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Preface

To examine the impact of atmospheric deposition on non-calcareous soils of Dutch
forests, a survey of the chemical soil and soil solution composition below 150 forest
stands, including seven major tree species, was carried out by Alterra (formerly the
DLO Winand Staring Centre) in 1990. This research was financially supported by the
Ministry of Agriculture, Nature Management and Fisheries and the Ministry of
Housing, Physical Planning and Environment of the Netherlands.

It was foreseen that the results of the research would be presented in four reports

with the common title: Effects of acid deposition on 150 forest stands in the

Netherlands, with the following subtitles:

1. Chemical composition of the humus layer, mineral soil and soil solution;

2. Relationships between forest vitality characteristics and the chemical composition
of foliage, humus layer, mineral soil and soil solution;

3. Input output budgets for sulphur, nitrogen, base cations and aluminium;

4. Assessments of the chemical composition of foliage, mineral soil, soil solution
and ground water on a national scale.

Actually, the reports 2, 3 and 4 have been published already in 1994. This report
contains the results of the chemical soil and soil solution composition below the 150
forest stands, and their relationship with deposition level, tree species, stand and site
characteristics, that would be published as part 1 of the series. For various reasons,
this report has been delayed extremely. Consequently, it is not published as SC report
69.1 as previously announced, but as Alterra Report 424.1. It now forms a series with
another report (424.2) in which the chemical soil and soil solution composition
below 200 forest stands is given in 1995, partly coinciding with the 150 forest stands
where the same assessment took place in 1990.

We thankfully acknowledge all the colleagues who assisted in site characterisation
and soil sampling, i.e. A.H. Booy, D. Eilander, C.M.A. Hendriks, H. van het Loo,
and P. Mekkink. We furthermore thank L.C. van Liere, M.M.T. Meulenbrugge, J.M.J.
Jansen, A. Louwerse and W. Balkema for sample pre-treatment and analyses and. C.
Schuiling and J.C.H. Voogd for data processing. We also thank Dr. J.W. Erisman
(RIVM) for the use of deposition data on a national scale and Ir. L.J.M. Boumans
(RIVM-LBG) for his co-operation in the selection of forest stands. Finally we thank
Ir. G. van Tol (IKC-N) for his contribution in allowing us to take soil samples in the
various forest complexes of the State Forestry Service.
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Summary

Approach

Aim of the research

Research on soil acidification during the last decade has significantly increased our
knowledge about the impact of atmospheric deposition on forest soils and forest
vitality and the magnitude of critical loads to avoid such effects. However, nearly all
research activities were carried out on a limited number of intensively monitored
sites. In order to gain more insight in the regional variability of the soil and soil
solution composition below forests in relation to forest vitality, a nation-wide
assessment was made of the chemical composition of the leaves (needles), humus
layer, mineral topsoil and soil solution in 150 forest stands. Here we report the
results of the soil and soil solution composition.

Site selection

The choice of the locations was largely determined by 118 forest stands selected by
the National Institute of Public Health and Environmental Protection (RIVM) for
the determination of ground-water quality at the phreatic level in 1990. From this
database, 89 stands were selected. The additional 61 stands were selected by aiming
at (i) an optimal range in deposition level, (ii) inclusion of major tree species,
proportional to the national occurrence and (iii) an optimal range in site conditions,
i.e. soil type and ground-water level. The resulting forest stands include 45 stands of
Scots pine, 30 stands of oak and 15 stands of black pine, Douglas fir, Norway spruce,
Japanese larch and beech. A total of eleven stands were later selected to be part of
the monitoring system in the context of the International Co-ordinated programme
of Forests, being monitored since 1994. At each site an indication of stand
characteristics, affecting the deposition, was made such as tree height, canopy
coverage, distance to the forest edge and surrounding land use. Furthermore, a
description of soil type and ground water class was made. Most forests were located
on podzolic soils, i.e. Cambic, Carbic and Gleyic Podzols, and Haplic Arenosols and
to a small extent on relatively rich sandy soils. Ground-water levels are mostly deep.

Sampling and analyses

At each site, composite samples were taken, consisting of 10 sub-samples for the
humus layer (divided in a L& F and H horizon) and of 20 sub-samples for the
mineral soil at depths of 0- 30 cm, 30 - 60 cm and 60 - 100 cm. The number of
sub-samples (20) for each composite soil sample was based on the results from a
comparative study of three methods to extract soil solution. The humus layer was
sampled with a cylinder of steel with a diameter of 14.8 cm. For every sub-sample the
thickness of the litter (L), fermented (F) and humus (H) horizon plus the total
thickness was noted. Where the thickness of the humus horizon was more than 1
cm, the humus horizon was sampled.
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Contents of all major nutrients, i.e. C, N, P, K, Ca, Mg and S were measured for the
humus layer, whereas contents of C, N and P were also measured for the mineral
layer. To gain insight in the buffer characteristics of the soil, the exchangeable cation
contents (H, Al, Fe, Ca, Mg, K, Na and NH,) and the CEC were measured both in
the humus layer and the mineral topsoil. In the mineral layer the pools of readily
dissolvable Al and Fe hydroxides were also measured, whereas the content of
important heavy metals, i.e. Pb, Cd, Zn, Cu, Cr and Ni were determined for the
humus layer. In the soil solution, all the major cations and anions were measured, i.e.
H, Al, Fe, Ca, Mg, K, Na, NH,, NO,, SO,, Cland RCOO..

Chemical composition of the humus layer

Pools, thickness and bulk densities of organic matter

- Pools of organic matter in the humus layer varied mostly between 20-110
ton.ha, indicating that parts of the forest stands are in the phase of organic
matter accumulation.

- The humus layer mainly consisted of an F horizon with overlying freshly fallen
leaves or needles (L horizon) with a much lower bulk density than the compacted
humified H horizon. Thickest humus layers were found under Japanese larch,
whereas thinnest median humus layers were found under black pine

- The median bulk density of the humus layer (124 kg.m?®) was slightly lower than
data reported in the literature. This is most likely due to a relatively thick layer of
loose fresh leaves or needless in the litter layer.

Contents, ratios and pools of organic carbon and nutrients

- Elevated S and N deposition is reflected by the chemical composition of the
humus layer, with high contents of N and S, relatively low contents for P and Ca
and very low contents for Mg and K.

- C/N ratios varied mostly between 20 and 30, which is relatively low, thus
indicating the impact of high N inputs. Nevertheless, considerable N
immobilisation may still take place in most of the sites. This is in accordance with
results from input - output budgets, which indicate that on average ca 80% of the
incoming N is retained in the ecosystem.

- C/S ratios varied mostly between 150 and 250, indicating that net S mineralisation
is likely to be considerable. This is in accordance with results from input-output,
which indicate that on average all the incoming SO, is leached from the system.

- C/P ratios were very high and varied mostly between 450 and 950, indicating that
net mineralisation of P is likely to be very small, and that P deficiencies in these
forest soils are likely. This is in accordance with the results of foliar P contents.

- The impact of humus layer horizon and tree species on nutrient contents and
nutrient ratios was small. For oak the N, Ca, Mg and K contents were higher than
for the other species. The median pools of carbon and nutrient in the LF horizon
were, however almost three times the median pools found in the H horizon.
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Soil acidity and exchangeable cations

Results for the pH in a water extract and in a KCI extract generally varied between
3.5 and 5 and between 2.5 and 4, respectively. The pH values in the H horizon
were lower than in the LF horizon. The impact of tree species was small.

The cation exchange capacity (CEC) of the humus layer varied mostly between
200-400 mmol..kg®, whereas the CEC normalised to the organic matter content
ranged between 2.4 and 8.0 mmol.kg" per % organic matter, which is low
compared to literature data. The CEC varied only slightly between humus layer
horizons and tree species.

Exchangeable cations on the adsorption complex were generally dominated by
protons (on average approximately 50%) followed by Ca (on average
approximately 25%). Exchangeable Al contents were relative low, since there is no
mineral pool of Al in the organic layer. The H horizons had almost twice as low
exchangeable Ca, Mg, K, Na and NH, contents as the LF horizons. Tree species,
however, hardly affected exchangeable cation contents.

The exchangeable pool of base cations varied mostly between 4 and 20
kmol..ha™.yr'. Considering a net acid input of ca 5.0 kmol.ha’.yr* on Dutch
forests in 1990, this pool is quite limited.

Contents and pools of heavy metals

Approximately 95% of the forest stands do have contents of Pb, Cd, Cu and Zn
in the humus layer that are higher than those observed in unpolluted areas. High
contents were mainly located in the strongly polluted Kempen area in the
southern part of the Netherlands. Contents of Cd and Zn in the humus layers
were highly correlated indicating co-emission and co-deposition of these metals.
Differences between heavy metal contents in LF and H layers were relatively
small. Contents of Pb, Cd, Cu and Zn, in humus layers generally decreased going
from spruce forests to pine forests to deciduous forests, but such a trend was not
found for the heavy metal pools

In general, the humus layers are most strongly polluted with Pb, followed by Zn,
Cd and Cu. Toxic effects of elevated metal contents on soil microbiota and soil
invertebrates seems quite unlikely, except for Pb, but they may retard
decomposition, thus lowering the availability of nutrients.

Estimated average annual deposition rate of heavy metals, derived by dividing the
heavy metal pool in the humus layer with the age of the trees, were generally
higher than those simulated by atmospheric deposition models. This is likely due
to the higher surface roughness of forests compared to low vegetation.

Chemical composition of the mineral topsoil

Contents and pools of organic matter, carbon and nutrients

Compared to the humus layer, the organic matter and carbon contents in the
mineral soil are much lower, but the pools of both organic matter and carbon are
generally twice to thrice as large, because of the much higher bulk densities of the
mineral soil. The organic carbon contents were higher in more wet or acid soils.
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- Nitrogen contents in organic matter were slightly lower in the mineral soil
(median value of 20 g.kg"), than in the humus layer (median value of 22 g.kg™"),
indicating the impact of N deposition on N contents in the humus layer.

- Despite the high N contents in the humus layer, the C/N ratio was generally
lower in the mineral soil, indicating the stronger degree of humification. C/P and
N/P ratios were much lower in the mineral soil, since P not only occurs in
organic matter but also in mineral form.

- C and N contents and C and N pools generally increased in the direction
Arenosols<Podzols<Anthrosols< Gleysols, reflecting partly the fertility of those
soil types. Furthermore, the total P content and P pool was much larger in the
Fimic Anthrosols, indicating the impact of long-term fertilisation in the past.

Soil acidity and exchangeable cations

- The pH in a water extract and in a KCI extract generally varied between 3.5 and
4.5 and between 2.5 and 4.0, respectively, in the mineral topsoil. Differences
between pH-H,O and pH-KCI were approximately 0.5, being less than in the
humus layer.

- The CEC in the mineral topsoil (median of 32 mmol..kg") was much lower than
in the humus layer (median of 302 mmol..kg") because of the much lower organic
matter content in the mineral layer. The CEC, normalised to 1% of organic
matter, was, however, higher in the mineral topsoil (median of 8.3 mmol..kg™)
than in the humus layer (median of 4.7 mmol.kg™). This was also the case with
the exchangeable cation pool because of the much higher bulk density of the
mineral layer.

- The proton and base saturation was much lower and the Al saturation was much
higher in the mineral topsoil compared to the humus layer. This indicates that Al
mobilisation is the dominant buffer mechanism in the mineral topsoil, whereas
exchange of protons with base cations dominates in the humus layer. The
exchangeable cation pools generally decreased according to Al>H>Fe>Ca
followed by Mg, K, Na and NH,

- Al saturation was considerably higher in the more acidic Arenosols and Podzols
(median of 65-75%) than in the more buffered Anthrosols and Gleysols (median
of 40-55%).

Contents and pools of oxalate extractable aluminium, iron and phosphorus

- The readily available, oxalate extractable, Al pool varied mostly between 100- 1000
kmol..ha™. Considering the net acid input in 1990, this Al pool can be depleted
within a period of within several decades to centuries.

- The ratio of oxalate extractable P to Al and Fe varied mostly from 0.02-0.18,
implying a phosphate saturation percentage between 4-36%. This is much lower
than in agricultural soils with a large input of P by animal manure. Highest
percentages were found in the Fimic Anthrosols, in which the contents of oxalate
extractable Al were low, whereas the oxalate extractable P contents were high.
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Chemical composition of the soil solution

Element concentrations

SO, concentrations were higher than the NO, concentrations indicating the
dominance of SO, in soil acidification.

NO, concentrations were generally higher than a target value of 0.4 mol.m?, used
in the Netherlands with respect to drinking water quality.

Al concentrations were mostly above a critical value of 0.2 mol.m?, related to
toxic effects on roots.

Differences between ion concentrations in the topsoil and subsoil were small,
except for the pH, which is lower in the topsoil.

Element ratios

The (NH,+ NO,)/ SO,, indicating the contribution of both compounds to soil
acidification, is mostly below 1.0 (median value was 0.57), whereas this ratio was
larger than 1.0 in the atmospheric input in the Netherlands in 1990. This implies
that a considerable amount of nitrogen is retained as a result of uptake,
immobilisation and/or denitrification.

The NH,/NOQO, ratio, indicating the degree of nitrification, was mostly below 1.0
(median value was 0.21). This indicates a strong degree of nitrification and/or
preferential NH, uptake, since the NH,/NO, ratio in the atmospheric input in the
Netherlands was (much) larger than 1.0 in 1990.

The Al/(SO, + NO,) ratio, indicating the degree of Al mobilisation by acidic
inputs, varied strongly (from 0.01-0.8 with a median value of 0.45). Most likely,
the lower values for the Al/(SO, + NO,) ratio are the result of a high base cation
(mainly Ca) input from the atmosphere. Liming/fertilisation in the past may also
play a role.

The median AI/RCOO ratio was 3.4, indicating that toxic free Al dominates the
Al speciation compared to non-toxic organically complexed Al.

Median values for the Al/Ca ratio are 1.1 in the topsoil and 1.4 in the subsoil.
This is higher than the average critical value of 1.0. This implies that adverse
effects of Al on roots are likely. The median Al/(Ca+Mg+K) ratios are 0.41 and
0.53 in the topsoil and subsoil, respectively.

The ratio of NH, to K and of NH, to Mg nearly always remained below a critical
value of 5. Median values are even near or below 1.0 for both ratios in topsoil and
subsoil. This is likely due to preferential MH4 uptake and nitrification.

Relationships between soil solution chemistry and environmental factors

The concentrations of most ions in soil solution were especially influenced by tree
species. Lowest pH values and highest concentrations in NO,, SO, and Al occur
below Norway Spruce and Douglas Fir. The reverse is true for Oak and Beech,
whereas Japanese Larch, Scots Pine and Black Pine occupy an intermediate
position. Differences between tree species are probably caused by increased dry
deposition and evapotranspiration.
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There impact of the estimated average deposition level in grids where the forest
were located on concentrations in NO,, SO, and Al, but it appeared to be smaller
than the impact of tree species.

For most ions, concentrations increased with an increase in tree height and
canopy coverage, most likely due to an increase in dry deposition and
evapotranspiration.

Relations between ion concentrations in soil and soil solution

Correlation between ion concentrations in soil and soil solution

In the considered acidic sandy soils, there is a clear linear relationship between the
H+Al concentration and the concentration of SO,+NQO,, indicating that the net
acidic input by S and N compounds is mainly neutralised by Al release, while the
remaining part is leached as protons.

In the mineral topsoils, there was a clear correlation between dissolved cation (H,
Al, NH,, Ca, Mg, K, Na) concentrations and exchangeable cation fractions at the
adsorption complex (r=0.4-0.7), with the exception of Al.

There was no clear relationship between the dissolved nitrate concentration in the
subsoil and the C/N ratio of the forest floor (humus layer), which is contrary to
results published in the literature.

Aluminium dissolution and cation exchange

In the mineral topsoil, Al concentrations in the soil solution can not be described
with the Gibbsite equilibrium equation, that is generally used in soil acidification
models. The slope of the pAl-pH relationship is near 1, which implies that Al
release in the mineral topsoil is most likely dominated by equilibrium
complexation reactions with organic matter.

In the mineral subsoil, the slope of the pAl-pH relationship was close to 3.0,
which would indicate equilibrium with Gibbsite, but the equilibrium constant was
clearly lower than that of gibbsite (undersaturation).

There is a large variation in exchange constants, specifically for H and Al. The
affinity of the exchange complex is clearly much higher for protons than for the
other monovalent cations. The influence of soil type appeared to be small with
respect to the affinity for monovalent and divalent cations, but the affinity for Al
and Fe was clearly lower in the two Gleysoils than in all other soils.

Phosphate adsorption
- In forest soils, with low dissolved inorganic P concentrations (up to 2 mg.I*), the

12

interaction between soil solid phase and soil description can best be described
with a non-linear Freundlich equation. This gives a better prediction of the
dissolved inorganic P concentration than the Langmuir description used in
agricultural soils.

P adsorption is lower in acidic forest soils than in slightly acid agricultural soils.
There was, however, no relationship between the range in adsorption constants
and the pH or organic matter content.

Alterra-rapport 424.1



1 Introduction

Impacts of elevated deposition levels of SO,, NO, and NH, on the chemical
composition of forest soils, and its effect on forest vitality, has received much
attention in the Netherlands during the period 1980-1990 (Heij and Schneider, 1991).
However nearly all research activities have been carried out on a limited number of
intensively monitored forest sites. These sites are not representative for Dutch forest
as far as deposition level, stand characteristics, such as tree species, and site
characteristics, such as soil type, are concerned.

The major aim of this report is to give:

(1) A nation-wide overview of the chemical composition of non-calcareous sandy
forest soils occurring below major tree species and

(2) Insight in the relationship with deposition level, stand characteristics and site
characteristics.

1.1  Soil acidification research in the Netherlands in the period 1985-
1990

Research on soil acidification and nitrogen accumulation at various forest sites in the
Netherlands has mainly been carried out within the Dutch Priority Programme on
Acidification that started in 1985. Major aims of these research efforts were the
assessment of (i) the impact of atmospheric deposition on the soil and soil solution
chemistry and (ii) the indirect (soil mediated) effects of atmospheric deposition on
forest vitality, as discussed below.

Impact of atmospheric deposition on the soil and soil solution chemistry

Impacts of atmospheric deposition on the soil have been derived by the
determination of input-output budgets of major ions, i.e. sulphate (SO,), nitrate
(NO;,), ammonium (NH,), aluminium (Al), base cations (Ca, Mg, K, Na) and protons
(H). This was done to gain insight in (1) the fate of S and N in the ecosystem and (2)
the buffer mechanism in the soil to neutralise the acid input associated with it. Input
fluxes were derived from fortnightly and monthly measurements of the chemical
composition of throughfall water, multiplied by the throughfall flux. Output fluxes
were derived by multiplying monthly measurements of the soil solution composition
at various depths with simulated unsaturated soil water fluxes (Van Grinsven et al.,
1987). An overview of the budget studies thus carried out is given in Van Breemen
and Verstraten (1991). Research results of nine intensively monitored sites showed
that the average SO, input equals the average SO, output, suggesting that the forests
are sulphur-saturated. Nitrogen saturation only occurred at one site. On average
about 1.5 kmol (% 20 kg) N.ha™.yr" was removed from the soil, either by uptake or
denitrification, or retained in organic matter by immobilisation. Furthermore, on
average 70% of the amount of SO, and NO, leaching from the system was
accompanied by Al. This indicates that Al mobilisation is a major buffer mechanism
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in non-calcareous sandy forest soils in the Netherlands (Van Breemen and
Verstraten, 1991; Heij et al., 1991).

Input-output budgets were also obtained for eight Douglas stands. This was done by
comparing the input by throughfall with the output calculated by multiplying the
concentration at the bottom of the root zone in April with the annual precipitation
surplus simulated by a hydrologic model (Reurslag et al., 1990). Results, which are
also given in Van Breemen and Verstraten (1991), showed that four of the eight
Douglas stands are nitrogen saturated. Nitrogen saturation appeared to be correlated
with an increased nitrogen deposition level.

The dominating role of Al-mobilisation in the investigated forest sites was due to the
low base saturation of the adsorption complex (nearly always less than 20%).
Laboratory experiments with soil samples from these sites showed that the Al-pool
responsible for buffering is mainly limited to organically bound Al and amorphous
Al-hydroxides (Mulder et al., 1989). This implies that major physical and chemical
soil changes are presently taken place by the depletion of this limited pool.

Impacts of atmospheric deposition on the soil solution can also directly be inferred
from these studies i.e. high concentrations of Al, SO, and NO, increasing with depth
and low pH values (generally below 4). In the topsoil NH, concentrations were also
relatively high, but nearly negligible below the root zone. Furthermore distinct
seasonal patterns were observed i.e. high concentrations in the summer period, due
to evapotranspiration and relatively low concentrations in the winter period (Van
Breemen and Verstraten, 1991). Analyses of the data of several intensively measured
sites indicated that the concentration in early spring (March, April) is generally most
representative for the annual flux weighted solute concentration.

Indirect effects of atmospheric deposition on forest vitality

The indirect effects of atmospheric deposition have been studied by assessing the
relationship between the soil and soil solution composition and forest vitality
characteristics such as needle loss, needle colour and needle composition and root
characteristics such as mycorrhizae frequency and root length. This type of research
has been carried out on eight Douglas stands, mainly on podzolic soils, during the
period 1986-1987 (Kleijn et al., 1989).

The soil solution composition was measured four times i.e. in June, September and
December 1986 and in April 1987. Unlike the intensively monitored sites, where the
soil solution was extracted with porous cups permanently installed in the field, soil
solution was extracted by centrifugation from a previously sampled soil. This was
done to enable measurements in mid-summer and to put more emphasis on spatial
variability in the field. Forest vitality characteristics, needle composition and root
characteristics were measured only twice in this period. Results on the soil and soil
solution composition are given in Kleijn and De Vries (1987) and Kleijn et al. (1989).
As with the intensively monitored sites, high concentrations of Al, SO, and NO,
were found, especially in the summer. Furthermore spatial variability appeared to be
high indicating that at least 5 measurements are needed to estimate the mean log-
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concentration with an error below 20% (Kleijn and De Vries, 1987). Needle
composition was characterised by high N contents and relatively low Mg, K and P
contents. Fine roots were characterised by a low mycorrhizae frequency and a low
(specific) root length.

Comparison of the various results gave an indication that a decrease in forest and
root vitality characteristics is associated with high N contents in the needles and high
Al and NH, concentrations in the topsoil. In this context, the ratio of Al and NH, to
the nutrient base cations Ca, Mg and K appeared to be important. A similar
conclusion was made by Roelofs et al. (1985) who compared the chemical
composition of water extracts from the forest topsoil with forest vitality
characteristics of black pine at 58 locations. The effect of increased ratios of Al, and
NH, to Ca, Mg and K on forest vitality is also proven by laboratory experiments,
which show that it causes a decrease in the uptake of nutrient base cations (Boxman
and Van Dijk, 1988).

Modelling research

The results obtained from the various field and laboratory studies have been used to
(i) determine the long term impact of atmospheric deposition on soils using
simulation models and (ii) assess critical loads for nitrogen and sulphur (total acid) on
forest soils, as discussed below.

Long term impacts of atmospheric deposition on forest soils have been derived using
dynamic soil acidification models. An overview of the results thus derived is given in
De Vries and Kros (1991). Results show that the present deposition level may cause
depletion of Al-hydroxides in the forest topsoil within several decades (De Vries and
Kros, 1989b). Furthermore, a reduction on the deposition level appears to cause a
relative fast improvement in the chemical composition of the soil solution (De Vries
and Kros, 1989a).

Critical loads for nitrogen and total acid on forest soils have been derived from
critical values for the Al concentration and the ratio of Al and NH, to base cations,
using steady-state soil acidification models. Again an overview of the results is given
in De Vries and Kros (1991). Results show that the present acid deposition level is
much higher than the critical load for non-calcareous forest soils.

1.2 Aim of the present research

Present knowledge and gaps therein

Soil acidification research conducted so far has greatly increased our knowledge
about the present impact of atmospheric deposition on non-calcareous sandy forest
soils. However the sites that were studied are not representative for the Dutch
forests. First of all, most sites were located in areas with intensive animal husbandry
with a bias towards high N loads. Secondly, the tree species studied was mainly
Douglas fir, since the Dutch Priority Programme on Acidification was particularly
focused on this tree. However Douglas fir is not representative for needle forest as
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far as hydrological characteristics are concerned. The high needle amount (and
canopy coverage) causes a large rate of interception evaporation leading to low water
fluxes and a relatively large input of elements by dry deposition, thus increasing soil
solution concentrations. Finally, both soil type and ground water level of most
intensively studied sites are not representative for sandy forest soils in the
Netherlands. They are either too loamy or too wet.

Furthermore, the research carried out until now has increased our insight in the
relationship between forest vitality characteristics and the soil and soil solution
composition. However, the amount of sites studied has been too few to establish
really convincing correlations. The necessity to gain insight in such relationships is
also pointed out in an international context by the International Co-ordinated
Programme (ICP) on Assessment and Monitoring of Air pollution effects on Forests,
that is part of the Working Group on Effects of the UN-ECE Convention on Long
Range Transboundary Air Pollution.

Finally, model simulations, using the various field and laboratory data, have
improved our knowledge about the long-term impacts of atmospheric deposition on
soil and about the magnitude of critical loads. However, in order to evaluate
emission-deposition reductions and to establish critical loads on a regional scale,
more insight is needed in the regional variability of soil and soil solution composition
below forest.

Research aims

In order to overcome the various limitations of the research carried out so far a
national assessment has been made of the chemical composition of the needles,
humus layer, mineral (top)soil and soil solution of forest ecosystems. The various
characteristics were measured in 150 stands for seven major tree species in The
Netherlands (Scots pine, black pine, Douglas fir, Norway spruce, Japanese larch, oak
and beech) on non-calcareous sandy soils. The limitation to these soil types is
because they are most sensitive to acidification and N accumulation and most Dutch
forests (about 85%) are located on these soil types (De Vries et al., 1989). Forest
vitality characteristics were known for the stands as they are part of the forest vitality
study by the State Forestry Service.

