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A Gaussian chain at a liquid-liquid interface is considered. The solvents are represented by an
external potential field that has a constant value in one half-space and is zero elsewhere. One end
of the chain is fixed at the boundary where the external potential field changes its value. For this
model the exact partition function is available. The system features a first-order phase transition for
which the external potential is the control parameter; the chain rolls from one half-space to the other
upon changing the sign of the external potential. The chain distributé¢ sesgments over both
regions when the external potential difference between the two refipssl/N, otherwise the

chain puts virtually all its segments in the region with the lowest potential. The relation between the
problem of a Gaussian chain at a solid/liquid boundary and that of a chain at a liquid/liquid
interface, is illustrated. Applications of the model are discussed.2080 American Institute of
Physics[S0021-96080)50616-3

I. INTRODUCTION substrate has a highly cooperative nature. There exists a criti-
cal adsorption energy below which most of the polymer seg-

Macromolecules constitute an interesting state of mattements avoid the surface, whereas above this adsorption en-
from many points of view.Any attempt to make a complete ergy the chain has many contacts with the substrate. This
list of examples to illustrate this statement is bound to fail acritical adsorption energy can be interpreted as the energy
so many disciplines make use of these materials. Similarlyneeded on a segment level to compensate for the conforma-
the more restricted topic of macromolecules at interfaces hasonal entropy loss of a chain when it is at the substrate. The
attracted huge attention from the experimental as well apoint of critical adsorption is known to be a bicritical point
from the theoretical sid&.In the field of life sciences one and the adsorption transition is of a second-order fype.
may, e.g., be interested in the interaction of naturally occur-  The continuum model employing the Gaussian chain
ring macromolecules with lipid bilayers. In colloid science model is a valuable standard model for theoretical investiga-
applications, one is usually using polymers to modify thetions. The theory of adsorption of the Gaussian chain end-
interfacial characteristics and study the influence of polymergrafted to a solid surface was formulated by Lepine and
on the colloidal stability. These fundamental properties havésaille’ and by Eisenrieglér’ for a continuum model, in par-
an impact in many applications ranging from food procesinCU|al’ for the case that the segments interact with the sub-
ing, the formulation of paints and pharmaceutical productsstrate through short-range forces. The distribution function
the production of, e.g., magnetic tapes, and their use as a@f the free end position is expressed in terms of two dimen-
hesives and lubrication agents. sionless parameters: the dimensionless distance/2R,

The first theoretical investigation of polymers at inter- and a dimensionless adsorption param@&eicR,, where
faces dates back to S|mha and Co_worﬁdkk)wadays many the radius Of gyl’ation iS related to the Iength Of the Cmin
kinds of techniques are being used to unravel the importarf®y the well-known formula,Ry=1\N/6 (I is a segment
and fundamental features of these systems. Most of the atength. Itis given by
tention has been devoted to polymers adsorbing from a liquid
solution onto a solid substrate. This special case has recently 1
been reviewed in dgpfh. . Rg\/;

Historically, lattice models have played an important
role in the theory of polymer adsorption. From this it is well- where Y/(t) = exp(t?)erfc(t), and in turn erfc is the comple-
known that the adsorption of macromolecules at the solidnentary error function. Equatiofi) is an exact result for the
end-grafted Gaussian chain. Integration of EL. leads to
90n leave from Institute of Macromolecular Compounds of the Russiant€ €Xxact partition function for this system. The properties of
Academy of Sciences, Bolshoy Prospect 31, 199004 St. Petersburg, Russthiis system have been examined in large detail.

exp ) [1+8Vm-Y(Z-T)], (1
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The adsorption energy per segment as used in the lattice u(z)
models is both experimentally accessible and relatively easy u
to work with. However, the adsorption parameter(with
dimension inverse lengttas used in Eq(l), is more funda-
mental. The effect of the critical adsorption energy is incor- -z 4
porated inc such that wherc>0 the chain is adsorbing,
whereas where<0 the chain avoids the surface. Physically
¢ determines the thickness of the polymer layeris the
inverse size of the adsorption blolAt the critical point of
adsorptionc=0 and whenc>1/Ry, the chain is at the sur-
face.

