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The rolling transition of a Gaussian chain end-grafted
at a penetrable surface
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A Gaussian chain at a liquid–liquid interface is considered. The solvents are represented by an
external potential fieldu that has a constant value in one half-space and is zero elsewhere. One end
of the chain is fixed at the boundary where the external potential field changes its value. For this
model the exact partition function is available. The system features a first-order phase transition for
which the external potential is the control parameter; the chain rolls from one half-space to the other
upon changing the sign of the external potential. The chain distributes itsN segments over both
regions when the external potential difference between the two regionsuuu!1/N, otherwise the
chain puts virtually all its segments in the region with the lowest potential. The relation between the
problem of a Gaussian chain at a solid/liquid boundary and that of a chain at a liquid/liquid
interface, is illustrated. Applications of the model are discussed. ©2000 American Institute of
Physics.@S0021-9606~00!50616-3#
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I. INTRODUCTION

Macromolecules constitute an interesting state of ma
from many points of view.1 Any attempt to make a complet
list of examples to illustrate this statement is bound to fail
so many disciplines make use of these materials. Simila
the more restricted topic of macromolecules at interfaces
attracted huge attention from the experimental as well
from the theoretical side.2 In the field of life sciences one
may, e.g., be interested in the interaction of naturally occ
ring macromolecules with lipid bilayers. In colloid scienc
applications, one is usually using polymers to modify t
interfacial characteristics and study the influence of polym
on the colloidal stability. These fundamental properties h
an impact in many applications ranging from food proce
ing, the formulation of paints and pharmaceutical produ
the production of, e.g., magnetic tapes, and their use as
hesives and lubrication agents.

The first theoretical investigation of polymers at inte
faces dates back to Simha and co-workers.3 Nowadays many
kinds of techniques are being used to unravel the impor
and fundamental features of these systems. Most of the
tention has been devoted to polymers adsorbing from a liq
solution onto a solid substrate. This special case has rece
been reviewed in depth.2

Historically, lattice models have played an importa
role in the theory of polymer adsorption. From this it is we
known that the adsorption of macromolecules at the s

a!On leave from Institute of Macromolecular Compounds of the Russ
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substrate has a highly cooperative nature. There exists a
cal adsorption energy below which most of the polymer s
ments avoid the surface, whereas above this adsorption
ergy the chain has many contacts with the substrate. T
critical adsorption energy can be interpreted as the ene
needed on a segment level to compensate for the confo
tional entropy loss of a chain when it is at the substrate. T
point of critical adsorption is known to be a bicritical poin
and the adsorption transition is of a second-order type.4

The continuum model employing the Gaussian ch
model is a valuable standard model for theoretical investi
tions. The theory of adsorption of the Gaussian chain e
grafted to a solid surface was formulated by Lepine a
Gaille5 and by Eisenriegler6,7 for a continuum model, in par-
ticular for the case that the segments interact with the s
strate through short-range forces. The distribution funct
of the free end position is expressed in terms of two dim
sionless parameters: the dimensionless distancez̃5z/2Rg

and a dimensionless adsorption parameterc̃5cRg , where
the radius of gyration is related to the length of the chainN
by the well-known formula,Rg5 lAN/6 ~l is a segment
length!. It is given by

Pads~ z̃,c̃!5
1

RgAp
exp~2 z̃2!@11 c̃Ap•Y~ z̃2 c̃!#, ~1!

whereY(t)5exp(t2)erfc(t), and in turn erfc is the comple
mentary error function. Equation~1! is an exact result for the
end-grafted Gaussian chain. Integration of Eq.~1! leads to
the exact partition function for this system. The properties
this system have been examined in large detail.

n
sia.
8 © 2000 American Institute of Physics
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7239J. Chem. Phys., Vol. 112, No. 16, 22 April 2000 Rolling transition of a Gaussian chain
The adsorption energy per segment as used in the la
models is both experimentally accessible and relatively e
to work with. However, the adsorption parameter,c ~with
dimension inverse length! as used in Eq.~1!, is more funda-
mental. The effect of the critical adsorption energy is inc
porated inc such that whenc.0 the chain is adsorbing
whereas whenc,0 the chain avoids the surface. Physica
c determines the thickness of the polymer layer~c is the
inverse size of the adsorption blob!. At the critical point of
adsorptionc50 and whenc@1/Rg , the chain is at the sur
face.

Much less frequently studied is the behavior of mac
molecules at penetrable interfaces. Examples of penetr
surfaces are the liquid/liquid interface between two demix
solvents, the boundary between a polymeric gel and a s
tion, the interface between a polymer brush and the solut
etc. We mention the work of Stratouras and Kosmas w
studied polymers that are interacting with a penetrable
face by using diffusionlike equations.8,9 Besides of the inter-
acting surface the remaining volume was a good solven
either side of the penetrable surface. Semiflexible chains
sorbing on an~also! energetically symmetrical liquid–liquid
interface were considered by van Eijk and co-workers10 us-
ing numerical self-consistent field calculations. The wett
behavior of polymers at a liquid–liquid interface11,12 has re-
cently also been studied.

