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Outline of the thesis

In this thesis, I present results that give insight in the role of the actin cytoskeleton in the 
production of an organized cytoplasm in plant cells, which is, for instance, required for 
proper cell morphogenesis.

Chapter 1 is a review in which we discuss the possible role of actin-based force generation 
in the production of an organized cytoplasm in plant cells. We compare the functions of 
actin binding proteins of three well-studied mammalian model systems that depend on 
actin-based force generation with the possible functions of their homologues in plants, 
and predict how these proteins might determine the cytoplasmic architecture of plant 
cells.

In chapter 2, we describe the use a combined setup of optical tweezers with a confocal 
laser scanning microscope to study whether stiffness is an actin-related property of plant 
cytoplasm, and to study parameters involved in the reorganization of the actin cytoskeleton 
during physical manipulation of the cytoplasm. We used optical tweezers to produce 
cytoplasmic protrusions that resemble cytoplasmic strands, while imaging the behaviour 
of the actin cytoskeleton. We determined the trapping force needed to produce cytoplasmic 
protrusions, and show that the presence of actin ilaments stiffens the cytoplasm. The 
deactivation of a 2,3-butanedione monoxime (BDM)-sensitive factor, probably the 
molecular motor myosin, stiffens the cytoplasm even more. The observation that actin 
ilaments do not enter the tweezer-formed protrusions during this BDM treatment, 

suggests that the actin cytoskeleton can reorganize by a myosin-based relocation of actin 
ilaments. Such a myosin-based reorganization of the actin cytoskeleton might be involved 

in the production of an organized cytoarchitecture in plant cells.

Lifeact:Venus, which consists of the irst 17 amino acids from the yeast protein Abp140 
fused to a yellow luorescent protein, is a novel probe for actin ilament visualization. 
In chapter 3, we compare the (re)organization of the actin cytoskeleton visualized with 
Lifeact:Venus with that of the actin cytoskeleton visualized with GFP:FABD2, a commonly 
used marker for ilamentous actin in plants that consists of GFP fused to the second actin 
binding domain of Arabidopsis FIMBRIN1. We show that Lifeact:Venus reduces remodeling 
of the actin cytoskeleton in Arabidopsis root epidermal cells, as well as concomitant 
reorganization of the cytoplasm. Nonetheless, expression of Lifact:Venus neither affects 
cytoplasmic organization, nor plant growth and development. The data imply that the 
organization of the actin cytoskeleton, but not its dynamic relocation over time, is a 
determining factor in plant cell growth, and show that Lifeact should be used with caution 
when studying reorganization of actin ilaments.

In cytoplasmic strands, actin ilaments are organized in thick bundles. The actin bundling 
protein villin is involved in maintaining these bundles. In chapter 4, we analyze the role 
of VLN2 and VLN3, two members of the villin protein family in Arabidopsis, and show that 
mutations in the genes encoding these villins result in a decrease in the number of thick 
actin ilament bundles. Double mutant plants have abnormal leaves, stems, siliques and 
roots. The wavy, twisted appearance of these organs in the double mutant shows that 
the coordination of cell expansion is affected. Furthermore, the rotational movements 
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(circumnutation) of vln2 vln3 in lorescences have larger amplitudes than those of wild 
type Col-0 in lorescences and are less regular. The data show that VLN2 and VLN3 are 
involved in the generation of thick actin ilament bundles, and suggest that these bundles 
are important for coordinated cell expansion.

Chapter 5 is the general discussion of the thesis. We discuss research in which actin binding 
proteins that could play a role in cytoplasmic organization have been described. In this 
chapter, we have included our initial data about the role of the actin bundling protein 
imbrin on actin organization. We further discuss how manipulation of cytoplasmic 

organization by optical tweezers can give insight into physical properties of actin ilaments 
in the plant cytoplasm.

Outline Of the thesis
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Abstract

Actin polymerisation can generate forces that are necessary for cell movement, 
such as the propulsion of a class of bacteria, including Listeria, and the protrusion of 
migrating animal cells. Force generation by the actin cytoskeleton in plant cells has 
not been studied. One process in plant cells that is likely to depend on actin-based 
force generation is the organisation of the cytoplasm. We compare the function of 
actin binding proteins of three well-studied mammalian models that depend on actin-
based force generation with the function of their homologues in plants. We predict the 
possible role of these proteins, and thus the role of actin-based force generation, in the 
production of cytoplasmic organisation in plant cells.

Chapter 1
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Introduction

The actin cytoskeleton is present in all eukaryotic cells and is essential in many 
cellular processes. The actin cytoskeleton is highly dynamic. A pool of monomeric actin 
(G-actin) and ilamentous actin (F-actin) are simultaneously present in the cytoplasm. 
G-actin can polymerise into F-actin, which in turn can depolymerise into G-actin. Actin 
ilaments are polarised structures, with one end referred to as the barbed (plus) end, 

and the other end referred to as the pointed (minus) end. Polymerisation preferably 
takes place on the barbed ends of F-actin, whereas depolymerisation takes place 
preferably on the pointed end. The formation and dynamics of F-actin depend on the 
interactions of the ilaments with actin-binding proteins (Hussey et al., 2006). One 
important function of the actin cytoskeleton in animal cells is the localised exertion of a 
force on the plasma membrane by coordinated actin nucleation and polymerisation. In 
this way, extensions of the plasma membrane are locally formed, which enables animal 
cells to alter their shape and to move. The actin-binding proteins that are involved in this 
system are known, and homologues of most of these proteins are present in plant cells. 
Since plant cells contain a cell wall, their shape depends on the local deposition of cell 
wall material. Actin ilaments are important in this process, because they deliver the 
exocytic vesicles that contain cell wall material itself, or enzymes for its production, to 
the location of cell elongation (Emons and Mulder, 2000; Hussey et al., 2006). However, 
it is unlikely that actin-based force generation is involved in determining the shape of 
these cells, since the force that is generated is likely to be insuf icient to stretch the cell 
wall. Summarising: all the classes of proteins that are needed for force generation by 
actin nucleation and polymerisation are present in plant cells, but actin-based force 
generation is not likely to be involved in determining the shape of these cells. Could 
actin-based force generation play another role in plant cells?

The tonoplast is the vacuolar membrane. Mature plant cells possess one or several large 
vacuoles, which can occupy over 90% of the total cell volume (Kutsuna and Hasezawa, 
2002; Ruthardt et al., 2005). The cytoplasm ills up the rest of the cell interior, and 
surrounds the vacuole(s). The cytoplasmic organisation of plant cells varies with 
its developmental stage. Usually, a layer of cytoplasm is located in the cortical and 
perinuclear areas of the cell. These two areas of cytoplasm are interconnected by 
strands of cytoplasm that traverse the vacuole: the transvacuolar or cytoplasmic 
strands, bounded by the tonoplast (Fig. 1). Cytoplasmic strands are thought to 
function as transport routes for transcripts, proteins and organelles. The majority 
of all intracellular transport in plant cells occurs over actin ilaments, and this active 
movement of organelles is called cytoplasmic streaming (reviewed in Shimmen and 
Yokota, 2004). This streaming is likely to be facilitated by myosin XI coated organelles 
that move over bundles of F-actin throughout the cytoplasm (Holweg and Nick, 2004). 
Cytoplasmic strands are constantly changing in shape and location (Ruthardt et al., 
2005). It is not clear what causes this constant reorganisation, but since actin ilaments 
are the backbone of cytoplasmic strands, rearrangements of the actin cytoskeleton 
are thought to be responsible for this dynamic behaviour (Hoffmann and Nebenfuhr, 
2004). In addition, there are indications that myosins play a role in the reorganisation 
of existing cytoplasmic strands (Hoffmann and Nebenfuhr, 2004).

Actin based processes that could determine the cytoplasmic architecture of plant cells 
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Figure 1. Differential interference contrast image of a tobacco bright yellow 2 suspension cell. Cyto-
plasmic strands (green) traverse the vacuole (yellow), and connect the cortical and perinuclear cytoplasm 
(cytoplasm is green; nucleus is dark red; nucleolus is light red). The cell wall (blue) encases the cell. Scale 
bar, 10 μm.

As stated above, cytoplasmic strands are bounded by the tonoplast. The shape of the 
tonoplast is determined by the actin cytoskeleton: when F-actin is depolymerised, 
cytoplasmic strands disappear (Staiger et al., 1994; Shimmen et al., 1995; Valster et 
al., 1997; Hussey et al., 1998; Van Gestel et al., 2002). Cytoplasmic dense areas, such 
as those typical for the apical and subapical area of growing root hairs, also dissipate 
when F-actin is depolymerised (Miller et al., 1999; Ketelaar et al., 2002; Ketelaar et al., 
2003). Thus, F-actin not only serves as a transport route, but is also the backbone of 
cytoplasmic strands and cytoplasmic dense areas. The tonoplast is not forti ied by a 
cell wall and its shape is determined by the actin cytoskeleton. Could the formation of 
cytoplasmic strands and cytoplasmic dense areas in plant cells depend on a process 
similar to the coordinated nucleation and polymerisation of actin ilaments in animal 
cells?

In this review, we will look at actin based force generation in animal cells, and review 
the results on actin-binding proteins that are involved in this process. We will relate 
the indings in animal cells to the properties of the actin cytoskeleton in plant cells, 
and speculate about the function of plant homologous proteins in the formation of 
cytoplasmic organisation.

Chapter 1
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Model systems of force generation by actin nucleation and polymerisation

There are three model systems in which actin nucleation and polymerisation generate 
forces: the propulsion of unicellular bacteria through the cytoplasm of their host 
cells, irst described for Listeria monocytogenes (Tilney et al., 1992), protrusion 
of lamellipodia, important for the crawling motion of animal cells over a substrate 
(Abercrombie, 1980), and the formation of ilopodia, thin cylindrical extensions that 
are present between lamellipodia (reviewed in Wood and Martin, 2002). These three 
systems have been extensively investigated, and it was shown that polymerisation of a 
dense network of actin ilaments that branch from each other at the surface of bacteria 
and at the plasma membrane of lamellipodia results in a force generation that is suf icient 
for motility/protrusion (reviewed in Goldberg, 2001; Small et al., 2002; Carlier et al., 
2003; Plastino and Sykes, 2005). A prerequisite for force generation by unbundled 
actin ilaments is that the ilaments are relatively short. Short ilaments are less lexible, 
and because of their stiffness, force is exerted more effectively (Upadhyaya and Van 
Oudenaarden, 2003). Indeed, the spacing between branches is in the order of tens to 
a few hundred nanometers (Mullins et al., 1998; Upadhyaya and Van Oudenaarden, 
2003) and it was theoretically shown that the length of a pushing ilament must be 
30–150 nm (Mogilner and Oster, 1996; Upadhyaya and Van Oudenaarden, 2003), 
which is far shorter than the persistence length of an actin ilament—the length at 
which an actin ilament starts to bend spontaneously due to thermal luctuations (i.e. 
about 15 μm (Ott et al., 1993)). The force that is generated by protruding bacteria has 
been estimated between 0.01 to up to 10 nN by different groups that used different 
techniques (Giardini et al., 2003; McGrath et al., 2003; Upadhyaya et al., 2003; Wiesner 
et al., 2003; Boukellal et al., 2004; Marcy et al., 2004; Parekh et al., 2005). The force 
production by lamellipodium protrusion has been estimated to lie in the nN range - a 
value that is comparable to the force production during Listeria propulsion (Abraham 
et al., 1999). The molecular components of actin-based force generation have been 
identi ied, and it was proven that homologous proteins play important roles in both 
systems, supporting the idea that a similar molecular mechanism is responsible for the 
propulsion of pathogens and lamellipodium formation at the leading edge of crawling 
cells (Beckerle, 1998; Cameron, 2000; Carlier et al., 2003).

Filopodium protrusion exceeds the maximal length of a pushing ilament before it 
starts buckling. By forming a bundle of 10–30 actin ilaments (Svitkina et al., 2003; 
Mogilner and Rubinstein, 2005; Atilgan et al., 2006), a stiffer structure is formed 
that does not buckle until it reaches a far larger length than a single actin ilament 
could achieve before buckling. It was theoretically shown that although a ilopodium 
contains a bundle of actin ilaments, the maximal length that it can reach is still limited 
by buckling of the bundle, showing that the length of actin ilaments is limited in order 
to allow force production (Mogilner and Rubinstein, 2005). Since ilopodia formation 
depends on the presence of a bundle of actin ilaments, the molecular mechanism 
underlying this process is different from the molecular mechanisms responsible for 
bacterial propulsion and lamellipodia formation. Next, we will discuss the different 
molecular mechanisms of coordinated actin polymerisation that are responsible for 
force generation in these three model systems.

Actin based processes that could determine the cytoplasmic architecture of plant cells 
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Actin-based motility of Listeria bacteria

A breakthrough in the attempts to understand the mechanism of actin-based force 
production was the inding that polystyrene beads coated with ActA, which is present 
at the surface of Listeria, formed comet tails when placed in actin-rich cell-extracts, 
resulting in a directional movement of the beads, comparable to the motion of 
Listeria through its host cells (Cameron et al., 1999). By mimicking the intracellular 
environment in these extracts, but only adding a limited number of proteins, the 
essential components required for actin-based motility could be identi ied (Loisel et 
al., 1999). Only a limited number of actin binding proteins is required to be present 
for the formation of a comet tail: the Arp2/3 complex, ADF/co ilin, capping protein 
(such as gelsolin) and ActA (Fig. 2A). ActA, which is asymmetrically distributed on the 
surface of Listeria (Kocks et al., 1993), is the only bacterial protein that is required for 
propulsion. Below, we discuss how the different actin binding proteins contribute to 
actin-based force generation.

Figure 2. Schematic diagram representing the three model systems for actin-based force generation.
(A) Listeria propulsion. ActA, which is distributed asymmetrically on the bacterial surface, activates the 
Arp2/3 complex, which nucleates actin- ilaments at the side of existing ilaments. Polymerisation of the 
barbed ends at the bacterium surface produces the force needed for propulsion. Capping protein and ADF 
are needed for the regulation of actin dynamics. (B) Lamellipodium extension. Activated N-WASP at the 
membrane surface activates the Arp2/3 complex, which results in the formation of a similar, branched actin 
network as in (A). (C) Filopodium extension. Polymerisation of actin ilaments in association with formins 
produces the force needed for ilopodium extension. Fascin is required to bundle the long, linear ilaments, 
to prevent them from buckling. The image is not to scale and not all proteins that are known to affect these 
systems are included.

Chapter 1
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The ARP2/3 complex
The Arp2/3 complex is a highly conserved protein complex that consists of seven 
subunits, two of which are the actin binding proteins Arp2 and Arp3. The complex 
is concentrated in actin comet tails (Welch et al., 1997). Activated Arp2/3 complex 
nucleates actin ilaments by promoting barbed-end assembly while capping the pointed 
end (Machesky and Way, 1998; Mullins et al., 1998; Welch et al., 1998; Machesky and 
Gould, 1999; Pollard and Beltzner, 2002). This nucleation occurs only when Arp2/3 
is bound to the lank of an existing ilament, so that the newly formed actin ilament 
grows at a ixed angle of 70 ° from the mother ilament (Mullins et al., 1998). The 
Arp2/3 complex can be activated by different classes of activators, which all transmit 
signals from different pathways to the actin cytoskeleton. Listeria bacteria have their 
own Arp2/3 activator, ActA. Actin nucleation occurs so that the barbed ends of the 
nucleated actin ilaments are pointing in the direction of the surface of propelling 
bacteria. By creating a dense cloud of branched actin ilaments, which is subsequently 
becoming polarised into a comet tail, a suf icient force is generated for propulsion of 
bacteria. Shigella and the vaccinia virus, other pathogens that undergo actin-based 
propulsion, activate the N-WASP protein (one of the members of the Wiscott–Aldrich 
Syndrome Protein family of proteins) of their hosts by cell surface proteins. In Shigella, 
N-WASP is activated by IcsA (Bernardini et al., 1989), and in the vaccinia virus, a 
pathway that involves the integral membrane protein A36R (Frischknecht et al., 1999) 
activates N-WASP. N-WASP in turn induces Arp2/3 complex activation (reviewed in 
Frischknecht and Way, 2001; Gouin et al., 2005).

In addition to the Arp2/3 complex and an Arp2/3 activator, capping proteins are 
required for actin-based propulsion of Listeria (Loisel et al., 1999). This class of 
proteins is represented by the gelsolin family of proteins, which perform numerous 
additional functions outside the scope of this review (reviewed in Silacci et al., 2004). 
Capping proteins tightly bind to the barbed end of actin ilaments, thus preventing both 
polymerisation and depolymerisation at this end. By decreasing the number of free 
barbed ends, capping protein increases the polymerisation rate of the few remaining 
uncapped ilaments (Carlier and Pantaloni, 1997). Due to the combination of nucleation 
of free barbed ends by the Arp2/3 complex, and rapid capping of these free barbed 
ends by capping proteins, a comet tail of interconnected, short actin ilaments will 
form. Since Arp2/3 mediated nucleation continues when actin ilaments are capped, 
the density of branches increases with the concentration of capping protein (Wiesner 
et al., 2003). The presence of capping proteins only, however, is not suf icient to reach 
the high propulsion rates of bacteria, as continued actin polymerisation exhausts the 
source of G-actin (Carlier and Pantaloni, 1997).

Actin depolymerising factor
Actin depolymerising factor (ADF/co ilin) is the component that increases the amount 
of G-actin that is needed for fast barbed end growth (Carlier et al., 1999; Loisel et al., 
1999). ADF binds to both G-actin and F-actin, enhances the turnover of actin ilaments 
by increasing depolymerisation at the pointed end and severs existing ilaments (Carlier 
et al., 1997; Bamburg, 1999). Since polymerisation at the barbed end produces the 
force that is needed for propulsion, suf icient available actin monomers are required 

Actin based processes that could determine the cytoplasmic architecture of plant cells 
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for this polymerisation. An enhanced turnover of actin ilaments increases the number 
of available actin monomers for polymerisation and thus the rate of movement.

Proteins that enhance the ef iciency of motility
Although the presence of the Arp2/3 complex, ADF/co ilin, capping protein, and ActA 
are suf icient for Listeria propulsion, several other actin binding proteins enhance the 
effectiveness of motility: pro ilin, α-actinin and VASP. Pro ilin speci ically binds G-actin. 
When bound to pro ilin, spontaneous nucleation and incorporation at the pointed end 
are inhibited, whereas growth at the barbed end occurs at normal rates. Pro ilin by  
itself does not increase actin ilament turnover rates. However, pro ilin synergises with 
ADF, increasing the rate of treadmilling from 25 fold for ADF alone to 125-fold when 
both ADF and pro ilin are present (Didry et al., 1998). This increases the rate of move-
ment. Alpha-actinin cross-links actin ilaments, thereby affecting the tail morphology, 
which becomes more rigid, leading to a more persistent movement (Dold et al., 1994; 
Loisel et al., 1999). VASP, a member of the Ena/VASP family, greatly enhances the rate of 
propulsion in Listeria. Ena/VASP proteins are known to enhance ActA-induced Arp2/3 
nucleation in Listeria and to decrease the number of branches in the F-actin array in 
actin tails (Skoble et al., 2001), possibly by facilitating the dissociation of the Arp2/3 
induced branch junction from the ActA that coats the bacteria surface, which is a rate 
limiting step (Samarin et al., 2003). The exact working mechanism of the protein is not 
known (Krause et al., 2003; see below) and more research is needed to elucidate the 
exact mechanism by which VASP increases propulsion rates.

Lamellipodium protrusion

The molecular mechanism involved in the formation of lamellipodia is very similar 
to that of Listeria propulsion (Fig. 2B). In contrast to the Listeria system, in which the 
Arp2/3 complex is activated by ActA, N-WASP activates the Arp2/3 complex during 
lamellipod formation. N-WASP itself is activated by Rho family GTPases (reviewed 
in Vartiainen and Machesky, 2004). Activation of the Arp2/3 complex generates 
a densely branched array of actin ilaments with their barbed ends directed to the 
leading edge that pushes the membrane forward. Also capping protein is required 
(Mejillano et al., 2004). ADF promotes ilament disassembly, predominantly at the 
rear of the lamellipodium, since actin ilaments within a narrow zone at the leading 
edge are protected from depolymerisation (Svitkina and Borisy, 1999). In contrast to 
Listeria propulsion, which can occur in the absence of ADF, the protein is required for 
lamellipod extension: inhibition of ADF is suf icient to inhibit lamellipod extension, even 
when high concentrations of G-actin are present (Zebda et al., 2000). To explain this, 
Zebda et al. (Zebda et al., 2000) hypothesized that the function of ADF in lamellipodial 
protrusion not only concerns an enhanced turnover of actin ilaments, but also the 
production of free barbed ends by actin severing (Zebda et al., 2000). Indeed, ADF 
was proven to generate free barbed ends in vivo (Ghosh et al., 2004). As in the Listeria 
propulsion system, Ena/VASP family proteins have a function in membrane protrusion: 
lamellipodia lacking Ena/VASP protrude slower, but the protrusion persists longer. 
Lamellipodia with excess Ena/VASP contain an F-actin array with a decreased density 
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of branches (Bear et al., 2002). In vitro, Ena/VASP antagonises the effect of capping 
protein, by protecting barbed ends from capping protein (Barzik et al., 2005). In this 
way, elongation of actin ilaments increases, thus leading to a decreased number of 
branches in the F-actin array (Bear et al., 2002). However, the role of Ena/VASP proteins 
is not fully understood (review Ena/VASP proteins: Krause et al., 2003).

Formation and extension of ilopodia

A third system that depends on actin-based force generation is the formation of ilopodia 
(Fig. 2C). Filopodia are ingerlike extensions, expanding between the lamellipodia at the 
leading edge of motile cells. They function to explore the local environment (reviewed 
in Wood and Martin, 2002). As in lamellipodia, the membrane of ilopodia is pushed 
forward by polymerisation of actin ilaments that are oriented with their barbed 
ends towards the leading edge (Mallavarapu and Mitchison, 1999; Wood and Martin, 
2002; Faix and Rottner, 2006). Extension of ilopodia happens by polymerisation of a 
bundle of 10–30 tightly bundled linear, parallel running actin ilaments (Svitkina et al., 
2003; Mogilner and Rubinstein, 2005; Atilgan et al., 2006), suggesting that the Arp2/3 
complex, which nucleates branched actin ilaments, does not play a role in ilopodium 
growth. Indeed, although Arp2/3-mediated actin nucleation has been proposed 
(Svitkina et al., 2003; Vignjevic et al., 2003) and shown (Biyasheva et al., 2004) to be 
required for ilopodium initiation, the Arp2/3 complex is absent from most ilopodia 
once they are established (Svitkina and Borisy, 1999). Furthermore, in a recent study, 
ilopodia formation was unaffected by the absence of Arp2/3 mediated actin nucleation 

(Steffen et al., 2006). Although these studies are contradictive, it is sure that ilopodium 
growth depends on a different molecular mechanism of force generation by the actin 
cytoskeleton than the Arp2/3 complex dependent mechanism responsible for Listeria 
propulsion and lamellipodium protrusion. Several actin-associated proteins are known 
to be enriched in ilopodia, but the function of some of these proteins in the formation 
and extension of ilopodia is still unknown (Schirenbeck et al., 2005a). We will discuss 
the actin-associated proteins that have a known function in ilopodium growth.

Formin
Besides the Arp2/3 complex, formins are a second major group of proteins that 
stimulate the nucleation of actin ilaments. Formins are, like the Arp2/3 complex, 
conserved among eukaryotic organisms, and are known to be involved in a wide 
range of actin-based processes, including cell polarisation and cytokinesis of fungi, 
invertebrates and vertebrates (Evangelista et al., 2003). Formins bind at or very near 
to the barbed end of actin ilaments (Pruyne et al., 2002; Evangelista et al., 2003; 
Kovar et al., 2003; Zigmond et al., 2003), in this way preventing complete blocking 
of the barbed end by capping proteins. Furthermore, addition of pro ilin-sequestered 
actin monomers to the barbed end is accelerated (Romero et al., 2004), and de novo 
nucleation of actin ilaments is promoted (reviewed in Zigmond, 2004a). In vivo, 
formins might produce linear actin ilaments that can continue elongation, as formins 
remain bound to the barbed end during elongation (Zigmond, 2004b; Fig. 2C). Indeed, 
formins have recently been proven to play a role in ilopodia formation: in a null mutant 
of a formin that is enriched in ilopodial tips, fewer ilopodia were formed, that were 

Actin based processes that could determine the cytoplasmic architecture of plant cells 
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shorter than wild type ilopodia (Schirenbeck et al., 2005a; Schirenbeck et al., 2005b). 
In addition, overexpression of these formins caused an increase in the frequency of 
ilopodium formation and ilopodium length (Schirenbeck et al., 2005a; Schirenbeck 

et al., 2005b). Polymerisation of actin ilaments in association with formins has been 
shown to produce a force of at least 1.3 pN per ilament (Kovar and Pollard, 2004). 
This supports the idea that formins could also mediate some protrusive forces in cells 
(Wallar and Alberts, 2003; Higashida et al., 2004; Watanabe and Higashida, 2004).

Capping proteins
In the absence of capping protein, the formation of ilopodia is highly increased 
(Mejillano et al., 2004), since actin ilaments are allowed to continue elongating, leading 
to the bundle of parallel aligned linear actin ilaments that is needed for ilopodium 
formation.

Ena/VASP
Ena/VASP not only plays a role in the protrusion of lamellipodia; it is also targeted to 
ilopodial tips (Rottner et al., 1999). In the absence of Ena/VASP, ilopodium formation 

and elongation is inhibited in neurons (Lebrand et al., 2004) and in Dictyostelium (Han 
et al., 2002). Ena/VASP has been proposed to antagonise the effect of capping protein 
in ilopodia (Bear et al., 2002), by inhibiting barbed end capping (Barzik et al., 2005), 
which would promote barbed end ilament elongation and thus ilopodium formation 
in vivo. Also in vitro, the antagonising effect of Ena/VASP on capping protein has been 
found (Barzik et al., 2005). Pro ilin enhances the ability of Ena/VASP to protect the 
barbed ends from capping protein (Barzik et al., 2005). However, when both capping 
protein and Ena/VASP are absent, ilopodia formation is rare, and instead, cells switch 
to ruf ling (Mejillano et al., 2004), indicating that in actin based ruf ling, Ena/VASP 
and capping protein are not involved. When Ena/VASP is re-expressed, ilopodia are 
formed again, proving that in addition to antagonising the effect of capping protein 
(Bear et al., 2002), Ena/VASP has a function in ilopodium formation downstream of 
actin elongation. This function could be the bundling of actin ilaments, as a recent 
study (Schirenbeck et al., 2006) shows that the actin ilament bundling activity of VASP 
is crucial for formin-mediated ilament elongation. In contrast with the hypothesis of 
Bear et al. (Bear et al., 2002), this recent study (Schirenbeck et al., 2006) shows that 
VASP does not compete with capping proteins or block depolymerisation from the 
barbed ends. The exact function of Ena/VASP thus remains to be elucidated.

