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Summary 

Navigation is a common daily activity for human beings and people use a wide range of tools 

to make it easier. Following car drivers pedestrians have found their way to route planning, 

however a suitable dataset is not yet provided. Due to their origin in car navigation current 

pedestrian navigation datasets do not include free walkable space. This is open space that 

can be freely accessed by fit pedestrians e.g. squares, parks or parking lots. This drawback 

leads to the idea for this research. 

It presents an approach that uses a hybrid data environment with both vector and raster 

data to calculate an optimal path as part of pedestrian route planning. Hence, the research 

objective is to calculate the optimal route for pedestrians in an urban environment based on 

a hybrid dataset that contains vector network data to represent corridor-like paths and 

raster data to represent free walkable space. 

To reach the objective a method is provided on a conceptual level. First the free walkable 

space is to be derived from the topographical map. Next, the free walkable space has to be 

divided by a user into subspaces with equal accessibility values. The resulting weighted free 

walkable space together with a road dataset can then be used to calculate paths passing 

through the free walkable space. In this process a set of fixed paths is also created. 

Subsequently, the fixed paths and the internal paths are joined into one pedestrian 

infrastructure dataset. The latter is used to create a network dataset on which Dijkstra’s 

algorithm can be applied to find the shortest path (Dijkstra, 1959). 

Implementation of the method takes place by using ESRI’s ArcGIS Desktop software and the 

Python programming language. Furthermore some user actions are required for editing and 

adding expert knowledge. Finally this implementation was applied on a case study in the city 

center of ‘s-Hertogenbosch (NL) and to test resulting network dataset, three 

source/destination scenarios were assessed. 

Overall the method implemented on a case study provides satisfying results as it returns 

plausible pedestrian routes that are slightly better than conventional methods. Main 

shortcomings involve parameters to fine tune the implementation: even a minor change can 

have major effect on the final output. Furthermore, the method lacks an inconsistency check 

for fixed paths and walkable areas which causes the network to be imperfect. Additionally 

the raster path calculation used still fails to yield the desired paths. 

Future research should focus on the derivation of fixed walkable paths to match with the 

walkable area and on optimizing path calculation in a raster environment. 
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1 Introduction 

1.1 Background 

Navigation is a common daily activity for human beings. It is the process of planning and 

following a certain trajectory in order to get from one place to another. Within the task of 

navigation two components can be distinguished: locomotion and wayfinding (Montello, 

2005; Wiener, et al., 2009). For this research, wayfinding is the most important of the two. It 

concerns a set of tasks that involve cognitive processes like decision making and planning. 

Key issue is that these tasks aim at reaching destinations beyond what is perceived in the 

direct environment. Locomotion, on the other hand, implies movement of an individual as a 

reaction on its direct environment but is not further discussed here. 

To lighten their wayfinding activities, people use assistance from devices that range from 

paper maps to location based services. Until recently, the latter were primarily designed to 

serve car drivers. However, in the past few years they have become more and more 

developed and have widely gained user acceptance. With the present state of mobile 

devices real time navigation systems have the potential to target a broader public. Not 

surprisingly, there is a trend is to get the navigation system out of the vehicle and into the 

hands of cyclists, hikers and pedestrians.  

A different target group brings about considerably different information needs. Pedestrians 

for example do not content themselves with traditional navigation systems. This target 

group is able to exploit its cognitive resources in a much more intense way when navigating, 

thus any information received needs to be cut out for that (Stark, et al., 2007). In line with 

this requirement, current research around pedestrian wayfinding drives at integrating 

knowledge of cognitive science, psychology and artificial intelligence into the domain of 

pedestrian navigation, already striving to provide insight into tailored route directions (Rehrl, 

et al., 2007). 

Where the information needs has been subject of various studies, one of the most common 

wayfinding tasks still leaves some questions: route planning; an area that has been 

profoundly investigated for the use in car navigation systems. But application of the same 

methodology on pedestrian navigation systems is not possible without some major 

adaptations (Corona & Winter, 2001b). Main reason for this is that pedestrians are not 

strictly bounded to an infrastructure; they experience a higher degree of freedom in their 

movements. This phenomenon should somehow be captured in the datasets that form the 

basis for pedestrian navigation systems (Corona & Winter, 2001a). Attempts to do so exist 

but do not provide a concrete solution. 

(Gaisbauer & Frank, 2008) for example, introduce a wayfinding model which aims to cover 

all walkable space. Walkable space can be defined as all space that is accessible by 

pedestrians. Their model is based on the concept of Lynch (1960) who depicts decision 

points as points where people have to decide where to go based on their perception. Closely 

related to locomotion, these points involve only the visible route options. The model divides 

walkable space into decision scenes (i.e. direct surroundings of a decision point) by using the 

decision points and it subsequently converts these areas to a graph. These represent the 

internal structure of these decision scenes as a network of portals (nodes) through which 

pedestrians can enter other decision scenes and connecting routes (edges) that can be used 

to traverse a scene. Still, this concerns a conceptual model which leaves open ends on the 

creation of decision scenes and the calculation of paths for the internal structure. 
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Furthermore, Elias aims at extending the street network graph by adding (indoor) walkable 

space derived from a city map and accompanying postal codes (Elias, 2007). The approach 

manages to create the internal structure of buildings but it does not use a least cost path 

algorithm to do so. Therefore no accessibility values can be assigned that influence the 

internal structure. Walter et al. aim at reducing walkable space in raster maps to a skeleton 

graph (Walter, et al., 2006). They found a way to retrieve a shortest path from a raster map 

but did not focus on constructing a network dataset. 

Although these approaches are very promising for creating a suitable network dataset, none 

of them integrates the possibility to traverse open space. 

1.2 Problem definition 

Currently available approaches do not provide a suitable dataset for pedestrian route 

planning. Main drawback is the point of not including free walkable space (Figure 1). This 

leads to the idea for this research.  

It presents an approach that uses a hybrid data environment with on the one hand a 

relatively simple vector network dataset based on the street network and on the other hand 

a raster representation of areas with complex internal structures to calculate an optimal 

path as part of pedestrian route planning.  

  
a) Schematic map representation in which the Arboretum 

seems inaccessible. 

b) Aerial photograph that shows the presence of additional 

paths and free walkable space. 

Figure 1) Example map showing that free walkable space that is accessible to pedestrians (b) can be missed in a schematic 

street network (a) (Google, 2010) 

This approach with a vector and raster environment is clearly different from the one 

provided by Elias, Walter and Gaisbauer & Frank (see section  1.1). Main advantage is the 

possibility to incorporate highly detailed route information in the pedestrian infrastructure 

for areas with a complex structure that is underrepresented in a plain road dataset. 

Furthermore, only these few areas require detailed data acquisition which makes the total 

process of data acquisition less laborious. Nonetheless, some questions arise when 

contemplating this hybrid approach. For example, what areas are to be presented as raster 

data? Or: how to connect raster with vector data? 

Another interesting point concerns the square structure of raster data which brings along 

some difficulties to calculate the optimal path. Assuming that the Moore neighborhood is 

used for searching the least cost path, the calculated path length is bound to overestimate 

the actual path length. Consider the following path (Figure 2). Which is the ‘true’ path length? 
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a) L = (4 * √2) + ( 3 * 1) = 8,66 b) L = 8,66 c) L = 8,66 

 

 

 

 d) L = √(7
2
 + 4

2
) = 8,06  

   

Figure 2) Three paths (a, b, c) calculated from A to B which overestimate the length of the desired path (d) 

Based on these issues, seven research questions are formulated. These are stated in the next 

section. 

1.3 Research objective and research questions 

The research objective reads as follows: 

‘To calculate the optimal route for pedestrians in an urban environment based on a hybrid 

dataset that contains vector network data to represent corridor-like paths and raster data to 

represent free walkable space.’ 

This objective forms the basis for seven research questions (RQs) which are formulated 

below. 

• RQ1: How to decide which parts of a study area can be labeled as free walkable 

space and which areas are to be represented as nodes and edges in a graph? 

• RQ2: How can a raster representation of free walkable space be connected with a 

network of nodes and edges? 

• RQ3: How to determine the costs or benefits attached to nodes, edges and raster 

cells? 

• RQ4: How to overcome miscalculations in route costs caused by the square structure 

of raster data? 

• RQ5: How to calculate the optimal path in a hybrid environment?  

• RQ6: How can a network dataset suitable for pedestrian route planning be derived 

from the topographical map available in The Netherlands (TOP10_vector)? 

• RQ7: Which implementation issues, suggestions for future research and insights 

arise from practical application of the methodology? 

1.4 Report structure 

Chapter 2 presents the methods applied in this thesis at a conceptual level. Subsequently, 

the more technical implementation of the method is discussed in chapter 3 whereas chapter 

4 contains the results of this implementation applied on a case study. The results of chapters 
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2 through 4 are be discussed in chapter 5. Finally, chapter 6 concludes this research by 

answering the research questions and suggesting directions for further research. 

1.5 Research delineation 

This research deals with planning an optimal route for pedestrians in an urban environment. 

In order to account for the high degree of movement freedom, it integrates the concept of 

free walkable space which together with a vector network representing narrow corridors 

forms the basis for calculating such route. 

Free walkable space was defined as all space that is accessible by pedestrians. However, 

because this research is about pedestrian route planning some refinement of this concept 

has to be made. First of all this research focuses only on the outdoors, in particular on the 

urban environment. Second, only public areas have been considered for navigation purposes. 

A third aspect of the concept is the pedestrian in general. This is a mixed group of human 

beings with all kinds of (dis)abilities, thus the accessibility of areas differs due to this 

variability. Consequently, a more appropriate and refined definition of ‘walkable space’ is 

adopted: “All outdoor space that is open and accessible by fit pedestrians”. 

Another worth mentioning aspect of this research is the definition of ‘optimal’. As 

mentioned before, end users are not alike thus optimal is a personal concept. To grasp this 

concept this research was set out to integrate criteria that affect the optimal route at most. 

Though distance is obviously (one of) the most important criteria in efficient pedestrian 

route planning, others were likely to be relevant as well. 
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2 Methodology 

2.1 Process overview 

To allow pedestrian route planning, there is need for a method that is capable of 

constructing a pedestrian network. Hence, the goal of the process described here is to yield 

a network dataset on which a route optimizer (e.g. Dijkstra’s shortest paths algorithm 

(Dijkstra, 1959)) can be applied to calculate the least cost path between start and end points. 

First, this section presents an overview of the overall process whereas following sections will 

zoom in to this model to illuminate each subprocess. A flowchart of the entire process 

discussed in this chapter can be found in Annex A. 

