 24 hours at 

30°C.  Colonies were scraped off/washed out from the plate with sterilized water and 2ml of 
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Lugol’s iodine was poured on the starch plates. A clear hydrolysis zone indicates degradation 

of starch by amylase produced by the bacteria. Results are shown in Figure A6.1 in Appendix. 

Visualization of starch gels degraded by amylase-positive bacteria 

100 µL overnight culture of amylase-positive bacterial strains cultivated in BHI broth 

(around 10
6
 CFU/mL) was mixed with 100 µL concentrated spherical DO30% microgel 

particles [8, 9] in 1 mL NB liquid medium. The mixtures were incubated in a shaker incubator 

at 30 °C. Pictures of the starch gel particles were taken for all strains after 24 hours incubation 

at 100 × magnification. For B. licheniformis 7558, a time series pictures were taken after 0h, 

3h, 6h, 9h, 12h, 24h incubation. 

Lysozyme-sensitivity of bacterial strains 

100 µL overnight culture of bacterial strains in BHI broth (around 10
6
 CFU/mL) were 

spread evenly on BHI-Agar plates to obtain a uniform bacterial lawn. A hole (5 mm in radius) 

was made in each plate. 200 µL 50 mg/mL lysozyme solution was added into the hole. For 

lysozyme-sensitive bacteria, an inhibition zone will occur around the hole after 24 hours 

incubation at 30 °C. Results were shown in Figure A6.2 in Appendix. 

Determination of antimicrobial activity of starch gel-lysozyme particles in liquid suspension 

A low salt NB (3 g /L NaCl) liquid medium was prepared in order to prevent the salt-

induced protein release from starch gel particles. 0.03-0.10M NaCl was used to find out the 

optimal salt concentration for bacterial growth. The results indicate that 0.05 M (3 g/L) NaCl 

is the most suitable salt concentration. 200 µL overnight cultures of bacterial strains grown in 

BHI broth (around 10
6
 CFU/mL) was added into 20 mL NB liquid medium as a control. 

Protein-gel particles (12 mg protein / 10 mg gel), 12 mg lysozyme and 10 mg gel particles 

were separately added into three separated beakers containing 20mL NB medium, and 

subsequently mixed with 200 µL bacterial overnight cultures. The mixtures and the control 

were placed in a 30 °C shaker incubator (200 rpm). After 0 h, 3 h, 6 h, 12 h, 24 h, 27 h, and 

30 h incubation, 100 µL of each sample was diluted with 900 µL NB medium and then the 

optical density (OD) at 600 nm was measured. The optical density of the bacterial 

suspensions at this wavelength is roughly proportional to the number concentration of 

bacterial cells [2]. The reduced OD indicates inhibition of bacterial growth due to the lysis of 

bacterial cell walls. The optical density of the starch gel particles themselves is very low and 

does not interfere with the optical density of the bacteria. 
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6.3 Results and discussion 

Optimum starch microgel for amylase-triggered bacterial inhibition 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6.1 TEMPO / NaOCl / NaBr oxidation of starch amylose to the corresponding polyuronic derivatives. 

 

Scheme 6.2 Preparation of oxidized starch microgel by inverse (W/O) emulsion polymerization; encapsulation of 

oppositely charged ingredient by the starch microgel. 

A natural biopolymer-based release-on-demand Bioswitch microgel that consists of 

cross-linked oxidized potato starch polymers has been developed [20]. As it is shown in 

Scheme 6.1, the primary alcohol groups at the 6-position on the starch polymer (e.g., 

amylose) were selectively oxidized into carboxyl groups, by TEMPO-mediated oxidation [21, 
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22]. In this way, starch polymers of 30%, 50%, 70% and 100% degree of oxidation (DO) 

were prepared. The DO was controlled by the amount of sodium hypochlorite added during 

oxidation. Spherical microgel particles were prepared by chemically cross-linking the 

oxidized starch polymer with sodium trimetaphosphate (STMP) at pH 10 in the water droplets 

of a water-in-oil (W/O) emulsion (Scheme 6.2) [8]. The oxidized starch microgel carries 

negative charges which are able to interact with positively charged ingredients (e.g., proteins) 

through electrostatic attraction. The swelling and protein uptake behavior are responsive to 

environmental parameters such as pH and salt concentration [6, 7]. Uniquely, the starch gel 

can be degraded by enzymatic attack by amylase, which switches on the release of the 

functional ingredients from the gel. Advantages of the Bioswitch microgel are the controlled 

charge and cross-link density, and, hence, controlled swelling and uptake capacity. 

 

The natural biopolymer potato starch is not well-defined, nevertheless it can be used to 

make microgels with well-defined properties. As shown in Figure 6.1A, the maximum charge 

density Qmax (obtained from proton titrations [7]) of various oxidized polymers in solution 

increases linearly with increasing DO. Gels attain the same charge density as the 

corresponding dissolved polymers except at high DO-values, at which the charge density is 

somewhat reduced due to the polyelectrolyte effect. Figure 6.1B shows that the maximum 

lysozyme uptake Γmax (the plateau value of the protein absorption isotherm [7]) increases 

linearly with the charge density Qgel of the gel. Thus, the maximum amount of protein 

absorbed can be tuned by controlling the DO of starch gels. Highly oxidized amylose is 

difficult to digest by amylase. DO70% and DO100% starch gel were found to be non-

degradable by α-amylase, and these gels are therefore not suitable for the Bioswitch system. 

The gel having a low degree of oxidation, DO30%, and a low cross-link density (cross-linker 

to polymer weight ratio 0.10) was selected as the suitable carrier, since it is easily degraded 

by bacteria that produce amylase. This gel is used throughout this chapter.  

Lyon et al. have reported different kinds of innovative environmental multi-responsive 

hydrogels for targeted drug delivery and microlenses for biosensing [23-25]. Hovgaaard and 

Brøndsted [26] have found that degradation of their dextran hydrogel by dextranase leads to 

the release of encapsulated drugs.  Our starch microgel does not only show stimuli-responsive 

behavior, but it can also be degraded by α-amylase[9]. Figure 6.1C shows that fluorescently 

labeled lysozyme is released after degradation of a gel particle by α-amylase. It is therefore 

expected that bacterial amylase can trigger the release of encapsulated antimicrobial 

compounds from the starch gel 
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Figure 6.1 (A) Maximum charge density Qmax obtained by proton titration as a function of degree of oxidation 

(DO) for cross-linked (▲) and  not cross-linked (●) starch polymer. (B) Maximum lysozyme uptake Γmax as a 

function of charge density Qgel of the microgels. (C) Top: optical light microscopy time series images of the 

degradation of empty DO30% gel particles in water at 0 s, 300 s, and 1000 s after addition of amylase. Bottom: 

fluorescence CLSM time series images of a protein loaded gel particle at 0 s, 300 s, 600 s, 800 s, and 1000 s after 

addition of amylase. The lysozyme was fluorescent labeled with Alexa Fluor 488. 

 

Screening for amylase-producing and lysozyme sensitive bacteria 

In order to measure the antimicrobial activity of the starch gel encapsulated lysozyme 

(gel-lysozyme) system, firstly, bacteria that can produce amylase and/or are sensitive to 

lysozyme were screened. The amylase-producing property of bacteria was determined by the 

iodine test: starch amylose forms helices where iodine molecules assemble, causing a dark 

purple/black color. In case of amylase-producing bacteria, clear zones surrounding the 

bacterial colonies can be observed, due to degradation of the amylose into smaller units, such 

that iodine cannot bind. Several bacterial strains were incubated in a starch-agar medium plate 

at 30 °C for 24 hours. Then iodine solution was applied to the plates. As shown in Figure 

A6.1 in Appendix, a clear zone occurs around the spots where amylase-producing bacteria 

have been growing. After 24 h incubation at 30°C lysozyme sensitivity of selected strains was 

C 
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reflected in the appearance of an inhibition zone near the spot on BHI agar plate where 

lysozyme solution was applied (see Figure A6.2 in Appendix). The results for amylase 

production and lysozyme sensitivity are summarized in Table 6.1. Four strains were selected 

for further investigation of the inhibition effect of the starch gel-lysozyme particles. 

Table 6.1 Amylase-production and lysozyme-sensitivity of selected bacteria.  

 

 [a]  The amylase-producing property is measured by starch medium plate and iodine test. The results are shown 

in Figure A6.1 in Appendix. 

[b] The lysozyme sensitivity is determined by a BHI-agar plate assay. Results are shown in Figure A6.2 in the 

Appendix. 

B. licheniformis 7558 and B. subtilis 168 were selected as the target strains because of 

their ability to produce amylase and their growth inhibition by lysozyme. B. licheniformis 

6993 was selected as a control strain, because it cannot degrade starch but is sensitive to 

lysozyme, and B. cereus 14579 as another control because it degrades starch but is insensitive 

to lysozyme.  

Visualization of starch gel degradation by amylase-positive bacteria 

 
 

Figure 6.2 Time series of degradation of DO30% starch gel by B. licheniformis 7558 after 0 h, 3 h, 6 h, 12 h, and 

24h of incubation at 30 °C. The scale bars corresponds to 10 µm. 
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Figure 6.3 Optical images of bacterial strains mixed with DO30% starch microgel particles in Nutrient Broth 

(NB) liquid medium after 24 hours of incubation at 30 °C, no lysozyme added. The concentration of gel particles 

and amount of bacteria added are equal for all the samples. (A) Gel blank: only gel particles; (B) B. licheniformis 

7558 (amylase +) and gel particles; (C) B. licheniformis 6993 (amylase -) and gel particles; (D) B. subtilis 168 

(amylase +) and gel particles ; (E) B. cereus 10987 (amylase -) and gel particles. The scale bars indicated are 20 

µm. 

