

High performance. Delivered.

Bio Ethylene Business Case Evaluation of an investment in a 500 kta Ethanol to Ethylene plant to be built along side the ARG Ethylene Pipe Line

Prepared By Accenture

07 December 2009

Executive Summary High Level Business Review shows potential for Significant Impact with Pragmatic Road Map

High Level Business Case shows potential of the Bio Ethylene route

- Quantitatively Significant contribution towards set targets
- Proven Technology available with low conversion cost and CAPEX requirements
- Use of proven "intermediate" which can be used as a drop in product

Road Map for leveraging existing infrastructure and proven technology is available

- Ethanol to Ethylene Technology appears adequately proven with low specific CAPEX and low Conversion cost
- Ability to build volume over time by sharing across down stream users and to target multitude of applications
- Leverage existing infrastructure to (1) provide sea access and (2) inland converter access

Business Case has identified key issues to be addressed going forward

- Landed Ethanol cost and applicable duties will drive require premium over conventional Ethylene market price. Depending on Scenario – Bio Ethylene can be justified at a Premium of 15—40% relative to Ethylene Market price
- Different End Market are expected to show different "profile" with respect to (1) Ability to carry price premium (impact on cost price) and (2) Potential to leverage "Green" branding opportunity by communicating the "Bio Ethylene" value proposition to End Customers

Background and Context Accenture has developed a business case to support evaluation of a potential ethanol to ethylene investment

Background and Context

Bio-renewable Resource Platform Target

- Facilitate 30% of energy needs of The Netherlands will come from Bio Renewable resources by 2030
- To make a positive contribution to the economy while utilizing Bio Renewable Resources

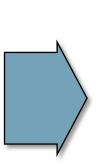
Quantifying Target – 30% corresponds to 1'000 PJ

- 80 m ton of CO2 equivalent
- 25 m ton of Fuel equivalent
- Equivalent to 4 m hectares of traditional farming

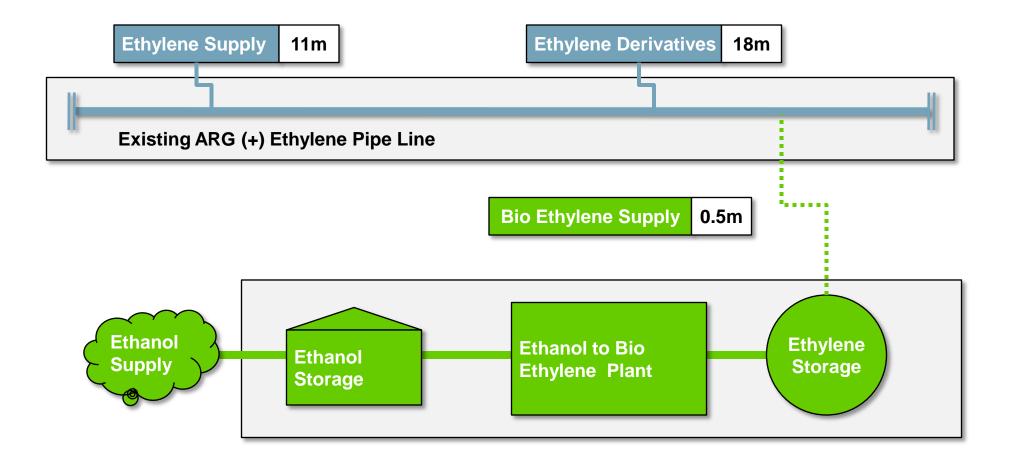
Bio Ethylene could be a significant contributor

- Technically Proven route from Ethanol
- Quantitative contribution will be very significant
- Connection with ARG could provide unique multi derivative – multi customer platform

Bio Ethylene Business Case


Scope and Objective

- Assess Economic Feasibility of significant size Ethanol to Ethylene plant
- Leverage ARG infrastructure to be able to target an array of potential downstream applications


Approach Followed

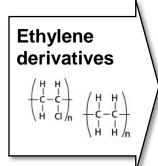
- Understand Business
 Context Downstream
 Users, Process Technology and Economics, Logistics
- Develop Business Case and Sensitivity Analysis
- Propose potential Next Steps

SCOPE OF BUSINESS CASE STUDY – NOVEMBER 2009

Business Case Scope Scope is for a 500 kta Ethanol to Ethylene plant to be build with connection to the ARG Pipe Line system

Understanding Stakeholders As part of the Business Case, discussions have been conducted with various stakeholder throughout the value chain

Stake Holders		Interviews Held	Role
Government, Policy and Trade	Local		
	European DG's Trade / Agriculture / Environment	Cefic	Director Industrial policy
Chemical Industry	Ethanol Producers/Traders	Alcogroup	Sales director
	Ethylene Producers/Oil refining Sector	Consultant Industry Experts	Partner Carbon manager Project leader
	Ethylene Distributor	ARG	Managing director
	Ethylene Consumer	Tessenderlo Solvay CMAI Confidential Borealis	Sales director Project responsible Director chlor alkali and polyolefins Bio ethylene Project Lead Ex VP, Business development mgr
Downstream Customers	Retailers	P&G PepsiCo	Responsible corporate communication, Customer team lead


