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ABSTRACT
 Ecological experiments often accumulate data by carrying out many replicate 
trials, each containing a limited number of observations, which are then pooled and 
analysed in the search for a pattern.  Replicating trials may be the only way to obtain 
sufficient data, yet lumping disregards the possibility of differences in experimental 
conditions influencing the overall pattern. This paper discusses how to deal with this 
dilemma in model selection. Three methods of model selection are introduced: 
likelihood-ratio testing, the Akaike Information Criterion (AIC) with or without small-
sample correction and the Bayesian Information Criterion (BIC). Subsequently, we 
apply the AICc method to an example on size-dependent seed dispersal by 
scatterhoarding rodents. 
 The example involves binary data on the selection and removal of Carapa procera 
(Meliaceae) seeds by scatterhoarding rodents in replicate trials during years of 
different ambient seed abundance. The question is whether there is an optimum size 
for seeds to be removed and dispersed by the rodents. We fit five models, varying 
from no effect of seed mass to an optimum seed mass. We show that lumping the data 
produces the expected pattern but gives a poor fit compared to analyses in which 
grouping levels are taken into account.  Three methods of grouping were used: per 
group a fixed parameter value; per group a randomly drawn parameter value; and 
some parameters fixed per group and others constant for all groups. Model fitting with 
some parameters fixed for all groups, and others depending on the trial give the best 
fit. The general pattern is however rather weak.  
 We explore how far models must differ in order to be able to discriminate between 
them, using the minimum Kullback-Leibler distance as a measure for the difference. 
We then show by simulation that the differences are too small to discriminate at all 
between the five models tested at the level of replicate trials.  
 We recommend a combined approach in which the level of lumping trials is chosen 
by the amount of variation explained in comparison to an analysis at the trial level. It 
is shown that combining data from different trials only leads to an increase in the 
probability of identifying the correct model with the AIC criterion if the distance of all 
simpler (=less extended models) to the simulated model is sufficiently large in each 

233
T.A.C. Reydon and L. Hemerik.,(eds.), Current Themes in Theoretical Biology, 
233-265.
© 2005 Springer. Printed in the Netherlands. 



234 VAN DER HOEVEN ET AL.

trial. Otherwise, increasing the number of replicate trials might even lead to a decrease 
in the power of the AIC. 

Keywords: AIC, Carapa procera, Kullback-Leibler distance, Likelihood-Ratio 
test, model selection, Myoprocta acouchy, non-central chi-square distribution, 
power, Red acouchy, scatterhoarding, seed dispersal, seed size.

9.1 INTRODUCTION 
 It is quite common in ecology to have several candidate models for 
describing ecological observations (Hilborn and Mangel, 1997). In some cases, 
models are based on different assumptions about the underlying mechanism, 
whereas in others, models are used to describe the relationship between 
factors. Both cases however, require the identification of the model best 
conforming to the observations. 
 Several criteria exist to determine which model fits best, for instance 
likelihood-ratio (LR) testing, the AIC (Akaike Information Criterion) and the 
BIC (Bayesian Information Criterion) (see Burnham and Anderson, 2002; 
Hilborn and Mangel, 1997; Linhart and Zucchini, 1986; Borowiak, 1989 for 
extensive reviews of model discrimination methods). After an initial 
comparison of the three methods (LR, BIC and AIC) we focus in this paper on 
the AIC that treats all models as equivalent and allows comparison of nested 
and non-nested models. Thus, the AIC assumes that each model can be the 
true model and none of the models is preferred.  
 Ecological experiments often accumulate data for model fitting by carrying 
out several independent trials, each containing a limited number of 
observations, which are then pooled and analysed for a pattern. Replicating 
trials may be the only way to obtain sufficient data, yet lumping is not a priori 
admissible.  If conditions between trials differ, simply lumping all trials is 
even a priori inadmissible. Such situations require the model be fitted to the 
data of each trial separately, each with different model parameters. This will, 
however, affect the ability to distinguish between models (the identifiability), 
and the possibility to derive general conclusions from the properties of the best 
fitting model. We consider a model identifiable if the probability of being the 
best-fitting on its own simulated data exceeds 80%. An alternative approach is 
to assume that the parameters in each trial are independent drawings from 
some probability distribution. 
 This paper explores the consequences of data lumping for model selection 
using data on seed selection by scatterhoarding rodents as an example. The 
question to be answered is whether there is an optimum size for seeds to be 
selected and dispersed by these rodents. In our example, it is biologically 
unrealistic as well as technically difficult to provide a single animal with 
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>1000 marked seeds at a given time, while it is ecologically desirable to 
consider selection by different individuals. The only way to detect a trend was 
to carry out many independent replicate trials with small batches of seeds, 
spaced apart in time and space, and involving different individual rodents. The 
challenge is to balance statistical requirements with ecological feasibility. 
 We start with the description of three methods for model selection 
(Section 2). In Section 3, we apply two of these methods to a data set on seed 
dispersal by scatterhoarding rodents. Next, we have fitted the same models to 
simulated data in order to obtain an impression of the identifiability of the 
chosen models for certain combinations of parameter values, that is which 
percentage of the simulation runs are classified correctly (Section 4). Finally, 
conclusions of the model fitting both the experimental data and the simulated 
models are given and discussed (Section 5). 

9.2 METHODS FOR MODEL DISCRIMINATION 

Hypothesis testing 
 Models that are to be compared are often nested: one model (the nested 
model) is a special case of another, more complex model with one or more of 
the parameters of the complex model fixed. For example, the linear model 
y = a + bx is a special case of the quadratic model y = a + bx + cx2 with c = 0. 
If these models are compared with the usual hypothesis testing method, the 
null hypothesis is that the simplest model is true, unless the observed data are 
much more likely under the more complex model. A general method to test the 
simple model against the more complex is the Likelihood-Ratio test (LR test). 
This test compares the ratio of the maximum likelihood (ML) for the two 
models to a critical value. Instead of the ratio between the ML’s the difference 
between the log of both ML’s can be used. Twice the difference between these 
maximized log-likelihoods is approximately χ 2 distributed. This means that 
for large numbers of observations the α-critical value for 2×(the difference in 
maximized log-likelihoods) is approximately χα ,ν

2 with ν the difference in the 
number of parameters of the extended (k2) and the more simple model (k1), so 
ν = k2 − k1. For a small number of observations, the χ 2 approximation may not 
hold.
 So, in general let L1 and L2 be the maximum of the likelihood function for 
the simple and the extended model. Then, for large numbers of observations 

T = 2 × (ln(L2 )− ln(L1 )) → χν
2.  (9.1) 
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The AIC: finding the model giving the best approximation 
One approach to discriminate between models, described by Akaike 

(1974), is to assume that there is some - unknown - “real” model, and that the 
model having the minimum distance to that unknown real model is the best 
approximation. It uses the so-called Kullback-Leibler (K-L) distance 
(Kullback and Leibler, 1951) as a measure of the distance between models. 
For continuous models, the K-L distance of the approximate model g with 
parameter θ to the real model f  is 

I ( f ,gθ )= f ( y ) ln
f (y )

g( y |θ )
 
 
 