Although the iodine test shows that some bacterial strains hydrolyze starch in solution, 

the ability of those strains to degrade the cross-linked oxidized starch still needs to be proven. 

About 10
7
 cells mL

-1
 of each strain were mixed with 10

-1
 diluted DO30% microgel particles in 

NB liquid medium. Optical microscopic images were made after 24 hours incubation at 30 °C 

to qualitatively judge degradation of the gel particles. As an example, the kinetics of gel 

degradation by B. licheniformis 7558 is shown in Figure 6.2. A given gel particle 

concentration was applied to the selected bacterial strains and after 24 hours incubation at 30 

°C. Their ability to degrade the gel particles was judged from the optical images displayed in 

Figure 6.3 B-E, by comparison with the image in Figure 6.3A for the blank sample (without 

bacteria). Figure 6.3B and 6.3D show that B. licheniformis 7558 and B. subtilis 168 are able 

to degrade the gel particles. As shown in Figure 6.3C and 6.3E, B. licheniformis 6993 and B. 

cereus 10987 can not degrade the starch gel. These results are consistent with the iodine 

experiments for the amylase induced degradation of dissolved starch. 
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Determination of the antimicrobial activity of starch gel-lysozyme in liquid suspension 

 The antimicrobial activity of gel-lysozyme particles may be effectively and accurately 

determined in a suspension containing NB liquid medium in which microscopic gel particles 

and bacteria are intimately mixed. NB liquid medium contains 50 mM NaCl which may lead 

to some release of protein from the gel particles, due to salt-screening effect of electrostatic 

attraction between the starch gel and lysozyme [7]. The amount of protein released after 24 

hours immersion of the gel-lysozyme particles in the NB liquid medium was measured by UV 

spectrophotometry and showed that only 2% protein of initial amount of protein in the gel is 

released. In the next 24 h no further release of lysozyme was observed (see Figure 6.4). Hence 

passive protein release in NB liquid medium is only very limited and can be neglected. 

 

Figure 6.4 Percentage of lysozyme released from oxidized starch microgel particles in NB liquid medium during 

shaking and incubation without bacteria. The total amount of protein absorbed in the gel is 1.2 mg prot/mg gel. 

In the end about 2% of the total amount of absorbed protein was released (lysozyme concentration is 25 µg/mL). 

The antimicrobial activity of starch gel-lysozyme particles on bacterial growth is 

measured by optical density (OD) as a function of time. The OD value of bacterial suspension 

at 600nm is roughly proportional to the number concentration of bacterial cells [2].The 

growth inhibition is indicated by a low OD value due to lysis of bacterial cell walls. The four 

selected strains in Figure 6.5 were used to assess the antimicrobial activity of starch gel 

encapsulated lysozyme particles. The OD values were determined for bacterial suspensions in 

the presence of free lysozyme, gel encapsulated lysozyme, gel without lysozyme and 

compared with the control (only bacteria in the medium). For the bacterial suspensions 

containing free lysozyme, complete inhibition occurred for all strains (Figure 6.5A-C) except 

B. cereus 14579 (Figure 6.5D). As shown in Figures 6.5B and 6.5C, the optical densities in 
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the presence of free lysozyme approached those of encapsulated lysozyme and remained at a 

low level over time. 

             

              

Figure 6.5 Bacteria growth in suspensions as determined by optical density (OD) measurements at 600 nm. (A) B. 

licheniformis 6993, amylase (-), lysozyme sensitive (+). (B) B. licheniformis 7558, amylase (+), lysozyme 

sensitive (+). (C) B. subtilis 168, amylase (+), lysozyme sensitive (+). (D) B. cereus 14579, amylase (+), 

lysozyme sensitive (-). The optical density in the figure is obtained from 10 times diluted samples from the 

original suspensions. The dotted lines are only meant as a guide for the eye. 

This result indicates that the growth of the amylase-positive and lysozyme-sensitive 

bacteria B. licheniformis 7558 and B. subtilis 168 were inhibited by the presence of the 

lysozyme-loaded gel particles. The inhibition effect was nearly as effective as in the case free 

lysozyme was added. These results prove that the starch gel was degraded by the bacterial 

amylase, and the released lysozyme killed bacteria in the medium. In the case empty gel 

particles were added to the bacterial suspensions, the growth was found to be nearly the same 

as in the control that only contains bacterial cells. It proves that the empty starch gel particles 

have no antimicrobial activity. 
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         Figure 6.5A shows that starch gel-lysozyme particles did not effectively inhibit the 

amylase-negative B. licheniformis 6993 although it is killed by free lysozyme in the medium. 

It shows that the slight amount (about 2%) of salt-induced release lyszoyme is diluted in the 

suspension down to sub-lethal concentrations. The gel-lysozyme particles do not have 

antimicrobial activity to amylase-negative bacteria. The liquid suspension method shows that 

the lysozyme containing starch gel particles can be potentially used in food systems that are 

often more or less liquid-like. It proves that the gel-lysozyme particles are specific to 

amylase-producing bacteria. It detects the amylase-producing bacteria and subsequently kills 

those that are sensitive to lysozyme. 

 

6.4 Concluding remarks 

We have prepared oxidized starch-based microgels capable of encapsulating lysozyme 

that are easily degraded by bacterial amylase, thereby releasing the lysozyme. We selected a 

microgel with a relatively low degree of oxidation (DO30%) to test the antimicrobial activity 

of the gel-lysozyme system. 

The results show that degradation of the starch particles is a pre-requisite for the lethal 

activity of the gel-lysozyme particles, since only the amylase-positive lysozyme sensitive 

bacteria are killed. Thus, our system is able to diagnose the presence of amylase-producing 

microorganisms followed by eradication of the lysozyme sensitive species. 

Similarly, the oxidized starch gel system can be used to encapsulate other positively 

charged antimicrobial compounds that will be effectively released by amylase activity. The 

system thus shows potential to deliver antimicrobials to target undesired micro-organisms in 

food applications.  
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 Appendix 

 

Medium composition 

 

Brain Heart Infusion (BHI) ( 1 L) 

Calf Brains, Infusion from 200gm   7.7gm 

Beef Heart, Infusion from 250gm   9.8gm 

Protease peptone               10.0gm 

Dextrose                 2.0gm 

Sodium Chloride     3.0gm 

Disodium phosphate                2.5gm 

pH                  7.4± 0.2  

 

Nutrient Broth (NB) ( 1 L) 

Lab Lemco powder               1.0gm 

Yeast Extract                2.0gm 

Sodium Chloride               3.0gm 

pH                 7.4± 0.2 

 

Nutrient Agar (NA) ( 1 L) 

Lab Lemco powder                         1.0gm 

Yeast Extract               2.0gm 

Sodium Chloride                         3.0gm 

Agar                          15.0gm 

pH                7.4± 0.2 
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Screening of amylase-producing bacteria  

 

Figure A6.1. Amylase production assay by bacterial strains on starch agar plates by iodine test. If the starch is 

degraded by bacteria amylase, it will show a yellow spot around the bacteria colonies after pouring iodine 

solution into the plates. The iodine test was performed after incubating bacteria on a starch medium for 24 hours 

at 30 °C. 

Screening of lysozyme-sensitivity bacteria 

 

 
 

Figure A6.2. Lysozyme sensitivity test by growing bacterial strains on BHI-Agar plates with 200 µL 50 mg/mL 

lysozyme solution added in the hole. The inhibition zone around the hole shows that bacteria were killed. The 

photos were taken after 24 hours of incubation at 30 °C. 
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Chapter 7 

The stabilization of lysozyme-

loaded starch microgel by 

polyelectrolytes 

Abstract 

In this chapter the addition of biocompatible polyelectrolytes (chargeable polyamino acids) to 

oxidized starch microgel particles has been studied. The aim was to form a polyelectrolyte 

complex layer at the outer shell of the microgel particles to slow down the release of 

functional ingredients from the gel and make this process less sensitive to salt. Firstly, the 

distribution of positively charged poly-L-lysine (PLL) of two different molecular weights 

(‘small’, 15-30 kDa, and ‘large’, 30-70 kDa) in the negatively charged gel particles was 

measured. The small PLL distributes homogenously throughout the gel particles, but the large 

PLL forms a shell, i.e., its concentration at the outer layer of the particles was found to be 

much higher than in their core. This shell formation does not occur at a relatively high salt 

concentration (0.07 M). The large PLL was selected for further study. Unexpectedly, it was 

found that upon addition of PLL to lysozyme-loaded gel particles, the protein is exchanged by 

PLL. The exchange rate increases with increasing pH, in line with the increasing electrostatic 

attraction between the gel and the polyelectrolyte. Therefore, it was decided to use also a 

negatively charged polyamino acid, poly-L-glutamic acid (PGA) to form together with PLL a 

stable polyelectrolyte complex shell around the gel particles. This approach turned out to be 

successful and the PLL/PGA complex layer effectively slows down the release of lysozyme 

from the microgel particles at 0.05 M salt. In addition, it was found that the PLL/PGA layer 

protects the gel particle from degradation by α-amylase. 

Submitted for publication: Y. Li, W. Norde, M.A. Cohen Stuart, J.M.Kleijn, The stabilization of lysozyme-

loaded starch microgel by polyelectrolytes 
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7.1  Introduction 

In the field of advanced delivery systems for controlled uptake and release, there is a 

growing need for devices that can deliver their loaded ingredients in a well-tailored time-

controlled fashion. Nowadays, most researchers focus on designing carrier systems, without 

paying sufficient attention to optimizing and controlling the release rate of the enclosed 

substances from the carriers. 