Globally, the process comprises two main input datasets and one output dataset; inputs are 

a polygon based topographical map and a polyline based road dataset and the output is a 

pedestrian network (Figure 3a).  

The first subprocess takes care of deriving the free walkable space from the topographical 

map and thereby tackles RQ1. This will be discussed in section  2.2. 

Next, its product will undergo editing by a user whose job is to divide the free walkable 

space into subspaces with equal accessibility values, based on his expert knowledge of the 

site or any available data. This process relates to RQ3 and will be discussed in section  2.3. 

Section  2.4 zooms in on the next subprocess which relates to both RQ2 and RQ4. It uses the 

so-called weighted free walkable space as an input together with the road dataset to 

calculate paths passing through the free walkable space, leading from one road to another. 

A side product of this subprocess is the set of fixed paths that conjoin the free walkable 

spaces.  

Fixed paths
Internal paths 

(polyline)

Pedestrian 

network

Free walkable 

space WGT

Free walkable 

space

Costs / Benefits

Topographical 

map (polygon)

2.2 Deriving free 

walkable space

Roads 

(polyline)

2.3 Assigning network

costs and benefits

2.4 Creating

internal paths

2.5 Deriving the

network dataset

 

Key dataset

Process direction

Process

Flowchart legend:

Minor dataset

Other input

 

  
a) The two inputs:  

A topographical map and the 

road dataset. 

b) The result: 

A pedestrian network. 

 

Legend: 

 

Figure 3) This figure presents a scheme (left) and illustrative examples (right) from the process and its datasets. The addition 

‘WGT’ in the scheme indicates that the dataset is enriched with accessibility weight values. Furthermore, the first example 

(a) depicts the input datasets whereas example two shows the final result (b). 



 

14 

The subprocess of deriving the network dataset combines both the fixed paths and the 

internal paths into one joined pedestrian network dataset (Figure 3b). It applies to RQ6 and 

will be explained in section  2.5. Finally, a network dataset is derived that is suitable for 

pedestrian route planning (RQ5) as is elaborated in section  2.6. 

2.2 Deriving free walkable space 

This is the subprocess where the free walkable space is extracted from the main input 

topographical dataset. A suitable dataset can be any topographical dataset that is polygon 

based but a large scale is preferred to provide enough detail to discern roads and open areas 

(i.e. scale 1:10.000).  

All topography classes in the dataset were reclassified into areas that are ‘walkable’ or areas 

that are ‘NOGO’ in which areas marked ‘walkable’ are potentially eligible for a free walkable 

space representation (Figure 4a, b). The reclassification is done best based a logical 

interpretation of the classes. However, reclassification of some classes is doubtful and 

additional information is required. For example a class like ‘other land use’ can correspond 

to a building but might as well be an open parking space, or the class ‘grassland’ could be a 

(fenced) meadow but it could also be represent an urban park. In such case the classification 

‘walkable’ was assigned. After all, a detailed assessment of these areas was done later when 

site knowledge was used to assign costs to zones within the free walkable space. 

The freedom of movement of pedestrians is assumed not to be limited by a transition in 

topographic class given that both classes are marked ‘walkable’. For example when a 

pedestrian walks from a square into a field he does not experience a barrier. Therefore all 

boundaries between walkable areas are dissolved to yield continuous areas of walkable 

space (Figure 4c). 

Shrunk 

walkable area

Topographical 

map (polygon)

Free walkable 

space

Walkable area

Selected areas

 
 

  
a) Topographical map. b) The reclassification 

shows WALKABLE and 

NOGO areas. 

Legend: 

 

   
c) Walkable areas without 

inner boundaries yields all 

walkable space. 

 

d) Shrunk walkable space e) Expanding yields free 

walkable space 

   

Figure 4) In this figure the process of deriving free walkable space is shown. First the scheme (left)  subsequently a 

visualization. The process starts of with a topographical map (a), next a reclassification (b), then the boundaries are removed 

(c), subsequently the areas are shrunk (d) and finally its proportions are restored (e). Note that roads are included at a later 

stage. 
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Furthermore, a pedestrian experiences narrow parts (e.g. roads) as corridors in which only 

one route option is available: follow the corridor until the next decision point (Lynch, 1960). 

Therefore only the wide open spaces are suitable to be represented as free walkable space 

in the network. Wide open spaces were found by shrinking the complete walkable space 

from the edge inwards until the narrow parts vanish. What remains are cores of objects that 

indicate the presence of areas which are large enough to be represented as free walkable 

space (Figure 4d). 

The final representation of free walkable space was realized by expanding the residue of the 

shrink action in such a way that it is reinstated to the original proportions of the walkable 

space. The product then represents all free walkable areas but not the narrow streets. 

(Figure 4e)  

2.3 Assigning network costs and benefits 

The next subprocess is a laborious one. The user has to assign costs to the given free 

walkable spaces (Figure 5). This can be done by means of software which is capable of 

editing geodata. It involves modifying the shapes and altering their attribute values. By 

manually dividing the free walkable space into smaller zones the user enables him to assign 

weights to specific locations inside the free walkable space (Figure 5a, b). If necessary, he 

can extend his expert knowledge of the site by consulting aerial photographs, detailed city 

plans or other resources. 

The detailed information that the user provides is about accessibility and obstacles. In this 

respect, accessibility implies zones that are less accessible to pedestrians like roads with 

heavy traffic or areas with dense vegetation. Obstacles are for example fences, hedges and 

ponds but also buildings. Because a least cost path calculation will be used to calculate paths 

this detailed information can be represented as costs. Note that the assignment of costs is 

merely subjective and that relative figures can be used, some examples: 

• A park can be divided into easy accessible pathways with weight 1, a less accessible 

field with weight 3 and an inaccessible pond with weight 99; 

• A traffic junction contains specific footpaths for pedestrians so here a division can be 

inaccessible roads with weight 99 and perfectly accessible sidewalks with weight 1. 

With this result, a weighted free walkable space dataset has been generated that can be 

used for calculation of the internal paths. 

Free walkable 

space WGT

Costs / Benefits

Free walkable 

space

 

 

  
a) Free walkable space with a 

single accessibility value 

b) Free walkable space in 

which different accessibility 

values are assigned to parts of 

the space. 

Legend: 

 
 

Figure 5) Here the process of adding costs to the free walkable space is depicted by means of a schem (left) and visual 

examples (right) . The input is the free walkable space dataset (a), output is this space augmented with accessibility values 

(b). 
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2.4 Creating internal paths 

2.4.1 Calculating paths 
The next step is to gather all paths passing through the free walkable space, and with that, 

connecting all roads leading to the free walkable space in question. To achieve this, first all 

points are retrieved in which a road enters a free walkable space. With this process, a side 

product is produced. It contains the difference of the roads in the original road dataset and 

the free walkable space: the fixed paths ( Figure 6a). These will be used later on in the 

process to complete the pedestrian network because they represent the connections 

between the various free walkable spaces. 

The above mentioned points are actually the intersections of the polyline road dataset with 

the boundary of free walkable space objects and constitute the begin and end points for the 

path calculation (Figure 6b). Next, a raster environment is established containing for each 

cell the cost of traveling through that cell which is based on the weight value of the 

corresponding user input (Figure 6c, d). The so-called cost grid is essential for path 

calculation in a raster environment because it determines along which cells the actual raster 

path will travel. Unfortunately the costs defined by the user will not suffice in case the cost 

grid is traversed diagonally; in that case the least cost path calculation brings about some 

issues regarding the square structure of the raster environment. Section  2.4.2 describes how 

these issues are dealt with. 

The path calculation is done for all possible connections inside a free walkable space object 

(Figure 6e). For an object with a collection of n connection points the number of possible 

internal connections is: n(n-1)/2. Each path is based on the least cost path calculated in the 

Free walkable 

space WGT

Roads 

(polyline)

Internal paths 

(polyline)

Connection 

points

Cost grid 

(raster)

Fixed paths

 

   
a) Free walkable space 

and Roads 

b) Connection points c) Fixed paths 

   
d) Free walkable space 

WGT 

e) Path calculation in the 

raster environment 

f) Actual paths in the 

network 

 

Legend:  

 
 

Figure 6) This figure illustrates the process of creating the internal paths. Besides the scheme (left) some illustrative 

examples are included (right). Point of departure is the free walkable space and the road dataset (a). From these, connection 

points (b) and fixed paths are retrieved (c). The weighted free walkable space (WGT) is used (d) to calculate paths in the 

raster environment (e). The process yields the actual paths in the network (f). Note that nodes in the road network can 

disappear when overlaid by free walkable space. 
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raster environment. It is converted to a polyline and added to the dataset of internal paths 

(Figure 6f). In this way each possible path is represented as an edge in the actual network. 

2.4.2 Solving raster issues 
The use of a Moore neighborhood causes the raw weights provided by the user to be 

impractical for direct raster path calculation. This is because the weights per cell are not yet 

related to the direction of the path crossing it. The actual weight raster has a cost/distance 

relationship covered by means of the integration of Eucledian distance. There are several 

steps required to get there. 

First, the raster dataset which is created from the user’s weight input is used to calculate for 

each cell the accumulated path cost to that cell from a source. This is done for all connection 

points. The next step is to combine the grids of a source and destination point into a least 

cost corridor. Again, this is done for each point combination inside a free walkable area. 

Path distance 

(source)

Path distance 

(destination)

Least cost 

corridor

Cost grid 

(raster)

Free walkable 

space WGT

Connection 

points

Weights

(raster)

 

 

  
a) Free walkable space WGT b) WEIGHT raster 

  
c) Least cost corridor d) Cost grid (with Euclidean 

distance) 

 

Legend:  

 
 

Figure 7) Process scheme (left) of creating the cost grid illustrated with examples (right). The polygon dataset of weighted 

free walkable space (a) is converted to a weight raster (b). With this raster for each combination of connection points two 

path distance grids are calculated that result in a least cost corridor (c). This corridor is enriched with Euclidean distance 

values to form the cost grid (d) 

The resulting corridor represents a narrow lane through which the actual path has to go. It 

could however, contain wider parts where there is more than one route option available due 

to the use of the Moore neighborhood. For these wider parts of the corridor, the Eucledian 

distance is calculated from each cell to the nearest narrow part. These distance values make 

the actual cost grid. So the further away a cell is from a narrow part, the higher the cost 

value is. 