Major aims of the research are the determination of the:

- Variability in soil and soil solution composition in relation to deposition level,
stand characteristics and site characteristics.

- Relationship between soil and soil solution composition and forest vitality
characteristics for major tree species.

- Regional assessment of input-output budgets for sulphur, nitrogen, aluminium
and base cations.

- Mapping of soil and soil solution parameters on a national scale using
relationships with stand and site characteristics available in GIS systems.

In this report, results of the inventory are given related to the first major aim. Results
related to the other aims are given in Hendriks et al. (1994), De Vries and Jansen
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(1994) and Leeters et al. (1994). Originally, the reported was aimed to be part of a
series with the above-mentioned reports. However, due to its extreme delay, it is now
part of a series of two reports in which the second report focuses on the variability in
soil and soil solution composition of 200 forest stands in 1995 (Leeters and De Vries,
2001). This is specifically done because approximately 125 stands are overlapping in
1990 and 1995, thus allowing a direct comparison between the results obtained.

1.3 Contents of the report

Chapter 2 gives an overview of the methodological approach. This includes the
choice of the locations, the description of stand and site characteristics in the field
and the methods used for soil sampling, solution extraction and chemical analyses.
Chapter 3 gives an overview of the locations of the various forest stands with a
description of the deposition level, stand and site characteristics. Results for the
humus layer are given in chapter 4. This includes the variation in total contents of
major nutrients (N, P, K, Ca, Mg, S), exchangeable cation contents (H, Al, Ca, Mg,
K, Na, and NH,) and important heavy metals (Pb, Cd, Cu, Zn, Ni and Cr). The
chemical composition of the forest topsoil (0 - 30 cm) is reported in chapter 5. This
includes the total contents of N and P and the buffer characteristics of the soil, i.e.
the exchangeable cation contents and the amount of readily dissolvable Al (and Fe).
Chapter 6 gives an overview of the variation in the soil solution composition (H, Al,
Ca, Mg, K, Na, NH,, NO,, SO,, Cl, HCO, and RCOO) for the forest topsoil (0 - 30
cm) and subsoil (60 - 100 cm). Here, special emphasis is given to the relation with
deposition level, tree species, and stand and site characteristics. Relations between
the chemical composition of the solid phase in different layers and between the soil
solution and the soil solid phase in the mineral topsoil are given in chapter 7. Finally,
a discussion with conclusions is given in Chapter 8.
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2 Methods

2.1 Selection of the locations

Criteria

The soil solution composition is mainly a result of the composition of precipitation
and throughfall water (deposition) and the interaction with the mineral soil. Locally
the deposition on the soil is determined by stand characteristics such as tree species
(Ulrich, 1984), canopy coverage (Draayers et al., 1992), structure of the stand (Van
Ek and Draayers, 1991), height of the trees (Stevens, 1987), distance of trees to the
forest edge (Hasselrot and Grennfelt, 1987; Draayers et al., 1988) and surrounding
land use (Boumans and Beltman, 1991). The soil interaction depends on site
characteristics such as buffer capacity of the soil and ground water level. Buffer
characteristics such as CEC and base saturation strongly determine the ratio of Al to
base cations in the soil solution, whereas the ground-water level may influence
nitrogen transformation processes, i.e. mineralisation, nitrification and denitrification.
Furthermore the occurrence and coverage of forest vegetation might influence these
processes through effects of light and temperature.

In order to isolate all different influences, data from all possible combinations of
stand and site characteristics are needed. This is practically impossible because
several stand and site characteristics are correlated, so not all possible combinations
do really exist. Furthermore the capacity of laboratory, time and money was limited.
The number of locations was fixed to 150.

Starting with all forest stands on non-calcareous soils belonging to the forest
inventory on vitality in 1988 or 1989, we decided to choose our locations by logical
judgement. Since we aimed to gain insight in the relationship of the soil (solution)
composition with deposition level, stand characteristics, such as tree species, and site
characteristics, such as soil type and ground-water level, we used the following
criteria:

(1) A large range in atmospheric deposition levels.

(2) Inclusion of all major tree species, covering at least 80% of Dutch forests i.e.
Scots pine, black pine, Douglas fir, Norway spruce, Japanese larch, oak and
beech, with an optimal range in forest vitality.

(3) A large number of different soil types and ground water levels to ensure a large
range in buffer capacity of the soil.

Information about the atmospheric deposition of SO,, NO, and NH, for the year
1989 was derived from the National Institute of Public Health and Environmental
Protection (RIVM). Data were provided for each 5km x5 km gridcell on the basis
of calculations with the model DEADM (Erisman, 1991). Data about the deposition
of base cations and chloride, which partly neutralise the acid input, were also
provided by the RIVM for each 10 km x 10 km gridcell. These data were derived by
inverse distance interpolation of values from 22 monitoring stations for the period
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1978-1985 (KNMI-RIVM, 1985). Information about the vitality of the forests, which
has been gathered since 1984 by the State Forestry Service, was derived from this
institute. We used the data of the inventories of 1988 and 1989. Information about
soil type and ground water levels was available at the Winand Staring Centre (SC).
We used the soil map of the Netherlands scale 1 : 50 000.

When we started this research the laboratory for soil and ground water of the RIVM
already had chosen about 200 locations on non-calcareous sandy soils covered with
forest or natural vegetation, in order to determine the quality of the phreatic ground
water. They had chosen their locations by ensuring an optimal range in atmospheric
N deposition (Boumans and Beltman, 1991). We used their locations as a start for
the choice of our locations. Consequently we first describe their method, used to
select (forest) sites.

Pre selection of the locations by RIVM

In order to select their locations a database of 500 m. x 500 m. gridcells was build,
containing information about the total atmospheric deposition of nitrogen and land
use. Land use was included because of its influence on the locale emission and
deposition. When there is more agriculture within a grid, NH, emission is likely to be
higher and through that the deposition. Furthermore, grids with more forest will
have a greater input of dry deposition than those with more low vegetations, such as
heather.

For every 500 m x 500 m gridcell the land use was given as the area of agriculture,
forest and other non-agricultural lands using data from the national soil statistics
(CBS, 1987). Since the emission and deposition in the surrounding gridcells influence
the deposition within a gridcell, the area of agriculture, forest and other nature
grounds was accounted for as the sum of the areas in the gridcell itself and the areas
of the eight surrounding gridcells. The areas of the different land uses were divided
into five classes i.e. 0- 45, 45 - 90, 90 - 135, 135 - 180 and 180 - 225 ha. The total
deposition of nitrogen (NH, + NO,) per 500 m x 500 m gridcell was also divided
into five classesi.e. < 25,25 - 3,3 -35,3.5 - 4and >4 kmol.ha™.year". Estimates of
the atmospheric N deposition were not derived from present information (see
before). In this case data of 1984 were used based on TREND model calculations
(Asman and Van Jaarsveld, 1990).

The so built database with of 500 m x 500 m gridcells was used for the selection of
the locations (gridcells) using two criteria: (1) they should be representative for the
Netherlands and (2) they must show as much as possible difference in nitrogen
deposition levels. Furthermore, grids containing sites where throughfall monitoring
was performed or sites with forest stands surveyed for vitality in 1988 or 1989 were
preferentially selected. A detailed description of the selection procedure used is given
in Boumans and Beltman (1991). Finally they chose 193 locations. From these 193
locations, 25 where dropped because either they did not belong to the property of
the State Forestry Service (for the practical reason of getting permission for
sampling) or because the ground-water level was below 6 m (for the practical reason
that in that case the vacuum method used for sampling didn’t work). Deep ground-
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water levels occurred mainly in the central part of the Netherlands i.e. at the Veluwe.
At the end 168 locations where found fit for sampling, containing 118 locations with
forest stands where vitality characteristics (needle loss and needle colour) were
determined either in 1988 (29) or 1989 (89).

Choice of the locations in this study

The 118 RIVM locations mentioned above formed the starting-point for our choice
of locations. We tried to keep as many as possible locations common. However, 5
locations had to be dropped because corrected information about the forest stands
showed that these stands were not included in the vitality survey. Whether they
where to young (< 5 years) or they had turned into coppice or they where
inaccessible. So 113 RIVM locations were left. However, only 100 locations included
the seven tree species that we wanted to investigate. Furthermore, since we aimed at
an optimal distribution of deposition levels and the vitality class for each tree species
and an optimal distribution in soil type and ground water level, we dropped 11
RIVM locations of Scots pine and chose others instead. Finally 89 locations were left
for sampling both soil and phreatic ground water. For choosing supplementary
locations we used a forest vitality database with information on stand characteristics
such as tree species, age and vitality class while adding site characteristics such as soil
type and ground-water level by an overlay with a soil data base. Contrary to the
RIVM the restriction that the location had to belong to the State Forestry Service
was not used. Furthermore some extra locations on the Veluwe were chosen, their
restriction in regard to the deep ground water didn’t apply to the sampling for soil
and soil solution.

Table 1 gives an overview of the train of thoughts concerning the distribution of tree
species over our 150 locations.

Table 1 Distribution of seven major tree species over 150 locations

Tree specie 19 22) 33 49 59 66) 77
Scots pine 44 66 34 66 66 45 (23 +22)
Black pine 6 9 10 10 10 15 (10 + 5)
Douglas fir 6 9 10 10 10 15 (10 + 5)
Norway spruce 5 8 11 11 11 15 11+ 4)
Japanese larch 6 9 11 11 11 15 11+ 4)
remaining conifers 2 3 1 3

Oak 17 25 22 25 25 30 22+ 8)
Beech 3 5 2 5 5 15 (2+13)
remaining deciduous 11 16 11 16

Total 100 150 113 157 138 150 (89 + 61)

) Distribution (%) over the non-calcareous sandy soils in the Netherlands

2 Distribution of 150 locations according to the national percentages.

Distribution of the RIVM gridcells

Locations needed according to distribution RIVM gridcells and national distribution
Like 4 without remaining conifers and remaining deciduous trees.

Chosen distribution

(RIVM gridcells + supplementary chosen locations).

Je g s el

By overlaying data on tree species in 500 m x 500 m gridcells (CBS, 1985) with data
on soil types in 100 m x 100 m gridcells (SC, soil map of the Netherlands
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scale 1 :50 000) we got information about the distribution of tree species over the
non-calcareous sandy soils (Table 1). The idea was to divide the 150 locations as
much as possible according to this distribution. Since we chose to include only seven
major tree species, all other coniferous and deciduous trees were excluded.
Comparison of the Columns 2 and 5 shows that the distribution of the locations
over the tree species nearly matched the national distribution of tree species on non-
calcareous sandy soils. However this resulted in only 5 locations with beech. To
ensure a sufficiently large range in deposition level and vitality class within each tree
species, this number is too few. For black pine, Douglas fir, Norway spruce and
Japanese larch the same argument counts, the more because little is known about the
response of these tree species on soil acidification. Consequently, we decided to
divide the locations in the proportion 4:3:3 over three major groups of tree species
i.e. fir-trees (Scots pine, black pine), more demanding conifers (Douglas fir, Norway
spruce, Japanese larch) and deciduous trees (oak, beech) so that every tree species
includes at least 15 locations.

2.2 Characterisation of the locations

At each site an indication of the position of the forest stands and of various stand
and site characteristics, influencing the deposition level on a forest stand or the
processes occurring in the forest soil (section 2.1), was made. Examples of relevant
characteristics influencing atmospheric deposition are tree height (Stevens, 1987),
canopy coverage (Draayers et al., 1992), distance of trees to the forest edge
(Hasselrot and Grennfelt, 1987) and surrounding soil use (Boumans and Beltman,
1991). Examples of stand characteristics influencing buffer processes in the soil are
soil type and ground water level classes (Leeters et al., 1994). More information on
the characteristics that were assessed is given below.

Surrounding land use

The following aspects were assessed with respect to the position of the forest stand

and surrounding soil use:

- The presence of open spots or forest roads

- The distance to the nearest forest edge i.e. 0-20 m, 20 - 40 m, 40 - 60 m, 60 -
80 m, 80 - 100 m, > 100 m

- The position of the nearest forest edge with respect to the site

- The land use at the nearest forest edge i.e. maize field, grassland, arable land, non-
agricultural land

Stand characteristics

The following aspects were assessed with respect to stand characteristics:

- The canopy coverage (the projection of the canopy on the soil), i.e. < 50%, 50 -
75%, > 75%. For the deciduous tree species (including Japanese larch) the canopy
coverage may be less reliable because of the sampling period (February-May).

- The estimated height of the stand, i.e. 0-5m,5-10 m,10-15m, 15-20 m, >
20 m
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- The coverage of the soil by short vegetation, i.e. 0%, 0- 20%, 20 - 60%, 60 -
100%, 100%

- The character of the short vegetation, i.e. grasses, indicators of eutrophication, the
rest (an indication of the present short vegetation with a score list was sometimes
given but these results varied strongly, depending on the knowledge of the field
worker).

Site characteristics

The following aspects were assessed with respect to site characteristics:

- Representative descriptions of the soil profile for the first 120 - 180 cm. The soll
was characterised by the occurrence and thickness of A, B and C-horizons, by the
estimated percentage organic matter, loam (texture) and the median value of the
sand grains (granular). The horizon nomenclature according to De Bakker and
Schelling (1989) was used. This nomenclature is a slight modification of the
system of the International Society of Soil Science (FAO, 1988).

- The ground-water level classes, used for characteristic combinations of mean
highest level in the winter and the mean lowest level in the summer (De Vries and
Van Wallenburg, 1990).

2.3 Sampling of the soil

Sampling period

The soil was sampled in the period February the 15 to May the 16, 1990. This period
was chosen based on results of intensive soil solution monitoring in Hackfort (Van
Breemen et al, 1988). At these locations (sandy soils), the flux weighted
concentrations of soil solutions components were calculated monthly by multiplying
the flux of the unsaturated zone (simulation with the SWATRE model) with the
measured concentrations in the soil solution. Analyses of the data of several
intensively measured sites indicated that the concentration in early spring (March,
April) is generally most representative for the annual flux weighted solute
concentration (cf. section 1.1). The representativity of this period differed for each
component of the soil solution depending on the yearly flux in concentration of that
component. The pH and Fe concentration didn’t change much during the seasons.
Na and CI had high concentrations in summer and fall. Ca, Mg, Al and NO, had
higher concentrations in fall and winter. The concentration of K was lower in
summer (uptake by vegetation) than in the rest of the year. The concentration of
NH, differed strongly in time and space. Concentrations of SO, and H,PO, were
higher in summer whereas the concentration SO, was also high in winter but then
mostly in the deeper soil (Van Breemen et al., 1988).

In order to have some idea about the variation in time during the sampling period we
repeated sampling on several locations. Two locations (one in the province Overijsel
and one in the province Brabant) where sampled three times. Eight locations spread
over the country where each sampled twice.
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Sampling depths

Samples were taken of the humus layer and three, mineral soil layers i.e. 0- 30 cm
(topsoil), 30 - 60 cm and 60 - 100 cm (subsoil). In the mineral topsoil (0 - 30 cm) the
chemical composition of both solid phase and the soil solution was analysed. In the
mineral soil layer 60 - 100 cm only the chemical composition of the soil solution was
analysed. From the mineral soil layer 30 - 60 cm no analyses were performed, but the
samples were stored in the soil archive of the Winand Staring Centre (the solid phase
can eventually be analysed later). The chemical composition of the solid phase was
limited to the mineral topsoil where most of the fine roots, responsible for nutrient
uptake, do occur and soil acidification and N accumulation is likely to be most
intensive. The soil solution was also measured in the subsoil below the root zone to
assess input-output budgets for the forest sites and to derive a relationship with the
ground-water quality measured at most of the sites.

Sampling number

At each site a composite sample of each layer was taken consisting of 20
sub-samples. This was done to minimise the influence of spatial variability. An
evaluation of the Hackfort data showed that the spatial variability within the plots
was the dominant source of error (Van Breemen et al., 1988). We chose the sample
points within the forest stand according to a steady pattern. In the middle of the
stand a square of 20 m x 20 m was delineated. Along the sites of this square, turning
from the outside to the inside, 20 samples were taken at a mutual distance of 5
meters.

The number of sub-samples (20) for each composite soil sample was based on the
results from a comparative study of three methods to extract soil solution (Verhagen
and Diederen, 1991), i.e. by suction cups, as used in intensively monitored sites (e.g.
Van Breemen et al., 1988), by centrifugation as used in this study (e.g. Kleijn et al.,
1989; cf. section 2.3) and by aqueous extraction at a 1:3 soil solution ratio as used in
correlative field studies (e.g. Houdijk, 1990). The three methods were compared at
two forest stands, i.e. in Speuld and I1Jsselstein, at fifteen spots that were situated two
meters apart, at two depths (topsoil and subsoil).

Results for the margin of error of the estimated mean concentration at each depth
was nearly always between 10 and 30% (Table 2). The margin of error, D, was
calculated according to (Hammond and McCullagh, 1978):

D=t, 6/+n (1)
where:

t, = tabled Student t-factor for a given uncertainty a

S = standard deviation in percent of the mean value

n = number of observations

with t, = 1.96 (a=0.05 i.e. 5% uncertainty) and N=15 (15 observations at each soil
depth).
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Table 2 The margin of error of the mean concentration of major elements at four soil depths

Depth Locationd Margin of error (%)

(cm) H Al Ca Mg K Na NHs NOs; SOs CI
10 lJsselstein 26 13 1 20 17 17 31 13 19 16
20 Speuld 22 25 15 20 23 18 34 30 26 16
40 1Jsselstein 23 29 21 18 17 10 31 14 16 11
60 Speuld 19 29 40 14 17 17 21 31 18 21

1 N = 15 at each depth

The variability, and through that the margin of error, was relatively small for Na and
Cl and relatively large for Al and NH, The error given in Table 2.2, ie.
approximately 20% for most elements, was considered acceptable, and consequently
20 sub-samples were taken. In order to reduce the uncertainty in the mean
concentration of all elements below 20% or even 10%, the number of observations
had to increase to approximately 100 and 700, respectively. This is due to the large
variability in Ca concentration in the subsoil in Speuld. These numbers were
considered unpractical.

During the sampling period the laboratory capacity for drying the samples of the
humus layer appeared to be too small. This was a motive to reduce the sample
material of the humus layer from 20 to 10 sub-samples on each location.
Furthermore, Troedsson and Tamm (1969) showed that 10 samples are generally
enough to reduce the uncertainty in the mean chemical composition of the humus
layer to an acceptable value.

Sampling devices

The humus layer was sampled with a cylinder of steel with a diameter of 14.8 cm. For
every sub-sample the thickness of the litter (L), fermented (F) and humus (H)
horizon (Klinka et al., 1981) plus the total thickness was noted. Where the thickness
of the humus horizon was more than 1 cm, the humus horizon was sampled apart.
This was done since literature information indicated a clear difference in the chemical
composition of this layer compared to the L and F layer and because the humus
horizon gives information about the possibilities for appearance of certain plants.
The L and F horizons were always sampled together. The green parts of the
vegetation and the living roots were excluded from the sample. The material was
weighed in the laboratory to derive information on the humus pool per ha for each
stand

The mineral soil layers were sampled with a stabgimlet with a diameter of 2.5 cm. By
taking 20 sub-samples this resulted in approximately 1 kg mineral soil, sufficient to
do the aimed analyses. Practically it was difficult not to disturb the mineral soil when
taking a sample of the humus layer. Therefore the samples of the mineral soil were
taken nearby, but not in exactly the same spot as the sample of the humus layer.
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2.4 Sampling of other forest ecosystem compartments

Foliage

At all 150 locations foliage (leaves or needles) was sampled by the Bosbureau
Wageningen under supervision of the Dutch Forestry Research Institute (IBN-
DLO). Sampling was done according to the guidelines of the Commission Advies
Bosbemesting (Directie Bos en Landschapsbouw, 1990).

Nutrient contents in leaves and needles change during the seasons. To judge the
nutrient supply the foliage was sampled in a period that the nutrient concentration is
rather stable. At locations with the deciduous tree species oak and beech samples
were taken of the fully matured foliage at long shoots (leaf + stalk) in August 1990.
The sampled foliage of oak consisted of a mixture of spring shoots and Lammas
shoots. At locations with the needle shedding conifer Japanese larch, samples were
taken of the long shoots (no short shoots) in September 1990. At locations with the
evergreen conifers Scots pine, black pine, Douglas fir and Norway spruce samples
were taken of the half year old shoots during the period October 1990 till January
1991. The needles were removed after drying. No differentiation was made between
spring shoots and Lammas shoots, but the complete annual shoots were sampled.

Nutrient contents in leaves and needles also depend on light exposition and the age
of the leaf and needle. Therefore samples were taken from the upper and mid-third
of the crown exposed to sunlight. Each composite sample consisted of 10
sub-samples of 10 different trees, not damaged by insects, pests, drought or late
frost, neither polluted by birds and spread regularly in the forest stand. Results on the
nutrient contents are given in the second report of this series (Hendriks et al., 1994).

Phreatic ground-water

The phreatic ground water was sampled by the RIVM per 500 m x 500 m gridcell. In
each grid they took 10 samples every 50 meters along a transect in the biggest united
area of forest and other non-agricultural lands (heather). When the transect was
shorter than 450 meters, the remaining samples were taken along the middle of the
transect. Every sample point lied at least 20 meters from the edge of a forest stand.
In each of the 89 collective locations at least 3 ground water samples were taken in
the forest stand where the vitality was observed, to compare the phreatic ground-
water composition with the composition of the soil solution. Results on the chemical
ground-water composition at these sites are given in the third report of this series
(De Vries and Jansen, 1994).

2.5  Choice of chemical parameters and analysing methods

Parameter choice

The most important pool of nutrients in forest is the humus layer. Consequently, the
contents of all major nutrients, i.e. C, N, P, K, Ca, Mg and S were measured for this
layer. Contents of C, N and P were also measured for the mineral layer since the
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C/N ratio is likely to increase due to the high N input (eutrophication) whereas P is
an important nutrient whose availability might be limited due to acidification.

In order to gain insight in the buffer characteristics of the soil, the exchangeable
cation contents (H, Al, Fe, Ca, Mg, K, Na and NH,) and the CEC were measured
both in the humus layer and the mineral topsoil. In the mineral layer the pools of
readily dissolvable Al and Fe hydroxides were also measured, since it is likely that
most forest soils are in the range of Al buffering (cf. section 1.1). Finally the content
of important heavy metals, i.e. Pb, Cd, Zn, Cu, Cr and Ni were determined for the
humus layer. This is done since heavy metal pollution, which is known to occur in
forest soils (Kleijn et al., 1989), might also affect forest vitality.

In the soil solution, all the major cations and anions were measured, i.e. H, Al, Fe,
Ca, Mg, K, Na, NH,, NO,, SO,, Cl and RCOO.

Analysing methods

Total contents of C and N were determined by wet oxidation according to the
methods of Kurmies (Kurmies, 1949) and Kjehldahl (Hesse, 1971), respectively.
Total S contents were extracted in a concentrated mixture of nitric acid and
hydrochloric acid and analysed by atomic absorption spectrometry (AAS). Total
contents of P and of Ca, Mg, K, Zn, Cu, Cr and Ni in the humus layer were extracted
in a concentrated mixture of sulphuric acid and nitric acid and analysed by
inductively coupled plasma atomic emission spectrometry (ICP). Total contents of
Pb and Cd were determined by an extraction with concentrated (9%) hydrochloric
acid during three hours followed by ICP analyses of the extract.

Exchangeable contents of Al, Fe, Ca, Mg, K and Na were measured by extraction
with a 0.01 M solution of silver thiourea during four hours (Chabra et al., 1975)
followed by analyses with ICP (Al, Fe, Ca and Mg) and atomic absorption
spectrometry (AAS). Exchangeable NH, contents were measured by extraction with
1.0 M KCI (Coleman et al., 1959) followed by analyses with a coulometric technique
(flow injection analyser; FIA). The CEC was determined from the decrease in Ag
concentration before and after the extraction (Ag is measured by ICP) and the
exchangeable H content was calculated from the difference in CEC and
exchangeable cation content.

The readily dissolvable contents of Al and Fe were measured by extracting the
samples during four hours in the dark with an acid ammonium oxalate solution at
pH 3 followed by ICP analyses of the extract (Schwertmann, 1964). In this extract
the P content was also measured.

Dissolved concentrations of major ions were determined by centrifugation of a soil
sample of 400 gr at 7500 rpm during 20 minutes. The centrifuge tube was made of
polyoxymethylene (deldrin) and consisted of an upper soil-holding cup with a
perforated base (holding ca 250 ml of soil) and a lower solution holding cup, fitting
in a 500 ml hole rotor. Centrifugation generally took place within one day (18-30
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hours) after collection of the soil samples. Immediately after centrifugation the pH
was measured.

The soil solution samples were filtered over 0.45 um. Concentrations of Al, Fe, Ca,
Mg and SO, were analysed by ICP, K and Na by AAS and NH,, NO,, H,PO, and ClI
by FIA. The pH was measured by means of potentiometry. The concentration of
organic anions was calculated from the DOC content (Oliver et al., 1983) that was
measured by an organic carbon analyser.

2.6  Data processing

Basic statistical representation

Data about the chemical composition of the soil and soil solution were processed
with the statistical program Genstat 5, release 3 (Payne et. al., 1993). Simple statistics
on the variation of chemical data, i.e. measured element concentrations, element
ratios and pools of elements are thus provided for the humus layer, mineral soil and
soil solution. The variation is presented in tables by values for the minimum, 5, 50
and 95 percentiles and the maximum. Furthermore median values are presented for
the soil chemical data as a function of horizon and tree species for the humus layer
and as a function of soil type for the mineral topsoil. Median values for (a selection
of) soil solution chemistry data are presented as a function of the environmental
characteristics that are assumed to influence the soil solution composition (cf.
Section 2.2).