In Chapters 2-6 [1-4], we reported on a biodegradable microgel (diameter 10-20 µm) based 

on natural starch polymer. The microgel consists of covalently cross-linked negatively 

charged polymers, which interact with positively charged functional ingredients (e.g. 

lysozyme) through electrostatic interaction. It was shown that release of lysozyme from the 

gel can be triggered by increasing the pH and/or salt concentration [3]. The release kinetics at 

various salt concentrations shows that the protein is fully released within an hour at a NaCl 

concentration as low as 0.035 M. The salt sensitivity of the starch gel particles is considered 

quite high, and the time scale for release is too short to meet the requirement in most 

applications. Deposition of a layer of polyelectrolytes around the microgel particle may be an 

effective approach to decrease the rate of lysozyme release. 

The layer-by-layer (LbL) stepwise electrostatic assembly of oppositely charged species is 

nowadays a useful approach to coat substrates and to make well-defined architectures. 

Various kinds of charged species, for example, polyelectrolytes [5], nanoparticles [6], 

nanotubes [7] and lipids [8] have been used to build LbL structures. Polyelectrolytes are 

widely used to build LbL layers. Some polyelectrolytes made of polyamino-acids, i.e., poly (l-

lysine) (PLL), poly (l-glutamic acid) (PGA), and natural polyelectrolytes (e.g., hyaluronan 

(HA), alginate, chitosan, collagen) allow, for example, to create biomimetic architectures [9-

12].  

The aim of this study is to evaluate the possibilities to create a polyelectrolyte complex 

layer on the surface of the starch microgel particles, in order to modulate the release of 

lysozyme from the particles. Firstly, we applied only positively charged poly-L-lysine (PLL) 

of two different molecular weights, which can form complexes with the starch gel and 

observed how these molecules distribute inside the microgel particles. Secondly, we 

investigated the uptake of PLL by the starch gel at various pH values and salt concentrations 

with and without preloading the gel with lysozyme. Finally, we immobilized the PLL at the 

outer layer of the gel particles by adding poly-L-glutamic acid (PGA) just after the addition of 

PLL to the gel particles; in this way a PLL/PGA complex layer was formed at the surface of 
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the microgel particles. The effect of such a complex layer on the release kinetics of lysozyme 

from the gel particle by salt and α-amylase has been monitored. 

 

7.2 Material and Methods  

Materials 

Spherical microgel particles (diameter 10 - 20 µm) of cross-linked oxidized starch polymer 

were synthesized by inverse emulsion polymerization. For details on the oxidation of the 

starch polymers and preparation of the microgel particles we refer to Li et al. [1, 3] (Chapters 

3 and 4 of this thesis). Lysozyme (from chicken egg white, Mw = 14,400 g/mole), FITC-

labeled poly-L-lysine (15-30 kDa and 30-70 kDa), and poly-L-glutamic acid (50 kDa) were 

supplied by Sigma-Aldrich. Lysozyme was labeled using an Alexa Fluor
®

594 protein labeling 

kit (Invitrogen). Heat-stable α-amylase (Termamyl® 120L, Type L, activity 120 KNU/g) was 

purchased from Novo Nordisk. Solutions were prepared using Millipore water with a specific 

resistance of 18.3 MΩ/cm. All experiments were performed at room temperature. 

Fluorescence confocal laser scanning microscopy 

A confocal microscope (Carl Zeiss Axiovert 200 microscope, Zeiss, Germany) equipped 

with an LSM 5 Exciter configuration, a 40×/0.60 objective, an Argon laser set at 488 nm and 

a He-Ne laser at 543 nm were used. Measurements were performed in a flow cell (Ibidi, 

Germany). 

In a number of experiments gel particles were fixed at the flow cell surface to be able to 

observe the same particle(s) during the measurements. For this the negatively charged cell 

surface was coated with positively charged (non-labeled) poly-lysine by absorption from a 

0.1% poly-lysine (PLL) solution (150 kDa, from Sigma-Aldrich) in water for two hours. 

Subsequently, unabsorbed poly-lysine was flushed away and a dispersion of negatively 

charged microgel particles in water was added for attachment to the surface. After one hour 

unattached gel particles were rinsed out of the cell. 

Interaction of poly-lysine and microgel as a function of salt concentration  

Dispersions of starch microgel particles were mixed with 25 µg/mL FITC-labeled poly-

lysine solutions having different molar mass distributions, i.e., 15-30 kDa (denoted as ‘small’) 

and 30-70 kDa (denoted as ‘large’) and of different salt concentration (0 - 0.5 M NaCl). 2D 

images were taken after 2 hours of equilibration. 
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Re-swelling of PLL containing gel particles by increasing the salt concentration 

FITC-labeled PLL containing microgel particles were fixed on the surface of the flow cell 

and were flushed with NaCl solutions of increasing salt concentration (from 0 to 2 M NaCl). 

For each salt concentration 2D images of the particles were taken after reaching equilibrium. 

Poly-lysine uptake kinetics by empty gel particles 

One gel particle attached to the flow cell surface was brought into focus. Then 100 µL of 

an FITC-labeled poly-lysine solution (25 µg/mL) was added to the cell and the PLL uptake 

was monitored. (Recording of fluorescence images, 0.5 s/image, was already started before 

adding the labeled PLL to observe the kinetics from the very beginning.) Uptake kinetics was 

determined at pH 3 and 7 (at 0.01 M ionic strength) and at different NaCl concentrations (0 

and 0.10 M) at a pH value of about 6 (unbuffered). 

Poly-lysine uptake by lysozyme-loaded gel particles 

Starch gel particles were saturated with Alexa Fluor 594-labeled lysozyme. After removing 

the unabsorbed lysozyme, 25 µg/mL FITC-labeled PLL (30-70 kDa) was added into the cell 

at pH 3 and 7 (at 0.01 M ionic strength). Both the fluorescence intensities of the labeled 

protein and PLL were measured continuously. 

Deposition of a poly-lysine/poly-glutamic acid complex layer around the microgel 

Lysozyme containing starch gel particles were fixed on the flow cell surface, whereafter 

100 µL 50 µg/mL FITC-PLL (30-70 kDa) was supplied to the flow cell. Fluorescence 

intensity of both lysozyme (orange) and PLL/PGA layer (green) were measured in real time. 

After 20 seconds a PLL layer appeared around the gel-lysozyme particle; then, 100 µL of a 50 

µg/mL poly-glutamic acid solution was added into the cell. The PLL/PGA layer coated gel-

lysozyme particles were flushed with water for 2 hours to check their stability under dilution. 

Lysozyme release from PLL/PGA stablized gel particles 

Uncoated and PLL/PGA complex coated gel-lysozyme particles were flushed with 50 mM 

NaCl solution and the fluorescence intensity of the lysozyme inside the gel was measured 

continuously to follow the protein release. For amylase-induced lysozyme release, 100 µL 10 

times diluted α-amylase solution (activity 12 KNU/g) was added to the gel-lysozyme particles 

and the lysozyme fluorescence intensity was monitored. 

 



Chapter 7 

131 

7.3 Results and Discussion 

Effect of the mass of poly-lysine on the interaction with starch microgel 

First of all, we studied the interaction between the starch gel and poly-lysine of two 

different molecular weight distributions, i.e., 15-30 kDa and 30-70 kDa. 

 

s  

Figure 7.1. Distribution of poly-lysine in an oxidized starch microgel particle after 2 hours of 

absorption. (A) ‘Small’ PLL (15-30 kDa); (B) ‘large’ PLL (30-70 kDa). No salt added,  pH about 7. 

After mixing poly-lysine with starch gel in water, absorption of PLL was allowed to occur 

for 2 hours. As shown in Figure 7.1, the small PLL distributed more homogeneously across 

the gel particle than the large PLL. For the case of the large PLL, a layer with a higher 

intensity formed at the outside the microgel, reflecting a higher concentration, and a more 

diluted PLL phase appeared in the gel core. It suggests that the interaction of the large PLL 

with the microgel is much stronger than that of the smaller PLL, which causes some degree of 

quenching of the PLL position when it reaches the particle surface. It was found that upon 

absorption of PLL the microgel particles shrink. For the large PLL the degree of de-swelling 

is much more severe than for the small PLL. This may be due to strong binding which exerts 

a pressure on the gel particle, causing the gel particle to de-swell. The PLL in the shell slowly 

migrates to the centre of the gel particle: the shell becomes less pronounced overnight and 

disappears after two days. This behavior is in agreement with literature where it has been 

reported that a complex between poly-lysine and a slightly cross-linked poly (acrylic acid) 

hydrogel, which initially formed at the surface of the gel, propagated inward into the highly 

swollen core [13]. There, the core-shell formation was considered as a phase separation of 

concentrated cross-linked polymer and oppositely charge peptides at the particle-complex 

interface and  a diluted phase of starch/poly-lysine complex in the gel core. Bysell et al. [14] 
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investigated the interaction between poly-lysine and a poly(acrylic acid) microgel; they also 

found that larger peptides concentrated in a surface layer around the gel particles, and that 

smaller ones evenly distributed throughout the microgel particles. Their interpretation was 

that high molecular weight PLL (170 kDa) is larger than the effective mesh size in the 

microgel particle, so that it is too large to penetrate through the entire gel. However, we found 

this conclusion only true for compact molecules like proteins that are not very flexible. In our 

study the large PLL has an average size (hydrodynamic radius) of around 25 nm, which 

strongly exceeds the pore size (pore diameter 4-25 nm) of our microgel, but it still can enter 

the gel. Flexible molecules like poly-lysine may adjust their shape upon entering the pores. 