 
 
 dy . (9.2) 

 This distance is related to the information lost by using model g with 
parameter θ instead of the real model f.  It indicates how good model g with 
parameter θ approximates model f.  Note that I(f,g) ≠ I(g,f ), that is, the K-L 
distance is not commutative and therefore is not a real distance.  
 For discrete models with k possible outcomes yi (i = 1, …, k), the K-L 
distance can be written as 

I ( f ,gθ )= p(y i | f ) ln
p( yi | f )
p( yi | gθ )

 
 
 

 
 
 

i=1

k

. (9.3) 

 In general, the real model, f, will be unknown. Fortunately, when two 
models, g1 and g2 have to be compared, the difference I(f,g1) – I(f,g2) does not 
depend on the real model f. Using this, Akaike (1974) developed the AIC (An 
Information Criterion, better known as Akaike’s Information Criterion) which 
is defined as

AIC = 2[k − ln(L)] (9.4) 

where k denotes the number of estimated parameters and L is the maximum of 
the likelihood function. The model with the minimum AIC is considered to be 
the best fitting model. This approach allows a simple ranking of the models 
and is also appropriate for comparing non-nested alternatives. Using the AIC,
Model 2 is preferred above Model 1 if AIC1 − AIC2 > 0, so if 

T = 2[ln(L2 ) − ln(L1 )] > 2(k2 − k1 )= 2ν . (9.5)

 A correction term should be added to the AIC if the number of parameters, 
k, is large, or the number of observations, n, is small. There is no universal 
best correction term, but the corrected AIC, AICc as given by Hurvich and Tsai 
(1989),

AICc = AIC + C(k ,n)= 2[k − ln(L)] + 2k (k +1)
n − (k +1)

, (9.6) 

performs reasonably well for most models (Burnham and Anderson, 2002). 
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 Using the AICc, Model 2 is preferred over Model 1 if 

T   >   2 ( 2k − 1k ) 1+ n (1 + 1k + 2k ) −  ( 1k +1)( 2k +1)
(n −  ( 1k +1))(n −  ( 2k +1))

 

 
 

 

 
 

= 2 ν ( 1+  correction term).

 (9.7) 

The correction term only depends on the number of parameters in both models 
(k1, k2) and the number of observations (n).

The BIC: finding the true model within a set of models 
 There may be a reason to believe a priori that one of the models in a set of 
models is true. The BIC described by Schwarz (1978) is a selection criterion 
for identifying such a true model with an as large as possible probability. The 
BIC is also based on twice the log ML’s, and uses a correction term increasing 
with the number of observations, 

BIC = k ln(n)− 2 ln(L)  (9.8) 

 The model with the minimum BIC is considered to be the best fitting 
model. Using the BIC, Model 2 is preferred above Model 1 if BIC1 − BIC2 > 0, 
so if 

T = 2[ln(L2 )− ln(L1 )] > (k2 − k1 ) ln(n)= ν ln(n) .  (9.9) 

 The BIC is a consistent estimator for the model type: if the number of 
observations becomes very large, the probability that the correct model is 
identified increases to 1. It should be noted however, that to meet the condition 
“very large” extremely large sample sizes are indeed required. For instance, 
identifying the correct model with high probability requires a very large 
number of observations. Umbach and Wilcox (1996), for example, needed as 
much as 125,000 simulated observations to reach a power of 0.79. 

Comparison between the three methods 
 LR, AIC, AICc and BIC use the same test statistic T to find the best 
approximate model. If the extended model has one extra parameter (ν = 1), the 
χ2 approximation for the LR test criterion at α = 5%  leads to rejection of the 
more simple model if T > 3.84. The threshold value for T increases with an 
increasing degree of freedom (see Figure 9.1). The AIC considers all models 
equivalent and for ν = 1 chooses the more extended model if T > 2. The 
threshold value for T increases linearly with higher values of ν (see 
Figure 9.1). For a difference of one parameter, the AIC criterion will choose 
the extended model with (approximately) probability 0.16 if the simple model 
is true.
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 The critical value for T in the AICc criterion is more complex. If the simple 
model has two parameters and the extended model three, the AICc criterion 
chooses the more extended model if T > (2n(n − 1))/((n − 3)(n − 4)). The 
critical value for T in a trial of only five observations (n = 5), for example, is 
20. The AICc criterion becomes less strict for the extended model with 
increasing n, and for n > 12, the AICc criterion is less strict than the LR one. 
Figure 9.1 shows the threshold values of the AICc for T with n = 25 or 100 and 
a 2-parameters simplest model. In this figure, the BIC criterion is given for the 
same numbers of observations.   
 In contrast to the AICc, the BIC criterion becomes stricter for the extended 
model as the number of observations increases (Figure 9.1). If the difference in 
the number of parameters is one (ν = 1), the AIC and BIC are almost identical 
for n = 8, and the results of the BIC criterion and the χ2 approximation of the 
LR test are about the same for n = 47. The preference for the more 
parsimonious model with increasing difference in number of parameters 
increases faster for the AIC, the AICc and the BIC than for the LR test 
(Burnham and Anderson, 2002). 

Figure 9.1.  The threshold value for the test statistic T as a function of the difference 
in the number of parameters (degrees of freedom ν ) of the two compared models. For 
the AICc the number of parameters in the simpler model is set at 2. 
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 The differences in critical value for model selection illustrate a 
fundamental difference between the three methods. Classical hypothesis 
testing with a likelihood-ratio test assumes that the most simple model is true 
unless the observed values are very unlikely (probability less than α , with 
α = 0.05 as most common choice). Using the AIC or AICc criterion, it is 
assumed that none of the models is true, but it is tried to minimize the (K-L) 
distance to the real, unknown, model in order to choose the model giving the 
best prediction for new data sets. Using the BIC criterion, it is assumed that 
one of the models is true, and the probability of choosing that true model is 
maximized. Note that only the difference between the log-likelihoods is of 
interest in each method. Therefore, all AIC, AICc and BIC can be decreased by 
a constant. The smallest AIC (AICc, BIC) is often subtracted from all AIC
(AICc, BIC) values, making the smallest AIC (AICc, BIC) 0. 

The Kullback-Leibler distance between models 
 Choosing among models requires quantification of the difference between 
them. The fundamental distance measure for the AIC is the Kullback-Leibler 
(K-L) distance. The K-L distance between models can be determined for one 
realization, but also cumulative for a combination of n observations, which is 
of interest for model selection. Then, the K-L distance between the models is 
the expectation, given the extended model, of the difference between the 
simpler model and the more extended model in the log-likelihoods for n
combined realizations. It depends, among others, on the values of the 
independent variables in the observations.
 In an example, we will show how the K-L distance between models can be 
determined if n realizations of the model are observed. We assume that some 
discrete variable, y, is observed, and that y can have m different realizations, 
w1, w2,…, wm. The probability to attain wj, can be described by some model 
and depends on the independent variable, x, and a model parameter.  We 
consider two models f and g with parameters ϕ and θ, respectively, and n
independent observations. Thus, for a certain x and θ, model g gives the 
probability that the realization for the observed variable y is wj. This 
probability is written as Pg (y = wj | x,θ ) .  Suppose that n independent discrete 
observations are obtained, each with its own value for x and all with the same 
set of m different possible realizations. Then, the K-L distance of model g for 
all n observations together ( g n ) to model f  for the same combination ( f n ) is

I n( f ,g )= Pf (y = w j | x i,ϕ )
j =1

m

i =1

n

ln
Pf ( y = wj | x i ,ϕ )

Pg (y = wj | xi ,θ )

 

 
 

 

 
 . (9.10) 

 The K-L distance can be calculated for fixed parameters ϕ and θ and a 
specific set of independent variables x = (x1, x2,...., xn )T . So if f n  is 
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completely defined, i.e. parameter ϕ and the independent variable x  are fixed, 
then the K-L distance of g n  for each possible value of its parameter θ can be 
calculated. Thus, the minimum K-L distance of g n  to this specific version of 
f n  can be determined.  

