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The Founder and Allee Effects in the Patch
Occupancy Metapopulation Model

Rampal S. Etienne and Lia Hemerik

ABSTRACT

The problem of ever-increasing habitat fragmentation due to human land use calls
for a theoretical framework to study the potential dangers and to find ways of
combating these dangers. The metapopulation approach, with the Levins model as its
patriarch, provides such a framework. A metapopulation is a collection of populations
that live in habitat fragments (called patches). These populations can become extinct,
but new populations can be established by dispersing individuals from extant
populations. If these colonizations can balance these extinctions, metapopulation
persistence is possible. In theoretical literature surprisingly little attention has been
paid to the colonization term in the Levins model and its extensions. Specifically, the
Allee effect (i.e. reduced probability of colonization due to, e.g., reduced probability
of finding a mate, or reduced defence against predators) may play a major role
although it has not received appropriate attention. In this paper, we study the
colonization term in the Levins model and conclude that it describes the founder effect
(i.e. stochastic fluctuations in births and deaths of an establishing population causing
colonization to fail). We then incorporate the Allee effect in the colonization term and
conclude that previous attempts to do so were erroneous because they ignored some
difficulties in the model formulation and interpretation. We devise a
phenomenological model for the Allee effect that is consistent in both discrete and
continuous time. Although the model with Allee effect shows a fold bifurcation in its
deterministic formulation (both in discrete and continuous time), suggesting the
possibility of sudden metapopulation extinction when the bifurcation parameter is only
changed slightly, the model in its stochastic formulation does not fully support this:
the expected occupancy and the expected metapopulation extinction time decrease
gradually when the number of patches is moderate.

8.1 INTRODUCTION

As the human population grows, both in number and in its use of natural
resources, natural habitat for many organisms is disappearing and becoming
fragmented. Not only (rail) roads, but also agricultural, residential and
industrial areas fragment previously connected (or even continuous) habitat.
Common sense tells us that the answer to habitat fragmentation is
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defragmentation and hence much effort is put into building corridors, of which
fauna crossings are just one example. Corridors are conduits connecting two
pieces of habitat through an environment of hostile non-habitat. As such, the
use of corridors need not be restricted to the animal kingdom; plants can also
use them as stepping-stones for their seeds, enabling them to colonize distant
habitat. Although corridors may not only act as conduits but also as habitat,
filters or even as barriers (Hess and Fischer, 2001), in most cases they are
constructed primarily for their conduit function.

Habitat fragmentation and subsequent attempts of habitat defragmentation
affect extinction of local populations as well as recolonization of empty but
suitable habitat. Because extinction and colonization are the two core
ingredients of metapopulation theory, metapopulation theory seems well suited
for predicting the consequences of habitat (de)fragmentation. A
metapopulation is defined as a population consisting of several more or less
loosely connected local populations with colonization and extinction of these
local populations analogous to births and deaths of individuals in a population.
The father of all metapopulation models is undoubtedly the Levins (1969,
1970) patch occupancy model in which the habitat consists of many distinct
patches, which can be either empty or occupied by a population of the species
under consideration. An occupied patch can become empty by extinction of
the local population and an empty patch can become occupied after
colonization by dispersers from extant populations. Because the risk of
extinction is spread (Den Boer, 1968), the metapopulation can persist much
longer than a local population, if recolonization occurs frequently.

The Levins model has been extended in many ways to study the effects of
the extension on metapopulation dynamics. These extensions include the
rescue effect (Hanski, 1983; Hanski et al., 1996; Gyllenberg and Hanski,
1997; Etienne, 2000, 2002), the anti-rescue effect (Harding and McNamara,
2002), the patch preference effect (Ray et al., 1991; Etienne, 2000), multiple
species interactions (Levins and Culver, 1971; Slatkin, 1974; Sabelis et al.,
1991; Nee and May, 1992; Hess, 1994, 1996; Nee et al., 1997; Taneyhill,
2000; Gog et al.,, 2002; Nagelkerke and Menken, 2002), succession
(Amarasekare and Possingham, 2001), heterogeneous habitat (Holt, 1997), the
quality of the matrix habitat (Vandermeer and Carvajal, 2001), spatial
structure (Hanski and Ovaskainen, 2000; Ovaskainen and Hanski, 2001), and
local population dynamics and dynamics of patch formation and destruction
(Hastings, 1991; Gyllenberg and Hanski, 1992; Hanski and Zhang, 1993,
Hanski and Gyllenberg, 1993; Hastings, 1995; Gyllenberg and Hanski, 1997;
Gyllenberg et al., 1997, Keymer et al., 2000). These models are all
deterministic. Stochastic versions of the Levins model have also been
developed and explored (Day and Possingham, 1995; Gyllenberg and
Silvestrov, 1994; Frank and Wissel, 1998; Lande et al., 1998; Ovaskainen,
2001, Etienne and Heesterbeek, 2001; Etienne, 2002; Etienne and Nagelkerke,
2002; Alonso and McKane, 2002).
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In all of these models, little change has been made with respect to the
colonization process in the Levins model. That is, the colonization rate or the
colonization probability (per unit time) has been taken proportional to the
number of, on the one hand, empty patches and, on the other hand, the number
of dispersers or, when dispersal is not explicitly modelled, the number of
occupied patches (which produce dispersers). Yet, colonization of a patch, i.e.
the establishment of a new population, may be hampered by the Allee effect
(Wissel, 1994), a reduced or even negative growth rate at small population
sizes (Allee, 1931), which may affect this proportionality substantially. The
Allee effect can be caused by difficulties in, for example, mate finding, food
exploitation (e.g. host resistance can only be overcome by sufficient numbers
of consumers) and predator avoidance or defence (Allee, 1931; Courchamp et
al., 1999; Stephens and Sutherland, 1999; Stephens et al., 1999; McCarthy,
1997) when population size is small. Colonization may also be hampered by
sheer stochasticity: even if the growth rate is positive, stochastic fluctuations
in birth and death rates may prevent colonization (Goel and Richter-Dyn,
1974). We will call this the founder effect (not to be confused with Mayr’s
founder effect in evolutionary biology, although the two concepts are related
as they both stress the stochastic nature of colonization), and we will show that
it is contained in the Levins model, in contrast to a result obtained by Etienne
et al. (2002a). Sometimes, the founder effect is also considered a type of Allee
effect (Lande, 1998; Keitt et al., 2001; Harding and McNamara, 2002),
although not unanimously (Stephens ef al., 1999), so we prefer to use separate
terms for the two effects.