Whether or not encapsulation takes place is determined by the balance of attraction between 

the ingredient and the gel, and the loss of conformation entropy due to the deformation. 

To study the influence of ionic strength on interaction between microgel and PLL, PLL 

and gel particles were mixed at various salt concentrations for 2 hours. As demonstrated in 

Figure 7.2, for both sizes of PLL, the saturated gel particles aggregate when the salt 

concentration is above 0.1 M. For the large PLL, extensive clusters of gel-PLL particles 

occurred at 0.5 M NaCl. Probably this is due to bridging between gel-PLL particles. When 

their positive charges are screened by salt, the long tails of PLL may stretch out of the gel 

particles and form bridges between gel-PLL particles. For the small PLL, which is distributed 

homogenously inside the gel particle at all salt concentrations, bridging is less likely to occur. 

It is observed in Figure 7.2 that shell formation does not occur for the large PLL at salt 

concentrations beyond 0.07 M. It seems that salt prevents PLL shell formation on the gel 

surface, by screening the electrostatic attraction, thus facilitating the diffusion of PLL into the 

gel. This might suppress the formation of bridges; on the other hand, bridging may occur 

immediately after mixing, before the long PLL chains have entered the particles completely. 

Bysell et al. [15] found that when the salt concentration is increased from 0.02 M to 0.2 M, 

the collapse of a microgel particle by high molecular weight PLL (170 kDa) is reduced. 
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Figure 7.2.Fluorescence CLSM images of poly-lysine containing gel (gel-PLL) particles at various salt 

concentrations (0-0.5 M NaCl) for (left) small PLL (15-30 kDa) and (right) large PLL (30-70 kDa). 

The PLL and gel particles were equilibrated at each salt concentration for 2 hours. Scale bar =20µm. 

[NaCl] M Large PLL Small PLL 

0 M 

0.07 M 

0.1 M 
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Figure 7.3. (A) Re-swelling of a gel-PLL particle (30-70kDa) by increasing the salt concentration from 

0 M to 2 M, pH 7. The diameter (µm) of the gel-PLL particle at the different NaCl concentrations is 

indicated in the figure. (B) De-swelling ratio of an empty gel particle as a function of NaCl 

concentration at pH 7. 

 

In view of our previous studies [2, 3], where it was found that salt induces protein release 

from the gel by screening the electrostatic interaction between the two, it is expected that the 

interaction between PLL and gel is also weakened by increasing salt concentration. As shown 

in Figure 7.3A, at 0 M NaCl concentration a thick PLL (30-70 kDa) shell formed around the 

particle due to strong attraction. This gel-PLL particle was flushed with buffers of gradually 

increasing salt concentration (0 – 2 M). Figure 7.3A shows how the intensity of the PLL shell 

layer gradually decreases with increasing salt concentration with a concomitant re-swelling of 

the gel particle. Surprisingly, the gel-PLL particle re-swells rather than de-swells when the 

salt concentration is increased. The de-swelling ratio (V/V0, with V the volume of the particle 

and V0 its volume at 0 M salt) of empty gel particles as a function of salt concentration is 

presented in Figure 7.3B; the empty gel particle shrinks by increasing the salt concentration 

and above 20 mM NaCl its volume remains constant. Apparently, the negative charges on the 
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gel are effectively screened at 20 mM NaCl solution and the gel particle behaves like being 

uncharged. In the first step of the measurements on the PLL loaded gel particle the salt 

concentration was increased to 50 mM, above which no further shrinkage of the (empty) gel 

particle occurs. However, salt still decreases the electrostatic attraction between gel and poly-

lysine, causing release of PLL from the gel. The gel is relieved from the pressure exerted by 

the PLL and re-swells. Re-swelling at high salt concentration did not occur for small PLL, 

confirming that the interaction between small PLL and microgel is less strong. 

Uptake of poly-lysine by lysozym-loaded microgel particles 

The above results indicate that PLL having the higher molar mass, 30-70 kDa, interacts 

more strongly with starch gel particles than the smaller PLL of 15-30 kDa, leading to the 

formation of a more or less quenched shell on the microgel surface. Such a layer may be able 

to slow down the release of lysozyme from the gel. 

 

 
 

Figure 7.4. Fluorescence intensity of poly-lysine (30-70 kDa) in oxidized starch microgel as a function 

of time (A) at pH 3 and pH 7, ionic strength 10 mM; the average de-swelling ratio V/V0 at pH 7 is 60% 

and at pH 3 is 85%; (B) at pH 6, 0 M and 10 mM NaCl; the average de-swelling ratio for 0 M is 51% 

and for 10 mM is 70%. 

 

The uptake kinetics of PLL in the gel particles was measured at two different pH values 

and two salt concentrations. As shown in Figure 7.4A, at 10 mM NaCl both the uptake rate 
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and uptake capacity for PLL of the starch gel are higher at pH 7 compared to pH 3. Chapter 3 

[2] shows that the binding affinity between the gel and an oppositely charged species is 

primarily determined by the component with the lowest charge density. Compared to PLL 

(having a constant and high charge density at pH < 9 [14]), the gel is the most weakly charged 

species. The negative charge on the starch microgel increases with increasing pH. This 

explains why the uptake capacity and binding affinity is higher at pH 7 than at pH 3. For the 

same reason the PLL uptake by a poly (acrylic acid) (PAA) microgel was found to be higher 

at pH 7 than at pH 5.5 [14, 16]. The uptake rate of PLL at 0 M NaCl is much higher than that 

at 10 mM at pH 6, as shown in Figure 7.4B. This is mainly due to screening of the 

electrostatic interactions by the salt. In addition, the de-swelling ratio (volume after poly-

lysine uptake/volume before poly-lysine uptake) seems strongly influenced by the binding 

strength of PLL to the gel: it de-swells more at conditions where PLL is more strongly 

attracted. (see Figure Captain of Fig.4) 

 
 

Figure 7.5. Exchange of fluorescently labeled poly-lysine (PLL; 30-70 kDa) (green) with lysozyme 

(LYS) (orange) preloaded in oxidized starch microgel. The graph shows the fluorescence intensity of 

PLL as a function of time at pH 3 and pH 7, and 10 mM ionic strength. The average de-swelling ratio 

V/V0 as a result of the exchange is 45% at pH 7 and 68% at pH 3. 

 

Alexa Fluor 594-labeled lysozyme was preloaded inside microgel particles in a 10 mM 

NaCl solution. An FITC-labeled poly-lysine (30-70 kDa) solution was added to the 

suspension of the lysozyme-gel particles in order to build a PLL layer at the gel surface. 

However, it was found that the PLL exchanges with the lysozyme inside the gel rather than 
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building a stable layer around the gel particle. As shown in Figure 7.5, the exchange rate is 

higher at pH 7 than at pH 3, which is comparable to the poly-lysine uptake kinetics shown in 

Figure 7.4A. Like in the uptake experiments, the gel particle de-swells more at pH 7. Poly-

lysine is a more highly charged and is a more flexible molecule than lysozyme. Therefore, it 

is able to enter the gel and exchange with the lysozyme. PLL shell formation does not occur; 

apparently in the presence of lysozyme the interaction between the less negatively charged 

gel-lysozyme particles and PLL is reduced and PLL is not trapped at the outer layer of the gel 

particles. 

Deposition of a poly-lysine/poly-glutamic acid complex layer around lysozyme-loaded gel 

particles 

From the results presented above, it is derived that PLL alone is not able to build a 

polyelectrolyte layer around lysozyme-loaded gel particles. However, complexing positively 

charged PLL with negatively charged poly-glutamic acid (PGA) may prevent PLL entering 

the gel particle. The PLL/PGA complexes were made by mixing equal concentrations of PLL 

and PGA of nearly equal molar mass, in order to reach a charge ratio of 1:1, which is found to 

be the optimum charge ratio for complex formation [17]. 

                      

 

                                                                  

Figure 7.6. Deposition of a poly-lysine/poly-glutamic acid (PLL/PGA) layer on a lysozyme-loaded gel 

particle (pH 6, no salt added). Fluorescence 2D images and intensity profiles obtained from different 

channels are presented in (A) Alexa Fluor 594-labeled lysozyme distribution inside microgel, and (B) 

FITC-PLL/PGA complex layer distribution around microgel.(C) Combined image of (A) and (B). The 

scale bar represents 5 µm. 
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       80 %     60 %           12 % 

 

Figure 7.7. De-swelling ratio (volume after absorption/volume of empty gel particle) of a gel particle 

(1) after uptake of lysozyme and (2) after uptake of PLL, and (3) of a gel-lysozyme particle after 

deposition of a PLL/PGA layer. 

 

Two different channels were used to simultaneously observe the Alexa Flour 594-labeled 

lysozyme (excitation wavelength 543 nm; fluorescence orange) and the FITC-PLL/PGA 

complexes (excitation wavelength 488 nm: fluorescence green): see Fig. 7.6. A gel particle 

was first saturated with lysozyme in water and subsequently 0.1 mg/mL poly-lysine (30-70 

kDa) was added. A thin poly-lysine layer around the gel-lysozyme particle formed after 5 

seconds. Immediately 0.1 mg/mL unlabeled poly-glutamic acid (50 kDa) was added to gel-

lysozyme particle. Fig. 7.6A represents the image obtained from the 543 nm channel showing 

a homogeneous distribution of lysozyme throughout the gel particle coated with PLL/PGA 

complexes. Fig. 7.6B (488 nm channel) shows that the PLL/PGA complexes are 

accommodated in the outer layer of the particle. Fig. 7.6C gives the combined images. The 

PLL/PGA layer effectively prevents the migration of poly-lysine into the center of the gel 

particle. Upon flushing with water the fluorescence intensities of the complex layer and the 

lysozyme inside the gel remained constant for several hours (results not shown). 