Bundling proteins
In addition to the nucleation and elongation of the actin ilaments, bundling of the 
linear, parallel running ilaments is required for ilopodium extension, in order to 
prevent buckling of the long ilaments. There are several proteins with actin-bundling 
activity, but fascin is thought to be the most likely protein that bundles actin ilaments 
in ilopodia (Svitkina et al., 2003; Vignjevic et al., 2003).
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Plant homologues of proteins involved in actin-based force production

The Arp2/3 complex
Although homologues of all components of the Arp2/3 complex (reviewed in (reviewed 
in Deeks and Hussey, 2003; Deeks and Hussey, 2005; Mathur, 2005), and a potential 
Arp2/3 activator, the SCAR complex (Egile et al., 1999; Deeks and Hussey, 2003; 
Deeks and Hussey, 2005; Mathur, 2005), are present in plant cells, there are no known 
homologues of the WASP and ActA family proteins in plants (Deeks and Hussey, 2003; 
Deeks and Hussey, 2005), and the presence of the Arp2/3 complex is not required for 
plants to survive (reviewed in Deeks and Hussey, 2005).

To analyse the function of the Arp2/3 complex in plants, Arabidopsis lines with 
null-mutations in Arp2/3 complex subunits have been used. These mutants are 
characterised by a surprisingly mild phenotype: trichomes are disturbed in their 
development, resulting in the development of twisted and/or short branches (Le et 
al., 2003; Li et al., 2003; Mathur et al., 2003a; Mathur et al., 2003b; El-Din et al., 2004) 
with an altered cytoplasmic organisation (Le et al., 2003; Mathur et al., 2003a; Mathur 
et al., 2003b). In addition, a decrease in actin-dependent cytoplasmic streaming was 
observed in these cells (Mathur et al., 2003b). Other cell types that are affected are 
epidermal cells of leaves, in which lobe extension is inhibited, and epidermal cells of 
dark-grown hypocotyls, which lose contact with their neighbours and curl out of the 
epidermal plane (Li et al., 2003; Mathur et al., 2003a; Mathur et al., 2003b; El-Din 
et al., 2004). Root hair growth in Arp2/3 mutants is disturbed; root hairs of these 
mutants are somewhat wavy and have a variable diameter. All these effects point to 
actin cytoskeleton defects, such as less or mislocalised ine F-actin (Deeks and Hussey, 
2003; Le et al., 2003; Li et al., 2003; Mathur et al., 2003a; Mathur et al., 2003b; El-Din 
et al., 2004; Mathur, 2005). Summarising, the Arp2/3 complex seems to be involved 
in the organisation of the subapical ine F-actin array in rapidly growing cells (dark-
grown hypocotyl epidermal cells) or cells with cell expansions that take place over 
a limited surface area (trichomes, root hairs and leaf epidermal cells), but its role 
does not seem to be of major importance in other cell types. The Arp2/3 complex is 
therefore hypothesized to only contribute to the nucleation of a small fraction of the 
total F-actin within higher-plant cells (Deeks and Hussey, 2005).

Capping protein
A gelsolin-like protein has been isolated from Papaver pollen (Huang et al., 2004). 
This protein tightly binds to the barbed ends of actin ilaments in vitro, in this way 
preventing polymerisation and depolymerisation at the barbed ends in a calcium 
dependent way. The gelsolin-like protein also has actin ilament nucleation and 
severing properties. The Arabidopsis genome, however, does not contain sequences 
for gelsolin-like proteins (Huang et al., 2004). The closest sequence homologues 
in Arabidopsis to gelsolin are villin-like proteins. Plant villins have been shown to 
bundle actin ilaments (Tominaga et al., 2000; Ketelaar et al., 2002; Huang et al., 2005; 
Yokota et al., 2005). The actin bundling activity of some villins is calcium-dependent 
(Tominaga et al., 2000) and of others not (Huang et al., 2005). Villin-like proteins from 
lily can inhibit growth of barbed ends at high calcium concentrations, which could be 
caused by actin capping activity (Yokota et al., 2005). Huang et al. (Huang et al., 2003) 
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demonstrated that in plants, a capping protein is present that binds to the barbed ends 
of actin ilaments, in this way preventing polymerisation and depolymerisation. The 
capping protein forms heterodimers and binding of this protein to the barbed end is 
regulated by phosphatidic acid (PA): in the presence of PA, the actin-binding activity of 
the capping protein is inhibited, which leads to extensive actin ilament growth (Huang 
et al., 2006). It is not known whether the presence of capping proteins is required for 
Arp2/3 complex-dependent growth processes in plants (Hussey et al., 2006).

ADF
Although plant ADF, and proteins that control the activity of ADF, differ somewhat from 
animal ADF (Hussey et al., 2004), plant ADF has been shown to increase the turnover 
of actin ilaments, as animal ADF does. Indeed, microinjection of pollen-speci ic ADF 
in Tradescantia stamen hair cells led to the depolymerisation of F-actin in cytoplasmic 
strands, which caused cytoplasmic strands to disappear (Hussey et al., 1998). When 
ADF is overexpressed in Arabidopsis, thick actin bundles disappear in different cell 
types, and cell expansion and organ growth are reduced. In contrast, inhibition of AtADF 
expression led to an increased number of actin cables, a stimulation of cell expansion 
and organ growth, and a delay in lowering (Dong et al., 2001). Furthermore, ADF has 
been shown to localise primarily at the tip of emerging and elongating maize root 
hairs (Jiang et al., 1997), and to play a critical role in pollen tube growth by regulating 
actin dynamics (Chen et al., 2002). Similarly to the animal systems that we discussed 
above, the role of ADF in plants likely constitutes of an enhanced turnover of actin 
ilaments. This turnover generates monomeric actin that is required for continued 

actin polymerisation and thus continued reorganisation of the cytoplasm. Thus, the 
phenotypes that are caused by changes in the levels of ADF expression are likely to be 
caused by changes in the amount of available monomeric actin.

Pro ilin
Pro ilin is a protein with a conserved function throughout eukaryotes (Valenta et 
al., 1991). Pro ilin speci ically binds to monomeric actin. When bound to pro ilin, 
G-actin cannot incorporate at the pointed end of actin ilaments, but incorporation 
at the barbed end happens at normal rates (Pollard et al., 2000; Hussey et al., 2006). 
Animal and fungal pro ilin can accelerate the exchange of ADP for ATP on G-actin, thus 
accelerating F-actin polymerisation at the barbed end (Lu and Pollard, 2001). Plant 
pro ilins do not have this activity (Perelroizen et al., 1996; Kovar et al., 2000). The lack 
of the nucleotide exchange ability of plant pro ilins may be substituted by an increase 
of the intrinsic nucleotide exchange activity of plant actin, which is 10 to 20 fold higher 
than animal actin (Kovar et al., 2001). Arabidopsis plants have been generated that 
over-and under-express pro ilin (Ramachandran et al., 2000). Underexpressing plants 
were smaller and lowered earlier, whereas overexpressing plants had longer roots 
and root hairs. Immunolabeling of pro ilin shows an enrichment in the tips of growing 
root hairs (Braun et al., 1999; Baluska et al., 2000); however, this might just re lect the 
available cell volume. It is likely that pro ilin is involved indirectly in the generation 
of actin based forces in the cytoplasm, as a decrease in available monomeric actin for 
polymerisation would lead to a decrease in actin polymerisation.
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Formins
In Arabidopsis, formin homologues have been identi ied (Deeks et al., 2002). The actin 
nucleating function of plant formins is conserved, including the capacity to associate 
with the growing barbed end of actin ilaments while allowing pro ilin-bound actin 
monomers to incorporate at this end (Cheung and Wu, 2004; Ingouff et al., 2005; 
Michelot et al., 2005; Yi et al., 2005). The formin family in Arabidopsis is represented by 
two subclasses, the group I formins, which contains 11 members in Arabidopsis, and the 
group II formins, which contains 10 members in Arabidopsis (Deeks et al., 2002). Most 
of the group I formins possess an N-terminal trans-membrane domain. The large family 
of formins in Arabidopsis makes it dif icult to identify cellular and/or developmental 
defects in knockout lines, as there is likely to be a high degree of redundancy between 
the different proteins. Nonetheless, several research groups have studied the function 
of formins in plant development. Ingouff et al. (Ingouff et al., 2005) have shown that 
the group I formin AtFH5 localises to newly formed cell plates and that an h5 knockout 
line is disturbed in cell plate formation in the seed endosperm. Deeks et al. (Deeks et 
al., 2005) show that the group I formins AtFH4 and AtFH8, which together represent 
a distinct clade, localise to distinct patches of the plasma membrane where cotyledon 
cells are in direct contact with their neighbouring cells. When an h8 construct, without 
an FH2 domain that is responsible for actin nucleation, was expressed under its 
endogenous promoter, root hair development was inhibited. Another study shows that 
overexpression of AtFH8 dramatically changes root hair development (Yi et al., 2005). 
These changes, ranging from short and wavy root hairs to tip-swollen and branched 
root hairs, correlate with an altered distribution of the actin cytoskeleton (Yi et al., 
2005). Cheung and Wu (Cheung and Wu, 2004) over-expressed both the intact group 
I formin AtFH1 and an FH1 + FH2 fragment (which does not contain the regulatory 
domain of the formin and is constitutively active) of this protein in pollen tubes. They 
show that at low levels of over-expression, growth is stimulated. At higher levels of 
over-expression, pollen tube tips broaden and growth arrests. GFP-fusions to AtFH1 
localised to the apical plasma membrane of pollen tubes. Finally, Favery et al. (Favery 
et al., 2004) show that the group I formin AtFH6 associates to the plasma membrane 
of giant cells that are induced by parasitic nematodes. These authors suggest that this 
formin might be involved in the growth of these cells. Altogether, these observations 
suggest that group I formins play a role in the generation and/or the maintenance of 
cell polarity, for which speci ic cytoplasmic organisation is required. The function of 
group II formins has not yet been identi ied.

Actin bundling proteins
In plants, two families of actin bundling proteins have been identi ied: the villins and the 
imbrins. In addition, it has been shown that the formin AtFH1 is able to bind the side of 

existing actin ilaments in vitro and bundle actin ilaments (Michelot et al., 2005). The 
irst plant homologue of villin that was described, was isolated from lily pollen (Vidali 

et al., 1998). This plant villin bundles F-actin in vitro (Yokota et al., 1998) in a calcium 
dependent fashion (Yokota et al., 2005), although not all plant villins are calcium 
dependent (Huang et al., 2005). The Arabidopsis genome contains 5 copies of villin. 
Each of these genes is expressed in a wide range of tissues (Klahre et al., 2000; Staiger 
and Hussey, 2004). This is in contrast with the expression pattern of mammalian villin, 
which is restricted to the microvilli of brush border cells (Staiger and Hussey, 2004). 
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Plant villin is involved in organising the cytoplasm in root hairs. Injection of antibodies 
against villin resulted in disintegration of the actin ilament bundles (Tominaga et 
al., 2000; Ketelaar et al., 2002), followed by disappearance of transvacuolar strands 
(Tominaga et al., 2000). This indicates that bundles of actin ilaments are essential 
for continued existence of transvacuolar strands. Fimbrins, the other family of actin 
bundling proteins in plants, are ubiquitously expressed in Arabidopsis (McCurdy and 
Kim, 1998). The actin binding of imbrins is calcium dependent, whereas the actin 
bundling activity of imbrin is not calcium dependent (Kovar et al., 2000). Cellular or 
developmental defects in imbrin knockout lines have not been reported. This could be 
caused by redundancy of imbrins in Arabidopsis.

Comparing the role of actin in the generation of cytoplasmic organisation
of plant cells with its role in the model systems for actin based force
generation in animal cells

It seems likely that at least some of the plant homologues of the mammalian proteins 
that we discussed are involved in actin-based force generation in plant cells. We will 
discuss the possible role of formin and Arp2/3 complex mediated actin polymerisation 
mechanisms in determining the generation of two types of plant cytoarchitecture: the 
cytoplasmic dense area in the apex and subapex of tip growing cells, and cytoplasmic 
strands in all plant cells.

Cytoplasmic dense areas
In pollen tubes (Geitmann et al., 2000) and root hairs (Miller et al., 1999; Ketelaar 
et al., 2002; Ketelaar et al., 2003), there is a network of ine F-actin that supports 
the subapical cytoplasm. A logical candidate for generating a network of ine F-actin 
would be the Arp2/3 complex, since it has been shown to generate branched arrays of 
actin ilaments that can push a membrane forward during lamellipodium protrusion 
(Svitkina and Borisy, 1999). The Arp2/3 complex may be involved in the organisation 
of cytoplasm in growing cells, where cell expansion takes place locally, since the 
development of those cell types is disturbed in plants in which the Arp2/3 complex is 
non-functional. In favour of this, the Arp3 subunit was immunolocalised to the tip of 
growing root hairs (Van Gestel et al., 2003). The network of ine F-actin is, however, 
present near the tip of growing root hairs, and further away from the root hair tip, 
the actin ilaments become increasingly bundled (Miller et al., 1999; Tominaga et 
al., 2000; Ketelaar et al., 2002; Ketelaar et al., 2003; Mathur, 2004; Mathur, 2005). It 
therefore seems unlikely that Arp2/3 mediated actin ilament nucleation is directed 
towards the tonoplast to keep the vacuole away from the root hair tip and to maintain 
the cytoplasmic dense area in the apex. Furthermore, pollen tube development, which 
also depends on cell expansion over a small surface area, is unaffected by the absence 
of a functional Arp2/3 complex (Le et al., 2003; Li et al., 2003; Mathur et al., 2003a). 
Therefore, the Arp2/3 complex is unlikely to be the (only) key player in generating 
an actin network that builds and maintains the cytoplasmic dense area in the apex/
subapex of tip-growing cells.
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Cytoplasmic strands
Although the Arp2/3 complex is not able to nucleate the long, bundled actin ilaments 
that are required for the existence of cytoplasmic strands (Tominaga et al., 2000), 
Arp2/3 complex activity directed towards the tonoplast could be involved in the initial 
formation of cytoplasmic strands, in the event of new strand formation. The Arp2/3 
complex could nucleate a branched actin ilament network, which elongates at the 
front, but is bundled continuously at its base (Fig. 3A). A similar process has been 
proposed for ilopodium formation (Vignjevic et al., 2003) [although a recent study 
(Steffen et al., 2006) contradicts this hypothesis] and actin tail formation behind the 
intracellular pathogen Rickettsia (Jeng et al., 2004) [especially during the initial stages 
of movement (Gouin et al., 2005)]. This process differs from the mechanism employed 
by the intracellular pathogens that we have discussed above (Gouin et al., 2004; Gouin 
et al., 2005). Capping proteins, ADF and pro ilin could be involved in the generation 
of such a branched array (Fig. 3A), as they are in lamellipodia formation and bacteria 
protrusion.

Figure 3. Hypothetical mechanisms of force generation by the actin cytoskeleton, resulting in the
formation of cytoplasmic strands. The elongation of cytoplasmic strands may be achieved by Arp2/3 
complex (A) or by formin mediated nucleation of actin ilaments (B). In (A), capping proteins, ADF and 
pro ilin could be involved in the generation of the branched array. Elongation of cytoplasmic strands requires 
bundling of actin ilaments by bundling proteins (A, B), which are represented by villin. The inset shows a 
typical location from which a cytoplasmic strand would appear. The image is not to scale.
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Even if the Arp2/3 complex is needed for the initial formation and the elongation of 
cytoplasmic strands, the maintenance of cytoplasmic strands is unlikely to be a process 
that is mediated by Arp2/3 based actin nucleation, because stable, thick bundles of 
F-actin are required. A careful analysis of the cytoarchitecture in Arp2/3 knockouts 
would be required to show its role in cytoplasmic organisation.

Another possibility would be that formins nucleate the actin ilaments that are 
needed for the initial formation of cytoplasmic strands (Fig. 3B). In contrast to the 
Arp2/3 complex, formins would be able to nucleate actin ilaments and continue actin 
polymerisation over long distances, immediately resulting in the long, linear ilaments 
that are known to be present in cytoplasmic strands. This situation resembles the 
ilopodium protrusion system, in which nucleation of long, linear actin ilaments 

results in the formation of thin cylindrical extensions of a plasma membrane.

As discussed above, the Arp2/3 complex, formins, or another, yet unknown, class 
of actin nucleating proteins could well be responsible for the initial formation of a 
cytoplasmic strand. However, in existing strands, long bundles of linear actin ilaments 
continuously support the cytoplasmic strand (Tominaga et al., 2000; Ketelaar et al., 
2002). Thus, apart from actin ilament polymerisation at one end, ilament bundling is 
required during cytoplasmic strand elongation. Since group 1 formins from Arabidopsis 
have been shown to bundle actin ilaments in vitro (Michelot et al., 2005) and perhaps 
in vivo (Cheung and Wu, 2004), these proteins would be good candidates to facilitate 
the formation of a cytoplasmic strand. Though plant formin can bundle actin ilaments 
in vitro (Michelot et al., 2005), from injections of antibodies against villin in root hairs 
(Tominaga et al., 2000; Ketelaar et al., 2002), we know that formin is, if involved at 
all, not the only actin bundling protein that is involved in elongation and continued 
existence of cytoplasmic strands.

In summary, establishment of the cytoplasmic organisation in vacuolated plant 
cells is likely to depend on actin nucleating proteins, actin polymerisation and actin 
bundling.1

Prospects

Force generation by actin ilaments in mammalian cells is the subject of intense study, 
since it is clearly of importance for motility of cells. In plant cells the force that is 
generated by the actin cytoskeleton is likely to be insuf icient to protrude the plasma 
membrane, because the cell is surrounded by the cell wall. The cytoplasmic organisation 
of cells, which is of importance for cell structure and required for cell growth and

Note added after publication: recent data have shown that existing actin ilaments can be reorganized 1. 
in a myosin-dependent way (Staiger et al., 2009; Van der Honing et al., 2010). Myosin motor activity 
could therefore play a role in actin-based force generation in plant cells, which, in turn, may contribute 
to cytoplasmic organization.
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development, is at least partially organised by the actin cytoskeleton. It will be just as 
interesting and important to analyse the molecular basis of cytoplasmic organisation 
in plant cells with, as a basis, the available working hypotheses that we present here. 
In the years to come, cytoplasmic organisation in plant cells, a determining factor in 
cell growth, is likely to become a better understood system with similarities and dif-
ferences when compared to membrane protrusion and bacterial propulsion in mam-
malian cells.
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Summary

Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 •
suspension cultured cells to study the parameters involved in the movement of 
actin ilaments during changes in cytoplasmic organization and to determine 
whether stiffness is an actin-related property of plant cytoplasm.
Optical tweezers were used to create cytoplasmic protrusions resembling •
cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was 
imaged.
After actin ilament depolymerization, less force was needed to create •
cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 
2,3-butanedione monoxime, more trapping force was needed to create and 
maintain cytoplasmic protrusions. Thus, the presence of actin ilaments and, 
even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, 
probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime 
treatment, none of the tweezer-formed protrusions contained ilamentous 
actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably 
myosin, is responsible for the movement of actin ilaments, and implying that 
myosin serves as a static cross-linker of actin ilaments when its motor function 
is inhibited. The presence of actin ilaments does not delay the collapse of 
cytoplasmic protrusions after tweezer release.
Myosin-based reorganization of the existing actin cytoskeleton could be the basis •
for new cytoplasmic strand formation, and thus the production of an organized 
cytoarchitecture.
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Introduction

The organization of the cytoplasm is crucial for correct plant cell functioning. For 
instance, in plant cell growth, it plays a fundamental role, as the position of cytoplasmic 
components is a determining factor in the delivery of cargo to the surface area at which 
growth occurs (Miller et al., 1997). In plant cells that elongate by intercalary growth 
(i.e. expansion that takes place over the whole longitudinal cell axis), cytoplasm is 
present around the nucleus and in the cell’s periphery. These two regions are connected 
by strands of cytoplasm, called cytoplasmic or transvacuolar strands, that cross the 
vacuole. New cytoplasmic strands are formed after cytokinesis (Kutsuna & Hasezawa, 
2002), during and after cell elongation (Sheahan et al., 2007), and after recovery from 
treatment with the actin cytoskeleton depolymerizing drug latrunculin (Fiserova 
et al., 2006). The presence of interphase cytoplasmic strands depends on an intact 
actin cytoskeleton: cytoplasmic strands of interphase cells contain actin ilaments, 
and disappear on actin ilament depolymerization (Staiger et al., 1994; Shimmen et 
al., 1995; Valster et al., 1997; Hussey et al., 1998; Van Gestel et al., 2002; Higaki et 
al., 2006; Sheahan et al., 2007). The mechanisms by which actin ilaments regulate 
the maintenance, localization and reorganization of cytoplasmic strands have not yet 
been elucidated, although it has been shown that the actin bundling protein villin is 
essential to maintain cytoplasmic strand size and number (Tominaga et al., 2000b; 
Ketelaar et al., 2002), and there are indications that myosins are responsible for the 
relocation of existing cytoplasmic strands (Hoffmann &Nebenfuhr, 2004; Higaki et al., 
2006; Sheahan et al., 2007). Little is known about the structural properties of the acto-
myosin system of cytoplasmic strands. Does the actin cytoskeleton provide strength to 
the strands and prevent strand collapse? Does myosin have the capacity to play a role 
in the sliding of actin ilaments (bundles) relative to each other?

Optical tweezers (Ashkin, 1970) are useful for the study of cytoplasmic organization. 
Using the radiation pressure of a focused laser beam, one can manipulate small particles 
(Ashkin & Dziedzic, 1987; Ashkin et al., 1987; Block, 1992; Grier, 2003). A high numerical 
aperture lens is used to create a diffraction-limited spot in which particles in the 
(sub-)micrometer range, with a higher refractive index than the surrounding medium, 
are trapped. With infrared light, controlled forces can be applied inside living cells 
(Ashkin et al., 1987; Ashkin & Dziedzic, 1989), which can be employed to manipulate 
intracellular organization (Ashkin & Dziedzic, 1989; Grabski et al., 1994). We produced 
cytoplasmic protrusions into the vacuolar space using optical tweezers and showed 
that actin ilaments entered these strands, probably by myosin motor activity. Making 
cytoplasmic protrusions is easier when actin ilaments are depolymerized, and harder 
when myosin motor activity is inhibited. Although actin ilaments support naturally 
occurring cytoplasmic strands, the presence of actin ilaments does not delay the 
collapse of cytoplasmic protrusions after tweezer release. These data provide insight 
into the mechanisms that underlie cytoplasmic organization.
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Materials and methods

Plant material and green luorescent protein (GFP) marker transformations
Tobacco BY-2 suspension cultured cells were cultured in standard BY-2 medium 
(Nagata et al., 1992; Nagata & Kumagai, 1999) on a rotary shaker (120 rpm) at 25°C 
in darkness. The cultures were subcultured weekly (1–2 ml of the old culture in 
38–39 ml of fresh medium) in 250 ml Erlenmeyer lasks. Agrobacterium tumefaciens 
strain LBA4404 was used for transformation of the 35S::GFP:FABD2 (Ketelaar et al., 
2004) and 35S::GFP:TuA6 (Ueda et al., 2003) constructs into BY-2 cells; 100 μl of an 
overnight culture of LBA4404 carrying a binary plasmid containing one of the above 
constructs (grown on a rotary shaker at 180 rpm, 28°C) was co-cultured with 1 ml 
of 3–4-d-old tobacco BY-2 suspension cultured cells on a lat surface in darkness at 
25°C. After 3 d, the cultures were washed three times with BY-2 medium and plated 
onto solid BY-2 medium containing 1% agarose supplemented with cefotaxime (240 
mg l-1) and selective antibiotic (GFP:FABD2, glufosinate ammonium, 25 g l-1; GFP: 
TuA6, kanamycin, 50 mg l-1). Calli were subcultured every 2–4 wk. Lines with correct 
localization of the luorescent fusion proteins were selected, and used to start liquid 
suspension cultures.

Experiments were performed with cells 8–13 d after subculturing, which were 
diluted 1 : 10 in BY-2 medium before observation. Mitochondria were visualized by 
complementing the medium with 10 nM Mitotracker Red CMX-Ros (Invitrogen, Breda, 
The Netherlands). 

Drug treatments 
Stocks of latrunculin B (LatB; 10 mM; Sigma-Aldrich, Zwijndrecht, The Netherlands) 
and oryzalin (20 mM; Merck, Amsterdam, The Netherlands) were prepared in 
dimethylsulfoxide (DMSO), and diluted to the desired concentration in the suspension 
culture. The inal DMSO volume did not exceed 0.1% (v ⁄ v) of the total volume. For 
recovery experiments, LatB was removed from the suspension culture by washing the 
cells three times (at least 1 min per wash) with fresh BY-2 medium using a 50 μm mesh 
ilter. 2,3-Butanedione monoxime (BDM) (Sigma-Aldrich, Steinheim, Germany) was 

freshly dissolved in BY-2 medium before each experiment, yielding a inal concentration 
of 25 mM. Staining for esterase activity with 0.005% luorescein- diacetate (FDA; 
Sigma, St Louis, MO, USA) was used to con irm cell viability during the 30 min BDM 
treatment. Tweezer-formed cytoplasmic protrusion formation Molecular Machines and 
Instruments (MMI, Glattbrugg, Switzerland) optical tweezers, consisting of an NdYAG 
laser (1064 nm, 3000 mW CW, Newport Spectra-Physics Ltd, Didcot, Oxfordshire, UK) 
and x–y galvo scanner, were connected to an Axiovert 200 M microscope (Zeiss, Jena, 
Germany) with a Zeiss LSM510 META confocal scanning system. The focal point of the 
YAG laser was adjusted to the visual focus of the microscope with the CellManipulator 
software (MMI). Laser intensity measurements indicated that the YAG laser intensity 
was between 15 and 150 mW through the objective lens. Cytoplasmic protrusions were 
formed by keeping the laser stationary and moving the XY SCAN IM 120–100 stage 
(Märzhauzer, Wetzlar, Germany) at a constant velocity of 600 nm s-1, through a de ined 
displacement (160–200 steps; 75 nm step size). Confocal imaging was performed 
during the formation and maintenance of cytoplasmic protrusions. 
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To determine the force required to create cytoplasmic protrusions, trapping force 
ranges of 0.3Fmax, 0.5Fmax, 0.7Fmax, 0.9Fmax and Fmax were used. When a protrusion could 
be formed at 600 nm s-1, and maintained for 20 s successfully within three attempts at 
a certain laser power, we scored this as a successful trapping event. When protrusion 
formation failed three times at the same laser power, we scored this as an unsuccessful 
trapping event. When protrusion formation failed, we either increased the laser power 
by 0.2Fmax, or chose another cell, and repeated the protrusion formation procedure 
until maximal laser power was reached, or until a laser power was reached at which 
100% of the trapping attempts were successful. 

To determine the trap force required to maintain protrusions, we formed cytoplasmic 
protrusions and reduced the laser power by 0.01Fmax per second until the protrusion 
collapsed. The moment of force reduction depended on the initial trapping force, 
and was chosen such that the laser power was always 0.5Fmax, 1 min after protrusion 
formation. During these experiments and the experiments performed to determine 
the collapse velocity of protrusions, sometimes, instead of a rapid retraction from the 
tweezers, the protrusions sagged away from the tweezers and shrunk slowly, similar 
to the observations of Ashkin & Dziedzic (1989). As it was dif icult to determine the 
moment and velocity of collapse in these cases, these data are not included.

Microscope imaging
Tobacco BY-2 suspension cultured cells were imaged in gas-permeable microchambers, 
as described by Vos et al. (2004), at room temperature. For confocal imaging, we used 
a 30 mW Ar laser (488 nm) and a 1 mW HeNe laser (543 nm). The laser intensities and 
mirror settings were as follows: green, 488 nm 3–5%, DM488⁄ 543, EM BP505- 530; 
red, 543 nm 35–80%, DM488⁄ 543, EM LP560. The pinhole size was 2–2.5 Airy Units 
(200-250 μm). Transmission images were collected simultaneously. For simultaneous 
imaging and optical trapping, light from the tweezers was removed by an 850 nm 
beamsplitter before detection. A Zeiss x 63 α-Plan Fluar oil immersion objective (NA 
1.4) was used for all experiments. 