The Allee effect has previously been brought into connection with
metapopulations although the subject was often only briefly touched upon
(Courchamp et al., 1999; Reed, 1999; Stephens et al., 1999; Stephens and
Sutherland, 1999; Cronin and Strong, 1999; Keitt et al., 2001), or the
metapopulation consisted of only two patches (Gyllenberg et al., 1996;
Amarasekare, 1998a; Gyllenberg et al., 1999), or the study involved
simulations rather than an analytical description and treatment of a dynamical
model (Berec ef al., 2001; Brassil, 2001; Etienne ef al., 2002b). Amarasekare
(1998b) did present and analyze a Levins-type model with Allee effect, but
this Allee effect was active at the metapopulation level. That is, analogous to
the Allee effect at the population level that reduces the growth rate of the
population, Amarasekare (1998b) assumed that the Allee effect at the
metapopulation level reduces the growth rate of the metapopulation. As a
possible cause of this Allee effect at the metapopulation level, Amarasekare
(1998b) mentioned the Allee effect at the population level, but she did not
model this explicitly. Ovaskainen and Hanski (2001) also considered the Allee
effect at the metapopulation level, possibly caused by an Allee effect at the
population level which they modelled as in Hanski’s (1994) incidence function
model. However, they did not study this in great detail, as exact (analytical)
solutions seemed impossible in the spatial context they focussed on (but see
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Ovaskainen et al., 2002). The structured metapopulation model of Gyllenberg
et al. (1997) and the model of Gotelli and Kelley (1993) allow for
incorporation of the Allee effect, but this has not actually been carried out,
except for Harding and McNamara (2002) who studied the Allee effect
explicitly in the Gotelli and Kelley (1993) model although they modelled this
incorrectly, as we will show below.

Thus, the impact of the Allee effect at the population level on
metapopulation dynamics has, to our knowledge, never (or at least hardly)
been studied analytically in the Levins framework. One reason may be that it
seems very simple to perform and the result seems self-evident: a threshold
effect. However, this also applies to many models which have been explored
analytically, for example, the Levins model with rescue effect (Hanski, 1983;
Hanski et al., 1996; Gyllenberg and Hanski, 1997; Etienne, 2000, 2002;
Harding and McNamara, 2002), an effect referring to the ability of immigrants
to rescue a population from extinction (Brown and Kodric-Brown, 1977). In
these cases, more insight was still gained from a mathematical analysis of the
model. Moreover, when a model is extended further, results may no longer be
self-evident, because the model has become too complicated. How, for
example, will the Allee effect influence metapopulation dynamics when
modelled in conjunction with interspecific competition or predator-prey
interactions (as in the references mentioned above)? It is important to have a
thorough understanding of the impact of the Allee effect when the model is
still relatively easily tractable in order to properly evaluate the outcomes in
more complicated models. Therefore, we will present a Levins-type model
with a population-level Allee effect.

We will start with a review of the Levins model and the more general patch
occupancy model, of which it is a special case. We will present deterministic
and stochastic formulations of this patch occupancy model, both in discrete
and continuous time. The occupancy model enables incorporation of the
founder effect and the Allee effect. We will show that this is not
straightforward by pointing out where previous attempts (notably Etienne et
al., 2002a; Harding and McNamara, 2002) have failed. We will study the
dynamics of the resulting models, particularly pertaining to metapopulation
persistence, and discuss some implications for conservation. We will end with
a summary and discussion of our findings.

8.2 THE LEVINS MODEL

The classical Levins model is generally written in terms of the following
differential equation
ap

Z:cp(l—p)—mp (8.1)
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where p is the fraction of occupied patches, ¢ is the colonization rate of empty
patches, and m is the extinction rate of occupied patches. Note that the
colonization term cp(1 — p) is proportional to both the occupied patches (p)
and the empty patches (1 — p), as we mentioned above.

Defining 8 := ¢/m, (8.1) has the nontrivial equilibrium,

1
pr=1-—=K. (8.2)
B

We call this K because of its interpretation as the metapopulation carrying
capacity (Amarasekare, 1998b). This equilibrium is stable as long as 8 > 1 (if
B <1 the trivial equilibrium p* = 0 is stable).

To enable comparison with its stochastic version (see below) the Levins
model has also been written in terms of the number of occupied patches
(Etienne, 2002; Etienne and Nagelkerke, 2002; Harding and McNamara,
2002),

an

—=7n(N—-n)y—mn 8.3

7 ( ) (8.3)
where 7 is the number of occupied patches and N is the total number of
patches in the metapopulation, so p = n/N. The colonization parameters ¢” and
¢ are related to one another by ¢ =c¢'N. The non-trivial equilibrium is,
obviously, n* = N—mj/c’.

8.3 THE PATCH OCCUPANCY MODEL

The Levins model is a special case of a family of models, called patch
occupancy models. A patch occupancy model assumes that patches can be
either occupied or empty and describes the dynamics of the number of
occupied patches. There are deterministic and stochastic patch occupancy
models, formulated in either continuous or discrete time. We will describe
each of the four possible combinations. Because the Levins model is a patch
occupancy model, there are also stochastic and discrete-time analogues of the
Levins model. Treating the Levins model as a special case of a more general
model clarifies the interpretation of the Levins model which may otherwise
lead to inconsistencies, as we will see below.

The deterministic model in continuous time

The deterministic continuous-time patch occupancy model was presented
by Gotelli and Kelley (1993) as

P _ -
5~ Q=)= Mp)p (8.4)
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with C(p) = cp and M(p) = m. Again p is the fraction of occupied patches. In
(8.4) it is clear that p can be interpreted as the probability of a patch being
occupied (Etienne, 2002; Etienne and Nagelkerke, 2002), although this was
not explicitly mentioned by Gotelli and Kelley (1993). If the patch is empty
(probability 1 — p), then it becomes occupied at rate C(p) and when it is
occupied (probability p), it becomes empty at rate M(p).