2.5 Deriving the network dataset 

The final step in constructing the network dataset consists of combining the calculated 

internal paths (Figure 8a) with the fixed paths (Figure 8b). The features from both of these 
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datasets are transferred into a single feature class (Figure 8c). As the previous process 

restored the connections between all begin and end points, the final dataset offers the same 

routing possibilities as those that the original road dataset offered augmented with new 

possibilities that have emerged from the path calculation in the free walkable space. It is a 

complete pedestrian network dataset in which the movement freedom in free walkable 

space is captured. 

Pedestrian 

network

Internal paths 

(polyline)
Fixed paths

 

   

a) Internal paths b) Fixed paths c) Pedestrian Infrastructure 

Legend:  

  
Figure 8) The creation of the pedestrian infrastructure visualized as a scheme (left) and examples (right).  The internal paths 

(a) and the fixed paths (b) are combined into one pedestrian infrastructure (c) 

2.6 Dijkstra’s shortest path algorithm 

The final pedestrian route planning will take place within an environment that solely consists 

of vector data. After all, all optimal routes within the raster environment are now 

represented as edges in a pedestrian network. The algorithm used is the Dijkstra’s shortest 

path algorithm which is able to solve the shortest path problem for a graph with 

nonnegative edge path costs by constructing trees of minimum total length (Dijkstra, 1959). 

The concept of ‘shortest path’ should in fact be understood as ‘the least cost path’ because 

the costs used in this study do not represent Euclidean distance, but rather a cost distance. 

For example, walking through grass or crossing a busy road is more expensive than walking 

over a footpath. 
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3 Implementation 

The methods discussed in the preceding chapter involve various data actions. In order to 

implement all these processes, the Python programming language was used to formulate a 

script for each of them. Python is open source and is able to exploit the geoprocessor of 

ESRI’s ArcGIS Desktop software. So a range of tools in ArcGIS and the strength of 

programming were combined to yield the result. This chapter discusses for each process 

which tools were used, with which in- and outputs and how they were interconnected with 

Python. The Python script is enclosed in Annex B. 

3.1 Deriving free walkable space 

This process needs the topographical dataset as input. From that, the walkable area was 

retrieved by selecting only those topographical types that were marked ‘walkable’ and 

storing them in a new feature class. The tools used are given in Table 1. 

Table 1) Tools needed to create a feature class of the walkable areas 

Tool 1 MakeFeatureLayer_management 

In Topographical dataset (main input) 

Out Selectable layer 

 

Tool 2 SelectLayerByAttribute_management 

In Selectable layer from tool 1 

SQL query to select the proper features based on the reclassification 

of topographical type. 

Out Selection of walkable areas 

 

Tool 3 CopyFeatures_management 

In Selection of walkable areas from tool 2 

Out New feature class with only the selected walkable areas. 

 

The input used for tool 2 was based on an expert-driven reclassification. Table 2 shows an 

example in which a self explaining reclassification of the Topographical map of The 

Netherlands is done (TOP10vector). It was based on its topography field and the 

reclassification can be seen as a Boolean map: NOGO (0) and WALK (1). 

Table 2) Example of reclassification. Used dataset: TOP10 vector, scale 1:10.000, dated 2006 

Description (EN) Description (NL) Topography field 

(TOPO_CODE) 

Reclassification 

Build-up area Beb. Gebied/Huizenblok 1013 NOGO 

Large building Groot Gebouw 1023 NOGO 

Main connection road Hoofdverbindingsroute 7 2303 NOGO 

Connection road 8 Verbindingsroute 8 3003 NOGO 

Connection road > 7 Verbindingsroute >7 3103 NOGO 

Local road > 7 Lokale weg >7 3143 WALK 

Local road > 4 Lokale weg >4 3243 WALK 

Local road > 2 Lokale weg >2 3343 WALK 

Other road type > 2m Overige weg >2m 3403 WALK 

Partly metalled road 3 Ged. verharde weg 3 3413 WALK 

Unmetalled road 3 Onverharde weg 3 3433 WALK 

Pedestrian zone Voetgangersgebied 3473 WALK 

Street Straat 3533 WALK 

Cycle path RWP Rijwielpad 3603 WALK 

Parking area Parkeerterrein 3903 WALK 

Deciduous forest Loofbos 5023 WALK 
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Grassland Weiland 5213 WALK 

Other land use Overig bodemgebruik 5263 WALK 

Water Landblauw 6113 NOGO 

Dock Aanlegsteiger 6513 WALK 

 

The next step was to shrink the walkable areas, which is relatively easy as only two tools 

were required. First the Dissolve tool was used to create a seamless object containing all 

walkable areas. Next, the Buffer tool was used with a negative value as buffer distance. 

Consequently, the free walkable space was created by applying the same Buffer tool with 

the inverse buffer distance. Table 3 depicts the in- and output used for these tools.  

Table 3) From walkable areas to free walkable space 

Tool 4 Dissolve_management 

In The feature class with selected walkable areas from tool 3 

Out Dissolved area 

 

Tool 5 Buffer_analysis 

In In_feature: Dissolved area from tool 4 

Buffer_distance: -15 meters 

Out Area minus a buffer 

 

Tool 6 Buffer_analysis 

In In_feature: Area minus a buffer from tool 5 

Buffer_distance: + 15 meters 

Out Free walkable space 

 

Due to the dissolve performed in tool 4, the feature class contained a single feature 

consisting of many parts (a MultiPolygon object). Applying the Multipart To Singlepart tool 

(tool 7) yielded a dataset consisting of single part polygons (i.e. one polygon per record).  

After this process the output has to undergo considerable manual adaptations. Therefore 

the dataset was prepared for editing (Table 4). First of all an Area_ID and a WEIGHT field 

were added. The first one was assigned the Object_ID of the corresponding feature and the 

latter was for initially assigned a one, later on in the process this value is to be edited 

manually. A backup was created of this feature class to have a clean slate in case something 

would go wrong during editing. 

Table 4) Tools needed to create a feature class of the walkable areas 

Tool 7 MultipartToSinglepart_management 

In Free walkable space with just one all-embracing feature from tool 6 

Out Free walkable space with separate features for all single parts 

 

Tool 8 AddField_management  

(Tool is run twice to add two fields) 

In In_feature: Free walkable space from tool 7 

Field_name: “Area_ID” and “WEIGHT” 

Field_type: Double 

Precision: Number of digits used is 5 

Scale: Number of digits after separator is 0 

Out Fields added to the input feature 

 

Tool 9 CalculateField_management 

(Tool is run twice to calculate two fields) 

In In_feature: Free walkable space from tool 8 

Field names: Those created in tool 8 

Values: “Object_ID” and “1” 

Out Free walkable space with fields calculated 

 

Tool 10 CopyFeatures_management 

In Free walkable space from tool 9 

Out Free walkable space back up 
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3.2 Assigning network costs and benefits 

Assigning weights to the free walkable space was done manually inside ArcMap. Each free 

walkable space feature was cut up into smaller pieces (Table 5 and Figure 9 (left)). While 

doing this, the Area_ID and WEIGHT field adopted the value from their parent object. Each 

cutting is then retraceable to an embracing free walkable space object. The weights were 

added by editing the WEIGHT field (Figure 9(right)). The edited dataset was used as an input 

for the process of creating internal paths (section 3.3) 

Table 5) Manual actions performed to edit the free walkable space dataset 

Action 1 Edit free walkable space from tool 9 

Modify Divide polygons into zones 

Edit values Alter WEIGHT values 

 

 
Figure 9) Editing Free walkable space with ArcMap 

 

3.3 Creating internal paths 

3.3.1 Source and destination points 
The road dataset was overlaid with the unedited free walkable space by means of the Erase 

tool. This resulted in the fixed walkable paths. Table 6 shows the tool and its inputs. 

Table 6) Originating of the fixed paths dataset 

Tool 11 Erase_analysis 

In In_feature: Road dataset (main input) 

Erase_feature: Free walkable space from tool 9 

Out Fixed paths 

 

The end vertices of the fixed paths that touch the boundaries of a free walkable space are 

seen as ‘connection points’. To get these, first all end vertices were converted to point 

features using the Feature Vertices To Points tool. Next, a feature layer was made from 

these points to be able to select features by their location. Due to digital inaccuracies a 

search distance was applied to make sure that all points within a distance of 0.1 meter from 

the parent free walkable space were selected. The whole selection was stored in a feature 

class by using the Copy Feature tool (Table 7). 
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Table 7) Tool sequence that yields all connection points 

Tool 12 FeatureVerticesToPoints_management 

In In_feature: Fixed paths dataset from tool 11 

Point_location: Determines which vertices will be converted. In this 

case only both ends. 

Out Point dataset 

 

Tool 13 MakeFeatureLayer_management 

In Point dataset from tool 12 

Out Selectable layer 

 

Tool 14 SelectLayerByLocation_management 

In In_layer: Selectable layer from tool 13 

Select_feature: Features to base selection on, this is the free 

walkable space dataset. 

Overlap_type: Defines on what condition the points will be selected. 

The points that are WITHIN the select features. 

Search_distance: 0.1 meters 

Out Selection 

 

Tool 15 CopyFeatures_management 

In Selection from tool 14 

Out Connection points 

 

The resulting dataset contained all connection points. For future reference an Area_ID and a 

Point_ID field were added to the connection point dataset of which the values were 

calculated later (Table 9). The connection points were placed in a selectable layer (Table 8). 

Table 8) Tools to add area and point ID fields plus creating a selectable layer. 

Tool 16 AddField_management 

(Tool is run twice to add two fields) 

In In_feature: Connection point dataset from tool 15 

Field name: “Area_ID” and “Point_ID” 

Field type: both “SHORT” 

Out Connection points with fields added 

 

Tool 17 MakeFeatureLayer_management 

In Connection points from tool 16 

Out Selectable layer 

 

While the script from block 1 looped through all free walkalbe space features, each feature 

was placed into a layer with the Make Feature Layer tool. Next, points that were within the 

current feature were selected. This was done by using the current feature layer as a 

selection mask and the connection point layer to select points from. The result is a set of 

connection points belonging to the current feature. This set was altered by the Calculate 

Field tool which set the Area_ID to the Object_ID of the current feature. (Table 9) 

Table 9) Script block to iterate ID assignment 

Block 1 Looping through the free walkable space 

In Selectable layer from tool 17 

For each feature in Free walkable space back up, calculate AreaID: 

 

Process 

 

Tool 19 SelectLayerByLocation_management 

In In_feature: Selectable layer from tool 17 

Select feature: Area layer from tool 18 

Overlap type:  WITHIN 

Search_distance: 0.1 meters 

Out Selection of points that belong to area 

Tool 18 MakeFeatureLayer_management 

In In_feature: Free walkable space back up from tool 10 

Where_clause:  ObjectID = current ObjectID 

Out Layer with area selected by where_clause 

Tool 20 CalculateField_management 
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In in_layer: Selectable layer from tool 19 

Field_name: “Area_ID” 

Value: Current ObjectID 

Out Connection point dataset with AreaID field calculated 

For each point  in pointset selected by tool 19: 

 Set value of Point_ID field to i, 

 Increase i with 1 (Starting with i = 1) 

 

Out Connection point dataset with ID fields calculated 

 

As a result, all points have a corresponding AreaID and for each area the points were 

numbered 1 to n in which n is the total number of points within the area. 