In this paper the behavior of an isolated Gaussian ch
which is grafted with one of its ends to the boundary o
penetrable interface is studied. We will defer from the pro
lem how to create such a grafting condition. If in addition t
molecular nature of the molecular components that are
sponsible for the presence of the interface is ignored,
replaced by an artificial external potential field felt by t
polymer units, one arrives at a model which is in fact qu
general. In the following it is not necessary to spec
whether the step in the external potential has an entro
origin ~e.g., when the interface is the boundary between
polymer gels which differ only in polymer density and not
chemical composition! or is enthalpic in nature~e.g., in a
liquid/liquid interface!. The central idea is thus to consid
the chain to feel an external potential which behaves a
Heaviside step function~see Fig. 1!. The external potentia
assumes the valueu for negative coordinates and 0 for pos
tive ones. It will be shown that there is an analytical partiti
function for this system. Moreover it will be discussed th
upon changing the sign of the external potential the ch
will roll over to the phase of the lowest external potenti
The rolling transition is, in the limit of infinite chain length
a first-order phase transition. With the exact partition fun
tion available it is possible to fully analyze this phase tra
sition. Of course the partition function that is discussed is
a mean-field character, as the Gaussian chain is used in
model. Nevertheless, the situation remains rather specia
the whole field of statistical physics there are only a f
models available which allow the investigation of a pha
transition exactly. The analysis of the partition function fro
the phase transition point of view will be published som
where else,13 here we will focus on what we can learn fro
it from a polymer perspective. At this point we like to stre
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that we are not doing the dynamics of the rolling transition
is only the statistics of the chain conformations we are int
ested in.

The remainder of this paper is as follows. First we w
present a derivation of the known partition function of th
system~most of the details are deferred to Appendix A!.
Next, some properties of the grafted chain in the stepw
external potential are discussed. The end-point distribu
of the unrestricted end and the thermodynamic characte
tics are placed central. In Appendix B we briefly collect t
results of a similar problem where the second end of
Gaussian chain is also restricted to be at the interface. T
results in looplike conformations. Also for this system exa
results are obtained. Finally, a discussion of the result
presented and possible applications of the present mode
pointed out.

II. MATHEMATICAL FORMULATION OF THE MODEL
AND THE EXACT SOLUTION FOR THE
PARTITION FUNCTION

The aim of this section is to present a rigorous theo
that describes an ideal Gaussian chain ofN segments grafted
with one of its ends to the coordinate where the appl
external potential changes its value. As mentioned above
this be atz50. We denote to the negative coordinates
region B and to the region with positive coordinates, inclu
ing z50, as region A. The dimensionless external potent
in both regions areuB5u anduA50, respectively~see Fig.
1!. In this problem only thez-coordinate is of interest and th
chain properties in thex–y directions may be given by a
simple Gaussian function.

It is well-known that the exact partition function for
Gaussian chain is found by solving Edwards diffusi
equation14 for a randomly growing chain in an external po
tential. The equation features an end-point distribut

FIG. 1. Schematic representation of the system under investigation. Re
A is the region with positivez-coordinates. Region B is the other half-spac
The stepwise character of the external potential is indicated. The co
sitting with most of its segments in the region where the potential is m
favorable. It does not leave the interface as it is grafted with one of its e
to the boundary as indicated by the black dot. The potentialu in region B
can take positive or negative coordinates and the potential in region A is
reference and thus equal to zero.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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7240 J. Chem. Phys., Vol. 112, No. 16, 22 April 2000 Skvortsov et al.
P(z,N), which is the statistical weight of finding the end
the chain with lengthN at coordinatez. There are two diffu-
sion equations applicable in the two regions,

l 2

6

]2P~z,N!

]z2
2uP~z,N!5

]P~z,N!

]N
z<0, ~2a!

l 2

6

]2P~z,N!

]z2
5

]P~z,N!

]N
z>0. ~2b!

Implicit in Eq. ~2! is that the Gaussian chain is chosen as
reference state. We will consider in the following positi
values ofu in the negative half-space. The other case, i
u,0, follows from a trivial reflection principle; it is then
possible to choose the reference of the potential on the n
tive side of the system and have a positive potential in
positive half-space; a return to the present case is pos
when subsequently the direction of the coordinate system
reversed. The system is thus symmetric as to the sign of
external potentialu. @The suggested procedure is complete
equivalent to keeping the reference of the external poten
in the positive half-space. Then the potential may be posi
or ~of course! negative in the negative half-space. In some
the equations given below one can not simply insert nega
values of the potential. It is then necessary to introduce
extra negative sign~equivalent with working with the abso
lute value!; see the reflection principle. We trust that this w
be straightforward for the reader. Below we will occasiona
remind the reader about this issue.# We continue without loss
of generality.