When written in terms of the number of occupied patches, (8.4) becomes
(Etienne, 2002; Harding and McNamara, 2002)

an

= C(n)(N—=n)— M(n)n. (8.5)

The Levins model has C(n) = ¢'n and M(n) = m.

The stochastic model in continuous time

The general formulation of the stochastic continuous-time patch occupancy
model describes the probability P, of »n patches (out of N patches) being
occupied, forall0<n < N:

ar

= Clr- (V- (n-1)2,

(8.6)
—[ )+ A (N = n)| 2+ M(n)(n+ 1P,

with P, =0 forn <0 and n > N.

The model described by (8.6) is a Markov model (Frank and Wissel, 1998;
Ovaskainen, 2001; Etienne, 2002; Etienne and Nagelkerke, 2002), so
properties of Markovian models can be used to analyse the model. For
example, when the model is written in matrix notation, the resulting matrix has
the property that its second largest (in absolute value) eigenvalue is a measure
of the expected time to extinction of the metapopulation when started in the
quasi-stationary state. This quasi-stationary state is the left eigenvector
corresponding to this second largest eigenvalue. The elements i =2,...,N of
this eigenvector give the probability of i— 1 patches being occupied,
conditional on non-extinction of the metapopulation. The quasi-stationary state
is therefore a probability distribution over all possible states; it is the
probability distribution reached when the system has been undisturbed for
some time, and can thus be considered a pseudo-equilibrium (it cannot be a
real equilibrium, because the only real equilibrium is metapopulation
extinction).

Formula (8.6) is also a special case of the stochastic birth-death model
(Goel and Richter-Dyn, 1974),

Lot B -bra)prar, (8.7)
ar
where b, and d, are the birth and death rates, respectively. With
b, = C(n)(N— n) and d, = M(n) n we retrieve (8.6). Being a birth-death model,
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(8.6) possesses the convenient property that the expected time to absorption
(i.e. extinction), when starting with »n, patches occupied, is given by (Goel and
Richter-Dyn, 1974):

=i+l 0’1/6/

=3~ Z(Iﬁb] $9)

This formula provides an alternative way of calculating the expected time
to metapopulation extinction, when starting in the quasi-stationary state
(Etienne and Nagelkerke, 2002).

The deterministic continuous-time model is a limiting case of the stochastic
continuous-time model. We will not go into the appropriate limit here, but
refer to Etienne (2002) for more details.

The stochastic continuous-time analogue of the Levins model is obtained
from the stochastic continuous-time occupancy model by setting C(n) =c'n
and M(n) =m.

The deterministic model in discrete time
The discrete-time analogue of (8.4) is given by the difference equation
7,5, = 2,+ (1, ADY(N = 11,) = M(1n,,AD)7, (8.9)

where 7, is the number of occupied patches at time ¢, M(n, At) is the
probability of extinction of a local population in one time-step of length A,
and C(n,, A?) is the probability that an empty patch will be colonized. We will
give some examples of C(n,, At) below.

If we assume that

aURY)

= (I 8.10a
lim =222 = () (8.102)
. M(n,Ar)
lim————= M/ 8.10b
im— (7) (8.10b)
then (8.9) reduces to the continuous-time model
@ — ”HA/ - ”/ —
d’f Ado Af
_ i COLANN = 1) = M, A0, _
= im As B (8.11)
T e GAL B TGS
Ad A7 Ado A7

=) (N—n)— M(n)n

where in the last expression we have dropped the subscript 7 to indicate that
we are dealing with a continuous-time formulation. We use this notation
throughout this paper.
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There are usually several functions for C and M that satisfy (8.8.10a) and
(8.8.10b), because they only need to behave similarly near A¢= 0. Therefore,
there are several discrete-time analogues of the continuous-time patch
occupancy model, and hence there are several discrete-time analogues of the
original (deterministic continuous-time) Levins model as well.

The stochastic model in discrete time

In discrete time multiple extinctions and colonizations per time step are
plausible. Suppose that the probability of a local population of becoming
extinct in one time-step of length At is M(n, Af) and that the probability of an
empty patch of becoming occupied is C(n, Af) if there are n occupied patches.
This is fully analogous to the deterministic model in discrete time. The
transition probability P;; to move from k occupied patches to / occupied
patches in one time-step is then given by (see Gyllenberg and Silvestrov,
1994)

min( 4, /) k )
28 (Jinssr -

=0 7

[1- 214, Az)]'(/v B .I]C(A’, Ary[1- A4, Az)]”’/. (8.12)
/-7

The P,; form a matrix, of which the second largest eigenvalue is a measure
of the metapopulation extinction time, similar to the continuous-time model.
In (8.12), extinctions and colonizations can occur simultaneously. There is
also a version where there is an extinction phase followed by a colonization
phase (Akgakaya and Ginzburg, 1991; Day and Possingham, 1995). We obtain
the corresponding formula for P, by replacing C(k, A¢) in (8.12) by C(i, A¥?).

We refrain from describing the transition from the stochastic discrete-time
model to the stochastic continuous-time model, because this is more
complicated and because we will not be using it in this paper.

8.4 THE FOUNDER EFFECT

In the introduction we defined the founder effect as the effect that
colonization may be hampered by sheer stochasticity: even if the growth rate
is positive, stochastic fluctuations in birth and death rates may prevent
colonization. We will first incorporate the founder effect into the deterministic
discrete-time patch occupancy model and then take the appropriate limit to
obtain the continuous-time model. Subsequently, we will present a direct way
of incorporating the founder effect in the continuous-time model. This gives a
different model, but this model also has a different interpretation. We conclude
the section with a more detailed model of the founder effect where
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stochasticity is not only present in the establishment of a new population, but
already in reaching the destination patch.

The deterministic model in discrete time

In the Levins model the mechanism of colonization is not modelled
explicitly. Here, we attempt to find a more mechanistic basis for the
colonization term in the Levins model. This is most comprehensibly achieved
in the discrete-time model (8.9). Colonization may be described by a
cumulative-hit model. In this model, arrival of a disperser does not necessarily
imply colonization, but the more dispersers arrive during the time interval A¢,
the larger the probability of colonization is. The probability C(n,, At) of an
empty patch being colonized during the time interval At thus increases with
At, because the number of dispersers arriving at the patch increases with Atz.