Calculation of element pools

Element pools in the humus layer were calculated by multiplying the measured
humus layer pool (cf. Section 2.3) with the element content in that layer. The pool of
organic material in the humus layer was calculated by multiplying the humus layer
pool with the organic matter content. This is indicated as the corrected pool of
humus, since mineral soil in humus layer sample is mainly due to inaccurate
sampling. Bulk densities of the humus layer were calculated by dividing the measured
humus layer pool with the measured thickness in the field. Again, a difference is
made between the bulk density of the whole humus layer and the organic material in
that layer (corrected value). Element contents in the humus layer are given in percent
of the organic matter content

Element pools in the mineral topsoil were calculated by multiplying an estimated
bulk density of the soil with the soil thickness (always 30 cm) and the element
content in the soil. Unlike the humus layer, the bulk density could not be estimated
from the amount of soil sampled since the volume of soil was unknown. Bulk
densities were therefore derived by a pedotransfer function with the organic matter
content according to (Hoekstra and Poelman, 1982):

r =1000/(a +b:Org Mat(%)) (2)
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Values used for a and b are 0.601 and 0.030 for poorly drained soils (GT £ V) and
0.646 and 0.025 for well-drained soils (GT 3 VI, cf. Hoekstra and Poelman, 1982).
The influence of the clay content on the bulk density was considered negligible in
these sandy soils.

Assessment of element ratios and their interpretation

Element ratios in the humus layer and mineral soil are mainly limited to ratios of
major nutrients, ie. N, P and S, to carbon. C/N, C/P and N/P ratios give
indications about the eutrophication status of the soil. In the mineral soil, the ratio of
oxalate extractable P to Al and Fe is also given. This is an important parameter with
respect to the degree of phosphate saturation of the soil (Schoumans, 1997).

Element ratios in the soil solution include the:

- NH, and NO, to SO, ratio indicating the contribution of both compounds to soil
acidification,

- Al to SO, and NO, ratio, indicating the degree of Al mobilisation by acidic inputs,

- NH,/NQ; ratio, indicating the degree of nitrification,

- AI/RCOO ratio, indicating the Al speciation over non-toxic organic species and
toxic free Al and

- Ratios of Al or NH, to the nutrients Ca, Mg or K, which are supposed to affect
root length and root uptake.

Assessment of relationships between element concentrations in the soil
solution and soil solid phase

Relationships between element concentrations in the soil solution and the soil solid
phase in the various soil layers (humus layer, mineral topsoil and mineral subsoil)
were investigated by simple correlation coefficients between the various compounds.
More specifically, the relationship between: (i) dissolved concentrations of acid
cations (H+Al) and acid anions (SO ,+ NO,) and (ii) dissolved NO, concentration in
the mineral topsoil and subsoil in comparison to the C/N ratio of the humus layer.

According to Dise et al. (1998) and Gundersen et al. (1998) the forest floor C/N
ratios may be used to assess risk for nitrate leaching. Gundersen et al. (1998)
suggested threshold values of >30, 25 to 30, and <25 to separate low, moderate, and
high nitrate leaching risk, respectively. This suggestion was based results obtained at
35 forest sites in Northwest and Central Europe. When deposition is accounted for,
full N retention was found at C/N above 30 and almost no retention below C/N
ratio 20. Input-output budgets from European forests presented Gundersen et al.
(1998) also showed that above a threshold of approximately 10 kgN.ha™yr! in
throughfall, sites start to have elevated nitrate-leaching rates, generally above 5
kgN.ha™.yr*. This information has been used in several model, such as SMART (De
Vries et al, 1994a) and MAGIC (Cosby et al., 2001) to calculate nitrogen
immobilisation as a fraction of the net N input, linearly depending on the C/N ratio.
The validity of this approach was investigated by evaluating the measured NO,
concentration data in view of measured C/N ratios and model calculated N
deposition rates.
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Assessment of aluminium dissolution parameters

In most soil acidification models, it is assumed that Al concentrations in the soil
solution at the bottom of the root zone are in equilibrium with Gibbsite, thus leading
to the following relationship between aluminium and protons:

(A|3+): K gioo "(H+)z (3)

Where (H),;, and [Al]; are the H and Al activities (mol.I") and K, is the gibbsite
equilibrium constant. Here, Al stands for the activity of free (uncomplexed)
aluminium. This assumption is even the basis for the calculation of critical acid loads,
using the so-called Simple Mass Balance (SMB) model (e.g. De Vries, 1993).
Assuming a critical Al concentration, based on e.g. a critical Al/base cation ratio, the
related critical H concentration is calculated with the Gibbsite equilibrium, according
to:

,.0.33
+ A|3+ cri 9
[H ]crit :y_ (4)
Kgibb 4]

where [H].,; and [Al],; are the critical H and Al concentrations (mol.I"*). The SMB
model calculates H concentrations as a function of free (uncomplexed) Al
concentrations instead of Al activities.

Data from a number of sites indicate that soil solutions at the bottom of the root
zone are close to equilibrium with a gibbsite like phase (Johnson et. al., 1981;
Dahlgren et al., 1989; Matzner and Prenzel, 1992). However, undersaturation with
respect to gibbsite has been reported for a large number of sites, in particular in
organic rich soils, at shallow depth or during episodes of high flow (Seip et. al., 1989;
Matzner, 1992; Mulder and Stein, 1994). Moreover, experiments show that Al
concentrations in the soil solution are strongly influenced by reactions with organic
pools and by the kinetically constrained dissolution of Al hydroxides and silicates
(Dahlgren and Walker, 1993; Berggren and Mulder, 1995; De Vries, 1994; Van der
Salm and De Vries, 2001).

To incorporate this knowledge into soil acidification models, such as the SMB and
SMART model, empirical based equilibrium relations between Al and H activities are
an alternative for the gibbsite equilibrium, according to:

(Ar) =Ky oH") (5)

Where K, is the Al dissolution release constant and x is a dimensionless power
constant, describing the reaction stoichiometry. For x=3, Eq. (3) is equal to Eqg. (5).
Empirical relations between Al and H activities, measured in the topsoil (0-30cm
depth) and the subsoil (60-100cm depth) of the 150 forested sandy were based on a
regression relationship between pAl (-log(Al) and pH assuming the relationship given
in Eg. (5).
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Actually, the measurements include only total Al concentrations (both free Al and Al
complexed with dissolved organic carbon (DOC) and other complexes. AI** activities
were thus calculated from the total concentration of Al and dissolved organic carbon
(DOC) using the speciation program MINEQL+ (Schecher and McAvoy, 1994),
combined with a triprotic organic acid model, in which complexation of Al by DOC
is taken into account (Santore et al, 1995). In the latter model, the total
concentration of organic acids is first calculated as a function of DOC according to:

A; =M, :DOC (6)

where A; is the total concentration of organic functional groups (mol.I"), M, is the
site density of organic solutes (mol.mol®) and DOC is the DOC concentration
(mol.I"). Santore et al. (1995) reported values for M, between 0.014 for topsoil
samples and 0.044 mol.mol™, for a B-horizon in the Hubbard Brook experimental
forest in New Hampshire. In this study we used a value of 5.5 mol..kg™, or 0.066
mol.mol™, based on De Vries and Bakker (1998).

In the triprotic organic acid model, the various organic functional groups are
represented as a triprotic organic acid. Al in solution can thus be complexed to AY,
HA?* and HA'". The relevant reactions that were incorporated in the speciation model
MINEQL+, including the associated equilibrium constants that were used to
calculate complexation of Al with DOC, are given below, following (Santore et. al.,
1995).

A* +H* >  HA? logk = 6.48
A* + 2H" > HA logK = 11.69
A* +3H" >  HA logk = 13.71
AP+ A* > AlA logK = 7.89
AP+ A¥+ H* > AIHA" logK = 12.86

A test for soil solutions from a number of column experiments on Dutch sandy soils
showed that the calculated concentrations of organically complexed Al were
comparable (< 10%) to measured concentrations (Van der Salm, 1999). The relations
between pAl (-log(Al)) and pH of the soil solution were calculated for both activities
and concentrations, since the SMB model calculates H concentrations as a function
of Al concentrations instead of Al activities.

For the topsoil, an alternative description of Al release was also tested, since Al
activities, in particular in the topsoil, can be influenced by complexation of Al to
organic matter (Cronan et al., 1986; Mulder and Stein, 1994). The binding of Al to
organic sites can be described by the following equation (Mulder and Stein, 1994,
Van der Salm and De Vries, 2001):

3+) — RAlsx) +\X
(ar) =k (RH) XH") (7)
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where K is the equilibrium Al release constant and (RAF*) and (RH,) the occupation
of the complexation sites by Al and H. The occupation of the complexation sites
with Al can be estimated from extractions with Na-pyrophosphate, and RH, can be
estimated from the organic matter content (Wesselink et al., 1996). Equation (7) can
then be rewritten to calculate K according to:

(AP crAl, = KxH"Y (8)

where C is the organic matter content and Al, is the pyrophosphate extractable Al
content of the samples. Unfortunately, data on Na-pyrophosphate extractable Al
where not available for the examined sites. In A horizons the amount of inorganic Al
is, however, often negligible and accordingly the amount of pyrophosphate
extractable Al is comparable to the amount of Al that can be extracted by NH,-
oxalate. Data for oxalate extractable Al were available for the topsoil samples (0-30
cm) and were thus used to estimate the occupation of organic sites with Al. The
values of K and x were derived for relations between p(Al. C/Al ) and pH of the
soil solution, using both activities and concentrations of uncomplexed aluminium.

Assessment of cation exchange constants

Cation exchange is an important process in buffering soil acidification. In several soil
acidification models, such as RESAM (De Vries et al., 1995a) and NUCSAM
(Groenenberg et al., 1995), cation exchange is described by Gaines-Thomas
equations with Ca as reference ion according to:

2

2
frX ©_ =KX, [X]Z (9)
rCa, " [CaT"

where frX,. (-) is the fraction of cation X on the adsorption complex, [X] is the
concentration of ion X in solution (mol.I™"), z, (-) is the valence of cation X, and KX,
is the Gaines-Thomas selectivity constant for exchange of cation X against Ca
((mol.I™)*x?) . In these models X stands for H, Al, Fe, Mg, K, Na or NH, and frX_, is
calculated by:

fix, = (10)
CEC

where CEC is the cation exchange capacity (mmol.kg") and X, is the exchangeable
content of cation X (mmol.kg™). The sum of all fractions is equal to 1.

Since data for both the adsorbed and dissolved concentrations of H, Al, Fe, Mg, K,
Na or NH, are available for the 150 forest stands, the various exchange constants,
KX, with X = H, Al, Fe, Mg, K, Na or NH,, were calculated for use in the models
RESAM and NUCSAM. In this approach, use was made of the measured actual
(unbuffered) CEC. This implies that the cation exchange constants are only
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applicable in the limited pH range of the acid sandy soils considered (mainly between
pH 3 and 4.5).

The CEC is dependent on the clay and organic matter content and increases also
with an increase in pH. This is mainly due to release of protons from carboxyl
groups of organic matter. These protons are irreversibly adsorbed at lower pH but
can be released at higher pH and exchanged by e.g. Ca. To allow the calculation of
the pH up to higher values, e.g. in response to liming or to extremely reduced
atmospheric deposition inputs, it is important to use the exchangeable cation
contents related to a buffered CEC. Examples are a CEC buffered at pH 6.5 (NH,
acetate buffered CEC) or 8.2 (Barium chloride triethanol amine buffered CEC). In
this situation the exchangeable proton fraction increases, whereas the exchangeable
fraction of all other cations decreases. This type of description is used in the model
SMART (De Vries et al., 1989b, 1994a). Since a pH of 6.5 is a reasonable upper value
for non-calcareous soils, we used this CEC and the exchange constants related to
those exchangeable fractions in the model.

The buffered CEC at pH 6.5 was not measured at the 150 forest stands. One way to
estimate this value is to derive the CEC as a function of the clay and organic carbon
content, accounting for the impact of pH according to (Helling et al., 1964):

CEC=(3.0+0.44:pH - KCI):%clay + (- 5.9+5.1:pH - KCI):%O0C (12)

where OC stands for organic carbon. This relationship can also be used to derive
CEC values at a buffered pH, implying that the CEC only depends on the clay and
organic carbon content. Breeuwsma et al. (1986), for example, found a relationship
between the CEC buffered at pH 6.5 (NH, acetate buffered CEC) and the clay and
organic matter content, with a regression coefficient of 5.0 for clay and 30 for
organic carbon, being in reasonable to good agreement with Eq. (11). The adequacy
of Eq. (10) was assessed by comparing the CEC values thus estimated with those
measured at the actual pH-KCI (measured unbuffered value). To allow for
discrepancies between the measured and estimated values at the actual pH-KCI, we
updated the calculated CEC at pH 6.5 according to:

/CEC

CECupdatec(pHGS - CECcaIcuIated (pH6.5) (CEC (12)

measured( pHactual) calculated( pHactual ) )

In the SMART model, the divalent base cations Ca and Mg are lumped as BC**, the
monovalent cations K and Na are lumped as BC* and NH, is neglected. We thus
calculated the exchange constants for H*, AI** and BC* against BC** according to
Eq. (8) with BC** (Ca+Mg) replacing Ca both at the adsorption complex and in
solution. At present the interaction between monovalent and divalent base cations at
the exchange complex is neglected in SMART, implying that the exchange constant
for BC* against BC**is taken equal to zero.

On a European scale, data are mostly only available for the CEC and the base

saturation, being the sum of the base cations Ca, Mg, K and Na. To allow model
calculations for this situation we also calculated the exchange constants KAl,, and
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KH.,, by replacing frCa,, in Eq. (8) by frBC,, with BC is Ca+Mg+K+Na, and
replacing [Ca**] by [BC**], with BC*is Ca**+Mg**. This is of course not allowing to
the rules of cation exchange but is based on the implicit assumption that monovalent
base cations hardly interact with the exchange complex.

Assessment of phosphate adsorption parameters

The reaction of inorganic P in soil is characterised by a fast reversible process and a
slow, almost irreversible, process. The fast reaction is generally attributed to P
adsorption on surface sites (Van der Zee, 1988), whereas the slow reaction is mostly
viewed as a diffusion controlled precipitation reaction (Barrow, 1983; Van Riemsdijk
et al., 1984). In forest soils with low dissolved P concentration, the concentration of
inorganic P (mainly H,PO,) is mainly controlled by equilibrium adsorption. For non
calcareous sandy soils, Van der Zee (1988) showed that the fast reversible reaction
with inorganic P can be described adequately by a Langmuir equation, according to:

kPad ‘ Pad max [P]
Py = ‘ (13)
1+kP,, 4P]

where P4 is the reversibly sorbed amount of P (mmol.kg"), P, is the maximum
amount of reversibly sorbed P (mmol.kg?), [P] is the dissolved inorganic P (H,PO,)
concentration (mol.m®) and kP, is the equilibrium constant for adsorption of
inorganic P (m’.mol™). Eq. (12) can be rewritten to

[Pl=1/KP, x— 8 (14)

( ad,max Pad)

The oxalate extractable amount of P, R, is a measure for the total amount of
phosphate sorbed by both reversible adsorption and slow diffusion controlled
precipitation. The phosphate sorption capacity (PSC), related to both processes,
appears to be related to the amount of oxalate extractable Al and Fe in the soil (Van
der Zee, 1988; Schoumans and Groenendijk, 2000). In situations with large
manure/fertiliser applications and high P concentrations (up to 3 mol.m®), the PSC
has been estimated as (Schoumans and Groenendijk, 2000):

PSC=0.5:(Al_ +Fe_,) (15)

0

where PSC is the phosphate sorption capacity (mmol.kg™) and Al,, and Fe,, stand for
oxalate extractable Al and Fe, respectively (mmol.kg?).

The amount of reversibly sorbed phosphate, P,, is generally determined by the iron
oxide-impregnated paper method with desorption times up to 48 h (Menon et al.,
1989). The maximum amount of reversibly sorbed phosphate, P, ..., appears to be a
constant fraction of the PSC, according to (Van der Zee, 1988; Schoumans and
Groenendijk, 2000):

34 Alterra-rapport 424.1



P

wamax —1/3:PSC (16)
Assuming that this ratio holds at all P levels, the amount of reversibly sorbed P can
be approximated as;

Pad = 1/3‘ Pox (17)

Combining Eqg. (14), (16) and (17) leads to:

[P]=1/kP,, AT ox (18)

For each site, an estimate of the KP,, was made by calculating the ratio of the
measured inorganic P (H,PO,) concentration and the degree of P saturation,
expressed by the ratio P,,/(PSC-P,,), where PSC was derived from the Al,, +Fe,,
content according to Eq (15). An estimate of the average KP,, for sandy soils was
made by a regression of the measured inorganic P concentration against the ratio
P,/ (PSC-P,). We also investigated whether the explained variation decreased when
we used the degree of P saturation expressed as P, /PSC. When this is not the case,
it implies that equilibrium phosphate adsorption can equally well be described as:

[P]=1/kP, % (19)

ad, max

In its inverse form, Eq (19), looks like a linear adsorption equation. We also
investigated, whether two different Langmuir types of adsorption could more
adequately describe P adsorption, according to:

POX
—(PSC o) P {PI" (20)
I:)OX —_
BSC =kP, {P]" (21)
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3 Characteristics of the forest stands

In this chapter an overview of the various locations with their deposition level,
surrounding land use, stand and site characteristics are given. From the 150 selected
locations 147 were actually sampled. One location (oak) appeared not accessible.
Consequently, another oak stand with similar deposition level and tree height was
sampled instead. Furthermore, at two locations the expected tree species were not
found. Therefore, the distribution over tree species became slightly different i.e.
Scots pine 44, Black pine 15, Douglas fir 16, Norway spruce 15, Japanese larch 15,
Oak 30 and Beech 15 (cf. Table 1).

3.1  Location and deposition level

Non-calcareous sandy soils represent 34% of the Dutch soils. However roughly 84%
of the Dutch forest is situated on these non-calcareous sandy soils (De Vries, 1989).
The distribution of the 150 locations, over the total area of forest located on non-
calcareous sandy soils in the Netherlands, is shown in Figure 1. The greatest united
forest complexes are situated in the province Gelderland (central part of the
Netherlands) in an area called the Veluwe. Relatively few locations lie in this area,
caused by using in the first place the RIVM selection, which excluded this area
(section 2.1). Figure 1 also shows the distribution of the locations, which are
common with the sampling of the phreatic ground water (RIVM). Furthermore, 12
of the 85 common locations are indicated where regular monitoring takes place. At
these monitoring locations soil solution (SC), ground water (RIVM) and foliage
(IBN) is sampled since 1992.

The distribution of the 150 locations over tree species and acid deposition levels is
given in Figure 2, Table 3 and 4. Acid deposition stands for the atmospheric
deposition of NO,, NH, and SO, minus the sea-salt corrected bulk deposition of the
base cations. As with the actual distribution of tree species on a national scale (cf.
data in brackets in Table 3), locations with Scots pine and black pine occurred mainly
in the central (Gelderland) and the Southern part of the Netherlands (Brabant; cf.
Table 3) in areas with high acid deposition levels (Fig. 2 and Table 4). Unlike the
national distribution, locations with Douglas fir occurred mainly in the Southern
(Brabant) and Northern part of the Netherlands (Drenthe; cf. Table 3), with slightly
lower acid deposition levels compared to the pine species (Fig. 2 and Table 4).
Locations with Norway spruce and Japanese larch occurred more often in the
provinces Drenthe and Brabant and less often in the central area compared to the
national distribution (Table 3). Especially for Norway spruce this corresponds to
lower acid deposition levels (Fig. 2 and Table 4). The occurrence of locations with
oak is slightly more southerly compared to the national distribution (Table 3).
Consequently the acid deposition levels were high (Fig. 2 and Table 4). The
distribution of beech corresponds largely to the national distribution and the acid
deposition levels were more or less the same as those on Douglas fir.
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Figure 1 Distribution of the 150 locations over the forest areas on non-calcareous sandy soils
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Figure 2 Distribution of tree species over acid deposition levels
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Figure 2 Distribution of tree species over acid deposition levels (continued)

40

Alterra-rapport 424.1



Table 3 Distribution of the tree species of the 150 locations over Province and area
Province Distribution (%)

Scots Black Douglas Norway  Japanese Oak Beech

pine pine fir spruce larch
Groningen o o o0 ©® o ©O o @®» o O T @ o O
Friesland 70 4 @ 6 @2 7 (B 7 & 20 M 1T @
Flevoland 0 () 6 () 0 () 0 () 7 () 3 () 0 ()
Drenthe 9 () 7 (1 19 (1) 52 (26) 44 (27) 13 (11) 20 (7)
Overijssel 20 (11) 6 (3 13 (12 7 (1) 14 (14 10 (¥ T O
Gelderland 25 (38) 14 (120 6 (44 7 (200 14 (31) 10 (23) 26 (49
Utrecht 9 (6 0 () 13 (W0 7 (B 0 T 3 (6 26 (12
Brabant 25 (28) 47 (56) 37 (18) 20 (15 14 (11) 27 (14 14 (®)
Limburg 5 (11) 6 (12 6 (2 o0 ® 0 (3 7 (1 o @
Area™)
North 6 (6) 27 (2 25 (13) 59 (32) 58 (32) 43 (200 27 (9
Central 54 (55) 20 (21) 32 (66) 21 (41) 28 (52) 23 (43) 59 (68)
South 30 (399 53 (68 43 (20) 20 (23) 14 (14) 34 (24) 14 (10

*) Between brackets the percentage of the total forest area in the Netherlands (CBS, 1985) is given.
™) The areas North, Central and South contain respectively the first four, the second three and the
last two provinces given above

Table 4 Distribution of the tree species of the 150 locations over acid deposition levels
Acid deposition Distribution (%)

(molc.halyr1) Scots Black Douglas Norway Japanese  Oak Beech Total
pine pine fir spruce larch

< 3000 2 0 0 0 0 7 0 2

3000-4000 9 7 19 33 36 10 13 16

4000-5000 23 50 31 33 21 31 33 30

5000-6000 50 29 38 27 36 24 33 36

> 6000 16 14 13 7 7 28 20 16

More than 80% of the forest stands were located in areas with acid deposition levels
above 4000 mol.ha™.yr". Only 16% of them had very high deposition levels, above
6000 mol.ha™.yr'. These were mainly stands of oak and beech and seldom Norway
spruce or Japanese larch (Table 4). Deposition levels of less than 3000 mol.ha™.yr*
were exceptional. Only two oak and one Scots pine stand were situated in such areas,
respectively on the isle Terschelling and at the borders of the provinces Groningen
and Friesland (Fig. 2).

3.2 Position of the forest stands

The land use in the surroundings of a forest, influences the atmospheric input. The
degree to which this occurs is determined by the distance of the forest stand to the
nearest forest edge, the land use at the nearest edge and the position of the nearest
edge with respect to the site (section 2.2). These influences are supposed to interact.
For example, the influence of maize fields on the atmospheric (N) deposition near a
forest stand situated at the South, South-West area of the stand, is expected to be
greater than the influence of e.g. non-agricultural land in the same position or
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grassland at great distance from the forest stand or whatever land use situated in the
Northern area of the forest stand.

Most forest stands were situated more than 100 meters from the forest edge. This
was especially true for black pine, Douglas fir and Scots pine (Table 5). The
coniferous species appeared to be mainly located in larger forest complexes, while
the deciduous species (including Japanese larch) were mainly located near the forest
edge especially oak.

Table 5 Distribution of the tree species of the 150 locations over distance to the nearest forest edge
Distance to the Distribution (%)
nearest  forest  Scots Black Douglas Norway Japanese  Oak Beech Total

edge (m) pine pine fir spruce larch

<20 5 8 6 7 0 33 0 10
20-40 12 8 13 14 7 26 14 14
40-60 17 8 0 14 36 7 29 15
60-80 10 0 6 0 14 11 0 7
80-100 0 0 13 21 14 7 21 9
> 100 57 77 63 43 29 15 36 45

Corresponding to the relative great number of stands in larger forest complexes,
black pine and to a lesser extent Douglas fir and Scots pine had more stands with
non-agricultural land use in the neighbourhood (Table 6). Grassland was the most
occurring land use type in the surroundings, especially near stands of oak, Japanese
larch and Norway spruce. The occurrence of maize fields was little and for some tree
species even negligible.

Table 6 Distribution of the tree species of the 150 locations over surrounding land use
Surrounding Distribution (%)

land use Scots Black Douglas Norway Japanese  Oak Beech Total
pine pine fir spruce larch

Maize field 8 0 0 14 0 11 7 7

Grassland 28 20 33 43 46 50 33 36

Arable land 35 20 33 21 3l 32 33 31

Non-agricultural 31 60 33 21 23 8 27 26

The directions of the forest edges were distributed more or less equally over the 150
locations. Stands of oak, black pine and Norway spruce had relatively more forest
edges situated to the Northern areas, while stands of Japanese larch were mainly
situated to the Southern areas (Table 7).

3.3 Stand characteristics

Stand characteristics such as canopy coverage, tree height and of course tree species
influence the atmospheric input and throughfall water and therefore the chemical
composition of the soil and soil solution (section 2.1).
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Table 7 Distribution of the tree species of the 150 locations over the direction of forest edges
Direction of Distribution (%)

forest edge Scots Black Douglas Norway Japanese  Oak Beech Total
pine pine fir spruce larch
N 5 9 13 0 0 40 7 5
NE 20 18 20 29 29 7 7 18
E 8 18 13 21 7 19 13 13
SE 8 9 13 21 7 11 7 10
S 18 0 7 14 14 22 20 15
SwW 13 9 7 14 29 7 7 12
W 10 0 27 0 14 15 7 11
NW 20 36 0 0 0 15 33 15

The coverage of the canopy amounted in most locations between 50% and 75%
(Table 8). The canopy coverage is related to tree species. As expected, Table 8 shows
that beech, Douglas fir, Norway spruce and less obvious also oak, had mainly high
coverage’s whereas low coverage’s mainly occurred in stands of Scots pine.