3.3.2 Raster paths 

Data preparation and settings 

Some actions were carried out to prepare the iterative process of calculating paths. That is, 

the weight dataset was converted to raster, a feature class was created to contain the 

output polyline paths and connection points were expanded. The latter one means 

converting the connection points to a polygon object by buffering them. This was necessary 

since the used tools convert objects to raster cells when they are used as source or 

destination inputs. Since all connection points are located on the edge of the rasterized 

weight dataset there was a chance their raster equivalent laid outside the raster mask. The 

expanded connection points yield more cells than its parent point objects what ensured that 

at least one cell fell within the rasterized area. (Table 10) 

Table 10) Tool sequence that buffer connection points 

Tool 21 PolygonToRaster_conversion 

In In_feature: Free walkable space WGT from action 1 

Value_field: “WEIGHT” 

Cell_size: 1 meter 

Out Rasterized areas 

 

Tool 22 CreateFeatureClass_management 

In Path: Path of the new feature class 

Name: Name of the new feature class 

Geometry_type: Polyline 

Out New polyline feature class for internal paths 

 

Tool 23 Buffer_analysis 

In Connection points from block 1 

Buffer distance: 1 meter 

Out Buffered connection points 

 

The iteration contained a nested loop to calculate all possible connections based on the 

Point_ID that was assigned in block 1. This loop was regulated by a parameter n that held 

the total number of connection points for a feature. This parameter was stored as the 

attribute ‘Range’. Adding the attribute field happens with the usual tool while it takes a 

script block to calculate the value for n. (Table 11) 

Table 11) Tool sequence that calculates fields for connection points. 

Tool 24 AddField_management 

In In_feature: Buffered connection points from tool 23 

Field_name: “Range” 

Field_type: Short 

Out Buffered connection points with Range field added 
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Block 2 Calculating n values 

In Buffered connection points with Range field from tool 24 

For all buffered connection points: 

 Add AreaID to list (no duplicates) 

 

For each AreaID in list: 

 

 

Tool 25 MakeTableView_management 

In In_feature: Buffered connection points from tool 24 

Where_clause: AreaID = current AreaID 

Out Table with all points of the current area 

Tool 26 Statistics_analysis 

In In_table: Table from tool 25 

Statistics_field: Point_ID MAX 

Out Statistics table 

The value of n is retrieved from the statistics table and is stored in a variable: 

Range_max 

Process 

 

Tool 27 CalculateField_management 

In In_table: Table from tool 25 

Field_name: “Range” 

Value: Range_max 

Out Range calculated 

Out Buffered connection points with Range field calculated 

 

Additionally, the overall maximum is required to set the limit for the iteration. The following 

script block takes care of that (Table 12): 

Table 12) Block to calculate iteration limit 

Block 3 Calculating overall maximum n 

In Buffered connection points with Range field calculated from block 2 

 

Tool 28 Statistics_analysis 

In In_table: Table from tool 27 

Statistics_field: Point_ID MAX 

Out Statistics table 

Process 

 

The value of n is retrieved from the statistics table and is stored in a variable: 

Range_max 

Out Variable with overall maximum n 

 

Path calculation 

Internal paths were calculated in a raster environment. The script block performed this and 

instantly added the path as a polyline to the feature class of internal paths. The process is 

extensively discussed at a conceptual level in section 2.4. Table 13 shows how this operation 

was structured and what tools were used. The insertion of paths into the polyline feature is 

discussed in section 3.3.3 

Table 13) Structure of path calculating block 

Block 4 Calculate paths 

In Buffered connection points from block 2 

Rasterized areas from tool 21 

Variable ‘Range_max’ from block 3 

Free walkable space backup from tool 10 

 

For each fromID ranging from 1 to Range_max: 

 Set variable Range_to = fromID + 1 

 For each toID ranging from Range_to to Range_max + 1: 

  Perform loop in which fromID and toID are variables. 

Process 

 

Tool 29 Select_analysis 

In In feature: Buffered connection points from block 2 
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Where_clause:  PointID = fromID AND  

  Range <> Point ID 

Out Path sources 

 

Tool 30 Select_analysis 

In In feature: Buffered connection points from block 2 

Where_clause:  PointID = toID 

Out Path destinations 

 

Tool 31 PathDistance_sa 

In In_feature: Path sources from tool 29 

Cost_raster: Rasterized areas 

Out Source distance raster 

 

Tool 32 PathDistance_sa 

In In_feature: Path destinations from tool 30 

Cost_raster: Rasterized areas 

Out Destination distance raster 

 

Tool 33 Corridor_sa 

In Destination distance raster from tool 32 

Source distance raster from tool 31 

Out Least cost corridor 

 

Tool 34 ZonalStatistics_sa 

In Free walkable space Backup from tool 10 

Zone_field: ObjectID 

In_value_raster: Corridor from tool 33 

Statistics_type: Minimum 

Ignore_nodata: Data 

Out Areas of which all cells are assigned the minimum corridor 

value of that area. 

 

Tool 35 SingleOutputMapAlgebra_sa 

In Conditional statement 

Out Boolean map whether corridor cells are equal to the 

minimum value or not 

 

Tool 36 SetNull_sa 

In In_raster: Boolean map from tool 35 

In_false_constant: 1 

Where_clause: Value = 0 

Out Only corridor cells equal to the minimum value 

 

Tool 37 SingleOutputMapAlgebra_sa 

In Focal expression to retrieve the sum of cells within a radius 

of 3 meters 

Out Corridor with sum values 

 

Tool 38 SingleOutputMapAlgebra_sa 

In Focal expression to retrieve the maximum value of all cells 

within a rectangle of 5x5 

Out Corridor with maximum values 

 

Tool 39 Reclassify_sa 

In In_raster: Corridor with max values from tool 38 

Reclass_field: Value 

Remap: Values below 25 become 1, 25 and further become 

NoData 

Out Narrow parts of the corridor 

 

Tool 40 EucDistance_sa 

In Narrow parts of the corridor from tool 39 

Out Euclidean distance inside the corridor 

 

Tool 41 Plus_sa 

In In_raster: Euclidean distance raster from tool 40 

In_constant: 1 

Out Euclidean distance raster with a minimum value of 1 instead 



 

26 

of 0 

 

Tool 42 CostBackLink_sa 

In In_source: Path source dataset from tool 29 

In_cost: Euclidean distance raster from tool 41 

Out Back link raster 

Distance raster 

 

Tool 43 CostPath_sa 

In Back link raster from tool 42 

Distance raster from tool 42 

Path_type: Each Zone 

Destination_field: AreaID 

Out Least cost paths for each handled area 

 

Tool 45 Con_sa 

In In_raster: Least cost paths from tool 43 

Constant: 1 

Out Paths with a single value 

 

Tool 46 RasterToPolyline_conversion 

In In_raster: Paths with single value from tool 45 

Simplify: Simplify 

Out Paths with a single value  
Final action in this loop added the polylines to the feature class with internal paths 

created by tool 22. Section 3.3.3 zooms in to this operation which contains: 

 Tool 47 

 Tool 48 

 Tool 49 

 Block 5 

Out Internal paths 

3.3.3 Internal paths 
As part of script block 4, the converted paths were inserted to the feature class with internal 

paths. Therefore begin and endpoints had to match with the corresponding connection 

points. This was done by the following tools that disentangled the paths and fitted them into 

the feature class (Table 14). 

Table 14) Adding paths to the internal paths dataset 

Tool 47 FeatureVerticesToPoints_management 

In Polyline paths from tool 46 

Out Path point dataset 

 

Tool 48 GenerateNearTable_analysis 

In In_feature: Path point dataset from tool 47 

Near_feature: Connection point dataset from block 1 

Search_radius: 1 

Location: Location 

Out Near table 

 

Tool 49 TableSelect_analysis 

In In_table: Near table from tool 48 

Where_clause: Near distance < search_radius from tool 48 

Out Table selection of connection points closest to end points 

 

Block 5 Add path to polyline dataset 

In In_feature_1: Polyline paths with a single value from tool 46 

In_feature_2: Path point dataset from tool 47 

In_table: Table selection from tool 49 

In_feature_3: Internal paths from tool 22 

Process 

 

For each path in In_feature_1: 

 Loop through points in In_feature_2 that belongs to  this path  (where: 

ORIG_FID = current ObjectID) 

  Get record from In_table where IN_FID = ObjectID of  

 the first point and set [begin point] to its NEAR   

 coordinates 
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  Add [mid section] points from In_feature_2 

 

  Get record from In_table where IN_FID = ObjectID of  

 the last point and set [end point] to its NEAR   

 coordinates 

  

 Finally, insert [begin_point + mid_section + end_point] as a  polyline 

 to In_feature_3 

 

Out Internal paths 

 

3.4 Deriving the network dataset 

3.4.1 Pedestrian infrastructure 
The pedestrian infrastructure was constructed from the internal paths and the fixed paths. 

First a copy was made to preserve the original fixed path dataset and then the internal paths 

were appended to the fixed paths (Table 15). 

Table 15) Combining the datasets 

Tool 50 Copy_management 

In Fixed paths dataset from tool 11 

Out Copy of fixed paths 

 

Tool 51 Append_management 

In In_feature: Internalpaths from block 4 

Target: Copy of fixed paths from tool 50 

Out Pedestrian infrastructure 

 

3.4.2 Network dataset 
The final network dataset was constructed out of the pedestrian infrastructure feature class 

from tool 51. This operation could not be implemented by means of a script as the ArcGIS 

geoprocessor lacks the commands to automate this. However, ESRI does offer a way to 

activate this action manually using its ArcCatalog component. Globally four actions were 

required. First a new feature dataset was created; second the pedestrian infrastructure 

dataset was copied into this feature dataset; next the network dataset was constructed out 

of the feature dataset and finally the network was build. The settings used for this action are 

depicted in the table below (Table 16). 