Assume that each patch produces L( At) dispersers that immigrate into any
patch, empty or occupied with probability p4( A¢) (d of dispersal). Hence, each
patch receives

LA p,(A)n,
N
dispersers during the time interval Af#; note that dispersers from all occupied
patches are added together. We further assume that these dispersers arrive
simultaneously, which is fairly realistic for species with a short dispersal
period, and that they reproduce asexually. Local population dynamics are
governed by a birth-death model (Goel and Richter-Dyn, 1974). The

colonization probability, starting from /(#n,, Af) immigrants, is given by

L(n,AD)= (8.13)

1 7(np,00)
dn,AH=1-| — , R>1 8.14
(7,,A7) (&} A, (8.14)

where R, is the basic reproduction number of the population, that is, the
expected number of off-spring of each founder of the colony (Goel and
Richter-Dyn, 1974). Because C(n, At) <1, the arrival of dispersers at an
empty patch does not guarantee colonization, even if R, > 1, although
unsuccessful colonization is very unlikely if there are many dispersers. This is
the founder effect or establishment effect (Lande ef al., 1998).

Let us now insert (8.14) into (8.9). Furthermore, we assume that the
extinction probability does not depend on the number of occupied patches, so
M(n,, At) = M(Ar). We will also assume that condition (8.8.10b) holds.
Because our interest in this paper lies in the colonization process, this
assumption will be used throughout the rest of this paper. Because

2

A, AN —=1n)<0 (8.15)

an’

I3
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for all n, <N, the condition for a stable equilibrium is found to be (see also
Figure 8.1):

LAnp (AN & (8.16)
M(AD) ' |

C(n), M(n)

n

Figure 8.1. The contributions of colonization (C(n, Af)(N — n,), solid curve) and
extinction (M(A?)n,, dotted curve) in the deterministic discrete-time Levins model,
that is, (8.9) with C(n, Af) given by (8.17) and M(n, Af) = M(At). The equilibria are
at the intersection points of these curves. Because the contribution of colonization
always has a negative second derivative, a non-trivial equilibrium can only exist if the
colonization contribution has a larger slope at the origin than the extinction
contribution. In this figure we used the numerical values N =25, s(Af)=0.5 and
M(A%H)=0.5.

We would like to point out here that a similar condition would have been
obtained without the birth-death model, and even without the cumulative-hit
hypothesis; a one-hit model (arrival of at least one disperser at an empty patch
entails colonization) may also apply. Suppose that during a time interval of
length At each occupied patch can colonize an empty patch with probability
s(At). This probability, which by definition does not depend on 7, can
represent the probability that at least one disperser will reach the empty patch
(which is sufficient for colonization under the one-hit hypothesis) or the
probability that the dispersers that arrive at the empty patch establish a
population (as we assumed above), or both. The colonization probability is
given by

A0 =1-(1-s5(A9)" (8.17)
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and this is mathematically equivalent to (8.17) if

L(A7) pg (A1)
N

1
A=1- — . 8.18
$(A7) (A’OJ (8.18)

Note that indeed s(A¢) does not depend on n,. With (8.17), the condition for
a stable nontrivial equilibrium reads
B /Vln(l—s(Al))>1 (8.19)
M(A7)

The deterministic model: from discrete time to continuous time

We remarked above that under certain conditions the discrete-time Levins
model reduces to the classical continuous-time Levins model. The condition
for the colonization term, (8.8.10a), where C(n)=c'n and M(n)=m for the
Levins model, translates to the following expression in our model with (8.17):

limw =c (8.20)
) A[
where ¢’ is a constant. For the cumulative-hit model, this in turn translates to
lim 28D _ - (8.21)
Ao A[

with ¢”” another constant. With (8.20) condition (8.8.10a) is indeed satisfied,
because

Ay 1 (1-s(a0)"

i
A0 Af Ado Al
et (8.22)
/7/(1— S(Af)) ()
=lim = =Cn
Ado 1

Thus the original Levins model is recovered. Hence, the colonization term
in the Levins model describes the founder effect.

The deterministic model in continuous time

Let us now look at an attempt to incorporate the founder effect in the
deterministic continuous-time model directly (Etienne et al., 2002a). We adopt
the interpretation of ¢” as the product of the rate ¢, at which dispersers are
produced by an occupied patch and the probability ¢;, with which a disperser
successfully colonizes a patch (Frank and Wissel, 1998; Etienne and
Heesterbeek, 2000; Ovaskainen and Hanski, 2001). The founder effect must
evidently be inserted into ¢;,. Suppose, for instance, that c¢;, = ¢, /(cCout + a)
for some parameter a, a formula that is similar to (8.14) and seems a
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reasonable choice to model the founder effect phenomenologically (Etienne et
al., 2002a). It says that c;, is a saturating function of the number of dispersers
produced by all occupied patches per unit of time, c,,#. Note that this is
different from the assumptions that led to (8.17), not just because a different
saturating function is taken, but particularly because the argument of the
function is the rate of dispersers produced instead of a number within a time
window. The model becomes (Etienne et al., 2002a)

an c,

— =7
ar c n+a

out

(V= n)=mn (8.23)

which shows entirely different dynamics than the Levins model (8.3). In fact,
it is mathematically similar to the Levins model with Allee effect that we will
construct below.

The difficulty with (8.23) is that the use of saturating functions in
continuous-time models is tricky, because they often seem to rely on discrete-
time considerations, as we will show below for the Allee effect. In the current
case, it is unclear what the mechanistic basis is for the saturating function for
¢in, and therefore it is unclear whether it really describes the founder effect as
we understand it. We expect ¢;, to become constant for large ¢,,#, because for
large ¢, we no longer expect to find a founder effect, but it is not evident
what the behavior for small ¢ 7 should be. Our expressions (8.14) and (8.17)
are less phenomenological than the expression for ¢;,, because they are based
on probabilistic arguments of whether a set of dispersers can establish a
population.

In summary, the founder effect is contained in the Levins model as our
transition from discrete to continuous time has shown, and the model (8.23)
does not describe the founder effect (but the Allee effect, see below).