 The minimum K-L distance gives an indication of how easily model g will 
be preferred over model f  if this specific version of model f  is true. If none of 
the models is true, as the AIC criterion assumes, the minimum distance of 
model g to the best approximating version of model f can be used as an 
indication of how easily model g will be preferred over model f.  Note that the 
minimum K-L distance is 0 if model f is nested in model g.
 The term  

Pf (y = w j | x i,ϕ )
j=1

m

ln
Pf (y = wj | xi ,ϕ )
Pg (y = wj | xi ,θ )

 

 
 

 

 
  (9.11) 

in equation (9.10) depends on the values of xi. Adding an extra data point will 
lead to an increase in the K-L distance depending on the position of the 
independent variable in that data point. However, if the models f and g are 
reasonably smooth and the frequency distribution of the independent variables 
is (nearly) unaffected by addition of extra data points, I(f,g) will increase 
nearly proportional to the number of observations (see e.g. Linhart and 
Zucchini, 1986). In other words, the minimum distance of g n  to f n  becomes 
proportional to n for large n if the distribution of the independent variable does 
not depend on the number of observations. This result is clearly only intended 
for large samples. For the first few data points, it might easily be possible to 
estimate parameter θ of g so that the probability Pg (y | xi, θ) = Pf (y | xi, ϕ) in 
the few data points xi. This will generally be true for linear models if the 
number of data points does not exceed the number of parameters of g.

9.3 EXAMPLE: SEED SIZE DISCRIMINATION BY 
SCATTERHOARDING RODENTS 

Methods

Ecological background 

 The dispersal phase is one of the most critical phases in plant life history. 
Plants have evolved a wide variety of mechanisms to have their seeds 
dispersed. Many nut-bearing tree species depend on scatterhoarding birds or 
rodents for dispersal. Such animals bury seeds as food supplies in numerous 
spatially scattered caches in the soil surface. This behaviour provides effective 
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dispersal because some seeds are left to germinate and establish seedlings 
(Vander Wall, 1990). Non-scatterhoarded seeds, in contrast, probably die 
underneath the parent tree due to fungi, invertebrates and non-hoarding 
mammals (Jansen, 2003).  
 The benefits of scatterhoarding have given rise to the idea that the 
production of large, nutritious seeds in nut-bearing tree species has evolved in 
response to feeding preferences of scatterhoarding animals (Smith and 
Reichman, 1984). Large seeds are more nutritious and may therefore be more 
suitable for hoarding than smaller seeds. Indeed, several studies have shown 
that scatterhoarding animals disperse large seeds further than small ones (e.g. 
Hallwachs, 1994; Jansen et al., 2002; Vander Wall, 2003). However, there 
must be a point beyond which seeds become too large to efficiently be handled 
by a given animal taking into account its limited body mass and mouth width. 
Therefore, there should be an optimum seed size for dispersal by a given 
scatterhoarding animal (Jansen et al., 2002).

Data
 Jansen (2003) experimentally studied the effect of seed size on dispersal by 
scatterhoarding rodents in the Nouragues rainforest reserve in French Guyana, 
South America (4°02’N and 52°42’W).  During five consecutive years (1996-
2000), numerous cafeteria plots were laid out in the territories of Red acouchy 
(Myoprocta acouchy), a cavi-like scatterhoarding rodent. Each plot contained 
25 (1996-1997) or 49 (1998-2000) individually marked seeds of the canopy 
tree Carapa procera (Meliaceae), numbers that agree with the approximate 
daily production by average individuals of this species. Seed batches were 
assembled as to have seed mass within plots ranging from 3 to 60g, offering 
acouchies a wide choice. Seed removal from the experimental plots was 
monitored at days 1, 2, 4, 8, 16, 32, 64 and 128 after the start of the 
experiment. Moreover, the plots were also continuously monitored on video 
during the first day or first few days. Seeds that were eaten on the plot were 
included in the removed seeds, with the annotation of being eaten. See Jansen 
(2003) for further details.
 The data set used in this paper consists of 66 plots (trials) with complete 
data on seed masses and seed removal. The structure of this data set allows us 
to apply our model selection methods at four different levels: (1) all trials 
lumped; (2) trials grouped in years of poor and rich fruiting; (3) trials grouped 
by year; and (4) individual trials. Moreover, there was variation among plots 
within and between years.  Plots were laid out at different sites, under different 
forest conditions and in different rodent territories. Moreover, years differed in 
fruit availability. Seeds were abundant during the even years and seeds were 
scarce during the odd years. This distinction is important, because feeding 
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preferences are more pronounced under seed abundance, allowing animals to 
be more choosy, than under conditions of scarcity (Jansen et al., 2002).

The models 
 We modelled the probability of seed removal as a function of seed mass 
using a hierarchical set of models (Huisman et al., 1993), 

Model I:  p(x) = 1
1+ ea , (9.12a) 

Model II:  p(x) = 1
1+ ea+bx , (9.12b)

Model III:  p(x) = 1
1+ ea+bx ⋅ 1

1+ ec , (9.12c)

Model IV: p(x) =
1

1 + ea+bx ⋅
1

1 + ec−bx , (9.12d)

Model V: p(x) = 1
1+ ea+bx ⋅ 1

1+ ec+dx . (9.12e) 

Figure 9.2. The relation between the five models fitted. 