The initial conditions for Eq.~2! specify that the chain is
grafted with the first segment toz50. This is dealt with by a
delta function, i.e.,P(z,0)5d(z). Of course forz56` the
end-point distributions must vanish and thus we impo
P(2`,N)5P(`,N)50.

Let the Laplace transform with respect to the conto
length of the chain be given byg(z,p). As worked out in
Appendix A, the Laplace transformed end-point distributio
in the two regions A and B are

g~z,q!5
exp~zAq1v !

Aq1Aq1v
z<0, ~3a!

g~z,q!5
exp~2zAq!

Aq1Aq1v
z>0, ~3b!

where we have introducedq56p/ l 2 as the conjugate of the
square of the radius of gyration andv56u/ l 2. Physically,
v21/2 represents the length scale related to the external
parameteru. Direct inverse Laplace transformation of th
end-point distribution can only be done in special limits. W
will do this below. Integratingg(z,q) over the space coordi
nate and applying the inverse Laplace transformation g
the exact partition function

Q~u,N!5Q~U !5exp~2U/2!I 0~U/2!, ~4!

whereI n(x) is a modified Bessel function and

U5v
6

l 2•Rg
25uN.
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When U@1, the partition function takes the limiting form
Q(U)5(pU)21/2. In the other limit whereU!1 we find
Q(U)512U/2. The partition function Eq.~4! was obtained
before by Chatellier in his Ph.D. thesis.15 An equation simi-
lar to Eq. ~4! was obtained by Wang, Nemirovsky, an
Freed16 using a slightly different model. A detailed analys
of the partition function such as presented below, is
found in the literature.

III. ANALYSIS OF THE PARTITION FUNCTION OF THE
PINNED GAUSSIAN CHAIN IN THE STEP
POTENTIAL

The analysis of the partition function for the Gaussi
chain pinned at a step profile of the external potential m
conveniently be split up into two aspects. First, we will an
lyze the structure of the chain by way of the end-point d
tribution as a function of the external potential, then the th
modynamic properties will be discussed. From both aspe
the nature of the phase transition in the system becomes
parent.

A. End-point distributions

In Eqs. ~3a! and ~3b! we have presented the end-poi
distributions in theq-space. The inverse Laplace transform
tion to the usualN-coordinate is not feasible. For this reaso
there is no closed expression for the end-point distribut
and we have to resort to either numerical evaluation of t
distribution or to analytical approximations. We will follow
both routes.

In Fig. 2~a! we present the result of the numerical i
verse Laplace transformation of the normalized withQ(U)
end-point distribution function for various values of the e
ternal field U. Only the results for positive values of th
external potential are shown. The larger theU value the more
the segments are pushed towards the positivez-coordinates.
WhenU50 there is a simple Gaussian distribution. The fi
and most important conclusion from Fig. 2~a! is that the
distribution function remains a smooth function with a sing
maximum for all values of the external potential. The ma
mum of the end-point distribution forU50 is naturally at
z50, and for larger values ofU this maximum shifts to
higherz-values. At the same time the maximum of the en

FIG. 2. The normalized end-point distribution as a functionp(z,N) of the
normalized distance from the step in the potential profile,z/2Rg . The values
of the external potentials,U5uN, for the negative coordinates are indicate
~the potential for positive coordinates is zero!. ~a! Numerical evaluation of
end-point distribution.~b! Comparison of numerical evaluation of the en
point distribution ~solid line! with the analytical approximation~dashed
line!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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7241J. Chem. Phys., Vol. 112, No. 16, 22 April 2000 Rolling transition of a Gaussian chain
point distribution increases in size with increasing value
the external potential. From the seemingly unimport
changes in the distribution of free ends we propose a s
plistic view of the events that occur nearU50. Upon the
sign change of the external potential the chain rolls with
segments from the positive to the negative coordinates,
towards the low potential side. The grafting point is the p
oting point of this rolling motion. Whether the reporte
changes in the end-point distribution are significant or n
will be discussed below in more detail.

In an attempt to find an analytical approximation for t
end-point distribution, we consider Eq.~3a! in the limit of
u@q. In real space this condition is equivalent withu
@1/N; the potential field strongly repels the segments
wards the positive half-space. We obtain

g~z,q!5
exp~2zAq!

Aq1Av
z>0. ~5!

It is possible to inverse Laplace transform this result. Af
normalization the end-probability we obtain is

P~z,N!5Pads~ z̃,AU !