Stochasticity in dispersal: colonization average vs. average colonization
in the founder effect

Until now we have assumed that a fixed number of dispersers,
L(Atpy( At)n/N, arrives at an empty patch during the time interval Az upon
which colonization may or may not occur. Hence, the number of arriving
dispersers is modelled deterministically. If, instead, we take the number of
dispersers leaving the occupied patch to be a fixed number, say L(A¢?), and if
we let the probability of reaching a patch be governed by a binomial
distribution with parameter p4( A¢), then we only have on average

UA)p,(A))7,
" :

By inserting this expression into (8.14), we would effectively use the
colonization probability of the average number of arriving dispersers:

I(n,A0)= (8.24)
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LA pd (M) 1y

A L(n,A0)= 1—(iJ ' . (8.25)
£
This is incorrect. We should use the average colonization probability instead:
- um 1 N UA)7, , L@nn,
A L(n,AD)= /Z& P(EJ N [pd(Af)] [l—pd(A,)] v
/ (8.26)

L(ANYny

=1- [1— pd(Al)(l— %J]

Equations (8.25) and (8.26) are not equal. Figure 8.2 shows them for
L(AfHn/N =100 and R, =3. Using (8.25) therefore leads to a higher
colonization probability.

In the following sections, we will adhere to the original model with a
deterministic (fixed) number of dispersers arriving at an empty patch, because
it is qualitatively equivalent to, but much simpler than the more detailed model
where the number of dispersers arriving at an empty patch is a stochastic
variable. As for quantitative differences, we checked these for several
parameter settings and found that they are never very large.

0.8
O.GF
0.4

0.2t

0 0.2 0.4 0.6 0.8 1
Py

Figure 8.2. The colonization function of the average number of immigrants (solid
curve) and the average colonization function of the number of immigrants (dotted line)
plotted against the probability of successful dispersal py. Taking the average at the
level of arriving immigrants thus leads to an overestimate of the colonization function.
Numerical values of the other parameters are L( Af)n/N =100 and R, = 3.
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8.5 THE ALLEE EFFECT

The Allee effect differs from the founder effect in that the Allee effect
denotes a reduced or negative deferministic growth rate at small population
sizes, whereas the founder effect is a purely stochastic phenomenon, most
active at small population sizes, that occurs even with an unreduced positive
growth rate. We will incorporate the Allee effect (at the population level, not
at the metapopulation level as in Amarasekare, 1998b) in the deterministic
discrete-time model, and then take the appropriate limit to get the analogous
continuous-time model. Because this yields a rather undesirable result, we will
then start from a continuous-time formulation and convert this back to
discrete-time. In all cases we will study metapopulation dynamics. To gain
insight into the threshold phenomenon exhibited in the deterministic models,
we move to a stochastic formulation. We end by examining the Allee effect in
conjunction with the patch preference effect, because we think that these will
often occur together, and because they may represent opposing forces making
the outcome less obvious.

The deterministic model in discrete time

The founder effect typically represents the case where the colonization
probability C(n,, At) is linear in the number of occupied patches n, when s( A7)
is small. This means that contributions from different patches are simply
additive. When the Allee effect is active, the colonization probability behaves
differently. There may be a minimum number of immigrants necessary for the
population to grow and thus for colonization to occur or C(n,, Af) may initially
be quadratic in the number of immigrants (or the number of occupied patches
producing dispersers). Instead of a detailed model of colonization for a
population suffering from the Allee effect, we consider a more
phenomenological model, again in discrete time because of its easier
interpretation:

[ (n,A7)
7 (n,AD+ y’

where y is some constant, measuring the strength of the Allee effect. Thus,
colonization as a function of the number of immigrants has a sigmoidal shape.
Formula (8.27) is not just an ad hoc choice; it is used in the well-known
incidence function model of Hanski (1994).

Let us again assume that the number of immigrants /(n,, Af) entering an
empty patch during time interval A¢is determined by the number of dispersers
that are produced by each occupied patch, L( Af), and by the probability that
each disperser reaches the empty patch, that is, we use (8.13). We can rewrite
(8.27) as

Cn,Af)= (8.27)
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2
7l

A n,Ay=—"—— 8.28
(7,,A7) 7+ (A0) (8.28)
where y'(At) = yN/(L( AH)py( A?)).
Inserting this into (8.9) leads to the following equation for the equilibrium
n*:
n*’
7%+ 17 (A7)

This results in three equilibria, dropping the dependence on Af¢ for notational
convenience:

(V= 1¥)= M(A)n*. (8.29)

7*=0
eV [11 \/1_4M
1+M{2 2 N
N (1 1
= | ——— 14571+ 8.30
7 ERE R A (8.30)
e N [11 \/1_4M
1+412 2 N
N (1 1
= —+—\1-4M (1
1+ a7\ 2 2‘/ b+ 40)

where we have defined y"" = y'/N = y/(Lpy). Of these solutions, 7n_* is unstable
and forms the separatrix between the other two, stable, solutions. This means
that, when the system is started below the separatrix, the metapopulation will
become extinct, and when started above the separatrix, it will converge to the
nontrivial equilibrium 7. *. See Figure 8.3.

Figure 8.3A shows the catastrophic consequences of increased dispersal
resistance due to (rail) roads and the like (increased dispersal resistance means
a reduction of the probability of reaching a patch p,y and hence an increase in
v""). If this dispersal resistance grows gradually (for example, because there is
a gradual increase of the amount of cars using the road), then p* may seem to
be hardly affected, until suddenly the metapopulation disappears (in Figure
8.3A this happens for " = 2.88). Figure 8.3B shows similar behaviour for

increases in the probability of local extinction, for example due to habitat
deterioration.