Table 16) Manual actions performed to construct the Pedestrian Network 

Action 2 Creating a new feature dataset 

Coordinate system for XY coordinates: Import spatial reference from the pedestrian 

infrastructure dataset. 

Coordinate system for Z coordinates: None 

Tolerance for XY, Z and M: Default values were retrieved from importing the 

spatial reference 

Resolution and domain extent: Default values 

 

Action 3 Tool: CopyFeatures_management 

In: Pedestrian infrastructure from tool 51 

Out: Pedestrian infrastructure feature class in the feature dataset from 

manual action 1 

 

Action 4 Constructing the network dataset 

Name of the new Network Dataset: Pedestrian_Network 

Participating Feature classes: Pedestrian infrastructure from manual action 2 

Connectivity settings: Default (nodes at coincident endpoints) 

Modify with elevation data: NO 

Model turns: NO 

Cost attributes: Default attribute based on shape length 

Driving direction settings: None 
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Action 5 Tool: BuildNetwork_na 

In: Network dataset from manual action 3 

To: Builded Network Dataset 

 

3.5 Dijkstra’s shortest path algorithm 

Calculating a least cost path by means of the Network Analyst toolbox within ArcMap 

requires a feature class which holds a source and destination location. The action to create 

this feature class was initiated manually in ArcCatalog (Table 17). 

Table 17) Manual action to create source / destination feature class 

Action 6 Tool: CreateFeatureClass_management 

In Path: Path of the new feature class 

Name: Name of the new feature class 

Geometry_type: Point features 

Out New point feature class for locations 

 

Source and destination locations were added to the feature class by editing the point 

dataset in ArcMap and creating new point features (Table 18). 

Table 18) Manual actions performed to add points to the point feature class 

Action 7 Add points 

Create new: Create new location points and add location 

information. 

 

The actual route calculation needed three more actions to be done. First a route layer was 

created of the network dataset which embraced all input for the desired route. Next, the 

source and destination points were added as locations to this route layer. Finally, the route 

layer was solved which yields the optimal route in de underlying network dataset. The tools 

that were activated are shown in Table 19. 

Table 19) Manual actions to solve the route 

Action 8 Tool: MakeRouteLayer_na 

In: In_analysis_network: Network Dataset from action 4 

Out_network_analysis_layer:  

Impedance_attribute: Shape length 

Out: Route layer 

 

Action 9 Tool: AddLocations_na 

In: in_analysis_layer:  

sub_layer: Network Dataset from action 4 

in_feature: Point feature class from action 7 

field_mappings: Constant property value 

 search_tolerance: 10 meters 

snap_to_position_along_network: NO_SNAP 

Out: Route layer with source and destination locations 

 

Action 10 Tool: Solve_na 

In: In_analysis_layer: Route layer from action 9 

Ignore_invalids: HALT 

Out: Route layer with optimal route from source to destination location 
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4 Case study ‘s-Hertogenbosch 

4.1 Introduction 

The method and associated tools discussed in chapters 2 and 3 was applied on a case study 

for the city center of ‘s-Hertogenbosch in The Netherlands (Figure 10a). The study area is 

confined to the neighborhoods ‘Het Zand’, ‘Binnenstad-Centrum’ and ‘Binnenstad-Oost’. 

Important locations within this area are the ‘s-Hertogenbosch Central Station of the Dutch 

Railways (NS), the city market place and its renowned cathedral Sint-Jan (Figure 10b). 

  
a) Position of ‘s-Hertogenbosch in relation to The 

Netherlands 

b) City center of ‘s-Hertogenbosch with a delineation of the study 

area (in black) and the position some interesting locations. 

Figure 10 Geographical context of the case study with its position in relation to The Netherlands (a)  and a detailed map of 

the study area (b). 

This chapter presents the results of the implementation. First a short description is given of 

the two input datasets that were used and how they were prepared to fit the 

implementation. Furthermore this section provides insight in the method to structure its 

workflow (see section  4.2). Section  4.3 deals with the aspects of user interaction in which 

the user has to complete the free walkable space. It illustrates what user input was used for 

the process but also what scenarios were used to test the use of the pedestrian network. 

4.2 Data preparation 

4.2.1 Datasets 
The topographical map used for this case study was retrieved from the most detailed 

topographical map available in The Netherlands: TOP10vector. (kadaster.nl) This file has 

been developed by the Dutch Topographical Service Cadastre and contains a large scale 

topographical map of the whole country (i.e. scale 1 : 10.000). The version is dated 2006 

As a road dataset, the block dataset from the Dutch National Road Data Bank was used 

(Nationaal Wegen Bestand), also dated 2006. This dataset was the most suitable one 

because it contains continuous blocks of roads and streets which is essential for constructing 

a network dataset. Both datasets were retrieved from the GeoDataBase available at the 

GeoDesk, a service unit within the Geo-Information Centre of Wageningen UR (University & 

Research Centre). 
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4.2.2 Preprocessing 
The input datasets were clipped according to the defined study area. In order to do so, the 

neighborhood dataset of The Netherlands was used to create a clipping mask. The 

neighborhoods ‘Het Zand’, ‘Binnenstad-Centrum’ and ‘Binnenstad-Oost’ were selected from 

this dataset since these administrative boundaries include the entire city center and the 

railway zone. 

Additionally, as both datasets contained huge amounts of redundant attributes (the 

TOP10vector and the road dataset have respectively 16 and 36 attributes), these were 

deleted before initiating the process. Only the required attributes were kept, i.e. the 

topographical code. 

4.2.3 Workflow 
Data handling implies queries, transformations and operations on geodata. To structure 

these actions in this research and store the geodata in an orderly fashion each feature class 

produced inherited a hierarchical index indication accordingly to it’s place in the processing 

chain (project, component or step). 

4.3 User interaction 

4.3.1 Expert knowledge 
In this case study an expert-based selection was made of areas that were completed. 

Furthermore, a TOP10 building dataset was used to raise costs for buildings that were not 

present in the topographical map. Figure 11 shows some of the completed areas. Note that 

all costs were assigned in a subjective fashion and correspond to the costs mentioned in the 

table below (Table 20)  

Table 20) Overview of the assigned accessibility values 

Accessibility WEIGHT Legend color 

Normal / preferred 1  
Not preferred 2  
Dense traffic 5  
No accessibility 99  
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a) Marketplace  

 

  
b) A recently build up area  

 

  
c) Railway station zone  

 

Figure 11) Areas completed with accessibility values (left) and their accompanying aerial photographs (right) (LUFO 2006)  

4.3.2 Scenarios 
To be able to calculate routes, some source and destination scenarios are chosen. For all 

scenarios, the ‘s-Hertogenbosch Railway Station is set as a source point. Destination points 

are some points of interest in the city center. 

Scenario 1:  From railway station to cathedral, this is one of the main attractions of ‘s-

Hertogenbosch. 

Scenario 2:  From railway station to Southern park, the biggest park of ‘s-Hertogenbosch 

just outside the city center. 

Scenario 3: From railway station to bastion, a remainder of old fortifications with an 

outlook over the vast swamp fields adjacent to the city center (Het Bossche 

Broek). 
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4.4 Results 

4.4.1 Process 
In this section the results are discussed from the subprocesses that were initiated to yield a 

pedestrian network dataset. They are presented by displaying the products that were 

created during the process. For practical reasons an excision was made out of the whole 

study area which contains the market place (for location see Figure 10b). The results of the 

actual route calculation with the pedestrian network dataset will be discussed in the next 

section (4.4.2). 

The free walkable space was derived from all walkable areas. The result shows a free 

walkable space that has the same proportions as the original market place together with the 

adjacent road (Figure 12b). Each free walkable space consists of a single part. Note that 

these spaces have rounded edges.  

Assigning the network costs resulted in free walkable space objects that consist of multiple 

parts, augmented with WEIGHT values that indicate accessibility (Figure 12c). The result 

shows the internal structure of the corresponding walkable area in a more detailed fashion 

than the topographical dataset. 

Internal path calculation resulted in paths traversing the free walkable space. The result 

shows that the connection points are end points of the fixed paths that lead to the free 

walkable space and that all points were mutually connected. It also shows how the paths 

avoid zones with higher costs (Figure 12d). 

The result of deriving the network dataset shows that all calculated paths are represented as 

an edge in the network dataset (Figure 12e). Examining the nodes learns that the connection 

points were seen as nodes whereas internal path crossings were not. 

   
a) Preprocessing: 

Topographical dataset (background) 

Road dataset (dark blue line) 

b) Deriving free walkalbe space: 

Walkable area (dark green) 

Free walkable space (light green) 

c) Assigning network costs:  

Topographical dataset (background) 

Free walkable space WGT  (green) 

 

  
 d) Creating internal paths: 

Fixed paths (red)  

Internal paths (black) 

Free walkable area (background) 

e) Deriving the network dataset: 

Pedestrian Network (blue) 

with nodes and edges 

 

Figure 12) Datasets involved with implementation. Mentioned are the accompanying processes and its result datasets. 
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4.4.2 Routes 
With the pedestrian network dataset routes were calculated for the mentioned scenarios, 

their results are shown in (Figure 13). Note that all routes start at the railway station. In the 

first part of the route all scenarios follow the same trajectory. They make use of the available 

sidewalks and avoid the roads. Furthermore all routes cross the water body (Dieze) at the 

same spot after which they each go in separate directions. 

The first scenario directs towards the cathedral. It crosses the market place where it 

traverses through free walkable space (Figure 13a). The second scenario aims for the 

Southern park and also intersects a small corner of the market place (Figure 13b). The third 

route mainly uses the fixed paths to reach its goal (Figure 13c). The same scenarios are also 

calculated by means of the pedestrian route planning functionality of Google Maps. 

  
a) Scenario 1: to cathedral  

Length: 1092 m 

Same scenario in Google Maps 

Length: 1.1 km 

  
b) Scenario 2: to Southern park 

Length: 1341 m 

Same scenario in Google Maps 

Length: 1.4 km 

  
c) Scenario 3: to Bastion 

Length: 1179m 

Same scenario in Google Maps 

Length: 1.2 km 

Figure 13) Route results for three scenarios retrieved by implementing the method to a case study in ‘s-Hertogebosch (left) 

and by querying the pedestrian route planning functionality in Google Maps (right, source: Google 2010; map data by Tele 

Atlas 2010). 
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5 Discussion 

In this research a pedestrian network dataset was created. Raster data was used to calculate 

detailed routes through a free walkable space and an existing road network dataset was 

used to represent the fixed paths between these spaces. Finally, the pedestrian network 

dataset was used to calculate optimal routes for three route scenarios. This chapter 

discusses the results of method, implementation and case study that were involved. 

