Bio Methane based Chemicals

Bio Gas as a feedstock for Chemical Manufacture

Interim Presentation to Mr. Ton Runneboom

Arthur D. Little Benelux N.V.
Willemswerf - Boompjes 40
3011 XB Rotterdam
P.O.Box 540
3000 AM Rotterdam
The Netherlands
Telephone 31-(0)10-201.8811
Telefax 31-(0)10-233.1613
adlittle.rotterdam@adlittle.com

The objective of this report is to provide a first assessment of the market potential and economic viability of Bio Gas as a feedstock for chemical manufacture

Bio Gas

- Bio gas is gas produced from the anaerobic digestion of organic matter, e.g.:
 - Animal manure, sewage, Municipal Solid Waste
- Composition of Bio Gas varies depending on the origin of the anaerobic digestion process
- After it is processed to required standards of purity, Bio Methane becomes a renewable substitute for natural gas

Compound	Chem	%
Methane	CH ₄	50-75
Carbon dioxide	CO ₂	25-50
Nitrogen	N ₂	0-10
Hydrogen	H ₂	0-1
Hydrogen sulphide	H ₂ S	0-3
Oxygen	O ₂	0-2

Bio Gas as Chemical Feedstock

- The chemical industry uses significant quantities of natural gas both as fuel and feedstock
- Bio Methane could replace natural gas as feedstock to produce "green" bio-based chemicals
- No additional infrastructure investments are required Upgraded Bio Gas can be injected directly into existing natural gas distribution networks
 - In the Netherlands, Bio Gas is currently being injected into the distribution network at 5 locations

Objective

- Evaluate the potential for use of Bio Gas as a feedstock for chemical manufacture
 - Market overview: current usage of natural gas as a chemical feedstock
 - Using Biogas as a feedstock for chemicals manufacture

1 Market overview: current usage of natural gas as a chemical feedstock

Natural gas for chemical feedstock is mostly used to produce fertilizers (via Ammonia) and Methanol, Oxo chemicals and Acetylene are other key derivatives

Europe

C1 Chemical Value chain - Overview

Methane (natural gas)

Methane derivatives

End markets and products

- Methane is the major component of natural gas (typically 85-96% by volume)
- Only a small share of European natural gas is used for the chemical feedstock (~3%)
- Main chemical derivatives are:
 - Ammonia
 - Methanol
 - Oxo chemicals
 - Acetylene
 - Hydrogen cyanide
 - Carbon disulfide

- For the agricultural industry natural gas is transformed to fertilizers (via ammonia)
- Chemical industry uses natural gas for e.g. resins, plastics, solvents and as intermediates

1 Market overview: current usage of natural gas as a chemical feedstock

Natural gas based chemical products serve a diverse set of end markets

C1 Chemical Value chain - Detail

1) Western Europe

1 Market overview: current usage of natural gas as a chemical feedstock

Usage of natural gas as chemical feedstock is about 7 bn m³ in Western Europe – Most natural gas is used for production of Ammonia

Breakdown of NG based chemical production (Western Europe)

Market Segmentation		Production capacity ¹⁾ (million metric tons)	Stoichiometric conversion factor (m³/metric tons)	Total NG consumption ²⁾ (bn m ³)
	Ammonia 68%	19.7	506	4.7
Natural gas (NG) 100%	Methanol 17%	3.7	358	1.2
	Oxo chemicals 9%	3.8	181	0.6
	Hydrogen Cyanide 3%	0.5	424	0.2
	Acetylene 2%	0.23)	880	0.2
	Carbon disulfide <1%	0.2	150	

¹⁾ Not corrected for capacity utilization

Source: SRI, CEH, Arthur D. Little analysis

²⁾ Corrected for capacity utilization – see slide xxx for details

³⁾ Estimate – only Natural gas feedstock

1 Market overview: current usage of natural gas as a chemical feedstock

Germany uses most natural gas as chemical feedstock, followed by Netherlands, France and United Kingdom