 Here, x is the 10-logarithm of seed fresh mass and p(x) is the probability 
that a seed with log-mass x is removed. Model I describes a constant 
probability, independent of the seed mass. Model II describes a probability 
that increases gradually from 0 to 1 (or decreases from 1 to 0). Model III 
describes a gradual increase (or decrease) of the probability from 0 to some 
intermediate value. Finally, Models IV and V both describe an optimum 
relationship, Model IV being symmetric and Model V asymmetric. Note that 
the models are functions of the log of the seed mass, so that the symmetry of 
Model IV is in the log of the seed mass, not in the seed mass itself.   Figures of 
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the five models are given in Appendix A, and the relationship between them is 
shown in Figure 9.2.
 We used the AICc criterion to select the model best describing the data. 
Each data point is denoted as (xi,yi), where xi is the log of the seed mass and yi

equals 1 if the seed is removed, and 0 if it is not. For each model, the 
likelihood L of the data is 

L = pθ (xi∏ )yi (1− pθ (xi ))1− yi , (9.13) 

and the log-likelihood ln (L) is 

ln(L)= yi ln( pθ ( xi )) +(1− y i ) ln(1− pθ ( xi )) . (9.14) 

 The value of p depends on the variable x and on the parameter value θ . The 
ML estimator of θ  is the value of θ  that maximizes the likelihood or log-
likelihood.
 We fitted the five models at four levels: (1) to the pooled data; (2) to poor 
and rich years separately; (3) to years separately; and (4) to individual trials. 
Furthermore, we also fitted the models as random effect models. That is, we 
assumed that for each trial the parameters were independent drawings from a 
normal distribution and estimated the mean and standard deviation of these 
parameters. If the model had more parameters, we assumed that the parameters 
were independent.  Random effect models were fitted at three levels: (1) to the 
pooled data; (2) to poor and rich years separately; and (3) to years separately. 
Note that some trials showed no variation because all seeds were removed. 
 We also fitted some mixed effect models to the same three levels as the 
random effect models. Here, we assumed that the slope parameters (b and d)
had fixed values. For each trial, the parameters determining the position of the 
model (a and c) were randomly drawn from some normal probability 
distribution. Finally, we fitted special versions of Models II and IV. Here, we 
assumed that the slope parameter b and the maximum M (Model IV only) were 
constant. This was done: (1) for all trials; (2) for the trials in poor and rich 
years separately; or (3) for the trials in one year. The position of the inflection 
point (Model II, −a/b) or top (Model IV, (c − a ) / 2b ) was fitted for each trial 
separately. The random effect, mixed effect and special effect models were 
only considered with the AICc as selection criterion. 
 We wanted to distinguish certain basic relations between seed mass and the 
probability of seed removal. The five hierarchical models allow us to assess: 
(1) whether any such relationship exists (Model II versus Model I); (2) 
whether there is an upper limit < 1 to the probability of seed removal (Model 
III versus Model II); and (3) whether the probability of seed removal is 
maximal at intermediate seed mass or rather monotonously increasing or 
decreasing with seed mass (Models IV or V versus Model II). These relations 
are only of interest within the normal range of seed masses, i.e. 3-50g in our 
example. 
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Analysis

The size of the effect to be detected 
 First, we determined which effect we wanted to be able to detect. This 
rather arbitrary process lead to the following choices:  
- Model II versus Model I: If the differences in log-odds at the smallest and 
largest seed mass is greater than 2, we wish to be able to assess an increasing 
(or decreasing) trend in probability.  Then the slope parameter b should be less 
than –1.64. Also, we are not interested in assessing a monotone increase if it is 
an increase from almost never to very rarely (the maximum probability should 
be over 0.3) or an increase from in most cases to almost always (the minimum 
probability should be at most 0.7). For the minimum detectable slope this leads 
to a ∈ (–0.07, 3.63). Figure 9.3a shows three versions of Model II, which we 
wish to be able to distinguish from Model I. 
- Model III versus Model II: We wish to be able to assess whether the upper 
limit of the probability is at most 0.8 (c > –1.39), if that upper limit is 
approached sufficiently closely and if the conditions under which Model II can 
be distinguished from Model I are met. “Approaching the upper limit 
sufficiently closely” is operationalized as a log-odds distance from the upper 
limit of less than 0.5, i.e. if the upper limit is 0.8, the maximum probability 
reached in the range of possible seed masses is at least about 0.7. In 
Figure 9.3b some possible versions of Model III are given, which we wish to 
be able to distinguish from Model II. 

Figure 9.3. Examples of Model II (Figure 9.3a), Model III (Figure 9.3b) and 
Model IV (Figure 9.3c) which we wish to be able to distinguish from simpler models 
or models with the same number of parameters.  

- Models IV or V versus Model II: We wish to be able to recognize a 
maximum in the probability if the differences is greater than two between the 
log-odds of that maximum, as attained at intermediate seed mass, and the log-
odds of the probabilities at the two limits of the seed mass range. Furthermore, 
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the top should be well within the range of the seed mass, say between 6 and 
25 g. The minimum probability at both borders of the seed mass range should 
be less than 0.7 and at the top at least be 0.3. In Figure 9.3c three versions of 
Model IV are drawn. We wish to be able to distinguish these from Model II. 

Levels of lumping data 
 Our first analysis was to compare fitting results of all trials lumped 
together, and the trials lumped for poor and rich years separately. Fitting 
Model II, for example, to trials lumped for poor and rich years separately, can 
be considered as fitting the model to the complete data set with an extra factor 
for poor or rich years. Model II then becomes 

p(x) = 1

1+ ea1 + a2z + (b1 + b2 z)x
 (9.15) 

where z is the factor for the year type (z = 1 in rich years, and z = 0 in poor 
years) and x is the log of the seed mass. Figure 9.4 shows the data for the 
probability of seeds being removed and the corresponding best fitting models. 
The AICc values for all models are given in Table 9.1a (first two lines).

Figure 9.4. (a) The frequency of seed removal per size class, with all trials lumped 
and with trials lumped for rich and poor years separately. The size classes have a 
width of at least 5g. Size classes with less than 10 observations were lumped. (b) The 
corresponding models that gave the best fit. 
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Table 9.1. AICc values for the hierarchical set of Models I-V fitted to seed removal 
data with different levels of data lumping and model types. AICc values are given for 
the fixed effect models (a), the random effect models (b), the mixed effect models (c), 
and the special models (d).  Levels of lumping were: all trials lumped together, trials 
lumped for poor and rich years separately, trials lumped for all five years separately 
and trials all considered separately. Note that AICc values were standardized by 
subtracting the smallest AICc value (the special version of model II with rich and poor 
years fitted separately). The smallest AICc values for each level are printed in bold. 

AICc Model I Model II Model 
III

Model
IV

Model V 

(a) Fixed effect      
All data together 712.5 619.5 620.2 618.5 613.2

Split in rich/poor years 502.1 410.4 413.2 412.1 411.4 
Years apart 422.4 318.5 325.1 324.7 330.5 
All trials apart 95.0 44.0 156.9 162.8 299.9 
(b) Random effect      
All data together 175.1 72.4 76.6 70.3 76.7
Split in rich/poor years 146.3 38.8 39.0 37.7 49.3
Years apart 140.0 39.3 52.0 51.6 73.0 
(c) Mixed effect      
All data together  89.0 68.5 76.1 70.5 
Split in rich/poor years  49.8 38.7 42.0 42.0 
Years apart 46.1 49.2 51.4 59.2 
(d) Special models      
Slope/top for all data together 9.3  181.2  
Slope/top for rich and poor years 0.0  23.7  
Slope/top for each year  3.4  8.5  

Table 9.2. Frequency of best-fitting individual trials for five hierarchical models. All 
trials are considered. Numbers of trials in which all seeds were removed (no variance) 
are given between brackets. 