Harding and McNamara (2002) also used (8.27), but they did so in the
continuous-time model (8.5), that is, they set C(n)= o*(n)/(ot*(n) +)7),
following Hanski (1994). However, Hanski’s (1994) model is a discrete-time
model, and C(n) is the probability of colonization per time-step, whereas a
continuous-time model requires a probability rate. They do define « as the
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immigration rate, which is correctly used in the Levins model where they have
C(n) ~ a(n), but this does not make C(n) a rate in this case. Specifically, C(n)

cannot become greater than unity in this formulation (because it is in fact a
probability), but the colonization rate may surely become much greater than
unity; it usually becomes infinite when the immigration rate becomes infinite.
This is not just a matter of a scaling factor. Although Harding and McNamara
(2002) may have omitted a constant to simplify their expressions, addition of a
constant, that is, using C(n)=ko*(n)/(ot*(n) +y*) instead where k is a
constant with the dimension of rate, does not resolve the issue. The
colonization rate is then explicitly allowed to become larger than unity, but an
infinite immigration rate still does not result in an infinite colonization rate. Of
course, one can have a model where an infinite immigration rate does not
automatically correspond to an infinite colonization rate, but then one is trying
to model a different phenomenon, not the Allee effect. Thus, apparently it is
not straightforward to incorporate the Allee effect into the continuous-time
Levins model as it seems, so our attempt seems well justified.

1 1
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Figure 8.3. Bifurcation diagrams of the discrete-time model (8.9) with Allee effect as
in (8.27) and M(n, Af)= M(Af) = M. The solid curves represent the stable equilibria,
the dotted line represents the unstable equilibrium. A fold bifurcation occurs where the
unstable and stable branches meet. A: The bifurcation parameter is y""; M= 0.5.
B: The bifurcation parameter is M; y"= 0.4.

The deterministic model: from discrete to continuous time and back

Above we noted that the Levins model with founder effect is just the
Levins model if (8.21) is satisfied. Now, let us examine what happens if we
use this same condition in the Levins model with Allee effect. Using (8.27):
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L(n,A7)
i Q8D | P A0+
AdO Af A0 A[

(8.31)
UG —lz(n,,Al)2[(/7,,Ai)d]a(’x)
29

d‘r r=Az r=Az _O
(]z(ﬂl,Al)+)/2)2

because /(n,,0) = 0. Hence, the conversion to a continuous-time model leads to
a model in which the metapopulation cannot persist!

This is certainly an undesirable result, so the suggestion presents itself that
we are dealing with an artefact inherent to our choice of (8.27). To examine
this in more detail, we take a little detour. We start with the colonization term
of the continuous-time Levins model in the Harding and McNamara (2002)
framework, that is,

(7(n. A0+ " )20(n,,A0)

lim
Ado

An)=kon (8.32)

where k is a positive constant and o« the immigration rate, with the
metapopulation dynamics governed by (8.5), so in effect we have ¢’ =ka.
This C(n) represents the colonization probability per unit time. Consider a
patch that is empty at =0 and suppose that »n patches are occupied at time
¢t =0 and that local extinction is impossible. The probability p that the empty
patch is colonized (and hence occupied) at time 7 is described by

%= An(1-p)y=kon(-p). (8.33)

The solution is readily found to be p(f) = 1 — exp(—k o nt). Hence, after a
time interval A¢ the probability that the patch is occupied is p(Af) =
1 —exp(—k o n At). We can use this as the colonization probability in the
discrete-time model (8.9), that is,

C(n, A7) = 1—exp(—H(n, A7) (8.34)

with I(n, At) = na At. This equation is mathematically equivalent to (8.14)
with R, = exp(k). So, the continuous-time model with linear colonization rate
corresponds to the discrete-time model with colonization probability that
approaches its maximum of unity at an exponentially decreasing rate. The
question now arises whether we can find a colonization formula in the
continuous-time model that corresponds to a colonization probability in the
discrete-time model with the sigmoidal shape that is so typical of the Allee
effect. Evidently, (8.27) is surely not the only function with a sigmoidal shape.

Of this colonization formula in the continuous-time model we require that
it is linear in the immigration rate o for large o and that it is quadratic in the
immigration rate for small «. Perhaps the simplest formula satisfying these
requirements is
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(o)
an)=k——— (8.35)
on+a,
where o, measures the strength of the Allee effect; for oy, = 0 we obtain the
Levins model colonization term C(n) = kan. Using an argument similar to the
one making the transition from (8.32) to (8.34), we find that equation (8.35)
corresponds to a colonization probability in the discrete-time model

(o)
C(n,AP)=1-exp| —k—~—2—Ar|. (8.36)
on+o

I3 0
The colonization rates and corresponding colonization probabilities are
shown in Figure 8.4. We stress that although (8.35) is not a mechanistically
derived model, its parameters have a biological meaning, which may be
substituted by expressions that are derived from mechanistic submodels.
Below, we will present an example of this.
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Figure 8.4. Colonization as a function of the immigration rate ¢ for the Levins model
with founder effect (equations (8.32) and (8.34), solid curves) and with Allee effect
(equations (8.35) and (8.36), dotted curves) for continuous time (A) and for discrete
time (B). Parameter values are k= 1.5 and oo = 10. We further set n = 1.

The equilibrium number of patches for the discrete-time model with (8.36)
is given by the solution of

(Om*) . .
1—exp —/fom*—mom (V= n*)= dtm*. (8.37)
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In Figure 8.5 we have plotted the colonization and extinction terms. It can
easily be seen that, in contrast to Figure 8.1, there may be two nontrivial
equilibria, of which the larger one is stable. They coincide if

5}; 1—exp —k%A/ (/V—/i) =M (8.38)

n=n*

which is again a fold bifurcation.

0 5 10 n 15 20 25

Figure 8.5. The colonization (solid curve) and extinction functions (dotted curve) in
the deterministic discrete-time Levins model (8.9) with (8.36) and M(n, At) = M(A¢).
The equilibria are at the intersection points of these curves. There can be two non-
trivial equilibria, the larger one of which is stable. In this figure we used the numerical
values N=25, 0to=100, k=05, A=1, At=1,and M(A£)=0.5.

Thus, this model behaves qualitatively similarly to the solution to (8.29).
We conclude that (8.35) and (8.36) provide a consistent way to incorporate the
Allee effect into the continuous-time and discrete-time Levins model
respectively. We think that (8.36) is also a better formula than (8.27), because
(8.36) does not lead to undesirable results when converted to its continuous-
time analogue and it can be reduced to (8.34) by setting o, = 0.