Image analysis and statistics 
Zeiss LSM image examiner (version 3.5.0.223) was used to determine the width of the 
cytoplasmic protrusions (determined 2–3 min after protrusion formation, in the middle 
of the protrusion), the velocity of organelles inside the protrusions and the collapse 
velocity after trap release. Student’s t-tests (α = 0.05) were performed to determine 
the signi icance of differences in these parameters for the different treatments.
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Results

Interphase cytoplasmic strands contain actin ilaments, and disappear on actin 
ilament depolymerization

For all experiments, we used tobacco BY-2 suspension cultured cells from an 8–13-d-old 
culture in which the nucleus was positioned at the cell’s periphery (Fig. 1). In these 
mature cells, the vacuole occupies more than 90% of the cell volume. Cytoplasmic 
strands in cells of this developmental stage still relocated and, in these strands, the 
cytoplasmic streaming velocity was 0.30 ± 0.03 μm s-1 (average and SE of 36 organelles 
from 22 cells). We studied the organization of the cytoskeleton in cytoplasmic strands of 
mature tobacco BY-2 suspension cultured cells stably expressing GFP:FABD2 (Ketelaar 
et al., 2004) or the microtubule marker GFP:TuA6 (Ueda et al., 2003)].

Cortical microtubules were abundantly present (Fig. 1a, inset) but, in cytoplasmic 
strands, microtubules were not visible (Fig. 1a). Treatment with the microtubule 
depolymerizing drug oryzalin (20 μM) led to the disappearance of all detectable 
microtubules within 30 min, but cytoplasmic strands were still present (Fig. 1b) and 
strand relocation, as well as cytoplasmic streaming, continued normally.

All cytoplasmic strands contained actin ilaments (Fig. 1c). When actin ilaments 
were fully depolymerized by a 12–16 h treatment with 500 nM LatB (Spector et al., 
1983; Coue et al., 1987), cytoplasmic strands disappeared (Fig. 1d), showing that actin 
ilaments are necessary for the maintenance of these strands. After LatB treatment, 

the cytoplasm was present only in the cell’s periphery and around the nucleus, and 
cytoplasmic streaming had stopped. Within 30 min after washing away LatB, actin 
ilaments, cytoplasmic strands and cytoplasmic streaming were observed again, 

showing that the cells recovered rapidly from the treatment. This is in agreement with 
previous studies in other cell types, showing that actin ilaments (Staiger et al., 1994; 
Shimmen et al., 1995; Valster et al., 1997; Hussey et al., 1998; Van Gestel et al., 2002; 
Higaki et al., 2006; Sheahan et al., 2007), and not microtubules (Van Gestel et al., 2002; 
Sheahan et al., 2007), are the structural basis of cytoplasmic strands in interphase 
plant cells.

Creation of cytoplasmic protrusions
When the infrared laser beam of the optical tweezers is focused on the cytoplasm, 
refractive organelles, such as mitochondria, are easily trapped. We trapped an 
organelle (often a mitochondrion) in the perinuclear cytoplasm and, whilst keeping 
the organelle trapped, moved the microscope stage at a constant velocity, so that the 
trapped organelle was pulled into the volume occupied by the vacuole. As a result, the 
vacuolar membrane curved inwards, creating a cytoplasmic protrusion impinging the 
vacuole. Although the appearance of these protrusions resembled that of cytoplasmic 
strands, tweezer-formed protrusions are attached to the rest of the cytoplasm by one 
side, whereas the other side is supported by the optical tweezers. Protrusions instantly 
contained cytoplasm and remained connected to the region from which the organelle 
was trapped originally (Fig. 2). After trap release, the protrusions collapsed back into 
the perinuclear region.
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Figure 1. Actin ilaments, and not microtubules, are the structural basis of  cytoplasmic strands in
mature tobacco BY-2 suspension cultured cells. (a,a’,b,b’) GFP:TuA6 expressing tobacco BY-2 suspension 
cultured cell from a 12-day-old culture (a, maximal projection of three images taken at 1.4 μm z-steps; 
a’, transmission image). Note the cross-sectioned (bundles of) microtubules in the cortical region of the 
cell. Inset: cortical plane showing the presence of cortical microtubules. (b,b’) When microtubules are 
depolymerized (20 μm oryzalin, 30-120min), cytoplasmic strands remain present, and lateral movements 
of these strands continue (b, maximal projection of three images taken at 1.4 μm z-steps; b’, transmission 
image). (c,c’,d,d’) GFP:FABD2 expressing tobacco BY-2 suspension cultured cell from an 11-day-old culture 
(c, maximal projection of eight images taken at 1.2 μm z-steps; c’, transmission image). Cytoplasmic strands 
of interphase cells contain actin ilaments (c). (d,d’) When actin ilaments are depolymerized [500 nM 
latrunculin B (LatB), 12-16 h], cytoplasmic strands in interphase cells disappear and ilamentous actin is 
not detectable (d, confocal image of median plane; d’, transmission image). N, nucleus. Bars, 10 μm, except 
for inset (5μm).

Protrusion formation with optical tweezers and collapse after tweezer release are 
reproducible in cells of different species: spring onion epidermal cells (Ashkin & 
Dziedzic, 1989) and Tradescantia stamen hair cells (N. C. A. de Ruijter, A. M. C. Emons 
and T. Ketelaar, unpublished). When we traversed the whole vacuole with the trapped 
organelle and reached the opposite side of the vacuole in BY-2 cells, the strands always 
collapsed. In Tradescantia stamen hair cells, the protrusion occasionally connects to 
the distal tonoplast membrane, so that both ends of the protrusion are connected to 
the pool of cytoplasm. These strands remained intact after release of the tweezers  
(N. C. A. de Ruijter, A. M. C. Emons and T. Ketelaar, unpublished).
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Figure 2. Formation of a tweezer-formed cytoplasmic protrusion. (a) Tobacco BY-2 suspension cultured 
cell from an 11-day-old culture. The area indicated by the rectangle is enlarged in (b). (b) Optical tweezers-
mediated displacement of a trapped organelle from the perinuclear cytoplasm through the vacuole results 
in the formation of a cytoplasmic protrusion. *Tweezers position; N, nucleus. Bars, 10 μm.

For our experiments, we arrested the movement of the stage once a trapped organelle 
was dislocated 10–19 μm into the vacuolar space, resulting in cytoplasmic protrusions 
of that same length. Protrusions could be maintained by the optical tweezers for at 
least 10 min. During the formation and maintenance of protrusions, the velocity of 
organelles inside the cytoplasmic strands was not affected, and we did not observe any 
changes in the organization of the cytoplasm, nor did exposure to the optical tweezer 
laser beam visibly affect the cell. Thus, it is likely that optical trapping, including the 
formation and maintenance of cytoplasmic protrusions, is not harmful to the cells.

Actin ilaments, but not microtubules, enter tweezer-formed protrusions
It is known that microtubules are absent from naturally occurring cytoplasmic strands 
(Van Gestel et al., 2002; Sheahan et al., 2007). Indeed, in the mature cells used, we did 
not observe microtubules in cytoplasmic strands (Fig. 1a). We investigated whether 
microtubules, which are present in the cytoplasm surrounding the nucleus, were also 
absent from cytoplasmic protrusions. Protrusions were created in tobacco BY-2 cells 
that stably expressed GFP:TuA6, and were maintained for 5–6 min. During protrusion 
creation and maintenance, the GFP:TuA6 luorescence was evenly distributed, and 
ilamentous structures were not observed (Fig. 3a, n = 10). To determine whether the 

GFP signal in protrusions was free GFP:TuA6, 20 μM oryzalin was applied. After 30 min, 
all cortical microtubules had depolymerized. The GFP distribution in the cytoplasmic 
protrusions of these oryzalin-treated cells was similar to that of cytoplasmic protrusions 
in untreated cells (Fig. 3b). We performed photobleaching experiments to con irm 
that the luorescence in tweezer-formed protrusions was produced by freely diffusing 
GFP:TuA6 (Supporting Information Supplemental igure 1). Thus, microtubules were 
absent from cytoplasmic protrusions produced from the cytoplasm around the nucleus, 
as they are absent from cytoplasmic strands in interphase cells.
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Figure 3. Actin ilaments, but not microtubules, enter tweezer-formed cytoplasmic protrusions.
Tweezer-formed cytoplasmic protrusions in GFP:TuA6 (a, b) and GFP:FABD2 (c, d) expressing tobacco 
BY-2 suspension cultured cells (a-d, confocal images of GFP luorescence; a’-d’, transmission images). (a,b) 
Microtubules are absent from cytoplasmic protrusions. The GFP luorescence in the protrusions is similar in 
untreated (a,a’) and 20 μM oryzalin-treated (b,b’) cells, showing that this luorescence represents free GFP-
tubulin. (c,d) Actin ilaments are present in cytoplasmic protrusions. In untreated cells (c,c’), GFP:FABD2 
decorates actin ilaments in cytoplasmic protrusions (arrow). By contrast, the GFP:FABD2 signal is evenly 
distributed in protrusions of cells in which the actin cytoskeleton has been fully depolymerized by an 
overnight treatment with 500 nM LatB (d,d’). *Tweezers position; N, nucleus. Bars, 5 μm.

Figure 4. Actin ilaments are initially not 
detected, but can later be detected in
tweezer-formed cytoplasmic protrusions.
(a) Schematic overview of the cell used in 
this experiment (N, nucleus). The box area is 
depicted in (b). Initially, actin ilaments are 
not detectable in the cytoplasmic protrusion, 
but after 119s, the GFP signal increases, and 
actin ilaments (arrows) become visible (b, 
transmission images; b’, confocal images of GFP 
luorescence). *Tweezers position; N, nucleus. 

Bar, 10 μm.
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In interphase cells, cytoplasmic strands contain actin ilaments, and these actin 
ilaments are the structural basis for their existence. We investigated whether 

cytoplasmic protrusions also contained actin ilaments. We pulled protrusions in 
tobacco BY-2 suspension cultured cells that expressed GFP:FABD2, and maintained 
them for 6 min. In 74% of these protrusions (n = 39), actin ilaments (bundles) were 
visible within 3 min after protrusion formation (Fig. 3c). Actin ilaments were detected 
71 ± 10 s (average with SE) after protrusion formation (i.e. after stage movement was 
arrested, 20–25 s after the start of protrusion creation), but were often not visible 
immediately after protrusion creation (Fig. 4). In order to verify that the observed 
increase in luorescence results from the presence of actin ilaments, and not from 
unbound GFP:FABD2, protrusions were created in the absence of actin ilaments (12–
16 h treatment with 500 nM LatB). In these LatB-treated cells, diffuse luorescence was 
evenly distributed throughout the whole volume of the protrusions (Fig. 3d), whereas 
luorescently labeled ilaments were observed in protrusions of untreated cells (Fig. 

3c, 4). We conclude that most cytoplasmic protrusions, like all naturally occurring 
cytoplasmic strands in interphase cells, hold actin ilaments.

Organelle transport over actin ilaments occurs in cytoplasmic protrusions
To assess whether active organelle transport occurred over the actin ilaments 
in cytoplasmic protrusions, we investigated organelle movement within them. 
Mitochondria (stained by the application of 10 nM Mitotracker Red) move into and 
inside protrusions (Fig. 5), and also other moving organelles were observed in the 
protrusions with differential interference contrast microscopy. Organelles that can be 
observed – with this magni ication – are, besides the stained mitochondria, probably 
plastids. The number of visible organelles moving inside the protrusions ranged from 
0 to 10 per protrusion during the 6 min experiment. Most organelles moved towards 
the trap but, in 21% of the protrusions (n = 29), organelles moved in both directions. 
The net organelle velocity in protrusions was 0.26 ± 0.02 μm s-1 (Fig. 5b). This is 
similar to the organelle velocity in naturally occurring cytoplasmic strands in cells of 
this developmental stage (0.30 ± 0.03 μm s-1). In cytoplasmic protrusions of cells in 
which all actin ilaments had been depolymerized (500 nM LatB; 12–16 h), organelles 
jiggled and net organelle displacements over at least 2.5 lm occurred at a velocity of 
0.07 ± 0.01 μm s-1 (average with SE; Fig. 5b), signi icantly lower than the net organelle 
displacement velocity in protrusions pulled in untreated cells (0.26 ± 0.02 μm s-1). 
A partial depolymerization of the actin cytoskeleton (100 nM LatB; 10–90 min) also 
resulted in a reduced organelle velocity within the protrusions (Fig. 5b). These data 
con irm that the actin ilaments in tweezer-formed cytoplasmic protrusions support 
cytoplasmic streaming.

Most protrusions contain luorescently decorated actin ilaments within 3 min after 
their formation but, immediately after protrusion formation, actin ilaments are often 
not detectable. As GFP:FABD2 does not show ine dynamic (bundles of) actin ilaments 
in the subapex of growing root hairs in a confocal laser scanning microscope (Ketelaar 
& Emons, 2009), we tested the presence of ilamentous actin during protrusion 
creation by determining the organelle velocity. The velocities of organelles that were 
immediately present (0.27 ± 0.08 μm s-1, average with SE; Fig. 5c) and of organelles 
that entered the protrusion when actin ilaments were detectable (0.26 ± 0.04 μm s-1) 
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do not differ signi icantly (t-test; P < 0.05) from the normal organelle velocity (0.30 
± 0.03 μm s-1). Thus, actin ilaments, although not detectable with GFP:FABD2, are 
immediately present and functional. The velocity of organelles did not change during 
protrusion maintenance.

formed cytoplasmic protrusions. (a,a’) 
Movement of mitochondria (arrows) in 
cytoplasmic protrusions (a, confocal images of 
Mitotracker Red (10 nM)-stained mitochondria; 
a’, transmission images). *Tweezers position. 
N, nucleus. Bar, 5 μM. (b) Tweezer-formed 
cytoplasmic protrusions of both untreated (n = 
46) and latrunculin B (LatB)-treated (100 nM, 
n = 28; 500 nM, n = 12) cells contain moving 
organelles. However, in untreated cells, the 
average velocity of these organelles is higher, 
and similar to the organelle velocity in naturally 
occuring cytoplasmic protrusions (n = 36). (c) 
The average velocity of organelles that are 
immediately present (n = 9) in tweezer-formed 
protrusions is similar to that of organelles that 
enter the protrusions at a later stage (n = 18), 
when actin filaments are detected. Error bars 
represent SE.

The actin cytoskeleton increases the force required to create cytoplasmic
protrusions, but actin ilaments in protrusions do not slow down their collapse
Our optical tweezers set-up is able to measure the absolute forces needed to dislocate 
beads in luid medium. As the complexity of cytoplasm and its properties, such as 
viscosity, are unknown, it is at present impossible to measure the absolute forces in 
living cells. Therefore, we used fractions of the maximal laser power employed (0.3Fmax, 
etc.) to compare relative forces. The infrared laser output was linear over the power 
range used in these experiments. For a range of laser power (0.3Fmax, 0.5Fmax, 0.7Fmax, 
0.9Fmax and Fmax), we scored the number of successful protrusion creations (see Materials 
and Methods) in experimental conditions to investigate the contribution of the actin 
cytoskeleton to the force needed for protrusion creation and maintenance (Table 1). 
In cells with a completely depolymerized actin cytoskeleton (500 nM LatB; 12-16 h 
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treatment), the force required to pull protrusions was less than in untreated cells  
(Table 1). The trap power at which all creations succeeded was 0.7Fmax in untreated 
cells, but 0.5Fmax for LatB-treated (500 nM; 12–16 h) cells. At 0.3Fmax, the fraction 
of successful trapping attempts was also higher in LatB-treated (500 nM; 12–16 h) 
cells (72%) than in untreated cells (12%). These results show that, in the presence of 
actin ilaments, more force is required to pull cytoplasmic protrusions. To investigate 
whether, in the presence of actin ilaments, more trap power is also needed to maintain 
the protrusions, we pulled protrusions, and reduced the trap power by 0.01Fmax per 
second once a protrusion had been successfully formed, until the trapped organelle 
escaped and the protrusion collapsed (see Materials and Methods). The trap power at 
which the protrusions collapsed in LatB-treated cells (0.20 ± 0.01Fmax; average and SE 
of 12 replicates) was signi icantly lower than that of untreated cells (0.26 ± 0.01Fmax; n = 
12; t-test, P < 0.05; Fig. 6a). Thus, the maintenance of cytoplasmic protrusions requires 
a higher force when actin ilaments are present in the cell. In addition, protrusions 
in cells with a depolymerized actin cytoskeleton are wider in diameter than those in 
control cells (Fig. 6b). A partial depolymerization of the actin ilament pool (100 nM 
LatB; 10–90 min) also resulted in wider protrusions (Fig. 6b) and an intermediate 
force required to create (Table 1) and maintain (Fig. 6a) them. This greater ease of 
protrusion creation and maintenance when ilamentous actin is absent, and its dose 
dependence, show that, in plant cells, the actin cytoskeleton stiffens the cytoplasm.

0.3 Fmax 0.5 Fmax 0.7 Fmax 0.9 Fmax Fmax

GFP:FABD untreated 12% 
(n=17)

89% 
(n=36)

100% 
(n=20)

100 nM LatB (10-90 min) 40% 
(n=10)

92% 
(n=12)

100% 
(n=10)

500 nM LatB (12-16 h) 72% 
(n=18)

100% 
(n=22)

25 mM BDM (5-30 min) 0% 
(n=10)

40% 
(n=10)

48% 
(n=21)

58% 
(n=43)

Table 1. The percentage of successful attempts to create tweezer-formed cytoplasmic protrusions is shown 
for a range of laser power of the optical tweezers. The force required to create cytoplasmic protrusions 
is lower than in control cells in the absence of actin ilaments, and higher when myosin motor activity is 
inhibited.

Filamentous actin is essential to prevent the disappearance of naturally formed 
cytoplasmic strands (Staiger et al., 1994; Shimmen et al., 1995; Valster et al., 1997; 
Hussey et al., 1998; Van Gestel et al., 2002; Higaki et al., 2006; Sheahan et al., 2007). 
Thus, actin ilaments are a stabilizing factor. Tweezer-formed cytoplasmic protrusions, 
however, can be formed in cells with an intact and depolymerized actin cytoskeleton 
and, after trap release, all protrusions collapse back into the perinuclear region from 
which they were pulled (Fig. 7a). Does the presence of actin ilaments in luence the 
collapse velocity of protrusions? In other words, do actin ilaments serve as a stabilizing 
factor that delays the collapse of cytoplasmic protrusions? Protrusions were pulled in 
untreated cells and in cells in which all ilamentous actin had been depolymerized 
(500 nM LatB for 12–16 h). We released the trap 6 min after protrusion formation, 
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and determined the collapse velocity by measuring the length of protrusions as the 
percentage of their initial length. This length was plotted over time, with t = 0 being 
the time point of trap release (Fig. 7b). When the actin cytoskeleton was completely 
depolymerized (500 nM LatB; 12–16 h), the collapse velocity was reduced compared 
with untreated cells. Although the difference in collapse velocity is small, it is 
nevertheless signi icant for nine of 14 time points after trap release (P < 0.05). Partial 
depolymerization of the actin cytoskeleton (100 nM LatB; 10–90 min) did not cause 
a signi icant decrease in collapse velocity. We conclude that actin ilaments do not 
slow down the collapse of protrusions, indicating that actin ilaments only support a 
protrusion when this strand is connected at both ends.

Figure 6. The force required to maintain a 
cytoplasmic strand with optical tweezers
decreases in the absence of actin ilaments,
and increases when myosin motor activity 
is inhibited. (a) By gradually reducing the 
laser power once protrusions were successfully 
formed, the force required to maintain these 
protrusions was determined, i.e. the force at 
which they collapsed back into the perinuclear 
region [n = 8 for 2,3-butanedione monoxime 
(BDM)-treatment and n = 12 for the other 
treatments]. Force is expressed as fractions of 
the maximal laser power (Fmax). (b) The width 
of cytoplasmic protrusions differs among the 
treatments [n = 50 for untreated cells, n = 23 for 
100 nM latrunculin B (LatB)-treated cells, n = 12 
for 500 nM LatB- and 25 mM BDM-treated cells). 
Error bars represent SE.

Figure 7. Actin ilaments in tweezer-formed cytoplasmic protrusions do not delay the collapse of 
these protrusions. (a) After trap release, cytoplasmic protrusions collapse back into the perinuclear 
cytoplasm from which they were drawn. N, nucleus. Bar, 10 μm. (b) Collapse velocity of  cytoplasmic 
protrusions, plotted as the decrease in length after trap release [n = 25 for untreated cells, n = 19 for 100 
nM latrunculin B (LatB)-treated cells, n = 9 for 500 nM LatB treated cells, n = 5 for 25 mM 2,3-butanedione 
monoxime (BDM)-treated cells]. Trap release was performed 6 minutes after protrusion formation. Error 
bars represent SE.

Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers



46

A BDM-sensitive factor, probably myosin, facilitates the creation of cytoplasmic 
protrusions, and does not in luence their collapse
Class XI myosins are plant-speci ic, actin-based motor proteins that are responsible 
for organelle movement (Reddy, 2001; Shimmen & Yokota, 2004; Shimmen, 2007). 
There are indications that myosins play a role in the reorganization of naturally 
occurring cytoplasmic strands by reorganizing the actin cytoskeleton (Hoffmann & 
Nebenfuhr, 2004; Sheahan et al., 2007). This conclusion was derived from experiments 
with BDM. To investigate whether myosin motor activity is required for the entrance 
of actin ilaments into cytoplasmic protrusions, we treated the cells with BDM. BDM 
is a myosin ATPase inhibitor (Higuchi & Takemori, 1989; Yagi et al., 1992) that is 
known to inhibit the activity of at least some myosins in plant cells (Tominaga et al., 
2000a). A 15 min treatment of the cells with 25 mM BDM resulted in an inhibition of 
cytoplasmic streaming and cytoplasmic strand reorganization, as expected. Thus, BDM 
indeed inhibits the activity of a factor, which is probably a myosin, involved in these 
processes. We tested whether 25 mM BDM treatment changes the force required to 
pull protrusions. Only at a laser power of 0.7Fmax or higher were protrusions formed 
successfully. At 0.7Fmax, only 40% of the trapping attempts in BDM-treated cells were 
successful, whereas trapping attempts at this laser power never failed in untreated 
cells. At Fmax, only 58% of the trapping attempts were successful in BDM-treated cells 
(Table 1). Thus, BDM increases the force required to pull protrusions, suggesting that 
the action of a BDM sensitive factor, probably myosin, facilitates protrusion formation. 
To investigate whether it is also harder to maintain protrusions when myosin activity 
is inhibited, we created protrusions in BDM-treated cells at Fmax and reduced the 
laser power until the protrusions collapsed (see Materials and Methods). This laser 
power (0.42 ± 0.05Fmax; average and SE of eight replicates; Fig. 6a) was signi icantly 
higher (t-test; P < 0.05) than that of untreated cells (0.26 ± 0.01Fmax), showing that 
the force counteracting the tweezers is higher, and thus the cytoplasmic deformability 
is lower, in cells with inactivated myosin. The fact that protrusions in BDM-treated 
cells are thinner than those in untreated cells (t-test; P < 0.05; Fig. 6b) con irms this. 
We conclude that myosin motor activity is a factor facilitating protrusion creation. 
Although ilamentous actin restricts the amount of cytoplasm pulled by the tweezers, 
myosin motor activity in the presence of ilamentous actin aids the displacement of 
cytoplasm by optical tweezers. We also measured the protrusion collapse velocity in 
cells with inactivated myosin (Fig. 7b). The collapse velocity of protrusions in cells 
that had been treated with 25 mM BDM was similar to that of protrusions in untreated 
cells: only for one of 13 time points after trap release did the length of protrusions 
differ (t-test; P < 0.05). Thus, although inactivation of myosin stiffens the cytoplasm, 
making it less expandable, this stiffening does not slow down or accelerate protrusion 
collapse when the tweezers are released.

Entrance of actin ilaments into tweezer-formed cytoplasmic protrusions 
depends on myosin motor activity 
The myosin dependence of actin ilament translocation in cytoplasmic protrusions 
was investigated by pulling them in cells 5–30 min after the addition of 25 mM BDM, a 
concentration that inhibited cytoplasmic streaming and strand reorganization within 
15 min. None of the protrusions created during BDM treatment (n = 12) contained 
ilamentous actin (Fig. 8). Altogether, we observed only one organelle in such 
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protrusions, its velocity being similar to that of the passively displacing organelles in 
protrusions in cells without actin ilaments (500 nM LatB; 12–16 h). As the speci icity of 
BDM for plant myosins has not been carefully investigated (McCurdy, 1999; Hoffmann 
& Nebenfuhr, 2004), these data must be interpreted with caution. Nevertheless, these 
data strongly suggest that actin ilaments enter cytoplasmic strands by a myosin-
dependent translocation of existing actin ilaments. To prove that actin ilaments can 
enter and move through cytoplasmic protrusions, independent of the force exerted by 
displacement of the optical tweezers, we studied their displacement before and after 
protrusion formation. In 28% of the actin-containing protrusions in untreated cells, 
luorescent ilaments (bundles) with higher luorescence intensity alternated with 

lower intensity fragments. In Fig. 9, such a highly luorescent fragment is present near 
the tweezer position (Fig. 9a’, arrow). When the length of the protrusion was increased 
(Fig. 9a), the luorescent fragment remained present at the same position during 22 
s, showing that it is not passively pulled into the protrusion by the sucking force of 
the tweezers. After 22 s, this fragment started to move towards the tweezers (Fig. 
9a’,b). The kymograph of the luorescence distribution in the protrusion shows that 
the movement of the luorescent fragment (Fig. 9b) is not dependent on displacement 
of the tweezers.

Figure 8. Actin ilaments enter tweezers-formed cytoplasmic protrusions in a myosin-dependent 
manner. (a,a’) Actin ilaments are absent from cytoplasmic protrusions when myosin motor activity is 
inhibited by 25 mM 2,3-butanedione monoxime (BDM) for 5-30 minutes (a, confocal image; a’, transmission 
image). *Tweezers position; N, nucleus. Bar, 5 μm.

Discussion

In plant cells, cytoplasmic strands devoid of actin ilaments have not been shown to 
exist. When the actin cytoskeleton is depolymerized, strands disappear (Staiger et al., 
1994; Shimmen et al., 1995; Valster et al., 1997; Hussey et al., 1998; Van Gestel et al., 
2002; Sheahan et al., 2007). Regarding strand stabilization, the tweezers experiments 
show two properties of the cytoplasm. First, when dragging an organelle with optical 
tweezers through the vacuolar space, a cytoplasmic protrusion can be made when 
actin ilaments are absent, and the formation of cytoplasmic protrusions requires more 
force when actin ilaments are present in the cytoplasm, showing that actin ilaments 
stiffen the cytoplasm. Second, tweezer-formed protrusions, which are only connected 
to the rest of the cytoplasm at their base, collapse back into the perinuclear cytoplasm 
when the trap force is released, showing that actin ilaments do not stabilize them in 
this situation.
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Figure 9. Actin ilaments 
can enter and move through 
tweezer-formed protrusions 
independent of the tweezers 
displacement. (a,a’) Tweezer-
formed protrusion in an untreat-
ed cell. When the length of the 
protrusion was increased (a), 
the highly luorescent fragment 
shown in a’ (arrow) remained 
present at the same position for 
22 s, after which it started to 
move towards the tweezers (a, 
transmission images; a’, confo-
cal images of GFP luorescence). 
*Tweezers position; N, nucleus. 
Bar 10 μm. (b) A kymograph of 
the luorescence distribution in 
the tweezer-formed protrusion 
shown in (a) shows the move-
ment of luorescent fragments. 
The upper line in the kymograph 
(b) corresponds to a’, 22 s. N, nu-
cleus.