Table 8 Distribution of the tree species of the 150 locations over canopy coverage

Canopy Distribution (%)

coverage (%) Scots Black  Douglas Norway Japanese  Oak Beech Total
pine pine fir spruce larch

<50 51 23 6 13 8 7 14 23

50-75 40 69 44 47 85 62 29 51

> 75 9 8 50 40 8 31 57 26

Tree height is mainly a result of tree species and age and also of site conditions, such
as soil type and ground water level. Consequently the distribution over tree height is
more or less equal to the distribution over age, especially for the pine and deciduous
species. Most locations had a tree height between 10 m and 15 m or higher (Table 9).
Heights less than 5 m occurred only twice in two relatively young (15 - 20 years)
stands of oak and beech. Most evident differences between tree species were that
beech, Japanese larch and Douglas fir had mostly high trees, while black pine had
obvious mainly low trees. Since beech and Douglas fir also had high canopy
coverage’s, great impacts of atmospheric deposition on soil solution chemistry may
be expected for these tree species.

Table 9 Distribution of the tree species of the 150 locations over tree height
Tree height (m) Distribution (%)
Scots Black Douglas Norway Japanese  Oak Beech Total

pine pine fir spruce larch
<5 0 0 0 0 0 3 7 1
5-10 11 57 6 13 7 21 7 16
10-15 32 36 25 53 7 45 13 32
15-20 48 7 25 20 29 17 13 27
> 20 9 0 44 13 57 14 60 23
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3.4  Site characteristics
3.4.1 Clustering of soil types and ground-water tables

Site characteristics, such as soil type and ground water level, determine the influence
of atmospheric deposition by their base saturation and processes, such as weathering
or nitrogen transformations (Section 2.1). According to the classification system of
De Bakker and Schelling (1989) for Dutch soils, 19 different soil types have been
distinguished. These soil types were clustered into six groups, based on their
expected vulnerability for acidification (De Vries et al., 1989a). In order of decreasing
vulnerability these groups are given in Table 10.

Table 10 Six distinguished soil groups named according to three different classifications
Group Classification system

(FAO, 1988) (USDA, 1975) (De Bakker and Schelling, 1989)
1 Haplic Arenosols? Typic Udipsamments Duin- en Vlakvaaggronden
2 Gleyic Podzols? Typic Haplohumods Veld- en Haarpodzolen
3 Cambic Podzols Entric Haplorthods Holtpodzol- en Vorstvaaggronden
4 Fimic Athrosols Plaggepts Enkeerd- en Loopodzolgronden
5 Umbric Gleysolsd Haplumbrepts Beekeerden en moerige gronden
6 Dystric Gleysols Typic Haploquod Oude Kleigronden

1 including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

Results on ground-water levels were clustered into five groups (cf. Table 11). The
first group with very poorly drained ground-water levels, contained the classes Il and
I11. The mean highest ground-water level in the winter period for this group lied
between 5 cm and 45 cm and the mean lowest in the summer period between 65 cm
and 100 cm below surface. In these soils the ground-water level stays all seasons
within the root-area. The second group with poorly drained ground-water levels,
contained only class V. The mean highest ground-water level lied between 0 cm and
40 cm and the mean lowest fluctuated from 125 cm to 200 cm below surface and
deeper. These soils were wet in the spring and dry in the summer. The third group
with moderately drained ground-water levels, contained the classes IV and VI. The
mean highest ground-water level lied between 45 cm and 70 cm and the mean lowest
fluctuated from 115 cm to 250 cm below surface and deeper. The fourth and fifth
group with respectively well and very well drained ground-water levels, contained the
classes VII and VIII. The difference between these classes were the mean highest
ground-water levels, for class VII this lied between 85 cm and 140 cm and for class
V111 even deeper than 140 cm below surface.

The distribution of soil types over ground-water level classes (Table 11) shows that
the Cambic Podzols and Fimic Anthrosols are mostly well drained, whereas the
Umbric and Dystric Gleysols are mostly poorly drained. The drainage status of
Haplic Arenosols and Gleyic Podzols varies greatly, but drainage is generally quite
well. More information of the various soil groups is given below.
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Table 11 Distribution (%) of the soil types of the 150 locations over the ground-water level classes

Soil type Ground-water level class
H+111 \Y IV+VI VIl VIl Total¥

Haplic Arenosol? 11 - 14 11 64 100 (28)
Gleyic Podzols? 3 11 25 28 33 100 (75)
Cambic Podzols - - 6 6 88 100 (17)
Fimic Anthrosol - - 27 18 55 100 (11)
Umbric Gleysol® 28 16 42 14 100 (14)
Dystric Gleysol - 80 20 - - 100 (5)

b including Gleyic Arenosols

2 including Carbic Podzols

3 including organic rich soils

4 number of locations between brackets

Haplic and Gleyic Arenosols

Arenosols are characterised by the absence of soil formation, also have only A and
C-horizons. However at several locations symptoms of soil formation (E and B-
horizons) were found, actually at three locations within 60 cm and at six location
within 100 cm below surface. The humus layer had an average thickness of 7.8 cm.
The average measured percentage organic matter of the topsoil (0 - 30 cm below
surface) was 1.6 (Table 5.1.2). Further consisted this layer mainly of slightly loamy
(5% - 12%) very fine sand (140 - 170 um), except at a few locations were extremely
loamy (30% - 40%) sand was found. Due to the locations were B horizons were
found, the estimated percentage organic matter in the subsoil (30 - 60 cm and 60 -
100 cm below surface) lay between 0.1 and 6.0. Otherwise the differences between
horizons were small, the percentage loam and the coarseness of the sand remained
more or less the same through the profile. These soils occurred mainly in
combination with the ground-water level classes VII (well drained ) and VIII (very
well drained; Table 11).

Gleyic and Carbic Podzols

Gleyic and Carbic Podzols are characterised by obvious soil formation, i.e. the
occurrence of a B and/or E horizons. Three fourth of this group were Gleyic
Podzols, with an organic rich mineral layer (A horizon) followed by an illuvial B
horizon in which the illuviated parts consists of amorphous humus and sesquioxides.
Sometimes there was a small horizon with bleached sand grains above the B-horizon.
These soils are known to have little iron, sesquioxides and base cations have leached
from the topsoil. Only with Gleyic Podzols situated high in regard to the ground-
water level, iron and aluminium is accumulated in the lower parts of the B horizon
(De Bakker and Schelling, 1989). The humus layer had an average thickness of
8.6 cm. In the first 30 cm below surface A, E and B horizons were found, the
average measured percentage organic matter was 4.7 (Table 5.1.2). Between 30 cm
and 60 cm only B-horizons, and between 60 cm and 100 cm below surface mainly
BC horizons were found. These layers had an average estimated percentage organic
matter of respectively 2.7 and 1.0. Further consisted these soils of slightly loamy
(8% - 16%), moderately fine sand (150 - 200 pm). The Gleyic Podzols mainly
occurred in combination with ground-water level classes V (14%), VI (30%), VII
(32%) and VIII (18%). One fourth of this group were Carbic Podzols. In contrast to
the Gleyic Podzols they have always an E horizon. These soils developed in drier
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environments than the Gleyic Podzols. Therefore the A and E horizons do have low
contents of aluminium, iron and to a lesser extent base cations, these elements are
illuviated in the lower parts of the B and in the BC horizons. The humus layer had an
average thickness of 7.0 cm. In the first 30 cm below surface A and E horizons were
found, the average measured percentage organic matter was a little less than with the
Gleyic Podzols, i.e. 4.4 (Table 5.1.2). Between 30 cm and 60 cm only B-horizons and
between 60 cm and 100 cm below surface B but mostly C horizons were found.
Consequently the average estimated percentage organic matter were respectively
slightly higher (2.9) and lower (0.7) than those of the Gleyic Podzols. The Carbic
podzols occurred only in combination with the ground-water level classes V11 (20%)
and VIII (80%).

Cambic Podzols

Like Gleyic and Carbic Podzols, the Cambic Podzols are characterised by the
presence of soil formation although this is less obvious, they are weak podzols. In
contrast to the Gleyic and Carbic Podzols, the Cambic Podzols have no illuviation of
amorphous humus in the B-horizon. However less than with Gleyic and Carbic
Podzols they do have illuviation of iron and aluminium. The humus layer had an
average thickness of 8.3 cm. In the first 30 cm below surface A and B horizons were
found, the average measured percentage organic matter in the topsoil was 3.2 (Table
5.1.2). Between 30 and 60 cm B and C horizons and between 60 cm and 100 cm
below surface mainly C horizons were found. These layers had an average estimated
percentage organic matter of respectively 1.2 and 0.5. Further consisted these soils of
slightly loamy to very loamy (10% - 20%), moderately fine to moderately coarse sand
(180 - 260 pm). The Cambic Podzols occurred almost only in combination with
ground water level class VIII (very well drained; Table 11).

Fimic Anthrosols

These soils arose from anthropogenic influence. Many years of manuring caused a
non-reworked A horizons thicker than 50 c¢m, rich in organic matter. Under the A
horizon, B horizons do sometimes occur. The humus layer had an average thickness
of 8.3 cm. In the first 30 cm below surface, only A horizons were found. The average
measured percentage organic matter was 3.8 (Table 5.1.2). Between 30 cm and 60 cm
also mainly A horizons and between 60 cm and 100 cm below surface A, B and C
horizons were found. These layers had an average estimated percentage organic
matter of respectively 5.0 and 3.5. Further consisted these soils of mainly loam poor
or slightly loamy (8% - 12%) moderately fine to moderately coarse sand (160 -
280 pm). These soils occurred mainly in combination with the ground-water level
classes moderately (1), well (VII) and very well (VI11) drained (Table 11).

Umbric Gleysols

This group is characterised by the presence of organic rich layers or peat layers
within the first 80 cm below surface. Circa two third of the locations in this group
were ‘eerdgronden’ with organic rich topsoils. In the first 30 cm below surface only
A horizons were found, the average measured percentage organic matter was 4.0.
Between 30 ¢cm and 60 cm also A horizons, and sometimes weak B-horizons, and
between 60 cm and 100 cm below surface only C-horizons were found. These layers
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had an average estimated percentage organic matter of respectively 1.5 and 0.1.
Further consisted these soils of slightly loamy (10% - 15%) moderately coarse sand
(155 - 180 um). Circa a third of the locations in this group consisted of peat soils. In
the first 30 cm below surface of these soils also only A horizons were found, but the
average measured percentage organic matter was much higher i.e. 24. Between 30 cm
and 60 cm mainly B and C-horizons and between 60 cm and 100 cm below surface
several B and mainly C-horizons were found. These layers had an average estimated
percentage organic matter of respectively 16 and 1.0. Further consisted these soils of
mainly very loamy (9% - 22%) moderately coarse sand (100 - 160 um). The humus
layers for this group had an average thickness of 11 cm. These soils occurred in
combination of the ground-water level classes poorly drained (V) and moderately
(IV+VI) drained (Table 11).

Dystric gleysols

This group consisted of residual soils, not meant to be sampled in the first place
because they are not non-calcareous sandy but old clay soils. The sampling of these
locations is a result of the impurity of the soil map. They occurred on places where
according to the soil map scale 1:50 000 sandy soils were expected. This is also a
reason why we didn’t exclude them. When using GIS information like a soil map,
these soils occur also within the non-calcareous sandy soils. The humus layers had an
average thickness of 7cm. In the first 30 cm below surface only A horizons were
found, the average measured percentage organic matter was 4.0 (Table 5.1.2).
Between 30 cm and 60 cm A and C horizons and between 60 cm and 100 cm below
surface C and a single B horizon were found, the estimated average percentages
organic matter were respectively 1.5 and 1.0. Further because the group consisted of
residual soils, the percentage loam had a great range from 25 to 70. The sand fraction
was moderately coarse (155 - 170 um). These soils occurred mainly in combination
with the ground-water level class poorly drained (V) (Table 11).

3.4.2 Distribution of forest stands over soil types and ground-water tables

In general the distribution of the soil types of the 150 locations corresponded to the
national distribution of forest soils. However Umbric Gleysols, Dystric Gleysols and
Gleyic Podzols were slightly over-distributed (Table 12; total distribution). The
relations between tree species and soil type are connected with the demands or
tolerance of the tree species. They where planted on the different soils as much as
Possible, according to their demands. Most tree species were found on Gleyic and
Carbic Podzols, especially Norway spruce and Japanese larch. Because they have little
demands towards nutrients and moisture, Scots pine and black pine were almost
solely found on Arenosols and Gleyic Podzols. Douglas fir and Norway spruce have
greater needs. Consequently, these trees were also found on mineral soils with a
larger content of clay and organic matter.
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Table 12 Distribution of the tree species of the 150 locations over soil type

Soil type Distribution (%)
Scots Black Douglas Norway Japanese Oak Beech Total
pine pine fir spruce larch
Haplic Arenosol? 30 50 13 0 7 10 0 18 (17)
Gleyic Podzol? 48 50 44 73 79 34 47 50 (43)
Cambic Podzol 20 0 19 0 7 7 13 12 (13)
Fimic Anthrosol 2 0 19 7 7 10 13 7 (8
Umbric Gleysol® 0 0 6 20 0 24 20 10 (7)
Dystric Gleysol 0 0 0 0 0 14 7 3 (1

9 including Gleyic Arenosols

2 including Carbic Podzols

3 including organic rich soils

4 Values in brackets are the percentage of the total forest area on the considered soils (De Vries et
al., 1989a)

The coniferous tree species mainly occurred on well-drained soils, even though they
sometimes occurred on moderately drained soils, whereas oak and beech were found
relatively often on poorly drained soils. Japanese larch occurred on well-drained soils
only (Table 13).

Table 13 Distribution of the tree species of the 150 locations over ground-water level class
Ground-water  Distribution (%)

level class Scots  Black Douglas Norway Japanese Oak  Beech  Total
pine pine fir spruce larch

H+111 2 0 6 7 0 14 13 6

\% 11 7 0 7 0 17 13 10

IV+VI 7 14 25 40 21 38 13 21

Vil 16 21 31 13 50 7 20 20

VIl 64 57 38 33 29 24 40 44
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4 Chemical composition of the humus layer

In this chapter we give an overview of the characteristics of the humus layer,
subdivided in contents and pools of (i) organic matter (also thickness and bulk
densities), (ii) nutrients, (iii) pH and exchangeable cations and (iv) heavy metals. First
the variation in the observed data is given and then the influence of humus layer
horizon and tree species is discussed. Furthermore, interpretations are given in view
of available literature.

4.1  Pools, thickness and bulk densities of organic matter

Overall variation

The variation in thickness, pools and bulk densities of the humus layer is quite large
(Table 14). As stated before, results are given for both the total pool, based on the
weights the sampled humus layer, including mineral parts, and for the organic
material in the humus layer. This, so-called, corrected pool of humus was calculated
by multiplying the humus layer pool with the organic matter content, since mineral
soil in humus layer sample is mainly due to inaccurate sampling. Bulk densities of the
humus layer were calculated by dividing the measured humus layer pool with the
measured thickness in the field. Again, a difference is made between the bulk density
of the whole humus layer and the organic material in that layer (corrected value).

Table 14 Minimum, maximum, 5, 50 and 95 percentiles of the thickness, pool and bulk density of the humus
layer

Statistics Thickness Pool (ton.ha?) Bulk density (kg.m-3)
(cm) uncorrected  corrected? uncorrected  corrected?d

minimum 2.0 20 9.2 62 39

5 percentile 3.6 36 21 80 50

50 percentile 8.3 95 66 124 77

95 percentile 13 185 113 242 107

maximum 16 298 156 490 134

) Corrected by multiplying the humus layer pool, including mineral soil parts, with the
organic matter content. Note that the correction increases with an increasing pool or
bulk density due to a lower organic matter content in those layers (more contamination
of mineral soil).

Pools of organic matter in the humus layer varied mostly between 20 - 110 ton.ha™
Comparison of the humus layer pools with literature data (e.g. Mc Fee and Stone,
1965; Youngberg, 1966 and Van den Burg and Schoenfeld, 1988) indicate that most
forest stands are in the phase of organic matter accumulation in the humus layer. In
most forest stands, humus accumulation stops when the humus layer pool
approaches a value of ca. 80 - 100 ton.ha™ (Van den Burg and Schoenfeld, 1988)
unless the conditions for de composition are extremely unfavourable (e.g. very wet
circumstances). More than 50% of the stands have pools in or above this range. The
maximum thickness of 16 cm, coinciding with an organic matter pool of 298 ton.ha™
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(see the uncorrected value in Table 14), compares very well with maximum values
reported by Mc Fee and Stone (1965).

The median bulk density of the humus layer (124 kg.m’®, see the uncorrected value in
Table 14) is slightly lower than data reported in the literature (e.g. Youngberg, 1966;
Van den Burg and Schoenfeld, 1988; Kleijn et al., 1989), which are generally about
140 - 150 kg.m?. This is most likely due to a relatively thick layer of loose fresh
leaves or needless in the L (litter) layer. This can also be derived from values given by
Emmer (1995), who reported an average (corrected) bulk density of 30, 80 and 170
kg.m™ for the L, F and H layer below Scots pine stands, respectively.

Comparison of an assumed maximum organic matter pool (corrected value) of ca 50
- 100 ton.ha™ (depending on the conditions for decomposition) and a litterfall rate of
ca 2 - 4 tonha™yr' (De Vries et al., 1990) indicates an average annual litter
decomposition rate of ca 1.5 - 8%. Since ca 40% of the freshly fallen leaves and
needles mineralises during the first year (Janssen, 1983), the long-term
decomposition rates vary between ca 1 and 5%. This is in the range of organic matter
decomposition in the topsoil of agricultural soils in the Netherlands, which equals on
average ca 2% per year (Kortleven, 1963).

Median values as a function of humus layer horizon and tree species

The humus layer mainly consisted of an F horizon with overlying freshly fallen leaves
or needles (L horizon) with a much lower bulk density than the compacted humified
H horizon (Table 15). In the H horizon, however, contamination with mineral soil
occurred more often. Consequently, differences between the corrected bulk densities
of the different horizons are much less than for the uncorrected values. The
difference is lower than values reported by Emmer (1995) for these horizons (see
above).

Table 15 Median values of the thickness, pool and bulk density for humus layer horizons

Horizon N Thickness (cm) Pool (ton.hal) Bulk density (kg.m-3)
uncorrected corrected uncorrected  corrected

LF 142 7.32 82 56 108 74

H 603 1.2 36 16 275 126

LFH 8 8.6 83 63 98 74

Total 150 8.3 95 66 124 77

1 N is the number of locations.

2 The median thickness of the L layer was 1.2.cm.

3 At 60 locations, H harizons thicker than circa 1 cm were found, which were sampled
separately.

Median values for the pool and bulk density of organic matter in the humus layer
varied little between tree species (corrected values in Table 16), even though median
thickness of the humus layer varied largely. Thickest median humus layers combined
with the lowest median bulk density were found under Japanese larch, whereas
thinnest median humus layers combined with a low bulk density and pool were
found under black pine (Table 16). The humus layer under Japanese larch mainly
consisted of a thick LF layer (median thickness 11.5 cm), indicating a low rate of
humification. High bulk densities, combined with an average thickness of the humus
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layer, were found under Scots pine, Norway spruce, oak and beech. It appeared that
the humus layers of Norway spruce and Scots pine consisted for a relatively great
part of H horizons (median thickness of respectively 1.2 and 1.9 cm), indicating a
higher humification rate or an older forest stand. In general, the thickness of the H
horizon increased with an increase in stand age, which has also been reported in the
literature (Emmer, 1995).

Table 16 Median values of the thickness, pool and bulk density of the humus layer under seven major tree species

Tree species Thicknessd (cm) Pool (ton.ha?) Bulk density (kg.m-3)
uncorrected  corrected uncorrected  corrected

Scots pine 85 (747/19) 101 66 130 83
Black pine 6.3 (6.371.0) 66 40 111 64
Douglas fir 74 (6.6 /0.5) 81 61 111 80
Norway spruce 8.2 (71712 92 65 130 88
Japanese larch 12 (11.570.7) 98 72 85 62
Oak 7.9 (6.0/0.9) 102 60 131 71
Beech 9.6 (81/0.7) 108 68 153 80

1) Values in brackets are the thickness of the LF and H horizon, respectively.

Variation in organic matter contents

The organic matter content in the H layer was generally ca. 20% lower than in the LF
layer (Table 17). A similar difference was observed by Emmer (1995) for five stands
of Scots pine. Values below 25% for the H layer indicate the large degree of mineral
contamination during sampling. Highest organic matter contents were generally
found in the LFH horizons.

Table 17 Minimum, maximum, 5, 50 and 95 percentiles of the organic matter content in humus layer horizons

Horizon N Organic matter content (g.kg?)

minimum 5% 50% 95% maximum
LF 142 335 437 688 861 901
H 60 134 244 473 640 688
LFH 8 671 665 786 875 873
Total 150 242 423 664 838 901

The organic matter content of the humus layer varied considerably between different
coniferous and deciduous tree species (Table 18). In stands of oak and beech, the
organic matter contents were generally lowest, whereas highest values were generally
found in stands of Japanese larch.

Table 18 Minimum, maximum, 5, 50 and 95 percentiles of the organic matter content in the total humus layer
horizons under seven major tree species

Tree species N Organic matter content (g.kg1)
minimum 5% 50% 95% maximum

Scots pine 44 393 469 673 839 850
Black pine 15 322 347 654 828 837
Douglas fir 15 242 304 653 853 859
Norway spruce 15 413 453 695 831 842
Japanese. larch 16 662 663 796 866 873
Oak 30 301 335 577 739 901
Beech 15 498 500 631 718 723
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4.2 Organic carbon and nutrients

Carbon and nutrient contents

An overview of the nutrient contents in the humus layer, normalised to the organic
matter content is given in Table 19. Comparison of the results with various literature
compilations (e.g. Kimmins et al., 1985; De Vries et al., 1990) indicate elevated
contents of N and S and relatively low contents for P and Ca, whereas the Mg and K
contents are very low. Compared to nutrient contents in foliage (Hendriks et al.,
1994), the N and Ca contents are comparable, P and Mg contents are ca twice as low,
whereas K contents are more than five times as low in the humus layer. This
indicates the large mobility of K, which is almost directly leached from the freshly
fallen foliage. The median C content in organic matter is 58% (Table 18), a value that
is often used in the literature. In general, the nutrient contents were almost normally
distributed, except for Ca where high contents were found in three calcareous soils.

Table 19 Minimum, maximum, 5, 50 and 95 percentiles of total nutrient contents in organic matter in the
humus layer

Statistics Nutrient contents (g.kg1)

C N P S Ca Mg K
minimum 458 15 0.51 19 11 0.28 0.61
5 percentile 516 18 0.62 2.1 1.7 0.41 0.76
50 percentile 579 22 0.81 2.8 3.0 0.61 11
95 percentile 629 28 13 3.9 6.9 13 24
maximum 658 30 2.1 5.0 15 2.3 7.4

No striking differences in nutrient contents were found between the humus layer
horizons except for Ca and K, with respectively lower and higher contents in the H
horizon than in the LF horizon (Table 20). This observation is opposite to Emmer et
al. (1991) who found a decreasing K/Ca ratio going from the F to the H horizon in a
primary succession range under Scots pine.

Table 20 Median values of total nutrient contents in organic matter in the humus layer horizons

Horizon Nutrient contents (g.kg?)

C N P S Ca Mg K
LF 576 22 0.81 2.8 3.0 0.61 1.0
H 602 23 0.93 33 2.3 0.66 15
LFH 568 19 071 29 22 044 0.98
Total 579 22 0.81 2.8 3.0 0.61 11

Median nutrient contents in the humus layer hardly varied between tree species
except for oak, where relatively high Ca contents were found. For oak the N, Mg and
K content was also higher than for the other species (Table 21). This is in accordance
with the elevated foliar N, Ca and K contents in oak (Hendriks et al., 1994), which
has a higher nutrient demand and stands on relatively poorly-drained rich soils with
Ca input by seepage (cf. Table 12 and 13). Nutrient contents in the humus layer
below stands of Douglas are comparable to those observed in eight Douglas stands
in 1987 (Kleijn et al., 1989).
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Table 21 Median values of the total nutrient contents in organic matter in the humus layer under seven major tree
Species

Tree species Nutrient contents (g.kg?)

C N P S Ca Mg K
Scots pine 577 20 0.74 2.7 2.3 0.51 1.0
Black pine 557 19 0.79 2.8 2.5 0.53 1.0
Douglas fir 580 24 0.92 31 31 0.57 11
Norway spruce 583 22 0.89 2.8 2.7 0.53 0.96
Japanese. larch 567 22 0.75 2.9 34 0.66 0.83
Oak 580 27 0.93 32 4.6 0.99 14
Beech 588 24 0.90 2.8 2.7 0.66 13

Carbon and nutrient ratios

Ratios of C to N give indications about the degree of net N mineralisation
(mineralisation minus immobilisation) in the humus layer. According to various
textbooks. (e.g. Waring and Schlesinger, 1985; Stevenson, 1986) the critical C/N
ratio at which net mineralisation starts varies between 20 - 30. The variation is
determined by various factors influencing the rate of C and N mineralisation such as
pH, moisture content and temperature (Hendriks, 1992). In general, immobilisation
dominates at C/N ratios above 30 (oligotrophic systems), whereas mineralisation
dominates at C/N ratios below 20 (eutrophic systems) in Dutch fens (Kemmers,
1990). Succow (1988) suggested a similar range for peat soils, which can be
considered comparable to humus layers.

The distribution of the nutrient ratios was quite normal (Table 22). In general the
C/N ratios in the humus layer of mineral poor non-calcareous sandy soils are
expected to be larger than 25 coinciding with mesotrophic to oligotrophic
environments. However, only some 50% of the sites had C/N ratios above 25. The
lower C/N values indicate the effect of elevated N deposition. The number of sites
exceeding a critical C/N ratio of 30 was 16%. In these sites, all N is assumed to
immobilise. However, since the composition of organic matter varies considerably,
the C/N ratio of decomposed organic matter may deviate strongly from the average
C/N ratio. Various authors, such as Dammen (1988) and Verhoeven et al. (1990)
thus observed net N mineralisation at C/N ratios above 40 and even 60. Data on
elevated NO, concentrations in the soil solution at sites where the C/N ratio of the
humus layer exceeds 30 also indicate that N immobilisation is not complete in this
situation (Chapter 7).