5
1

RgAp
exp~2 z̃2!@12ApU•Y~ z̃1AU !#

z>0, ~6!

where we have recovered the Eisenriegler result for a ch
end-grafted to a solid–liquid boundary@cf. Eq. ~1!#, where
the identificationc̃↔2AU, or cl↔2A6u connects both
problems. In other words, a very negativec parameter in the
solid–liquid system~no adsorption! corresponds to an unfa
vorable potential in region B. It is as if the chain in region
is feeling a very repulsive impenetrable barrier atz50, al-
beit, in principle, penetrable of course.

Inspection of Fig. 2~a! suggests that, for relatively hig
values of the external potentialU, the distribution function
for z,0 is exponentially decaying away from the interfac
This part of the chain thus behaves as if the chain is adso
at an interface with a positivec parameter~an adsorbing
surface!. This suggests that we can approximateP(z,N) for
the negative part of the distribution function withPads( z̃,
2AU). As c21 is the layer thickness~adsorption blob! in the
solid–liquid case,l /A6u may be called the penetration dep
of the chain in the unfavorable region of the liquid–liqu
interface.

The next problem is to match both branches for the e
point distribution at z50. Introducing the ratio R
5Pads(0,AU)/Pads(0,2AU) which reduces to

R5
12ApU•Y~AU !

11ApU•Y~2AU !
, ~7!

it becomes possible to collect the contributions and ob
the unnormalized end-point distribution,

P~ z̃,AU !'~12u~z!!Pads~ z̃,AU !1Ru~z!Pads~ z̃,2AU !,
~8!
Downloaded 18 Aug 2004 to 198.128.81.135. Redistribution subject to AI
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whereu(z) is the Heaviside function which assumes zero
z,0 and unity otherwise. Finally, the distribution functio
Eq. ~8!, needs to be normalized to unity which results
p( z̃,AU). It is easily checked that forU50 the distribution
function goes to the correct result; it becomes a Gaussia

p~ z̃,0!5
1

RgAp
exp~2 z̃2!. ~9!

In the limit of very large external potential, it must be th
case that the liquid–liquid interface becomes essentially
penetrable for the polymer and the problem reduces exa
to the solid–liquid result with a large negative adsorpti
parameter. In this case the end-point distribution is given

p~ z̃,`!5 z̃ exp~2 z̃2! ~10!

and Eq.~8! is exact in this limit as well. In the intermediat
region it is expected that Eq.~8! is an approximation.

In Fig. 2~b! we compare a few examples of the distrib
tion as predicted by Eq.~8! with exact ones. In this graph th
dashed lines represent the prediction of Eq.~8!, whereas the
continuous lines are the exact numerical results as found
inverse Laplace transformation of the end-point distribut
of Eq. ~3!. The examples shown are the worst cases. We t
conclude that Eq.~8! is in fact a very good description of th
distribution function for the present system.

Let us go on by analyzing the end-point distributio
function in some more detail. For this we return to the ex
end-point distribution in Laplace space. It is possible to
tegrate the appropriate moments over the end-point distr
tion in q-space and take the inverse Laplace transform of
result of that. The end-point distribution is known both
regions A and B. It is therefore possible to subdivide t
partition function into one applying only to the A and on
applying only to the B region, respectively. It then prov
feasible to analyze various moments over the end-point
tribution specified to the region the end is in, and obta
information on the fluctuations of the end-point specified
the region in which the end is found. We will not go into th
level of detail here. Instead we will discuss the overall
sults, i.e., the average over both regions A and B. The go
thus to obtain information about the overall end-point flu
tuations. To this end we need the first and second mom
over the end-point distribution. Using the mentioned route
integration in Laplace space and subsequent inverse Lap
transformation, the average distance of the end-poin
found to be

^z&5Rg

expS U

2 DerfAU1 i expS 2
U

2 Derf~ iAU !

A6UI 0S U

2 D

'5
2

3Ap
URg U!1

RgAp2
l

A6
U@1

. ~11!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Note that with the limiting conditionU!1 used in Eq.~11!
and below, it is implicitly assumed thatU>0; the negative
potential case follows from application of the reflection pr
ciple; for U,0 the average position is negative. For sm
values of the external potential^z&→0 as expected. The
limit of the first moment over the end-point distribution fo
high values of the external potentials^z&5ApRg , is known
from the Gaussian chain end-grafted on a nonadsorb
surface,6,7 cf. Eq. ~10!.

The second moment over the end-point distribution
found to be

^z2&54Rg
2S 12

sinhS U

2 D
U•I 0S U

2 D D
'H 2Rg

2S 11S U

4 D 2D U!1

4Rg
2S 12

ApU

2U D U@1

. ~12!