Number of trials for which the model is best fitting 
Model

Removed seeds 
Poor year Rich year 

I 17 (17) 26 (20) 
II 4 15 
III 0 3 
IV 0 1 
V 0 0 
Total 21 (17) 45 (20) 
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Clearly, the parameters in the poor and rich years do not have the same values. 
Moreover, the best fitting model differs between all years lumped together and 
years grouped into poor and rich years.  The best model for all trials lumped 
shows an optimum seed size for removal. Consideration of rich and poor years 
separately however, reveals that an optimum seed mass for removal exists only 
in rich years. Poor years show rather an exponential rise to a maximum 
removal probability.  
 We then investigated how further reduction of the level of trial lumping 
affected the results. We extended the models with dummy variables, as in 
equation (9.15), to find out whether the parameters differed between years or 
even between individual trials. Especially the latter increased the number of 
parameters considerably.  
 The results are shown in Table 9.1a (lines 3-4). Clearly, fitting the models 
to trials separately yields considerably lower AICc values than fitting to 
lumped trials, despite the large number of extra variables involved. Seed 
removal is best described at the trial level by Model II, indicating higher 
probability of removal with increasing seed mass.  
 Subsequently, we determined which of the five models best fitted each trial 
individually. The distribution of best fitting models among trials is given in 
Table 9.2. Simply counting how many times each of the models turns out to 
give the best fit would have resulted in a constant probability per trial to be 
removed (Model I). However, this does not guarantee that it is the best model 
(Hemerik et al., 2002; Hemerik and van der Hoeven, 2003). None of the five 
models will always be identified as the best fitting model even for data 
simulated with that very model (see Appendix A).  

Random and mixed effect models 
 Another approach to account for differences between trials is to fit the five 
models as random effect or mixed effect models. In random effect modelling, 
we assume that all parameters for each trial are independent drawings from a 
normal distribution. In mixed effect modelling, we assumed that the 
parameters a and c, which determine the position of the model, were randomly 
drawn for each trial from some normal probability distribution, while the slope 
parameters (b and d) had fixed values. The resulting AICc values are given in 
Tables 9.1b and 9.1c, respectively.  
 The best fitting random effect model was Model IV with trials lumped for 
rich and poor years. The AICc value was even lower for this model than for 
the fixed effect Model II in which trials were treated separately. Figure 9.5 
shows the envelopes containing 80% and 95% of the probabilities according to 
this model. In contrast the mixed effect models performed poorly. They never 
fitted better than the random effect models (Table 9.1), and rarely better than 
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the best fitting fixed effects model. Mixed effect models had lower AICc 
values than fixed effect models only with trials lumped for rich and poor years. 

Figure 9.5. The probability of seed removal as a function of seed fresh mass according 
to the random effect version of Model IV. The black line indicates the removal 
probability with all parameters at their mean value. The dark grey envelope contains 
80% of all possible realizations of parameter combinations, the grey area 95%. 

Some special models 
 We have now seen that the best fixed effect description is obtained by 
fitting models to each trial separately. For the removal data, a slightly better 
but not very informative fit is reached by the random effect version of 
Model IV fitted to the data of rich and poor years separately. Our main 
question however, is whether there is a general relationship between seed size 
and the probability of seed removal (and subsequent dispersal). The two 
logical alternative relationships are an increase and an optimum. To 
investigate this, we fitted special versions of Models II and IV. Here, we 
assumed that the slope parameter b and the maximum M (Model IV only) were 
the same for all trials, while the position of the inflection point (Model II, 
−a/b) or the optimum (Model IV, (c − a ) / 2b ) were fitted for each trial 
separately. 
 The AICc values for these special models are given in Table 9.1d. The 
lowest AICc values by far were for Model II with slope parameter b (–3.1), or 
even better, with slope parameter for rich (b = –2.7) and poor years (b = –8.6) 
separately.  The models for each trial are shown in Figure 9.6 (a and b). For 
six out of the 45 rich trials and 17 out of the 21 poor trials, the inflection point 
is way below the observable range of seed mass (3 to 60 g), leading to a 
removal probability of nearly 1, independent of the seed mass.  
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Figure 9.6. The probability of seed removal according to the special version of 
Model II with a fixed slope parameter for all trials in rich and in poor years 
respectively (Figures 9.6a and 9.6b). The upper horizontal line represents trials in 
which all seeds were removed, six trials in rich years (Figure 9.6a) and 17 trials in 
poor years (Figure 9.6b).  

Information loss through fixed effect modelling with lumped data? 

 To investigate how much information was lost by lumping data, we 
calculated what percentage of the variance explained by the best fitting fixed 
effect model was also explained at higher levels of lumping (Burnham and 
Anderson, 2002). We calculated the ratio of (1) the difference between twice 
the log-likelihoods of an intermediate model and the simplest model (Model I 
with all data lumped) and (2) the difference between the best fitting model (all 
trials separated, Model II) and the simplest model (equation (9.16)). Let ln(Lb)
be the log-likelihood of the best fitting model, ln(Ls) the log-likelihood of the 
most simple model and ln(Li) the log-likelihood of the intermediate model. 
Then the multiple coefficient of determination, R2 is 

Ri

2 =
2 ln( Li )− 2 ln(Ls )
2 ln(Lb )− 2 ln( Ls )

. (9.16) 

Ri
2 can be interpreted as the fraction of the structural information in the best 

fitting model, which is also contained in the intermediate model (i).
 Calculating the Ri

2 for the best fitting model gives 17%, 53% and 68% 
explained for complete lumping, lumping in poor and rich years, and lumping 
per year, respectively. These percentages indicate that lumping trials in rich 
and poor years conserves about 50% or more of the information. Figure 9.7 
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shows the best fitting models for the probability of removal with at least 50% 
of the information retained. 

Figure 9.7. The best fitting fixed effect models with data lumped into rich and poor 
years (a) with data lumped per year (b). Black lines represent rich years, grey lines 
poor.

The Likelihood-Ratio approach for the fixed effect models 
 An alternative for using the AICc criterion is a stepwise test of a simpler 
model against a one-step more complex fixed effect model. Figure 9.8 shows 
all possible pathways of hypothesis testing in the case of our five models. 
There are two main pathways. The first (sequence 1) is to test whether the data 
can be split into groups. Subsequently, if further splitting is not significant and 
thus not allowed, models are tested in order of increasing complexity. The 
second (sequence 2) is to test the models in sequence of increasing complexity 
for the lumped data, and then, for the most complex model allowed, test 
whether the data can be split into groups. 
 Note that two alternatives are tested against Model II. Testing both at the 
5% significance level will lead to a larger than 5% probability that Model II is 
rejected under the null hypothesis. Here, we have chosen to ignore this fact 
because a standard Bonferroni type correction would be far too conservative.
 Both main sequences lead to the same conclusion, viz. that the best model 
is Model II for all trials separately (Figure 9.8). Note however, that Model II is 
rejected in favour of Model V (p = 0.0058) when tested at level (1) (all data 
lumped). 
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 Here, we do not explore the LR approach further because our aim is to find 
the model that best describes our data, rather than to choose the simplest 
possible model. 