5.1 Method 

The method presented a way to combine vector and raster data into a network dataset that 

is suitable for calculating optimal routes for pedestrians; it integrates the high degree of 

movement freedom into a network dataset by introducing the concept of free walkable 

space; offers the possibility to limit that freedom by enriching the free walkable space with 

expert-knowledge about accessibility and it covers the connection of possible paths in a 

raster environment with a network of nodes and edges. It brings back the hybrid 

environment to a manageable vector environment. Besides these points the method also 

knows some drawbacks, these will be discussed in the following paragraphs. 

The derivation of the free walkable space depends on critical factors like the reclassification 

and the buffer distance. These parameters influence the amount and size of the resulting 

free walkable space. When for example a smaller value is chosen for the parameter buffer 

distance, some roads may be included whereas with a higher value some areas might be 

omitted (Figure 14). 

 

Legend 

 

Figure 14) This map indicates that different buffer distances yield different free walkable space outputs. 

Assigning costs to the free walkable space is done by a user which is bound to certain rules 

concerning the cost grid that is created from his input. For example if a zone is physically 

impenetrable, the user will assign an extreme high cost to it. However, this cannot 

guarantee that the route will not cross this zone. Particularly when there is no other route 

option available the least cost path will go straight through this impenetrable zone. 

In the process of calculating internal paths not so much the path calculation but the creation 

of fixed paths brings along some worth noticing issues. Overlaying the fixed paths with the 

walkable area dataset created while deriving the free walkalbe space shows some 

inconsistencies (Figure 15). 



 

35 

 

Legend: 

 

Figure 15) The blue circles indicate the locations where inconsistencies were found between the fixed paths (red) and the 

walkable areas (dark green). 

Furthermore, the presented method to solve raster issues still yields some less than optimal 

paths (Figure 16). 

 

Legend: 

 

Figure 16)  Map that shows that calculated paths still deviate from the direct paths one would intuitively follow. 

5.2 Implementation 

The implementation translated the method to an applicable script that yields a pedestrian 

infrastructure dataset. As an input the script requires the topographical dataset and the road 

dataset. With additional implementation steps a pedestrian network dataset can be created 

from the output with which optimal routes can be calculated. Implementation focuses on 

the programming language Python which is used to access tools within ESRI’s ArcGIS 

Desktop and to interconnect them in order to automate the whole process. 
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One implementation issue lies within the fact that the final stage of the process cannot be 

automated by Python. Therefore user actions are required which seem unnecessarily 

laborious. 

Furthermore, the presented process is tailored for the input datasets used in the case study. 

This means that it is not yet suited for use with any other topographical or road input 

dataset. 

5.3 Case study 

Applying the implementation to the city centre of ‘s-Hertogenbosch resulted into a suitable 

pedestrian network dataset and each route scenario returned a plausible optimal path. 

The length of the routes calculated in ArcGIS correspond to those retrieved from the 

pedestrian routing functionality of Google Maps (Google, 2010). And even show a slight 

positive difference. The difference is expected to increase when a larger study area is used 

where there are more free walkable spaces. 
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6 Conclusion 

Main goal of this thesis was to calculate the optimal route for pedestrians in an urban 

environment based on a hybrid dataset that contains vector network data to represent 

corridor-like paths and raster to represent free walkable space. The provided method and its 

implementation succeeded in calculating such routes for several scenarios in a case study. 

The first research question required a method to decide which parts of a study area could be 

labeled as free walkable space and which areas were to be represented as nodes and edges 

in a graph. To label the parts of a study area as ‘free walkable space’ or ‘fixed paths’ the 

parts that are inaccessible to pedestrians need to be excluded from labeling. From the 

walkable areas, an area can be labeled as free walkable space when its core still exists after 

applying a negative buffer on its original proportions. The walkable areas of which even the 

core vanishes are too narrow to be represented as free walkable space and will therefore be 

represented as fixed paths. 

Research question two set out to connect a raster representation of free walkable space 

with a network of nodes and edges. The answer was found not in connecting the space itself 

but in calculating all path possibilities which the space had to offer. Since the connection 

points were known in which the fixed paths entered the free walkable space, paths could be 

calculated for each combination of points. This internal structure was then combined with 

the fixed paths to result into one pedestrian infrastructure. 

The determination of costs or benefits for nodes, edges and raster cells is merely subjective. 

In this research no costs were assigned to nodes and the impedance for route calculation 

over edges is based on their physical length. Raster cells are assigned costs based on the 

assumed accessibility of the space they represent. Key is their interrelationship that should 

be logically related, i.e. high costs for inaccessibility and low costs for accessible space. 

The unfavorable paths that result from conventional path calculation based on a Moore 

neighborhood in the raster environment can be optimized by assessing each source/target 

scenario separately. As the most optimal path is contained by its corresponding least cost 

corridor it can be used to redefine the cost grid and recalculate the path. This way a more 

accurate path is distilled. 

Optimal path calculation in a hybrid environment is done by calculating route possibilities 

through the raster environment in advance and updating the vector network with the newly 

calculated paths. With that a network dataset can be constructed on which Dijkstra’s 

shortest path algorithm can be applied to find the optimal route between a start and end 

point. 

Conclusively, the presented method is able to derive a network dataset suitable for 

pedestrian route planning from the TOP10vector topographical dataset of The Netherlands. 

Future research should focus on the derivation of fixed walkable paths which in this research 

shows some inconsistencies with the walkable area. Furthermore a closer look to raster path 

calculation is required. 
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Annex A:  Detailed process overview 
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Annex B:  Python script 

# Documentation 
"JB_thesis_script.py" 
 
# Settings 
print "\nExecuting..." 
# Import system modules 
import sys, string, os, arcgisscripting, time, math , decimal 
 
time0 = time.time() 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create(9.3) 
gp.SetProduct("ArcInfo") 
gp.CheckOutExtension("spatial") 
 
gp.OverwriteOutput = 1 
 
# Set the Geoprocessing environment... 
gp.XYResolution = "0.001 Unknown" 
gp.scratchWorkspace = "D:\\JB_Thesis\\Data\\Applica tion\\IA_MSc_Thesis_Jan_Bakermans_Temporary_GDB.gdb " 
gp.MTolerance = "" 
gp.randomGenerator = "0 ACM599" 
gp.outputCoordinateSystem = 

"PROJCS['RD_New',GEOGCS['GCS_Amersfoort',DATUM['D_A mersfoort',SPHEROID['Bessel_1841',6377397.155,299.1 528
128]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.01745 32925199433]],PROJECTION['Double_Stereographic'],PA RAM
ETER['False_Easting',155000.0],PARAMETER['False_Nor thing',463000.0],PARAMETER['Central_Meridian',5.387 638
88888889],PARAMETER['Scale_Factor',0.9999079],PARAM ETER['Latitude_Of_Origin',52.15616055555555],UNIT[' Met
er',1.0]]" 

 
gp.snapRaster = "" 
 
gp.outputZFlag = "Disabled" 
gp.qualifiedFieldNames = "false" 
 
gp.extent = "DEFAULT" 
 
gp.XYTolerance = "0.01 Meters" 
gp.outputZValue = "" 
gp.outputMFlag = "Disabled" 
gp.geographicTransformations = "" 
gp.ZResolution = "" 
gp.workspace = "D:\\JB_Thesis\\Data\\Application" 
gp.MResolution = "" 
gp.ZTolerance = "" 
 
 
# GDB settings 
Component = gp.workspace + "\\IA_MSc_Thesis_Jan_Bak ermans_Component_GDB.gdb\\" 
Project = gp.workspace + "\\IA_MSc_Thesis_Jan_Baker mans_Project_GDB.gdb\\" 
Temporary = gp.workspace + "\\IA_MSc_Thesis_Jan_Bak ermans_Temporary_GDB.gdb\\" 
Raster = gp.workspace + "\\raster\\" 
 
print "Workspace is: " + gp.workspace 
 
# Preprocessing   
 
def DeriveFreeWalkableSpace (): 
    # Free walkable space ------------------------- --------------------------- 
    '''---------------------------------- 
    Input: Topographical map 
 
    ? > walkable areas 
    s > Shrunk walkable areas 
    o > Free walkable space 
 
    Output: Free walkable space 
            Free walkable space (editable) 
    ----------------------------------''' 
 
    prefix = "a03_" 
     
    # Select walkable areas ----------------------- ----------------------------- 
    # TOOL 1: Make selection layer 
    in_features = Project + "ps_TOP10_polygons" 
    out_layer = Temporary + prefix + "walk_layer" 
    gp.MakeFeatureLayer_management (in_features, ou t_layer) 
 
    # TOOL 2: Select walkable areas 
    in_layer = out_layer 
    selection_type = "ADD_TO_SELECTION" 
    where_clause = "\"TDN_CODE\" = '03103' OR \"TDN _CODE\" = '03143' OR \"TDN_CODE\" = '03243' OR \"TD N_CODE\" = 

'03343' OR \"TDN_CODE\" = '03403' OR \"TDN_CODE\" =  '03413' OR \"TDN_CODE\" = '03433' OR \"TDN_CODE\" = 
'03473' OR \"TDN_CODE\" = '03533' OR \"TDN_CODE\" =  '03603' OR \"TDN_CODE\" = '03903' OR \"TDN_CODE\" = 
'05023' OR \"TDN_CODE\" = '05213' OR \"TDN_CODE\" =  '05263' OR \"TDN_CODE\" = '06513'" 

    gp.SelectLayerByAttribute_management (in_layer,  selection_type, where_clause) 
 
    # TOOL 3: Copy selection to walkable area featu re class 
    out_feature_class = Temporary + prefix + "walk_ select" 
    gp.CopyFeatures_management (in_layer, out_featu re_class) 
 
    # TOOL 4: Dissolve all walkable area 
    in_features = out_feature_class 
    out_feature_class = Temporary + prefix + "disso lution" 
    print ">>> Dissolving walkable area..." 
    gp.Dissolve_management (in_features, out_featur e_class) 
     
    # TOOL 5: Shrink walkable area 
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    in_features = out_feature_class 
    out_feature_class = Temporary + prefix + "minbu ffered" 
    buffer_distance = -15 
    print ">>> Applying minbuffer..." 
    gp.Buffer_analysis (in_features, out_feature_cl ass, str(buffer_distance), "", "", "ALL")  
 