Business Context Bio Ethylene Business Case Moving Forward

1 – Downstream Users

Large number of end markets exist for ethylene derivatives, key to success will be to identify price insensitive end products

- Ethylene is a global market with North America the biggest producer
- European market uses Naphtha for its ethylene production
- The Ethylene market is mature and expected to grow with GDP

- Main outlet for ethylene are polymers (>70%) that are used in a wide variety of end markets
- Other outlets included Ethylene Glycol and Vinyl Acetate

End Markets

- Mostly end up in non durable consumer goods – mostly as packaging
- Represent high share of cost of processors – not necessarily of OEM / consumer product producer
- Example: detergent industry spends less than 2% of its revenue on plastics

Consumers

- Increased focus on sustainable and environmental friendly products
- Consumers are willing to pay premium for 'greener' products

- Polyethylene, PVC and other plastics seem the most logical outlets for 'green' ethylene
- End markets for ethylene derivatives are plentiful and include: packaging, bottles, coatings, glue
- Cost contribution of ethylene in final end product is low – 1 to 5%
- Typically a price premium for Bio ethylene will have limited impact on price of end product

1 – Downstream Users

Value Add over Feedstock

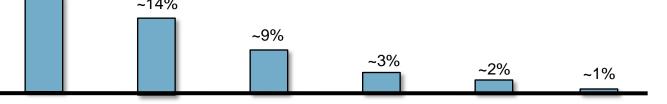
Share of Cost Price)

Target consumers of bio-ethylene should be those with low relative ethylene consumption consumer oriented application

ASSESSMENT OF POTENTIAL ATTRACTIVENESS FOR BIO ETHYLENE

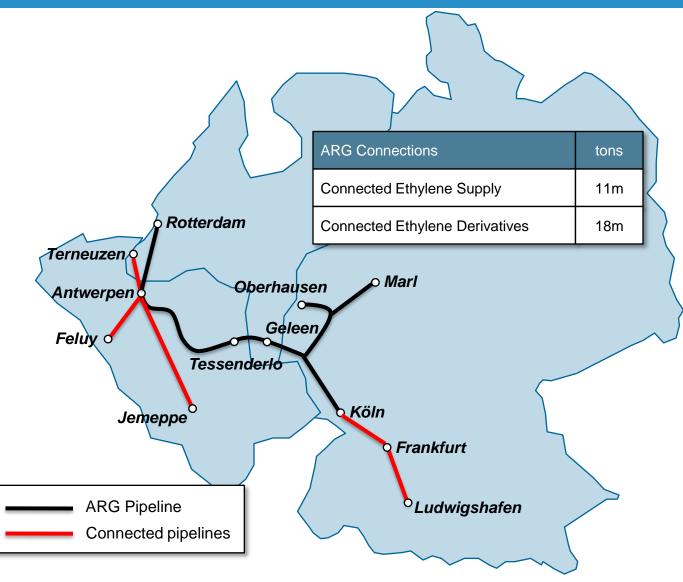
Low	Examples: • PET Bottles • PVC •	Examples: • Dyneema (UHMW PE) • Adhesives and Coatings (PVA) • Surfactants and Detergents				
High	Examples: • Commodity Packaging (PE shrink wrap) •	 Examples: Value Add Consumer targeted Packaging HDPE Fuel Tanks 				
-	Weak Strong Potential to "brand" Bio ethylene in application					

- Ethanol based Ethylene (Bio Ethylene) will probably need to be priced at a premium over Ethylene to justify investments
- Investment along side ARG will allow the targeting of an array of potentially attractive downstream products (ethylene derivatives)
- Downstream products with the highest potential will probably combine


(1) a relatively low sensitivity to the additional cost of Bio Ethylene and

(2) provide for an opportunity to benefit from end customer (consumer) targeted "Green" branding

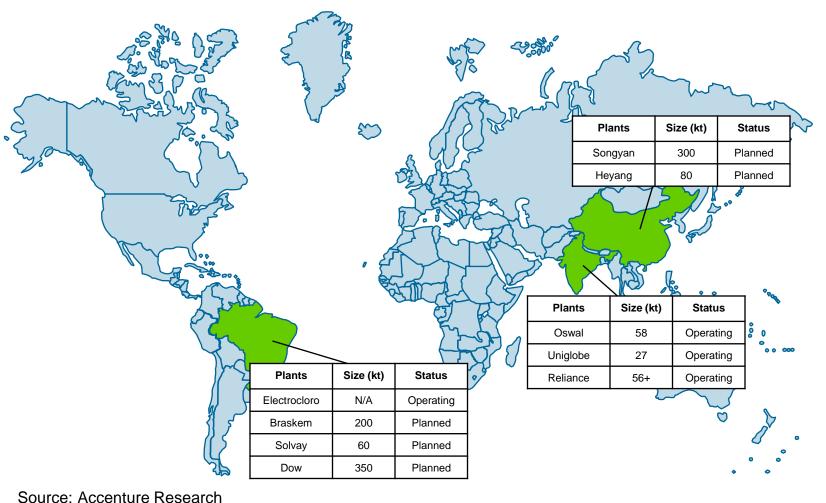
1 – Downstream Users Targeting the right applications will allow to obtain "Green" branding at small cost impact to end customer