Figure 9.8. Pathways of pairwise testing for selection of the best-fitting model for 
seed removal by scatterhoarding rodents. Each model is tested against a one step more 
extended version using the χ 2  approximation of a likelihood-ratio test. Note that the 
extension can either be in the direction of a more complex relationship (horizontal, for 
example Model II instead of Model I), or in the direction of splitting the data in extra 
classes (vertical). Levels of lumping are: (1) all trials lumped; (2) trials lumped within 
rich and poor years; (3) trials lumped per year; and (4) all trials separately. Dotted grey 
arrow: simpler model cannot be rejected (α = 0.05), thin arrow: the significance level 
between 0.05 and 0.005, intermediate arrow: the significance level between 0.005 and 
0.0005, fat arrow: the significance level less then 0.0005.  Left: LR test for seed 
removal, right: LR test for seeds being found cached. 

9.4 SIMULATION 

Methods
 We have seen that models selected on the basis of lumped trials may differ 
considerably from models selected at the trial level. The best fitting fixed 
effect models at the trial level only indicated a simple increase of seed removal 
with seed mass, whereas the fixed models indicate an optimum when all data 
are lumped together, and the random effect models indicate an optimum both 
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when all data are lumped together as well as when the data are split in rich and 
poor years. Other research has indicated that rodents discriminate against both 
small and large seeds, resulting in an optimum seed size for dispersal (Jansen 
et al., 2002; Jansen, 2003). We therefore investigated whether trials with as 
few as 25 or 49 observations are at all suitable for accurately discriminating at 
the single trial level between the five models studied.  
 We used the five models with a wide range of parameter values. For each 
combination, we simulated 1000 data sets of 25 or 49 observations (seeds) 
with masses in a geometric series (log-masses arithmetic). The log-masses 
were centred and the width of the series of the log-masses was taken from 
-0.6109 to +0.6109. Then we determined which of the five models fitted best 
to each of these simulated data sets, using the AICc criterion, and counted how 
often the fitted model was indeed the model by which the data were generated.  
We used the AIC(c) as selection criterion because we wish to compare the 
results with the model selection in the experiments, where none of the five 
models will be completely true. We simulated the models with fixed parameter 
values because we were only interested in the frequency of correct model 
selection in one single trial. 
 We also calculated the minimum K-L distance of each simpler model to the 
simulated model for each parameter set for the Models II, III, IV and V. This 
minimum distance is considered as a measure of the distance between the 
simulated model and the other model. Examples of simulation and fitting 
results are given in Appendix A.

Simulation results 
 The simulations showed that 25 or even 49 seeds per plot provide too few 
observations per trial to accurately distinguish the five models for realistic 
values of the parameters. The following points emerge: 
- Models II and III can be distinguished from Model I more easily if the 
slope parameter b is larger (in absolute value) and if the point of inflection is 
more in the centre of the data. 
- Model IV can be distinguished more easily if the slope parameter b is large. 
- Model I is chosen more often if the top of Model IV is closer to the median 
of the data points ([a–c] small), whereas Model II is chosen more often if the 
top moves farther away from the median of the data point (abs(a – c) becomes 
larger).
- Models IV and V are chosen only rarely if a simpler model (or Model III) 
is true. 
- If Model IV is true, the best fitting model is often Model III instead of 
Model IV. Only if the slope parameter b is very large, will Model IV be 
chosen as best model more often than Model III. 
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- Model I was erroneously chosen less often in the simulations with 49 
observations than in those with 25 observations. 
 We compared the distribution of best fitting models to the experimental 
data (see Table 9.3) with the distribution of best fitting models to simulations 
with Model I both for n = 25 and n = 49. Parameter a was chosen nearest to 
the estimate of a for all data together.  We used a = -2 for seed removal.  The 
observed distribution differed significantly from the simulated one (p = 0.01 to 
0.015, Kruskal-Wallis test). 

Discrimination of the models 
 How different should alternative models be to be accurately discriminated? 
To answer this question we used the Kullback-Leibler (K-L) distance as a 
measure for the discrepancy between two models, and between a model and 
the data (see Section 9.2).  The K-L distance of model A to the “real” model 
(the simulated one) depends on the parameter values of model A. If the real 
model is nested in model A, the parameters can always be chosen so that the 
distance is 0. In other cases, the distance will have some positive value, 
depending on the parameters of model A. The parameters minimising the K-L 
distance can be determined, and these parameters belong to the version of 
model A best fitting to the real model. This minimum K-L distance of model 
A to the real model will be indicated as the K-L distance of model A to the 
real model. If this distance is small, the difference between model A and the 
real model is small, and in model selection model A will often be preferred 
over the real model, i.e. the simulated one. If the distance is calculated in a 
limited number of data points, the distance will depend on the values of the 
independent variables (the seed masses) at these data points. The more 
observations (seeds) are used, the larger the K-L distance between models will 
become (see Section 9.2). 
 Figure 9.9 gives an impression of the K-L distance to the real model and 
the best approximating versions of Models I to IV for the real model being 
Model V.
 In Section 9.3, we showed some versions of the Models II, III and IV that 
we wanted to distinguish from simpler models (Figure 9.3). For 25 
observations, with mass geometrically spaced, the minimum K-L distances of 
Model I to the three examples of Model II with increasing value for a are 
0.530, 1.044 and 0.530, respectively (Figure 9.3a). The minimum KL 
distances of Model III to Model II with increasing values of a and c are 0.011, 
0.009 and 0.008, respectively (Figure 9.3b). The minimum K-L distances of 
Model IV to Model II with increasing parameter c (decreasing a) are 1.19, 
1.88 and 1.88, respectively (Figure 9.3c). Note, however, that another choice 
of the seed mass distribution may dramatically affect the minimum KL 
distance. For example, applying the actual used distributions of seed masses in 
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trials with 25 observations to the case of Model IV with the smallest parameter 
value for c (a = -7.02, b = 4.48 and c = 2.74, KL distance in case of geometric 
spacing 1.19) the mean of the minimum K-L distances for the 43 seed mass 
distributions is 0.48 (min.: 0.012, max.: 1.52). 

Figure 9.9. Model V (black line) and the best approximating Models I, II, III and IV. 
The parameter values (a,b,c,d) of Model V are in Figure 9.9A: (-2, -10, -2,50) and in 
Figure 9.9B:( -2, -2, -2,5). The minimum K-L distance of these models to Model V is 
given for 49 equidistantly spaced log-seed masses. In Figure 9.9B, Model V can be 
approximated reasonably well by the Models IV, III and II. In Figure 9.9A, only 
Model IV looks somewhat like Model V, but its distance to Model V is larger than the 
distance of Model II to Model V in Figure 9.9B. 

 The probability of the simulated model being identified as the best model 
increases with its difference from simpler models. For instance, if Model IV is 
simulated, it is chosen as the best model more often if the minimum K-L 
distance to the simulated model is larger for the models with less parameters 
(Models I and II) or with the same number of parameters (Model III). 
Figure 9.10 shows how the percentage of correct model choices depends on 
the least of all minimum K-L distances of the simpler models to the simulated 
model. 
 Figure 9.11 shows that Model I is chosen as best fitting model more often if 
the minimum K-L distance of Model I to the simulated model is small. For 
Model II, the same conclusion holds, provided that the K-L distance of 
Model I to the simulated model is not small too. If both Model I and Model II 
have a small K-L distance to the simulated model, Model I is often preferred 
above Model II, illustrating in fact that parsimonious models are favoured. 
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Figure 9.10. The probability of being classified as the correct model as a function of 
the K-L distance of the nearest simpler model to the simulated model. 