    # TOOL 6: Expand walkable area 
    in_features = out_feature_class 
    out_feature_class = Temporary + prefix + "plusb uffered" 
    buffer_distance *= -1 
    print ">>> Applying plusbuffer..." 
    gp.Buffer_analysis (in_features, out_feature_cl ass, str(buffer_distance), "", "", "ALL") 
 
    # Clip free walkable area to fit study area 
    # in_features = Temporary + prefix + "walkable_ area" 
    in_features = out_feature_class 
    clip_features = Project + "ps_clipping_mask_stu dy_area" 
    out_feature_class = Temporary + prefix + "plusb uffered_sa" 
    print ">>> Clipping study area..." 
    gp.Clip_analysis (in_features, clip_features, o ut_feature_class) 
 
    # TOOL 7: Multi to single part 
    in_features = out_feature_class 
    out_feature_class = Temporary + prefix + "free_ walkable_area" 
    print ">>> Multi to single part..." 
    gp.MultipartToSinglepart_management (in_feature s, out_feature_class)  
 
    # TOOL 8 and TOOL 9: Add fields and calculate t hem to enable weight editing 
    in_table = out_feature_class 
    field_name_1 = "Area_ID" 
    field_name_2 = "WEIGHT" 
    field_type = "DOUBLE" 
    field_precision = 5 
    field_scale = 0 
    gp.AddField_management (in_table, field_name_1,  field_type, field_precision, field_scale)  
    gp.AddField_management (in_table, field_name_2,  field_type, field_precision, field_scale)  
    gp.CalculateField_management (in_table, field_n ame_1, "[OBJECTID]") 
    gp.CalculateField_management (in_table, field_n ame_2, 1) 
 
    # TOOL 10: Create back up to enable weight edit ing and preserve original 
    in_table = in_table 
    out_feature_class = Temporary + prefix + "free_ walkable_area_BAK" 
    gp.CopyFeatures_management (in_table, out_featu re_class) 
 
def Internalpaths (): 
    # Internal paths ------------------------------ ------------------- 
    '''---------------------------------- 
    Input:  Free walkable space (editable) 
            Free walkable space 
            Roads (polyline) 
 
    Free walkable space + Roads (polyline) 
    s > Connection points 
    s > Fixed paths 
 
    Free walkable space (editable) 
    s > Free walkable space (raster) 
 
 
 
    Connection points + Free walkable space (raster ) 
    s > Calculated paths 
 
    Calculated paths 
    s > Path cost table (table) 
     
    Connection points 
    s > Connections 
 
    Connections + Path cost table (table) 
    o > Internal paths (polyline) 
 
    Output: Internal paths (polyline) 
            Fixed paths 
    ----------------------------------''' 
 
    prefix = "a04_" 
 
    # Fixed paths --------------------------------- ------------------- 
    # TOOL 11: Erase walkable space from roads 
    in_features = Project + "ps_TOP10_roads_block" 
    erase_features = Temporary + "a03_free_walkable _area" 
    out_feature_class = Temporary + prefix + "fixed _paths" 
    gp.Erase_analysis (in_features, erase_features,  out_feature_class) 
 
    # Connection points --------------------------- ------------------- 
    # TOOL 12: Find end points of fixed paths 
    in_features = out_feature_class 
    out_feature_class = Temporary + prefix + "path_ ends" 
    point_location = "BOTH_ENDS" 
    gp.FeatureVerticesToPoints_management (in_featu res, out_feature_class, point_location)  
 
    # TOOL 13: Create layer to collect end points i n 
    in_feature = out_feature_class 
    out_layer = Temporary + prefix + "path_ends_lay er" 
    gp.MakeFeatureLayer_management (in_feature, out _layer) 
 
    # TOOL 14: Select end points that are <adjacent  to> free walkable space 
    in_layer = out_layer 
    overlap_type = "WITHIN_A_DISTANCE" 
    select_features = Temporary + "a03_free_walkabl e_area" 
    search_distance = 0.015 



 

42 

    gp.SelectLayerByLocation_management (in_layer, overlap_type, select_features, search_distance)  
 
    # TOOL 14: Add end points that are <within> fre e walkable space to the selection 
    in_layer = out_layer 
    overlap_type = "WITHIN" 
    select_features = Temporary + "a03_free_walkabl e_area" 
    selection_type = "ADD_TO_SELECTION" 
    gp.SelectLayerByLocation_management (in_layer, overlap_type, select_features, "", selection_type) 
 
    # TOOL 15: Copy selection to connection point f eature class 
    out_feature = Temporary + prefix + "connection_ points" 
    gp.CopyFeatures_management (in_layer, out_featu re) 
 
    # Remove duplicate connection points 
    #rows = gp.UpdateCursor(out_feature) 
    #cur = rows.Next() 
    #a = [] 
     
    #while cur: 
    #    if a.count([cur.shape.FirstPoint.x, cur.sh ape.FirstPoint.y, cur.shape.LastPoint.x, cur.shape. LastPoint.y, 

cur.shape.length]) > 0: 
    #        rows.DeleteRow(cur) 
    #        cur = rows.Next() 
    #    else: 
    #        a.append([cur.shape.FirstPoint.x, cur. shape.FirstPoint.y, cur.shape.LastPoint.x, cur.shap e.LastPoint.y, 

cur.shape.length]) 
    #        cur = rows.Next() 
 
    # Add area ID field 
    field_name = "Area_ID" 
    field_type = "SHORT" 
    gp.AddField_management (out_feature, field_name , field_type) 
 
    # Add point ID field  
    field_name = "Point_ID" 
    field_type = "SHORT" 
    gp.AddField_management (out_feature, field_name , field_type) 
 
    in_feature = Temporary + "a03_free_walkable_are a_BAK" 
    rows = gp.updateCursor(in_feature) 
    cur = rows.Next() 
    areapointlist = {} 
    del_list = [] 
 
    # Make point layer 
    in_feature = Temporary + prefix + "connection_p oints" 
    out_layer2 = Temporary + prefix + "point_layer"  
    gp.MakeFeatureLayer_management (in_feature, out _layer2) 
         
    while cur: 
        # Make selection layer from area 
        print "Area_ID:", cur.OBJECTID 
        in_feature = Temporary + "a03_free_walkable _area_BAK" 
        out_layer1 = Temporary + prefix + "frame_la yer" 
        where_clause = "\"OBJECTID\" = " + str(cur. OBJECTID) 
        gp.MakeFeatureLayer_management (in_feature,  out_layer1, where_clause) 
 
        # Select points in point layer that belong to one area 
        in_layer = out_layer2 
        overlap_type = "WITHIN" 
        select_features = out_layer1 
        search_distance = 0.1 
        gp.SelectLayerByLocation_management (in_lay er, overlap_type, select_features, search_distance)   
         
        # Calculate area ID for feature class 
        gp.CalculateField_management (in_layer, "Ar ea_ID", cur.OBJECTID)  
 
        # For each area, store point ID and coordin ates in a dictionary for future use. 
        rows2 = gp.UpdateCursor(in_layer) 
        cur2 = rows2.Next() 
        areapointlist[cur.OBJECTID] = {} 
        i = 1 
 
        while cur2: 
            # Calculate point ID 
            cur2.SetValue("Point_ID", i) 
            rows2.Updaterow(cur2) 
            print "> Point_ID:", i    
            cur2 = rows2.Next() 
            i += 1 
             
        cur = rows.Next() 
 
    # Create Free walkable space (raster)---------- ------------------- 
    # Create raster from area 
    in_feature = Temporary + "a03_free_walkable_are a" 
    value_field = "WEIGHT" 
    cell_size = 1 
    out_raster_dataset = Raster + prefix + "_areas"  
    gp.PolygonToRaster_conversion (in_feature, valu e_field, out_raster_dataset, "", "", cell_size) 
     
    # Create path feature class 
    out_path = Temporary 
    out_name = prefix + "internal_paths" 
    geometry_type = "POLYLINE" 
    gp.CreateFeatureClass_management (out_path, out _name, geometry_type) 
 
    # Set environment settings 
    gp.snapRaster = out_raster_dataset 
    gp.cellSize = 1 
    gp.mask = out_raster_dataset 
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    # Set point dataset 
    point_dataset = Temporary + prefix + "connectio n_points" 
     
    # Calculate paths ----------------------------- ------------------- 
    # Buffer all points to cover more cells when ra sterizing 
    in_features = point_dataset 
    out_feature_class = in_features + "_buff" 
    buffer_distance = 1 
    gp.Buffer_analysis (in_features, out_feature_cl ass, buffer_distance) 
 
    # Add Range field 
    field_name = "Range" 
    field_type = "SHORT" 
    gp.AddField_management (out_feature_class, fiel d_name, field_type) 
 
    rows = gp.searchCursor(point_dataset + "_buff")  
    cur = rows.Next() 
    area_list = [] 
    while cur: 
        aid = cur.Area_ID 
        try: 
            area_list.index(aid) 
        except: 
            area_list.append(cur.Area_ID) 
        cur = rows.Next() 
 
    for aid in area_list: 
        in_table = point_dataset + "_buff" 
        out_view = Temporary + prefix + "temp_point _view" 
        where_clause = "\"Area_ID\" = " + str(aid) 
        gp.MakeTableView_management (in_table, out_ view, where_clause) 
 
        in_table = Temporary + prefix + "temp_point _view" 
        out_table = Temporary + prefix + "temp_poin t_stat" 
        statistics_fields = "Point_ID MAX" 
        gp.Statistics_analysis (in_table, out_table , statistics_fields) 
        rows = gp.SearchCursor(out_table) 
        cur = rows.Next() 
        range_max = int(cur.MAX_Point_ID) 
         
        gp.CalculateField_management (out_view, "Ra nge", range_max) 
 
    index = 1 
    gp.snapRaster = Raster + prefix + "_areas" 
    gp.extent = "148182.934 410391.759 150146.178 4 12199.376" 
    gp.cellSize = "1" 
    gp.mask = Raster + prefix + "_areas" 
 
    # Calculate range 
    in_table = point_dataset 
    out_table = Temporary + prefix + "MAX_Point_ID"  
    statistics_fields = "Point_ID MAX" 
    gp.Statistics_analysis (in_table, out_table, st atistics_fields) 
 
    rows = gp.SearchCursor(out_table) 
    cur = rows.Next() 
 
    range_max = int(cur.MAX_Point_ID) 
 
    for From_ID in range(1, range_max): 
        range_to = From_ID + 1 
        for To_ID in range(range_to, range_max + 1) : 
            print "From: " + str(From_ID) + " To: "  + str(To_ID) 
            #   <<<   L O O P   S T A R T S   H E R  E   >>> 
            in_features = Temporary + prefix + "con nection_points_buff" 
            out_feature_class = Temporary + prefix + "sources" 
            where_clause = "\"Point_ID\" = " + str( From_ID) + "AND \"Range\" <> \"Point_ID\"" 
            gp.Select_analysis (in_features, out_fe ature_class, where_clause) 
 
            in_features = Temporary + prefix + "con nection_points_buff" 
            out_feature_class = Temporary + prefix + "destinations" 
            where_clause = "\"Point_ID\" = " + str( To_ID) 
            gp.Select_analysis (in_features, out_fe ature_class, where_clause) 
 