Table 22 Minimum, maximum, 5, 50 and 95 percentiles of nutrient ratios in the humus layer
Statistics Nutrient ratios

C/N C/P C/S N/P N/S
minimum 17 284 116 13 5.0
5 percentile 21 429 146 18 6.0
50 percentile 26 714 206 26 7.8
95 percentile 34 928 271 34 10
maximum 39 1126 301 43 12

Even though C/N ratios are relatively low compared to areas with a low N
deposition, such as Scandinavia, the values indicate that considerable N
immobilisation may still take place in most of the sites. This is in accordance with
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results from input - output budgets of the 150 sites, which indicate that on average ca
80% of the incoming N is retained in the forest ecosystem (De Vries and Jansen,
1994).

As with the C/N ratio, the C/P and C/S ratios do give some indication about the
rate of net P and S mineralisation. Assuming that fungi dominate mineralisation and
using a C/P and C/S ratio of both 67 in fungi (Janssen, 1983) leads to a critical C/P
and C/S ratio of 200. Similar values are given by Stevenson (1986). The numbers of
sites exceeding these critical values are 100% for P and 45% for S (cf. Table 22). In a
summarising literature review on decomposition and mineralisation of peat soils,
Hendriks (1992), however, concludes that the relationship between C and P
mineralisation is much weaker than between C and N. Most likely this is also the case
for C and S. The observed nutrient ratios do, however, indicate that net
mineralisation of P is likely to be very small, whereas net S mineralisation is
considerable. The latter result is in accordance with results from input-output
budgets of the 150 sites, which indicate that on average all the incoming SO, is
leached from the system (De Vries and Jansen, 1994). The high C/P ratios indicate P
deficiencies in these forest soils. This is in accordance with the results of foliar P
contents, which indicate an absolute P deficiency in 63% of the sites (Hendriks et al.,
1994).

As with the nutrient contents, no striking differences were found between nutrient
ratios in the LF and H horizons (Table 23). This is contrary to the expectations.
After litterfall, the humus layer is subjected to a complicated process of
decomposition, humification and mineralisation. During the decomposition process
N, P and S are mineralised, whereas C disappears as CO, out of the system. During
the humification process N, P and S are build into complex organic structures.
Therefore the C/N, C/P and C/S ratios decrease during these processes. Recently
fallen leaves or needles in the LF horizon are hardly decomposed and are thus
expected to have higher C/N, C/P and C/S ratios than the H horizon. In the
mineral layer, however, the C/N and C/P ratios were obviously lower, especially the
C/P ratio (Table 43). Jansen et. al. (1994) found the same differences between layers
for the country-seat ‘De Wildenborch’.

Table 23 Median values of nutrient ratios in the humus layer horizons

Horizon N Nutrient ratios

C/N C/P C/S N/P N/S
LF 142 26 716 209 27 8.0
H 60 27 685 183 25 6.9
LFH 8 29 779 217 26 7.7
Total 150 26 714 206 26 7.8

The median nutrient ratios in the humus layer varied little between tree species
(Table 24). Lowest C/N, C/P and C/S ratios were generally found in the humus
layers under oak.
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Table 24 Median values of the nutrient ratios in the humus layer under seven major tree species

Tree species Nutrient ratios

C/N C/P C/S N/P N/S
Scots pine 29 777 213 26 74
Black pine 30 754 199 23 6.9
Douglas fir 24 635 182 26 7.7
Norway spruce 27 672 219 26 8.1
Japanese. larch 26 750 204 30 8.1
Oak 22 640 179 27 8.2
Beech 25 672 212 26 8.3

Carbon and nutrient pools

As with the nutrient contents, pools of nutrients varied according to a normal
distribution, except for Ca (Table 25). Average annual nutrient demands in view of
net growth uptake are approximately 5-10 kg.ha™ for N, 2.5-5 kg.ha™ for Ca, 0.5-1.0
kg.ha™ for Mg and 2-4 kg.ha™ for K (De Vries, 1993). This implies that the pools in
the humus layer can provide the tree with nutrients during a long period, except for
K. In general, long-term nutrient supply consists of atmospheric deposition and
long-term weathering, but the pools in the humus layer are an important buffer.

Table 25 Minimum, maximum, 5, 50 and 95 percentiles of the carbon and nutrient pools in the humus layer

Statistics Nutrient pool (kg.ha?)

C N P S Ca Mg K
minimum 5459 247 15 30 32 7.6 13
5 percentile 11478 469 22 65 77 14 28
50 percentile 36833 1430 51 177 185 39 65
95 percentile 67112 2549 96 327 376 91 173
maximum 89835 3061 141 458 600 183 648

As with the pools of organic matter (Table 15), the median nutrient pools in the LF
horizon were almost three times the median pools found in the H horizon (Table
26). The only exception is K, which is due to the relatively high K content in the H
horizon (see Table 20).

Table 26 Median values of the carbon and nutrient pool in the humus layer horizons

Horizons Nutrient pool (kg.ha?)

C N P S Ca Mg K
LF 32850 1189 44 148 164 32 57
H 9986 346 14 55 40 1 27
LFH 36489 1273 47 170 148 27 58
Total 36833 1430 51 177 185 39 65

As with the pools of organic matter (Table 16), median nutrient pools varied little
between tree species, except for the low pools in black pine stands. (Table 27).
Another difference is the slightly larger Ca, Mg and K pools in stands of Japanese
Larch and the deciduous trees, oak and beech, correlating with higher K contents in
the humus layer (Table 21).
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Table 27 Median values of the carbon and nutrient pools in the humus layer under seven major tree species
Tree species Nutrient pool (kg.ha)

C N P S Ca Mg K
Scots pine 37984 1363 49 176 153 38 69
Black pine 22718 727 31 115 82 25 41
Douglas fir 34028 1351 49 165 185 36 58
Norway spruce 36207 1562 55 193 207 34 62
Japanese. larch 40359 1621 59 209 268 48 62
Oak 36122 1592 57 182 241 50 74
Beech 40829 1579 66 195 185 43 82

4.3  Soil acidity and exchangeable cations

Soil acidity

Results for the pH in a water extract and in a KCI extract generally varied between
3.5 and 5 and between 2.5 and 4, respectively, in the humus layer (Table 28). Such
low values are generally observed in humus layers of non-calcareous sandy soils in
the Netherlands (Kleijn et al., 1989; Van Breemen and Verstraten, 1991; Emmer,
1995). Differences between pH-H,O and pH-KCI were constant approximately 1.
These differences generally increase with an increase in CEC. The pH values
measured in the H horizon were lower than those in the LF horizon (Table 28).
According to Emmer et al. (1991) there is a clear relation between the decrease of the
pH and the accumulated pool of the acid, humified organic matter in the (H horizon)
of the humus layer.

Table 28 Minimum, maximum, 5, 50 and 95 percentiles the pH-H2O and the pH-KCI in the humus layer
horizons

Statistics pH-H20 of the horizons pH-KCI of the horizons

LF H LFH Total LF H LFH Total
minimum 3.6 33 38 35 25 24 2.7 25
5 percentile 3.6 34 3.8 3.6 2.6 24 2.7 2.6
50 percentile 38 35 4.0 38 2.9 2.6 2.9 2.8
95 percentile 4.3 3.9 4.1 4.2 35 2.9 3.0 35
maximum 5.1 4.1 4.1 51 4.2 31 3.0 4.2

Differences in the median measured pH between the separate tree species were
generally negligible (Table 29).

Table 29 Median values of the pH-H20 and the pH-KCI for the humus layer horizons under seven major tree
Species

Statistics pH-H>0 of the horizons pH-KCI of the horizons

LF H LFH Total LF H LFH Total
Scots pine 3.8 35 4.0 3.8 2.8 25 2.9 2.8
Black pine 3.9 35 3.9 3.0 2.6 2.9
Douglas fir 3.8 3.7 419 3.9 2.8 2.6 2.9 2.9
Norway spruce 3.8 35 3.7 2.8 25 2.8
Japanese. larch 3.8 35 3.8 3.7 2.8 25 2.7 2.7
Oak 4.0 37 4.09 39 30 2.8 3.09 29
Beech 38 3.6 3.7 2.8 2.5 2.7
") Based on one sample only
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Cation exchange capacity

The cation exchange capacity (CEC), which is mainly related to the organic matter
content, especially in the humus layer, varied considerably over the various forest
stands (Table 30). Even the CEC normalised to the organic matter content varied
quite strongly indicating the effect of organic matter quality and pH on the CEC. In
most stands the CEC varied between 200 and 400 mmol.kg". Comparison with
literature data shows that the CEC for these humus layers is low. Youngberg (1966),
for example, reports CEC values for humus layers in nine Douglas-fir stands ranging
between 540 and 670 mmol..kg™". Reported organic matter contents varied between
69 and 86%, indicating a CEC ranging between ca 6 - 10 mmol.kg" for 1% of
organic matter. Khanna et al. (1986) and Van Wesemael (1992) report average values
of ca 8.0 and 9.7 mmol..kg" per % organic matter for humus layers in sub-alpine and
Mediterranean forests, respectively. The differences may partly be due to the lower
pH values in the Dutch forest stands (ca pH - H,O ca 3.5 - 5) compared to those
forest stands (pH - H,O ca 4 - 6). Kalisz and Stone (1980), for example, reported an
increase of 3.0 mmol..kg™ per % organic matter per pH unit. The average value of
7.6 mmol.kg™* for 1% organic matter reported by Kleijn et al. (1989) for mineral
topsoils of acid sandy soil is also clearly higher than the values observed in the 150
forest stands, which range between 2.4 and 8.0 mmol..kg™* per % organic matter. The
reason for this difference is most likely the lower degree of humification in the
humus layer (see also Chapter 5).

Table 30 Minimum, maximum, 5, 50 and 95 percentiles of the CEC of the humus layer
Statistics CEC CEC of 1%
organic matter
mmolc.kg?  kmolec.hal  mmolc.kg?

minimum 142 5.0 24
5 percentile 201 8.8 3.6
50 percentile 302 30 4.7
95 percentile 386 54 5.9
maximum 498 73 8.0

The median CEC varied only slightly between the various humus layer horizons and
tree species (Table 31). As with the organic matter contents, the median CEC in the
humus layer was highest under Japanese larch and under black pine lowest (Table
16). In general the CEC was slightly higher in the LF horizon than in the H horizon
which is most probably due to the higher organic matter content and pH of the LF
horizon.

Table 31 Median values of the CEC for of humus layer horizons under seven major tree species

Tree species CEC (mmolc.kg?) CEC (kmolc.hal)
LF H LFH Total LF H LFH Total

Scots pine 281 294 273 275 23 14 23 29
Black pine 254 268 254 16 5.3 16
Douglas fir 319 305 358" 320 25 54 25" 26
Norway spruce 315 286 310 27 7.8 30
Japanese. larch 362 337 4047 370 35 10 329 35
Oak 331 239 321 26 9.3 3
Beech 323 281 318 26 20 31

*) Based on one sample only
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Exchangeable cation contents and pools

Exchangeable cations on the adsorption complex in the humus layer were generally
dominated by protons (H) followed by Ca (Table 32). Exchangeable Al contents
were relative low, since there is no mineral pool of Al in organic matter. The
distributions of the exchangeable cations in the humus layer were all relatively
normal. There were several locations with relatively high Ca and/or Al and/or Fe
occupation and several locations with relatively low H occupation.

Table 32 Minimum, maximum, 5, 50 and 95 percentiles of the exchangeable cation content (in percentage of the
CEC) of the humus layer

Statistics Exchangeable cation content (%)

H Al Fe Ca Mg K Na NH4
minimum 54 15 1.0 14 2.3 17 04 14
5 percentile 23 3.1 1.8 16 4.1 2.4 0.9 2.2
50 percentile 45 6.3 37 24 6.9 4.0 19 4.2
95 percentile 56 13 85 46 11 7.3 3.8 7.3
maximum 63 21 16 61 17 10 6.8 12

Obvious differences in exchangeable cation contents were observed between the LF
and H horizon. The LF horizon had almost twice as high Ca, Mg, K, Na and NH,
contents as the H horizons, which had on the other hand almost twice as high Al and
Fe contents (Table 33). The lower contents of base cations correspond to the lower
pH of the H horizon, which is correlated to the stronger dissociation of protons
from the humified organic matter pool.

Table 33 Median values of the exchangeable cation content (in percentage of the CEC) for the humus layer
horizons

Horizon Exchangeable cation content (%)

H Al Fe Ca Mg K Na NH4
LF 44 5.7 35 26 7.1 4.1 1.9 45
H 56 12 6.0 14 3.6 2.7 0.9 2.2
LFH 47 6.3 34 24 6.1 45 2.2 4.7
Total 45 6.3 37 24 6.9 4.0 19 4.2

Exchangeable cation contents in the humus layer hardly varied between various tree
species, except that the exchangeable base cation (specifically calcium) content was
higher under oak while the exchangeable H content was lower (Table 34). A comparison
between exchangeable and total contents of the cations Ca, Mg and K in the humus layer
showed that the exchangeable content is 77%, 58% and 66%, respectively.

Table 34 Median values of the exchangeable cation content (in percentage of the CEC) of the humus layer under
seven major tree species.

Tree species Exchangeable cation content (%)

H Al Fe Ca Mg K Na NH,4
Scots pine 49 7.1 3.9 22 5.7 4.2 1.8 4.1
Black pine 46 7.2 4.1 21 75 4.9 2.2 5.0
Douglas fir 44 5.8 3.3 25 6.0 3.8 2.6 5.7
Norway spruce 46 6.1 3.2 23 6.1 4.2 2.4 5.0
Japanese. larch 45 5.8 25 28 7.8 3.2 2.7 4.3
Oak 38 49 3.6 33 84 4.4 17 3.8
Beech 46 7.8 5.8 22 5.6 37 17 3.6
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As with the exchangeable cation contents, the exchangeable cation pools decreased
according to H > Ca followed by Mg, K, Na, Al, NH, and Fe (Table 35). James and
Riha (1986) claimed that pH buffering in humus layers of acid forest soils is
extremely important because of the relatively large pool of base cations in this layer.
Considering a net acid input of ca 5.0 kmol.ha™yr' on Dutch forests in 1990
(Erisman, 1992), however, it is clear that the exchangeable pool of base cations is
generally quite limited. Furthermore, a constant supply of base cations by litterfall
and mineralisation and in throughfall prevents a large proton buffering by base
cation release from the adsorption complex. This can also be derived from the low
pH values in the humus layer, although the base saturation is relatively large.

Table 33 Minimum, maximum, 5, 50 and 95 percentiles of the exchangeable cation pool in the humus layer

Statistics Exchangeable cation pool (kmolc.ha)

H Al Fe Ca Mg K Na NH4
minimum 044 0.11 0.13 1.0 0.29 0.24 0.04 0.15
5 percentile 2.6 0.40 0.39 2.6 0.64 0.45 0.12 0.35
50 percentile 13 1.9 1.0 7.3 18 11 0.52 12
95 percentile 24 5.7 2.9 13 4.0 2.3 1.3 24
maximum 44 11 8.3 29 7.8 4.4 3.1 3.5

4.4  Heavy metals

Overall variation in heavy metal contents

The variation in heavy metal contents in the humus layer is large. The concentrations
are clearly elevated compared to values observed for relatively unpolluted humus
layers. Background concentrations, based on observations in humus layers in the
northernmost part of Sweden, where the influence of long-distance dispersal of
atmospheric pollution is low and outside the influence of local emission sources, are
comparable to the 5 percentiles observed in the 150 forest stands (cf. Table 36 and 37).

Table 36 Minimum, maximum, 5, 50 and 95 percentiles of the heavy metal content in the humus layer
(uncorrected samples of humus layer including mineral soil)

Statistics Heavy metal content (mg.kg-1)

Pb Cd Cu Zn Ni Cr
minimum 17 0.14 4.3 29 4.4 4.0
5 percentile 40 0.34 7.1 39 5.9 7.6
50 percentile 113 0.68 16 72 12 13
95 percentile 282 2.1 45 219 22 27
maximum 745 4.9 268 852 111 46

In general, there was a clear relationship between the regional patterns in heavy metal
deposition and the heavy metal contents in the humus layer (Leeters et al., 1994). The
high to extremely high contents of Pb, Cd, Cu and Zn, above the critical value and
intervention value respectively, were mainly located in the strongly polluted Kempen
area in the southern part of the Netherlands. With respect to Cd and Zn, these high
contents exclusively occur in this area, where a zinc smelter has emitted large
amounts of both heavy metals. Metal contents with a similar order of magnitude as
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the maximum values for Pb, Cd, Cu and Zn have been reported in humus layers in
the Kempen area (Pedroli et al., 1990; Van Mourik, 1991; Wilkens, 1995).

Elevated metal contents in humus layers have been observed in all areas with an
elevated atmospheric input of heavy metals, such as southern Norway (Steinnes et al.,
1988), New Hampshire (Reiniers et al., 1975; Andresen et al., 1980; Siccama et al.,
1980), Germany (Heinrichs and Mayer, 1986; Neite et al., 1992) and the Netherlands
(Kleijn et al., 1989; Pedroli et al., 1990; Van Mourik, 1991). Except for Zn, which is
extremely high due to the occurrence of a zinc smelter, similar high values have been
reported for forests in Germany (Brimmer et al., 1986; Heinrichs and Mayer, 1986).
In general, the range in reported Pb, Cd, Cu and Zn contents in ca 300 humus layers
in North-Rhine-Westphalia is even ca twice as high for Pb and Cu, whereas it is
comparable for Cd and Zn (Neite et al., 1992). The main cause of the elevated heavy
metal contents in forest soils is the atmospheric deposition of these metals induced
by emissions from industry and traffic. Some contamination might be due to the use
of heavy metal containing fertilisers or sewage sludge in the past, but this influence is
likely to be negligible.

The contents of Cd and Zn in the humus layers were highly correlated (Table 37).
Reasonably high correlations were also found between contents of Pb and those of
Ni, Cd and Zn. This indicates co-deposition of these metals. Similar correlations
were observed in surface soils (top 3-5 cm of the Ah horizons) in Southern Norway
(Steinnes et al., 1988). Metal concentrations in this top mineral layer are often quite
comparable to the humus layer (Parker et al., 1978).

Table 37 Correlations between contents of heavy metals in the humus layer
Heavy metal ~ Correlation coefficient

Pb Cd Cu Zn Ni Cr
Pb -
Cd 0.49 -
Cu 0.28 0.25 -
Zn 0.42 0.90 0.20
Ni 0.50 0.01 -0.03 0.00
Cr 0.35 0.34 0.19 0.31 0.20

Risks of elevated heavy metal contents in humus layers

In order to judge the risk associated with the elevated heavy metal contents,

information is needed on critical levels, which are defined as the maximum metal

contents which do not show an adverse effect on the terrestrial ecosystem. In this
context, a distinction can be made in effects of elevated metal concentrations on

(Tyler, 1992):

- (i) Soil microorganisms and macrofungi. Effects include reduced microbial
biomass and/or species diversity, thus affecting microbial processes such as
enzyme synthesis and activity, litter decomposition, associated with C and N
mineralisation, and soil respiration. A review of these effects is given by Baath
(1989).
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- (i) Soil fauna, especially invertebrates such as nematodes and earth worms.
Effects include a decrease in abundance, diversity and biomass. A review of these
effects is given by Bengtsson and Tranvik (1989)

- (i) Vascular plants including trees. Effects include reduced development and
growth of roots and shoots (toxicity symptoms), elevated concentrations of starch
and total sugar and decreased nutrient contents in foliar tissues (physiological
symptoms) and decreased enzymatic activity (biochemical symptoms). A review of
these phytotoxic effects is given by Balsberg-Pahlsson (1989).

Other effects are heavy metal accumulation in terrestrial fauna, such as birds, and
humans but these are considered (relatively) unimportant with respect to forest
ecosystems. Effects on vascular plants are primarily related to concentrations in the
soil solution and foliar contents (Balsberg-Pahlsson, 1989), whereas effects on soil
microbio and soil invertebrates are specially related to total metal contents, either in
the humus layer or the mineral soil. (Baath, 1989; Bengtsson and Tranvik, 1989;
Witter, 1992; Tyler, 1992). A summarising overview of the critical contents in humus
layers thus derived is given in Table 38 (After Tyler, 1992). Table 38 also contains
information on critical concentration levels used in the Dutch legislation.

Table 38 Background values and different critical values of heavy metal contents in humus layers

Type of concentration level Heavy metal content (mg.kg-1)

Pb Cd Cu Zn Ni Cr
Background valuet) 15 0.35 5 35 10 25
Target value? 115 1.8 55 145 20 50
Critical valued
- soil microbiota 500 35 20 300 50 30
- soil invertebrates 150 10 100 500 - -
- both effects 150 35 20 300 50 30
Intervention valued 720 27 290 770 60 190

1) Based on data in northern most Sweden (Andersson et al., 1991), except for Ni, which is based on
observed Ni contents in unpolluted peat soils in the Netherlands (Edelman, 1983).

2 Based on concentrations in topsoils of relatively unpolluted areas in the Netherlands (Edelman,
1983). The values are calculated from a given intercept and a relation with the organic matter
content. For Ni the target value was arbitrarily set twice as high as the background value.

3)Based on an overview by Tyler (1992) for humus layers or mor horizons, except for Ni, which is
based on Witter (1992). The latter value refers to mineral soils and not to humus layers.

4 Values used in the Dutch legislation.

The most important levels are the target value and the intervention value. The target
value is simply based on heavy metal contents in the top 10 cm of agricultural soils
and forest soils, which were assumed to represent background values (Edelman,
1983; Edelman and De Bruin, 1986). The values depend on the content of organic
matter and clay (Annex 1). The values given in Table 37 are based on an assumed
clay content of 0% and an organic matter content of 66%, namely the median value
observed in the humus layers (Table 14). The so-called intervention values, above
which sanitation actions are required, also depend on the clay and organic matter
content (Annex 1). The values given in Table 38 are based on the same assumptions
as those given for the target values.
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Compared to background concentrations (cf. Table 36 and Table 38), pollution of
heavy metals is mainly limited to Pb, Cd, Cu and Zn. In general, the humus layers are
most strongly polluted with Pb, followed by Zn, Cd and Cu (Table 39). Extremely
high values, exceeding the so called intervention value, above which sanitation
actions are required, were only observed for Pb, Cu, and Zn (compare Table 36 and
38) at three locations.

Table 39 Distribution of forested sites over different critical contents of heavy metals in humus layers, based on
various sources and approaches

Type of concentration level  Distribution (%)

Pb Cd Cu Zn Ni Cr
< Target value 55.3 94.7 98 89.3 98.7 100
Target-Critical valued 22.7 4.7 1.3 8.7 0.0 0
> Critical value 22.0 0.7 0.7 2.0 1.3 0

1) The minimum value of effects on soil microbiota and soil invertebrates was used (Table 37),
except for Cu.

Assuming that the critical values in Table 39 are correct, toxic effects of heavy metals
on soil microbiota and soil invertebrates seems quite unlikely in Dutch forests,
except for Pb. Elevated heavy metal concentrations in the soil solution and in the
foliage (not measured) may, however, still affect the forest vitality. Furthermore,
elevated metal contents in the litter layer may retard decomposition (Rihling and
Tyler, 1973; Tyler, 1975; Tyler and Westman, 1979), thus lowering the availability of
nutrients. Hendriks et al. (1994) thus found a relationship between the foliar P and
Mg content in the 150 forest stands and the heavy metal contents in the humus
layers. More research with respect to the possible role of heavy metals in novel forest
decline thus seems warranted (cf. Nuorteva, 1990).

Median heavy metal contents as a function of humus layer and tree species
Differences between heavy metal contents in LF and H layers were relatively small
(Table 40). Unlike data given by Van Mourik (1991), we did not observe a clear
decrease in heavy metal content going from the LF to the H layer. Pedroli et al.
(1990) observed a large difference in Pb, Cd, Cu and Zn contents in L and F layers
but these humus layers horizons were not sampled separately in the present study.

Table 40 Median values of the heavy metal content in the humus layer horizons (uncorrected samples of humus
layer including mineral soil)

Horizon N Heavy metal content (mg.kg-1)

Pb Cd Cu Zn Ni Cr
LF 142 105 0.68 16 73 11 12
H 60 149 0.73 19 61 13 19
LFH 8 132 1.0 23 93 1 12
Total 150 113 0.68 16 72 12 13

Contents of Pb, Cd, Cu and Zn, in humus layers generally decreased going from
spruce forests to pine forests to deciduous forests (Table 41). Highest contents were
mostly found below stands of Douglas fir and lowest below oak stands. This is most
likely due to a decrease in leaf biomass, thus affecting the dry deposition of heavy
metals. The influence of the forest canopy on dry deposition can also be derived
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from the ratio between heavy metal contents in humus layers below forested sites
and nearby non-forested sites, such as heathlands. Average ratios thus derived for
five paired sites vary between 2.3 and 2.9 for Pb, Cd, Cu and Zn and between 1.1
and 1.7 for Ni and Cr (De Vries and Bakker, 1998). This illustrates that contents of
Pb, Cd, Cu and Zn are clearly influenced by atmospheric inputs. The effect of
elevated dry deposition of elements by forest canopies is also evident in the soil
solution (Chapter 6).