COST IMPACT OF TYPICAL BIO ETHYLENE PRICE PREMIUM

CONSUMER Poly PE to Final Product To **Final Product** PACKAGING **Bio Ethylene** Customer Ethylene Converter Packaging Retail to Customer (BOTTLE) -**Simplified Value** ~20% Chain ~16% ~11% ~6% ~2% ~1% HIGH PERFORMANCE **UHMW Poly** UHMW PE to Final Product To **Final Product Bio Ethylene PE FIBER – Simplified** Customer Ethylene Fiber Application to Customer Retail Value Chain ~20% ~14%

ESTIMATES

2 – Ethylene Logistics (ARG) The ARG pipeline and associated pipelines connects about 18 million tons derivative capacity

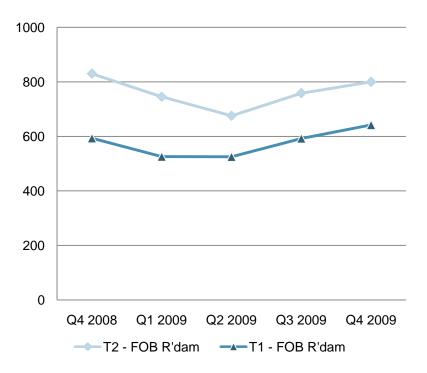


- Ethylene pipelines connect the major petrochemical clusters of NW Europe – connected ethylene conversion capacity is ~11m tpa
- The majority of this network is owned and operated by the ARG – ARG transports about 2m tons annually
- Some important extensions to ARG exist; Antwerp-Terneuzen; Moerdijk-Terneuzen; Antwerp-Feluy; Antwerp-Jemeppe; Wesseling-Frankfurt-Ludwigshafen
- We have performed capacity and ethylene gap analysis the sections excluding Frankfurt-Ludwigshafen

2 – Ethylene Logistics (ARG) More than 20 different companies producing a broad array of products are connected

	Production	Consumption (derivative tons)							
Company	ETHYLENE	EB	EDC	EO	EPDM	HDPE	LDPE	ггрре	TOTAL DERIVATIVES
BASF	1,700	1,490		755					2,245
BAYER		390							390
BOREALIS						220	26		246
BP	1,065								
CELANESE						40			40
DOW	1,700	1,240		160		280	260	500	2,440
DSM					150			60	210
DUPONT							39		39
EVONIK DEG			120						120
EXXONMOBIL	505						830	60	890
INEOS	1,155	420		730		440	400	228	2,218
LANXESS					70				70
LYONBASELL	1,040	390				450	835	15	1,690
POLIMERI E							140		140
SABIC	1,250					595	600	185	1,380
SASOL				210					210
SHELL	1,420	640		305					945
SHINETSU			880						880
SOLVIN			890						890
TESSENDERL			1,180						1,180
TOTAL PC	882					690			690
VESTOLIT			500						500
VINNOLIT			570						570
Total	10,717	4,570	4,140	2,160	220	2,715	3,130	1,048	17,983

3 – Ethanol to Ethylene Manufacture Rapidly growing base of operating experience – typically close to ethanol source



- Proven Technology: All current technology is based on fixed bed catalytic dehydration of ethylene
- The only investment currently announced is the green PVC plant of Solvay in Brazil (120 kta)
- Investment ranges quoted are in Euro 0.2 – 0.4m per kiloton (compare conventional ethylene at 1—2m)
- Typically Cash Cost (excluding) Ethanol are 60—100 Euro/t (compare conventional ethylene at 500—700 Euro/t)

4 – Ethanol Import and Logistics Ethanol source and Import duties will have significant impact on Bio Ethylene economics

Ethanol Price – FOB Rotterdam

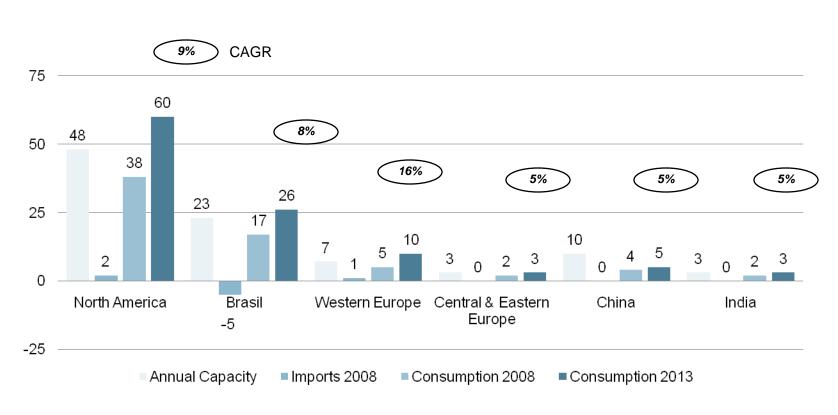
Euro/ton

Source: ICIS Data, Accenture Analysis

Ethanol Sources and applicable duties

- Considering the ethanol volume the plant requires the most likely source of ethanol will be Sugar Cane ex-Brazil (T1 Ethanol)
- This has added advantage of most significant carbon footprint improvement
- Applicable import duties will have a significant impact on landed cost of Brazilian Ethanol in Europe