Here the asymptote for high potentials is known from t
end grafted chain at a nonadsorbing surface. Also the v
^z2&'2Rg

2 at u50 is well-known from the Gaussian chain
and the result̂ z2&54Rg

2 for large potentials follows from
Eq. ~10!. From Eq.~14! it is seen that the average square
the end-point displacement from the border atz50 is largest
when the value of the external potential is large and tha
goes through a minimum atu50. At this point the chain is
not disturbed and can probe both positive and negative c
dinates. The factor of 2 between the high and low poten
limits is easily explained. Whenu50 effectively N/2 seg-
ments will be on one side of the system and the remain
segments are on the other side, whereas for largeU effec-
tively all segments are on one side of the system. Thus
large fields the square of the distance can take twice
value of the zero-field value.

In Fig. 3 we present the average position of the free e
and the fluctuations of it. The average position of the f
end is negative for negative potentials~here we applied the
reflection principle discussed above! and is positive for posi-
tive values of the external potential in region B. The lim
specified in Eq.~11! can be retrieved from this graph. O
interest is to notice that the transition of the end-point fro
the negative to the positive coordinates, is more abrupt w

FIG. 3. ~a! First moment over the end-point distribution@cf. Eq. ~11!# as a
function of the external potentialu. ~b! Fluctuations of the end-points as
function of the value of the external potentialu. The values of the degree o
polymerization are indicated.
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increasing chain lengths. The fluctuations of the end-poi
dz25^z2&2^z&2, go through a sharp maximum foru50,
with a magnitude ofdz25Rg

2(p22) as is shown in Fig.
3~b!. It is of interest to mention that the fluctuations for ve
large potentials do not vanish. The reason for this is that
chain, although it has all its segments on one side of
system, still is able to fluctuate. The limiting value for hig
potentials is given bydz25(42p)Rg

2. In the limit of largeN
the relative fluctuations do not vanish. The fluctuations
have, in the thermodynamic limit, similar to a delta-functio

Although the end-point distribution remains sing
peaked, we clearly find well-defined changes in the vario
moments of the end-point distribution, as well as a p
nounced maximum in the end-point fluctuations. These
servations indicate that the rolling motion that occurs arou
zero field is a phase transition.

B. Thermodynamics

From the structural characteristics of the Gaussian ch
in the stepwise external potential there were some findi
pointing to a phase transition nearu50 where the chain rolls
from one region to the other. To fully characterize the
findings, it is necessary to consider the thermodynamic ch
acteristics of the system. With the partition function given
Eq. ~4! we may obtain all thermodynamic characteristics
the Gaussian chain in the stepwise external potential fi
The variables in the model are the chain lengthN and the
value of the external potentialu which combine into a single
parameterU5uN. The free energy, which is normalize
with respect to the contributions of an unrestricted Gauss
chain, is given by

F~U !52 ln Q~U !

5
U

2
2 lnS I 0 S U

2 D D

'H U

2 S 12
U

8
1S U

8 D 3D U!1

1

2 S ln~pU !2
1

2U
2

1

2U2D U@1

. ~13!

From Eq.~13! is seems odd that the free energy only gro
logarithmically with N for large U. However, one should
keep in mind that Eq.~13! is only the correction of the free
energy on the reference, which is the Gaussian chain.
course the free energy of the Gaussian chain is proportio
with N. The free energy as given in Eq.~13! is symmetric,
i.e., F(U)5F(2U), which follows from the reflection prin-
ciple discussed above@cf. Eq. ~2!#. The limiting behavior
F(U)/N'u/2 is found only in a very smallu range, espe-
cially for largeN. The free energy nearU50 is excellently
represented by two straight lines. The free energy is cont
ous inU50, but the derivative with respect tou is not. From
Eq. ~13! it is easily seen that (dF/dU)U↑0521/2 ~note the
reflection principle!, whereas (dF/dU)U↓051/2. According
to the classification of Ehrenfest this discontinuity indica
that the system passes a first-order phase transition aU
50. For very high fields the free energy grows only logarit
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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mically with the field and as a consequence the free ene
per segment decreases with increasing length of the ch
This is expected, because the chain does not need to rea
much upon changing the field if all the segments are alre
transferred to the region where the potential is zero.

The average energy in the system is given byE
52U@] ln Q(U)/]U#. To evaluateE it is more convenient to
consider the average fraction of segments that is in the re
with negativez-coordinates~i.e., phase B!. When the poten-
tial in this phase is positive the fractions will naturally tend
to zero, whereas if the potential is negatives will tend to
unity. Let us denote the average fraction by^s&,

^s&52
] ln Q~U !

]U

5
1

2 S 12
I 1~U/2!

I 0~U/2! D

'H 1

2 S 12
U

4
14 S U

8 D 3D U!1

1

2U S 11
1

2U
1

1

U2D U@1

. ~14!