Table 41 Median values of the heavy metal content in the humus layer under seven major tree species (uncorrected
samples of humus layer including mineral soil)

Tree species Heavy metal content (mg.kg-1)

Pb Cd Cu Zn Ni Cr
Scots pine 127 0.87 17 76 12 13
Black pine 109 0.68 15 70 12 12
Douglas fir 146 0.85 24 80 13 14
Norway spruce 104 0.64 16 64 9.2 13
Japanese. larch 105 0.67 15 73 10 11
Oak 76 0.52 13 64 12 14
Beech 122 0.60 17 63 13 16

Heavy metal pools

By multiplying the humus layer pool (Table 14) with the heavy metal contents in this
layer (Table 36), the heavy metal pools in the humus layer were calculated (Section
2.6). As with the metal contents, the variation in the heavy metal pools is large (Table
42). The heavy metal pools are relatively large compared to reported literature data,
especially with respect to Pb, Cu and Zn. Andersson et al. (1991) reported 90%
intervals (intervals between the 5 percentile and 95 percentile) of 0.59-10 for Pb, 0.0-
041 for Cd, 0.13-1.4 for Cu and 1.1-9.4 for Zn in humus layers in Sweden,
influenced by atmospheric deposition (cf. Table 42). Values reported by Van Hook et
al. (1977) on Cd and Zn pools in humus layers below forests in Eastern Tenessee
also approach the lower range reported for Dutch forests (Table 42). Pb pools
reported for forested sites in central New Hampshire (9 kg.ha™; Siccama et. al., 1980)
approach the median value reported for Dutch forest.

Table 42 Minimum, maximum 5.50 and 95 percentile of heavy metal pools in the humus layer

Statistics Heavy metal pool (kg.ha?)

Pb Cd Cu Zn Ni Cr
minimum 0.47 0.01 0.12 0.81 0.20 0.20
5 percentile 25 0.02 041 25 0.43 0.43
50 percentile 11 0.06 1.6 7.1 1.0 1.3
95 percentile 29 0.19 4.8 22 2.4 2.9
maximum 63 0.67 32 90 6.5 8.2

Apart from critical contents, Tyler (1992) also gives maximum pools of heavy metals
that can be added to forest humus layers without exceeding critical values. These
pools (in kg.ha™) equal 7.0 for Pb, 0.2 for Cd, 1.0 for Cu, 16 for Zn and 2.25 for Cr.
Comparison with the data in Table 42 shows a considerable number of sites
exceeding the critical value for Pb and Cu (more than 50%). Unlike the heavy metal
contents, the variation in heavy metal pools below tree species do not clearly indicate
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a decrease in dry deposition going from spruce (fir) stands to pine stands to
deciduous stands (Table 43).

Table 43 Median values of the heavy metal pool in the humus layer below seven major tree species

Tree species Heavy metal pool (kg.ha?)
Pb Cd Cu Zn Ni Cr

Scots pine 14 0.10 1.9 8.6 1.2 14
Black pine 5.8 0.05 0.7 4.4 0.70 0.69
Douglas fir 12 0.06 2.1 7.2 1.0 11
Norway spruce 8.5 0.07 14 7.6 0.93 13
Japanese. larch 10 0.06 13 6.9 1.0 1.0
Oak 9.2 0.05 14 6.1 0.85 13
Beech 16 0.07 2.2 7.2 15 18

Assessment of average annual metal deposition rates

An indication of the average annual deposition rate of heavy metals has been derived
by dividing the heavy metal pool in the humus layer with the age of the trees. This
approach assumes that (i) heavy metal accumulation started in the humus layer at the
time of tree planting and (ii) the humus layer behaves as a perfect sink for heavy
metals. The first assumption is reasonable for first-generation forests where tree age,
(which was known) equals stand age (which was not known), but may lead to an
overestimation in second-generation forests. On the other hand, the second
assumption will lead to an underestimation, since part of the heavy metals are
accumulating in the uppermost mineral layer and/or leached to lower soil depths.

Results of the calculated deposition rate vary considerably (Table 44). The variation
in reported Pb, Cd and Zn deposition rates over the Netherlands (Van Jaarsveld et
al., 1991), based on model calculations with the deposition model TREND (Van
Jaarsveld and Onderdelinden, 1993) compares quite well with those given in Table
44. A more specific comparison with deposition data for the 150 forest stands, based
on an overlay procedure with TREND model results for a 10 km x 10 km gridcell
using 1985 emission data, however, shows that the TREND deposition data tend to
be lower than those reported in Table 44. The ranges (in g.ha-".yr") equal 114-203 for
Pb, 0.47-1.5 for Cd, 7.2-29 for Cu and 30-89 for Zn (Leeters et al., 1994).

Table 44 Minimum, maximum 5,50 and 95 percentile values of the calculated average deposition rates of heavy
metals on the forests since the time of planting

Statistics Heavy metal deposition rate (g.hal.yr?)

Pb Cd Cu Zn Ni Cr
Minimum 18 0.02 0.53 5.4 5.9 22
5 percentile 57 0.37 12 56 10 11
50 percentile 199 13 31 139 21 25
95 percentile 647 54 105 536 67 85
Maximum 1910 14 1879 1499 208 177

Nevertheless, it is likely that the estimated values, both in Table 44 (and by the
TREND model) are an underestimate of the annual input, especially with respect to
Cd and Zn that are relatively mobile, but also with respect to Pb and Cu.
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Auvailable literature information on the distribution Pb, Cd, Cu and Zn in forest soil
profiles in the Netherlands indicate that accumulation of these heavy metals is not
limited to the humus layer. It also occurs in the uppermost mineral soil horizons, up
to ca 30 cm. (Breeuwsma, 1983; Pedroli et al., 1990; Van Mourik, 1991; De Vries et
al., 1994b; Wilkens, 1995). Leaching to lower soil depths is very limited for Pb and
Cu, which form strong complexes with organic matter (Bergkvist et al., 1989).
Humus layers and uppermost mineral layers thus act as an important sink for these
heavy metals, considering that metabolisation by soil fauna or uptake by trees is
limited (Bergkvist et al., 1989).

Contents of Pb, Cd, Cu and Zn in the mineral topsoil are generally more than ten
times as low, as the humus layer. Considering the much larger (often more than
times) bulk density of mineral soils, however, the pool of these metals in the mineral
topsoil can be larger as in the humus layer. Data for the heavy metal contents up to a
depth of 100 cm in twelve of the 150 forest stands indicate metal accumulation up to
a depth of 30 cm for Pb, Cd and Cu and to a lesser extent Zn. The accumulated pool
generally equalled or even exceeded the pool in the humus layer. Accumulated metal
pools (in kg.ha™) varied between 13 and 74 for Pb, 0.05-0.65 for Cd, 1.0-16 for Cu
and 2.0-17 for Zn (cf. Table 42). Regarding Cd and Zn, it is furthermore likely that a
considerable amount has been leached from the soil profile, since their mobility is
large, especially in strongly acidified soils. This can also be derived from elevated
concentrations of Cd and Zn in ground-water below forests, especially in the highly
contaminated "Kempen area’ in the southern part of the Netherlands (Pedroli et al.,
1990; Wilkens, 1995; Boumans and Fraters, 1995).

Considering the above-mentioned aspects, it is likely that the calculated metal
deposition rates in Table 43 are underestimated. Another indication for this is the
fact that the modelled deposition rates by Van Jaarsveld et al. (1991) and the
interpolated values for the forest stands given in Leeters et al. (1994) are averages for
a large area, with an average surface roughness related to low vegetations, which is
less than for forests. Consequently dry deposition rates are likely to be higher. Based
on the ratio of Pb, Cd, Cu and Zn pools in forested and non-forested sites, the
underestimation may vary between 2-3 (see before).

45 Conclusions

Results on the chemical composition of the humus layer, subdivided in contents and
pools of (i) organic matter, including thickness and bulk densities, (ii) nutrients, (iii)
pH and exchangeable cations and (iv) heavy metals, has been given before. Major
conclusions with respect to these aspects, in view of available literature, are given
below.

Pools, thickness and bulk densities of organic matter

- Pools of organic matter in the humus layer varied mostly between 20 - 110
ton.ha™. Comparison with literature data indicates that parts of the forest stands
are in the phase of organic matter accumulation in the humus layer. The humus
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layer mainly consisted of an F horizon with overlying freshly fallen leaves or
needles (L horizon) with a much lower bulk density than the compacted humified
H horizon.

The influence of tree species on the pool and bulk density of organic matter in the
humus layer was smaller than on the thickness of the humus layer. Thickest
humus layers combined with the lowest median bulk density were found under
Japanese larch, whereas thinnest median humus layers combined with a low bulk
density and pool were found under black pine

The median bulk density of the humus layer (124 kg.m?) is slightly lower than
data reported in the literature, which are generally about 140 - 150 kg.m?®. This is
most likely due to a relatively thick layer of loose fresh leaves or needless in the
litter layer.

Contents, ratios and pools of organic carbon and nutrients

Elevated S and N deposition is reflected by the chemical composition of the
humus layer. Comparison of the nutrient contents in the humus layer with various
literature compilations indicate elevated contents of N and S, relatively low
contents for P and Ca and very low contents for Mg and K.

C/N ratios vary mostly between 20 and 30, which is relatively low compared to
areas with a low N deposition, such as Scandinavia. Nevertheless, the values
indicate that considerable N immobilisation may still take place in most of the
sites. This is in accordance with results from input - output budgets of the 150
sites, which indicate that an average ca 80% of the incoming N is retained in the
forest ecosystem.

C/S ratios vary mostly between 150 and 250, indicating that net S mineralisation is
likely to be considerable. This is in accordance with results from input-output
budgets of the 150 sites, which indicate that on average all the incoming SO, is
leached from the system.

C/P ratios are very high and vary mostly between 450 and 950, indicating that net
mineralisation of P is likely to be very small, and that P deficiencies in these forest
soils are likely. This is in accordance with the results of foliar P contents, which
indicate an absolute P deficiency in 63% of the sites.

Nutrient pools in the humus layer are such that they can provide the tree with
nutrients during a long period, except for K, in addition to the nutrient supply by
atmospheric deposition and long-term weathering.

The impact of humus layer horizon and tree species on nutrient contents and
nutrient ratios was small. For oak the N, Ca, Mg and K contents were higher than
for the other species, in accordance with the elevated foliar contents for those
nutrients in oak. The median pools of carbon and nutrient in the LF horizon
were, however almost three times the median pools found in the H horizon.

Soil acidity and exchangeable cations

66

Results for the pH in a water extract and in a KCI extract generally varied between
3.5 and 5 and between 2.5 and 4, respectively, in the humus layer. The pH values
measured in the H horizon were lower than those in the LF horizon, due to the
stronger dissociation of protons from the humified organic matter pool. The
impact of tree species on the pH was small.
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The cation exchange capacity (CEC) of the humus layer varied mostly between
200-400 mmol..kg", being nearly twice as low as values reported in literature. The
CEC normalised to the organic matter content ranged between 2.4 and 8.0
mmol..kg™" per % organic matter, which is also low compared to literature data.
The low values may partly be due to the low pH values in the Dutch forest stands,
whereas the variation is also strongly related to the pH variation. The median
CEC varied only slightly between the various humus layer horizons and tree
species

Exchangeable cations on the adsorption complex were generally dominated by
protons (on average approximately 50%) followed by Ca (on average
approximately 25%). Exchangeable Al contents were relative low, since there is no
mineral pool of Al in the organic layer. The H horizons had almost twice as low
exchangeable Ca, Mg, K, Na and NH, contents as the LF horizons,
corresponding to the lower pH of the H horizon. Tree species, however, hardly
affected exchangeable cation contents.

Contents and pools of heavy metals

Approximately 95% of the forest stands do have contents of Pb, Cd, Cu and Zn
in the humus layer that are higher than those observed in unpolluted areas (the
northernmost part of Sweden). High to extremely high contents were mainly
located in the strongly polluted Kempen area in the southern part of the
Netherlands. Contents of Cd and Zn in the humus layers were highly correlated
indicating co-emission and co-deposition of these metals.

In general, the humus layers are most strongly polluted with Pb, followed by Zn,
Cd and Cu. Extremely high values, exceeding the so called intervention value,
above which sanitation actions are required, were observed for Pb, Cu, and Zn at
three locations.

Differences between heavy metal contents in LF and H layers were relatively
small. Contents of Pb, Cd, Cu and Zn, in humus layers generally decreased going
from spruce forests to pine forests to deciduous forests, but such a trend was not
found for the heavy metal pools

Toxic effects of heavy metals on soil microbiota and soil invertebrates seems quite
unlikely in Dutch forests, except for Pb. Elevated metal contents in the litter layer
may, however, retard decomposition, thus lowering the availability of nutrients.
Estimated average annual deposition rate of heavy metals, derived by dividing the
heavy metal pool in the humus layer with the age of the trees, were generally
higher than those simulated by atmospheric deposition models. This is likely due
to the higher surface roughness of forests compared to low vegetation.
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5 Chemical composition of the mineral topsoil

In this chapter we give an overview of characteristics of the mineral soil, subdivided
in contents and pools of (i) organic matter (also bulk densities), (ii) nutrients and
nutrient ratios, (iii) pH and exchangeable cations and (iv) oxalate-extractable Al, Fe
and P. First the variation in the observed data is given and then the influence of soil
type and soil layer is discussed.

51  Contents and pools of organic matter

Compared to the humus layer, the organic matter contents in the mineral soil are
much lower, but the pool of organic matter is generally twice to thrice as large (cf.
Table 14 corrected values and Table 45). This is due to the much (ca. ten times)
higher bulk densities of the mineral soil, which have been derived from the
pedotransfer functions with organic matter content as described in Section 2.6, Eq.
(2). There are two mineral layers with an organic matter content above 30% (one
even up to 79%; Table 45) which can be considered as peat soils.

Table 45 Minimum, maximum, 5, 50, and 95 percentiles of the organic matter content, bulk density and total
pool of organic matter, carbon, nitrogen and phosphorus in the mineral topsoil

Statistics Organic matter  Bulk density  Organic matter
content (kg.m-3) pool
(9.kg) (ton.ha?)

minimum 7 150 34

5 percentile 9 1199 43

50 percentile 38 1393 159

95 percentile 77 1592 277

maximum 790 1608 466

Both the content and pool of organic matter generally increased from Haplic
Arenosols < Cambic Podzols < Fimic Anthrosols < Dystric Gleysols < Gleyic
Podzols < Umbric Gleysols (Table 46).

Table 46 Median values of the organic matter content, bulk density and the total pool of organic matter in the
mineral topsoil of six soil types

Soil type N Organic matter  Bulk density ~ Organic matter
content (kg.m-3) pool
(9.kg1) (ton.hat)

Haplic Arenosol? 26 16 1541 70

Gleyic Podzol? 74 45 1345 182

Cambic Podzol 17 29 1453 126

Fimic Anthrosol 1 35 1404 143

Umbric Gleysol3) 14 56 1300 218

Dystric Gleysol 5 41 1336 164

) including Gleyic Arenosols

2 including Carbic Podzols

3) including organic rich soils
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It illustrates that the organic matter content increases when the circumstances for
decomposition are less favourable; in this case too wet or too acid.

5.2 Organic carbon and nutrients

Carbon and nutrient contents and ratios

Compared to the humus layer, the C and N contents in organic matter were generally
lower in the mineral soil. Median C and N contents were 425 and 20 g.kg",
respectively (Table 47), compared to 579 and 22 g.kg" in the humus layer (Table 19).
With respect to N, this is contrary to what is generally found in forest soils and it
again indicates the impact of atmospheric N deposition in the N contents in the
humus layer. Moreover, N contents in the humus layer are much higher than in
relatively unpolluted areas such as e.g. Scandinavia, suggesting N immobilisation due
to high N deposition. The range in both C and N contents is, however, larger in the
mineral topsoil compared to the humus layer. For example, N contents exceeding 30
g.kg™" in the mineral topsoil do occur in approximately 5% of the plots, whereas this
is the maximum value in the humus layer. The C/N ratio is also lower in the mineral
soil, which is to be expected considering the stronger degree of humification.

The total P contents in organic matter are clearly higher in the mineral topsoil than in
the humus layer, but this is a bit misleading since only part of the total P is
organically bound (Compare Table 47 and Table 22). The C/P and N/P ratios are
much lower in the mineral soil since P not only occurs in organic matter but also in
mineral form.

Table 47 Minimum, maximum, 5, 50, and 95 percentiles of nutrient contents (in percentage of the organic
matter) and nutrient ratios of the mineral topsoil

Statistics Nutrient content (g.kg1) Nutrient ratio

C N P C/N C/P N/P
minimum 257 13 0.7 10 13 0.76
5 percentile 311 15 1.2 14 45 2.8
50 percentile 425 20 2.8 20 154 7.6
95 percentile 519 29 9.0 28 365 16
maximum 596 41 33 34 537 21

Median nutrient contents in the mineral topsoil did not vary much between the six
considered soil types (Table 48). N contents were, however, clearly higher in the
relatively rich Anthrosols and Humic Gleysols than the relatively poor Arenosols and
Podzols. Furthermore, the total P content is much larger in the Fimic Anthrosols,
indicating the impact of long-term fertilisation (sod application) in the past centuries
on these soils, which gave them their present appearance of an organically rich
topsoil of more than 50 cm. Furthermore, the P content is comparatively low in the
Umbric Gleysol. These anomalies are further reflected in a low C/P ratio and N/P
ratio in the Fimic Anthrosols and Umbric Gleysols, respectively (Table 48).
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Table 48 Median values of the nutrient contents (in percentage of the organic matter) and nutrient ratios of the
mineral topsoil for six soil types

Soil type Nutrient content (g.kg1) Nutrient ratio
C N P C/N C/P N/P

Haplic Arenosol? 378 22 3.9 18 91 54
Gleyic Podzol? 431 19 2.6 24 228 9.8
Cambic Podzol 426 19 3.7 23 123 54
Fimic Anthrosol 483 27 75 17 64 3.6
Umbric Gleysol® 439 21 19 20 261 12.4
Dystric Gleysol 458 29 3.7 16 114 7.1

9 including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

Carbon and nutrient pools

Despite the fact that the N contents in organic matter in the mineral topsoil are
slightly lower than in the humus layer, the N pools in the mineral topsoil are much
higher than in the humus layer (Table 49). This is because the pool of organic matter
in the mineral topsoil, and thereby also the C pool is generally twice to thrice as large
as in the humus layer, due to the much higher bulk density of the mineral layer
(Section 5.1). Considering this difference and the larger P content in the mineral
topsoil than in the humus layer, it is clear that the P pools are much larger in the
mineral layer (Compare Table 49 and 25).

Table 49 Minimum, maximum, 5, 50, and 95 percentiles of the total pools of C, N and P in the mineral topsoil

Statistics C pool N pool P pool

(kg.ha?) (kg.hat) (kg.ha?)
minimum 8683 576 100
5 percentile 15828 942 182
50 percentile 70625 3144 362
95 percentile 131374 6874 1530
maximum 246524 9486 4473

Median C, N and P pools in the mineral topsoil varied quite strongly between the six
considered soil types (Table 50). C and N pools increased from Haplic Arenosol <
Cambic Podzol < Gleyic Podzol < Fimic Anthrosol < Dystric Gleysol < Umbric
Gleysol.

Table 50 Median values for the total pools of C, N and P in the mineral topsoil for six soil types

Soil type C pool (kg.ha?) N pool (kg.ha?) P pool (kg.hat)
Haplic Arenosol? 26738 1648 252
Gleyic Podzol? 76483 3425 342
Cambic Podzol 57539 2728 545
Fimic Anthrosol 69104 3761 1222
Umbric GleysoP® 99048 5554 418
Dystric Gleysol 76152 4501 637

1 including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils
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This is mainly due to the increasing amount of organic matter in this direction of
soils, which is clearly reflected in the C pools. The sensitivity of acid forest soils to N
accumulation is likely to decrease in the same direction.

53 Soil acidity and exchangeable cations

Soil acidity

As with the humus layer, results for the pH in a water extract and in a KCl extract
generally varied between 3.5 and 4.5 and between 2.5 and 4.0, respectively, in the
mineral topsoil (Table 51). Differences in the measured pH between the soil types
were generally small. Such low values are generally observed in mineral topsoils of
non-calcareous sandy soils in the Netherlands (e.g. Kleijn et al., 1989; Van Breemen
and Verstraten, 1991). Differences between pH-H,O and pH-KCI were
approximately 0.5, being less than in the humus layer. This can be expected
considering the higher H adsorption in the humus layer and thus the higher impact
of a KCI extract on exchanging protons from the exchange complex. As with the
humus layer, the differences between pH-H,O and pH-KCI generally increased with
an increase in CEC.

Table 51 Minimum, maximum, 5, 50, and 95 percentiles of the pH-H2O and the pH-KCI of the mineral
topsoil for six soil types

Soil type pH-H20 pH-KCI

min 5 50 95 max___ min 5 50 95 max

Haplic Arenosold 3.7 3.9 4.2 4.7 4.9 3.4 35 3.8 4.3 4.3
Gleyic Podzol? 3.7 38 4.0 45 5.4 29 31 35 39 4.2
Cambic Podzol 4.0 4.0 4.2 45 45 3.6 3.6 3.8 41 41
Fimic Anthrosol 3.7 37 39 43 43 31 31 32 3.7 37
Umbric Gleysol® 3.4 35 39 48 4.8 26 26 35 4.0 4.1
Dystric Gleysol 39 39 4.1 47 4.9 33 32 3.6 3.8 39
b including Gleyic Arenosols

2 including Carbic Podzols

3 including organic rich soils

Cation exchange capacity

The CEC in the mineral topsoil was much lower than in the humus layer, in line with
the much lower organic carbon content in the mineral soil. (Compare Table 52 and
Table 30). The median value was even ten times lower (32 compared to 302
mmol.kg"). The CEC normalised to the percentage of organic matter, which is the
main source of variation in CEC in sandy soils, was, however, clearly higher in the
mineral topsoils than in the humus layer of the 150 forest stands (Compare Table 52
and Table 30). This is most likely due to the higher degree of humification in the
mineral topsoil. The CEC normalised to the organic matter content also varied quite
strongly. This effect is mainly cause by differences in organic matter quality and pH.
Helling et al. (1964), for example, reported an increase of 5.1 mmol.kg" per %
organic carbon per pH unit (see Eq. ), being equal to approximately 2.6 mmol..kg™
per % organic matter per pH unit. Kalisz and Stone (1980) have reported a
comparable change. The median value of 8.3 mmol.kg™* for 1% organic matter is
comparable to an average value of 7.6 mmol..kg" for 1% organic matter, reported by

72 Alterra-rapport 424.1



Kleijn et al. (1989) for eight sandy soil below Douglas stands. Despite the lower CEC
in the mineral topsoil compared to the humus layer, the exchangeable cation pool
(kmol_.ha™) is larger because of the ten times higher bulk density (Compare Table 52
and Table 30).

Table 52 Minimum, maximum, 5, 50, and 95 percentiles of the CEC of the mineral topsoil
Statistics CEC CEC of 1%
organic matter
mmolc.kg?  kmolc.hal  mmolc.kg?

minimum 5.8 29 3.6
5 percentile 10 48 57
50 percentile 32 134 8.3
95 percentile 73 261 14
maximum 287 359 28

The CEC and the exchangeable pools generally increased from Haplic Arenosols <
Cambic Podzols < Fimic Anthrosols < Gleyic Podzols < Umbric Gleysols< Dystric
Gleysols. This is quite comparable to the pools of organic matter, illustrating the
relationship between these parameters (Compare Table 46 and 53). Per % organic
matter, the CEC in the mineral topsoil is clearly higher in the Dystric Gleysol
(mmol..kg™) than in all the other soils (between 6.5-10 mmol..kg™).

Table 53 Median values of the CEC of the mineral topsoil for six soil types
Statistics CEC CEC of 1%
organic matter
mmolc.kg?  kmole.hal  mmolc.kgt

Haplic Arenosol? 15 67 9.8
Gleyic Podzol? 41 163 84
Cambic Podzol 21 88 6.9
Fimic Anthrosol 24 92 6.7
Umbric Gleysol3) 50 176 8.2
Dystric Gleysol 71 291 14

) including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

Exchangeable cation contents and pools
The base saturation was much lower and the Al saturation was much higher in the
mineral topsoil compared to the humus layer (Compare Table 54 and Table 32).

Table 54 Minimum, maximum, 5, 50, and 95 percentiles of the exchangeable cation content (in percentage of the
CEC) of the mineral topsoil

Statistics Exchangeable cation content (%)

H Al Fe Ca Mg K Na NH,4
minimum 0.0 1 0.7 0.0 04 0.2 0.0 0.3
5 percentile 5.8 32 1.7 0.9 0.6 0.5 0.1 0.4
50 percentile 21 66 47 31 11 14 0.6 11
95 percentile 46 79 12 23 3.3 3.1 13 31
Maximum 57 87 22 87 10 6.4 6.5 53
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This reflects that Al mobilisation in the humus layer is negligible but that it is the
dominant buffer mechanism in the mineral topsoil. Unlike the humus layer, where
the exchangeable cations on the adsorption complex were generally dominated by
protons (H), exchangeable Al dominates the exchange complex in the mineral
topsoil. Generally, Ca was the dominating base cation, being very high in the three
calcareous soils (up to 87%). The median base saturation was, however, below 10%,
illustrating the strong acidification of those acid sandy soils.

Obvious differences in exchangeable cation contents were observed between the
various soil types (Table 55). The median Al saturation was considerably higher in
the Haplic Arenosol and in the podzolic soils (approximately 65-75%) than in the
Fimic Anthrosol and in the gleysoils (approximately 40-55%). Specifically in the
Fimic Anthrosol, this difference is mainly due to a higher proton saturation and Fe
saturation, suggesting that this soil type is even more acidified. In the two gleysoils,
however, the Ca saturation is clearly higher (three to five times as high as in the
podzols), reflecting the larger buffer capacity of those soils (Table 55).

Table 55 Median values of the occupation of the exchangeable cation content (in percentage of the CEC) of the
mineral topsoil for six soil types

Soil type Exchangeable cation content (%)

H Al Fe Ca Mg K Na NH4
Haplic Arenosol? 16 70 55 2.7 1.2 1.8 0.6 1.2
Gleyic Podzol? 24 66 3.8 29 0.9 0.9 0.5 0.9
Cambic Podzol 12 73 7.1 2.6 11 15 05 12
Fimic Anthrosol 32 42 11 41 15 2.0 0.8 19
Umbric Gleysol® 26 41 4.9 6.7 19 15 0.7 13
Dystric Gleysol 14 55 3.8 12 2.2 2.3 0.7 0.5

D including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

As with the exchangeable cation contents, the exchangeable cation pools generally
decreased according to AI>H>Fe>Ca followed by Mg, K, Na and NH, (Table 56).
Despite the much lower base saturation, the exchangeable base cation pools are only
slightly lower in the mineral topsoil compared to the humus layer since the
exchangeable total cation pool is much higher in the mineral soil (Compare Table 56
and Table 33). Again, considering a net acid input of ca 5.0 kmol_.ha™.yr* on Dutch
forests in 1990 (Erisman, 1992), it is clear that the exchangeable pool of base cations
in the mineral topsoil is very limited in most soils. At more than 50% of the soils he
exchangeable base cation pool is comparable to this value.