Figure 9.11. The K-L distance of Model I to the simulated model plotted against the 
percentage of the simulation runs in which Model I is chosen as best model using the 
AICc criterion. The number of observations in each simulation is 49. 
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 Figure 9.12 shows how the frequency of choosing Model II depends on the 
K-L distance to Model II. In this figure and the following ones, the K-L 
distance is square root transformed to obtain an improved illustration of the 
data with a small K-L distance. The square root transformation is preferred 
above other possible transformations because the power of a test tends to be 
proportional to the square root of the number of observations, and the K-L 
distance is proportional to the number of observations. 

Figure 9.12. Percentage of the simulation runs in which Model II is chosen as best 
model (AICc criterion) as a function of the square root of the K-L distance of Model II 
to the simulated model. If close to the simulated model, Model I is often preferred 
over Model II.  Markers scaled by distance of Model I to the simulated model: 
(1): > 2; (2): between 1 and 2; (3): between 0.5 and 1; and (4): smaller than 0.5). The 
number of simulated observations is 49. 

Relation between K-L distance and model identification 
 The percentage of the simulation runs erroneously identified as Model I 
increases with decreasing K-L distance of the real model to Model I. Using 25 
observations instead of 49 almost halves the K-L distance of Model I to the 
real model. The probability of choosing Model I instead of the simulated 
model depends only on the K-L distance between them, not on the number of 
simulated observations (Figure 9.13).  
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Figure 9.13. Percentage of simulation runs in which Model I is erroneously chosen as 
best model (AICc criterion) as a function of the square root of the K-L distance. 
Simulations with either 25 or 49 observations per trial 

 If the K-L distance for 49 observations is very small (say 0.05), halving the 
K-L distance will not increase the percentage of best fits of Model I 
considerably. On the other hand, if the K-L distance is very large, say above 
10, halving the K-L distance will only slightly increase the choice for Model I. 
Thus, for models and parameter values with an intermediate K-L distance, a 
larger number of observations will reduce the K-L distance proportionally as 
well as the number of erroneous choices for Model I. Note that this minimum 
K-L distance between models is the theoretical distance, whereas the AIC 
calculates the observed difference for a given data set. If the minimum 
discrepancy to any of the simpler models is 2, the probability of choosing the 
extended model is about 50%. 

The power of the AIC 
 Let us compare two nested models of which the more extended one is true 
but does not differ too much from the simpler one. Then twice the difference 
between the log-likelihoods, T, is asymptotically non-central χ2 distributed 
with degrees of freedom ν = k1 − k2 and non-centrality parameter λ  (Cox and 
Hinkley, 1974). We will sketch some of the implications of the non-central χ 2
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distribution of T for the power of the AIC. If T is χ 'ν ,λ
2  distributed, the power 

of the AIC to choose the more extended model (or the probability that T > 2ν )
can be calculated. Figure 9.14a shows the power for models with only one 
parameter difference (ν  = 1), assuming λ  = 2M, where M is the minimum K-
L distance of the simpler model to the more extended one. This value for λ
shows a good fit to the simulation results, and Akaike (1974) has proven that 
the non-centrality parameter λ  can be approximated by 2M. Note, however, 
that for the general results, the exact value of the non-centrality parameter is 
irrelevant. Given λ  = 2M, for ν  = 1 a power of about 50% is reached if M = 1 
and of about 80% if M = 2.5. As long as nothing is known about the specific 
properties of the models, the probability P(T > 2ν ) for T~ χ 'ν ,λ

2  with λ  = 2M

can be used as a first impression of the potential power of the AIC. 

Figure 9.14. Percentage of simulation runs correctly identifying the simulated model 
(AICc criterion) as a function of the square root of the K-L distance to a single 
alternative model with one parameter less. Simulations with 49 observations per trial.  
The best fit is determined for separate runs (a), and for 25 runs combined (b). The 
drawn black lines show the theoretical prediction of the power if λ = 2M .

 An increase in the number of observations will result in a more or less 
proportional increase of M, and thus of the non-centrality parameter λ .
Sometimes, it will not be feasible to increase the number of observations in 
one trial with uniform conditions, for instance in the same trial. In this case, 
carrying out several trials, each with their own conditions, can increase the 
number of observations. The differing conditions in each trial may necessitate 



BALANCING STATISTICS AND ECOLOGY 259 

estimating a different set of model parameters for each trial. Let each trial 
contain n observations and let the number of trials be r. In this case, T ~ χ rν , ′ λ 

2

with ′ λ = rλ , and the more extended model is chosen if T > 2rν . Figure 9.15 
shows the relation between the number of trials and the power 
β = P(T > 2rν | T ~ ′ χ rν , rλ

2 )  for λ  = 0, 0.5, 1, 2, 3 and 4. For λ  = 0 (the simpler 
model is true) and λ  = 0.5 the power decreases with an increasing number of 
trials. Increasing the number of trials leads to an increase in power only for 
λ  = 2, 3 and 4.
 To illustrate how the K-L distance is related to the power of the AIC, we 
composed a set of 25 simulated trials for each simulated model by randomly 
drawing (with replacement) 25 runs (trials). For the 25 runs combined, the 
simulated model was tested against a model with one parameter less. This was 
repeated 1000 times. Figure 9.14b shows the relation between the percentage 
of correctly identified models and the K-L distance to the simpler model for a 
single simulation run. The theoretically expected power is also shown. 

Figure 9.15. Power to correctly select a more extended model rather than a simpler 
one (AICc criterion) as a function of the number of independent trials. The difference 
between the maximum of the log-likelihoods for each trial is non-central χ 2