The starch gel is a soft polymer network containing nearly 90% water [1], so it tends to 

collapse when it absorbs substances that are electrostatically attracted to the network. The 

stronger the attraction, the more the particles shrink. As shown in Figure 7.7, the de-swelling 

ratio (V/V0) is 60% for poly-lysine absorption and 80% for lysozyme absorption. At the same 

pH and ionic strength, the charge density of PLL is higher than that of lysozyme. Therefore 

the interaction between PLL and the gel is stronger than that between lysozyme and the gel, 

leading to more de-swelling. Coating a lysozyme-loaded particle with PLL/PGA leads to a  
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Figure 7.8. Release kinetics of lysozyme from starch gel at 50 mM NaCl for uncoated gel-lysozyme 

particles and PLL/PGA coated gel-lysozyme particles at pH 6. 

very strong shrinkage of the particle to 12% of its original size of an empty gel particle. This 

may be caused by the formation a compact PLL/PGA complex, therewith contracting the PLL 

around the gel particle upon PGA addition. 

 

        

                                                    

Figure 7.9. Fluorescence 2D images of PLL/PGA layers around lysozyme preloaded gel particles. The 

images are displayed in two channels, for lysozyme (orange, left) and for the PLL/PGA layer (green, 

right). The upper images are obtained from lysozyme saturated gel particles before PLL/PGA addition; 

the middle images show the same particles after coating with PLL/PGA; the lower images show the 

PLL/PGA layer coated gel-lysozyme particles after flushing with 50 mM NaCl for one hour. 

Chanel A: Lysozyme   Chanel B: PLL/PGA 

Gel-lysozyme 
Before add layer 

PLL/PGA layer 

50 mM [NaCl] 
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  As shown in Figure 7.8, the uncoated starch gel is salt sensitive and at 50 mM NaCl all 

the absorbed protein is released within one hour. This is unwanted in cases requiring slow and 

gradual release. However, after deposition of the PLL/PGA layer at the gel-lysozyme particle 

surface, the protein release is slowed down and after one hour 60% of the total absorbed 

protein is released. 

Figure 7.9 displays the images of (1) lysozyme containing gel particles, (2) de-swelling of 

these gel-lysozyme particles after deposition of a PLL/PGA layer on their surface, and (3) the 

effect of adding 50 mM NaCl. The decrease in the green fluorescence intensity in 50 mM 

NaCl points to dissociation of the PLL/PGA layer, after which the lysozyme can be released. 

Thus, in this way the salt-induced release rate of protein from the gel is controlled by the rate 

of dissociation of the PLL/PGA complex. By carefully choosing the polyelectrolytes to form 

the shell on the gel particles, the stability of the polyelectrolyte complex with respect to salt 

concentration and pH and therefore the rate of release of the component from the gel can be 

tuned.  

                                                      

            

Figure 7.10. Fluorescence times series images of amylase-degradation of uncoated and PLL/PGA 

coated lysozyme-loaded gel particles. No salt is added at pH 7. 
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In Chapter 5, we demonstrated the degradation of the starch gel by α-amylase after which 

lysozyme is set free. However, after deposition of a PLL/PGA layer, the gel-lysozyme 

particles become protected against amylase degradation for at least 24 hours, which is shown 

in Fig. 7.10. Probably, the PLL/PGA shell is too dense to be passed by α-amylase, which is a 

larger protein (diameter 6 nm) than lysozyme. This is useful for applications where gel 

particles have to be protected from enzymatic degradation. Alternatively, by degradation of 

the starch core, for instance by using a smaller sized amylase that is able to penetrate the 

PLL/PGA layer or by applying a less dense polyelectrolyte complex, hollow capsules may be 

produced. Such capsules could be applied in drug delivery systems [18]. 

7.4 Concluding remarks 

The aim of the study described in this chapter was to stabilize oxidized starch microgel 

particles by deposition of a (biocompatible) polyelectrolyte layer at their surface in such a 

way that the release of functional ingredients is slowed down and less sensitive to the salt 

concentration. 

It was found that relatively small poly-L-lysine molecules (15-30 kDa) do not form a shell 

and readily distribute homogeneously throughout the microgel particles. Larger PLL 

molecules (30-70 kDa) do form a shell below salt concentrations of 0.07 M, although on a 

timescale of about a day they migrate to the core of the particles. Increasing the salt 

concentration causes bridging between the particles, leading to aggregation. Moreover, when 

applied to lysozyme-loaded gel particles, they do not form a shell at all and displace the 

lysozyme from the gel network. Therefore, it was concluded that complex formation between 

PLL and the gel network is not sufficient to form a stable shell layer that serves our purpose. 

Adding a second polyelectrolyte, i.e. negatively charged poly-L-glutamic acid (50 kDa), 

just after addition of the positively charged PLL (30-70 kDa) to the lysozyme-loaded gel 

particles, was found to be a successful approach. The results show that a stable PLL/PGA 

layer is formed on the gel surface. The release of lysozyme from the PLL/PGA coated 

microgel at 0.05 M salt is effectively slowed down. In fact, the release as a function of salt 

concentration seems to be determined by the stability of the polyelectrolyte complex. 

Therefore the release kinetics of functional ingredients from the starch gel as a function of pH 

and salt concentration may be tuned by choosing specific polyelectrolytes to form the shell on 

the gel particles.  

Furthermore it was found that after PLL/PGA layer deposition the gel particles are 

protected against enzymatic degradation.  
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Chapter 8                                            

General discussion 

 

This chapter deals with answering the following questions: What did I learn 

during this investigation? How does my work contribute to the knowledge 

on protein-polymer gel interaction? What aspects need to be improved? 

What is the application  perspective? 
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8.1 What did I learn during this investigation? 

       The aim of this research is to clarify the mechanism of the interaction between negatively 

charged starch microgels and oppositely charged proteins (lysozyme) at various 

environmental conditions to control the effects of pH, salt concentration and amylase 

degradation on protein uptake and release. A preparation method for spherical microgel 

particles with a narrow size distribution is useful for producing well-defined microgels. 

Relevant physical-chemical properties of various gels can be tuned for different applications. 

For example, oxidized starch microgels having degrees of oxidation (DO) of 30% and 50%, 

which are amylase-degradable, can be used in applications that require the degradation of the 

gel; in highly oxidized starch gels (DO70%, DO100%) encapsulated ingredients are protected 

from enzymatic degradation, but their release from the gel may be triggered by high pH or 

high salt concentration. Neutral pH and low salt concentration are considered optimum uptake 

conditions and are applicable for all positively charged ingredients. Releasing incorporated 

ingredients with high binding affinity is extremely difficult, due to restricted mobility of these 

molecules inside the microgel particle. Any trigger such as high pH and high salt 

concentration that shifts the mobility distribution towards more mobile fractions, drives the 

release of encapsulated ingredients.  

    Some aspects are still unclear, in particular with respect to the effect of the degree of 

oxidation of the microgel. It was found that highly oxidized starch microgel (e.g., DO100%) 

has a relatively low swelling capacity. This indicates that highly oxidized starch polymers are 

cross-linked more efficiently than slightly oxidized starch polymer, even though the cross-

linker sodium trimetaphosphate (STMP) mainly reacts with the primary alcohol groups on the 

starch, i.e., amylose. Slightly oxidized starch gels (e.g., DO30%) contain starch polymer with 

more remaining primary alcohol groups, which are supposed to build more cross-links and, 

hence, result in a high cross-link density. However, the results show the opposite. This may 

be due to a surplus of active primary alcohol groups, leading to side reactions such as 

substitution rather than cross-linking. Organic chemistry would be a useful tool for further 

studying this aspect. In addition, it was not possible to make spherical microgel particles with 

the DO100% polymer by the same inverse-emulsion polymerization method used for making 

spherical DO30% microgels.  
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8.2 How does  my work contribute to the knowledge on protein-polymer gel 

interaction? 

This dissertation contributes to the knowledge of the interaction between negatively 

charged cross-linked polymer (e.g., natural polysaccharides used in our experiments) and 

oppositely charged ingredients (e.g. proteins). Although the potato starch polymer, used in our 

experiments, is not well-defined compared to most synthetic polymers, the results show that it 

is very well possible to have good control over the physical- chemical properties of the 

microgels made of this polymer. Below are some aspects which are important for controlling 

the (protein) uptake and release properties of the cross-linked polymer gel. 

Prerequisites for encapsulated ingredients 

The different ingredients that were successfully incorporated into the negatively charged 

starch microgel are positively charged proteins (lysozyme, myoglobumin, α-lactobumin and 

bovine serum albumin), peptides like poly-lysine (three different sizes: 30, 50, 150 kDa), and 

the neutral polymer dextran (size ranges 4 - 250 kDa). The prerequisites for the ingredients to 

be loaded into starch microgel are the following. First of all, they should be hydrophilic, since 

the gel is hydrophilic. For instance, the polycyclic antimicrobial peptide Nisin could not be 

incorporated into the starch gel, because Nisin is a quite hydrophobic molecule. Secondly, the 

size of the ingredients to be encapsulated is crucial. For compact molecules that are hard to 

deform, such as globular proteins, the size should be smaller than the pore size of the gel. 

Flexible molecules may adjust their shape upon entering the pores; hence, even though their 

size (e.g., hydrodynamic radius) is larger than the gel pores they may be absorbed by the gel. 