There are three ways in which actin ilaments can enter protrusions: through actin 
nucleation ⁄ polymerization; through myosin-based displacement of actin ilaments; 
and in a motor- and polymerization-independent manner, i.e. by diffusion. In yeast, 
a cross-linked network of actin ilaments polymerizes at one side of mitochondria, 
steering them through the cytoplasm. The Arp2 ⁄ 3 complex nucleates new free barbed 
ends of actin ilaments for polymerization in this process (Boldogh et al., 1998). Our 
observation that short (bundles of) actin ilaments move through protrusions even 5 
min after protrusion formation demonstrates that actin ilaments enter protrusions 
independent of the tweezer force. Although we cannot exclude the possibility that actin 
polymerization occurs during the migration of actin ilaments into tweezer-formed 
cytoplasmic protrusions, we have shown that motor protein-based displacement of 
actin ilaments over other actin ilaments is likely to be responsible for the appearance of 
luorescent actin ilaments in the protrusions during and after protrusion formation.
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Although the precise mode of action of BDM on plant myosins is not known, it has been 
shown to inhibit plant organelle movement, a myosin-based process (Tominaga et al., 
2000a), and has been used as a myosin inhibitor in plant cells (Radford & White, 1998; 
McCurdy, 1999; Samaj et al., 2000; Molchan et al., 2002; Oertel et al., 2003; Funaki et 
al., 2004; Hoffmann & Nebenfuhr, 2004; Frantzios et al., 2005; Higaki et al., 2006; Paves 
& Truve, 2007; Esseling-Ozdoba et al., 2008). Myosin motor activity is important for 
cytoplasmic reorganization, such as fusion and lateral displacements of cytoplasmic 
strands (Hoffmann & Nebenfuhr, 2004; Sheahan et al., 2007). The tweezer-formed 
protrusions in BDM-treated cells never contained actin ilaments, pointing to a role 
for myosin activity in the entry of actin ilaments into protrusions. Myosins could 
interconnect (bundles of) actin ilaments and cause sliding of these (bundles of) actin 
ilaments along each other. As the migration of actin ilaments into new protrusions is 

inhibited by BDM, it is probably myosin dependent. Our results suggest that myosin-
dependent movement of actin ilaments is not only responsible for the relocation of 
existing cytoplasmic strands (Hoffmann & Nebenfuhr, 2004), but also for the formation 
of new strands.

Grabski et al. have studied the tension produced by the actin cytoskeleton in 
naturally occurring cytoplasmic strands by laterally displacing the strands with 
optical tweezers. They showed that this tension is reduced in the presence of actin 
ilament depolymerizing drugs (Grabski et al., 1994), but increased in the presence 

of BDM (Grabski et al., 1998). We visualized the actin organization in tweezer-formed 
cytoplasmic protrusions and showed that the deformation capability of the cytoplasm 
depends on the actin cytoskeleton that supports it. This resembles the results 
from deformation experiments of actin networks in vitro, which show that an actin 
network functions as an elastic structure (Liu et al., 2006; Tharmann et al., 2007). Our 
experiments show that a BDM-sensitive factor, probably myosin, serves as a sliding 
cross-linker that in luences the deformation competence of the actin network, and 
thus the cytoplasm, of plant cells. The BDM treatment resists the deformation of the 
cytoplasm during protrusion creation, probably by inhibiting the sliding capacity of 
myosin motor proteins, so that only the actin ilament cross-linking activity remains 
and the cytoplasmic organization is frozen.

Myosin motor activity along actin ilaments could be an ef icient method to restructure 
the cytoplasm, as, for instance, occurs during cytokinesis in plant cells. Future work 
should clarify the mechanisms that underlie natural cytoplasmic strand formation. 
Manipulation of the cytoplasm with optical tweezers, combined with confocal 
microscopy, speci ic drugs, RNA interference and mutants, will be important tools in 
these studies.
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Supporting Information

Supplemental igure 1. Microtubules are absent from tweezer-formed cytoplasmic protrusions.
Photobleaching experiments were performed to prove the absence of microtubules in tweezer-formed 
protrusions. (a) We performed photobleaching in the cortical region of a cell, where microtubules are 
abundant. Immediately after photobleaching (a’), the luorescence intensity in the bleached region (depicted 
by the box) had decreased, but outside the bleached area, the GFP-tubulin-alpha, which is incorporated 
in microtubules, still showed ilamentous structures (arrow). (b,c) Photobleaching of tweezer-formed 
cytoplasmic protrusions in a control cell (b) and a cell treated with oryzalin (c). After the formation of a 
tweezer-formed cytoplasmic protrusion, a box in the middle of the strand was photobleached at least 2.5 
minutes after protrusion formation. This not only caused a decrease in luorescence in the photobleached 
area, but also immediately led to a decrease in luorescence in the surrounding unbleached areas of the 
protrusion (b,b’). The same phenomenon was observed in tweezer-formed protrusions that had been formed 
in the presence of oryzalin (c,c’), and these results were reproducible (n = 8 for untreated cells, and 6 for 
oryzalin-treated cells). Loss of luorescence outside of the photobleached area can only occur by diffusion 
or transport of bleached luorophores from the bleached area, showing that only GFP-tubulin monomers are 
present in the protrusion. *Tweezers position; N, nucleus. Bar, 10 μm.
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Abstract

Lifeact is a novel probe for life cell actin ilament visualization. Fused to a luorescent 
protein, this probe labels actin ilaments in a wide range of cell types and organisms. 
In this study, we compared the localization and reorganization of Lifeact:Venus labeled 
actin ilaments in Arabidopsis root hairs and root epidermal cells with that of actin 
ilaments labeled with GFP:FABD2, a commonly used probe in plants. Unlike GFP:FABD2, 

Lifeact:Venus labeled the highly dynamic ine F-actin in the subapical region of tip-
growing root hairs. Lifeact:Venus, however, reduced reorganization rates of (bundles 
of) actin ilaments in root epidermal cells. Reorganization rates of cytoplasmic 
strands, which re lect reorganization of the actin cytoskeleton, were reduced in 
Lifeact:Venus expressing cells compared to both wild type and GFP:FABD2 expressing 
cells. Furthermore, Lifeact:Venus decorated actin ilaments were more resistant to 
depolymerization by latrunculin B than GFP:FABD2 decorated actin ilaments. We 
conclude that Lifeact:Venus reduces remodeling of the actin cytoskeleton in Arabidopsis, 
and that Lifeact should be used with care when studying actin reorganization.
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Introduction

The actin cytoskeleton in eukaryotic cells is essential in many processes. It is capable 
to rapidly form a plethora of structures, such as cross-linked networks and bundles 
of various thicknesses. The organization of the actin cytoskeleton is regulated by 
the intrinsic properties of actin and by actin binding proteins. To study the dynamic 
reorganization of the actin cytoskeleton, live cell imaging is an important experimental 
procedure. Adding a luorescent protein directly to actin reduces retrograde low in 
lamellipodia of ibroblast cells and slows down chemotactic dendritic cell migration 
(Riedl et al. 2008). In plant cells, luorescently labeled actin does incorporate into actin 
ilaments, but those do not form the plant speci ic actin cytoskeleton con igurations 

(Van der Krogt et al. 2006). To circumvent this problem, several genetic fusions of 
luorescent probes to actin binding domains of actin binding proteins are available 

for live cell actin cytoskeleton visualization. For live cell actin visualization in plants, 
GFP:FABD2 (Ketelaar et al. 2004a; Sheahan et al. 2004), consisting of GFP fused to 
the second actin binding domain of Arabidopsis imbrin1, and GFP:mTalin (Kost et 
al. 1998), consisting of GFP fused to the actin binding domain of mouse talin, have 
been frequently used. Expression of any luorescently tagged actin binding domain is 
likely to cause competition with native actin binding proteins for actin binding. This 
clearly is the case in GFP-mTalin expressing plants. In Arabidopsis expressing GFP-
mTalin, growth is reduced and morphology is altered (Sheahan et al. 2004). This is 
thought to be caused by a reduced cytoplasmic streaming velocity, over-stabilization 
of the actin cytoskeleton (Holweg 2007) and a reduction of ADF/co ilin mediated actin 
depolymerization in the presence of GFP-mTalin (Ketelaar et al. 2004b). GFP:FABD2 
expression only causes a slight reduction in organelle velocity in Arabidopsis (Holweg 
2007) and plant growth is not inhibited (Voigt et al. 2005). GFP:FABD2 is therefore 
considered to be the best choice for visualization of actin ilament organization and 
dynamics in plant cells. GFP:FABD2 does, however, not appear to decorate the actin 
fringe in the apical region of pollen tubes (Wilsen et al. 2006), and the dynamic (bundles 
of) actin ilaments in the subapex of growing root hairs (Ketelaar and Emons 2009). 
Furthermore, in moss cells, GFP:FABD2 expression results in growth abnormalities and 
cytoskeletal anomalies (Vidali et al. 2009). Thus, even though GFP:FABD2 is considered 
as the best available probe for actin visualization in plant cells, it has drawbacks.

Lifeact is a novel probe for live cell actin visualization. Fused to a luorescent probe, 
this short peptide, consisting of the irst 17 amino acids from the yeast protein 
Abp140, clearly visualizes ilamentous actin in eukaryotic cells and tissues (Riedl et 
al. 2008). Lifeact affects neither actin nucleation, elongation and depolymerization 
rates in vitro, nor cytoskeletal functions in living mammalian cells (Riedl et al. 2008). 
Since there are no sequences homologous to Abp140 in plants and vertebrates, it is 
thought that the peptide is likely to have no or little side effects on actin organization 
and dynamics in vertebrate cells (Riedl et al. 2008). Besides labeling actin ilaments in 
vertebrate cells (Estecha et al. 2009; Riedl et al. 2008), Lifeact labels actin ilaments in 
ilamentous growing fungi (Berepiki et al.) and in different plant species ranging from 

the liverworth Marchantia and the moss Physcomitrella to the seed plants Arabidopsis, 
lily and tobacco (Era et al. 2009; Vidali et al. 2009). In contrast to GFP:FABD2, Lifeact 
does decorate ine F-actin in the subapical area of tip-growing pollen tubes (Vidali 
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et al. 2009). Based on the above data, Lifeact appears a very good choice for live cell 
visualization of actin ilaments in a wide range of cell types and organisms.

In this study, we compared the organization and dynamics of the actin cytoskeleton 
in GFP:FABD2 and Lifeact:Venus expressing Arabidopsis plants. Unlike GFP:FABD2, 
Lifeact:Venus labeled the highly dynamic ine F-actin con iguration in the subapical 
region of tip growing root hairs. Expression of Lifeact:Venus, however, reduced the 
reorganization rate of actin ilaments in root epidermal cells when compared to 
GFP:FABD2. Cytoplasmic strand reorganization rate, which re lects remodeling of the 
actin cytoskeleton, was similar in wild type and GFP:FABD2 expressing cells, but reduced 
in Lifeact:Venus expressing cells, indicating that GFP:FABD2 does not enhance, but that 
Lifect:Venus reduces actin reorganization. Moreover, in Lifeact:Venus expressing cells, 
the actin cytoskeleton was more resistant to actin depolymerization with latrunculin 
B than in GFP:FABD2 expressing cells. Together, these results demonstrate that Lifeact 
reduces remodeling of the actin cytoskeleton in Arabidopsis.

Materials and methods

Plant material and growth conditions
Seeds were sterilized for 1 minute with 70%-ethanol, followed by a 3-5-minute 
treatment with 15-20% household bleach (4% hypochlorite) and 0.05% triton X-100. 
After sterilization, the seeds were washed 4 times with ddH2O, and strati ied at 4°C for 
at least 2 days. For root hair imaging, seeds were sown on tilted coverslips containing 
a thin 0.7% agarose layer of Hoaglands’ medium, covered with biofoil (Vivascience, 
Göttingen, Germany). Root hairs grew along the coverslip, and were imaged with a 
spinning disk confocal microscope 3-4 days after planting. For root epidermal cell 
visualization experiments, seeds were germinated on 0.5 MS plates containing 1.5% 
agarose. The plates were placed at an oblique angle (approximately 15-30° off vertical). 
All plants were grown at 25°C (16 h light, 8 h darkness).

Life cell imaging and drug treatments
For all experiments, 3-5 day old plants were used. Root hairs were imaged with a I-LAS 
Spinning Disk Confocal System (Roper Scienti ic SAS, France) on a Nikon Eclipse Ti 
microscope using a 100x (N.A. 1.49) oil immersion objective (Gutierrez et al. 2009). 
Root epidermal cells were imaged and FRAPped with an Axiovert 200M microscope 
(Zeiss, Jena, Germany) connected to a Zeiss LSM510 META confocal scanning system 
equipped with a 63x N.A. 1.4 oil immersion objective (Van der Honing et al. 2010). The 
pinhole size was 1 Airy Unit (98 (GFPFABD2) / 102 (Lifeact:Venus) μm). Transmission 
images were collected simultaneously.

Fluoresceindiacetate (FDA; Sigma, St Louis, MO, USA; 0.5% stock in acetone) was diluted 
to a inal concentration of 0.01% in ddH20. A 10 mM-stock (in DMSO) of latrunculin B 
(Sigma-Aldrich, Zwijndrecht, The Netherlands) was diluted to a inal concentration of 
1 μM in ddH20.
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Fluorescence Recovery After Photobleaching (FRAP)
Pre-bleach (always 5 images) and post-bleach imaging occurred at 5% excitation at 
488 nm (GFP:FABD2) or 514 nm (Lifeact:Venus). Photobleaching was performed using 
both the 488 nm and the 514 nm laser lines at 100% laser power (10 iterations) using 
a box size of 50 - 190 μm2. Fluorescence intensity values of the bleached region were 
normalized, and the average time for 50% recovery (t1/2) was determined from itting 
recovery curves.

Analysis of actin reorganization
Images of the cortical region of root epidermal cells were collected at 5 s intervals. 
After running an Image J macro (Van Bruaene et al. 2004) (see results), we averaged 
the number of red, green, yellow and black pixels for the irst 3 images (i.e. the irst 10 s) 
of each image sequence. Actin ilament reorganization was quanti ied by determining 
the percentage of luorescent pixels that newly appeared at a location that was not 
luorescent in the previous frame, i.e. (number of green pixels) / (number of green 

pixels + number of yellow pixels) * 100%.

Protein Gel Blot Analysis
Arabidopsis seedlings were grown on plates with Hoaglands’ medium and 1% agarose. 
Seedlings of similar age as the ones used for imaging were harvested and processed 
as described by Ketelaar et al. (2002). SDS-PAGE was performed on a 10% acrylamide 
gel. The blot was probed with antiserum against GFP (Abcam ab290) diluted 1:1000, 
followed by goat anti-rabbit IgG alkaline phosphatase diluted 1:3000 (Abcam 
ab6722). 

Results

Expression of GFP:FABD2 or Lifeact:Venus does not dramatically affect plant growth
To determine the consequences on plant growth of GFP:FABD (Ketelaar et al. 2004a) 
or Lifeact:Venus (Era et al. 2009) expression, Arabidopsis Col-0 plants expressing 
GFP:FABD2 or Lifeact:Venus, both driven by the CaMV 35S promoter, were grown 
on potting compost together with Arabidopsis Col-0 plants without actin marker. 
Plant growth and organ development of GFP:FABD2 and Lifeact:Venus expressing 
plants occurred at similar rates as those of wild type plants, and the plants of all 
lines are similar in size and stature (Fig. 1 A, B). Root growth rates of Lifeact:Venus 
expressing plants were similar to those of wild type plants (Fig. 1 C), but those of 
GFP:FABD2 expressing plants grew slightly, but signi icantly, faster. To investigate the 
consequences of GFP:FABD2 and Lifeact:Venus expression at cell level, we determined 
root hair growth rates of both lines. Root hair tip growth is sensitive to changes in 
actin organization and dynamics (Ketelaar et al. 2003; Ketelaar and Emons 2009; 
Miller et al. 1999). Altered root hair growth velocities can be indicative for defects in 
the organization or dynamics of actin ilaments. Thus, we measured root hair growth 
velocities in GFP:FABD2 and Lifeact:Venus expressing plants. Root hair growth rates of 
both GFP:FABD2 and Lifeact:Venus expressing plants were, however, similar to those 
of wild type plants (Fig. 1 D). Thus, except for the slightly higher root growth rates of 
GFP:FABD2 expressing plants, both fusion proteins express at levels that do not affect 
plant development and cell growth.
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Figure 1. Expression of Lifeact:Venus or GFP:FABD2 does not dramatically affect plant growth and
morphology. 25 day old (A) and 35 day old (B) wild type (left), GFP:FABD2 expressing (middle) and 
Lifeact:Venus expressing (right) plants are similar in size and stature. (C) Root growth rates of Lifeact:Venus 
expressing plants are similar to those of wild type plants (t-test, p = 0.56 at day 16), but those of GFP:FABD2 
expressing plants are slightly higher (t-test, p = 0.002 at day 16). (D) Root hair growth rates of Lifeact:Venus 
expressing (n=12) and GFP:FABD2 expressing (n=10) plants do not differ signi icantly from those of wild 
type plants (n=15) at α = 0.05 (p = 0.07 for Lifeact:Venus, and 0.19 for GFP:FABD2). Error bars represent 
standard deviations.

Expression levels of GFP:FABD2 and Lifeact:Venus are similar
Although plant development and cell growth were not affected by the expression levels 
of GFP:FABD2 or Lifeact:Venus that we used, we further tested the expression levels of 
both probes by Western blotting. The expression level of GFP:FABD2 is slightly higher 
than that of Lifeact:Venus, but the amounts of protein are similar in both lines (Fig. 2). 

Figure 2. Western blotting with a GFP 
antibody shows that expression levels of 
GFP:FABD and Lifeact:Venus are similar.
Equal amounts of protein from seedlings 
expressing GFP:FABD2 (1), Lifeact:Venus (2) 
and wild type Col-0 plants (3) were separated 
by SDS-PAGE and the blot was probed with an 
antibody against GFP which is equally sensitive 
to all GFP variants. The lanes labeled with (a) 
show a total protein stain that con irms equal 
loading and the lanes labeled with (b) show the 
same lanes probed with the GFP antibody. The 
sizes of the bands are similar to the predicted 
molecular mass of GFP:FABD2 (68 kD) and 
Lifeact:Venus (29 kD).

Chapter 3



59

3

C
 3

Lifeact:Venus labels ine F-actin in the apical region of growing root hairs of 
Arabidopsis
To test the quality of Lifeact:Venus in labeling the subapical, dynamic ine F-actin 
in growing root hairs, we compared the actin organization in Arabidopsis root 
hairs expressing Lifeact:Venus with that in root hairs expressing GFP:FABD2. From 
phalloidin stained and actin immunolabeled ixed root hairs, the actin organization 
in growing root hairs is known. In the non-expanding root hair tube, thick, more or 
less longitudinally oriented bundles of actin ilaments are present. In the (sub)apical 
area, these lare out in thinner bundles of actin ilaments, which con iguration we have 
named ine F-actin (Ketelaar et al. 2003). We compared the above actin organization 
with that in GFP:FABD2 and Lifeact:Venus expressing root hairs. In the root hair 
tube, the actin organization in root hairs expressing GFP:FABD2 or Lifeact:Venus was 
similar to that in ixed cells (Fig. 3). However, in the (sub)apical area of GFP:FABD2 
expressing root hairs, only few actin ilaments were detectable (Fig. 3 A, B). This does 
not resemble the ine F-actin in ixed root hairs. In Lifeact:Venus expressing root hairs, 
highly dynamic ine F-actin was visible in the (sub)apex (Fig. 3 D, E). The ine F-actin 
resembles the ine F-actin in ixed root hairs. Growth, morphology and cytoarchitecture 
of root hairs expressing either GFP:FABD2 or Lifeact:Venus were normal. Summarizing, 
Lifeact:Venus, unlike GFP:FABD2, labels the highly dynamic ine F-actin in the apical 
region of root hairs.

Figure 3. Unlike in GFP:FABD2 expressing root hairs, ine F-actin is detectable in the subapical region
of root hairs expressing Lifeact:Venus. In the root hair tube, thick, more or less longitudinally oriented 
bundles of actin ilaments are similarly present in GFP:FABD2 (A, B) and Lifeact:Venus (D, E) expressing 
root hairs. Unlike in GFP:FABD2 expressing root hairs (A, B; arrowhead), actin ilaments are detectable in 
the subapical region of Lifeact:Venus expressing root hairs (D, E; asterisk). A, D: confocal images of median 
plane; B, E: maximal projections of z-stacks collected using a 0.5 μm z-step size; C, F: transmission images 
(taken afterwards). Scale bars are 10 μm. 

Actin ilament (bundle) relocation over time in Lifeact:Venus expressing cells is 
slower than that in GFP:FABD2 expressing cells
To study the dynamic reorganization of the actin cytoskeleton over time in GFP:FABD2 
and Lifeact:Venus expressing cells, image sequences of the cortical actin cytoskeleton 
of growing root epidermal cells (situated between the root apical meristem and the 
root hair zone, with a length of 30 - 85 μm) were collected at 5 s time intervals. In both 
GFP:FABD2 and Lifeact:Venus expressing cells, the cortical actin cytoskeleton was 
clearly labeled, and these actin ilament (bundle)s relocated over time (Fig. 4 A-H).
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To quantify the relocation over time of actin ilament (bundle)s of both lines, we irst 
applied a threshold in order to obtain a binary image, in which luorescent regions, 
representing actin ilaments, appeared white, and in which non- luorescent regions 
appeared black (Fig. 4 I, J). An Image J macro (Van Bruaene et al. 2004) was used to 
compare each image frame of this binary image sequence to the subsequent image 
frame in the time series. The output of this macro resulted in an image sequence in 
which luorescence at the same location in two subsequent images appeared yellow, 
whereas luorescence present in only one of the two subsequent images appeared 
either red (when luorescence was present only in the irst frame) or green (when 
luorescence was present only in the second frame). Regions with no luorescence in 

either of the frames appeared black (Fig. 4 K, L).

We determined the percentage of actin ilament (bundles) that relocated within 5 s 
(Fig. 4 M). On average, 58 ± 5 % of actin ilament (bundle) luorescence in GFP:FABD2 
expressing cells were located at a different position after a 5 s interval, whereas only 
17 ± 5 % of Lifeact:Venus labeled actin ilament (bundle) luorescence had relocated 
within 5 s. The relocation velocity of the two lines differed signi icantly (t-test, p = 
0.00). Thus, actin ilament (bundle) relocation in Lifeact:Venus expressing cells occurs 
at lower rates than that in GFP:FABD2 expressing cells.

Analysis of cytoplasmic strand reorganization shows that actin ilament 
reorganization in Lifeact:Venus expressing plants is reduced in rate when
compared to wild type and GFP:FABD2 expressing plants
The different rate of actin ilament (bundle) relocation in GFP:FABD2 and Lifeact:Venus 
expressing cells could result from a reduction in actin ilament (bundle) relocation due 
to Lifeact:Venus expression, or from an increase in actin ilament (bundle) relocation 
due to GFP:FABD2 expression. To discriminate between these possibilities, we followed 
cytoplasmic strand relocation of both lines, and compared this with cytoplasmic 
strand relocation in wild type plants. Actin ilaments are the backbone of cytoplasmic 
strands (Higaki et al. 2006; Hussey et al. 1998; Sheahan et al. 2007; Shimmen et al. 
1995; Staiger et al. 1994; Valster et al. 1997; Van der Honing et al. 2010; Van Gestel et 
al. 2002), and consequently cytoplasmic strand dynamics result from a reorganization 
of the actin cytoskeleton. The relocation rate of cytoplasmic strands therefore re lects 
actin ilament remodeling.

FDA (0.01%) was used to luorescently stain the cytoplasm of root epidermal cells, and 
image sequences were collected at 5 s intervals. In root epidermal cells, cytoplasmic 
strands constantly changed in location (Fig. 5), re lecting a continuous remodeling of the 
actin cytoskeleton. Cytoplasmic strands in wild type and GFP:FABD2 expressing cells 
relocated at similar frequencies (Fig. 5 A-F), implying a similar rate of actin ilament 
relocation. In Lifeact:Venus expressing cells, the location of cytoplasmic strands hardly 
changed over time (Fig. 5 G-I), implying a reduced rate of actin ilament relocation 
when compared to wild type plants. These data show that Lifeact:Venus reduces actin 
ilament reorganization over time.
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Figure 4. Reorganization of (bundles of) actin ilaments in Lifeact:Venus expressing root epidermal
cells occurs more slowly than in GFP:FABD2 expressing cells. Both GFP:FABD2 (A-C) and Lifeact:Venus 
(E-G) labeled actin ilaments reorganize over time. (I, J) After thresholding, a binary image was obtained, 
in which white pixels represent ilamentous actin. (K, L) Running an Image J macro (Van Bruaene et al. 
2004) resulted in an image sequence in which yellow regions represent actin ilaments that have not 
reorganized within a 5 s time interval, and in which red and green regions represent actin ilaments that 
have reorganized within a 5 s time interval (green: pixels in which luorescence newly appeared at a location 
where luorescence was absent in the previous frame; red: pixels in which luorescence disappeared from 
a location where luorescence was present in the previous frame). M: In GFP:FABD2 expressing cells, the 
percentage of luorescently labeled ilamentous actin that reorganizes within a 5 s interval is signi icantly 
higher than in Lifeact:Venus expressing cells (n = 9 for GFP:FABD2 expressing cells, and n = 10 for 
Lifeact:Venus expressing cells). A-C and E-G: confocal images of cortical plane; D, H: transmission images. 
Error bars represent standard deviation. Scale bars are 10 μm.
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Figure 5. Cytoplasmic strand reorganization rates are reduced in Lifeact:Venus expressing root epi-
dermal cells, but not in GFP:FABD2 expressing cells when compared to wild type cells. In wild type 
(A, B) and GFP:FABD2 expressing (D, E) root epidermal cells, cytoplasmic strands continuously change in 
location, whereas in Lifeact:Venus expressing cells (G, H), the localization of the cytoplasm is much more 
static. C, F, I: Running the same Image J macro (Van Bruaene et al. 2004) as used in Fig. 4 shows that in 
Lifeact:Venus expressing root epidermal cells, the amount of cytoplasm that reorganizes within a 35 s time 
interval (represented by green or red pixels) is lower than in wild type and GFP:FABD2 expressing root epi-
dermal cells. Cytoplasm was visualized by luoresceindiacetate staining (0.01%). Scale bars are 10 μm.