Much less frequently studied is the behavior of macro-
molecules at penetrable interfaces. Examples of penetrable
surfaces are the liquid/liquid interface between two demixed
solvents, the boundary between a polymeric gel and a solusG. 1. Schematic representation of the system under investigation. Region
tion, the interface between a polymer brush and the solutiorf is the region with positive-coordinates. Region B is the other half-space.

etc. We mention the work of Stratouras and Kosmas Wthe stepwise character of the external potential is indicated. The coil is
) sitting with most of its segments in the region where the potential is most

studied p0.|yme.r5 that are intera'Cting Wit_h a penetrgble SUlravorable. It does not leave the interface as it is grafted with one of its ends
face by using diffusionlike equatiofiS.Besides of the inter- to the boundary as indicated by the black dot. The potential region B

acting surface the remaining volume was a good solvent i§an take positive or negative coordinates and the potential in region A is the
either side of the penetrable surface. Semiflexible chains adere"ence and thus equal to zero.

sorbing on ar(also energetically symmetrical liquid—liquid

interface were considered by van Eijk and co-workeus-

ing numerical self-consistent field calculations. The wettingthat we are not doing the dynamics of the rolling transition, it
behavior of polymers at a liquid—liquid interfdcé? has re- is only the statistics of the chain conformations we are inter-
cently also been studied. ested in.

In this paper the behavior of an isolated Gaussian chain ~ The remainder of this paper is as follows. First we will
which is grafted with one of its ends to the boundary of aPresent a derivation of the known partition function of this
penetrable interface is studied. We will defer from the prob-System(most of the details are deferred to Appendix. A
lem how to create such a grafting condition. If in addition theNext, some properties of the grafted chain in the stepwise
molecular nature of the molecular components that are re€xternal poteptlal are discussed. The end—pomt dlstrlbuthn
sponsible for the presence of the interface is ignored, anef the unrestricted end and the thermodyngmlc characteris-
replaced by an artificial external potential field felt by the ticS are placed central. In Appendix B we briefly collect the
polymer units, one arrives at a model which is in fact quite"®Sults of a similar problem where the second end of the
general. In the following it is not necessary to specifyGaUSS""?m cham is also restr_lcted to be at th_e interface. This
whether the step in the external potential has an entropi€Sults in looplike conformations. Also for this system exact
origin (e.g., when the interface is the boundary between twdesults are obtalneq. Fmally, a.dlscussmn of the results is
polymer gels which differ only in polymer density and not in prgsented and possible applications of the present model are
chemical compositionor is enthalpic in naturde.g., in a  Pointed out.
liquid/liquid interface. The central idea is thus to consider
the chain to feel an external potential which behaves as ﬁ MATHEMATICAL FORMULATION OF THE MODEL
Heavisi functi Fig. 1 The external ntial
agsirr?eietk?;e\?alﬁe%ro rfiéitivg c?n-ordiﬁa?e;ean?j g?éer: ;c?si— AND_THE EXACT SOLUTION FOR THE
. . . . . PARTITION FUNCTION
tive ones. It will be shown that there is an analytical partition
function for this system. Moreover it will be discussed that ~ The aim of this section is to present a rigorous theory
upon changing the sign of the external potential the chainhat describes an ideal Gaussian chailNafegments grafted
will roll over to the phase of the lowest external potential. with one of its ends to the coordinate where the applied
The rolling transition is, in the limit of infinite chain length, external potential changes its value. As mentioned above, let
a first-order phase transition. With the exact partition func-this be atz=0. We denote to the negative coordinates as
tion available it is possible to fully analyze this phase tran-region B and to the region with positive coordinates, includ-
sition. Of course the partition function that is discussed is ofing z=0, as region A. The dimensionless external potentials
a mean-field character, as the Gaussian chain is used in tle both regions areigz=u andu, =0, respectivelysee Fig.
model. Nevertheless, the situation remains rather special; ifh). In this problem only the-coordinate is of interest and the
the whole field of statistical physics there are only a fewchain properties in th&—y directions may be given by a
models available which allow the investigation of a phasesimple Gaussian function.
transition exactly. The analysis of the partition function from It is well-known that the exact partition function for a
the phase transition point of view will be published some-Gaussian chain is found by solving Edwards diffusion
where elsé? here we will focus on what we can learn from equation® for a randomly growing chain in an external po-
it from a polymer perspective. At this point we like to stresstential. The equation features an end-point distribution

Region B Region A
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P(z,N), which is the statistical weight of finding the end of ! 2 b
the chain with lengtiN at coordinatez. There are two diffu- N 30
sion equations applicable in the two regions, P