More precisely, whether or not encapsulation takes place is determined by the balance of 

attraction between the ingredient and the gel and the loss of conformation entropy due to the 

deformation. Most importantly, for charged ingredients, a pH far below their pI and a low 

ionic strength is preferred to ensure strong electrostatic attraction. For non-charged 

ingredients, a high pH and a low ionic strength are more favourable since the gel tends to 

collapse at low pH and high ionic strength. 

Interaction between starch microgel and oppositely charged proteins/peptides 

This dissertation focuses on the interaction between a starch gel and an oppositely 

charged protein, i.e., lysozyme. In addition, interactions between the gel and oppositely 

charged poly-lysine molecules have been studied as well. For these systems it is shown that 

the main driving force for encapsulation is the electrostatic interaction between 
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proteins/peptides and gel. The binding affinity, protein uptake capacity and de-swelling rate 

are the main aspects we investigated. First of all, the binding affinity is controlled by the 

charge density of both the protein and the gel, being mainly determined by the most weakly 

charged species of the two. For instance, for interaction between lysozyme and gel the 

binding affinity is high at low pH, since lysozyme is the most weakly charged compound; for 

interaction between poly-lysine and gel the affinity is high at high pH because the gel is the 

most weakly charged species. In case of a fixed charged density on the gel, the binding 

affinity is higher for the ingredient that has a higher charge density. Thus, the affinity for 

poly-lysine is higher than for lysozyme because poly-lysine is more positively charged. The 

binding affinity is a very important parameter since high affinity implies low mobility of 

enclosed molecules inside the gel. Any condition that decreases the binding affinity may 

trigger the release of the incorporated substance from the gel particles. Secondly, the protein 

uptake capacity (i.e., saturation absorbance) is mainly determined by the charge stoichiometry. 

The uptake capacity reaches a maximum at conditions where the charge ratio between gel and 

lysozyme is 1:1. Lastly, the de-swelling of the microgel as result of the uptake of lysozyme is 

found to be closely related to the binding strength. The gel shrinks more when the interaction 

is stronger. For example, it de-swells more at pH 3 than pH 7. The strong binding of protein 

causes the gel network to shink. It has been reported in literature that protein-gel interaction 

results in a weakly swollen shell and a highly swollen core of the protein-gel complex. We 

also found initial binding of protein in the outer part of the gel particles, but subsequent 

diffusion into the gel leads to a homogeneous distribution of the protein in the gel. Only in 

case of interaction with highly charged poly-lysine we observed permanent absorption in the 

outer gel layer. It suggests that shrinkage of the gel due to uptake of the oppositely charged 

compound determines further transport into the gel. In turn, the tendency to shrink decreases 

with increasing mechanical strength of the gel.  

8.3 What aspects need to be improved? 

Many aspects need to be improved in order to reach real applications. A disadvantage of 

the DO30% gel is its high salt sensitivity. Our study shows that incorporated lysozyme is 

released within one hour at 25 mM NaCl. However, the ionic strength in most practical 

systems, like food, biofluids etc, is often higher. Therefore, decreasing the salt sensitivity and 

slowing down the speed of release are necessary to improve the system. 

Deposition of a polyelectrolyte complex on the surface of the protein-load microgel 

particle may add a useful feature to these systems. Our preliminary experiments have shown 
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that one single layer of poly-l-lysine/poly-l-glutamic acid effectively slows down the rate of 

salt-induced release of lysozyme from microgel. Besides, it prevents the DO30% gel from 

being degraded by amylase. Hence, incorporated ingredients are protected in a (microbial) 

amylase containing environment. 

Another aspect that could be improved is downscaling of the gels: monodisperse 

nanogels are of interest for pharmaceutical application, because nano-sized particles may be 

taken up by cells. The uptake and release processes are easily controlled for monodisperse gel 

particles. Of course, the toxicity of oxidized starch gel should be checked beforehand. 

 Linkage of a functional group to the starch gel can provide the gel with multi-

functionality. For example, folic acid (recognizes cancer cells) can be covalently bound to the 

carboxyl groups of starch by a di-amine linker. This provides the gel a targeting function. 

Furthermore, photodegradable polymers may be included in the gel, allowing a light-

switchable gel structure transition by which uptake and release of functional ingredients may 

be tuned.   

8.4 What would be the application perspectives? 

As we know from the amylase degradation experiment, DO30% and DO50% polymer 

gels are degradable, DO70% is slightly degradable, and DO100% is non-degradable. 

Therefore, we can use DO30% and DO50% microgels for applications requiring substances to 

be released by enzymatic degradation (e.g. antimicrobial particles or digestion in human body 

fluid). DO70% and DO100% microgels are suitable for applications requiring high stability, 

and the ingredients enclosed can be protected from enzymatic degradation, but released by a 

salt and/or pH shock. 

     The swelling capacity of the various gels varies significantly. Highly swellable DO30% 

gels with the lowest cross-link density are able to absorb 100 times their weight in the form of 

water. They may be used as a hygrometer. The humidity of the air may be calculated from the 

amount of water absorbed by the gel. Further application could be delivery of water to plants 

in arid areas. The water in the gel is protected against evaporation and drainage into the soil 

but the capillary action in the plant roots may be able to extract the water from the gel. 

The gel could also be used as a “taste masker” for food or medicine. Some ingredients, 

e.g., medical peptides, have an undesirable bitter taste. As these peptides are positively 

charged they can be readily absorbed by starch gel, thus masking the bitter flavour. 
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This dissertation describes a systematic study on oxidized starch microgel particles. It 

begins with the preparation and characterization of oxidized starch gels in terms of some 

important physical-chemical properties, with the aim to select an optimum gel for further 

investigation of protein uptake. The gel with the highest degree of oxidation DO100% is 

chosen for lysozyme uptake because of its high protein uptake capacity and low swelling 

capacity. In addition, DO30% gels have been used in many experiments, since DO30% starch 

allows for preparation of well-defined spherical microgel particles and because it is 

enzymatically degradable. The two main aspects of interest are the protein binding affinity 

and protein saturation. Neutral pH and low salt concentration are found to be the optimum 

protein uptake conditions for high protein saturation.  

For more detailed studies, spherical microgels with a narrow size distribution have been 

made by optimizing the preparation process. The mobility of lysozyme molecules inside those 

microgel particles has been investigated. The main conclusion is that high salt and high pH 

increase the mobility of lysozyme in the gel particles. It implies that high pH and high salt 

concentration are potential triggers for lysozyme release from the gel. Subsequently, the 

kinetics of protein release by high pH and high salt concentration is presented. Finally, the 

antimicrobial activity of lysozyme containing starch gel particles against some bacterial 

strains is determined. Each aspect mentioned above is described in more detail below. 

1. Properties of oxidized starch microgel particles 

Oxidized starch microgels of a wide range of cross-link density (weight ratios of cross-

linker to polymer Rcross-linker/polymer 0.1 - 0.4) and degree of oxidization (30% - 100%) were 

prepared by chemically cross-linking TEMPO-oxidized starch polymers. In Chapter 2 the 

basic physical-chemical properties such as swelling capacity, charge density, electrophoretic 

mobility and protein uptake capacity of our oxidized starch microgel particles are established. 

The results indicate that we have a good chemical control over the charge density of the 

microgels, which is in good agreement with the expected degree of oxidation (DO). The 

cross-link efficiency was found to depend on the DO of the polymers, with highly charged 

polymers leading to more densely cross-linked microgels. The swelling capacity increases 

with increasing pH and decreasing salt concentration. The uptake of the globular protein 

lysozyme by the microgels increases with increasing DO and decreasing cross-link density. A 

highly charged microgel (DO100%) with intermediate cross-link density (Rcross-linker/polymer 

0.20) is found to optimally absorb lysozyme. Intermediate cross-link density is optimal 
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because highly cross-linked gels have too small pores, and low cross-link density gels swell 

enormously, which is undesirable for most applications. 

2. Protein uptake by microgel 

The microgel DO100% with cross-link density Rcross-linker/polymer 0.20, showing optimum 

lysozyme uptake, is selected for further investigation. In Chapter 3 the interaction between 

protein and the selected microgel has been studied in terms of protein uptake capacity, 

binding affinity, gel de-swelling behaviour, and charge regulation between protein and gel.  

The results can be schematically summarized in the cartoons shown in Figure 1.  

 

 

Figure 1. Schematic representation of the DO100% microgel before and after absorbing lysozyme at 

pH 3.0, 5.0 and 8.0, and ionic strength 0.20 M. Indicated is the average distance between two cross-

links (the mesh size), and the total charge ratio R between the bound protein and the gel, neglecting 

charge regulation. The number of protein molecules represents the saturation protein uptake Гsat; +++ 

indicates a high charge density on the protein molecules, + a low charge density. For clarity, the 

counterions are not included in this sketch. 

The cartoons compare the empty gel (upper row) with the fully protein-saturated gel 

(lower row) at pH 3, 5 and 8 and an ionic strength of 0.2 M. The electric charge density on the 

gel increases over the pH range 3 - 5, while the average mesh size is only slightly dependent 

on pH. It indicates that the repulsion among charged polymers in the network contributes little 

to the swelling of the gel. 
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The shrinkage of the gel network upon protein uptake increases with decreasing pH. It is 

caused by the electrostatic attraction between the protein and the gel. Our results suggest that 

the binding strength depends more on the charge of protein rather than on that of the gel. 

Lysozyme carries more charges at low pH and therefore the binding is the strongest and the 

gel shrinks most. 