Latrunculin B induced depolymerization of actin ilaments is reduced by Lifeact:Venus
To test the sensitivity to actin ilament depolymerization of both lines, we added 1 μm 
latrunculin B to roots of GFP:FABD2 and Lifeact:Venus expressing plants, and collected 
confocal z-stacks of root epidermal cells. After a 5-minute latrunculin B treatment, most 
(bundles of) actin ilaments had depolymerized in GFP:FABD2 expressing cells (Fig. 6 A). 
The few remaining (bundles of) actin ilaments continued to depolymerize until, after a 
30-minute treatment with latrunculin B, almost all ilamentous actin had disappeared 
(Fig. 6 C). In contrast, Lifeact:Venus labeled actin ilament depolymerization occurred 
more slowly over time (Fig. 6 E-G), and 30 minutes after latrunculin B addition, many 
actin ilament (bundle)s were still present. Thus, actin ilament depolymerization in 
Lifeact:Venus expressing plants is slower than in GFP:FABD2 expressing plants.
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Figure 6. Latrunculin B mediated actin ilament depolymerization in Lifeact:Venus expressing cells
is slower than in GFP:FABD2 expressing cells. Latrunculin B (1 μm) induces depolymerization of actin 
ilaments in both GFP:FABD2 (A-C) and Lifeact:Venus (E-G) expressing root epidermal cells. After a 30 

minute treatment with latrunculin B, almost all GFP:FABD2 labeled ilamentous actin has disappeared (C), 
whereas many (bundles of) actin ilaments are still present in Lifeact:Venus expressing cells (G). A-C and 
E-G: maximal z-projections of 19 frames taken at 0.6 μm z-steps. D and H: transmission images. Scale bars 
are 10 μm.

Lifeact dissociates more rapidly from actin ilaments than FABD2
FRAP was used to analyze dissociation rates of Lifeact:Venus and GFP:FABD2 from 
actin ilaments in root epidermal cells (Fig. 7). We bleached a box in the cortical region 
(Fig. 7 B, G) and determined the average time for 50% luorescence recovery (t1/2) 
(Fig. 7 K, L). For GFP:FABD2, we found a t1/2 of 6.9 ± 2.7 s. Fluorescence recovery of 
Lifeact:Venus occurred more rapidly, with a t1/2 of 2.7 ± 1.4 s. A t-test showed that the 
difference in luorescence recovery time between GFP:FABD2 and Lifeact:Venus is sig-
ni icant (p = 0.00). This shows that Lifeact:Venus has a faster exchange rate from actin 
ilaments than GFP:FABD2. 
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Figure 7. Lifeact exchanges faster from actin ilaments than FABD2. A-J: Fluorescence recovery after 
photobleaching in GFP:FABD2 (A-E) and Lifeact:Venus (F-J) expressing root epidermal cells. The box 
indicates the area that has been FRAPped. K: Typical luorescence recovery curves of a bleached region in 
a Lifeact:Venus (grey squares) and a GFP:FABD2 (black diamonds) expressing root epidermal cell. The pre-
bleach luorescence intensity has been set to 1, and the luorescence intensity directly after bleaching (t = 
0 s) has been set to 0. Lines represent the itted luorescence recovery curves. L: The average time for 50 % 
luorescence recovery (t1/2) of Lifeact:Venus is signi icantly lower than that of GFP:FABD2 (n = 11 for both 

lines). Error bars represent standard deviation. Scale bar is 10 μm. Box size in B and G is 11.3 x 6.7 μm.
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Discussion

Here we show that in Lifeact:Venus expressing plants, at expression levels that do not 
affect plant development, the actin organization looks similar to the actin organization 
in cells expressing a similar amount of GFP:FABD2. In root hairs, the organization of 
Lifact:Venus labeled actin ilaments is similar to that described for ixed root hairs, 
and, unlike GFP:FABD2, Lifeact:Venus labels ine F-actin in the subapical region. 
Lifeact:Venus, however, reduces reorganization rates of actin ilaments in Arabidopsis 
root epidermal cells. Further, Lifeact:Venus labeled actin ilaments are more resistant 
to depolymerization by latrunculin B than actin ilaments labeled with GFP:FABD2.

Rapid dissociation of Lifeact:Venus does not prevent interference with actin
ilament reorganization rate

The rapid dissociation of Lifeact from actin ilaments is consistent with its low af inity 
for actin ilaments in vitro (Riedl et al. 2008). This low af inity of Lifeact for actin 
ilaments, however, does not prevent it from altering actin reorganization. The rate of 

actin ilament reorganization is reduced quite dramatically by Lifeact, and this reduction 
in actin ilament (bundle) reorganization is also re lected in a reduced reorganization 
rate of cytoplasmic strands. GFP:FABD2 dissociates slower from actin ilaments than 
Lifeact:Venus, consistent with previous results (Riedl et al. 2008; Sheahan et al. 2004). 
Nevertheless, cytoplasmic strand reorganization rate of GFP:FABD2 expressing cells is 
similar to that of wild type cells. Our results show that low af inities of fusion proteins 
for actin ilaments do not necessarily relate to reduced effects on remodeling of the 
actin cytoskeleton.

A reduction in reorganization rate of actin ilament (bundle)s and cytoplasmic
strands does not affect plant cell growth and plant morphology
The reorganization rate of actin ilament (bundle)s and, consequently, cytoplasmic 
strands, is reduced in Lifeact:Venus expressing cells. Surprisingly, this reduction in 
cytoplasmic strand reorganization rate does not affect plant cell growth and plant 
morphology. Lifeact:Venus expressing plants grow at rates comparable to those of wild 
type plants, and plant growth and organ development are similar. Moreover, plant size 
and stature are not affected by Lifeact:Venus expression. Even root hair growth, which 
is very sensitive to changes in actin organization and dynamics (Ketelaar et al. 2003; 
Ketelaar and Emons 2009; Miller et al. 1999), is unaffected by the reduction in actin 
ilament (bundle) reorganization. Despite the effect of Lifeact:Venus on cytoplasmic 

strand reorganization rate, the cytoplasmic organization is not visibly affected in root 
hairs and root epidermal cells. Since plant cell elongation depends on an organized 
actin cytoskeleton (Collings et al. 2006) our inding implicates that the organization of 
the actin cytoskeleton, but not its dynamic relocation over time, is a determining factor 
in plant cell growth.

Labeling of ine F-actin in the subapex of root hairs with Lifeact:Venus may result 
from the reduced actin ilament (bundle) reorganization rate
We show that Lifeact:Venus expression reduces actin ilament reorganization rate, 
and that Lifeact:Venus, unlike GFP:FABD2, reveals ine F-actin in the subapical region 
of root hairs. Fine F-actin is highly dynamic (Ketelaar and Emons 2009). Either ine 
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F-actin may be too dynamic for GFP:FABD2 binding, or the rapid reorganization of 
GFP:FABD2 decorated ine F-actin in root hairs may be too fast for detection with 
current microscopes. In the latter case, the reduced actin ilament reorganization rate 
in Lifeact:Venus expressing plants might enable microscopic detection.

Lifeact is used as a marker for actin ilament imaging in different types of eukaryotic 
cells. In animal cells, Lifeact has been shown not to label some forms of stress-induced 
twisted F-actin (Munsie et al. 2009), and these authors state that Lifeact may not be a 
universal marker to study actin ilament dynamics. In the moss Physcomitrella, it has 
been shown that although high expression levels of Lifeact:Venus result in reduced 
growth rates, the actin labeling looks similar to lines with lower expression levels, which 
are not affected in their growth rate (Vidali et al. 2009). We show that despite the high 
exchange rate of Lifeact from actin ilaments, it dramatically reduces reorganization 
rates of actin ilaments and cytoplasmic strands in Arabidopsis, even though plant 
growth and morphology are not affected. The reduction in actin reorganization may be 
a universal property of Lifeact, independent of the organism in which it is used. Lifeact 
should therefore be used with care when studying actin reorganization.
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Abstract

In plant cells, actin ilament bundles serve as tracks for myosin-dependent organelle 
movement and play a role in the organization of the cytoplasm. Although virtually all 
plant cells contain actin ilament bundles, the role of the different actin bundling proteins 
remains largely unknown. In this study, we investigated the role of the actin bundling 
protein villin in Arabidopsis thaliana. We used Arabidopsis T-DNA insertion lines to 
generate a double mutant in which VLN2 and VLN3 transcripts are truncated. Leaves, 
stems, siliques and roots of vln2 vln3 double mutant plants are twisted. Microscopy 
analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin 
ilament bundles are more abundant, while thick actin ilament bundles are virtually 

absent. In vitro experiments show that villin’s headpiece region is essential for villins 
bundling capacity. Indeed, in contrast to full-length VLN3, truncated VLN3 lacking the 
headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our 
results show that villin is involved in the generation of thick actin ilament bundles 
in several cell types, and suggest that these bundles are involved in the regulation of 
coordinated cell expansion.
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Introduction

The plant actin cytoskeleton plays an essential role in cell division, cytoplasmic 
organization, cytoplasmic streaming, cell growth, and consequently plant 
morphogenesis. Actin binding proteins modulate the formation and dynamics of 
ilamentous actin, and its con iguration. Among these proteins are the actin bundling 

proteins, which are able to cross-link adjacent actin ilaments, resulting in bundles 
consisting of several parallel actin ilaments (Thomas et al., 2009). In plant cells, 
bundling of actin ilaments occurs (Thomas et al., 2009), which is likely mediated by 
actin bundling proteins. There are four known families of actin bundling proteins in 
plants: villins (Vidali et al., 1998; Klahre et al., 2000; Tominaga et al., 2000; Yokota 
et al., 2003; Huang et al., 2005; Yokota et al., 2005; Khurana et al., 2010; Zhang et al., 
2010; Zhang et al., 2011), imbrins (Kovar et al., 2000; Kovar et al., 2001), formins 
(Cheung and Wu, 2004; Favery et al., 2004; Michelot et al., 2005; Ye et al., 2009), and 
LIM proteins (Thomas et al., 2006; Thomas et al., 2008; Wang et al., 2008; Papuga et 
al., 2010). In addition, elongation factor 1 alpha (Collings et al., 1994; Gungabissoon 
et al., 2001) has been shown to have actin ilament bundling properties as well. The 
presence of these different actin bundling proteins suggests that their combined 
actions can result in several types of actin ilament bundles, which differ in form and 
function (Thomas et al., 2009).

Although the role of the different actin bundling proteins in the generation of actin 
ilament bundles is not yet known, it is clear that actin ilament bundles ful ill several 

functions in plant cells. Actin ilament bundles serve as the preferred tracks for myosin-
dependent movement of organelles (Miller et al., 1999; Ketelaar et al., 2003; Holweg, 
2007; Ye et al., 2009). Next to their function in cytoplasmic streaming, actin ilament 
bundles have been shown to play a role in keeping the nucleus at a ixed position from 
the root hair tip (Ketelaar et al., 2002). Furthermore, actin ilament bundles structure 
the cytoplasm. Their depolymerization causes collapse of cytoplasmic strands (Staiger 
et al., 1994; Shimmen et al., 1995; Valster et al., 1997; Hussey et al., 1998; Van Gestel 
et al., 2002; Higaki et al., 2006; Sheahan et al., 2007; van der Honing et al., 2010), and 
unbundling results in more, but thinner cytoplasmic strands (Tominaga et al., 2000; 
Ketelaar et al., 2002). Thus, actin ilament bundles are required to maintain cytoplasmic 
strand size and number, i.e. the overall organization of the cytoplasm of plant cells.

The genome of Arabidopisis thaliana contains ive villin genes, and the villins encoded 
by these genes are highly expressed in several tissues of Arabidopsis (Klahre et al., 
2000). Plant villins are similar to vertebrate villins (Staiger and Hussey, 2004). Villins 
consist of a core (made up of six tandem subdomains) and a distinct C-terminal domain, 
which is referred to as the headpiece. Villin’s core shares structural homology to the 
actin binding protein gelsolin, which has Ca2+-regulated actin ilament nucleation, 
severing, and barbed end capping activity (Bryan and Kurth, 1984; Way et al., 1989). 
Both the core and the headpiece contain an actin ilament binding domain, and the 
headpiece region of vertebrate villins has been shown to be essential for actin ilament 
bundling (Glenney and Weber, 1981). This led to the hypothesis that villin bundles 
actin ilaments by acting as a monomer, with the two actin ilament binding domains 
– one present in the core, the other one in the headpiece – cross-linking two adjacent 
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actin ilaments (Glenney et al., 1981b). However, one study suggests the presence of a 
third actin binding domain, which is present in the core (Hampton et al., 2008), while 
another study suggests that villin acts as a dimer (George et al., 2007). In addition 
to their ability to bundle actin ilaments, vertebrate villins also show Ca2+-dependent 
actin ilament severing, nucleating and capping activity (Bretscher and Weber, 1980; 
Glenney et al., 1981a; Glenney and Weber, 1981). Plant villins also possess actin ilament 
barbed-end capping (Yokota et al., 2005; Zhang et al., 2010), nucleating (Yokota et 
al., 2005) and severing (Khurana et al., 2010; Zhang et al., 2010) activities in vitro. In 
plants, villin has been shown to play a role in organizing the cytoplasm (Tominaga et 
al., 2000; Ketelaar et al., 2002), as well as in nuclear positioning in root hairs (Ketelaar 
et al., 2002). 

In this study, we analyzed the role of two Arabidopsis villins using lines with a T-DNA 
insertion in VLN2, VLN3, or both VLN2 and VLN3. The vln2 vln3 double mutants show a 
clear anomaly in the growth direction of organs, suggesting problems with coordinated 
cell elongation. The actin cytoskeleton in the double mutants has a iner appearance, 
and thick bundles of actin ilaments are virtually absent. GFP:VLN3 rescued the 
morphological  phenotype and localizes to actin ilament bundles in all cell types 
studied. We further show that the headpiece region is important for the bundling 
activity of VLN3, and for the regulation of directional organ growth. The data show 
that villin is involved in the generation of thick actin ilament bundles and suggest that 
these bundles are important for coordinated cell expansion.

Results

T-DNA insertions in VLN2 and VLN3 result in a truncated transcript for both genes
A cladogram based on cDNA sequences shows that VLN2 (At2g41740) and VLN3 
(At3g57410) belong to the same clade (Figure 1A), suggesting that they have arisen 
from a relatively recent genome duplication. They share 84 % similarity in their cDNA 
sequences, and 80 % similarity in their amino acid sequences. Both VLN2 and VLN3 are 
expressed in all organs (www.bar.utoronto.ca), with similar expression levels for both 
villins in most organs. VLN2 has a slightly higher expression level in mature pollen 
grains.

To test the biological role of VLN2 and VLN3, lines homozygous for T-DNA insertions 
in VLN2 and VLN3 were identi ied. The T-DNA insertions for both vln2 and vln3 (i.e. 
SAIL_813_H02 and SALK_117097, respectively) are located in exons (Figure 1B), at 
locations corresponding to the G6 domain in vln2, and to the linker domain between 
the G6 and headpiece domain in vln3 (Figure 1C) according to Klahre et al. (Klahre et 
al., 2000). The presence of VLN2 and VLN3 transcripts was tested using RT-PCR in both 
azygous and mutant plants from the same population. Primer combinations before and 
after the inserts were used to test if transcripts were present, truncated, or absent. For 
both vln2 and vln3, transcripts corresponding to coding regions before the insert were 
present, but the region after the insert was not transcribed (Figure 1D). Thus, the presence 
of the inserts results in truncated transcripts for both VLN2 and VLN3. We generated a 
double mutant of these lines with truncated mRNA for both genes (Figure 1D).
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Although the presence of the T-DNA inserts results in truncated transcripts for both 
VLN2 and VLN3, the corresponding proteins could be absent. We tested this by probing 
a protein gel blot of wild type Columbia-0 (Col-0), vln2, vln3, and vln2 vln3 root extracts 
with a polyclonal anti-lily villin antibody (Tominaga et al., 2000; Ketelaar et al., 2002; 
Khurana et al., 2010). This resulted in a band at a height corresponding to the predicted 
mass of VLN3 (107 kD) in Col-0 and vln2 extracts, but in vln3 and vln2 vln3 extracts, 
no band was visible (Figure 1E). The absence of a band at a height corresponding to 
a smaller protein shows that vln3 and vln2 vln3 do not contain a truncated version of 
VLN3. Thus, although these lines contain a truncated VLN3 transcript (Figure 1D), the 
VLN3 protein is absent. The absence of a villin band in the root extract of the vln3 plant 
shows that the antibody does not recognize the VLN2 protein. We conclude that while 
vln2 and vln2 vln3 might contain a truncated version of VLN2, vln3 and vln2 vln3 do not 
contain the VLN3 protein.

Figure 1. Characterization of the Arabidopsis villin gene family and T-DNA insertions in vln2 and vln3.
(A) Cladogram of the Arabidopsis villins, based on cDNA sequences. (B) Locations of T-DNA inserts in vln2 
and vln3. Grey boxes represent exons, and horizontal lines represent introns. T-DNA inserts (arrowheads) 
are not drawn to scale. (C) Domain structure of villin. Arrowheads show locations corresponding to the 
locations of T-DNA inserts of vln2 and vln3. (D) T-DNA insertions result in truncated transcripts in vln2, vln3, 
and vln2 vln3. Products could be ampli ied using a cDNA template using VLN speci ic primers before the 
inserts, but when both primers (vln2) or the reverse primer (vln3) were designated for coding regions after 
the insert (see Supplemental Figure 2 and Table 1), products could not be ampli ied. (E) A protein gel blot 
of Col-0, vln2, vln3, and vln2 vln3 root extracts probed with lily anti-villin antibody (Tominaga et al., 2000) 
shows that vln3 and vln2 vln3 do not contain (a truncated version of) the VLN3 protein.
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Arabidopsis plants homozygous for a T-DNA insertion in two villin genes display 
defects in directional organ growth
Seedlings of single mutants of vln2 and vln3 do not show any developmental defects or 
delays, but those of vln2 vln3 double mutants have curly roots (Figure 2A). Plant growth 
and organ development in the double mutant occur at similar rates as those of azygous 
plants and single mutants, and production of viable seeds is unaffected by the presence 
of T-DNA insertions in both genes. However, rosette leaves of the double mutant are 
twisted (Figure 2B). In addition, stems of the vln2 vln3 double mutant are curly, and 
in lorescences show complete turns (Figure 2C, D). Both single mutants do not show 
this phenotype. The tops of the growing in lorescences of the double mutant are often 
(41 %; n = 17) oriented downward, while this never occurs in Col-0 plants (n = 22) and 
single mutants (n = 19 for vln2, and 17 for vln3; Figure 3A). Time lapse recording of 
Col-0 and vln2 vln3 plants shows that the rotational movements (circumnutation) of 
vln2 vln3 in lorescences differ from those of Col-0 in lorescences: in the double mutant, 
periods of normal circumnutation alternate with periods in which the circumnutation 
movements show larger amplitudes than those of Col-0 (Figure 2E). These data suggest 
that the coordination of cell expansion in the organs is affected in vln2 vln3, resulting 
in the curly phenotype of roots, leaves, and in lorescences. Siliques and fruit stalks of 
vln2 vln3 are also curly (Figure 2C, D), and 59 % of the siliques were oriented at angles 
smaller than 90° with respect to the plant axis (n = 80), while this rarely occurred 
(with a maximum of 6 %) in Col-0 plants (n = 49) or single mutants (n = 50; Figure 
3B). Despite the curly phenotype of leaves and fruit stalks, only the width of fruit stalk 
epidermal cells is slightly, but signi icantly, higher in the double mutant (0.99 ± 0.25 
μm in vln2 vln3 compared to 0.88 ± 0.23 μm in Col-0; Student’s t test, P = 0.01). The 
surface area, perimeter and circularity of leaf pavement cells (n = 26 for Col-0 plants, 
and 61 for vln2 vln3; Figure 3C) and the surface area, perimeter, length and circularity 
of fruit stalk epidermal cells (n = 68 for Col-0 plants, and 67 for vln2 vln3; Figure 3D) 
are not affected by the mutations in VLN2 and VLN3. 

Although VLN2 and VLN3 are both expressed in root hairs (www.bar.utoronto.ca), we 
did not observe differences from Col-0 plants in root hair morphology (Figure 4A), 
nucleus to tip distance (Figure 4B), and growth rate (Figure 4C) of elongating root hairs 
of the double mutant. Thus, the mutations in VLN2 and VLN3 do not affect the growth 
and morphology of individual cells, but do result in defects in directional growth of 
roots, shoots, leaves and siliques. This suggests that the mutations affect coordinated 
cell elongation.

To con irm that the observed morphological phenotype is caused by the presence of 
the T-DNA inserts in VLN2 and VLN3, we complemented the mutant phenotype with 
genomic VLN2 and VLN3, under their endogenous promoters, and with PVLN3:VLN3 
cDNA. All these constructs rescued the mutant phenotype. These results con irm that 
the defects in directional organ growth are caused by the combined mutations in VLN2 
and VLN3. Thus, VLN2 and VLN3 play a redundant role in the regulation of directional 
organ growth.
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Figure 2: Phenotype of vln2 vln3. (A) Root morphology of azygous, vln2, vln3 and vln2 vln3 plants.
Roots of both single mutants have the same appearance as azygous roots, but roots of double mutants grow 
in a curly, wavy manner. (B) Phenotype of 2-week-old plants. Leaves of the vln2 vln3 double mutant are 
twisted, but in single mutants this twisting is absent. (C) Phenotype of 5-week-old plants. Branches of single 
mutants grow straight, similar to those of azygous plants, but in the double mutants, branches are curly, 
and even show complete twists (e.g. arrow). This twisting also occurs in the fruit stalks (e.g. arrowhead). 
(D) Twisting of double mutant branches and fruit stalks shown at a higher magni ication. (E) The rotational 
movements (circumnutation) of vln2 vln3 in lorescences have larger amplitudes than those of Col-0 in lo-
rescences and are less regular.
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Figure 3: Quanti ication of vln2 vln3 phenotype. (A) 41 % (n = 17) of the tops of in lorescence meristems 
of vln2 vln3 grow downward, while this never occurs in Col-0 (n = 22) and single mutant (n = 19 for vln2, and 
17 for vln3) plants. (B) The angle of siliques with respect to the plant axis of the vln2 vln3 double mutant is 
less regular than that of Col-0 and single mutant plants: siliques of vln2 vln3 grow in all directions at similar 
frequencies, while those of Col-0 and single mutant plants preferentially grow upward at an oblique angle. 
(C, D) Leaf pavement (C; n = 26 for Col-0 plants, and 61 for vln2 vln3) and fruit stalk epidermal (D; n = 68 
for Col-0, and 67 for vln2 vln3) cell dimensions of vln2 vln3 are similar (Student’s t tests, P > 0.05) to those 
of Col-0 plants, except for fruit stalk epidermal cell width, which is signi icantly higher (Student’s t test,  
P = 0.01) in vln2 vln3. Circularity re lects the ratio of cell area to cell perimeter, and is de ined as 4πArea/
Perimeter2 (Vidali et al., 2007). Error bars in C and D represent standard deviations.

Figure 4: The mutations in VLN2 and VLN3 do 
not affect root hair growth. Morphology and 
intracellular organization (A), nucleus-to-tip 
distance (B; n = 5 for Col-0, and 7 for vln2 vln3), 
and growth rate (C; n = 6 for Col-0, and 7 for vln2 
vln3) are not affected (Student’s t tests; P > 0.05) in 
elongating vln2 vln3 root hairs. N indicate nuclei. 
Bars in A, 10 μm. Error bars in B and C represent 
standard deviations.
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Thick actin ilament bundles are virtually absent in vln2 vln3, while thin bundles 
are more abundant
To investigate if the actin organization is affected by the presence of the T-DNA 
insertions in VLN2 and VLN3, we used GFP:FABD2 (Ketelaar et al., 2004) expression 
to visualize actin ilaments in cells of the single mutants and the double mutant, and 
compared the actin organization with that of Col-0 cells. The actin organization in 
hypocotyl epidermal cells of the single mutants is similar to that of wild type cells: 
thick, predominantly longitudinal actin ilament bundles are interspersed with a more 
complex network of thinner bundles (Figure 5A-I). In the double mutant, however, the 
thick, longitudinal actin ilament bundles are absent, and thinner bundles are more 
abundant. Root and leaf epidermal cells of the double mutant also appear to contain 
more thin bundles of actin ilaments, while thick actin ilament bundles are absent 
(Figure 5J-L). 

To quantify the observed differences in actin organization, we created intensity 
pro iles of GFP luorescence intensities of P35S:GFP:FABD2 expressing hypocotyl cells 
(n = 8 for Col-0 and vln2 vln3), in the middle of Z-projections of the cortical cytoplasm, 
perpendicular to the longitudinal cell axis (excluding the bright cell edges; Figure 5M-
O). In these intensity pro iles, high peaks represent brightly labeled actin ilament 
bundles, while low peaks represent weakly labeled actin ilament bundles (or perhaps 
single actin ilaments, although it is unlikely that single actin ilaments are detectable 
with the used set-up). We counted the number of peaks per μm, and distributed these 
peaks in three classes: high, medium and low grey levels (Figure 5P, Q).

The frequency distribution of the number of peaks across the three classes was clearly 
different between Col-0 and vln2 vln3 hypocotyl cells. 17 % of the peaks in Col-0 cells 
belonged to the class with the highest intensity levels, representing thick actin ilament 
bundles, while in vln2 vln3, only 2 % of the peaks represented this class (Figure 5P). 
Peaks with a low luorescence intensity were more abundant in vln2 vln3 (70 %) then in 
Col-0 (47 %) cells. A Pearson’s chi-square test showed that the frequency distribution 
across the three classes was signi icantly different between Col-0 and vln2 vln3 cells 
(p < 0.001). The average number of peaks per μm was higher (t-test; p = 0.04) in the 
double mutant (0.82 ± 0.29) then in Col-0 cells (0.51 ± 0.26; Figure 5Q). We conclude 
that cells of the double mutant contain more thin bundles of actin ilaments than those 
of Col-0 cells, while thick actin ilament bundles are virtually absent.

GFP:VLN3 labels some (bundles of) actin ilaments
To determine the subcellular localization of villin, we complemented the double mutant 
with GFP:VLN3, expressed under control of the endogenous promoter (PVLN3:GFP:VLN3 
genomic). Expression of this construct in the mutant rescued the phenotype, showing 
that the fusion protein is functional. GFP:VLN3 is present in all investigated cells: leaf, 
hypocotyl, and root epidermal cells, including root hairs (Figure 6). In all these cell 
types, GFP:VLN3 partly shows a cytoplasmic localization. Besides this cytoplasmic 
localization, GFP:VLN3 localizes to ilamentous structures resembling (bundles of) 
actin ilaments both in the cortical cytoplasm and in cytoplasmic strands of the cells 
studied (Figure 6A-D). Coexpression of PVLN3:GFP:VLN3 and P35S:mCherry:FABD2 
in tobacco (Nicotiana benthamiana) leaves demonstrates that GFP:VLN3 and 
mCherry:FABD2 colocalize (Figure 6E-G), con irming that GFP:VLN3 localizes to actin 
ilaments. Villin appears not to label all actin ilament bundles equally strong (Figure 
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6E-G). In growing root hairs, GFP:VLN3 localizes to the long actin ilament bundles 
oriented longitudinally to the cell’s long axis in the root hair tube (Figure 6D). These 
actin ilament bundles do not penetrate the (sub)apical region. Image sequences of 
root epidermal cells collected at 5 s intervals (Figure 6H-J), or of root hairs at 30 s 
intervals (Figure 6K-M) show that the actin ilament bundles to which VLN3 localizes, 
relocate over time. 