Ethanol Import Duty	Low*	High**
Per Cubic Meter	102	192
Per Ton	129	244


* De-naturated ethanol

** Undenatured ethanol

5 – Ethanol Supply Demand for ethanol is expected to grow significantly mainly driven by increased demand for bio-fuels

Ethanol Supply and Demand

Cubic Meter (millions)

- Bio fuel requirements will continue to push demand for ethanol – at double digit CAGR
- Project demand growth will out strip current supply by 2010
- Potential BC2 plant will consume significant Ethanol volume relative to market – ~1.2m CBM for 0.5m ton of BC2

Source: Accenture Research

1	Business Context
2	Bio Ethylene Business Case
3	Moving Forward

Business Case – Main Assumptions

Business Case has been developed around a number of key assumptions

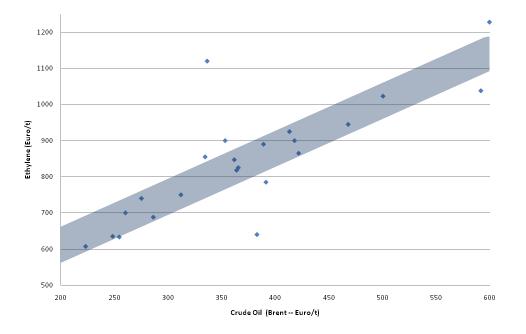
General Assumptions

- Three (fixed) Crude Oil scenarios: US\$ 60, 90 and 120 per barrel
- Plant capacity of 500 kta with 3Y plant loading ramp up (100 – 300 – 500 kta)
- Project Duration 15Y with 3Y investment horizon
- Marginal Tax Rate: 30%
- Euro is 1.5 US\$ (fixed)

Ethanol to Ethylene Manufacture

- Base Case: Ethanol price based on market prices (T1 and T2) – translated to link to Crude Price
- Long Range Case: Ethanol price based on long range anticipated Sugar Cane based Ethanol manufacturing cost – at 85% of Base Case (1)
- Bio ethylene manufacturing cost based on Aker Study – modified based on Accenture project experience

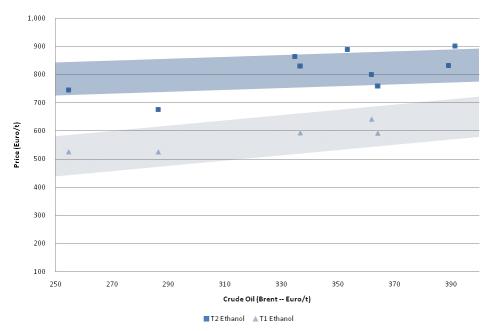
Ethylene Product Pricing


- Ethylene based on WE market

 translated into link to Crude
 Price (Brent)
- Bio Ethylene market price based on Ethylene plus a range of "green" price premiums – none, 20% and 25%
- Distribution of final product via ARG and connected pipeline systems

Business Case – Raw Material Pricing

To facilitate Business Case modeling we have used simplified relationships between Ethylene and Ethanol and Crude price


Relationship between Crude and Ethylene (Euro per ton)

Related Ethylene pricing to crude pricing (basis Rotterdam). Simplified relationship used in context of this document: Ethylene = 1.4 x Crude + 320 (Euro per ton)

Relationship between Crude and Ethanol (Euro per ton)

BASE CASE

Related Ethanol T1 (Brazil source) and T2 (EU Source) pricing to crude pricing (basis Rotterdam).

Simplified relationship used in context of this document: T1 Ethanol = $0.9 \times \text{Crude} + 150$ (Euro per ton) – excluding duties

Source: ICIS data, Accenture Analysis

Business Case – Manufacturing Cost Manufacturing Cost have been estimated basis Aker input and Accenture project experience

Bio Ethylene Manufacturing Cost

(Euro per ton)

Manufacturing Cost	Business Case	Note (Source)
Plant Capacity (kta)	500	Typical range new projects 300 – 500 kta
Plant CAPEX (Euro m)	200	Aker + 30% contingency
Ethanol to Ethylene Yield (t/t)	1.8	Typical range 1.7 – 1.9
Variable Cost	900	
• Ethanol	~840	Strongly dependent on Ethanol price and duty
Other Variable Cost	60	Aker + 20% contingency
Fixed (Cash) Cost	15	
Operations and Maintenance	11	Accenture Estimate
Supply Chain, Commercial and General	4	Accenture Estimate
Depreciation	20	Based on 5% pa
Manufacturing Cost	935	
Manufacturing Cost = 1.8 x Ethanol +	95	

Business Case – Cash Flow Model

A Cash Flow model was used to determine NPV and Internal Rate of Return for different Scenarios