            ''' 
            in_features = Temporary + prefix + "des t" 
            erase_features = Temporary + prefix + " sources" 
            out_feature_class = Temporary + prefix + "destinations" 
            gp.Erase_analysis (in_features, erase_f eatures, out_feature_class) 
            ''' 
             
            in_source_data = Temporary + prefix + " sources" 
            out_distance_raster = Raster + prefix +  "dist_s" 
            in_cost_raster = Raster + prefix + "_ar eas" 
            gp.PathDistance_sa (in_source_data, out _distance_raster, in_cost_raster) 
 
            in_source_data = Temporary + prefix + " destinations" 
            out_distance_raster = Raster + prefix +  "dist_d" 
            in_cost_raster = Raster + prefix + "_ar eas" 
            gp.PathDistance_sa (in_source_data, out _distance_raster, in_cost_raster) 
 
            in_distance_raster1 = Raster + prefix +  "dist_s" 
            in_distance_raster2 = Raster + prefix +  "dist_d" 
            out_raster = Raster + prefix + "corr" 
            gp.Corridor_sa (in_distance_raster1, in _distance_raster2, out_raster) 
 
            in_zone_data = Temporary + "a03_free_wa lkable_area_BAK" 
            zone_field = "OBJECTID" 
            in_value_raster = Raster + prefix + "co rr" 
            out_raster = Raster + prefix + "corr_mi n" 
            statistics_type = "MINIMUM" 
            ignore_nodata = "DATA" 
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            gp.ZonalStatistics_sa (in_zone_data, zo ne_field, in_value_raster, out_raster, statistics_t ype, 
ignore_nodata) 

             
            expression_string = "CON(" + Raster + p refix + "corr <= (" + Raster + prefix + "corr_min +  0.5), 1, 0)" 
            out_raster = Raster + prefix + "corr_1"  
            gp.SingleOutputMapAlgebra_sa (expressio n_string, out_raster) 
 
            in_conditional_raster = Raster + prefix  + "corr_1" 
            in_false_raster_or_constant = "1" 
            out_raster = Raster + prefix + "corrs" 
            where_clause = "\"VALUE\" = 0" 
            gp.SetNull_sa (in_conditional_raster, i n_false_raster_or_constant, out_raster, where_claus e) 
 
            tempmask = gp.mask 
            gp.mask = Raster + prefix + "corrs" 
             
            expression_string = "FOCALSUM (" + Rast er + prefix + "corrs, CIRCLE, 3)" 
            out_raster = Raster + prefix + "ma1" 
            gp.SingleOutputMapAlgebra_sa (expressio n_string, out_raster) 
 
            expression_string = "FOCALMAX (" + Rast er + prefix + "ma1, rectangle, 5, 5)" 
            out_raster = Raster + prefix + "ma2" 
            gp.SingleOutputMapAlgebra_sa (expressio n_string, out_raster) 
 
            in_raster = Raster + prefix + "ma2" 
            reclass_field = "VALUE" 
            remap = "0 24 1;24 100 NoData" 
            out_raster = Raster + prefix + "reclass " 
            gp.Reclassify_sa (in_raster, reclass_fi eld, remap, out_raster) 
 
            in_source_data = Raster + prefix + "rec lass" 
            out_distance_raster = Raster + prefix +  "eucdis" 
            gp.EucDistance_sa (in_source_data, out_ distance_raster) 
 
            in_raster_or_constant1 = Raster + prefi x + "eucdis" 
            in_raster_or_constant2 = 1 
            out_raster = in_raster_or_constant1 + " _1" 
            gp.Plus_sa (in_raster_or_constant1, in_ raster_or_constant2, out_raster)     
 
            in_source_data = Temporary + prefix + " sources" 
            in_cost_raster = Raster + prefix + "euc dis_1" 
            out_backlink_raster = Raster + prefix +  "bcklnk" 
            out_distance_raster= Raster + prefix + "dist" 
            gp.CostBackLink_sa (in_source_data, in_ cost_raster, out_backlink_raster, "", out_distance_ raster) 
 
            in_destination_data = Temporary + prefi x + "destinations" 
            in_cost_distance_raster = Raster + pref ix + "dist" 
            in_cost_backlink_raster = Raster + pref ix + "bcklnk" 
            out_raster = Raster + prefix + "paths" 
            path_type = "EACH_ZONE" 
            destination_field = "Area_ID" 
            gp.CostPath_sa (in_destination_data, in _cost_distance_raster, in_cost_backlink_raster, out _raster, 

path_type, destination_field)  
 
            # Create path based on minimum path cos t from statistics table 
            in_raster = out_raster 
            out_raster = Raster + prefix + "paths_1 " 
            #where_clause = "\"PATHCOST\" < " + str (minpathcost + 0.1) 
            constant = 1 
            gp.Con_sa (in_raster, constant, out_ras ter) 
 
            # Create polyline from path 
            in_raster = out_raster 
            out_polyline_features = Temporary + pre fix + "temp_path" 
            simplify = "SIMPLIFY" 
                    #raster_field = "VALUE" 
            gp.RasterToPolyline_conversion (in_rast er, out_polyline_features, "", "", simplify) #raste r_field) 
 
            # Explode path into points 
            in_features = out_polyline_features 
            out_feature_class = Temporary + prefix + "temp_path_points" 
            gp.FeatureVerticesToPoints_management ( in_features, out_feature_class) 
 
            # Generate near table 
            in_features = out_feature_class 
            near_features = Temporary + prefix + "c onnection_points" 
            out_table = Temporary + prefix + "near_ table" 
            search_radius = "1" 
            location = "LOCATION" 
            gp.GenerateNearTable_analysis (in_featu res, near_features, out_table, search_radius, locat ion) 
 
            in_table = out_table 
            out_table = Temporary + prefix + "nearb y_connection_points" 
            where_clause = "\"NEAR_DIST\" < " + sea rch_radius 
            gp.TableSelect_analysis (in_table, out_ table, where_clause) 
 
            in_feature = Temporary + prefix + "temp _path" 
 
            rows3 = gp.searchCursor(in_feature) 
            cur3 = rows3.Next() 
 
            while cur3: 
                print cur3.OBJECTID 
                # Alter begin and end point 
                in_feature = Temporary + prefix + " temp_path_points" 
                outDesc = gp.describe(in_feature) 
                shapefield = outDesc.ShapeFieldName  
 
                point = gp.createobject("point") 
                pntarray = gp.createobject("Array")  
                partarray = gp.createobject("Array" ) 
                where_clause = "\"ORIG_FID\" = " + str(cur3.OBJECTID) 
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                rows4 = gp.searchCursor(in_feature,  where_clause) 
                cur4 = rows4.Next() 
                rows4_next = gp.searchCursor(in_fea ture, where_clause) 
                cur4_next = rows4_next.Next() 
                cur4_next = rows4_next.Next() 
                geometry = cur4.shape 
 
                # Alter begin point 
                in_table = Temporary + prefix + "ne arby_connection_points" 
                where_clause = "\"IN_FID\" = " + st r(cur4.OBJECTID) 
                rows5 = gp.searchCursor(in_table, w here_clause) 
                cur5 = rows5.next() 
 
                point.id = 1 
                point.x = cur5.NEAR_X 
                point.y = cur5.NEAR_Y 
                pntarray.add(point) 
                 
                # Add mid section points 
                i = 2 
                cur4 = rows4.Next() 
                cur4_next = rows4_next.Next() 
                while cur4 and cur4_next: 
                    geometry = cur4.shape 
                    point.id = i 
                    point.x = geometry.centroid.x 
                    point.y = geometry.centroid.y 
                    pntarray.add(point) 
                    i += 1 
                    cur4 = rows4.Next() 
                    cur4_next = rows4_next.Next() 
                     
                # Alter end point 
                # geometry = cur4.shape 
                in_table = Temporary + prefix + "ne arby_connection_points" 
                where_clause = "\"IN_FID\" = " + st r(cur4.OBJECTID) 
                rows5 = gp.searchCursor(in_table, w here_clause) 
                cur5 = rows5.next() 
                 
                point.id = i 
                point.x = cur5.NEAR_X 
                point.y = cur5.NEAR_Y 
                pntarray.add(point) 
                partarray.add(pntarray) 
 
                # Insert final path in 'internal_pa ths' 
                in_feature = Temporary + prefix + " internal_paths" 
                rows5 = gp.insertCursor(in_feature)  
                cur5 = rows5.NewRow() 
                 
                cur5.SetValue(shapefield, partarray ) 
                print "adding: ", i 
                rows5.insertrow(cur5) 
                 
                partarray.removeall() 
                pntarray.removeall() 
 
                cur3 = rows3.Next() 
 
            gp.mask = tempmask 
            del rows3, rows4, rows5, cur3, cur4, cu r5 
 
     
def PedestrianInfrastructure(): 
    # Pedestrian Network 
    '''---------------------------------- 
    Input:  Internal paths (polyline) 
            Fixed paths 
 
    Internal paths (poyline) + Fixed paths 
    o > Pedestrian network 
 
 
    Output: Pedestrian network 
    ----------------------------------''' 
 
    prefix = "a05_" 
 
    in_data = Temporary + "a04_fixed_paths" 
    out_data = Temporary + prefix + "pedestrian_inf rastructure" 
    gp.Copy_management (in_data, out_data) 
     
    inputs = Temporary + "a04_internal_paths" 
    target = Temporary + prefix + "pedestrian_infra structure" 
    schema_type = "NO_TEST" 
    gp.Append_management (inputs, target, schema_ty pe) 
 
'''Function section''' 
DeriveFreeWalkableSpace() 
Internalpaths() 
PedestrianInfrastructure() 
 
 
    # Close down script 
time1 = time.time() 
elapsed = str(int((time1 - time0)/60)) + "min " + s tr(int((((time1 - time0)/60) - int((time1 - time0)/ 60))*60)) + 

"sec " 
print "Script successfully executed in " + elapsed 
del gp, sys, string, os, arcgisscripting, time, mat h, decimal 