Figure 5: Thick actin bundles are absent in vln2 vln3, but thin bundles of actin ilaments are more
prominent. (A-L) The actin organization (visualized with GFP:FABD2) in cells of both single mutants (D-
I) is similar to that in Col-0 cells (A-C): thick bundles of actin ilaments are alternated by a more complex 
network of thin (bundles of) actin ilaments. In the double mutant (J-L), thick actin ilament bundles appear 
to be absent, while thin actin ilament bundles seem more prominent. (M-O) Representative intensity 
pro iles of luorescence intensity in a Col-0 (M) and a vln2 vln3 (N) hypocotyl cell. High peaks represent thick 
actin ilament bundles, while lower peaks represent thinner bundles.  The yellow lines in M and N show the 
location of the intensity pro ile in igure O.  (P) Frequency distribution of peaks belonging to 3 luorescence 
intensity classes (determined for 6 cells for each genotype) in Col-0 and vln2 vln3. In Col-0 cells, peaks with a 
luorescence intensity of 80-120 (representing thick actin ilament bundles) are more abundant than in vln2 

vln3, while peaks with a luorescence intensity of 0-40 (representing thin(ner) actin ilament bundles) are 
more abundant in vln2 vln3. (Q) The number of peaks per micrometer shown for Col-0 and vln2 vln3. vln2 
vln3 cells contain signi icantly more (Student’s t test; p = 0.04) actin ilament bundles than Col-0 cells. Bars 
in A-N, 10 μm. Error bars in Q represent standard errors.
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Figure 6: GFP:VLN3, expressed under control of the VLN3 promoter, localizes to (bundles of) actin
ilaments. Representative images of complemented vln2 vln3 plants show that besides a cytoplasmic 

localization, GFP:VLN3 decorates (bundles of) actin ilaments in hypocotyl epidermal (A), leaf epidermal 
(B) and root epidermal (C, D) cells. In root hairs (D), GFP:VLN3 localizes to the long actin ilament bundles 
oriented longitudinally to the cell’s long axis in the root hair tube. (E-G)  Coexpression of PVLN3:GFP:VLN3 
and P35S:mCherry:FABD2 in tobacco (Nicotiana benthamiana) demonstrates that GFP:VLN3 (F) and 
mCherry:FABD2 (E) colocalize (e.g., arrows) in leaf epidermal cells, although GFP:VLN3 does not localize to 
all actin ilaments (e.g., arrowheads). (G) Overlay of E and F (GFP:VLN3: green; mCerry:FABD2: magenta). 
Image sequences of root epidermal cells (H-J; K-M: root hairs) of complemented vln2 vln3 plants show that 
GFP:VLN3 localizes to (bundles of) actin ilaments that reorganize over time. Bars, 10 μm. 

The headpiece region of VLN3 is required for bundling of actin ilaments
Next to its actin ilament bundling capacity, which is independent of Ca2+ levels (Khurana 
et al., 2010), VLN3 has actin ilament severing properties, and this activity is Ca2+-
dependent (Khurana et al., 2010). Since the mutations in VLN2 and VLN3 result in an 
actin cytoskeleton organization that is virtually devoid of thick actin ilament bundles, 
we propose that the absence of villin’s bundling activity plays a major role in causing 
the morphological phenotype. The fact that the mutations affect the actin cytoskeleton 
organization also at locations where Ca2+ is at the basal level, while VLN3 shows only 
severing activity at high Ca2+ concentrations (Khurana et al., 2010), is in agreement 
with the hypothesis that villin’s bundling rather than its severing activity causes the 
developmental problem in the double mutant. It is likely that plant villins require the 
headpiece region for actin ilament bundling. Both the core and the headpiece region of 
vertebrate villins can bind to ilamentous actin, and the headpiece region of vertebrate 
villin is crucial for its bundling capacity (Glenney and Weber, 1981). We therefore 
hypothesized that in plant cells, villin’s headpiece region plays an important role in 
the generation of actin ilament bundles. To obtain more insight into the function of 
the headpiece region of Arabidopsis VLN3, we bacterially expressed and puri ied both 
full-length VLN3, as well as a truncated version lacking the headpiece region (VLN3-
HP) to perform biochemical experiments.
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A high-speed cosedimentation assay was performed to determine whether VLN3 and 
VLN3-HP can bind to actin ilaments. Filamentous actin was combined with either 
VLN3 or VLN3-HP, and centrifuged at 135.000 g. At this speed, 91 ± 8 % (n = 3) of 
the actin was pelleted (Figure 7), showing that most actin had polymerized. In the 
absence of ilamentous actin, both VLN3 (93 ± 6 %; n = 3) and VLN3-HP (100 ± 0 
%; n = 2) largely remained in the supernatant fraction (Figure 7). Although a limited 
amount (7 ± 10 % (n = 2)) of VLN3-HP was present in the pellet when cosedimented 
with ilamentous actin, this amount was not signi icantly different (Student’s t test; P 
= 0.42) from the amount of VLN3-HP that was pelleted in the absence of ilamentous 
actin. On the other hand, 76 ± 14 % (n = 3) of VLN3 cosedimented with ilamentous 
actin, a signi icantly higher amount (Student’s t test; P = 0.002) then the amount of 
VLN3 that was pelleted in the absence of ilamentous actin. These data show that VLN3 
can bind to ilamentous actin.

Figure 7: VLN3 binds to ilamentous actin. Full-length VLN3 (lanes 3 and 4) and VLN3-HP (lanes 9 and 
10) were combined with ilamentous actin, and, after a 20 min incubation, centrifuged at 135.000 g. Actin 
alone (lanes 1, 2, 7 and 8), VLN3 alone (lanes 5 and 6), and VLN3-HP alone (lanes 11 and 12) were used as 
controls. The proteins present in the resulting supernatants and pellets were separated by SDS-PAGE. In the 
absence of actin, both VLN3 (n = 3) and VLN3-HP (n = 2) largely remained in the supernatant fraction. In 
the presence of polymerized actin, a limited amount of VLN3-HP was present in the pellet, but this amount 
was not signi icantly different (Student’s t test; P = 0.42) from the amount of VLN3-HP that was pelleted 
in the absence of ilamentous actin. A signi icantly higher (Student’s t test; P = 0.001) amount of VLN3 
cosedimented with ilamentous actin then the amount of VLN3 that was pelleted in the absence of actin 
ilaments, showing that VLN3 can bind to actin ilaments.

To investigate the ability of full-length VLN3 and VLN3-HP to bundle actin ilaments, 
we performed a low-speed co-sedimentation assay. Polymerized actin was combined 
with VLN3 or VLN3-HP, and centrifuged at 13.500 g. At this speed, the presence of 
an actin binding protein that is capable of bundling or cross-linking ilaments into 
networks will result in a higher amount of ilamentous actin that is present in the 
pellet. When incubated without VLN3 or VLN3-HP, 61 ± 5 % (n = 2) of the polymerized 
actin was present in the pellet (Figure 8A). When combined with VLN3-HP, the amount 
of polymerized actin that was present in the pellet (50 ± 3 %; n = 2) was similar 
(Student’s t test; P = 0.12) to that of the control (Figure 8A). On the other hand, when 
polymerized actin was combined with VLN3, a signi icantly higher amount (93 ± 5 
%; n = 2; Student’s t test; P = 0.02) of the actin was present in the pellet (Figure 8A), 
indicating that VLN3 bundles actin ilaments.
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Figure 8: VLN3, but not VLN3-HP, is able to cross-link actin ilaments. (A) Low-speed co-sedimentation 
assay. Actin was allowed to polymerize for 1 h, and then combined with either VLN3 or VLN3-HP. After 
a 20-minute incubation, the samples were centrifuged at 13.500 g. The proteins present in the resulting 
supernatants and pellets were separated by SDS-PAGE.  In the presence of VLN3, signi icantly more actin (n 
= 2; Student’s t test; P = 0.02) was present in the pellet (lane 4) then the amount that pelleted in the absence 
of VLN3 (n = 2; lane 2), while in the presence of VLN3-HP (lane 6), the concentration of actin in the pellet (n 
= 2) was similar (Student’s t test; P = 0.12) to that of actin alone. (B) In vitro, rhodamine-actin or rhodamine-
actin combined with VLN3-HP resulted in single actin ilaments, while in the presence of VLN3, rhodamine-
actin organized into a cross-linked network. Bar, 10 μm.

We used TIRF and wide- ield microscopy to visualize the actin ilament bundling 
capacity of VLN3. Rhodamine-labeled actin was allowed to polymerize, after which 
we added VLN3 or VLN3-HP. When combined with VLN3-HP, the length and number 
of actin ilaments were similar to those in the control situation (Figure 8B). In the 
presence of full-length VLN3, however, cross-linked networks of actin ilaments were 
observed (Figure 8B). The combined results from the cosedimentation assays and 
microscopy analysis show that VLN3 is able to cross-link actin ilaments, and that the 
headpiece region of VLN3 is required for this cross-linking capacity.

To prove the importance of villin’s bundling capacity, which depends on the presence of 
the headpiece domain, for directional organ growth, we performed a complementation 
analysis with 3 different constructs lacking the DNA that encodes the villin headpiece 
region, all driven by the endogenous VLN3 promoter: PVLN3:VLN3-HP genomic, 
PVLN3:GFP:VLN3-HP genomic, and PVLN3:GFP:VLN3-HP cDNA. All these constructs 
were unable to rescue the phenotype. In addition, in contrast to GFP:VLN3, which 
localizes to (bundles of) actin ilaments, GFP:VLN3-HP luorescence is equally 
distributed throughout the cytoplasm (Figure 9). We conclude that VLN3 requires the 
headpiece region for a correct localization to actin ilament bundles, for actin ilament 
bundling, and for its function in directional organ growth.
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Figure 9: GFP:VLN3-HP, expressed under 
control of the VLN3 promoter, shows a 
cytoplasmic localization. Representative
images of leaf epidermal (A), hypocotyl 
epidermal (B), and root epidermal (C, D) 
cells (D: root hair) of vln2 vln3 plants in 
which GFP:VLN3-HP is expressed. In these 
plants, which are not rescued, GFP:VLN3-HP 
fluorescence is equally distributed throughout 
the cytoplasm. Bars, 10 μm.

Discussion

The actin cytoskeleton plays a key role in plant cell growth and morphogenesis. Al-
though in virtually all plant cells actin ilament bundling occurs (Thomas et al., 2009), 
it is unknown how actin ilament bundles are generated by actin bundling proteins. 
In this study, we investigated the role of two villins in Arabidopsis, and show that the 
absence of these villins results in a low abundance of thick actin ilament bundles. Vln2 
vln3 plants have twisted leaves, stems, siliques and roots, implying an important role 
for villin in the regulation of directional organ growth. Truncated VLN3 lacking the 
headpiece region is, in contrast to full-length VLN3, not able to rescue the phenotype, 
and in vitro experiments show that the headpiece region is essential for actin ilament 
bundling. These data show that villin is involved in the generation of thick actin ila-
ment bundles, and suggest that villin-mediated actin ilament bundling is required for 
the regulation of coordinated cell expansion.
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VLN2 and VLN3 play a role in actin ilament organization in Arabidopsis
The presence of the T-DNA insertions in VLN2 and VLN3 affects the actin organization 
in several cell types. In cells of the double mutant, thick actin ilament bundles are 
virtually absent, whereas thin bundles are more abundant. The fact that the double 
mutant still contains thin actin ilament bundles points to the combined action of 
VLN2 and VLN3 with that of another actin bundling protein in the generation of actin 
ilament bundles in plant cells. Since VLN5 is preferentially expressed in pollen (Zhang 

et al., 2010), VLN1 and VLN4 are good candidates to work cooperatively with VLN2 
and VLN3. Alternatively, another class of actin bundling proteins could be involved 
in the generation of actin ilament bundles in plant cells. In vertebrate cells, also 
different actin bundling proteins are generally present in the same actin ilament 
bundles (Tilney et al., 1998; Bartles, 2000) and these proteins do not act redundantly. 
In vitro experiments showed that small rigid actin-bundling proteins can generate 
small bundles with a inite thickness of approximately 20 ilaments (Claessens et al., 
2008). Other actin bundling proteins were shown to be able to link these small bundles 
into larger bundles of several hundreds of actin ilaments (Claessens et al., 2008). In 
plants, actin ilament bundles could be generated in a comparable way. Villins might 
work coordinately with imbrins (Kovar et al., 2000), formins (Cheung and Wu, 2004; 
Favery et al., 2004; Michelot et al., 2005; Ye et al., 2009), LIM proteins (Thomas et al., 
2006; Thomas et al., 2007), and/or elongation factor 1 alpha (Collings et al., 1994) in 
the formation of thick actin ilament bundles. Consistent with this idea, imbrin has 
been proposed to cross-link actin ilament bundles generated by other actin bundling 
proteins, such as villin (Matova et al., 1999; Wu et al., 2010).

Besides villin’s role in actin ilament bundling, it is likely to play additional roles 
in actin organization. In addition to its bundling capacity, which is independent on 
Ca2+ levels, VLN3 has been shown to have actin ilament severing properties, and 
this activity is Ca2+-dependent (Khurana et al., 2010). VLN4, which is expressed in 
root hairs (Zhang et al., 2011), and VLN5, which is highly expressed in pollen tubes 
(Zhang et al., 2010), have similar properties: they both bundle actin ilaments in a 
Ca2+-independent manner, but have actin ilament severing capacity only at high 
(micromolar and millimolar) Ca2+ concentrations (Zhang et al., 2010). In addition, 
these villins have actin ilament capping activity. The lily villin P-135-ABP has been 
shown to have actin ilament nucleating, depolymerizing, and capping activity, and 
these activities were Ca2+/calmodulin-dependent. Although the authors state that 
the nucleating capacity is probably not relevant in vivo (since the nucleation was not 
accelerated when G-actin was saturated with pro ilin, which is the case in plant cells), 
the depolymerizing and capping activity might enhance actin dynamics in the apical 
region of tip-growing cells, where Ca2+ is abundant (Yokota et al., 2005). Zhang et al. 
(2011) predicted that VLN4, which is involved in the generation and/or maintenance 
of actin ilament bundles in the shank of root hairs (Zhang et al., 2011), participates in 
the regulation of actin cytoskeleton organization in the subapical and apical region of 
root hairs by its bundling, capping and/or severing activity. Likewise, VLN5 has been 
proposed to bundle actin ilaments in the shank of pollen tubes, while enhancing actin 
dynamics in the apical region, by severing and capping of actin ilaments (Zhang et al., 
2010). VLN3 (and perhaps also VLN2) could, besides being involved in the generation 
of actin ilament bundles, locally also play a role in enhancing actin dynamics.
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Although the localization of GFP:VLN3 to (bundles of) actin ilaments in the shank of 
root hairs shows that VLN3 is expressed in root hairs, root hair growth and morphology, 
which are very sensitive to changes in actin ilament organization, are not affected by 
the mutations in VLN2 and VLN3. This might mean that the proteins act redundantly 
with another villin in root hairs. VLN5 is preferentially expressed in pollen and pollen 
tubes (Zhang et al., 2010), and therefore not likely to act redundantly with VLN2 
and VLN3 in root hairs. VLN1, which is Ca2+- independent, has only actin ilament 
bundling capacity (Huang et al., 2005), and VLN3 can sever actin ilament bundles in 
the presence of VLN1 (Khurana et al., 2010), showing that the activities of VLN1 and 
VLN3 are not completely redundant. If VLN2 and VLN3 act redundantly with another 
villin in root hairs, VLN4, which is involved in actin ilament bundling in root hairs 
(Zhang et al., 2011), would therefore be the best candidate. Alternatively, the fact that 
root hair growth and morphology are not affected by the mutations in VLN2 and VLN3 
could mean that these villins are not essential for root hair growth and morphology. 
In intercalary growing cells, VLN2 and VLN3 are essential for the organization of actin 
ilaments. Thick actin ilament bundles are virtually absent in cells of the vln2 vln3 

double mutant, and our data show that villin requires the headpiece region for its 
bundling capacity in vitro, and for localizing to (bundles of) actin ilaments in vivo. 
This implies that although villin may play additional roles in actin organization, for 
instance by actin ilament severing, villin’s bundling capacity plays a major role in its 
function in actin ilament organization. 

Actin ilament organization is required for plant growth polarity
The actin cytoskeleton plays a key role in plant cell growth. It plays a fundamental role 
in the delivery of growth materials to exocytosis sites (Miller et al., 1997; Geitmann 
and Emons, 2000; Vidali and Hepler, 2001), not only because (bundles of) actin 
ilaments serve as tracks for cytoplasmic streaming, but also because they optimize 

the cytoplasmic organization for cell growth. In addition, ine F-actin is thought to be 
important for the iltering and delivery of Golgi-derived vesicles (Miller et al., 1999) 
that contain cell wall matrix materials in their lumen and the enzymes for callose and 
cellulose production in their membrane. Our data show that the activities of VLN2 and 
VLN3 are required for the organization of the actin cytoskeleton. In the absence of VLN2 
and VLN3 proteins, thick actin ilament bundles are virtually absent, while ine bundles 
are more abundant. Cell shapes and sizes, and plant growth rates are similar in Col-0 and 
double mutant plants. This shows that the thick actin ilament bundles that are absent 
in the double mutant are not essential for cell and plant growth. However, the wavy, 
twisted, appearance of several organs in the double mutant, and the larger amplitudes 
of the rotational movements (circumnutation) of double mutant in lorescences, point 
to a role for VLN2 and VLN3 in coordinated cell elongation. Although we were, due to 
the large variation in cell sizes, not able to determine differences in cell sizes between 
Col-0 and double mutant plants (except for a small difference in fruit stalk epidermal 
cell width), it is likely that the organ twisting in vln2 vln3 results from subtle changes 
in cell sizes in opposite locations of the organs. It is not clear how villin-mediated 
actin ilament bundling regulates coordinated cell expansion. We show that it does so 
by altering the organization of the actin cytoskeleton. The altered actin cytoskeleton 
organization in the double mutant might have effects on the direction of transport 
routes, and/or the proper allocation of Golgi vesicles in the vicinity of the plasma 
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membrane. In conclusion, our results show that villin is involved in the generation of 
thick actin ilament bundles and suggest that these bundles are, directly or indirectly, 
important for coordinated cell expansion.

Material and methods

Growth conditions, plant strains, allele characterization and creation of double 
mutants
Seeds were sterilized for 1 minute with 70%-ethanol, followed by a 3-5-minute 
treatment with 15-20% household bleach (4% hypochlorite) and 0.05% triton X-100. 
After sterilization, the seeds were strati ied at 4°C for 2-4 days, and germinated on 
0.5 MS plates containing 0.7% agarose. After 1 week, seedlings were transplanted to 
potting compost. For live cell visualization of root epidermal cells, hypocotyl epidermal 
cells and leaf pavement cells, seeds were germinated on 0.5 MS plates containing 1.5% 
agarose, which were placed at an oblique angle (approximately 15-30° off vertical). 
For root hair imaging, seeds were sown on tilted coverslips containing a thin 0.7% 
agarose layer of Hoaglands’ medium, covered with biofoil (Vivascience, Göttingen, 
Germany). Root hairs grew along the coverslip, and were imaged 3-4 days after planting. 
Colocalization of GFP:VLN3 and mCherry:FABD2 was performed by Agrobacterium 
tumefaciens-injection in tobacco (Nicotiana benthamiana) leaves as described by 
Bouwmeester et al. (Bouwmeester et al., 2011). All plants were grown at 25°C (16 h 
light, 8 h darkness).

The T-DNA insertion lines (both in a Col-0 background) for VLN2 (SAIL_813_H02) and 
VLN3 (SALK_117097) were obtained from the Nottingham Arabidopsis Stock Centre 
(NASC; (Scholl et al., 2000)). 4-6-week old leaves were used to isolate genomic DNA, 
which was used to con irm the T-DNA insertions (Supplemental Figure 1) by PCR using 
T-DNA left-border-speci ic primer LB3 (for SAIL_813_H02) or LBA1 (for SALK_117097) 
and VLN speci ic primers (Supplemental Figure 2 and Table 1) lanking the insertions. 
Homozygous mutants were identi ied in F3 progeny.

To analyze the expression of VLN2 and VLN3, RNA was extracted from leaves of the 
homozygous T-DNA insertion mutants using a QUIAGEN RNeasy Mini Kit. Total RNA was 
reverse transcribed into cDNA with Superscript II Reverse Transcriptase (Invitrogen), 
and eluted in 20 μL DEPC-treated H2O. A volume of 1 μL of the total cDNA was used in 
RT-PCR reactions using primer combinations designed for coding regions before and 
after the T-DNA inserts (Supplemental Figure 2 and Table 1).

Complementation analyses
Primers that included GATEWAY sequences (Invitrogen) were used to amplify genomic 
VLN3 including the promoter region (2299 bp upstream of the ATG) and terminator 
region (1228 bp including the stop codon) as annotated by The Arabidopsis Information 
Resource (TAIR; www.arabidopsis.org), which was recombined into pDONR207 
(Invitrogen), followed by recombination into pMDC99 (Curtis and Grossniklaus, 2003). 
Genomic VLN3 including the promoter but lacking the headpiece encoding region and 
terminator region (which lacks the last 606 bp of coding region of VLN3 including 
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introns) was recombined into pDONR207, followed by a recombination into pMDC32 
(Curtis and Grossniklaus, 2003), from which we deleted the 2 x 35S promoter. The 
same adapted version of pMDC32 was used for recombination of VLN2 including the 
promoter (3902 bp upstream of the ATG) but lacking the stop codon and terminator 
region.

To express GFP:VLN3 and GFP:VLN3-HP in the vln2 vln3 double mutant, genomic VLN3 
lacking the promoter and terminator region, as well as genomic VLN3 lacking the 
promoter,  headpiece encoding region, and terminator region were ampli ied by PCR 
and recombined into pDONR207, followed by a recombination into pMDC43 (Curtis 
and Grossniklaus, 2003) of which the 2 x 35S was replaced by the endogenous VLN3 
promoter. The same adapted version of pMDC43 was used for recombination (using 
pDONR221 (Invitrogen) as entry clone) of coding sequences of VLN3 and VLN3-HP, 
which were ampli ied from cDNA. All constructs were transformed into the vln2 vln3 
double mutant by Agrobacterium tumefaciens mediated transformation using the loral 
dip method (Clough and Bent, 1998). Primer sequences are shown in Supplemental 
Table 2.

Phenotype analysis and confocal microscopy
To visualize the actin cytoskeleton in the single mutants, we crossed the vln2 and vln3 
single mutants with wild-type Col-0 plants expressing P35S:GFP:FABD2 (Ketelaar 
et al., 2004). In the F2-generation, homozygous lines were identi ied by genotyping 
and selected for GFP:FABD2 expression. A double mutant line with GFP:FABD2 
expression was obtained by Agrobacterium tumefaciens mediated transformation of 
P35S:GFP:FABD2 into the vln2 vln3 double mutant using the loral dip method (Clough 
and Bent, 1998).

For live cell imaging of GFP:FABD2 and GFP:VLN3 localization, 3-5 day old plants were 
used. Root hairs were imaged with a I-LAS Spinning Disk Confocal System (Roper 
Scienti ic SAS, France) on a Nikon Eclipse Ti microscope using a 60x (N.A. 1.4) oil 
immersion objective. Root epidermal cells, hypocotyl epidermal cells, leaf pavement 
cells, and GFP:VLN3 and mCherry:FABD2 colocalization were imaged with an Axiovert 
200M microscope (Zeiss, Jena, Germany) connected to a Zeiss LSM510 META confocal 
scanning system equipped with a 63x (N.A. 1.4) oil immersion objective. Cell dimensions 
of leaf and fruit stalk epidermal cells were imaged with a Nikon Eclipse 80i microscope, 
using a 10x (N.A. 0.3) objective, and traced in image J. Circularity re lects the ratio of 

cell area to cell perimeter, and is de ined as 4πArea/Perimeter2 (Vidali et al., 2007).

Thickness of actin ilament bundles was quanti ied by creating intensity pro iles of GFP 
luorescence intensities of P35S:GFP:FABD expressing hypocotyl cells, in the middle 

of Z-projections of the cortical cytoplasm, perpendicular to the longitudinal cell axis 
(excluding the bright cell edges). To correct for differences in GFP:FABD2 intensity, 
we selected an area in which no actin ilaments were visible, and subtracted the mean 
luorescence intensity of this region from the luorescence intensities of the intensity 

pro ile. This resulted in a new plot pro ile, which was used to distribute the peaks in 
three classes: low (0-40 arbitrary units), medium (40-80 arbitrary units) and high (8-
120 arbitrary units) grey levels (8-bit iles were used). Only peaks that were at least 
10 units higher in luorescence intensity then the intensities of the left and right basis 
of the peaks were included.
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Protein expression and puri ication
We adapted the bacterial expression vector pET28a (Novagen) by ligation of GATEWAY 
recombination sites (ampli ied from pMDC43) using the NdeI and Xho1 restriction 
sites. This resulted in a kanamycin resistant vector which adds an N-terminal 
6xHIS:GFP to the recombinant protein. Coding sequences of VLN3 and VLN3-HP 
were ampli ied from cDNA using primers that also included GATEWAY sequences 
and then recombined into pDONR221, followed by recombination into the adapted 
version of pET28. For expression in Escherichia coli, the strain BL21-DE3 (Promega) 
was used. 6 mL of an overnight culture of bacteria were poured into 200 mL lysogeny 
broth (LB) media and cultured at 37°C for 4 h, after which they were transferred 
to 15 °C and induced with 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) 
overnight. HIS-tagged proteins were immobilized on Ni-NTA agarose (Qiagen) and 
eluted with 20 mM NaH2PO4, 250 mM NaCl, and 500 mM imidazole.

-
croscopy
0.1 volume of 10x KME buffer (500 mM KCl, 10 mM MgSO4, 10mM EGTA, 100 mM 
imidazole pH 6.5) was added to skeletal muscle actin or rhodamine muscle actin (derived 
from rabbit, Cytoskeleton; resuspended to 0.5 mg ml-1 in buffer G (2mM TRIS pH 8.0, 0.2 
mM ATP, 0.2 mM CaCl2, 0.02% NaN3, 0.5 mM DTT)) to induce polymerization of actin 
ilaments at room temperature for 1 h. Puri ied proteins (pre-clari ied at 135.000 g for 

30 min) were combined with ilamentous actin (actin:protein ratio was approximately 
10:1 for binding assays and in vitro visualization, and 5:1 for bundling assays) and 
incubated for 20 min at room temperature, after which the samples were centrifuged 
at room temperature for 1 h at 135.000 g (Beckman Airfuge) for actin ilament binding 
assays, and at 13.500 g (Eppendorf 5415C Centrifuge) for actin ilament bundling 
assays. For in vitro visualization, samples were diluted to a inal actin concentration of 
0.5 μg ml-1 before observation with a TIRF setup based on a Nikon Eclipse Ti inverted 
microscope. Both TIRF and epi illumination were provided by a 561nm laser (Cobolt 
AB). Samples were excited through a Nikon 100x TIRF objective (NA=1.49). Emission 
light was collected with the same objective, iltered using a custom made dichroic 
mirror and emission ilter (transmission bands: 480nm - 550nm, 570nm - 625nm and 
650nm - 800nm, Chroma) and imaged on a QuantEM EMCCD camera (Photometrics).

Accession numbers
Sequence data from this article can be found in GenBank/EMBL data libraries or 
The Arabidopsis Information Resource (TAIR) under accession numbers At2g41740 
or NP_565958.1 (Arabidopsis VLN2) and At3g57410 or NP_567048.1 (Arabidopsis 
VLN3).
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Supplemental data

Supplemental Figure 1: Molecular characterization of villin T-DNA insertion alleles. For all lines, a 
combination of wild type primers was used for both VLN2 and VLN3, resulting in a band only for plants 
carrying the wild type (WT) allele, and a combination of insert primers was used for both VLN2 and VLN3, 
resulting in a band only for plants carrying the insert (I) allele. Azygous plants show wild-type alleles for 
both VLN genes, the single mutants show one wild-type allele and one insert allele, and the double mutants 
show insert alleles for both VLN genes.