Bio Ethylene Cash Flow Model

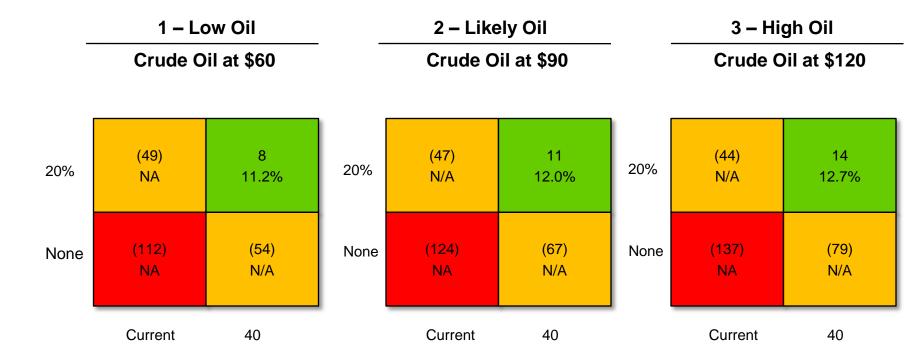
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
CAPEX	Euro m	20	80	100												
Volume	'000 tons				100	300	500	500	500	500	500	500	500	500	500	500
Ethylene Price	Euro/ton	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052	1,052
Ethanol Price (Base)	Euro/ton	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464
Revenue	Euro m	-	-	-	105	316	526	526	526	526	526	526	526	526	526	526
Manufacturing Cash Cost	Euro m	-	-	-	94	281	468	468	468	468	468	468	468	468	468	468
Depreciation	Euro m				2	6	10	10	10	10	10	10	10	10	10	10
EBIT	Euro m	-	-	-	10	29	49	49	49	49	49	49	49	49	49	49
	Fe						45	45	45	45	4.5	45	4.5	45	45	4.5
Tax	Euro m	-	-	-	3	9	15	15	15	15	15	15	15	15	15	15
Operating Profit	Euro m	-	-	-	7	20	34	34	34	34	34	34	34	34	34	34
Depreciation	Euro m	-	-	-	2	6	10	10	10	10	10	10	10	10	10	10
Net working capital	Euro m	-	-	-	8	25	42	42	42	42	42	42	42	42	42	42
Net working capital change	Euro m				8	17	17	0	0	0	0	0	0	0	0	(42)
Cash Flow After Tax	Euro m	(20)	(80)	(100)	0	10	27	44	44	44	44	44	44	44	44	86
NPV Discount Factor		1.00	1.08	1.17	1.26	1.36	1.47	1.59	1.71	1.85	2.00	2.16	2.33	2.52	2.72	2.94
PV	Euro m	(20)	(74)	(86)	0	7	18	28	26	24	22	20	19	17	16	29
NPV	Euro m	(20)	(94)	(180)	(180)	(172)	(154)	(126)	(101)	(77)	(55)	(34)	(16)	2	18	47

Net Present Value (8%)	Euro m	47
Net Present Value (8%)	Euro/t	9
IRR	%	11.3%

We have used a pragmatic cash flow model to understand return on investment as a function of key input variables

EXAMPLE

Key variables that have been evaluated are Crude Oil Price, Ethanol Import Duty and Bio Ethylene Premium.


Business Case – Base Case

Sensitivity analysis shows that a combination of price premiums and reduction of import duties is needed to get positive financials

BASE CASE

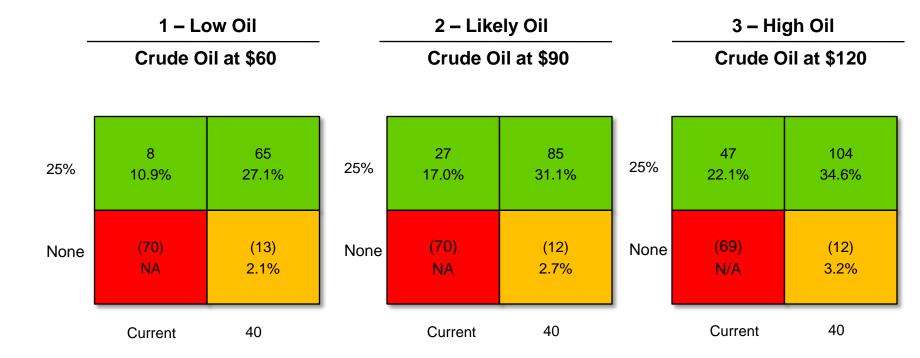
Bio Ethylene Business Summary

NPV (Euro/ton – 1) and IRR (%)

Ethanol Import Duties (Eur/CBM)

Note 1 – NPV (Euro/t) is NPV divided by accumulated production volume of the evaluation period.