Table 56 Minimum, maximum, 5, 50, and 95 percentiles of the exchangeable cation pool in the mineral topsoil

Statistics Exchangeable cation pool (kmolc.hal)

H Al Fe Ca Mg K Na NH,4
Minimum 0.0 12 1.0 0.0 0.33 0.43 0.0 033
5 percentile 3.3 30 1.6 0.61 0.56 0.65 0.16 0.57
50 percentile 29 71 55 4.1 12 15 0.66 14
95 percentile 100 150 15 45 5.8 4.8 2.1 35
Maximum 133 207 34 168 23 75 33 9.7
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The differences in exchangeable cation pools between the various soil types are
different from the exchangeable cation contents (Table 57). Unlike the Dystric
Gleysoils, the median Al saturation was comparable among the soil types, but the
exchangeable H, Fe and Ca pool is clearly higher in the two gleysoils compared to all
other soil types.

Table 57 Median values of the exchangeable cation pool in the mineral topsoil for six soil types

Soil type Exchangeable cation pool (kmolc.hal)

H Al Fe Ca Mg K Na NH4
Haplic ArenosolY 10 47 35 1.8 0.91 1.2 0.35 0.93
Gleyic Podzol? 34 96 52 4.7 12 12 0.79 15
Cambic Podzol 9.7 67 6.7 25 0.88 16 0.37 13
Fimic Anthrosol 31 41 11 41 13 2.0 0.75 17
Umbric Gleysol3) 42 70 1.7 16 45 2.3 14 19
Dystric Gleysol 43 138 9.8 35 6.5 54 15 1.3

) including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

5.4  Oxalate extractable aluminium, iron and phosphorus

The contents and pools of oxalate extractable Al and Fe do give an indication of the
buffer capacity of the soil in an acidified (Al buffer range) up to an extremely
acidified (Fe buffer range) situation. Results show that the readily available Al pool
varies mostly between 100- 1000 kmol.ha™* (Table 58). Considering a net acid input
of ca 5.0 kmol.ha™.yr" on Dutch forests in 1990, it is clear that this Al pool can be
depleted at such extreme input within a period of approximately 20-200 years. De
Vries et al. (1993) estimated Al depletion times of 10 —50 years in topsoils of 10 cm
in response to various deposition scenarios, showing that Al depletion is a realistic
danger at high acid inputs. The depletion of Al might induce an increase in Fe
buffering, which in turn leads to a decrease in the availability of phosphate (De Vries,
1994). Furthermore, the decrease of those pools in podzolic sandy soils may cause a
loss in the structure of those soils. In general Fe pools are clearly lower than those of
Al (Table 58).

Table 58 Minimum, maximum, 5, 50, and 95 percentiles of the oxalate extractable aluminium and iron contents
and pools in the mineral topsoil

Statistics Al Fe

mmolc.kgt  kmolc.hat mmolc.kgt  kmolc.hat
minimum 177 37 2.1 78
5 percentile 42 171 8.3 35
50 percentile 110 451 31 130
95 percentile 215 766 121 492
maximum 289 1077 182 728

Both the content and pool of readily available Al generally were clearly lower for the
Haplic Arenosols and Fimic Anthrosols compared to the other soils. The Fe pool
was however highest in the Fimic Anthrosols, together with the Cambic Podzols and
Dystric Gleysols (Table 59).
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Table 59 Median values of the oxalate exchangeable aluminium and iron contents and pools in the mineral topsoil

for six soil types

Soil type Al Fe
mmolckg! kmolc.hal  mmolc.kg!  kmolc.hat

Haplic Arenosol? 63 292 23 106
Gleyic Podzol? 121 512 22 81
Cambic Podzol 133 571 77 336
Fimic Anthrosol 57 216 69 282
Umbric Gleysol® 103 343 30 99
Dystric Gleysol 118 502 51 202

9 including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

On average, the oxalate extractable content of P, which is a measure of the total
amount of phosphate sorbed by both reversible adsorption and slow diffusion
controlled precipitation (Section 2.6), is approximately half the total content of P
(Table 60). The percentage of sorbed P varies from 14-100, which means that 0-86%
of P is retained in minerals, which is only released by weathering. The ratio of oxalate
extractable P to Al and Fe varies mostly from 0.02-0.18. Assuming a phosphate
sorption capacity that is half the content of oxalate extractable Al and Fe (Eq. 14),
the phosphate saturation of the sorption complex varies mostly from 4-36%. This is
much lower than in agricultural soils where the input of P by animal manure has led
to large areas of complete P saturation. Only 1 plot approached 80% saturation.

Table 60 Minimum, maximum, 5, 50, and 95 percentiles of phosphor parameters of the mineral topsoil

StatistiCS Pox Pox/PtotaI Pox/(AH‘Fe)ox
(mmolc.kg?) (%) (mol.mol-1)

minimum 0.10 14 0.01

5 percentile 0.66 38 0.02

50 percentile 17 57 0.03

95 percentile 11 86 0.18

maximum 32 100 0.40

There is not much difference between the median P content and percentage of
oxalate extractable P tot total P and oxalate extractable Al and Fe, with the exception
of the Fimic Anthrosol (table 61).

Table 61 Medium values of phosphor parameters for the mineral topsoil of six soil types

Soil Type Pox Pox/ Potal Pox/(Al"‘FG)ox
(mmolc.kgt) (%) (mol.mol-1)
Haplic Arenosol? 0.93 51 0.03
Gleyic Podzol? 2.3 57 0.05
Cambric Podzol 2.3 61 0.04
Fimic Anthrosol 7.8 80 0.18
Umbric Gleysol3) 1.8 52 0.03
Dystric Gleysol 1.9 41 0.03

1 including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils
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In this soil type, the all phosphorus parameters are much higher. Here, the median P
saturation is even 36%. This illustrates the impact of previous sod application during
centuries on those soils, as mentioned before.

5.5 Conclusions

Contents and pools of organic matter, carbon and nutrients

- Compared to the humus layer, the organic matter and carbon contents in the
mineral soil are much lower, but the pools of both organic matter and carbon are
generally twice to thrice as large, because of the much (ca. ten times) higher bulk
densities of the mineral soil. The organic carbon content increases when the soils
become more wet or acid, which are less favourable circumstances for
decomposition.

- The N contents in organic matter were generally slightly lower in the mineral soil
(median value of 20 g.kg"), than in the humus layer (median value of 22 g.kg™"),
indicating the impact of atmospheric N deposition on the N contents in the
humus layer.

- Despite the high N contents in the humus layer, the C/N ratio was generally
lower in the mineral soil, indicating the stronger degree of humification. C/P and
N/P ratios were much lower in the mineral soil since P not only occurs in organic
matter but also in mineral form.

- C and N contents and C and N pools generally increased in the direction
Arenosols<Podzols<Anthrosols< Gleysols, reflecting partly the fertility of those
soil types. Furthermore, the total P content and P pool was much larger in the
Fimic Anthrosols, indicating the impact of long-term fertilisation in the past.

Soil acidity and exchangeable cations

- As with the humus layer, results for the pH in a water extract and in a KCI extract
generally varied between 3.5 and 4.5 and between 2.5 and 4.0, respectively, in the
mineral topsoil. Differences between pH-H,O and pH-KCI were approximately
0.5, being less than in the humus layer.

- The CEC in the mineral topsoil (median of 32 mmol..kg") was much lower than
in the humus layer (median of 302 mmol..kg") because of the much lower organic
matter content in the mineral layer. The CEC, normalised to 1% of organic
matter, was, however, higher in the mineral topsoil (median of 8.3 mmol..kg™)
than in the humus layer (median of 4.7 mmol.kg"). This was also the case with
the exchangeable cation pool because of the much higher bulk density of the
mineral layer.

- The proton and base saturation was much lower and the Al saturation was much
higher in the mineral topsoil compared to the humus layer. This indicates that Al
mobilisation is the dominant buffer mechanism in the mineral topsoil, whereas
exchange of protons with base cations dominates in the humus layer. The
exchangeable cation pools generally decreased according to Al>H>Fe>Ca
followed by Mg, K, Na and NH,
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- Al saturation was considerably higher in the more acidic Arenosols and Podzols
(median of 65-75%) than in the more buffered Anthrosols and Gleysols (median
of 40-55%).

Contents and pools of oxalate extractable aluminium, iron and phosphorus

- The readily available, oxalate extractable, Al pool varies mostly between 100- 1000
kmol..ha™. Considering the net acid input in 1990, this Al pool can be depleted
within a period of within several decades to centuries.

- The ratio of oxalate extractable P to Al and Fe varies mostly from 0.02-0.18,
implying phosphate saturation percentage between 4-36. This is much lower than
in agricultural soils where the input of P by animal manure has increased this
percentage.

- The content and pool of oxalate extractable Al was clearly lower in the Fimic
Anthrosols compared to the other soils, whereas the oxalate extractable P content
was much higher. Consequently, the degree of P saturation was much higher in
those soils
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6 Chemical composition of the soil solution

6.1 Trends in time

Soil sampling covered a period of 8 weeks from mid February to mid May. This can
lead to fluctuations in element concentrations due to hydrological during this period.
Therefore at 10 sites, sampled in February begin, we took a second sample in May.
Results for the difference in the element concentration thus obtained is illustrated in
Table 62.

Table 62 Median values of the difference in element concentrations of the soil solution between May and February
1990

Element Difference in element concentration (molc.m-3)
Topsoil Subsoil Total
pH -0.04 -0.04 -0.04
Al 0.05 0.01 0.03
Fe 0.00 -0.01 0.00
NH4 0.03 -0.04 -0.01
Ca -0.01 -0.24 -0.11
Mg 0.02 0.00 0.02
K 0.10 0.03 0.03
Na 041 0.37 041
Cl 0.40 0.15 0.36
NOs -0.02 0.01 0.00
SO4 0.16 -0.01 0.04
HoPOs 9 -0.17 0.00 0.00
RCOO 0.18 -0.02 0.09
S kat 0.44 0.06 0.33
San 0.59 -0.05 041

) The concentration is given in mg P.I-

Results show that the concentrations of Na, Cl and SO, (behaving as tracers) differed
most, especially in the topsoil. As expected, concentrations were higher in May as in
February, especially in the topsoil, related to lower water fluxes in this period. For
the other elements the median values of the differences were low. For the subsoil,
the median Ca concentration was clearly higher in may than in February. At the
individual sites, differences were large, but there was generally not such a systematic
trend as for Na, Cl and SO,. It should thus be kept in mind that specifically the
differences in SO, concentrations between sites might not only be due to differences
in SO4 input from the atmosphere and in stand and site characteristics influencing
that input. It may also be due to differences in the time period in which the samples
were taken. The results given in Table 61 do represent the median values. At
individual sites these differences can be much larger.
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6.2 General characterisation

Element concentrations

In the soil solution, all the major cations and anions were measured, i.e. H, Al, Fe,
Ca, Mg, K, Na, NH, NO, SO, Cl and RCOO. Important indicators for
acidification and eutrophication of the forest ecosystem are the dissolved Al and
NO, concentration, respectively. In the forest topsoil, the dissolved concentration of
NH, is also an important indicator for eutrophication. Regarding acidification, pH
and SO, concentration are also interesting. Results for the mineral topsoil and subsoil
of the 150 forest stands are given in Table 63.

Table 63 Minimum, maximum, 5, 50 and 95 percentiles of element concentrations in the soil solution of the
mineral topsoil and the sub soil

Element Concentration in the topsoil (molc.m-3)  Concentrations in the subsoil (molc.m-3)
min 5% 50%  95%  max min 5% 50%  95%  max
H 004 007 025 056 16 000 002 013 028 046
Al 012 019 o064 19 11 000 005 059 32 12
Fe 000 001 002 008 020 000 000 004 041 077
NH4 004 006 019 11 32 002 004 009 012 14
Ca 006 013 044 18 35 006 009 038 31 18
Mg 0.06 0.11 0.25 0.75 1.6 0.04 0.07 0.23 0.85 43
K 003 008 020 061 12 002 004 010 031 19
Na 026 034 077 26 6.5 030 037 078 22 6.5
Cl 040 055 13 2.8 6.8 030 047 11 31 7.9
NOs 000 003 053 18 5.6 000 003 048 24 17
SO4 024 039 099 33 15 018 038 11 36 20
H2PO4Y 000 000 000 069 33 000 000 006 208 373
RCOO 007 011 019 056 29 001 005 014 063 24
S kat 0.93 15 3.0 8.6 21 0.69 11 29 8.1 28
San 094 15 3.0 81 20 078 11 31 84 34
S kat-an -1.8 -062 -005 054 15 -6.5 -1.3 -0.11 027 080

1) The concentration of this element is given in mg P.| -

The results show that the SO, concentrations are higher than the NO, concentrations
indicating the dominance of SO, in soil acidification. NO, concentrations are
generally higher than a target value of 0.4 mol.m?® used in the Netherlands with
respect to drinking water quality. Al concentrations are generally above a critical
value of 0.2 mol.m? related to toxic effects on roots, based on literature
information. Ca concentrations are mostly higher than those of Ng and K. This
illustrates that Ca is the dominant base cation buffering the acid input. Most likely,
the buffering is mainly due to a high base cation (mainly Ca) input from the
atmosphere. Liming/fertilisation in the past may play a role as well. The high input
from the atmosphere can be explained by strong filtering of base cations by the
forest canopy. Total deposition on forests, especially near forest edges can be much
higher (probably about 2.5 to 3.5 times higher) than wet deposition (Draayers et al.,
1992).

Observed high concentrations of Na and Cl are also an indication of the forest

filtering effect. Actually, the Na concentration is generally even higher than that of
Ca, and certainly of Mg and K, but this correlated with an equally high CI
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concentration, illustrating the strong impact of sea salt input in the Netherlands.
Differences between ion concentrations in the topsoil and subsoil are small, except
for the concentrations of H and NH,, which are higher in the topsoil (lower pH
values).

Element ratios
Ranges in calculated relevant element ratios (see par. 2.6) in the soil solution in both
the topsoil and subsoil are given in Table 64.

Table 64 Minimum, maximum, 5, 50 and 95 percentiles of element ratios in the soil solution of the mineral
topsoil and the subsoil
Ratio Ratio in topsoil Ratio in subsoil

min 5% 50% 95% max min 5% 50% 95% max

Equivalent ratio
(NOs+NH4)/SOs 004 026 080 1.7 25 0.00 006 057 15 25

NH4/NO3 004 010 049 28 6.8 001 004 021 21 9.8
Al/(SO4+NO3) 007 017 045 071 089 000 001 045 078 091
Al/RCOO 034 075 29 98 54 000 026 34 31 64
Molar ratio

Al/Ca 006 019 11 25 9.0 000 001 14 5.1 6.1
Al/(Ca+Mg+K) 004 010 041 08 247 000 001 053 204 31
NH«/K 012 033 11 47 18 006 020 098 24 6.7
NHs/Mg 012 022 089 37 7.4 003 008 042 14 35

The equivalent element ratios do mainly give information on the fate on the
buffering of the soil as it tells something on the N and S in the forest soil and the
release of Al and base cations in response to the acid input. Focusing on in the
mineral subsoil (60-100 cm depth), the results show that the (NH,+ NO,)/ SO, ratio
is mostly below 1.0 (median value is 0.57). In 1990, the (NH,+ NO,)/ SO, ratio in
the atmospheric input the Netherlands was larger than 1.0. Assuming that SO,
behaves as a tracer, this implies that a considerable amount of nitrogen is retained as
a result of uptake, immobilisation and/or denitrification. The NH,/NO, ratio is
mostly below 1.0 (median value is 0.21). This indicates a strong degree of nitrification
and/or preferential NH, uptake, since the NH,/NO, ratio in the atmospheric input
in the Netherlands was (much) larger than 1.0 in 1990. The Al/ SO, + NO, ratio
varies 0.01 and 0.8 (median value is 0.45), indicating that the role of Al mobilisation
in acid neutralisation varies strongly. Most likely, the lower values for the Al/ SO, +
NO; are due to a high input of base cations from the atmosphere in buffering the
acid input, as discussed before. The equivalent AI/RCOQO ratio is much mostly much
larger than 1.0 (median values in the topsoil and subsoil are 2.9 and 3.4, respectively)
indicating that toxic free Al dominates the Al speciation compared to non-toxic
organically complexed Al. Since non-toxic organically complexed Al is due to natural
acidification, it implies that anthropogenic acidification due to atmospheric inputs of
S and N is much higher than natural acidification. This result can be seen even
clearer from the ratio of (SO, + NO,)/RCOO, which was nearly always above 1.0
(not given in Table 64).

The molar element ratios are indicators for potential impacts on the forest
ecosystem, specifically in view of root length and root uptake. Results for the mineral
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topsoil (0-30 cm depth) and subsoil (60-100 cm depth) show that both the Al/Ca
ratio and the Al/(Ca+Mg+K) ratio are mostly higher than 1.0, which are considered
average critical values. Median values for the Al/Ca ratio are 1.1 in the topsoil and
1.4 in the subsoil, whereas the median Al/(Ca+Mg+K) ratios are 0.41 and 0.53 in the
topsoil and subsoil, respectively. Due to the preferential uptake of NH, and the
occurrence of nitrification, the ratio of NH, to K and of NH, to Mg nearly always
remains below a critical value of 5. Because of the above-mentioned processes, the
ratios are lower in the subsoil than in the topsoil. Median values are even near or
below 1.0 for both ratios in topsoil and subsoil.

Comparison of element concentrations and element ratios with critical limits
In order to evaluate the results of the soil solution chemistry in terms of possible
negative impacts, use was made of critical chemical values for the concentrations of
NO3 and Al and the molar ratios of Al/(Ca+Mg+K) and NH4/Mg. Criteria thus
used with an explanation of its background, are given in Table 65. In making the
comparison, one has to be aware, however, that element concentrations measured at
the sites in early spring may deviate from annual average values.

Table 65 Critical chemical values for the concentrations of NOs and Al and the molar ratios of
Al/(Ca+Mg+K) and NH4/K

Class Concentration (molc.m-3) Molar ratio (mol.mol-%)
NO; Al NH/K Al/(Ca+Mg+K)
1 (low) <0.19 <0.23 <1 <05
2 (intermediate) 01-08 02-1.0 1-5 05-159
3 (high) >0.82) >1.09 >59 >1.5

1) Clearly elevated NOs concentration (Gundersen et al., 1998) that may be related to vegetation
changes (Warfinge et al., 1992)

2 EU quality criterion for nitrate concentrations in ground water

3 Lowest critical value reported in relation to effects on tree roots of sensitive tree species (Cronan
et al., 1989)

4) Critical value reported in relation to effects on tree roots for less sensitive tree species (Cronan et
al., 1989)

9 Critical value related to decreased base cation uptake (Roelofs et al., 1985; Boxman et al., 1988)

6 Most common range of critical values related to adverse impacts on roots, such as root growth
and root uptake, depending upon tree species (Sverdrup and Warfinge, 1993).

Frequency distributions of the Al and NO, concentration and of the Al/(Ca+Mg+
K) and NH,/K ratio in both the mineral topsoil (0-30 cm) and subsoil (60-100 cm)
show that those critical limits are frequently violated (Fig. 3).
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Fig 3 Frequency distributions of the NO3 and Al concentration (A, B) and of the Al/(Ca+Mg+K) and
NH4/K ratio (C, D) in both the mineral topsoil (0-30 ¢m) and subsoil (60-100 ¢m)

Information on the percentage of plots exceeding the various critical limits is
presented in the Tables 66 and 67. Results show that NO3 concentrations are clearly
elevated at more than 80% of the plots. The EU quality criterion for ground water of
50 mg.I" (0.8 mol..m®) was exceeded in the subsoil at 32% of the plots, , whereas
55% of the sites exceeded the Dutch target value of 25 mg.I"* (0.4 mol.m®) for NO,,
Approximately 80-90 % of the plots exceeded the most stringent limit found in
literature for Al concentration, but even a criterion that was five times as large was
exceeded at 23-35% of the plots, depending on depth. The drinking water standard
of 0.2 mg.I"* for Al was exceeded in the subsoil of all non calcareous soils (147 of the
150 plots).

Table 66 The percentage of observations of NOs and Al concentrations in the mineral topsoil and subsoil between
different class limits

NOjs concentrations exceeding limits (%) Al concentrations exceeding limits (%)
Concentration Topsoil Subsoil concentration Topsoil Subsoil
class (mmolcm-3) class (mmolcm-3)
<100 13 16 <200 8 22
100 - 800 58 52 200 — 1000 69 43
> 800 29 32 > 1000 23 35

Approximately 50-60% of the plots had an Al/(Ca+Mg+K) ratio below 0.5,
indicating that the impact on root uptake is likely to be small at those plots. The
remaining plots had Al concentrations where such impacts are possible or even
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likely. As mentioned before, the ratio of NH, to K nearly always remained below the
critical value of 5.

Table 67 The percentage of observations of Al/(Ca+Mg+K) and NH4/Mg ratios in the mineral topsoil and
subsoil between different class limits

Al/(Ca+Mg+K) ratio exceeding limits (%) NH4/K ratio exceeding limits (%)
Ratio class  Topsoil Subsoil Ratio class  Topsoil Subsoil
(mol.mol-1) (mol.mol-1)
<05 67 46 <1 43 51
05-15 32 44 1-5 53 47
>15 1 10 >5 5 1

6.3 Relations with deposition level, stand and site characteristics

Relations with deposition level and region

The results showed a relationship between the estimated average deposition level in
grids where the forest were located and the concentrations in NO, and SO, in both
topsoil and subsoil. In Table 68, this is illustrated for the topsoil. The impact on the
concentrations of other major cations (specifically Ca and Al) appeared to quite
small.

Table 68 Median values of the pH and the concentrations of major ions in the soil solution of the mineral topsoil
for different acid deposition levels
Element Element concentration (molc.m-3)

<4000 4000-5000 5000-6000 > 6000
(molc.halyrt)
pH 3.6 3.7 3.6 37
Al 0.63 057 0.69 0.62
NH4 0.16 0.16 0.23 0.18
Ca 0.35 0.40 0.46 0.54
NOs 0.37 0.39 0.55 0.70
SO4 0.69 0.91 111 111

A more clear relationship was found between the element concentration and the
region as illustrated in Table 69.

Table 69 Median values of pH and the concentrations of major ions in the soil solution of the mineral topsoil and
subsoil for three regions

Element Element concentration in the topsoil Element concentration in the subsoil
(molem-3) (molem-3)

North Central South North Central South
pH 3.6 37 35 39 4.0 38
Al 0.54 0.59 0.80 0.48 0.42 12
NH4 0.15 0.16 0.30 0.09 0.09 0.10
Ca 0.35 0.37 0.59 0.33 0.28 0.50
NOs 0.38 0.45 0.64 0.33 0.44 0.88
SO4 0.79 0.84 1.38 0.91 1.0 18

In general one expects an increase in acid deposition going from the north to the
south and this is reflected in an increase in the concentrations of NH,, NO; and SO,
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and in response to that also in the concentrations of Al and Ca. It should be
remembered, however, that the effect of region also includes differences in the
occurrence of tree species and other stand characteristics that do influence the soil
solution chemistry, as discussed below.

Relations with stand characteristics

The concentrations of most ions in soil solution were especially influenced by tree
species (Table 70). The impact of tree species on concentrations in NO,, SO, and Al
appeared to be even larger than the impact of the estimated average deposition level
in grids where the forest were located. Lowest pH values and highest concentrations
in NO,, SO, and Al occur below Norway Spruce and Douglas Fir. The reverse is true
for Oak and Beech, whereas Japanese Larch, Scots Pine and Black Pine occupy an
intermediate position. Differences between tree species are probably caused by
increased dry deposition and evapotranspiration, going from deciduous forest to pine
forests to spruce forests.

Table 70 Median values of pH and the concentrations and ratios of major elements in the soil solution of the
mineral topsoil under forest stands of seven major tree species

Element Element concentration (molc.m-3)
Scots Black Douglas  Norway Japanese Oak Beech
pine pine Fir spruce larch
pH 36 37 34 36 37 38 ?
Al 0.70 0.62 16 11 0.74 041 044
NH4 0.18 0.20 0.63 0.49 0.23 0.13 0.14
Ca 0.38 0.36 093 0.58 0.45 0.51 0.27
NOs 0.47 0.27 11 0.49 0.62 0.57 0.20
SO4 0.97 0.80 2.2 2.0 1.0 0.85 0.63
Element ratio (mol.mol-1)
Al/Ca 11 1.3 13 14 1.2 0.63 1.2
NH4/K 1.0 1.2 2.6 2.5 1.7 0.53 0.64

Other stand characteristics that did influence the concentrations in soil solution were
tree height, canopy coverage (Table 71). For most ions, concentrations increased
with an increase in tree height and canopy coverage, most likely due to an increase in
dry deposition and evapotranspiration. The impact of the distance to the nearest
forest edge appeared to be small (not shown in Table 71).

In the Tables 70 and 71, the relation between soil solution chemistry and stand and
site characteristics is assessed for each characteristic separately, whereas there is an
interaction between those characteristics. Relationships between soil solution
parameters and site characteristics were derived by multiple linear regression analysis
(Leeters et al., 1994). Relative good relationships (explanation of more than 50% of
the variance encountered) were found between the SO, and Al concentration and the
tree species, tree height and acid atmospheric deposition. The influence of canopy
coverage and distance of trees to the forest edge appeared to be less important.
However, it should be noted that there is a relationship between these characteristics
and the tree species. For example, the canopy coverage of Douglas Fir and Norway
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Spruce is larger than for the other coniferous trees, and the distance to the forest
edge is larger for coniferous than for deciduous trees.