Supplemental Figure 2: Locations of primers used for molecular characterization of villin T-DNA
insertion alleles. (A) Overview of the VLN2 and VLN3 gene structure. The boxed areas in A are shown in 
detail in (B) and (C). Grey boxes represent exons, horizontal lines represent introns. Primers (arrows) and 
T-DNA inserts (arrowheads) are not drawn to scale. Primer numbers correspond to the primer sequences 
in Supplemental Table 1.
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Primer 
number

VLN2: SAIL_813_H02 VLN3: SALK_117097

1 CAGCCCGGGATTACTCTCAAGCATG GAGAAGAAGAAATCACCTGATACCAGCC

2 GGGAACGAACCATGCTTCTTCACC GAATCATTCTACAAATTGCCTGGATGG

3 TAGCATCTGAATTTCATAACCAATCTCGATACAC 
(=LB3)

TGGTTCACGTAGTGGGCCATCG 
(=LBA1)

4 GGACCAAGATACAGCAATTCGACTGGC GAGATTCACAACTTTGATCAAGATGACC

5 CGCATGAACAGCTAGAACTGGCCAC GCAAGGGAATTCCTACCAGAAGAAGGC

6 GTGTGGAGCCTAAGGAAAAGCAAACTG CTGCTGAGAAGAAGAAATCACCTGATACC

7 GATTAAACGAAAGTCACGACGGCCC GCCTGGATGGAAACAAGACTTACTG

Supplemental Table 1: Sequences of primers used for molecular characterization of villin T-DNA 
insertion alleles. For genotyping, presence of wild type alleles was tested using primer 1 and 2, and 
presence of insert alleles was tested using primers 1 and 3. Primer combinations 4 and 5, and 6 and 7 
were used to test whether transcripts are present, truncated, or absent in mutant plants. Primer numbers 
correspond to the numbers in Supplemental Figure 2.

PCR product Fw primer (5’- 3’) Rv primer (5’- 3’)

VLN3 genomic including 
promoter and terminator 
region

GGGGACAAGTTTG
TACAAAAAAGCAGGCTAAACC
CGAACCGGCAACATATATTCAAAG
TATATGG

GGGGACCACTTTGTACAAG
AAAGCTGGGTAGACCTGTCTCGCT
CAAAGCAACGTC

VLN2 genomic including 
promoter but lacking the stop 
codon and terminator region

GGGGACAAGTTTG
TACAAAAAAGCAGGCTAAACC
CGGTGTGGACATTGCACTCTCTT
TATTC

GGGGACCACTTTGTACAAG-
AAAGCTGGGTAGAACAAGTC-
GAACTTCTTCTTAAGCAGATC

VLN3 genomic (without 
promoter and terminator 
region) and VLN3 coding 
region (for bacterial 
expression)

GGGGACAAGTTTG-
TACAAAAAAGCAGGCTCCAC-
CATGTCTGGGTCAACAAAAGTAT-
TGGATCC

GGGGACCACTTTGTACAAG-
AAAGCTGGGTAGAATAAGTT-
GAATTTCTTCTTCAGTAAGTCTTGTT-
TCC

VLN3 genomic lacking the 
promoter, headpiece encoding  
and terminator region, and 
VLN3 coding region lacking 
the promoter, headpiece 
encoding  and terminator 
region (for bacterial 
expression)

GGGGACAAGTTTG
TACAAAAAAGCAGGCTCCAC
CATGTCTGGGTCAACAAAAGTAT
TGGATCC

GGGGACCACTTTGTACAA-
GAAAGCTGGGTATGCTGCT-
GCTCTTTGTGACGCCTGGC

VLN3 promoter CCCCCTGCAGGCGAACCGGCAA
CATATATTCAAAGTATATGG

CCCGGTACCTTTGTATTAGTGGC
TAATCTCTTCCTTCAAGAG

Supplemental Table 2: Sequences of primers used for complementation experiments and bacterial 
protein expression. Gateway sequences are shown in bold, restriction sites are underlined, and villin DNA 
is shown in italic. For bacterial expression of VLN3 and VLN3-HP coding regions, a stop codon (TAA) was 
added in the reverse primer.

Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin  
ilament bundles and for directional organ growth
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Summary

In interphase plant cells, the actin cytoskeleton is essential for intracellular transport 
and cytoplasmic organization. To fully understand how the actin cytoskeleton 
functions as the structural basis for cytoplasmic organization, both molecular and 
physical aspects of the actin cytoskeleton have to be considered. First, we discuss 
literature that gives insight in how cytoplasmic organization is achieved and literature 
in which actin binding proteins have been identi ied that play a role in this process. 
In this part, the roles of the actin bundling proteins villin (chapter 4) and imbrin 
(new results) receive special attention. Next, we discuss how physical properties of 
the actin cytoskeleton in the cytoplasm of live plant cells, such as deformability and 
elasticity, can be probed by using optical tweezers. This technique allows non-invasive 
manipulation of cytoplasmic organization. Optical tweezers, integrated in a confocal 
microscope, can be used to manipulate cytoplasmic organization while studying actin 
dynamics (chapter 2). By combining this with mutant studies and drug applications, 
insight can be obtained about how the physical properties of the actin cytoskeleton, 
and consequently the cytoplasmic organization, are in luenced by different cellular 
processes. 
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Introduction

The actin cytoskeleton is of pivotal importance for many cellular processes, including, 
amongst others, cell shape formation, intracellular transport, cytoplasmic organization 
and signalling. It is as such a key coordinator of development of eukaryotes. Actin 
ilaments are capable to rapidly form a plethora of structures, such as cross-linked 

gels and linear bundles. The organization of actin networks is dependent, besides the 
intrinsic properties of actin, on a large number of actin binding proteins (ABPs; (Hussey 
et al., 2006)). The combined actions of these proteins result in adaptation of the actin 
organization in response to intra- and extra-cellular cues. In this review we will focus 
on an actin con iguration that is prominently present in plant cells: the thick actin 
ilament bundles that play a role in the formation and maintenance of cytoplasmic 

strands in plant cells (Staiger et al., 1994; Valster et al., 1997; Tominaga et al., 2000). 
We will discuss how the formation and organization of these actin ilament bundles is 
regulated (work reported in chapter 4), and show our initial data about the role of the 
actin bundling protein imbrin on actin organization. Next, we discuss how physical 
manipulation of cytoplasmic organization with optical tweezers (work reported in 
chapter 2) can help to gain insight in cytoplasmic organization. 

Cytoplasmic organization in highly vacuolated plant cells1.
During cell growth, plant cells become highly vacuolated. Mature plant cells contain 
one or several large vacuoles that can occupy over 90% of the cell volume (Kutsuna 
and Hasezawa, 2002; Ruthardt et al., 2005). In intercalary growing plant cells (i.e. 
cells in which expansion takes place over the whole longitudinal cell axis, resulting 
in cell elongation), cytoplasm is located around the nucleus (perinuclear cytoplasm) 
and in the periphery of the cell (cortical cytoplasm). These cytoplasmic areas are 
interspaced by the vacuole. Strands of cytoplasm bounded by the tonoplast (vacuolar 
membrane), called cytoplasmic or transvacuolar strands, cross the vacuole to connect 
the perinuclear and cortical cytoplasm ( igure 1). They are formed after cytokinesis 
(Kutsuna and Hasezawa, 2005), during and after cell elongation (Sheahan et al., 2007), 
and during recovery from actin depolymerization (Fiserova et al., 2006). Cytoplasmic 
strands are highly dynamic: they constantly change in shape and location (Hoffmann 
and Nebenfuhr, 2004; Ruthardt et al., 2005).

Cytoplasmic strands are thought to function as transport routes for transcripts, proteins 
and organelles. This transport is visible as cytoplasmic streaming, the myosin-mediated 
movement of organelles over actin ilaments and the hydrodynamic low induced by 
this movement (Houtman et al., 2007; Esseling-Ozdoba et al., 2008). All interphase 
cytoplasmic strands contain actin ilaments, and upon actin depolymerization, not only 
cytoplasmic streaming is inhibited, but also cytoplasmic strands disappear (Staiger et 
al., 1994; Shimmen et al., 1995; Valster et al., 1997; Hussey et al., 1998; Van Gestel et 
al., 2002; Higaki et al., 2006; Sheahan et al., 2007; Van der Honing et al., 2010 [chapter 
2]). Thus, actin ilaments not only serve as transport routes, but are also the backbone 
of cytoplasmic strands. In this chapter, we will focus on the structural function of actin 
ilaments in forming, maintaining and reorganizing cytoplasmic strands. 
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Figure 1. The cytoplasmic organization 
in a tobacco BY-2 suspension cultured 
cell. Around the nucleus, the perinuclear 
cytoplasm is present and in the periphery 
of the cell, the cortical cytoplasm is 
present. These two pools of cytoplasm are 
interconnected by cytoplasmic strands (e.g. 
arrow) that impinge the central vacuole. 
The organization of cytoplasmic strands is 
highly dynamic; the localisation of strands 
constantly changes and they fuse and branch. 
N indicates nucleus. Bar: 10 μm.

Biogenesis and maintenance of cytoplasmic strands2.
Two alternative hypotheses have been proposed for the de novo formation of 
cytoplasmic strands, which are outlined below. 

Protrusions of cytoplasm extend into the vacuolar space and may eventually I.
connect to the peripheral cytoplasm at the other side of the vacuole (Higaki et 
al., 2006; Van der Honing et al., 2007 [chapter 1]). In tobacco BY-2 suspension 
cultured cells, these protrusions originate from the perinuclear cytoplasm 
during and just after cytokinesis ( igure 2). We propose that these protrusions 
could be formed by two alternative mechanisms:

existing bundles of actin ilaments that are positioned against the a.
tonoplast are displaced towards it by myosin motor activity, indenting 
the tonoplast
coordinated polymerization of actin ilaments with their barbed ends b.
towards the tonoplast pushes the tonoplast forward, similar to the 
protrusion of the plasma membrane of mammalian cells during formation 
of lamellipodia or ilopodia (Van der Honing et al., 2007 [chapter 1])

A sheet of the cortical cytoplasm forms an invagination into the vacuolar space, II.
where after the lateral connection between the sheet and the cortical cytoplasm 
disappears and the sheet becomes a strand, which is connected to cortical 
or perinuclear cytoplasm at two sides (Ruthardt et al., 2005; Szymanski and 
Cosgrove, 2009). Szymanski and Cosgrove (Szymanski and Cosgrove, 2009) 
present data that show that this type of strand formation indeed occurs in plant 
cells and propose that the underlying molecular mechanism is myosin activity 
in the periphery of the cell which pulls a peripheral bundle of actin ilaments 
into the vacuolar space. 

To decipher how new cytoplasmic strands are formed, the three dimensional 
organisation of the cytoplasm would need to be studied over time. Due to the 
continuous, rapid reorganization of the cytoplasmic organization that occurs within 
seconds (Ruthardt et al., 2005), high-speed time series, combined with quantitative 
data analysis would be required for conclusive answers.
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Figure 2. Highly dynamic cytoplasmic pro-
trusions into the vacuolar space are formed 
during and just after cytokinesis. Three im-
ages with 30 seconds intervals showing the 
protrusions (black arrows). White arrows in-
dicate the direction of the forming cell plate. 
N indicate nuclei. Bar: 10 μm.

Once cytoplasmic strands have been formed, they constantly reposition, split and 
fuse (Hoffmann and Nebenfuhr, 2004). When myosin motor activity is inhibited, the 
cytoplasmic organization is frozen, which indicates that myosin based displacement of 
the actin ilament bundles that support the cytoplasmic strands is responsible for the 
reorganization of cytoplasmic strands (Hoffmann and Nebenfuhr, 2004; Van der Honing 
et al., 2010 [chapter 2]). The reaction of cells on the application of low concentrations 
of actin depolymerizing drugs suggests that actin polymerization does not play a role 
in the reorganization of existing cytoplasmic strands, other than providing the actin 
ilament bundles that can be displaced by myosin activity (Hoffmann and Nebenfuhr, 

2004; Van der Honing et al., 2010 [chapter 2]). Although the number and dynamicity 
of cytoplasmic strands is known to decrease when cells mature, it is not known how 
this happens.

3.
a. Actin bundling proteins
Actin ilaments in cytoplasmic strands are organized as thick bundles. The actin 
bundling protein villin is involved in maintaining these bundles. Injection of an anti 
villin antibody in root hairs of Hydrocharis (Tominaga et al., 2000) and Arabidopsis 
(Ketelaar et al., 2002) causes cytoplasmic strands to fall apart into many thinner 
cytoplasmic strands, which eventually disappear. This indicates that villin-mediated 
actin ilament bundling at least partially determines the number and the size of 

General discussion



98

cytoplasmic strands. We found that Arabidopsis VLN3 localizes to actin ilaments in 
cytoplasmic strands and in the cortical cytoplasm of root, hypocotyl, and leaf epidermal 
cells (chapter 4), and in root hairs ( igure 3; chapter 4). Phenotypic analysis of a vln2 
vln3 double mutant (resulting in a truncated transcript for both genes) showed that 
villin is involved in the regulation of directional organ growth, and that thick bundles 
of actin ilaments are less abundant in the cells of the double mutant. Furthermore, 
the headpiece domain of VLN3 is required for its actin ilament bundling capacity, as 
well as for its functionality in organ growth polarity (chapter 4). Thus, VLN2 and VLN3 
are involved in the generation of actin ilament bundles that are likely to be important 
for coordinated cell expansion. Loss of function of VLN4 resulted in an alteration of 
cytoplasmic streaming routes and velocities in root hairs (Zhang et al., 2011), implying 
an altered organization of the cytoplasm. Although the cytoplasmic organization 
in the vln2 vln3 double mutant is not visibly affected at the light microscopy level, 
subtle changes in cytoplasmic organization and/or cytoplasmic streaming could be 
responsible for the defects in directional organ growth.

Figure 3. (A) GFP:VLN3 localizes to actin 
ilaments in cytoplasmic strands of  root 

hairs. (B) transmission image. Bar: 10 μm.

Next to its actin ilament bundling capacity, which is independent of Ca2+ levels 
(Khurana et al., 2010), VLN3 has actin ilament severing properties, and this activity 
is Ca2+-dependent (Khurana et al., 2010). Although not all plant villins are Ca2+-
dependent (Huang et al., 2005), the Ca2+-dependency of some plant villins (Yokota et 
al., 2005; Khurana et al., 2010; Zhang et al., 2010) indicates that the free cytoplasmic 
concentration of Ca2+ could be involved in controlling the locations and amount of actin 
ilament bundling in plant cells. For example, in the cytoplasm of the apical region of 

tip-growing cells, which contains a high concentration of free cytoplasmic Ca2+, actin 
ilament bundles have not been detected (Kost et al., 1998; Miller et al., 1999), while in 

the shank of pollen tubes and root hairs, at lower Ca2+ concentrations, thick, more or 
less longitudinally oriented bundles of actin ilaments are present (Kost et al., 1998; 
Miller et al., 1999). VLN4, which is expressed in root hairs (Zhang et al., 2011) and 
VLN5, which is highly expressed in pollen and pollen tubes (Khurana et al., 2010), 
both bundle actin ilaments in a Ca2+-independent manner, just as VLN3 does, but 
have actin ilament severing activity only at high (micromolar and millimolar) Ca2+-
concentrations  (Zhang et al., 2010), a condition that is present in the apical zone of tip-
growing cells (Pierson et al., 1996; Wymer et al., 1997; De Ruijter et al., 1998). Besides 
these activities, VLN4 and VLN5 have actin ilament capping activity (Zhang et al., 2010; 
Zhang et al., 2011). VLN4, which is involved in the generation and/or maintenance of 
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actin ilament bundles in the shank of root hairs (Zhang et al., 2011), was predicted 
to participate in the regulation of actin cytoskeleton organization in the subapical and 
apical region of root hairs by its bundling, capping and/or severing activity (Zhang et 
al., 2011). Zhang et al. (2010) proposed that VLN5 binds to and stabilizes (bundles of) 
actin ilaments in the shank of pollen tubes by bundling and capping actin ilaments, 
while regulating actin dynamics in the apical region of the pollen tube, where Ca2+ is 
abundant, by capping and severing actin ilaments. VLN2 and VLN3 might perform 
similar functions in tip-growing cells, although their function may be redundant with 
that of VLN5 in pollen tubes, and VLN4 in root hairs. In conclusion, villins are, besides 
regulating the amount of actin ilament bundling, and in this way one of the actors 
determining the number and width of cytoplasmic strands, likely to play additional 
roles in actin organization and dynamics, by their actin ilament nucleating, severing, 
and barbed end capping activities.

Besides villins, several other types of proteins with actin ilament bundling capacity 
have been identi ied in plant cells: imbrins (Kovar et al., 2000; Kovar et al., 2001), 
formins (Cheung and Wu, 2004; Favery et al., 2004; Michelot et al., 2005; Ye et al., 
2009), LIM domain proteins (Kovar et al., 2001; Thomas et al., 2006; Thomas et al., 
2008; Wang et al., 2008; Papuga et al., 2010), and elongation factor 1α (Collings et al., 
1994; Gungabissoon et al., 2001).  The actin nucleating formin AtFH1 is able to bind 
the side of existing actin ilaments in vitro so that the newly formed actin ilaments 
form an actin ilament bundle together with the existing ilament (Michelot et al., 
2005). Michelot et al. (Michelot et al., 2005) suggest that this activity may be the basis 
of actin ilament bundle formation in plant cells. Indeed, overexpression of AtFH1 
increases the number of actin ilament bundles in pollen tubes, especially in the apical 
and subapical region (Cheung and Wu, 2004). On the other hand, down-regulation of 
AtFH3 resulted in the disappearance of actin ilament bundles in pollen tubes, which 
led to an altered direction and velocity of cytoplasmic streaming in these cells (Ye et 
al., 2009). This implies that formin-mediated actin ilament bundling is involved in 
cytoplasmic organization.

LIM domain proteins are small (~200 amino acids) actin bundling proteins that bind 
to, stabilize and bundle actin ilaments in vitro (Thomas et al., 2006; Wang et al., 
2008). The genome of plants only contains a limited number of LIM domain proteins, 
in contrast to animal genomes, which contain many (Arnaud et al., 2007; Thomas et 
al., 2009). The six Arabidopsis LIM domain proteins, which were shown to have actin 
ilament bundling activity in vitro, all localize to actin ilaments in cytoplasmic strands 

and the cortical cytoplasm of different cell types (Papuga et al., 2010). PLIM2C, the 
only Arabidopsis LIM domain protein that bundles actin ilaments in a Ca2+-dependent 
way (its bundling activity is inhibited at a high Ca2+ concentration of 5 μM), localizes 
to long actin ilament bundles in the pollen tube shank that do not penetrate the 
subapical region, and occasionally localizes to the subapical actin fringe (Papuga et al., 
2010). The Ca2+ concentration is, however, not the only factor regulating the amount 
of actin ilament cross-linking by LIM domain proteins: the actin ilament bundling 
activity of all three AtPLIMs (which are exclusively or preferentially expressed in 
pollen and pollen tubes) are inhibited at pH values above 6.8 (values that are present 
in the subapical region of pollen tubes (Feijo et al., 1999)). The lily pollen LiLIM1 was 
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also shown to be pH-dependent: this protein preferentially binds to actin ilaments 
under pH values below 6.8, that are present in the shank of pollen tubes (Wang et al., 
2008). Over-expression of the tobacco and lily LIM domain proteins NtWLIM1 and 
LiLIM1 cause hyper-bundling of actin ilaments and a decrease in the number of actin 
ilament bundles (Thomas et al., 2006; Thomas et al., 2008; Wang et al., 2008; Papuga 

et al., 2010). These results indicate that LIM domain proteins, in addition to villins, 
are involved in forming and/or maintaining actin ilament bundles and thus could be 
involved in the regulation of the number and size of cytoplasmic strands. LIM domain 
protein knockouts so far have failed to produce lines that exhibit developmental defects 
(Thomas et al., 2009).

Elongation factor 1α (EF-1α) is a protein that functions in binding aminoacyl-tRNA 
to ribosomes in eukaryotes. In different species, EF-1α binds to microtubules or actin 
ilaments. Gungabissoon et al. (Gungabissoon et al., 2001) show that Maize EF-1α is 

capable of bundling actin ilaments in vitro at low pH; this activity is enhanced by the 
presence of maize actin depolymerizing factor, ADF3.

The actin cross-linking protein imbrin is ubiquitously expressed in Arabidopsis 
(McCurdy and Kim, 1998). The actin binding activity of FIM1 is Ca2+-independent 
(Kovar et al., 2000). Kovar et al. (Kovar et al., 2001) showed that microinjection of 
Oregon green labeled FIM1 in Tradescantia stamen hair cells causes the formation of 
a iner and denser actin ilament network in these cells. Microinjection of native FIM1 
caused inhibition of cytoplasmic streaming and an increased resistance against pro ilin 
induced actin depolymerization (Kovar et al., 2000). However, when FIM1, fused to 
GFP, was over-expressed in Arabidopsis, it appeared to decorate the actin cytoskeleton 
in different cell types, but did not modify the actin organization (Wang et al., 2004).

We started experiments to investigate the role of Arabidopsis FIM5 on actin ilament 
organization, which we present here. FIM5 is preferentially expressed in pollen, 
and FIM5 loss of function results in a delay in pollen germination and inhibition of 
pollen tube growth, while no other phenotypic malformations were described (Wu et 
al., 2010). Our data show, however, that the gene is expressed throughout the plant. 
GFP:FIM5 (expressed under its endogenous promoter) has a predominant cytoplasmic 
localization in leaf, hypocotyl, and root epidermal cells, but also localizes to ilamentous 
structures resembling (bundles of) actin ilaments in the cortical cytoplasm and in 
cytoplasmic strands of these cell types ( igure 4). Rhodamine-Phalloidin-staining 
of ixed cells expressing pFIM5::GFP::FIM5 shows that imbrin colocalizes with 
actin ilaments ( igure 5). A comparison of the localization of GFP:FIM5 with that of 
GFP:FABD2 ( igure 4) shows that this imbrin does not localize to all actin ilaments 
in the cell. Time lapse series show that the (bundles of) actin ilaments to which FIM5 
localizes, reorganize over time ( igure 6). High- and low-speed co-sedimentation assays 
showed that this imbrin has actin ilament binding and bundling capacity ( igure 7). 
The data suggest that imbrins could play a role in determining the amount of cross-
linking between different (bundles of) actin ilaments. Consistent with this idea, Wu 
et al. showed that in pollen grains of a im5 mutant, actin ilament bundles are thicker, 
and distributed more randomly and irregularly than in wild type pollen grains (Wu 
et al., 2010). They further showed that FIM5 stabilizes actin ilaments in vitro, and 
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their results suggest that the protein also stabilizes actin ilaments in vivo. Wu et al. 
(2010) explain the increase in actin ilament bundle thickness in the im5 mutant as 
follows: imbrin, which may be involved in the cross-linking of actin ilament bundles 
generated by other actin bundling proteins, could decrease the distance between 
adjacent actin ilaments in these bundles, in this way generating stabilized, thinner 
and denser actin ilament bundles (Wu et al., 2010). Likewise, assembly of actin 
ilament bundles in intestinal microvilli has been proposed to be a stepwise process: 

according to this hypothesis, villin acts irst to bring actin ilaments together, and 
imbrin acts as a second bundling protein to pack them more tightly (Matova et al., 

1999). Consistent with this hypothesis, we show that VLN3 and FIM5 colocalize in leaf 
epidermal cells ( igure 8), showing that villin and imbrin are present in the same actin 
ilament bundles. It is conceivable that actin ilament bundling by imbrin could have 

an effect on the number and/or width of cytoplasmic strands by regulating the amount 
and/or thickness of actin ilament bundles. Indeed, im5 pollen tubes show an altered 
pattern of cytoplasmic streaming (Wu et al., 2010), implying an altered organization 
of the cytoplasm. More work is needed to determine if and how imbrins contribute 
to the actin ilament bundles involved in formation and maintenance of cytoplasmic 
strands.

Figure 4. GFP:FIM5 localizes to ilamentous structures resembling actin ilaments in leaf (A), hypocotyl 
(C) and root (E) epidermal cells. A comparison of the localization of FIM5 with that of GFP:FABD2 (B, D, F) 
shows that FIM5 does not localize to all actin ilaments in the cell. Bars: 10 μm.
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Figure 5. Rhodamine-phalloidin staining of 
ixed root epidermal cells of pFIM5::GFP:FIM5 

expressing plants shows that GFP:FIM5 colocalizes 
with actin ilaments. A: GFP:FIM5; B: Rhodamine-
phalloidin stained actin ilaments; C: overlay (red: 
actin ilaments; green: GFP:FIM5). 
Five day old seedlings were ixed for 2 min with 100 
μM MBS-ester in 1 % para-formaldehyde and 0.025 
% glutaraldehyde, followed by 200 μM MBS-ester in 
2 % para-formaldehyde and 0.025 % glutaraldehyde 
for 10 min. The plants were post ixed for 20 min in 
a inal concentration of 3 % paraformaldehyde and 
0.075 % glutaraldehyde in 0.5 x Actin Stablizing 
buffer.

Figure 6. FIM5 localizes to (bundles of) actin 
ilaments that reorganize over time. (A-C) Time 

lapse series of GFP:FIM5 in an elongating hypocotyl 
epidermal cell. FIM5 localizes to (bundles of) 
actin ilaments that reorganize over time (e.g. 
arrowhead). (D) An Image J macro (Van Bruaene 
et al., 2004) was used to compare (A) and (B), 
resulting in an image in which luorescence at the 
same location in the two images appears yellow, 
whereas luorescence present in only one of the 
two images appears either red (when luorescence 
is present only in the irst frame) or green (when 
luorescence is present only in the second frame). 

Regions with no luorescence in either of the 
frames appear black. Bar, 10 μm.

Figure 7. FIM5 has actin ilament binding and bundling capacity. (A) High-speed co-sedimentation assay. 
GFP:FIM5 was combined with ilamentous actin (actin:FIM5 was approximately 2:1), and, after a 20 min 
incubation, centrifuged at 135.000 g. The proteins present in the resulting supernatants and pellets were 
separated by SDS-PAGE. In the absence of actin, 97 % of FIM5 remained in the supernatant fraction, but in 
the presence of polymerized actin, 54 % of the protein was present in the pellet, showing that FIM5 is able to 
bind to actin ilaments. (B) Low-speed co-sedimentation assay. Actin was allowed to polymerize for 1 h, and 
then combined with FIM5 (actin:FIM5 was approximately 2:1). After a 20-minute incubation, the samples 
were centrifuged at 13.500 g. The proteins present in the resulting supernatants and pellets were separated 
by SDS-PAGE. In the presence of FIM5, more actin (83 %, versus 59 % in the absence of FIM5) was present 
in the pellet, showing that FIM5 is able to bundle actin ilaments.
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Figure 8. Coexpression of pVLN3::GFP:VLN3 
and p35S::mCherry:FIM5 shows that VLN3 
and FIM5 colocalize in leaf epidermal cells. 
A: GFP:VLN3; B: mCherry:FIM5; C: overlay. 
Bar: 10 μm.