Note: Ethylene at 1.4 x Crude plus 320; Ethanol at 0.9 x Crude plus 150. Other Assumptions: Business Case Base Case (see page)


Business Case – Future Outlook

We expect Future Outlook may drive increased premium and lower Ethanol costs – driving investment attractiveness

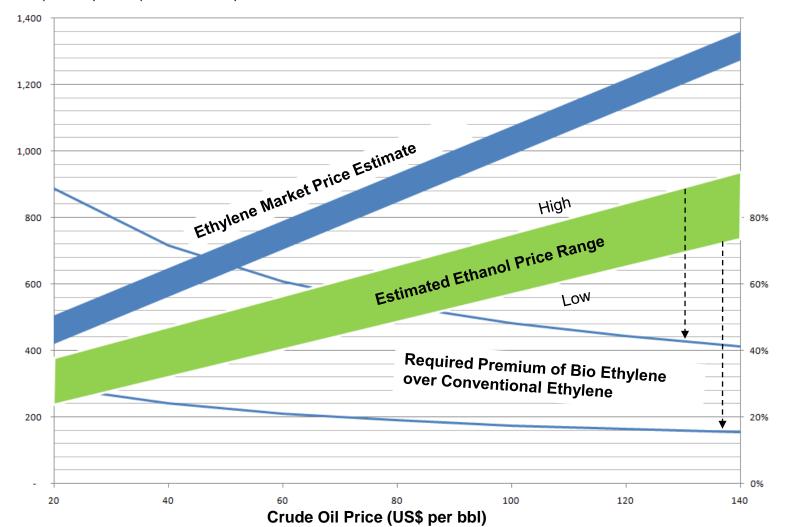
Bio Ethylene Business Summary

NPV (Euro/ton – 1) and IRR (%)

FUTURE OUTLOOK

Ethanol Import Duties (Eur/CBM)

Note 1 – NPV (Euro/t) is NPV divided by accumulated production volume of the evaluation period.

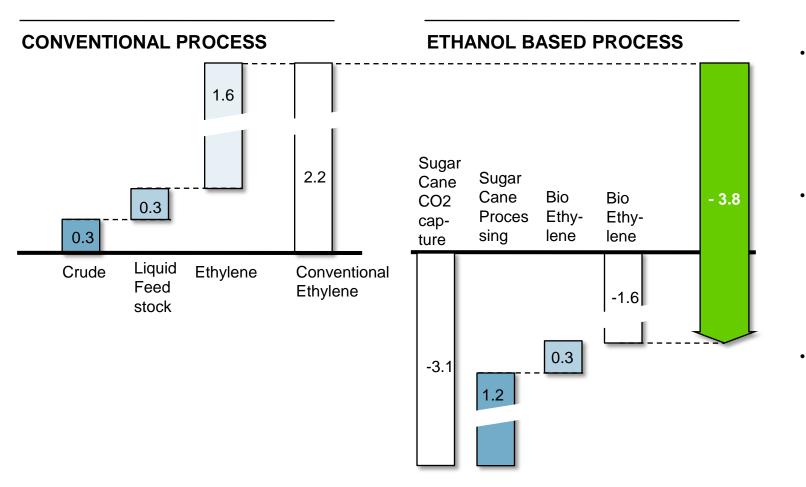

Note: Ethylene at 1.4 x Crude plus 320; Ethanol at 85% of (0.9 x Crude plus 150). Other Assumptions as in Business Case Base Case

Business Case – Sensitivity Analysis

We expect Future Outlook may drive increased premium and lower Ethanol costs – driving investment attractiveness

Bio Ethylene Break Even Analysis

(Euro/t) and (% Premium)


SIMPLIFIED

- We have also analyzed the Break Even Bio Ethylene "premium"
- Higher Oil price scenario will reduce the required "premium" needed to justify the investment
- From an oil price of \$ 80 onwards – depending on Ethanol pricing scenario – Bio Ethylene premium appears acceptable

Business Case – Carbon Footprint Bio ethylene route leverages renewable feedstock and demonstrates lower "carbon footprint"

CARBON FOOTPRINT

 $(t CO_2 e)$

ESTIMATES

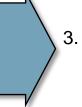
- We have also analyzed the relative Carbon Footprint of the alternative manufacturing processes
- The Ethanol based process has a substantially lower carbon footprint – greatly driven by carbon capture in photosynthesis
- Taking into consideration a realistic Carbon (CO₂) price would support a Ethanol based investment

1	Business Context
2	Bio Ethylene Business Case
3	Moving Forward

Moving Forward Business Case has provided some clear suggestions for Follow Up actions

Business Case Conclusions

- Ethanol to Ethylene Technology appears adequately proven with low specific CAPEX and low Conversion cost
- Plant would require significant volume of **Ethanol Supply** relative to global market
- Landed **Ethanol cost and applicable duties** will drive require premium over conventional Ethylene market price
- Depending on Scenario Bio Ethylene can be justified at a Premium of 15—40% relative to Ethylene Market price
- Different End Market are expected to show different "profile" with respect to ...


(1) Ability to carry price premium (impact on cost price) and

(2) Potential to leverage "Green" branding opportunity by communicating the "Bio Ethylene" value proposition to End Customers

... and hence different adoption potential

Follow Up

- 1. Address Feedstock Challenges – Cost and Duties
- 2. Address Target Market Question

- Update Business Case based on (1) and (2)
- 4. Work with players across the Value Chain to build a feasible proposition
- 5. Develop Integrated Business Plan

Moving Forward

Initial discussions with broad group of representatives across the Value Chain also did not indicate real "Show Stoppers"