2 PPEN) o PEN) , o

e = <

5 UPEN=—g , (23

12 9°P(z,N) 9P(z,N) %z - 2 - T2 3

5 o = N 7=0. (2b) 2/2Rg 2/2Rg

z

FIG. 2. The normalized end-point distribution as a functifz,N) of the
Implicit in Eq. (2) is that the Gaussian chain is chosen as theormalized distance from the step in the potential profif2R, . The values
reference state. We will consider in the following positive of the external potentialt) =uN, for the negative coordinates are indicated
values ofu in the negative half-space. The other case, i_e_'(the po_tenti_al f_or positive coordiqates is zerea) _Numerical _evaluation of
.. . .. L end-point distribution(b) Comparison of numerical evaluation of the end-

u<0, follows from a trivial reflection principle; it is then point distribution (solid line) with the analytical approximatioridashed
possible to choose the reference of the potential on the negawe).
tive side of the system and have a positive potential in the
positive half-space; a return to the present case is possible
when subsequently the direction of the coordinate system i¥vhen U>1, the partition function takes the limiting form
reversed. The system is thus symmetric as to the sign of th@(U)=(7U) Y2 In the other limit whereU<1 we find
external potentiall. [The suggested procedure is completelyQ(U)=1—U/2. The partition function Eq4) was obtained
equivalent to keeping the reference of the external potentidtefore by Chatellier in his Ph.D. thes’sAn equation simi-
in the positive half-space. Then the potential may be positivéar to Eq. (4) was obtained by Wang, Nemirovsky, and
or (of course negative in the negative half-space. In some ofFreed® using a slightly different model. A detailed analysis
the equations given below one can not simply insert negativef the partition function such as presented below, is not
values of the potential. It is then necessary to introduce afound in the literature.
extra negative sigifequivalent with working with the abso-
lute vallue; see the reflection principle. We tru§t that th.is Will ;1 ANALYSIS OF THE PARTITION EUNCTION OF THE
be straightforward for the reader. Below we will occasionally pjNNED GAUSSIAN CHAIN IN THE STEP
remind the reader about this issl.id/e continue without loss POTENTIAL
of generality. . . . i

The initial conditions for Eq(2) specify that the chain is The analysis of the partition function for the Gaussian
grafted with the first segment t=0. This is dealt with by a chain pinned at a step profile of the external potential may
delta function, i.e.P(z,0)= 8(z). Of course forz= == the conveniently be split up into two aspects. First, we will ana-

end-point distributions must vanish and thus we imposdYZ€ the structure of the chain by way of the end-point dis-
P(—o,N)=P(,N)=0. tribution as a function of the external potential, then the ther-

Let the Laplace transform with respect to the contournodynamic properties will be_ Qisc.ussed. From both aspects
length of the chain be given by(z,p). As worked out in the nature of the phase transition in the system becomes ap-

Appendix A, the Laplace transformed end-point distributionsPa"ent.

in the two regions A and B are A. End-point distributions
exp(z\g+v) In Egs. (33 and (3b) we have presented the end-point
= <

=

) (33 distributions in theg-space. The inverse Laplace transforma-
tion to the usuaN-coordinate is not feasible. For this reason

9(z,9) = W

exp(—z\/a) there is no closed expression for the end-point distribution
0(z,q)= ——=——F z=0, (3b) and we have to resort to either numerical evaluation of this
\/a+ vg+u distribution or to analytical approximations. We will follow
where we have introduceg=6p/I? as the conjugate of the both routes. o
square of the radius of gyration amd=6u/l%. Physically, In Fig. 2@ we present the result of the numerical in-

v~ Y2 represents the length scale related to the external fiel4erse Laplace transformation of the normalized watu)
parameteru. Direct inverse Laplace transformation of the end-point distribution function for various values of the ex-
end-point distribution can only be done in special limits. Wetérnal field U. Only the results for positive values of the
will do this below. Integratingy(z,q) over the space coordi- external potential are shown. The Iargertheg_lue th(_a more
nate and applying the inverse Laplace transformation give’® segments are pushed towards the poskigeordinates.

the exact partition function WhenU =0 there is a simple Gaussian distribution. The first
and most important conclusion from Fig(a® is that the