For most applications protein uptake capacity should be high and one should be able to 

control the binding affinity. For our system the protein uptake capacity at low salt 

concentration is mainly determined by the charge ratio between protein and microgel and 

increases with increasing pH. For higher salt concentrations an optimum pH for protein 

uptake is observed, which shifts to lower pH values with increasing salt concentration. The 

binding affinity, on the other hand, seems to be dominated by the charge density on the 

protein and decreases with increasing pH. As a result, lysozyme binds with low affinity at 

high pH and high salt concentration and is under these conditions easily released by dilution. 

In contrast, at low pH and low salt concentration lysozyme binds so strongly that dilution 

does hardly result in any protein release. Therefore, at intermediate pH (around pH 5) there is 

an optimal balance between protein uptake capacity and binding affinity. Protein release can 

be triggered by increasing the pH and/or ionic strength.  

3. Protein mobility inside microgel 

The optimum conditions for protein uptake have been determined in Chapter 3; the next 

step is to investigate protein release. In Chapter 4, the mobility of protein molecules inside 

microgel particles has been studied systematically. The mobility of the protein inside the gel 

reflects its binding strength to the polymer network, and this, in turn, is important for 

(triggering) its release. 

To study the mobility of lysozyme in an oxidized starch microgel, we successfully 

prepared well-defined spherical microgels with a narrow size distribution (10 - 20µm in 

diameter) by emulsion polymerization (see Figure 2A). The newly prepared microgel particles 

have the same physical-chemical properties as the gel particles obtained following the original 

preparation method. As is shown in Figure 2B, lysozyme molecules distribute homogeneously 

over the microgel particles. Figure 2C shows fluorescence recovery after photobleaching 

(FRAP) in a microgel particle loaded with fluorescently labelled lysozyme. The recovery of 

the fluorescence the bleached area is measured as a function of time. The exchange rate of 

bleached with unbleached protein molecules is a measure for their mobility. By fitting the 

FRAP data with a model based on exchange between bleached and unbleached protein 
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molecules inside the gel, we identified three protein fractions of different mobility. The 

protein molecules that have the lowest mobility are strongly bound to the gel. This is 

attributed to binding of these molecules to multiple sites of the microgel. Increasing the salt 

concentration (NaCl) or the pH causes a shift in the distribution towards the more mobile 

fractions (Figure 3). This is consistent with the earlier uptake and release measurements, 

described in Chapter 3, which showed that the binding affinity decreases with increasing salt 

concentration and pH.   

 

Figure 2 (A) Image of empty microgel particles in water by optical microscopy. (B) 3D image of 

microgel particles loaded with Alexa-488 labelled lysozyme by fluorescence confocal laser scanning 

microscopy (CLSM). The scale bars in all figures represent 10 µm. (C) Left: Fluorescence CLSM 

image of a protein loaded microgel particle before bleaching. Middle: image immediately after photo 

bleaching (only the part indicated by the rectangle was bleached). Right: image after fluorescence 

recovery (full recovery takes about 5 minutes).  

 

 

Figure 3. Fractions of bound protein in the gel with different mobilities at pH 7. The low, medium  and 

high mobility fractions are defined by the order of magnitude of the exchange rate kCp (respectively 

0.001 s
-1

, 0.01 s
-1

 and 0.1 s
-1

; Cp is the protein concentration in solution). The results show that the 

fraction with low mobility has disappeared at high NaCl concentration. 
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Our model reasonably explains the mechanism of protein mobility inside the microgel, 

indicating that embedded ingredients with charge properties comparable to those of lysozyme 

can be protected at low salt concentration and low pH. Increasing the salt concentration or the 

pH triggers the release. 

 

4. Protein release from microgel  

Mobility experiments in Chapter 4 revealed that high pH and high salt concentration are 

effective triggers for protein release. Therefore, in Chapter 5, the pH and salt-triggered 

release kinetics are analysed. Figure 4 shows time series of 2D images of protein uptake and 

protein release (by salt and degradation of the starch gel by amylase). 

 

 

Figure 4. (Top) Uptake kinetics of lysozyme in oxidized starch microgel at pH 3, 10 mM ionic 

strength. (Middle) Release kinetics of lysozyme at pH 7, 35 mM ionic strength. (Bottom) Release 

kinetics of lysozyme by α-amylase in water. The scale bar represents 10 µm. 

We modelled the lysozyme uptake in the starch microgel particles on the basis of 

diffusion theory, taking into account the exchange equilibrium between protein bound to the 

gel network and free protein in the gel pores. In line with our studies in Chapter 3 and 4, the 

uptake rate increases with decreasing pH and decreasing salt concentration. In case of strong 

affinity of the protein to the gel, the initial uptake rate is completely determined by diffusion 

in the medium and therefore by the protein concentration and diffusion coefficient in the 

solution. The diffusion coefficient of free lysozyme in the gel particles (Dp,g) is found to be on 

the order of 10
-11

 m
2
s

-1
, an order of magnitude lower than in solution, due to obstruction by 

the gel network (including bound protein molecules). 
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In the release experiments the protein concentration gradient in the medium can be 

neglected since the protein loaded gel particle is flushed with buffer. The release data for 

various NaCl concentrations (25, 35, 50 mM) at pH 7 are fitted with Crank’s mathematical 

solution of a substance released from a spherical matrix by Fickian diffusion, holding for the 

case where diffusion in the medium can be ignored. The release kinetics are essentially 

invariant with salt concentration when plotted as a function of normalized time, t/τ, with τ the 

characteristic diffusion time in the gel. This strongly suggests that the diffusion model is 

applicable. The time evolution of the protein concentration profiles in the gel seems to reflect 

this inhomogeneity (the particles are somewhat denser in the centre than near the gel/solution 

interface). Further investigation of the influence of gel homogeneity on the release behaviour 

is relevant for the use of the particles in controlled release applications. From the fit, the 

effective diffusion coefficient Deff of the protein in the gel, and the concentration ratio R 

between bound and free protein have been estimated. These quantities are extremely sensitive 

to the ionic strength, which is consistent with obtained data on affinity between protein and 

gel (Chapter 3) and mobility of the protein in the gel (Chapter 4).  

The lysozyme can be released from gel particles at pH 8, 0.01M NaCl but not at pH 3, 

0.01M NaCl. This provides opportunities for use of the microgel in food and pharma 

controlled-delivery applications, since the functional ingredient can in principle be protected 

in the stomach (low pH), and released in the small intestine (high pH). 

We showed that α-amylase can degrade the oxidized starch microgel (DO30%) leading 

to release of its protein content into solution. This is an important result, since it demonstrates 

the feasibility of the use of lysozyme loaded gel particles in, for example, antimicrobial 

packaging. 

5 Applications 

In view of the observation in Chapter 5 that degradation of the gel by α-amylase results 

into the release of lysozyme, it is expected that the presence of amylase-producing bacteria 

leads to the release of lysozyme that subsequently kills the bacteria. The aim of Chapter 6 is 

to determine the antimicrobial activity of lysozyme containing starch gel particles. DO30% 

microgel is selected as the gel matrix as it is easily degraded by bacterial amylase.  

A preliminary test on bacteria growing on a BHI agar plate indicates that near spots 

where lysozyme-loaded gel particles are applied also bacteria that do not produce amylase are 

killed. This may be due to salt-induced release of a very small fraction, i.e., about 2%, of the 

encapsulated lysozyme in the direct limited region around the application spots. Mixing gel-
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lysozyme particles with bacteria in liquid suspension is considered to be a more accurate 

method to determine the antimicrobial activity of the gel-lysozyme particles. The results show 

that bacteria that produce amylase and are sensitive to lysozyme, are killed by lysozyme that 

is released after degradation of the starch gel, whereas the growth of amylase-negative 

bacteria is not inhibited by the gel-lysozyme particles. 

Similarly, the starch gel systems may be used to encapsulate other positively charged 

antimicrobial compounds, which will be effectively released by amylase activity. It offers 

great potential for using such systems to diagnose the presence and, subsequently, inhibit 

proliferation of undesired micro-organisms in food and drugs, and to prevent bacterial 

infections in processing equipment and biomedical materials. 

6 Optimization of the system 

The results in Chapter 5 indicate that protein release by increasing the salt concentration 

is quite fast (see minutes time scale), which is not always desirable in application. To slow 

down the protein release from the gel, we successfully built a poly-lysine/poly-glutamic acid 

complex layer around lysozyme-loaded microgel. This is described in Chapter 7. It was 

found that the layer also protects the gel-lysozyme particles against amylase-degradation. This 

is extremely useful for applications where the release kinetics have to be controlled, and the 

incorporated functional ingredients have to be protected from enzymatic degradation. 
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Samenvatting 

Het doel van het werk beschreven in dit proefschrift was het bepalen van de 

eigenschappen en bindingskarakteristieken van een nieuw ‘release-on-command’ microgel 

gemaakt van biopolymeren, genaamd ‘Bioswitch’. Het microgel bestaat uit gecrosslinkte 

negatief geladen aardappelzetmeelpolymeren en kan daardoor positief geladen functionele 

ingredienten opnemen. Deze studie behelst met name de opname en het vrijkomen van het 

eiwit lysozym (positief geladen beneden pH 10) als functie van de pH en de zoutconcentratie 

en het effect van amylase, een zetmeelafbrekend enzym. 

Allereerst komt de bereidingswijze en karakterisering van het microgel aan de orde. 

Gevarieerd zijn de oxidatiegraad (OD) van het zetmeel en de cross-linkdichtheid van het 

gelnetwerk. Deze bepalen de mate van zwelling van de deeltjes in waterige oplossingen, de 

ladingsdichtheid, de elektroforetische mobiliteit en de eiwitopnamecapaciteit. Vanwege zijn 

hoge opnamecapaciteit en relatief lage zwelling, is gekozen om verder te werken met het 

microgel met de hoogste graad van oxidatie, DO100%, en een gewichtsverhouding tussen 

cross-linker en polymeer van 0.2. Daarnaast zijn veel experimenten uitgevoerd met DO30% 

microgelen met dezelfde cross-linkerdichtheid, omdat hiervan gemakkelijk goedgedefinieerde 

bolvormige deeltjes (diameter 10 - 20 µm) te maken zijn. 