STAKEHOLDER INTERVIEW SUMMARY

	Bio-Ethanol Industry – Sustainability experts	Petrochemical Players	Ethylene Consumers	End Customers
What is your interest in 'Bio Ethylene'	 Very willing to look into potential projects. 	 Very little interest Other opportunities for carbon footprint reduction exist. 	 Yes, some of our customers may be interested – but not at a price premium. Yes, we would, could take up to 10 % of our consumption. 	 Sustainability is 'hot' in the retail sector
What are potential constraints and bottlenecks	 Import tariffs on imported Brazilian Ethanol Economically viable production of bio- ethylene will require end consumer demand or regulatory pressure 	 Middle Eastern low cost capacities of Ethylene Negative publicity around bio-fuels is hurting its green image Bio-ethanol for chemical use is competing directly with bio-ethanol for fuel usage, making the price of the resulting ethylene too expensive to be competitive 	 Is it a sustainable process from a life cycle perspective? Will it be competitive with naphtha based ethylene? Labeling of end products and working with key customers will be crucial to getting acceptance from the end consumers and the intermediate producers in the value chain. 	 Commitments quite often are driven by economics (i.e. reduction of resources, energy, emissions) Life cycle perspective is taken into account (example for fatty acids: palm oil sustainability is scrutinized)
Wat would be the best market segments to be targeted			 Products that are closest to the consumer goods / retail sector (packaging etc) Products with lowest Ethylene content in final end product 	 'Future friendly products': packaging and products that are sold to consumers as 'green'. Labeling can helpbut then labels need to become generally accepted!
Potential for price premium for Bio Ethylene			 No, we will take the bio-ethylene at the same price as we currently source from our traditional suppliers. Yes, From the final customer's perspectivehowever in B2B environment harder to achieve 	 Yes, customers are willing to pay extra if it's green

Moving Forward

We recommend to move forward and start addressing the key questions raised by the "Business Case"

Area	Follow Up	Suggested Timing
1. Feedstock Availability and Economics	 Confirm Feedstock availability Confirm Feedstock Landed Cost – Pricing and applicable duties 	December 09 –
 Targeting of High Potential End Markets 	 Refine initial ideas on targeted End Markets – understanding : 1. Ability to carry price premium; 2. Potential to leverage "Green" branding opportunity 	January 2010
3. Refine Business Case	 Update Business Case based on revised inputs from (1) and (2) Ensure full alignment with broader "Bio-renewable Resource Platform Targets" 	January – February 2010
 Set Up Project Consortium 	 Based on improved understanding – work to develop a consortium based on workable set of stakeholders, likely across feedstock supply, technology, incumbent ethylene producers and high potential market segments 	February – March 2010
5. Develop Integrated Business Plan	Work with Consortium Partners to develop an Integrated Business Plan	Q2 2010

A1	ARG Pipe Line details
A2	Bio Ethylene Derivative Yields
A3	Potential Pricing Mechanism – "Green Certificates"

A1 – Ethylene Logistics (ARG) The ARG pipeline and associated pipelines connects about 18 million tons derivative capacity

	5	Ъ	Ţ	N	×	~	z	BUE	쀭	CK	z	0	ЗНАF	ORF		DO	ž	ISEN	ERG	DAM	ZEN	DERL	DNI.	ЕСНТ	
	PRODUCT	ANTWERP	BEEK	BERINGEN	BOTLEK	FELUY	GELEEN	GELSEN.BUE	JEMEPPE	KNAPSACK	KOELN	רוררס	LUDWIGSHAF	LUELSDORF	MARL	MEERHOUT	MOERDIJK	OBERHAUSEN	RHEINBERG	ROTTERDAM	TERNEUZEN	TESSENDERL	WESSELING	ZMJNDRECHT	Total
Company								_														-		N	
BASF	EB EO	890 410											600 345												1.490 755
BAYER	EB																			390					390
BOREALIS	HDPE			220																					220
	LDPE	26																							26
CELANESE	HDPE																	40							40
DOW	EB																				1.240				1.240
	EO																				160				160
	HDPE																				150	130			280
	LDPE																				260				260
	LLDPE																				500				500
DSM	EPDM		150																						150
	LLDPE						60																		60
DUPONT	LDPE	39																							39
EVONIK DEG	EDC													120											120
EXXONMOBIL	LDPE															500								330	830
	LLDPE						60																		60
INEOS	EB														420										420
	EO	440									290														730
	HDPE										200	440													440
	LDPE										400														400
	LLDPE										228														228
LANXESS	EPDM														70										70
LYONBASELL	EB																			390					390
	HDPE																						450		450
	LDPE																						835		835
	LLDPE												15										000		15
POLIMERI E	LDPE																	140							140
SABIC	HDPE						320	275										140							595
0, 10, 10	LDPE		600				020	2.10																	600
	LLDPE		000					185																	185
SASOL	EO							100							210										210
SHELL	EB														210		640								640
OT LEE	EO																305								305
SHINETSU	EDC				880												303								880
SOLVIN	EDC				000				480				0						410						890
TESSENDERL	EDC								400				v						410			1.180			1.180
TOTAL PC	HDPE	510				180																1.100			690
VESTOLIT	EDC	510				100									500										500
VINNOLIT	EDC									570					500										570
Grand Total		2.315	750	220	880	180	440	460	480	570	918	440	960	120	1.200	500	945	180	410	780	2 310	1.310	1 285	330	17.983