Q(u,N)=Q(U)=exp(—U/2)I4(U/2), (4 distribution function remains a smooth function with a single

wherel ,(x) is a modified Bessel function and maximum for all values of the external potential. The maxi-

mum of the end-point distribution fod =0 is naturally at
U=y E-RzzuN z=0, and for larger values o) this maximum shifts to
129 ' higherz-values. At the same time the maximum of the end-
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point distribution increases in size with increasing value ofwhered(z) is the Heaviside function which assumes zero for
the external potential. From the seemingly unimportanz<<O and unity otherwise. Finally, the distribution function,
changes in the distribution of free ends we propose a simkqg. (8), needs to be normalized to unity which results in
plistic view of the events that occur nelr=0. Upon the p(%,/U). It is easily checked that fdd =0 the distribution
sign change of the external potential the chain rolls with itsfunction goes to the correct result; it becomes a Gaussian,
segments from the positive to the negative coordinates, i.e.,
towards the low potential side. The grafting point is the piv- _ 1
oting point of this rolling motion. Whether the reported p(20= Ry
changes in the end-point distribution are significant or not, g
will be discussed below in more detail. In the limit of very large external potential, it must be the
In an attempt to find an analytical approximation for the case that the liquid—liquid interface becomes essentially im-
end-point distribution, we consider E(3a) in the limit of  penetrable for the polymer and the problem reduces exactly
u>q. In real space this condition is equivalent with  to the solid—liquid result with a large negative adsorption
>1/N; the potential field strongly repels the segments to-parameter. In this case the end-point distribution is given by
wards the positive half-space. We obtain

exp(—72). 9

p(Z,%)=Zexp(—7%) (10
exp(—2z\q) . o . .
g(z,q)= ———— z=0. (5) and Eq.(8) is exact in this limit as well. In the intermediate
R region it is expected that E@8) is an approximation.

It is possible to inverse Laplace transform this result. Aftertion IQSFI?éji(ge\:jv% coEr(r;gfl \:\itﬁ feexv;;);in;glﬁ ?rji;herglsrfriﬁg-
normalization the end-probability we obtain is P y : grap

dashed lines represent the prediction of B}, whereas the

P(z,N)= Padﬁ,\/U) _contmuous lines are the exa_ct numerical resu_lts as fc_;unc_j by
inverse Laplace transformation of the end-point distribution
1 - 5 of Eq. (3). The examples shown are the worst cases. We thus
= exp(—ZA)[1— U Y(Z+U)] conclude that Eq8) is in fact a very good description of the
RV distribut .
istribution function for the present system.
7=0, (6) Let us go on by analyzing the end-point distribution

function in some more detail. For this we return to the exact
where we have recovered the Eisenriegler result for a chaignd-point distribution in Laplace space. It is possible to in-
end-grafted to a solid—liquid boundafgf. Eq. (1)], where  tegrate the appropriate moments over the end-point distribu-
the identificationG«— — U, or cl<—6u connects both  tion in g-space and take the inverse Laplace transform of the
problems. In other words, a very negativparameter in the  result of that. The end-point distribution is known both in
solid—liquid systen{no adsorptioncorresponds to an unfa- regions A and B. It is therefore possible to subdivide the
vorable potential in region B. It is as if the chain in region A partition function into one applying only to the A and one
is feeling a very repulsive impenetrable barrierzat0, al-  applying only to the B region, respectively. It then proves
beit, in principle, penetrable of course. feasible to analyze various moments over the end-point dis-
Inspection of Fig. 2a) suggests that, for relatively high tribution specified to the region the end is in, and obtain
values of the external potenti&l, the distribution function information on the fluctuations of the end-point specified to
for z<0 is exponentially decaying away from the interface.the region in which the end is found. We will not go into this
This part of the chain thus behaves as if the chain is adsorbadvel of detail here. Instead we will discuss the overall re-
at an interface with a positive parameter(an adsorbing sults, i.e., the average over both regions A and B. The goal is
surface. This suggests that we can approximBig,N) for  thus to obtain information about the overall end-point fluc-
the negative part of the distribution function with,4{Z,  tuations. To this end we need the first and second moment
—\U). Asc ™t is the layer thicknesgadsorption blobin the  over the end-point distribution. Using the mentioned route by
solid—liquid casel/\6u may be called the penetration depth integration in Laplace space and subsequent inverse Laplace
of the chain in the unfavorable region of the liquid—liquid transformation, the average distance of the end-point is

interface. found to be
The next problem is to match both branches for the end-
point distribution at z=0. Introducing the ratio R u . A
=P,4d{0,/U)/P,4{0,— JU) which reduces to (=R &R 2 erf U+ ex 2 erf(i JU)
z)=R, ¥
e 1—J7U-Y(YJU) @ \/6UIO<§)
1+JmU-Y(=JU)’
it becomes possible to collect the contributions and obtain iURg U<l
the unnormalized end-point distribution, _ 37 11)
~ - ~ | '
P(Z,JU)~ (1~ 6(2))PagdZ,JU) + RO(2)PagdZ, VU, o RV U1
8 6
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s 200 22 5 increasing chain lengths. The fluctuations of the end-points,
2__ /52\ _ 2 H —
foo 8z°=(z")—(z)*, go through a sharp maximum far=0,

& & with a magnitude ofsz?=R%(w—2) as is shown in Fig.