Table 71 Median values of pH and the concentrations of major elements in the soil solution of the topsoil for
important stand characteristics

Stand characteristic pH Element concentrations (molc/m3)

Al NH4 Ca Na NO3 SOq4
Canopy coverage (%)
<50 3.6 0.52 0.15 0.39 0.66 0.44 0.83
50-75 3.6 0.63 0.23 0.45 0.77 0.54 1.01
> 75 3.6 0.72 0.17 0.46 1.00 0.63 1.25
Tree height (m)
<5 3.8 0.19 0.08 0.15 0.33 0.21 0.35
5-10 37 0.40 0.14 0.36 0.56 031 0.73
10-15 36 0.67 0.23 0.44 0.80 0.54 1.03
15-20 36 0.73 0.23 0.45 0.78 0.58 1.02
> 20 3.6 0.78 0.18 0.46 0.89 0.53 1.08

Relations with site characteristics

Site characteristics that may influence the concentrations in soil solution are soil type
and ground water level. For most ions, there were no clear relations between soil
type and ion concentrations (Table 72). This is to be expected since all considered
soil types are acid sandy soils, with relatively small differences in acid buffering.

Table 72 Median values of pH and the concentrations and ratios of major elements in the soil solution of the
topsoil for six soil types

Element Element concentration (molc.m-3)
Haplic) Gleyi® Cambic Fimic Umbri®® Dystric
Arenosol Podzol Podzol Anthrosol Gleysol Gleysol
pH 38 35 3.7 34 34 3.7
Al 0.62 0.66 0.80 0.61 0.55 0.48
NH4 0.16 0.22 0.23 021 0.15 0.06
Ca 041 0.40 0.33 0.53 0.60 0.73
NOs 0.56 0.45 0.58 0.64 0.58 0.39
SO4 0.89 1.0 0.79 1.0 0.97 13
Element ratio (mol.mol-1)
Al/Ca 11 12 14 0.19 0.74 0.44
NH4/K 1.0 15 1.0 1.0 0.71 0.57

Dincluding Gleyic Arenosols
2 including Carbic Podzols
3)including organic rich soils

6.4 Conclusions

Element concentrations

- SO, concentrations were higher than the NO, concentrations indicating the
dominance of SO, in solil acidification.

- NO, concentrations were generally higher than a target value of 0.4 mol.m?, used
in the Netherlands with respect to drinking water quality.
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Al concentrations were mostly above a critical value of 0.2 mol.m®, related to
toxic effects on roots.

Differences between ion concentrations in the topsoil and subsoil were small,
except for the pH, which is lower in the topsoil.

Elementratios

The (NH,+ NO,)/ SO,, indicating the contribution of both compounds to soil
acidification, is mostly below 1.0 (median value was 0.57), whereas this ratio was
larger than 1.0 in the atmospheric input in the Netherlands in 1990. Assuming
that SO, behaves as a tracer, this implies that a considerable amount of nitrogen is
retained as a result of uptake, immobilisation and/or denitrification.

The NH,/NOQO, ratio, indicating the degree of nitrification, was mostly below 1.0
(median value was 0.21). This indicates a strong degree of nitrification and/or
preferential NH, uptake, since the NH,/NQOj, ratio in the atmospheric input in the
Netherlands was (much) larger than 1.0 in 1990.

The Al/(SO, + NO,) ratio, indicating the degree of Al mobilisation by acidic
inputs, varied from strongly (from 0.01-0.8 with a median value of 0.45). Most
likely, the lower values for the Al/(SO, + NO,) ratio are the result of a high base
cation (mainly Ca) input from the atmosphere, due to strong filtering of base
cations by the forest canopy. Liming/fertilisation in the past may also play a role.
The median AI/RCOO ratio was 3.4, indicating that toxic free Al dominates the
Al speciation compared to non-toxic organically complexed Al.

Both the Al/Ca ratio and the Al/(Ca+Mg+K) ratio are mostly higher than 1.0,
which are considered average critical values. Median values for the Al/Ca ratio are
1.1 in the topsoil and 1.4 in the subsoil, whereas the median Al/(Ca+Mg+K)
ratios are .. and.. in the topsoil and subsoil, respectively. This implies that adverse
effects of Al on roots are likely.

The ratio of NH, to K and of NH, to Mg nearly always remained below a critical
value of 5. Median values are even near or below 1.0 for both ratios in topsoil and
subsoil. This is likely due to preferential NH, uptake and nitrification.

Relationships between soil solution chemistry and environmental factors

The concentrations of most ions in soil solution were especially influenced by tree
species. Lowest pH values and highest concentrations in NO,, SO, and Al occur
below Norway Spruce and Douglas Fir. The reverse is true for Oak and Beech,
whereas Japanese Larch, Scots Pine and Black Pine occupy an intermediate
position. Differences between tree species are probably caused by increased dry
deposition and evapotranspiration.

There was a clear impact of the estimated average deposition level in grids where
the forest were located on concentrations in NO, SO, and Al, but it appeared to
be smaller than the impact of tree species.

Other stand characteristics that did influence the concentrations in soil solution
were tree height, canopy coverage and to some extent the distance to the nearest
forest edge. For most ions, concentrations increased with an increase in tree
height and canopy coverage, most likely due to an increase in dry deposition and
evapotranspiration.
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7 Relations between ion concentrations in soil and soil
solution and the assessment of model parameters

7.1 Introduction

Information on relationships between chemical parameters in soil and soil solution is
crucial in models that simulate the response of soil to element inputs from the
atmosphere. Most relevant are relationships or more precisely model parameters
describing the major buffering processes in soils, which include N retention, Al
release and cation exchange. Furthermore, the role of P adsorption is relevant to gain
insight in the behaviour of this element that may be limiting in forest soils. Here we
describe results of simple assessments (Section 7.2) and of derived model parameters,
applying the theories described in section 2.6 (Section 7.3).

7.2 Relations between the chemical composition of the soil solution
and solid phase

Correlation between ion concentrations in soil solution

In acidified soils, with a pH below 5, it is likely that the net acidic input by S and N
compounds is mainly neutralised by Al release, while the remaining part is leached as
protons. This hypothesis was tested by relating the sum of H plus Al concentration
to the sum of the SO, and NO, concentration in both the mineral topsoil and
subsoil. Results thus obtained showed a clear linear relationship between the H+AI
concentration and the concentration of SO,+NO, (Fig. 4).
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Figure 4 Relationships between the sum of the H plus Al concentration and the sum of the SO4 and NO3
concentration in the mineral topsoil (A) and the mineral subsoil (B) in stands with a pH below 5.

Both Fig. 4 and results of linear regression analyses for both depths (Table 73),
showed that the concentration of H+Al got closer to the concentration of SO,+NO,
(al closer to 1) with increasing depth. A 1:1 relationship between [H+AI] and
[SO,+NOQ,] in the soil layers below the root zone, indicates that external inputs of N
and S to the soil (corrected for N and S retention in the soil), will cause mobilisation
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and leaching of equivalent amounts of H and Al. Compared to results obtained for
intensively monitored sites (e.g. De Vries et al., 1995b), the value of al in the subsoil
was much less than one (0.66) and R’,;; was also relatively low (0.75; cf. Table 73).
The linearity of the relationship did not increase with increasing depth, as shown by a
similar adjusted coefficient of determination (R?,;). Generally, lower values of al and
of R%,; in the upper soil layers are mainly caused by a variable production of base
cations (BC) and NO,, induced by mineralisation and nitrification of plant litter. In
the 150 forest stands, BC concentrations were generally quite high, also in the
subsoil, which may partly be due to the fact that BC concentrations are slightly
overestimated in centrifugates compared to lysimeters (De Vries et al., 1995Db).

Table 73 Linear regression parameters in the relationship: ‘[H+Al]= a0+al [SOs+NOs]" for the mineral
topsoil and subsoil, using plots with a pH below 5 and reliable soil solution chemistry data.

Nrplots Depth(cm)  ao (mole.m-?) al (-) RZadj (%)
129 0-30 0.08 0.54 7
113 60-100 -0.17 0.66 76

Correlation between ion concentrations in soil solution and soil solid phase
The chemical composition of both soil and soil solution has only been measured in
the mineral topsoil (0-30cm depth). Furthermore, the chemical soil composition has
been assessed in the humus layer, whereas the soil solution has also been measured in
the mineral subsoil (60-100cm depth). Results of correlations between the soil solid
phase in both layers have been investigated for the exchangeable cation fractions and
contents (Table 74). Correlation coefficients between element contents at the
adsorption complex in the humus layer and mineral topsoil appeared to be larger for
exchangeable fractions than for exchangeable contents (the latter value is strongly
influenced by the CEC, of the mineral soil). Values were highest for the divalent base
cations Ca and Mg (Table 74).

Table 74 Correlation cogfficients for element contents at the adsorption complex between the humus layer and the
mineral topsoil

Element Correlation coefficients (-)

Exchangeable contents Exchangeable fractions
H 0.09 0.22
Al 0.09 0.21
NHa 0.20 0.38
Ca 0.48 0.51
Mg 031 0.57
K 0.32 031
Na 0.28 0.58

Dissolved concentrations of cations in the mineral topsoil were clearly correlated
with the exchangeable fraction in that layer, although the correlation was very weak
for Al (Table 75). As expected, the correlations strongly decreased with exchangeable
cation contents. With the exception of NH,, the relationships were also less clear
with the exchangeable and total concentrations in the humus layer (Table75).
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Table 75 Correlation coefficients between dissolved cation concentrations in the mineral topsoil, and the total and
exchangeable cation concentrations in the humus layer and the mineral topsoil

Element  Correlation coefficient of the topsoil solution with ...

Mineral layer Humus layer Humus layer

exchangeable fraction? total exchangeable fraction?
H 041 (0.27) - -0.04 (-0.02)
Al 021 (0.02) -0.02 0.03 (-0.03)
NH4 0.64 (0.26) 0.292 0.65 (0.63)
Ca 0.73 (0.64) 051 0.56 (0.55)
Mg 041 (0.10) 0.28 0.20 (0.22)
K 051 (0.16) 0.22 0.19 (0.30)
Na 0.63 (0.12) 0.34 0.50 (0.47)

1) exchangeable content in bracket
2 refers to total N

w

The relationship between dissolved nitrate concentration and C/N ratio

There was no clear relationship between the dissolved nitrate concentration in the
subsoil and the C/N ratio of the forest floor (humus layer) as shown in Fig. 5A,
being contrary to the results by Dise et al. (1998) and Gundersen et al. (1998).
Gundersen et al. (1998) suggested that forest floor C/N ratios may be used to assess
risk for nitrate leaching, distinguishing threshold values of >30, 25 to 30, and <25 to
separate low, moderate, and high nitrate leaching risk, respectively. Actually, their
data were limited to well-drained coniferous forests, and we thus limited our results
also to such forest stands, requiring also the availability of a forest floor of at least 2
cm thickness. Nevertheless, the relationship was weak and did not really improve
when scaling the NO, concentration to the estimated N input from the atmosphere.
One might say that the quality of the data in the 150 forest stands (just one
measurement of soil solution chemistry in the year and not a year round leaching
flux) is lower than those presented by Gundersen et. al (1998), but the results do
indicate that the C/N ratio of the forest floor does not seem to be the distinguishing
indicator for the risk of N leaching. A similar conclusion can be derived form the
(non-existing) relationship between the calculated N retention fraction and the C/N
ratio of the forest floor and mineral topsoil (Fig. 6).
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Figure 5 Relationships between the NOs concentration (A) and the ratio of the NOs concentration to the N
input (B) and the C/N ratio of the humus layer (forest floor)
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Figure 6 Relationships between the calculated N retention and the C/N ratio of the humus layer or forest floor
(A) and the mineral topsoil (B).

7.3 Parameters describing the interaction between the soil solid
phase and soil solution

Aluminium dissolution

In most soil acidification models, it is assumed that Al concentrations in the soil
solution at the bottom of the root zone are in equilibrium with Gibbsite, as described
in Eq. (3). The average Gibbsite equilibrium constant used in most models, e.g. those
calculating critical loads is 8.0, assuming that this is the average value at the bottom
of the root zone. The Gibbsite equilibrium constant does in principle refer to the
relation between the free (uncomplexed) Al activity in solution and the pH, but
several models do use the free or even total concentration Al in solution. Therefore,
we calculated Gibbsite equilibrium constants for those three options, although the
use of total concentrations is principally wrong. Results for the subsoil showed that a
value of 8.0 is reasonable when considering the total concentrations (median value is
8.1 with a 90% percentile range of 7.2-8.8), but for the free Al concentration or
activity, this value is clearly too high (Table 76). In the mineral topsoil, the Gibbsite
equilibrium constants are lower (median value is 6.5-6.7 when using free Al
concentration or activity, respectively) reflecting the much lower solubility of
complexed Al or the limited rate of Al dissolution in that layer Table 76).

Table 76 Minimum, maximum, 5, 50 and 95 percentiles of the Gibbsite constant of the topsoil and subsoil

Statistic Total Al concentration  Free Al concentration.  Free Al activity
Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil
Minimum 441 6.66 4.20 4.73 4.03 4.62
5 percentile 6.10 7.24 5.39 6.13 5.23 5.90
50 percentile 7.19 8.10 6.74 741 6.52 7.24
95 percentile 8.84 8.83 8.23 8.40 8.07 8.22
Maximum 14.65 17.38 10.72 10.93 10.58 10.79

The solubility of Al is comparable in the Arenosols and Podzolic soils, but clearly
lower in the Fimic Anthrosol and to a lesser extent the Umbric Gleysol. This is most
likely related to the different type of organic matter in the Fimic Anthrosols that have
been organically manured during centuries in the past.
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Table 77 Median values of the Gibbsite constant of the topsoil and subsoil solution for six soil types

Soil type Total Al concentration  Free Al concentration.  Free Al activity
Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil

Haplic Arenosol? 7.62 8.20 7.19 7.40 7.00 7.22
Gleyic Podzol? 6.96 8.07 6.60 7.48 6.35 7.25
Cambic podzol 7.59 8.17 7.09 7.40 6.91 7.21
Fimic Anthrosol 6.66 7.64 6.14 6.66 5.93 6.52
Umbric Gleysol® 6.77 7.78 6.39 7.17 6.21 7.01
Dystric Gleysol 7.37 8.14 6.92 7.84 6.74 7.59

b including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

In general, the results are in line with the literature information that undersaturation
with respect to gibbsite does occur in particular in organic rich soils and at shallow
depth (Matzner, 1992; Mulder and Stein, 1994). Therefore, we investigated whether
an empirically based equilibrium relation between Al and H activities is a good
alternative for the gibbsite equilibrium, according to Eq. (5). Results thus obtained
for total and free concentration of Al and the free Al activity in solution (Fig. 8)
show that the slopes in the relationship strongly deviate from 3.0 in the topsoil,
specifically when using total Al concentrations. A similar conclusion can be drawn
when limiting the results to non-calcareous soils with a pH less or equal than 6.5. It is
also true when using an alternative description of Al release by including the
complexation of Al to organic matter in the description, according to Eq. (8), for
which results are shown in Fig. 10.

The much lower slope in the topsoil follows also clearly from the results of
regression analyses, presented in Table 78. The slope of the pAl-pH relationship in
the mineral topsoil increased from ranged from 0.47 using total Al concentrations
(which is not allowed) to 0.92 using free Al activities, when limiting the results to
non-calcareous soils.

Table 78 Relationship between pAl and pH in the soil solution of Dutch soils based on total and free Al
concentrations and free Al activities

Depth pH Relationships

(cm) range based on total Al based on free Al Basedon free Al activities

concentrations concentrations
Constant slope  RZ%g; Constant slope R2%g; Constant slope  RZg
0-30 2575 198 0.47 27 242 1.83 75 -2.14 1.80 76
25-65 198 0.47 18 0.86 0.92 23 124 0.87 22
60-100 3.0-7.5 0.30 0.86 44 547 2.54 87 -5.16 251 88
3.0-65 -1.99 1.45 60  -7.09 2.96 77 -6.64 289 77
0-30t 25-75 -1.55 0.73 42 -5.30 191 81 -5.00 1.89 82
25-65 -2.17 0.90 41 -3.28 1.35 43 -2.90 1.30 43

L Relation between p(Al*C/Alorg) and pH

A non-integer value between 1 and 2 implies that Al release in the mineral topsoil is
most likely dominated by equilibrium complexation reactions with organic matter
(Wesselink et al., 1996). Similar results were obtained on a European wide scale (De
Vries et al., 1999). Differences in correlation coefficients between relationships based
on activities and concentrations were negligible (Table 78). In the subsoil the slope
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was close to 3.0 when limiting the results to non-calcareous soils, but the equilibrium

constant was clearly lower than that of gibbsite (pK 8.1; May et al., 1979).
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Figure 8. Relationships between the pAl (the negative logarhitm of the Al concentration in mol.It) and pH for the
topsoil (A, C, E) and subsoil (B, D, F), distinguishing between total Al concentration, concentration of free
(uncomplexed Al) and the free Al activity, using all data..

Results showed that the relationship between pAl and pH in the topsoil (30 cm) of
the sandy soils hardly changed by taking into account the occupation of the organic
matter with Al. The slope of the pAl-pH relationship and R, were almost the same
and also the solubility was comparable.
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Cation exchange

Results of the calculated cation exchange constants, using the actual CEC are given
in Table 79. Results showed a large variation in exchange constants, specifically for H
and Al. The affinity of the exchange complex is clearly much higher for protons than
for the other monovalent cations, for which the affinity decreases in the order NH,
> K > Na. The affinity of trivalent Al and Fe for the exchange complex appeared to
be comparable.

Table 79 Minimum, maximum, 5, 50 and 95 percentiles of exchange constants related to Ca in the mineral

topsoil
Statistics log Exchange constant (mol.l-1)zx-2

H free Al Fe Mg K Na NH4
minimum 1.077 -1.002 -2.619 -1.436 0.101 -2.565 -0.322
5 percentile 2.441 0.021 -0.855 -0.949 0.609 -1.453 0.232
50 percentile 3.533 1.115 1.192 -0.581 1.332 -0.623 1.116
95 percentile 4.370 3.263 2.590 0.110 2.134 0.100 2.101
maximum 5.942 4.705 4.443 0.712 2.549 0.486 2.816

The influence of soil type appeared to be small with respect to the affinity for
monovalent and divalent cations, but the affinity for Al and Fe was clearly lower in
the two Gleysoils than in all other soils (Table 80).
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Table 80 Median values of exchange constants related to Ca in the mineral topsoil for six soil types

Soil type log Exchange constant (mol.|-1)2x-2

H free Al Fe Mg K Na NH4
Haplic Arenosol? 3.692 1.468 1.341 -0.419 1.702 -0.493 1.444
Gleyic Podzol? 3.623 1.086 1222 -0.615 1.148 -0.657 0.905
Cambic podzol 3.420 1.555 1.449 -0.441 1.690 -0.565 1.315
Fimic Anthrosol 3.601 1.083 1.027 -0.654 1.555 -0.653 1.329
Umbric Gleysol® 3.253 0.376 -0.042 -0.729 1.093 -0.576 1.136
Dystric Gleysol 3.607 0.730 -0.126 -0.520 1.637 -0.657 0.969

b including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

Results of the exchange constants that were calculated while using a potential CEC at
pH 6.5, show clearly higher exchange constants for H, whereas the affinity for Al
remains comparable (Table 81).

Table 81 Minimum, maximum, 5, 50 and 95 percentiles of exchange constants related to divalent base cations
(Ca+Myg) and related to the total base saturation (Ca+Mg+K+Na) in the mineral topsoil

Statistics log Exchange constant log Exchange constant
(Ca+Mg) (mol.I-)zx-2 (Ca+Mg+K+Na) ((mol.I-1)zx-2
H Free Al K+Na H free Al
minimum 1.995 -0.759 -0.850 1.823 -0.866
5 percentile 3.333 0.260 -0.358 3.094 -0.050
50 percentile 3.895 1.392 0.331 3.703 0.882
95 percentile 4,797 3.428 1.019 4571 2.707
maximum 6.246 4.759 1.358 6.108 3.905

As with the exchange constants calculated with the unbuffered CEC values, the
influence of soil type appeared to be small with respect to the affinity for protons,
but the affinity for Al and Fe was clearly lower in the two Gleysoils than in all other
soils (Table 82).

Table 82 Median values of exchange constants related to divalent base cations (Ca+Mg) and related to the total
base saturation (Ca+Mg+K+Na) in the mineral topsoil for six soil types.

Soil type log Exchange constant log Exchange constant
(Ca+Mg) (Ca+Mg+K+Na)
H Free Al K+Na H free Al
Haplic ArenosolY 4.019 1.710 0.530 3.884 1.033
Gleyic Podzol? 3.850 1.422 0.229 3.697 0.998
Cambic podzol 4.038 1.757 0.516 3.797 0.833
Fimic Anthrosol 3.964 1.350 0.374 3.776 0.827
Umbric Gleysol® 3.599 0.582 0.184 3439 0.428
Dystric Gleysol 3.905 0.918 0.502 3.831 0.541

1 including Gleyic Arenosols
2 including Carbic Podzols
3 including organic rich soils

Phosphate adsorption

Relationships between the inorganic P concentration and two different expressions
for the degree of phosphate saturation, i.e. the ratio P,,/(PSC-P,,) and the P,/PSC
ratio, showed a comparable relation with the P,,/PSC ratio (Fig. 11). This implies
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that in forest soils, with low inorganic P concentrations, a linear adsorption
description just as good as empirical approximation as a Langmuir description
(Compare Section 2.6).
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Figure 11. Relationships between the inorganic P concentration (in mmol.IL) and two different expressions for the
degree of phosphate saturation (A, B).

We also investigated, whether two different Langmuir types of adsorption could
more adequately describe P adsorption, according to Eq (20) and (21), by relating the
logarithmic inorganic P concentration with the two different expressions for the
logarithmic degree of phosphate saturation. Results thus obtained gave similar
relationships (Fig. 12).
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Figure 12. Relationships between the logarithmic inorganic P concentration (in mmol.l) and two different
expressions for the logarithmic degree of phosphate saturation (A, B).

Results of regression analyses based on 92 observations (in many soils the dissolved
inorganic P concentrations were below the detection limit) are presented in Table 83.
The results show that the slope exponent do significantly deviate from 1.0, implying
that a Freundlich description of the P adsorption behaviour seems most appropriate
in acid sandy fort soils. Ranges in P adsorption constants using a Langmuir
description and a linear description of P adsorption behaviour saturation are
presented in Table 84. Using the Langmuir description, most values range between 3
and 40 m>.mol™, with a median value of 14 m®.mol™. This is clearly lower than values
reported by Van der Zee (1988) for agricultural soils, who suggested a mean value of
35 m®.mol™ with a range between 11 and 46 m*.mol™.
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Table 83 Relationships between original and logarithmic concentrations of inorganic P in solution and different
descriptions for the degree of P saturation based on 92 observations.

Response variable (y)  Predictor variable (x) intercept slope RZagj
[P] Pox/ (PSC-Pox) (0.00455) 0.06147 37.8
[P] Pox/PSC (0.00052) 0.1180 37.8
log [P] log Pox/ (PSC-Poy) -1.3697 0.7471 419
log [P] Pox/PSC -1.173 0.889 41.3

This implies that P adsorption is lower in acidic forest soils than in slightly acid
agricultural soils. There was, however, no relationship between the range in
adsorption constants and the pH or organic matter content.

Table 84 Ranges in P adsorption constants (m3.mol-L) using a Langmuir description and a linear description of P
adsorption behaviour saturation based on 92 observations.
P adsorption constant ~ Mean %SD Min 5% 50% 95% Max
Pox/ ([P]*(PSC-Pox) 195 123 18 25 141 40.3 160
Pox/([P]*PSC) 16.0 113 16 2.2 12.8 314 122

7.4 Conclusions

Correlation between ion concentrations in soil and soil solution

- In the considered acidic sandy soils, there is a clear linear relationship between the
H+Al concentration and the concentration of SO,+NQO,, indicating that the net
acidic input by S and N compounds is mainly neutralised by Al release, while the
remaining part is leached as protons.

- In the mineral topsoils, there was a clear correlation between dissolved cation (H,
Al, NH,, Ca, Mg, K, Na) concentrations and exchangeable cation fractions at the
adsorption complex (r= 0.4-0.7), with the exception of Al, where the correlation is
weak.

- There was no clear relationship between the dissolved nitrate concentration in the
subsoil and the C/N ratio of the forest floor (humus layer), which is contrary to
results published in the literature.

Aluminium dissolution and cation exchange

- In the mineral topsoil, Al concentrations in the soil solution can not be described
with the Gibbsite equilibrium equation, that is generally used in soil acidification
models. The slope of the pAl-pH relationship is near 1, which implies that Al
release in the mineral topsoil is most likely dominated by equilibrium
complexation reactions with organic matter.

- In the mineral subsoil, the slope of the pAl-pH relationship was close to 3.0,
which would indicate equilibrium with Gibbsite, but the equilibrium constant was
clearly lower than that of gibbsite (undersaturation).

- There is a large variation in exchange constants, specifically for H and Al. The
affinity of the exchange complex is clearly much higher for protons than for the
other monovalent cations. The influence of soil type appeared to be small with
respect to the affinity for monovalent and divalent cations, but the affinity for Al
and Fe was clearly lower in the two Gleysoils than in all other soils.
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Phosphate adsorption

- In forest soils, with low dissolved inorganic P concentrations (up to 2 mg.I"), the
interaction between soil solid phase and soil description can best be described
with a non-linear Freundlich equation. This gives a better prediction of the
dissolved inorganic P concentration than the Langmuir description used in
agricultural soils.

- P adsorption is lower in acidic forest soils than in slightly acid agricultural soils.
There was, however, no relationship between the range in adsorption constants
and the pH or organic matter content.
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