This equation is correct also ifU,0. The limiting values for
large values of the external field correspond to the c
where the chain is almost completely restricted to one reg
of space. When the potential is positive^s& approaches zero
whereas when it is negativês& goes to unity. It changes
stepwise from 1 to 0 in the limit ofN→`.

The consequence for the average energyE is found from
the fraction^s&,

E~U !5^s&U'H U

2 S 12
U

4
14S U

8 D 3D U!1

1

2 S 11
1

2U
1

1

U2D U@1

. ~15!

The value ofE is necessarily zero forU50 and becomes 1/2
for very large values of the external potential. Note that t
limiting value of the interaction energy of 0.5 kT per chain
independent of the chain length. In passing we note
when the potential isU,0, it is easy to see that it is nece
sary to useE(U)5(12^s&)U. It is of interest to point to the
fact that the energy passes through a maximum. This is
essary as the limiting value for the energy for high potent
is reached from above. The maximum is found to be fo
potential nearumax'3.4/N and takes a valueE(umax)'0.6.

The energy is continuous atu50, but similarly to the
free energy, the first derivative of the energy jumps fro
21/2 to 1/2. This last jump indicates that the rolling tran
tion has also features of a second-order phase transition

The fluctuations in the average fraction of segments
given by
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ds25^s2&2^s&2

5
1

4 S 12S I 1S U

2 D
I 0S U

2 D D
2

2

2I 1S U

2 D
I 0S U

2 DU
D

'H 1

8 S 12
3

4 S U

4 D 2D U!1

1

2U2 S 11
1

U D U@1

. ~16!

From the expansions of Eq.~16! as well as from symmetry
considerations we see that the fluctuations do not depen
the sign of the external potential but only on the value. F
high values of the external potential the fluctuations
damped andds2;(U)22. Near the transition pointU50 the
fluctuations have a parabolic formds2;2U2. The smaller
is the chain length, the broader is its parabola. The fluct
tions approach a delta-functionlike behavior for infinite cha
length. The width of the transition can also be estima
from Eq. ~16! and is of the order ofDuN'1, i.e., it de-
creases proportional with 1/N.

Finally, the dimensionless entropy given byS(U)
5E(U)2F(U) also changes abruptly near the transiti
point,

S~U !52
U

2

I 1~U/2!

I 0~U/2!
1 lnS I 0S U

2 D D

'H 2S U

4 D 2

1
3

4 S U

4 D 4

U!1

2
1

2
lnS pU

e D1
1

2U
1

3

4U2 U@1

, ~17!

of courseS(u,N)5S(2u,N). From Eq.~17! we learn that
the entropy is negative for a polymer chain as a whole~re-
member the Gaussian chain is the reference! and that it
jumps to zero near the transition point. The increase in
entropy reflects the fact that the unperturbed Gaussian c
has the optimum conformational degeneracy. In the limit
large N, S(U) becomes similar to a delta function nearu
50.

Similarly as the energy, the entropy is also continuous
u50. In contradistinction with the energy however, the fi
derivative of the entropy remains continuous at the transit
point. Also higher derivatives have no singular behavior.
from the point of view of the entropy the rolling event is n
special.

For convenience of the reader we have plotted in Fig.~4!
the thermodynamic quantities of the system of interest.
not only present the full free energy, entropy, and energy
the quantities normalized to the contribution per segmen
well. In these figures one can graphically check the limiti
behavior. The average fraction of segments in contact w
region B and on the fluctuations in this quantity, as discus
above, are illustrated in Fig. 5.

Let us summarize our findings. From the analysis of
end-point distribution it was concluded that the rolling tra
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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sition is a phase transition. From the analysis of the f
energy it was determined that the transition is of the fir
order type. The energy, however, remains continuous at
transition, but its first derivative jumps. This is indicative
a second-order phase transition. Finally, the entropy in
system, and its derivatives, remain continuous atu50. Simi-
lar anomalous phase transitions takes place in other poly
systems. Known examples are~i! the adsorption transition o
an end-grafted chain onto a solid interface to which an
ternal force is applied to the free end,17 ~ii ! the coil–globule
transition upon the decrease of solvent quality.18,19

It is of interest to mention that in the Figs. 2–5 th
effects of increasing chain lengths are systematically ill
trated. By increasing the chain length one moves towards
thermodynamic limit of this system, and thus it is eas
checked how the system evolves towards a first-order ph
transition when the thermodynamic limit is taken.

FIG. 4. ~a! Free energy,F(u,N), ~b! the energyE(u,N), and ~c! the en-
tropy S(u,N) for the system as a whole, and these corresponding quan
per segment are given in graphs d, e, f, respectively. The thermodyn
quantities are given as a function of the external potentialu for various
values of the molecular weightN of the polymer as indicated.