0 e 3(b). It is of interest to mention that the fluctuations for very

1 100 large potentials do not vanish. The reason for this is that the

p— chain, although it has all its segments on one side of the

R o T T e system, still is able to fluctuate. The limiting value for high

. Y potentials is given byz?= (4— =) RS. In the limit of largeN

FIG. 3. (a) First moment over the end-point distributipef. Eq. (11)] as a  the relative fluctuations do not vanish. The fluctuations be-

function of the external potential. (b) Fluctuations of the end-points as a have, in the thermodynamic limit, similar to a delta-function.

functlon_of t_he valug of_ the external potentialThe values of the degree of Although the end-point distribution remains single

polymerization are indicated. . . . :
peaked, we clearly find well-defined changes in the various
moments of the end-point distribution, as well as a pro-

Note that with the limiting condition<1 used in Eq(11) nouncgd maximum in the end.—pomt fl.uctuatlons. These ob-

and below, it is implicitly assumed that=0: the negative servat.lons' indicate that thg _rolllng motion that occurs around

potential case follows from application of the reflection prin- 2610 field is a phase transition.

ciple; for U<O the average position is negative. For small

values of the external potentidk)—~0 as expected. The

limit of the first moment over the end-point distribution for

B. Thermodynamics

high values of the external potentigls) = \/;Rg, is known From the structural characteristics of the Gaussian chain
from the Gaussian chain end-grafted on a nonadsorbingn the stepwise external potential there were some findings
surface®’ cf. Eq. (10). pointing to a phase transition naar=0 where the chain rolls
The second moment over the end-point distribution isfrom one region to the other. To fully characterize these
found to be findings, it is necessary to consider the thermodynamic char-
acteristics of the system. With the partition function given by
U . . -
Sim»(_) Eqg. (4) we may obtain all thermodynamic characteristics of
<22>=4R2 1— 2 the Gaussian chain in the stepwise external potential field.
9 U The variables in the model are the chain lenbttand the
U '0(E> value of the external potentialwhich combine into a single

parameterU=uN. The free energy, which is normalized

2r2 1+ B 2) U<1l with respect to the contributions of an unrestricted Gaussian
9 4 12 chain, is given by
4R2<1_@) U1 F(U)=-InQ(U)
g 2U
U U
Here the asymptote for high potentials is known from the - §_|”<|0<§))
end grafted chain at a nonadsorbing surface. Also the value
(z%)~2R?% atu=0 is well-known from the Gaussian chain, E( P 3) U<l
and the resul(22>=4Rg for large potentials follows from 2 8 8
Eq. (10). From Eq.(14) it is seen that the average square of ~\ 1 1 1 : (13
the end-point displacement from the borderat0 is largest 5( In(7U)— 20~ 2_U2) Uus1

when the value of the external potential is large and that it

goes through a minimum at= 0. At this point the chain is From Eq.(13) is seems odd that the free energy only grows
not disturbed and can probe both positive and negative coofegarithmically with N for large U. However, one should
dinates. The factor of 2 between the high and low potentiakeep in mind that Eq(13) is only the correction of the free
limits is easily explained. When=0 effectively N/2 seg- energy on the reference, which is the Gaussian chain. Of
ments will be on one side of the system and the remainingourse the free energy of the Gaussian chain is proportional
segments are on the other side, whereas for largeffec-  with N. The free energy as given in E(L3) is symmetric,
tively all segments are on one side of the system. Thus fore., F(U)=F(—U), which follows from the reflection prin-
large fields the square of the distance can take twice theiple discussed abovief. Eq. (2)]. The limiting behavior
value of the zero-field value. F(U)/N~u/2 is found only in a very smalll range, espe-

In Fig. 3 we present the average position of the free endially for largeN. The free energy nedd =0 is excellently
and the fluctuations of it. The average position of the freaepresented by two straight lines. The free energy is continu-
end is negative for negative potentidlere we applied the ous inU=0, but the derivative with respect tois not. From
reflection principle discussed abowand is positive for posi- Eq. (13) it is easily seen thatdF/dU)y;o=—1/2 (note the
tive values of the external potential in region B. The limits reflection principl¢, whereas ¢F/dU) o=1/2. According
specified in Eq.(11) can be retrieved from this graph. Of to the classification of Ehrenfest this discontinuity indicates
interest is to notice that the transition of the end-point fromthat the system passes a first-order phase transitiod at
the negative to the positive coordinates, is more abrupt with=0. For very high fields the free energy grows only logarith-
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mically with the field and as a consequence the free energy  §s?=(s?)—(s)?2

per segment decreases with increasing length of the chain.