There is one subtlety in (8.36) that needs some attention. If we rewrite
(8.36) in terms of the number of immigrants /(n,, Af) = on,At, we obtain

2
A= l—exp(—/( (7, 47) j (8.39)
L(n,A0)+ 7,(A?)

where I,( At) = oy At. Hence, the strength of the Allee effect as measured by
Iy( At) depends on At A longer time interval Az will therefore have a positive
and a negative effect on the colonization probability: the number of arriving
dispersers increases, but so does /y( Af). The net increase is positive and linear
in At for small A¢, as it should be in order to obey (8.8.10a).
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When we compare the Allee effect model, (8.35), to the colonization term
in (8.23), which was used by Etienne ef al. (2002a) for the founder effect, we
see that the colonization terms are identical, apart from the constant k. So, the
results obtained by Etienne et a/. (2002a) actually apply to the Levins model
with (sigmoidal) Allee effect.

The stochastic model in continuous time

The bifurcation in the deterministic models can be used as a warning that
small changes in parameters (such as m) may cause the nontrivial equilibrium
to disappear suddenly, and thus metapopulation extinction. If these changes
are really so abrupt, it is interesting to investigate if there are also abrupt
changes in the stochastic model. To examine this, we will consider the
continuous-time model (8.6) with Allee effect as modelled in (8.35). We
choose the continuous-time model, merely because it allows for explicit
analytical solutions. Results obtained with the discrete-time model are similar.

But let us first look at the deterministic counterpart, (8.5) and (8.35), for
comparison. The equilibria are the solutions of

(0r%)
f———(N—=1*)=mn* (8.40)
on*+o,
which are readily found to be (see also Etienne et al. 2002a)

* —
n*=0

(8.41)

where ¢":= ko as before.

Returning to the stochastic model, for a system starting in the quasi-
stationary state the expected time to metapopulation extinction and the
expected occupancy conditional on non-extinction can be computed using the
eigenvalues and eigenvectors of the matrix corresponding to (8.6), as we
mentioned above. For systems starting in another state, e.g. all patches
occupied, the expected metapopulation extinction time and the expected
occupancy at some specified time can be calculated using (8.8) and the
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solution to (8.6) respectively. The mean occupancy at time 7= 10 of a
metapopulation with all patches occupied at time 7= 0 is plotted in Figure
8.6A, together with the deterministic non-trivial equilibria. The results for the
Levins model without Allee effect are also shown. We see that there is no
abrupt change in the expected occupancy, although it does decrease faster than
in the model without Allee effect. The expected time to metapopulation
extinction, plotted in Figure 8.6B, behaves similarly. Neither does it make a
difference if we use the expected occupancies and extinction times for systems
starting in the quasi-stationary state or any other state (results not shown). As
N increases, the expected occupancy follows the deterministic equilibrium
more closely and the expected extinction time increases more steeply with
increasing immigration rate, but the bifurcation point is found at lower
immigration rates. We therefore conclude that the Allee effect does have a
detrimental effect on metapopulation persistence, but small parameter changes
will not lead to sudden extinction when the number of patches is moderate.
Only when there are many patches, the bifurcation of the deterministic model
is reflected in the stochastic quantities of expected occupancy and extinction
time, but the inviability region is then much smaller (Figure 8.7).
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Figure 8.6. The mean occupancy at time 7= 10 starting with all patches occupied (A)
and the expected time to metapopulation extinction (B) for the Levins model with and
without the Allee effect as a function of the immigration rate ¢. In A the
deterministic equilibrium values are also shown (thin lines). The values of the other
parameters are m = 0.52, N=25, k=0.01 and &, = 10.
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Figure 8.7. The mean occupancy at time # = 10 starting with all patches occupied (A)
and the expected time to metapopulation extinction (B) for the Levins model with
Allee effect as a function of the immigration rate ¢. In A the deterministic
equilibrium values are also shown (thin lines). The number of patches is N = 75. The
values of the other parameters are the same as in Figure 8.6: m = 0.52, k = 0.01 and
o= 10.

Overcoming the Allee effect: the patch preference effect

If dispersers are able to distinguish occupied from empty patches and have
a preference for empty patches, the negative impact of the Allee effect may be
partly nullified. We will take a different approach than Etienne (2000) in
modelling the patch preference effect, because Etienne (2000) based his model
on a mass action interpretation of the colonization term, which is much less
transparent than our interpretation as outlined below (8.4). We take the
discrete-time model (8.9) with (8.36), but we assume that, instead of (8.13), all
immigrants go to empty patches, so the number of immigrants is given by

LUA)p,(A))7,

780 8.42
(7,,A7) Ven 8.42)
With (8.42) the colonization probability becomes
C(n,Af)=1-exp| —4— 17 (n,A2) _
7'(n,,Af)+ 1,(A7)
7
: 8.43
1 M(A2) p,(AD) (/" - ,7) (8.43)
=1—exp| — |
i . 7, Z,(A7)

N=n LA p,(A)
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The equilibria are the solutions of

n* :
N\ NV=—n*
1—exp| —4'————— | (V= n*)= d* (8.44)

}7*
+
N—n* >

where we defined k" :=kL(Afpy(AL), v =1 AD)/(L(AHps(At)) and
M= M(At). There is no explicit expression for the solutions, except for
ny* = 0 which is a stable equilibrium, but we do have explicit expressions for
the bifurcation parameters y** and M:

yi=— 1+ (8.45)

n* ’
/V—/?*) N—n*
n* y n* '
N—n*

M=|1—exp| -4 (

(8.46)

The bifurcation diagrams are shown in Figure 8.8.
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Figure 8.8. Bifurcation diagrams of the discrete-time model (8.9) with Allee effect
and patch reference effect as in (8.43) and M(n, A1) = M(A¢) = M (thick lines) and
Allee effect only (thin lines). The solid curves represent the stable equilibria, the
dotted line represents the unstable equilibrium. A fold bifurcation occurs where the
unstable and stable branches meet. A. The bifurcation parameter is y'’; M =0.5. B.
The bifurcation parameter is M; y""= 0.4. In both panels k"= 1.
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As expected, the equilibrium fraction of occupied patches in the model with
Allee effect and patch preference effect is higher than the equilibrium fraction
in the model with Allee effect but without patch preference effect. It is even
higher than the model without Allee effect and patch preference effect (for
which y”" = 0) for all values of y”* that allow a non-trivial equilibrium. In this
sense we can say that patch preference can overcome the Allee effect. In other
words: aggregation overcomes the Allee effect.