distributed with non-centrality parameter λ  and degrees of freedom ν .
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9.5 CONCLUSIONS AND DISCUSSION 
 Experimenters must sometimes find a balance between what is statistically 
desirable and what is biologically realistic and feasible. One example of such a 
situation is formed by ecological experiments that consist of many replicate 
trials, each containing a limited number of observations. This approach may be 
the only way to obtain sufficient data, or be more informative for answering 
the ecologically relevant question. However, the variation between trials 
should be accounted for statistically. We have shown that rigorous application 
of this principle may make it impossible to distinguish any pattern present in 
ecological data.
 In ANOVA types of problems it is a generally accepted rule that two 
groups can only be combined if they do not differ significantly. We applied 
this rule also for combining data in model selection and model parameter 
estimation. Using fixed effect models, the number of parameters is 
proportional to the number of fits of the model to separate groups of data sets. 
So if each trial is considered separately, the number of parameters is 
proportional to the number of trials. Before combining data in larger groups, it 
should be tested whether the fit of any of the models to the combined data is 
better than the best fit of any of the models to the separate data. To identify the 
best fitting model we used the AICc (a non-specific robust adaption of the AIC 
to large number of parameters or small data sets) as selection criterion.
 If lumping of data is not allowed, we showed that the identifiability of a 
true model against simpler alternatives only increases with the number of 
replicate trials if the minimum K-L distance between the two models is 
sufficiently large (> 1/2) in each trial. That is, using the AIC(c) the power of 
model identification only increases by increasing the number of separate trials 
if the power in each trial is sufficiently large. Note that if instead of the AICc 
the LR test is used, the power would increase with an increasing number of 
trials. For a large difference in the number of parameters the LR criterion is 
less conservative than the AIC, leading to the situation that the AIC criterion 
may prefer the simpler model even though the LR test suggests that the 
simpler model is unlikely when compared to the extended one. The AIC leads 
to the model giving the best prediction and the LR test to the most 
parsimonious model being not too unlikely. The BIC is highly biased against 
the more extended models, whereas its claimed consistency is only relevant for 
very large numbers, and therefore totally uninteresting for most biological 
experiments with a relatively small number of observations. 
 To test whether data of several trials can be lumped, the fit of fixed and 
random effect versions of the models at each level of data lumping should be 
compared. At a given level of data lumping, the parameters of the fixed effect 
models have a fixed value, whereas the parameters of the random effect model 
are drawn for each trial from a probability distribution with fixed parameters at 
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that level of lumping. The random effect models are the analogue of random 
effect models in ANOVA. In our example, the random effect model with data 
lumped in rich and poor years appears to fit best. 
 Next to fixed and random effect models, the fit of some mixed effect 
models might also be considered. For instance, we fitted models with a 
constant value for the slope parameter and trial-specific values for the other 
parameter(s). The fit of such mixed models have to be compared with the fit of 
models with parameters at only one level of data lumping. Note however, that 
such a mixed model may seem to show a general trend, for instance a relation 
with a maximum, but that this might imply for some trials a uniformly 
increasing trend and for others an uniformly decreasing trend, depending on 
which part of the curve is observed. The supposed general trend would in such 
a case be based on extrapolation and thus ecologically irrelevant. 
 Before starting an experiment it is sensible to investigate whether the 
statistical power is sufficient to answer the research questions. If one of the 
aims is to distinguish different models, the minimum K-L distance (MKLD) 
between alternatives can be used as an indication for the power of the AIC(c) 
decision procedure. To calculate the MKLD to a model, the parameters of that 
model and the values (or distribution) of the independent variables have to be 
specified. The parameter values can be based on previous experience, and can 
also reflect the minimum deviation of the complex model from the simpler one 
for which the complex model still merits consideration. The values of the 
independent variable(s) may be chosen to maximize the MKLD to the more 
complex model. The MKLD should be sufficiently large to be able to 
distinguish the more complex model from the simpler one. Increasing the 
number of observations by increasing the number of separate trials will only 
increase the power if the power in each separate trial is already sufficiently 
high.
 The method described above can be summarized as: 
 1. Select models describing the hypothetical relationships that are of 
ecological importance.  
 2. Choose for each model realistic parameter ranges and decide for which 
parameter range a model should be distinguishable from the simpler 
alternatives.
 3. Consider the range of independent model variables applicable in each 
experiment. 
 4. Calculate the MKLD of simpler models to more extended ones for the 
realistic parameter values (point 2) and independent variables (point 3). 
 5. If the MKLD is less than 1/2, models are not distinguishable without 
data lumping. In advance answer the question whether data lumping might be 
acceptable.  If MKLD is sufficiently larger than 1/2, increasing the number of 
trials will increase the power of model identification. Calculate the number of 
replicate trials necessary to reach the desired power. 
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 6. Perform the experiments.  
 7. Fit models to data of each trial and to the lumped data. Use fixed and 
random effect models. If necessary, also use mixed effect models.  
 8. Select the model with the lowest AIC(c), in this way both selecting the 
model type and the level of lumping. Remember that small differences 
between AIC(c)’s are not very informative.  
 Although an extensive body of literature exists on model selection, no 
guidelines are given on how to deal with data collected in a large set of 
separate trials as in our example. To our knowledge this is the first attempt to 
provide guidelines to facilitate the use of model selection methods in 
ecological applications and incorporate the intended model selection into the 
experimental set-up. 
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APPENDIX A 

 Results of simulations with Models I to V (see equation (9.13)) and 
different sets of parameter values (1000 runs per set). Numbers indicate the 
number of runs at which each of the five models was selected as the best-
fitting according to the AICc criterion. The best fitting model if all 1000 runs 
are combined is also given. The models for each parameter combination are 
illustrated in figures. 
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25 I -1    809 117 45 15 14 1 
25 I -2    794 158 35 10 3 1 
25 I -5    963 37 0 0 0 1 
49 I -1    773 128 68 17 14 1 
49 I -2    792 136 50 8 14 1 
49 I -5    925 74 0 1 0 1 

25 II 0 -1   620 242 100 16 22 1 
25 II 0 -2   376 474 95 30 25 2 
25 II 0 -5   4 854 109 19 14 2 
25 II -2 -1   742 200 29 19 10 1 
25 II -2 -2   572 366 36 19 7 2 
25 II -2 -5   45 882 59 10 4 2 

49 II 0 -1   494 358 84 37 27 2 
49 II 0 -2   123 707 92 32 46 2 
49 II 0 -5   0 878 58 28 36 2 
49 II -2 -1   654 257 46 27 16 1 
49 II -2 -2   378 541 45 23 13 2 
49 II -2 -5   3 914 50 27 6 2 
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Model number Parameters 

I II III IV V 
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which model was 
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 Figures with examples of 

model 

25 III 0 -2 0  588 221 124 36 31 1 
25 III 0 -2 -5  360 488 111 28 13 2 
25 III -2 -2 0  721 153 82 16 28 1 
25 III -2 -2 -5  611 321 45 13 10 2 
49 III 0 -2 0  432 355 138 31 44 2 
49 III 0 -2 -5  151 692 92 28 37 2 
49 III -2 -2 0  669 154 107 27 43 1 
49 III -2 -2 -5  398 486 70 30 16 2 
25 IV -2 -5 0  310 118 267 162 143 3 
25 IV -2 -5 -2  384 39 174 266 137 3 
25 IV -2 -5 -5  139 601 110 97 53 2 
49 IV -2 -5 0  109 146 298 301 146 3 
49 IV -2 -5 -2  191 17 178 462 152 4 
49 IV -2 -5 -5  17 577 125 194 87 2 

25 V 
(IV)

-2 -2 -2 2 722 130 81 38 29 1 

25 V -2 -2 -2 5 347 283 229 90 51 2 
25 V -2 -2 -2 10 16 299 422 178 85 3 
25 V 

(IV)
-2 -10 -2 10 59 0 39 542 360 4 

25 V -2 -10 -2 20 17 1 44 579 359 4 
25 V -2 -10 -2 50 22 2 54 584 338 4 
49 V 

(IV)
-2 -2 -2 2 684 119 115 52 30 1 

49 V -2 -2 -2 5 160 337 305 150 48 3 
49 V -2 -2 -2 10 0 124 554 261 61 3 
49 V 

(IV)
-2 -10 -2 10 0 0 10 723 267 4 

49 V -2 -10 -2 20 0 0 5 552 443 5 
49 V -2 -10 -2 50 0 0 11 318 671 5 