Although it is likely that besides villins, (some of) these other classes of actin bundling 
proteins play a role in the formation and maintenance of actin ilament bundles and 
thus cytoplasmic strands, disruption of villin activity appears to be suf icient to induce 
unbundling of actin ilament bundles and disintegration of cytoplasmic strands in root 
hairs (Tominaga et al., 2000; Ketelaar et al., 2002). This suggests that either villins 
are essential for the maintenance of actin ilament bundles that are also supported by 
other actin bundling proteins, or that other actin bundling proteins have functions in 
processes other than the maintenance of actin ilament bundles in cytoplasmic strands. 
For example, formins could play a role only during the formation of actin ilament 
bundles, and not during their maintenance (Michelot et al., 2005).

b. Myosins
The genomes of seed plants contain two distinct groups of myosins, myosin VIII and 
myosin XI. Myosin VIII localises to plasmodesmata and the newly formed cell wall af-
ter cell division, endosomes and the endoplasmic reticulum (ER; (Reichelt et al., 1999; 
Avisar et al., 2008a; Golomb et al., 2008; Sattarzadeh et al., 2008) and could thus be 
involved in different steps of endocytosis, ER tethering and plasmodesmatal activity 
(Golomb et al., 2008). It is unlikely that myosin VIII plays a role in forming or maintain-
ing cytoplasmic strands. 

Myosin XI isoforms localize to different organelles such as the ER (Samaj et al., 2000; 
Yokota et al., 2009), mitochondria (Van Gestel et al., 2002; Romagnoli et al., 2007), 
plastids (Wang and Pesacreta, 2004) and peroxisomes (Hashimoto et al., 2005; Reisen 
and Hanson, 2007). The movement of these myosin XI decorated organelles over actin 
ilaments is responsible for cytoplasmic streaming (Avisar et al., 2008b; Peremyslov 

et al., 2008; Prokhnevsky et al., 2008; Sparkes et al., 2008; Avisar et al., 2009). Myosin 
XI isoforms appear not to be speci ic for single organelles and analysis of T-DNA 
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insertion lines shows that the functions of different myosin XI isoforms are greatly 
redundant. Peremyslov et al. generated triple and quadruple knockout mutants. In 
these mutants, processive movement of Golgi stacks and peroxisomes was almost 
completely eliminated (Peremyslov et al., 2010). By application of the myosin ATPase 
inhibitor 2,3-Butanedione monoxime (BDM), which freezes cytoplasmic organization, 
it has been shown that myosins may play a role in the relocation of cytoplasmic strands 
(Hoffmann and Nebenfuhr, 2004; Higaki et al., 2006; Sheahan et al., 2007; Van der 
Honing et al., 2010 [chapter 2]). This suggests that the restructuring of the actin ilament 
bundles that are the backbone of cytoplasmic strands is mainly performed by myosin-
based sliding of existing actin ilaments, rather than by actin (de-)polymerization. 
Myosin XI has indeed been shown to be involved in organizing the actin cytoskeleton 
(Peremyslov et al., 2010; Ueda et al., 2010). In myosin XI knockout mutants, thick, 
longitudinal actin ilament bundles are absent in midvein epidermal cells (Peremyslov 
et al., 2010). In root hairs, the thick actin ilament bundles that are normally excluded 
from the apical region (Miller et al., 1999) projected into the cell apices. In another 
study, actin ilament bundles were randomly oriented in epidermal cells of the petioles 
of cotyledons and of etiolated hypocotyls of myosin XI knockout mutants, while thick, 
longitudinally oriented actin ilament bundles are normally present in these cells 
(Ueda et al., 2010). Furthermore, these mutants exhibited defects in the development 
of cytoplasmic strands. These data show that myosin XI is involved in the organization 
of actin ilament bundles and cytoplasmic strands. To understand how myosins exactly 
contribute to the (re)structuring of the actin ilament bundles in cytoplasmic strands, 
more information about the identity, localization and the activity of these myosins is 
important.

Manipulation of cytoplasmic organization4.
To fully understand cytoplasmic organization, knowing its molecular aspects is not 
suf icient. Besides molecular characteristics of the molecules that are involved in the 
organization of cytoplasm, also physical aspects have to be taken into account. Processes 
that contribute to cytoplasmic organization not only depend on the molecules involved; 
they also depend on the physical properties of these molecules, and their assemblages. 
For example, a single actin ilament (>30 – 150 nm long) will buckle when pushed 
against a membrane, whereas a bundle of actin ilaments is able to push a membrane 
forward (Svitkina et al., 2003; Mogilner and Rubinstein, 2005; Atilgan et al., 2006). Also 
the degree of cross-linking and bundling dramatically changes the physical properties 
of an actin ilament network (Liu et al., 2006; Tharmann et al., 2007). Physical aspects 
of actin ilament networks can be studied in vitro or within living cells. So far, physical 
properties of the plant actin cytoskeleton only have been probed within living cells. 

Using optical tweezers (Ashkin, 1970), physical properties of cytoplasmic organization 
can be probed in a non-invasive manner (Grabski et al., 1994; Grabski et al., 1998; Van 
der Honing et al., 2010 [chapter 2]). Optical tweezers function by focussing a high 
intensity laser beam on a small particle, during which the laser’s radiation pressure 
constrains the particle to the centre of the laser. Lateral displacement of the focussed 
laser beam allows non-invasive dislocation of these particles (Ashkin and Dziedzic, 
1987; Ashkin et al., 1987; Block, 1992; Grier, 2003). Requirements for successful optical 
trapping are a high numerical aperture lens and the presence of structures in the 
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(sub-)micrometer range, with a higher refractive index than the surrounding medium 
close to the coverslip. Generally, lasers that emit infrared light are used, since these 
wavelengths do not interfere with imaging and are not perceived by cells. Thus, optical 
tweezers can be employed to produce controlled forces inside living cells (Ashkin et 
al., 1987; Ashkin and Dziedzic, 1989) to manipulate intracellular organization (Ashkin 
and Dziedzic, 1989; Grabski et al., 1994; Sparkes et al., 2009; Van der Honing et al., 
2010 [chapter 2]).

Optical tweezers have been used to measure the tension in naturally occurring 
cytoplasmic strands (Grabski et al., 1994; Grabski et al., 1998) and have been employed 
to alter cytoplasmic organization by the production of new cytoplasmic strands or 
cytoplasmic protrusions (Van der Honing et al., 2010 [chapter 2]). The tension in 
naturally occurring cytoplasmic strands was studied by trapping an organelle in one 
of these strands with the optical tweezers and performing a series of rapid lateral 
displacements at different laser powers (Grabski et al., 1994). When performing these 
experiments in the presence of the actin ilament depolymerizing drug cytochalasin D 
(20 μM), tension in cytoplasmic strands was reduced (Grabski et al., 1994), whereas 
in the presence of the myosin inhibitor BDM (10 mM) the tension in cytoplasmic 
strands was increased (Grabski et al., 1998). These experiments show that tension 
in cytoplasmic strands is produced by actin ilaments and suggest that myosin-based 
sliding of actin ilaments is responsible for the deformation competence of cytoplasmic 
strands, which its with the idea that myosin-based sliding of actin ilaments is 
responsible for cytoplasmic restructuring (Hoffmann and Nebenfuhr, 2004; Szymanski 
and Cosgrove, 2009; Van der Honing et al., 2010 [chapter 2]). 

Besides measuring tension in existing cytoplasmic strands, optical tweezers can 
also be employed to modify cytoplasmic organization by trapping an organelle and 
displacing the trapped organelle into the space occupied by the vacuole. This results 
in the formation of a cytoplasmic protrusion into the vacuole, bounded by tonoplast 
membrane (Van der Honing et al., 2010 [chapter 2]). When the tweezers with a 
trapped organelle at the top of such a cytoplasmic protrusion were moved to the 
tonoplast at another side of the vacuole, we have made two different observations: (1) 
when the organelle is released, for example by switching off the trap, the cytoplasmic 
protrusion shoots back to its origin and disappears, and (2) the tonoplast membrane 
of the protrusion fuses with the tonoplast membrane at the other side of the vacuole, 
resulting in a cytoplasmic strand that remains intact when the tweezers are switched 
off (Norbert de Ruijter, Anne Mie C. Emons and Tijs Ketelaar, unpublished results). The 
irst observation has been seen in tobacco Bright Yellow-2 suspension cultured cells; in 

Tradescantia stamen hair cells, both reactions were observed, and in epidermal peals of 
onion skin, the second reaction predominantly occurs. Thus, the possibility of tweezer-
formed strands to fuse with the tonoplast is cell type and/or species dependent. 

We have produced tweezer-formed cytoplasmic protrusions in cells in which the actin 
cytoskeleton had completely been depolymerized (treatment with 500 nM latrunculin 
B for 12-16 hours), or in which the myosin activity had been inhibited (25 mM BDM for 
30 minutes; (Van der Honing et al., 2010 [chapter 2])). It requires more force to produce 
cytoplasmic protrusions when myosin motor activity is inhibited and less force when 
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the actin cytoskeleton is depolymerized. Thus, the presence of actin ilaments decreases 
the deformation capacity of the cytoplasm and myosin motor inhibition makes the 
cytoplasm even harder to deform. We studied the actin ilament localization during and 
after physical manipulation of cytoplasmic organization. In control experiments, visible 
actin ilaments had entered most tweezer-formed strands after several minutes. This 
suggests that actin ilaments occupy free cytoplasmic space, either by active targeting 
or by random movement. The entry of actin ilaments was inhibited by application of 
BDM (Van der Honing et al., 2010 [chapter 2]), but not by partial depolymerization 
of actin ilaments with 100 nM latrunculin B or 100 μM cytochalasin D (Hannie 
S. van der Honing, Anne Mie C. Emons and Tijs Ketelaar, unpublished results). This 
suggests that myosin-mediated displacement of existing actin ilaments, and not actin 
polymerization, is responsible for the entry of actin ilaments in these strands. Sliding 
of actin ilaments over other actin ilaments by myosin activity could be, besides being 
responsible for reorganization of existing cytoplasmic strands, a mechanism by which 
actin ilaments are pushed against the tonoplast to generate the force to deform the 
vacuolar membrane during the formation of new cytoplasmic strands. 

Although actin ilaments support naturally occurring cytoplasmic strands and appear 
in tweezer-formed protrusions, the presence of actin ilaments does not delay the 
collapse of cytoplasmic protrusions after release of the tweezers, indicating that actin 
ilaments do not support tweezer-formed cytoplasmic protrusions, whereas they do 

support naturally occurring cytoplasmic strands. Apparently, actin ilaments can only 
support a cytoplasmic strand when they are held in place by connections to other actin 
ilaments at both sides of the strand, or else by membrane continuity. 

Cytoplasmic organization: prospects5.
An integrated optical trapping and confocal microscopy system is a powerful tool for 
the investigation of cytoplasmic organization and the underlying behaviour of the actin 
cytoskeleton. In combination with the use of mutants and drugs to manipulate actin 
organization it is possible to directly link changes in physical aspects of intracellular 
organization to the action of speci ic proteins. Ideally, these experiments should be 
complemented with experiments using the same techniques in systems with reduced 
complexity, such as in vitro experiments with puri ied proteins. Besides these ‘wet’ 
experiments, the understanding of a complex process such as intracellular organization 
would likely bene it from an approach in which known aspects of the system are 
incorporated in models that simplify the complexity, explain the observations and 
make predictions about unknown aspects of cytoplasmic organization.
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Summary

The organization of the cytoplasm, the cytoarchitecture, is crucial for plant 
development, since for instance plant cell growth depends on the proper allocation 
of growth substances to cell elongation sites. The production and maintenance of 
an organized cytoplasm is regulated by the actin cytoskeleton and the activities of 
several actin binding proteins that modulate the dynamics and organization of actin 
ilaments. In this thesis, results are presented that give insight into the regulation of 

the production of an organized cytoplasm in plant cells by the actin cytoskeleton. We 
examine physical properties of the actin cytoskeleton by deformation of the cytoplasm 
with optical tweezers. Further, we examine the role of the actin bundling protein villin 
in the organization of the actin cytoskeleton and discuss the possible role of several 
actin binding proteins in the production of an organized cytoplasm.

In chapter 1, we review the role of actin binding proteins in actin-based force 
generation in three well-studied mammalian model systems: the propulsion of Listeria 
through animal cells, and the formation of ilopodia and lamellipodia during the 
migration of animal cells. We compare the functions of these actin-binding proteins 
with those of their homologues in plants. Force generation by polymerization of actin 
ilaments has not been studied in plant cells, but may play a role in the production 

of an organized cytoplasm. We predict that the Arp2/3 complex and/or formins 
are responsible for the nucleation of actin ilaments that are required for the initial 
formation of cytoplasmic strands. Organizing these newly formed actin ilaments into 
the long actin ilament bundles that are present in cytoplasmic strands depends on the 
activity of actin bundling proteins, such as formins or villins. It seems likely that these 
proteins, in cooperation with other actin binding proteins, play a role in actin-based 
force generation in plant cells, which, in turn, is likely to be involved in the production 
of an organized cytoplasm.

To understand cytoplasmic organization, physical properties of the underlying actin 
network have to be investigated. In chapter 2, we describe a study in which optical 
tweezers were used to study physical properties of the cytoplasm in a non-invasive 
manner. We used optical tweezers to deform the cytoplasm of Tobacco BY-2 suspension 
cultured cells, while studying the behaviour of the actin cytoskeleton by confocal laser 
scanning microscopy. An organelle in the perinuclear area was trapped and displaced 
into the vacuolar space. Since the vacuolar membrane remained intact, this resulted 
in the formation of a cytoplasmic protrusion that resembles a cytoplasmic strand. 
When actin ilaments were depolymerized by Latrunctulin B, it was easier to deform 
the cytoplasm, while inhibition of myosin motor activity by BDM increased the force 
required to form cytoplasmic protrusions. In control experiments, actin ilaments 
entered the tweezer-formed protrusions within several minutes after their formation. 
In BDM-treated cells, however, actin ilaments were never observed in the protrusions. 
These data suggest that existing actin ilaments can be reorganized in a myosin-
dependent way. Myosin-based relocation of actin ilaments therefore is expected to 
play a role in the (re)organization of the cytoplasm of plant cells.
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Lifeact is a novel probe for live cell actin ilament visualization. Fused to a luorescent 
probe, this short peptide, consisting of the irst 17 amino acids from the yeast protein 
Abp140 (Actin binding protein 140), clearly visualizes ilamentous actin in eukaryotic 
cells. In chapter 3, results are presented that describe the (re)organization of the 
actin cytoskeleton in root epidermal cells of Arabidopsis thaliana visualized with 
Lifeact:Venus. We compared the (re)organization of the actin cytoskeleton visualized 
with Lifeact:Venus with that of the (re)organization of the actin cytoskeleton 
visualized with GFP:FABD2, a commonly used marker for ilamentous actin (F-actin) 
in plant cells that consists of GFP (green luorescent protein) fused to the second actin 
binding domain of Arabidopsis FIMBRIN1 ( imbrin actin-binding domain 2). Unlike 
GFP:FABD2, Lifeact:Venus labeled highly dynamic ine F-actin in the subapical region 
of tip-growing root hairs. The reorganization rate of (bundles of) actin ilaments in 
root epidermal cells was, however, signi icantly reduced in Lifeact:Venus expressing 
cells. By comparing cytoplasmic strand reorganization of both lines with that of wild 
type Col-0 cells, we show that this difference is caused by a decrease in reorganization 
rate of the actin cytoskeleton in cells expressing Lifeact:Venus, rather than by an 
increase in reorganization rate in cells expressing GFP:FABD2. Despite the effect of 
Lifeact:Venus on cytoplasmic strand reorganization rate, the cytoplasmic organization 
was not visibly affected in these cells. Furthermore, expression of Lifeact:Venus did 
not affect plant growth and development. This implicates that the organization of the 
actin cytoskeleton, but not its dynamic relocation over time, is a determining factor 
in plant cell growth. We conclude that Lifeact:Venus reduces remodeling of the actin 
cytoskeleton in Arabidopsis, and that this probe should be used with caution when 
studying this aspect of cells.

Actin ilaments in cytoplasmic strands are organized in thick bundles. The actin 
bundling protein villin is involved in maintaining these bundles. The role of villin in 
the generation of actin ilament bundles and in plant development was explored in 
chapter 4. We used Arabidopsis T-DNA insertion lines to generate a double mutant 
in which VLN2 and VLN3 transcripts are truncated. These vln2 vln3 double mutants 
showed a clear anomaly in directional organ growth, suggesting problems with 
coordinated cell elongation. The rotational movements (circumnutation) of vln2 vln3 
in lorescences appeared more random than those of wild type Col-0 in lorescences: 
periods of normal circumnutation were alternated with periods in which the 
circumnutation showed larger amplitudes than those of wild type Col-0, con irming 
problems with coordinated cell elongation in the double mutants. Microscopy analysis 
showed a higher abundance of thin actin ilament bundles in several cell types of the 
double mutants, while thick bundles were virtually absent. The data show that villin 
is involved in the generation of thick bundles of actin ilaments and suggest that such 
bundles are – directly or indirectly – important for coordinated cell expansion.

Chapter 5 is a general discussion. We review research in which actin binding proteins 
that could be involved in cytoplasmic organization are described, and discuss how 
physical properties of actin ilaments in the plant cytoplasm can be studied by 
manipulation of cytoplasmic organization by optical tweezers. The chapter focuses 
on the structural function of actin ilaments (in luenced by actin binding proteins) in 
the formation, maintenance and reorganization of cytoplasmic strands. In this chapter, 
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we have included our initial data about the role of the actin bundling protein imbrin 
on actin ilament organization. We show that this protein has actin ilament bundling 
capacity in vitro, and that it localizes to (bundles of) actin ilaments in vivo. The data 
suggest that imbrins could contribute to the formation of actin ilament bundles 
that are involved in cytoplasmic organization. In the second part of this chapter, we 
discuss how an integrated optical trapping and confocal microscopy system can be 
used to investigate cytoplasmic organization and the underlying behaviour of the actin 
cytoskeleton. In the future, this setup will, in combination with the use of mutants 
and drugs to manipulate the actin cytoskeleton, likely result in an increased insight 
into the physical aspects of intracellular organization, which depends on the action of 
speci ic (actin binding) proteins.
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Samenvatting

De organisatie van het cytoplasma, ook wel cytoarchitectuur genoemd, is cruciaal 
voor de ontwikkeling van planten. Zo is plantencelgroei, bijvoorbeeld, a hankelijk 
van de juiste localisatie van groeisubstanties op plaatsen waar de cel groeit. De 
productie en handhaving van een georganiseerd cytoplasma wordt gereguleerd door 
het actine-cytoskelet en de activiteiten van verschillende actine-bindende eiwitten 
die de dynamiek en organisatie van actine ilamenten beïnvloeden. In dit proefschrift 
worden resultaten gepresenteerd die inzicht geven in de regulatie van de productie 
van een georganiseerd cytoplasma in plantencellen door het actine-cytoskelet. We 
onderzoeken fysische eigenschappen van het actine-cytoskelet door middel van het 
vervormen van het cytoplasma met een optisch pincet. Verder onderzoeken we de 
rol van het actine-bundelende eiwit villine in de organisatie van het actine-cytoskelet, 
en bediscussiëren de mogelijke rol van verschillende actine-bindende eiwitten in de 
productie van een georganiseerd cytoplasma.

In hoofdstuk 1 bespreken we de rol van actine-bindende eiwitten in actine-gebaseerde 
krachtgeneratie in drie goed bestudeerde dierlijke modelsystemen: de voortstuwing 
van de Listeria bacterie in dierlijke cellen, en de vorming van ilopodia en lamellipodia 
tijdens de voortbeweging van dierlijke cellen. We vergelijken de functies van deze actine-
bindende eiwitten met die van hun homologe eiwitten in planten. De krachtgeneratie 
door polymerisatie van actine ilamenten is niet bestudeerd in plantencellen, maar zou 
een rol kunnen spelen in de productie van een georganiseerd cytoplasma. We voorspellen 
dat het Arp2/3 complex en/of formines verantwoordelijk zijn voor de nucleatie van 
actine ilamenten die nodig zijn voor de initiële vorming van cytoplasmadraden. Het 
organiseren van deze nieuwgevormde actine ilamenten in de lange bundels van 
actine ilamenten die aanwezig zijn in cytoplasmadraden is a hankelijk van de activiteit 
van actine-bundelende eiwitten, zoals formines of villines. Het lijkt aannemelijk dat 
deze eiwitten, in samenwerking met andere actine-bindende eiwitten, een rol spelen in 
actine-gebaseerde krachtgeneratie in plantencellen, en dat deze krachtgeneratie op haar 
beurt een rol speelt in de productie van een georganiseerd cytoplasma.

Om de organisatie van het cytoplasma te begrijpen, moeten fysische eigenschappen van 
het onderliggende actine-netwerk onderzocht worden. In  beschrijven we 
een studie waarin een optisch pincet gebruikt is om fysische eigenschappen van het 
cytoplasma te bestuderen op een zodanige manier dat celprocessen intact blijven. We 
gebruikten een optisch pincet om het cytoplasma van suspensiecellen van de BY-2 cellijn 
van tabak te vervormen, terwijl het actine-cytoskelet tegelijkertijd bestudeerd werd 
door middel van confocale laser scanning microscopie. Een organel in de perinucleaire 
ruimte werd gevangen, en verplaatst naar de vacuolaire ruimte. Doordat het 
vacuolemembraan intact bleef, resulteerde dit in de vorming van een cytoplasmatische 
tubulaire extensie die lijkt op een cytoplasmadraad. Het was gemakkelijker om het 
cytoplasma te vervormen wanneer actine ilamenten gedepolymeriseerd (afgebroken)  
waren door Latrunculine B, terwijl remming van myosine motor-activiteit door BDM 
de kracht die nodig is om de cytoplasmatische extensies te vormen, verhoogde. In 
controle-experimenten kwamen actine ilamenten de cytoplasmatische extensies 
binnen enkele minuten na hun vorming binnen. In BDM-behandelde cellen werden 
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echter nooit actine ilamenten geobserveerd in de extensies. Deze resultaten wekken 
de suggestie dat bestaande actine ilamenten kunnen worden gereorganiseerd op 
een myosine-a hankelijke wijze. Wij verwachten daarom dat myosine-gebaseerde 
relocatie van actine ilamenten een rol speelt in de (re)organisatie van het cytoplasma 
van plantencellen. 

Lifeact is een nieuwe merker voor het visualiseren van actine ilamenten in levende 
cellen. Dit korte peptide, bestaand uit de eerste 17 aminozuren van het gisteiwit Abp140 
(Actin binding protein 140), visualiseert, wanneer het gekoppeld is aan een luorescente 
probe, duidelijk ilamenteus actine in eukaryotische cellen. In hoofdstuk 3 worden 
resultaten gepresenteerd die de (re)organisatie van het actine-cytoskelet beschrijven 
in wortelepidermiscellen van Arabidopsis thaliana, gevisualiseerd met Lifeact:Venus. 
We vergeleken de (re)organisatie van het actinecytoskelet wanneer dit gevisualiseerd 
werd met Lifeact:Venus met dat van de (re)organisatie van het actinecytoskelet 
gevisualiseerd met GFP:FABD2, een vaak gebruikte merker voor ilamenteus actine 
(F-actine) in plantencellen, bestaand uit GFP (green luorescent protein) gekoppeld 
aan het tweede actine-bindende domein van Arabidopsis FIMBRIN1 ( imbrin actin-
binding domain 2). In tegenstelling tot GFP:FABD2, labelde Lifeact:Venus het zeer 
dynamische ijne F-actine in de subapicale regio van topgroeiende wortelharen. De 
reorganisatiesnelheid van (bundels van) actine ilamenten in wortelepidermiscellen 
was echter signi icant lager in cellen waarin Lifeact:Venus tot expressie kwam. 
Door de reorganisatie van cytoplasmadraden van beide lijnen te vergelijken met 
die van wildtype Col-0 cellen, laten we zien dat dit verschil veroorzaakt wordt door 
een verlaagde reorganisatiesnelheid van het actine-cytoskelet in cellen waarin 
Lifeact:Venus tot expressie komt, en niet door een verhoogde reorganisatiesnelheid 
in cellen waarin GFP:FABD2 tot expressie komt. Ondanks het effect van Lifeact:Venus 
op de reorganisatiesnelheid van cytoplasmadraden, was de organisatie van het 
cytoplasma niet zichtbaar beïnvloed in deze cellen. Bovendien beïnvloedde expressie 
van Lifeact:Venus niet de groei en ontwikkeling van de planten. Dit impliceert dat 
de organisatie van het actine-cytoskelet, maar niet haar dynamische relocatie in de 
tijd, een bepalende factor is in plantencelgroei. We concluderen dat Lifeact:Venus 
de remodellering van het actine-cytoskelet in Arabidopsis vermindert, en dat 
voorzichtigheid geboden is bij het gebruik van deze probe als dit aspect van cellen 
bestudeerd wordt.

Actine ilamenten in cytoplasmadraden zijn georganiseerd in dikke bundels. Het 
actine-bundelende eiwit villine is betrokken bij het onderhouden van deze bundels. 
De rol van villine bij de vorming van actine ilamentbundels en bij plantenontwikkeling 
werd verkend in hoofstuk 4. We gebruikten Arabidopsis T-DNA insertielijnen om een 
dubbelmutant de genereren waarin VLN2 en VLN3 transcripten verkort zijn. Deze 
vln2 vln3 dubbelmutanten vertoonden een duidelijke onregelmatigheid in gerichte 
orgaangroei, wat problemen met gecoördineerde celelongatie suggereert. De roterende 
bewegingen (circumnutatie) van vln2 vln3 bloeiwijzen bleken meer willekeurig dan 
die van wildtype Col-0 bloeiwijzen: periodes van normale circumnutatie werden 
afgewisseld met periodes waarin de circumnutatie grotere amplitudes liet zien 
dan die van wildtype Col-0, wat de problemen met gecoördineerde celelongatie 
in de dubbelmutanten bevestigt. Een microscopische analyse liet zien dat er meer 
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dunne actine ilamentbundels aanwezig waren in verschillende celtypes van de 
dubbelmutanten, terwijl dikke bundels vrijwel afwezig waren. De data laten zien 
dat villine betrokken is bij de vorming van dikke bundels van actine ilamenten en 
suggereren dat deze bundels - direct of indirect - belangrijk zijn voor gecoördineerde 
celexpansie.

Hoofdstuk 5 is een algemene discussie. We bespreken onderzoeken waarin actine-
bindende eiwitten die een rol zouden kunnen spelen in de organisatie van het 
cytoplasma worden beschreven, en bediscussiëren hoe fysische eigenschappen van 
actine ilamenten in plantencytoplasma kunnen worden bestudeerd door manipulatie 
van de cytoplasmatische organisatie met behulp van een optisch pincet. Het hoofdstuk 
concentreert zich op de structurele functie van actine ilamenten (beïnvloed door 
actine-bindende eiwitten) in de vorming, onderhouding, en reorganisatie van 
cytoplasmadraden. In dit hoofdstuk hebben we onze eerste data over de rol van het 
actine-bundelende eiwit imbrine bij actine ilament organisatie opgenomen. We laten 
zien dat dit eiwit in vitro actine-bundelende aciviteit heeft, en dat het in vivo gelocaliseerd 
is in/op (bundels van) actine ilamenten. De data suggereren dat imbrines een bijdrage 
kunnen leveren aan de vorming van actine ilamentbundels die betrokken zijn bij 
cytoplasma-organisatie. In het tweede deel van dit hoofdstuk bediscussiëren we hoe 
een optisch pincet geïntegreerd met een confocale microscoop gebruikt kan worden 
bij het onderzoeken van cytoplasma-organisatie en het onderliggende gedrag van het 
actine-cytoskelet. In de toekomst zal deze techniek, in combinatie met het gebruik van 
mutanten en drugs om het actine-cytoskelet te manipuleren, waarschijnlijk resulteren 
in een verhoogd inzicht in de fysische aspecten van intracellulaire organisatie, welke 
a hankelijk is van de werking van speci ieke (actine-bindende) eiwitten.
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