FIG. 5. ~a! Average fraction of segments^s& in the negative half-space,~b!
the fluctuations in the fraction of segments in the negative half-space,
function of the external potentialu. The degree of polymerization is indi
cated.
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IV. DISCUSSION

In this paper an exactly solvable model has been d
cussed. The model comprises a Gaussian chain restricte
one of its ends at the boundary of a penetrable surface.
to the mathematical simplicity a detailed analyzed was p
sible. Of course the Gaussian chain model is not the rigor
solution of the real polymer system. For this reason the p
tition function discussed above is necessary of a mean-fi
type. Nevertheless we believe that the results are of sig
cant interest, partly from a polymer theoretical point of vie
partly from a statistical mechanical point of view and al
from an application point of view.

From the perspective of polymer modelling the syste
discussed in this paper is rather special. It features a fi
order phase transition, but the end-point distribution rema
single peaked. Usually phase transitions in inhomogene
polymer systems are characterized by a binodal distribu
of this function. The analysis discussed above clea
showed that hidden in the end-point distribution there
features of the phase transition which only appeared a
taking moments over the end-point distribution. There is o
more case known to us with similar features. For the adso
tion of a Gaussian chain on a solid interface with an exter
force on one of its ends, the end-point distribution of t
unconstrained end remains unimodal, despite the fact
there is a first-order phase transition.4,17 From this, and from
the present example, one should therefore be cautious w
definite conclusions are drawn based upon the binodal sh
of the end-point distribution in relation to the existence
phase transitions.

From a statistical mechanical point of view the prese
model is of significant interest as it is a model which allow
a full analysis of a phase transition. Not only the thermod
namic limit is available analytically, but also the finite siz
effects are analyzed straightforwardly. In this paper
showed the peculiarities of the chain conformations near
phase transition, as well as the corresponding thermodyn
ics. Following Ehrenfest’s classification, the rolling trans
tion is clearly first-order. It is also possible to analyze for th
system the Landau function which is a free energy as a fu
tion of an order parameter in this system. The full analysis
this will be the topic of a forthcoming paper. It is finall
possible to analyze the complex zeros of this partition fu
tion analytically. These complex zeros are consistent w
predictions in the literature,20,21 as we showed elsewhere.13

From an application point of view the present system
significant. There is a number of systems that may ben
from the analysis given above. In fact the model that
analyzed above was defined in an attempt to make a pre
tive model for the first-order adsorption to flower transitio
in a polymer brush.22 In this problem there are long minorit
chains end-grafted into a brush composed of shorter o
The minority chains can, in contrast to the brush chains
sorb onto the solid substrate. If they do so, they are in
adsorbed state, but otherwise they assume a flowerlike
formation. Such a flower is composed of a stem, with a si
lar structure as the chains in the brush, and a crown floa
above the brush where the remainder of the segments is
ated. The analogy between the adsorption to flower transi
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7245J. Chem. Phys., Vol. 112, No. 16, 22 April 2000 Rolling transition of a Gaussian chain
and the rolling transition becomes clear if one models
brush as a step-profile in external potential and allowing
end of the chain not grafted at the brush–solution interf
~as in the present model! but some distance away in th
brush region, i.e., at the solid boundary. The rolling tran
tion corresponds in this case to the interpenetration of
crown into the brush. We thus believe that the present mo
is significant in solving some of the issues related to
adsorption to flower transition in brushes. Problems sim
to the rolling transition may be found when chains are e
grafted on the edge of a polymer gel, or between two gels
next to each other. In this case the external potential can
take the shape of a Heaviside step-function. Interestingly,
origin of this potential field is, especially when the two ge
only differ in polymer concentration, predominantly entrop
in nature. The chain can remain in solution or in one ha
space, or ‘‘roll’’ into the~other! gel upon changing the con
ditions. The model may also be of help in considering
adsorption of polymers at a liquid/liquid interface~here the
origin of the potential jump is essentially energetic in n
ture!. In this case, the finite surface tension of the liqu
liquid interface, and the corresponding adsorption of
chains at the boundary, should be incorporated in the mo
similarly as, e.g., in Refs. 8 and 9.

A related problem of a Gaussian chain, which has b
its ends at the boundary where the external poten
changes, can also be solved exactly. Again, the rolling tr
sition is first-order. In Appendix B we collect a few centr
results for this problem, but we defer from the full analys
here.