Indicative

Source: SRI, CEH, Arthur D. Little analysis

2 Using Biogas as a feedstock for chemicals manufacture - Technology

Biogas is produced via digestion or thermal gasification – Sewage sludge, household/industrial/agricultural waste and crops are the main feedstock for producing Bio Gas

- Bio gas is gas produced through an anaerobic process where bacteria convert biodegradable organic matter into methane and CO₂
- Possible feedstock for this process are: sewage sludge, household, industrial and agricultural waste
- To be injected into the gas distribution network and used as a chemical feedstock, Bio Gas requires upgrading to a high level of methane concentration Bio Methane
- As the chemical producer purchases certificates but will not use the Bio Methane stream directly, changes to the chemical production process will not be required

Source: Biogasmax (EU), Austrian Bio Energy centre, Arthur D. Little analysis

2 Using Biogas as a feedstock for chemicals manufacture - Feedstock

Biogas is typically significantly more expensive than Natural Gas and would imply a significant price premium for first line C1 derivatives

- Natural gas prices are highly volatile and had been trending up until 2009, in line with oil price movements
- Bio Gas cost price is less volatile and depends primarily on:
 - Price of the bio feedstock
 - Size of the Bio Gas generation installation
 - The level and means of upgrading required before re-injection
- With present technology and feedstock prices cost of Bio Gas will be around 70 € ct/Nm3
- After accounting for Government subsidies, the incremental cost of using Bio Methane ranges from 20-35 ct/Nm3, depending on the price of Natural Gas
- Switching to Bio Gas would imply a significant product premium for first line Methane derivatives
- There are several other feedstocks for producing "green" C1 based products, the economics of those relative to Bio Gas should be a topic of further study:
 - Biomethanol from glycerine, a sidestream of biodiesel production
 - Syngas directly from biomass gassification
 - CO based chemistry from the reduction of CO₂

2 Using Biogas as a feedstock for chemicals manufacture - Feedstock

Natural gas prices are highly volatile and had been trending up until 2009, in line with oil price movements

Natural Gas Pricing, Europe & US (1984 to 2008)

Source: BP Statistical Review of World Energy, Arthur D. Little analysis 1) cif = cost, insurance & freight

2 Using Biogas as a feedstock for chemicals manufacture – Bio Gas cost

With present technology and feedstock prices cost of Bio Gas will be around 70 €ct/Nm3

Estimates

Bio Gas production and upgrading cost

- Most landfill gas and sewage gas currently produced is used for electricity generation on site
 - Economics of switching to upgrading and injection as Bio Methane are not attractive
- Incremental Bio Gas from landfills and water treatment facilities is unlikely
 - Few new landfills being added as landfilling is discouraged
 - There is overcapacity in water treatment today
- Incremental Bio Gas for chemical use will have to come from other feedstockss

Source: ECN/KEMA

2 Using Biogas as a feedstock for chemicals manufacture – Incremental cost of Bio Gas

After accounting for Government subsidies, the incremental cost of using Bio Gas will range from 20-35 ct/Nm3, depending on the price of Natural Gas

Estimates

Incremental Cost of Producing Bio Gas (€ct/Nm3)

Source: APX, Arthur D. Little Analysis 1) Biogas production subsidized in many European countries (Dutch 2010 Bio Gas producer subsidy applied, 20.8 €ct/nM3)

2 Using Biogas as a feedstock for chemicals manufacture – Biogas premium

Switching to Bio Gas would imply a 10-70% product premium for first line Methane derivatives

3 Moving forward

Other biochemical routes should also be considered in understanding and evaluating the potential impact of bio methane based chemistry

Not Exhaustive

Overview of biochemistry routes

Source: Arthur D. Little analysis, corporate websites

A1 Current usage of natural gas as a chemical feedstock – Calculation and assumptions

Methodology and assumptions for calculating natural gas consumption (Bio Gas market potential)

¹⁾ Assuming capacity utilization in West Europe of 90% Source: Arthur D. Little analysis

A2 Using Biogas as a feedstock for chemicals manufacture - Calculation and assumptions

Methodology and assumptions for calculating Bio Gas premium