8.6 DISCUSSION

In this paper we have explicitly shown that the founder effect is contained
in the Levins model. We also demonstrated how to consistently incorporate
the Allee effect (acting at the population level) into the Levins model. We
moved between discrete-time and continuous-time, deterministic and
stochastic formulations of the metapopulation model to see how these
formulations are related and to cast different lights on the founder and Allee
effects. In these formulations, we prefer the interpretation of the patch
occupancy as the probability of being occupied. This is equivalent to the patch
occupancy in the mean-field approximation, but has the advantage that it can
be consistently extended to cases in which this approximation no longer
applies.

In our study of the founder and Allee effects we stressed the difference
between the colonization term in the continuous-time and discrete-time
formulations of the models, which, in spite of its apparent triviality, has led to
some misunderstanding. The direct attempts of Etienne et al. (2002a) and
Harding and McNamara (2002) to model the founder and Allee effects in a
continuous-time model lead to models that describe something different from
what they had in mind. This happens because they used, in their continuous-
time models, saturating functions that are based on discrete-time
considerations. Etienne et al. (2002a) attempted to model the founder effect,
but they ended up with a model describing the Allee effect. Harding and
McNamara (2002) attempted to model the Allee effect in a continuous-time
model, but their results are actually valid for the discrete-time model (8.9).
They did not notice that they were erroneous, because their results did not
contradict their intuitions; Etienne et al. (2002a) considered the founder effect
to be a special case of the Allee effect (with which we no longer agree),
whereas Harding and McNamara (2002) still studied the Allee effect, but for a
different type of model.

We demonstrated that under certain conditions the discrete-time model
reduces to the continuous-time model when the appropriate limit is taken. The
colonization function in the birth-death model (Goel and Richter-Dyn, 1974),
representing the founder effect, satisfies these conditions, and hence the
Levins model can be claimed to incorporate the founder effect, as has always
been assumed. However, these conditions are not satisfied by the widely
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applied Hanski (1994) sigmoidal formulation considered to represent the Allee
effect. On the contrary, this formulation leads to metapopulation extinction in
all cases when transformed to the continuous-time model. We formulated a
new function to describe the Allee effect that has the correct properties in both
the discrete-time and the continuous-time formulations, and has the advantage
over the function of Hanski (1994) that it reduces to the founder effect
function when the parameter measuring the Allee effect is set to 0. This comes
at a price, though: the Allee effect is no longer associated solely with a
threshold of the number of immigrants arriving in a certain time interval, but
this threshold also depends on the length of the time interval. This is not
biologically unreasonable: colonization is less successful when the time
interval is longer while the number of immigrants remains the same, because
in this case immigrants arrive at the patch in smaller groups less
simultaneously, making the Allee effect potentially stronger.

Our new function for the Allee effect is, just as the one based on Hanski
(1994), a purely phenomenological model of the Allee effect: no mechanistic
basis has been provided. Incorporation of a phenomenological submodel in a
mechanistic model need not be a problem at all, as this has been common
practice with the rescue effect as well (Hanski, 1983; Hanski et al., 1996); in a
broader population modeling context, the logistic growth model provides a
well-known example. Still, for the rescue effect the underlying mechanism has
been studied in more detail (Gyllenberg and Hanski, 1997; Etienne, 2002), so
a more mechanistic approach is also recommended for the Allee effect.

Using our new function in the stochastic and deterministic formulations, we
showed that the fold bifurcation in the deterministic model should not be given
the interpretation that a small change in parameter values may cause an abrupt
change in metapopulation persistence, that is, sudden metapopulation
extinction, if the network contains a moderate number of patches. This is
readily explained. In the deterministic model the equilibrium suddenly
(dis)appears when the bifurcation parameter passes the bifurcation point, but
the stability of the equilibrium changes continuously, vanishing at the
bifurcation point (because the stable and unstable branch meet at the fold
bifurcation). Hence, the attracting force of the non-trivial equilibrium changes
gradually. Only when the number of patches is large, are there sharp changes
in the attracting force, so that the stochastic model increasingly resembles the
deterministic model as the number of patches increase. This is indeed what we
observed.

To reduce the impact of the Allee effect, one need not increase the
immigration rate per se. We showed that increasing patch preference for
empty patches also diminishes the Allee effect. Preference for empty patches
can be a natural phenomenon, for example it is plausible for territorial species.
But preference for empty patches can also be enforced by (temporarily)
closing corridors connecting occupied patches, thus redirecting migration to
empty patches. However, preference for empty patches may also decrease the
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benefits of the rescue effect (Etienne, 2000). The net result for metapopulation
persistence depends on the relative strengths of the effects. This deserves
further study.

We have looked at the founder and Allee effects in the simple patch
occupancy model that ignores population size. It seems more appropriate to
study the Allee effect with an individual-based model or a model where
population sizes are explicitly taken into account, instead of in a patch
occupancy model where individuals are only implicit. These individual-based
or size-structured metapopulation models are, however, usually much more
complicated and thus more difficult to comprehend. A simple model as the
patch occupancy model provides a strong metaphor with which predictions
can be obtained fairly quickly. These predictions can (and must) then be tested
in more complicated models, and if the predictions of these models are
different, one must critically examine the structure of these models to find out
why. In this way, one can systematically gain more insight into what processes
are relevant. This is the primary value of simple models. For the very same
reason, the rescue effect, the patch preference effect and the like have also
been studied in the simple patch occupancy model (see the introduction for
references). The secondary value of simple models is that they can be
extended to more realistic (and therefore usually more complicated) models. It
is then of great importance that the mathematical description of the simple
model exactly corresponds with one’s assumptions. If, for example, the
models of Etienne ef al. (2002a) and Harding and McNamara (2002) were
extended to include competition or predator-prey interactions (see the
introduction for references on how to do so), the results may no longer
correspond with their initial assumptions.

Analysis of the dynamics (or rather the equilibria) of the patch occupancy
model with founder and Allee effect did not yield results that have not been
obtained earlier with more complicated models. However, this does not make
our model superfluous. On the contrary, it means that for many purposes, our
simple model suffices as a description of the founder and Allee effects.
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