Intelligent irrigation saves water and fertilizer without reducing yield or quality. The outcome of the FLOW-AID project

The 9th New Ag International Conference and Exhibition
Athens, Wednesday 29th June, 2011
8.30 h opening lecture

Jos Balendonck

Outline

- Introduction
- Technology "building blocks"
 - Sensors, Fertigation, Decision Support
- Case study results
 - Italy, Turkey, Jordan, Lebanon, the Netherlands
- Conclusions

No restrictions on water use

Full irrigation practices:

- Irrigation linked to water availability
- Water and fertilizer use aimed at maximizing crop yield
- Over-irrigation to deal with variability (safety)

May result in ...

- Good crop yield and income
- Leaching or run-off of water and fertilizers
- Higher costs due to over use of water and lost fertilizers

Restrictions Fresh Water or Leaching

Deficit Irrigation practices:

- Use of: less fresh water
- marginal water (saline water)
- reclaimed water (N,P-rich)
- less fertilizer

May result in:

- crop damage
- diseases
- yield loss
- higher costs and lower income

Objectives

SAVE WATER

Efficient use of available water

SAVE NUTRIENTS

Rational use of nutrients and marginal water resources

SAVE THE ENVIRONMENT

Prevent leaching of chemicals

SAVE FARMER INCOME

Maintain crop yields at affordable costs

The approach

- Adaptation of growing system
 - Choose strategy based upon local constraints
 - Grow more detached or independent from soil/climate
- Precision Fertigation (DSS)
 - Optimize your irrigation and fertilization strategy
 - Advice <u>when</u> and <u>how much</u> to irrigate
 - Advice <u>when</u> and <u>how much</u> to fertigate
- Tools to determine amount and source of water
 - Feed-back about crop, soil water/nutrient and climatic conditions (Sensors and observations)
 - Irrigation: controllers, computers, software

More independent from soil and climate

From soil to substrate

From open to covered cultivation

Examples

Adaptation of the water system

- Water harvesting and use buffering
- Use reclaimed or desalinated water
- Use drip irrigation with fertigation
- Smart irrigation scheduling
 - ET or sensor control, water metering
 - Apply a deficit strategy
- Closed systems (reuse water & nutrients)
- Clean effluents
- Regular maintenance

Fertigation Control

- Recipies and dosis following plant demand (growing stage) rather than using bulk fertilization in advance.
- Automate this process

Irrigation monitoring and control

- Remote monitoring
 - Wireless
 - Solar powered
 - Data logging, graphs
- Irrigation Controllers
 - Stand-alone operation
 - Programmed by grower or DSS
 - (Multiple) sensor activation
 - Multiple nodes, valves/water sources

DSS-Irrigation Scheduler

- Daily planning by farmer (farm PC)
 or:
- Upload data to remote DSS
 - Manually or automatic
 - Integrate weather forecasts
 - Use of plant and soil and ET-modeling
- Receive e-mails from DSS
 - Advice fertigation strategy
 - Calculated doses and timing
 - Safety (warnings)
- Set Irrigation Controllers
 - Manual or automatic

WET-sensors indicate more than soil water

- Water Content
 - Indicates "Available Water"
 - For medium wet to saturation
 - Soil calibrations
- Electrical Conductivity (EC)
 - Total nutrient concentration
 - Pore Water EC
 - Monitoring salinity stress
- Temperature

Electronic Tensiometers (for dryer soils)

- Water filled tensiometer
- Limited range (air entry)
- Installation and maintenance
- For dry soils

- Porous Matric Sensor (prototype)
- Extended dry range
- Easy installation Low maintenance
- For wet to very dry soils

10.10h: Case Studies from Jordan, Lebanon and Turkey

by: Prof Munir Rusan

Lebanon - South Bekaa Valley, Litany River

- Limited water availability
- Poor water management
- Surface irrigation, sprinkler, drippers
- Soil grown potato, eggplant
- Approach
 - Enhance Water Use efficiency
 - Deficit irrigation strategy

Jordan - Irbid, Jordan Valley

- Very limited water resources
- Poor water management
- Low water use efficiency
- Soil grown tomatoes
- Approach
 - Enhance Water Use Efficiency
 - Use of Reclaimed Water
 - Treated Waste Water (T)
 - Fresh Water (F)
 - Treatments
 - FULL (F)
 - DEFICIT (D)

Turkey - Izmir (Tahtalı Dam)

- Preservation area (no leaching)
- Water from wells
- Greenhouses
- Cucumber

Approach

- Prevent leaching by using deficit
- Fixed set-points
- Irrigation amounts: Full, 60%, 40%

Water Use Efficiency and Leaching

Italy - Pistoia, Tuscany

- Nursery stock production (container ornamentals)
- Saline water sources
- Sprinkler or drip irrigation

Approach

- Use of high EC reclaimed water and additionally fresh water
- Maintain upper limit for EC in container (WET-sensors)
- Adjust fertigation to irrigation water quality (level of EC)
- Use fresh water only when needed (flushing or mixing)

Dual water irrigation with EC feedback

<u>The Netherlands – Vredepeel</u>

- Slight loamy-sandy soils
- Rain-fed agriculture
- High water tables
- Leaching
- Approach
 - Prevent nitrate leaching
 - Iceberg lettuce
 - Plastic foil cover to block rain
 - Root zone sensor: Start irrigation
 - Deep sensor:
 - DSS adapt irrigation dose
 - Irrigate more often with a smaller dose!

DSS strategy to adapt dose (example)

Summary of water use efficiencies

Crop	Water Use (mm)	Drainage (mm)	Ratio Fresh to Total Water (%)	Marketable WUE (kg/m³)	Water Saving Index (%)
Ornamentals	413 (540)	119 (237)	66	-	24
Cucumber	545 (717)	10 (92)	100	44 (35)	19
Tomato	275 (425)	-	0	8 (6)	25
Egg plant	71 (95)	•	100	54 (36)	35
Lettuce	66 (186)	-	58	73 (22)	69

(* * *) values obtained from farmer practices used as reference

Conclusion

Even while using a deficit strategy, Sensor Activated Irrigation Scheduling offers farmers, under sub-optimal growing conditions, more possibilities to:

- Efficiently use water and nutrients
- Minimize run-off, percolation losses
- Prevent crop damage
- Achieve good and even higher crop yields
- Reduce labour

Recommendations to farmers and companies

- Optimize cropping and irrigation system
- Match crop water and nutrient needs closely in time
- Slight deficit irrigation when the water is scarce
- More irrigations, smaller doses to prevent leaching
- We need a fail-safe DSS
- Technical support and training for farmers
- Reduce costs of systems and equipment

Thanks for your attention ...