This is expected, because the chain does not need to react too | (B

much upon changing the field if all the segments are already 1 H2

transferred to the region where the potential is zero. 4 U
The average energy in the system is given By |o(§

=—U[dInQ(U)/dU]. To evaluateE it is more convenient to

consider the average fraction of segments that is in the region 1

with negativez-coordinatedi.e., phase B When the poten- 38 ( 1-

tial in this phase is positive the fracti@will naturally tend ~ . (16

to zero, whereas if the potential is negatisavill tend to 5

unity. Let us denote the average fraction (sy, 2U

From the expansions of E¢16) as well as from symmetry
considerations we see that the fluctuations do not depend on
(s)=— dInQ(U) the sign of the external potential but only on the value. For
au high values of the external potential the fluctuations are
1 1L(U2) damped ands®~ (U) 2. Near the transition poir =0 the
— _(1_ 1_) fluctuations have a parabolic for@s?~ —U?2. The smaller
2 1o(U/12) is the chain length, the broader is its parabola. The fluctua-
1 U u\3 tions approach a delta-functionlike behavior for infinite chain
S1-gralg)) va

_Z+4 length. The width of the transition can also be estimated
~ (14) from Eq. (16) and is of the order oAuN~1, i.e., it de-
i(1+i+ Us1 creases proportional with 14/
2U 2U  U? Finally, the dimensionless entropy given b$(U)

=E(U)—F(U) also changes abruptly near the transition
point,
This equation is correct also @< 0. The limiting values for
. U 1,(U/2) U
large values of the external field correspond to the case guy)=-— +1In| 1, >

where the chain is almost completely restricted to one region 2 10(U2)
of space. When the potential is positig approaches zero, 2 4
o X . U 3/U
whereas when it is negativs) goes to unity. It changes = s u<1
stepwise from 1 to O in the limit oN— oo, - 4 414 (17)
The consequence for the average endtgy found from 1 [@wU 1 3 '
the fraction(s), - zln < T30t a0 usi1

of courseS(u,N)=S(—u,N). From Eq.(17) we learn that

U u\3 the entropy is negative for a polymer chain as a wHode
_<1_Z+4 g) ) u<l member the Gaussian chain is the refer¢rmed that it
E(U)=(s)U~ . (15  jumps to zero near the transition point. The increase in the
}(1+ i i) Us1 entropy reflects the fact that the unperturbed Gaussian chain
2 2U  U? has the optimum conformational degeneracy. In the limit of
large N, S(U) becomes similar to a delta function near
=0.
The value ofE is necessarily zero fdd =0 and becomes 1/2 Similarly as the energy, the entropy is also continuous at

for very large values of the external potential. Note that thisu=0. In contradistinction with the energy however, the first
limiting value of the interaction energy of 0.5 kT per chain is derivative of the entropy remains continuous at the transition
independent of the chain length. In passing we note thapoint. Also higher derivatives have no singular behavior. So
when the potential i) <O, it is easy to see that it is neces- from the point of view of the entropy the rolling event is not
sary to useE(U) =(1—(s))U. Itis of interest to point to the special.
fact that the energy passes through a maximum. This is nec- For convenience of the reader we have plotted in @g.
essary as the limiting value for the energy for high potentialghe thermodynamic quantities of the system of interest. We
is reached from above. The maximum is found to be for anot only present the full free energy, entropy, and energy but
potential neau,,,~3.4N and takes a valug(u,,,)~0.6. the quantities normalized to the contribution per segment as

The energy is continuous at=0, but similarly to the well. In these figures one can graphically check the limiting
free energy, the first derivative of the energy jumps frombehavior. The average fraction of segments in contact with
—1/2 to 1/2. This last jump indicates that the rolling transi-region B and on the fluctuations in this quantity, as discussed
tion has also features of a second-order phase transition. above, are illustrated in Fig. 5.