Bij opname verdeelt lysozym zich tamelijk homogeen over het microgel. Eiwitopname 

gaat gepaard met een volumeverkleining van de geldeeltjes. Dit is het gevolg van de 

elektrostatische attractie tussen het positief geladen eiwit en de negatief geladen gelmatrix. De 

bindingssterkte tussen eiwit en gel blijkt vooral bepaald te worden door de ladingsdichtheid 

van het eiwit. Hierdoor zijn de binding en de volumeverkleining het sterkst bij lage pH (ver 

beneden het iso-elektrisch punt van lysozym). De opnamecapaciteit van het gel wordt 

voornamelijk bepaald door ladingscompensatie: de totale lading van de maximaal opgenomen 

hoeveelheid eiwit per volume-eenheid gel komt ongeveer overeen met de ladingsdichtheid 

van het gel. Hierdoor neemt de opnamecapaciteit toe met de pH: als de pH toeneemt, neemt 

de positieve lading op het eiwit af en de negatieve lading van de gel toe, zodat er meer 

eiwitmoleculen nodig zijn om de lading van het gel te compenseren. De bindingsaffiniteit 

tussen eiwit en gel neemt echter af met toenemende pH, doordat deze vooral gevoelig is voor 

de lading van het eiwit. Een neutrale pH waarde en lage zoutconcentraties zijn de beste 

condities voor opname van lysozyme. Afgifte van het eiwit kan getriggered worden door een 

verhoging van de pH en/of zoutconcentratie. Dit schept mogelijkheden om het microgel te 

gebruiken voor controlled delivery van functionele ingredienten in het maagdarmkanaal: het 
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ingredient wordt beschermd door het gel in de maag (lage pH) en komt vrij in de dunne darm 

(hoge pH). 

De snelheid van uitwisseling tussen vrije en gebonden eiwitmoleculen in het gel is 

gemeten met CLSM (confocal laser scanning microscopie) in combinatie met FRAP 

(fluorescence recovery after photobleaching). Er werden een aantal fracties eiwitmoleculen 

met verschillende mobiliteit (bindingssterkte) gevonden (pH 7). Door verhogen van de 

zoutconcentratie verschuift de verdeling over deze fracties naar de minder sterk gebonden 

fracties; bij verlagen van de pH naar pH 3 is er een verschuiving naar de sterker gebonden 

fracties. Bij lage eiwitconcentraties waarbij het gel nog niet verzadigd is, zijn de 

eiwitmoleculen zowel bij lage als hoge zoutconcentratie (0 – 0.1 M) gemiddeld sterker 

gebonden dan bij hoge eiwitconcentratie, waarschijnlijk doordat de moleculen gebonden zijn 

aan meer bindingsplaatsen op het gel. 

De kinetiek van lysozymopname en -afgifte is bestudeerd met CSLM en de resultaten 

zijn geanalyseerd met een model gebaseerd op diffusie, rekening houdend met de 

evenwichtsuitwisseling van vrij en gebonden eiwit in de gelmatrix. De met dit model 

berekende concentratieprofielen van lysozym in de geldeeltjes bij opname van het eiwit 

komen goed overeen met de experimenteel gevonden profielen. Bij lage pH en lage 

zoutconcentratie (sterke binding van het eiwit) wordt de limiterende flux van eiwit op het 

gel/oplossingsgrensvlak volledig bepaald door diffusie vanuit het omringende medium. Uit de 

afgiftekinetiek bij pH 7 (gemeten onder condities waarbij er geen eiwit zit in de omringende 

oplossing) is de effectieve diffusiecoefficient van lysozym in het gel afgeleid en de 

verhouding tussen gebonden en vrij eiwit in de gelmatrix. Deze waarden zijn extreem 

gevoelig voor de zoutconcentratie. 

Amylase breekt het microgel volledig af waardoor lysozym vrijkomt in de oplossing. Dit 

schept mogelijkheden voor toepassing van het microgel ter voorkoming van de groei van 

amylase-producerende bacteriën in bijvoorbeeld de levensmiddelensector of infecties van 

biomaterialen. Om dit verder na te gaan zijn een aantal bacteriestammen gescreened op hun 

vermogen om amylase te produceren en hun gevoeligheid voor lysozym. Het met lysozym 

geladen microgel blijkt inderdaad dodelijk te zijn voor amylase-producerende 

lysozymgevoelige bacteriën, terwijl bacteriën die geen amylase produceren en/of ongevoelig 

zijn voor lysozym niet in hun groei belemmerd worden. 

De afgifte van lysozyme bij verhogen van de zoutconcentratie gebeurt relatief snel (op de 

tijdschaal van hooguit tientallen minuten). Daarom is als laatste onderdeel van deze studie 

onderzocht of door middel van een schil van polyelektrolietcomplex (positief geladen poly-L-
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lysine en negatief geladen poly-L-glutaminezuur) de afgifte van functionele ingredienten door 

het gel afgeremd kan worden. Dit blijkt het geval te zijn en bovendien is gevonden dat de 

polyelektrolietlaag rond de deeltjes bescherming biedt tegen afbraak door amylase. 
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DO [%] Degree of Oxidation 

κ-1
 [nm] Debye length 

R cross-linker/polymer [-] weight ratio of cross-linker to polymer 

SWv [-] equilibrium volumetric swelling ratio 

SWw [-] equilibrium weight swelling ratio 

Qmax [C g
-1

] maximum charge density when all charged groups are dissociated 

Qgel  [C g
-1

] charge density of starch gel 

Qprot [C g
-1

]             charge density of the protein 

QLSZ [C g
-1

]             charge density of the lysozyme 

Nb [-]                      maximum number of protein molecules that can bind to the gel 

pKa,eff [-]               effective intrinsic pKa value of the dissociation of the COOH      

groups on starch polymer 

pHopt the pH when the saturation protein uptake is the maximum at certain 

salt concentration 

ρfix [C m
-3

]              fixed charge density  

λ
-1

 [nm]                  softness (relates to gel permeability) 

µ [m
2
 s

-1
 V

-1
]          electrophoretic mobility (electrophoretic velocity per unit field 

strength)                                

η [Pa s]                      viscosity of solvent  

γ [Nm
-4 

s]                   effective friction coefficient for the solvent in the microgel 

Γ [-]                                          lysozyme uptake (gram protein per gram dry gel) 

Γmax (Гsat) [-]                maximum lysozyme uptake (the plateau value of absorption 

isotherm) 

Csalt   [M]                              salt concentration in solution (usually means [NaCl]) 

Cint, max [M]                maximum internal salt concentration for microgles 

Kaff  (dГ/dCprot)  

[L g
-1

]    

binding affinity (the initial slope of the protein absorption isotherm) 

Prelease [% ]                percentage of protein released from microgel by dilution 

ve  [mol cm
-3

]               effective cross-link density of polymer gel 

V1 [cm
3
 mol

-1
]              molar volume of the solvent  

V2 [-]                          volume fraction of polymer in the swollen gel 

χ [-]                           polymer-solvent Flory-Huggins interaction parameter 

ρp [g cm
-3

]                  Density of the dry polymer in gel 
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Mc [g mol
-1

] average molecular weight between cross-links  

ξempty [nm]                 mesh size of the empty gel 

ξfilled  [nm]                 mesh size of the microgel after protein uptake 

v/v0 [-]                     de-swelling ratio of polymer gel 

Zp [-]                            number charges per protein molecule 

Deff [m
2
 s

-1
]           effective diffusion coefficient for the protein in the gel particle                     

D0  [m
2
 s

-1
]           diffusion coefficient of protein in solution 

θu  [-]                  fractions of unbleached bound protein  

θb    [-]                        fractions of bleached bound protein 

Cprot  [g L
-1

]    protein concentration in solution 

Cp,b  [g L
-1

]     bleached protein concentrations in solution 

Cp,u [g L
-1

]      unbleached protein concentrations in solution 

kCp [s
-1

]               exchange rate constant of unbleached protein with bleached protein 

M(t)  [g]              protein uptake at time t 

Meq  [g]               amount of protein in the gel when equilibrium uptake is reached 

Mrel(t)  [g]          amount of protein released from the gel at time t 

M0       [g]           initial amount of protein in the gel (at t = 0) 

R (cbound /cfree) [-]    ratio between bound and free protein in the gel 

Dp [m
2
 s

-1
]            diffusion coefficient of the protein molecules in solution 

Dp,g [m
2
 s

-1
]           diffusion coefficient of the protein molecules in gel 

Cp (cbound  + cfree )  

 [g L
-1

]      

sum of the bound protein and freely dissolved protein concentrations 

Cp
eq

 [g L
-1

]     protein concentration inside the gel when reach the final equilibrium  

Cp* [g L
-1

]      initial total protein concentration inside the gel phase before releasing 

τ [s]                    characteristic diffusion time  

Jp [mol m
−2

 s
−1

] steady state protein supply flux from the medium to the particle 

a [µm]                the radius of the starch microgel particle 

OD [-]                optical density/absorbance at certain wavelength 

OPSP oxidized potato starch polymer 

TEMPO 2, 2, 6, 6-tetramethyl-1-piperidinyloxy 

STMP                Sodium trimetaphosphate 

PLL poly-L-lysine 

PGA poly-L-glutamic acid 
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