A1 – Ethylene Logistics (ARG) The ethylene conversion capacity of these companies is ~11 million tons

Ethylene consumption capacities on the ARG pipeline or connected pipelines

				-				Я		×			HAF	붪		E	<u> </u>	SEN	ອ	AM	S.	ER	ő	ы	
	PRODUCT	ANTWERP	Ä	BERINGEN	вотсек	FELUY	GELEEN	GELSEN.BUE	JEMEPPE	KNAPSACK	KOELN	רוררס	LUDWIGSHAF	LUELSDORF	R	MEERHOUT	MOERDIJK	OBERHAUSEN	RHEINBERG	ROTTERDAM	TERNEUZEN	TESSENDERL	MESSELING	ZWIJNDRECH	a
Company	PR	AN	BEEK	8	.Og	E	GE	GE	9	KN	N KO	=	5	2	MARL	ME	MO	OB	H	.02	Ē	Ĕ	ME	MZ	Total
BASF	EB EO	231 344											156 290												387 634
BAYER	EB	011											200							101					101
BOREALIS	HDPE			231																					231
001121210	LDPE	27		201																					27
CELANESE	HDPE																	42							42
DOW	EB																				322				322
	EO																				134				134
	HDPE																				158	137			294
	LDPE																				268	107			268
	LLDPE																				465				465
DSM	EPDM		60																		405				60
DOW	LLDPE						56																		56
DUPONT	LDPE	40																							40
EVONIK DEG	EDC	40												35											35
EXXONMOBIL	LDPE													35		515								340	855
EXCONICODIE	LLDPE						56									515								540	56
INEOS	EB						50								109										109
INEUS	EO	370									244				105										613
	HDPE	570									244	462													462
	LDPE										440	402													
											412														412
	LLDPE										212				00										212
LANXESS	EPDM														28										28
LYONBASELL	EB																			101					101
	HDPE																						473		473
	LDPE																						860		860
	LLDPE												14												14
POLIMERI E	LDPE																	144							144
SABIC	HDPE						336	289																	625
	LDPE		618																						618
	LLDPE							172																	172
SASOL	EO														176										176
SHELL	EB																166								166
	EO																256								256
SHINETSU	EDC				255																				255
SOLVIN	EDC								139				0						119						258
TESSENDERL	EDC																					342			342
TOTAL PC	HDPE	536				189																			725
VESTOLIT	EDC														145										145
VINNOLIT	EDC									165															165
Total	•	1.548	678	231	255	189	448	461	139	165	868	462	460	35	459	515	423	186	119	203	1.347	479	1.333	340	11.340

1	ARG Pipe Line details
1	ARG Pipe Line details

A2 Bio Ethylene Derivative Yields

A3 Potential Pricing Mechanism – "Green Certificates"

A2 – Bio Ethylene Derivatives Target consumers of bio-ethylene should be those with low relative ethylene consumption consumer oriented applications

ETHYLENE TO DERIVATIVE YIELD

(T Ethylene/T Derivative)

Monomer	Derivative	Yield (kg ethylene/ kg end product)	End Product Example
Ethylene	HD/LD-PE	0.9	Bags, bottles, parts
Ethylene	LLDPE	0.9	Stretch wrap
EDC - VCM	PVC	0.3	Soft PVC compounds
Ethylene Oxide	MEG	0.20	PET bottles
Vinyl Acetate	PVA	0.1	Glues, coatings,

ETHYLENE CONSUMPTION PER DERIVATIVE

(kta)

PRODUCT	Grand Total	% Green market potential	Green ethylene tons	End product example	Derivative price Nov 09(eur/t)	Ethylene content	Price premium derivative (est)	Price premium C2
EB	1,188							
EDC	1,201	<mark>5%</mark>	59	soft PVC compounds	350	0.29	5%	16%
EO	1,814	8%	95	automotive antifreeze	950	0.84	10%	12%
EPDM	88							
HDPE	2,851	10%	119	milk bottles, rigid pipes	1,050	1.05	15%	14%
LDPE	3,224	9%	107	bottles, plastic bags	1,030	1.03	15%	15%
LLDPE	975	10%	119	stretch wrap	1,120	0.93	15%	16%
Grand Total	11,340		499					

A1	ARG Pipe Line details
A2	Bio Ethylene Derivative Yields
A3	Potential Pricing Mechanism – "Green Certificates"

A3 – Ethylene Pricing "Green Certificates" provide a potential pricing mechanism for Bio Ethylene

- Government to set target for chemical / petrochemical industry on sustainable raw material consumption (or 'voluntary targets')
- This system is actually a 'mass balance system'.
- Regulator controls
 - 1. Accreditation body is needed ARG could play this role, does not need to be a government body
 - 2. Regulator should also set sustainability criteria level of 'Greenness' can be different depending on raw materials, transport, etc life cycle considerations
- How do the ethylene producers achieve targets
 - 1. Produce themselves 'green ethylene' : Regulator certifies that producer produces X tons of Green ethylene– get X green certificates.
 - 2. Buy green certificates from the green producer 'Newco'
 - 3. Price setting is done through auctioning similar to green electricity certificates