The fluctuations in the average fraction of segments is  Let us summarize our findings. From the analysis of the
given by end-point distribution it was concluded that the rolling tran-
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FIG. 4. (a) Free energyF(u,N), (b) the energyE(u,N), and(c) the en-
tropy S(u,N) for the system as a whole, and these corresponding gquantitie
per segment are given in graphs d, e, f, respectively. The thermodynam
quantities are given as a function of the external potentiébr various
values of the molecular weigt of the polymer as indicated.
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IV. DISCUSSION

In this paper an exactly solvable model has been dis-
cussed. The model comprises a Gaussian chain restricted by
one of its ends at the boundary of a penetrable surface. Due
to the mathematical simplicity a detailed analyzed was pos-
sible. Of course the Gaussian chain model is not the rigorous
solution of the real polymer system. For this reason the par-
tition function discussed above is necessary of a mean-field-
type. Nevertheless we believe that the results are of signifi-
cant interest, partly from a polymer theoretical point of view,
partly from a statistical mechanical point of view and also
from an application point of view.

From the perspective of polymer modelling the system
discussed in this paper is rather special. It features a first-
order phase transition, but the end-point distribution remains
single peaked. Usually phase transitions in inhomogeneous
polymer systems are characterized by a binodal distribution
of this function. The analysis discussed above clearly
showed that hidden in the end-point distribution there are
features of the phase transition which only appeared after
taking moments over the end-point distribution. There is one
more case known to us with similar features. For the adsorp-
tion of a Gaussian chain on a solid interface with an external
iforce on one of its ends, the end-point distribution of the
unconstrained end remains unimodal, despite the fact that
there is a first-order phase transitibh.From this, and from
the present example, one should therefore be cautious when
definite conclusions are drawn based upon the binodal shape

energy it was determined that the transition is of the first;Phase transitions. . _ .
order type. The energy, however, remains continuous at the From a statistical mechanical point of view the present
transition, but its first derivative jumps. This is indicative of Mmodel is of significant interest as it is a model which allows

a second-order phase transition. Finally, the entropy in thé full analysis of a phase transition. Not only the thermody-

system, and its derivatives, remain continuougat. Simi-

namic limit is available analytically, but also the finite size

lar anomalous phase transitions takes place in other polymé&ffects are analyzed straightforwardly. In this paper we

systems. Known examples aii¢ the adsorption transition of Showed the peculiarities of the chain conformations near the
an end-grafted chain onto a solid interface to which an exPhase transition, as well as the corresponding thermodynam-

ternal force is applied to the free eh(ii) the coil-globule ~icS- Following Ehrenfest's classification, the rolling transi-
transition upon the decrease of solvent quéafty’® tion is clearly first-order. It is also possible to analyze for this
It is of interest to mention that in the Figs. 2-5 the System the Landau function which is a free energy as a func-
effects of increasing chain lengths are systematically illusfion of an order parameter in this system. The full analysis of
trated. By increasing the chain length one moves towards thiis Will be the topic of a forthcoming paper. It is finally
thermodynamic limit of this system, and thus it is eas”ypossible to analyze the complex zeros of this partition func-

checked how the system evolves towards a first-order phadin analytically. These complex zeros are consistent with
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FIG. 5. (a) Average fraction of segments) in the negative half-spacé)
the fluctuations in the fraction of segments in the negative half-space, as a
function of the external potential. The degree of polymerization is indi-

cated.
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From an application point of view the present system is
significant. There is a number of systems that may benefit
from the analysis given above. In fact the model that we
analyzed above was defined in an attempt to make a predic-
tive model for the first-order adsorption to flower transition
in a polymer brusHi? In this problem there are long minority
chains end-grafted into a brush composed of shorter ones.
The minority chains can, in contrast to the brush chains ad-
sorb onto the solid substrate. If they do so, they are in the
adsorbed state, but otherwise they assume a flowerlike con-
formation. Such a flower is composed of a stem, with a simi-
lar structure as the chains in the brush, and a crown floating
above the brush where the remainder of the segments is situ-
ated. The analogy between the adsorption to flower transition
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to the rolling transition may be found when chains are end—NO' 9903-33385a.
grafted on the edge of a polymer gel, or between two gels put

next to each other. In this case the external potential can also

take the shape of a Heaviside step-function. Interestingly, thAPPENDIX A: THE DERIVATION OF THE PARTITION
origin of this potential field is, especially when the two gels FUNCTION

only differ in polymer concentration, predominantly entropic
in nature. The chain can remain in solution or in one half-

space, or “roll” into the(othen gel upon changing the con-

The start is the Edwards diffusion equation which has
been introduced above,

ditions. The model may also be of help in considering the |2 92P(z,N) 9P (z,N)

adsorption of polymers at a liquid/liquid interfageere the 5 ——5 —UuP(zN)= N z<0,

origin of the potential jump is essentially energetic in na- oz

ture). In this case, the finite surface tension of the liquid/ ., ., (A1)
o . . 1< 9°P(z,N) dP(z,N)

liquid interface, and the corresponding adsorption of the _ = =0,

chains at the boundary, should be incorporated in the model, 6 v oN

similarly as, e.g., in Refs. 8 and 9.