V. CONCLUSIONS

The model of a Gaussian chain is a useful tool to inv
tigate polymer problems in inhomogeneous systems. In
paper we proved that when a penetrable interface is mod
as a step function in the external potential, and when
Gaussian chain is end-grafted to the boundary of this ste
the potential, there exists a close expression for the parti
function. The model features a first-order phase transit
which we named the rolling transition. Upon changing t
sign of the external potential in each half-space, the ch
rolls from one side to the other. Only in the absence of
external potential the chain is unperturbed and probes b
the positive and negative coordinates. In the presence o
field, the chain is thus confined to one half-space and loo
some entropy due to this. As a consequence both the
energy and the energy have a discontinuity in their first
rivative at the transition point. The end-point distributio
however remains single peaked; the distribution o
changes its shape. In the thermodynamic limit this chang
significant as it causes the fluctuations of the end-poin
peak at the transition. The model is mathematically v
transparent, which suggest that the model may be instruc
for people interested in learning about phase transition
general.
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APPENDIX A: THE DERIVATION OF THE PARTITION
FUNCTION

The start is the Edwards diffusion equation which h
been introduced above,

l 2

6

]2P~z,N!

]z2
2uP~z,N!5

]P~z,N!

]N
z<0,

~A1!
l 2

6

]2P~z,N!

]z2
5

]P~z,N!

]N
z>0,

where we kept the segment length in the problem for sak
completeness.

The Laplace transform of the end-point distribution wi
respect to the contour lengthg(z,p) is used to write the
Laplace transform of the diffusion Eqs.~2a! and ~2b!,

l 2

6

]2g~z,p!

]z2
5~p1u!g~z,p! z<0, ~A2a!

l 2

6

]2g~z,p!

]z2
5pg~z,p!2d~z! z>0. ~A2b!

Introducing q56p/ l 2 ~the conjugate parameter for th
square of the radius of gyration! andv56u/ l 2 leads to

]2g~z,q!

]z2
5~q1v !g~z,q! z<0, ~A3a!

]2g~z,q!

]z2
5qg~z,q!2

6

l 2 d~z! z>0. ~A3b!

Let us next use the Laplace transform with respect to
spatial coordinate asf (t,q), to write the diffusion equation
in the ~t,q! coordinates,

f ~ t,q!5

]g~0,q!

]z

t22~A~q1v !!2
1

g~0,q!t

t22~A~q1v !!2
z<0,

~A4a!

f ~ t,q!5

2
6

l 2 1
]g~0,q!

]z

t22~Aq2!
1

g~0,q!t

t22~Aq!2
z>0. ~A4b!

It is possible to transform Eqs.~A4a! and~A4b! back to
z-space. The result is
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g~z,q!5g~0,q!cosh~zAq1v !

1
]g~0,q!sinh~zAq1v !

Aq1v
z<0, ~A5a!

g~z,q!5g~0,q!cosh~zAq!

1F]g~0,q!

]z
2

6

l 2G sinh~zAq!

Aq
z>0. ~A5b!

Using the condition that the end-point distribution vanish
at plus and minus infinite we arrive at

]g~0,q!

]z
5g~0,p!Aq1v z<0, ~A6a!

]g~0,q!

]z
5

6

l 22g~0,p!Aq z>0. ~A6b!

Matching both equations leads tog(0,q)56/@ l 2(Aq
1Aq1v)#. Combining this result with Eqs.~A5! and ~A6!
leads to

g~z,q!5
exp~zAq1v#)

Aq1Aq1v
z>0, ~A7a!

g~z,q!5
exp~2zAq!

Aq1Aq1v
z>0, ~A7b!

where an unimportant constant 6/l 2 is dropped. To calculate
the partition function we need to integrate the end-point d
tribution function over whole space. The integration is sp
obviously into two. From minus infinite to zero we use E
~A7a!, whereas for the positive coordinates Eq.~A7b! is
used,

E
2`

`

g~z,q!dz5
1

AqAq1v
. ~A8!

After inverse Laplace transformation toN-space we find

Q~u,N!5expS 2
u

2
ND I 0S u

2
ND , ~A9!

wherel 0(x) is a modified Bessel function.

APPENDIX B: THE GAUSSIAN CHAIN WITH BOTH
ENDS AT THE BORDER OF A LIQUID–LIQUID
INTERFACE

In this Appendix we collect a few results of a Gaussi
chain which has both ends fixed atz50. This means that the
end-point distribution of Eq.~2! @cf. Eqs.~A7a! and ~A7b!#
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needs to be applied for the case thatz50:g(0,p)5(Aq
1Aq1v)21. Inverse Laplace transformation gives the pa
tition function for the looplike conformations,

Qloop~u,N!5
12exp~2uN!

2ApN~uN!
. ~B1!

This partition function was also found in the thesis
Chatellier.15

Of course the analysis of the end-point is impossible
this case. Thus only the route of the thermodynamics is o
to analyze the rolling transition of the loop conformatio
The free energy is given by

F loop~u,N!52 ln~12exp~2U !!1 ln~2ApNU!

'H ln~2ApN!1
U

2
U!1

ln~2ApN!1 ln U U@1,

~B2!

from which we see that atu50 a phase transition of the
first-order occurs, (dF/dU)U↓052(dF/dU)U↑051/2. Other
thermodynamic quantities follow similarly as given above
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