A related problem of a Gaussian chain, which has bot
its ends at the boundary where the external potentia
changes, can also be solved exactly. Again, the rolling tran
sition is first-order. In Appendix B we collect a few central
results for this problem, but we defer from the full analysis

where we kept the segment length in the problem for sake of
ompleteness.

The Laplace transform of the end-point distribution with
respect to the contour lengti)(z,p) is used to write the
Laplace transform of the diffusion Ega) and(2b),

here. 12 52g(2.p)
= =(ptu)g(z,p) z=<0O, (A2a)
6 522
12 9%g(z,
3 sz) =pg(z,p)—4&(z) z=0. (A2b)
V. CONCLUSIONS 9z

Introducing q=6p/1?> (the conjugate parameter for the

The model of a Gaussian chain is a useful tool to INVES< 1are of the radius of gyratipandv =6u/1? leads to

tigate polymer problems in inhomogeneous systems. In this
paper we proved that when a penetrable interface is modeled 52g(z,q)

as a step function in the external potential, and when the 7 =(q+v)g(z,q) z<0O, (A3a)
Gaussian chain is end-grafted to the boundary of this step in

the potential, there exists a close expression for the partition #9(2,9) 6

function. The model features a first-order phase transition, ———=qg(z,q)- |—25(z) z=0. (A3b)
which we named the rolling transition. Upon changing the 9z

sign of the external potential in each half-space, the chaifgt ys next use the Laplace transform with respect to the

rolls from one gide to the 'other. Only in the absence of thepatial coordinate af(t,q), to write the diffusion equation
external potential the chain is unperturbed and probes botfy the (t,g) coordinates,

the positive and negative coordinates. In the presence of the
field, the chain is thus confined to one half-space and looses d9(0,9)

some entropy due to this. As a consequence both the free z g(0,g)t

energy and the energy have a discontinuity in their first de- f(t,a)= tz—(\/(CH—U))Z + t2—(\/(q+—v))2 z<0,
rivative at the transition point. The end-point distribution (Ada)
however remains single peaked; the distribution only

changes its shape. In the thermodynamic limit this change is 6 d9(0,9)

significant as it causes the fluctuations of the end-point to 2T T g(0,0)t

peak at the transition. The model is mathematically very  f(t,a)= - (o +t2— g z=0.  (Adb)
transparent, which suggest that the model may be instructive (Va©) (va)

for people interested in learning about phase transitions in It is possible to transform Eq§A4a) and (A4b) back to
general. z-space. The result is
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9(z,9)=9(0,g)coshizvVg+v)

+ &g(O,q)s_:t(j atv) <0, (A5a)
9(z,9)=9(0,9)coshz\q)
agf;i’q) |62 Smr;g[) z=0. (A5b)

Skvortsov et al.

needs to be applied for the case that0:9(0,p)=(\/q

+g+v) L Inverse Laplace transformation gives the par-
tition function for the looplike conformations,
Qo N = BN ®1)
UuN)=——F———.
loop 2\7N(uN)

This partition function was also found in the thesis of
Chatellier*®
Of course the analysis of the end-point is impossible in

Using the condition that the end-point distribution vanisheghis case. Thus only the route of the thermodynamics is open

at plus and minus infinite we arrive at

;’q) (0p)Vg+v z=<0, (A6a)
(—’q> (0p)Vg z=0. (A6b)
o —g(0p

Matching both equations leads ta(0,q)=6/1%(\/q
++/q+v)]. Combining this result with EQSA5) and (A6)
leads to

()= exp(zyg+uv])
ST e Vare
exp(—z4/q)

9(z,q9)= === z=0,
\/a-i— Vvg+vu

7=0, (A73)

(A7b)

where an unimportant constant %is dropped. To calculate

to analyze the rolling transition of the loop conformation.
The free energy is given by

FloopU,N) = —In(1—exp(— U)) +In(2\/7NU)

U
_ |n(2ﬁ)+§ U<1 ®2)

In(2y#N)+InU U>1,

from which we see that at=0 a phase transition of the
first-order occurs,dF/dU)y o= — (dF/dU) o= 1/2. Other
thermodynamic quantities follow similarly as given above.
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