
2.3 Some techniques in dynamic simulation 

J. Goudriaan 

2.3.1 Introduction 

Good quality dynamic simulation can only be attained if a few basic tech­
niques are mastered. CSMP, introduced in Section 2.2, provides the model 
builder with a package of convenient features. Some of these features, their 
principles and pitfalls will now be explained so that they can be used more effi­
ciently and lead to more reliable results. For further studies of numerical tech­
niques, good handbooks are available, for example that of Scheid (1968). Se­
quencing of program statements, how sorting can be suppressed, and how sort-
able blocks can be constructed that are internally sequential, is discussed in Sub­
section 2.3.2. 

The MACRO feature of CSMP can be used when a piece of program is re­
peated several times in the same model with different names. Defined once in 
the beginning, this piece of program is written by the CSMP translator in all 
places where a MACRO is invoked. This is explained in Subsection 2.3.3. Solu­
tion of implicit equations is possible with iteration techniques. The CSMP pro­
vided IMPLicit loop will be discussed as well as a self-written method (Subsec­
tion 2.3.4). Next, numerical integration is discussed (Subsections 2.3.5, 2.3.6 
and 2.3.7). Characteristics of the modelled system, such as occurrence of feed­
back and discontinuities and the time coefficient determine which integration 
method should be used, and also the time interval of integration. 

2.3.2 Sorting 

The basic rule for sorting program statements in a computational order is 
that any variable used on the right-hand side of the equal sign in a statement 
should have been defined in an earlier stage of the program. This simple rule is 
incorporated in the CSMP translator that prepares the source program for pro­
per handling by the FORTRAN compiler (Subsection 2.2.4). 

However, situations exist where the programmer would like to cancel this 
rule. For example, during the night there is no point in performing laborious 
calculations of light extinction, so one would rather skip this part of a model. 
That means that a conditional jump must be inserted: an instruction to jump 
over a number of statements if the irradiation level is zero. Once the program­
mer has determined which statements must be skipped, he would not like to see 
the CSMP translator disturbing the well-balanced sorting effort, and so he in­
serts a command that the translator should not touch these statements. There 
are two such commands: NOSORT and PROCEDURE. 
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The label NOSORT is valid until it is cancelled by the label SORT; so a non-
sorted block of statements between the labels NOSORT . . . SORT is created. 
Statements outside this block can be freely sorted by the CSMP translator, ex­
cept that they cannot be moved across the NOSORT block: NOSORT cuts the 
program into sections. 

If complete sortability is desired, the PROCEDURE label must be used. The 
translator will consider the group of statements between this label and the label 
ENDPRO as one big sortable statement. Consequently the translator demands 
a specification of input and output variables of this block, so that it can proper­
ly locate it between the other program statements: a PROCEDURE does not cut 
a program into sections. For example, suppose we need the sum of the integer 
numbers between Nl and N2, which are calculated somewhere else in the pro­
gram. The result S is used somewhere else. Then we can make a program with a 
PROCEDURE: 

FIXED 
PARAM 

PRINT 

I, Nl, N2 
N1=0 
N2= TIME 
S 

TIMER FINTIM = 10., PRDEL = 3.3 
PROCEDURE S = SUM(N1, N2) 

11 

10 
ENDPRO 
END 
STOP 
ENDJOB 

S = 0. 
IF(N2.LT.Nl)GOTO 10 
I = N1 
S = S + I 
1 = 1 + 1 
IF(I.GT.N2)GOTO 10 
GOTO 11 
CONTINUE 

In the PROCEDURE for summing, a few new statements are used. The vari­
ables I, Nl and N2 are declared integer by the label FIXED. In an IF statement 
the values of two variables are compared with each other to see, for instance, 
whether the left one is greater than (GT) or less than (LT) the right one. If this is 
true the computer follows the GOTO command and jumps to the line starting 
with that number. If it is not true the computer continues with the next line. The 
unconditional GOTO 11 command will make the computer return to previous 
lines to repeat a block of statements. In the paragraph about iteration techniques, 
we shall see an application of a PROCEDURE. 
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2.3.3 Programming with CSMP MACRO'S 

In a MACRO the structure of a process is described that different species or 
different model components have in common. In this sense it resembles a FOR­
TRAN subroutine, but the difference is that it is not invoked in the execution 
phase, but in the translation phase. Every time a MACRO is invoked, the CSMP 
translator will expand it to the full text with the appropriate symbols. After this 
has been completed, the CSMP sorting routine will become operative so that in­
side the definition of a MACRO, the statements need not be in computational 
order. 

As an example, the simple crop growth model (Subsection 2.2.2) is extended 
to deal with competition. In a mixture, light absorption will supposedly be pro­
portional to the leaf area of each species. First the MACRO definition: 

MACRO TWT, LAI = GROWTH(TWTI,MC,CVF!ALU,LAR) 
TWT = INTGRL(TWTI,GTW) 
GTW = (GPHOT - MC*TWT)*CVF 
GPHOT = ALU* AVIS 
AVIS = I VIS * (1. - EXP( - 0.7 * LAIT)) * 0.9 * LAI/LAIT 
LAI = TWT*LAR 

ENDMACRO 

In this MACRO the following new variables and coefficients occur: 
ALU average light use efficiency, expressed as glu­

cose formed per amount of light absorbed 4.E-5 kg m2 ha-"1 J -1 

AVIS absorbed visible radiation J m~2 d~] 

CVF conversion factor of glucose into biomass 0.7 kg kg"-1 

IVIS incoming visible radiation 10.E6 Jm~ 2d~ I 

LAR leaf area ratio l.E-3 ha kg-1 

MC maintenance coefficient, expressed in glucose 
per dry weight 0.015 kg kg"1 d~J 

These numerical values only give an indication of a reasonable number, and are 
by no means natural constants. 

A MACRO definition must be placed before the label INITIAL. It is clear 
that the sequence of the statements is not computational here. (If desired, the 
PROCEDURE feature can be included in a MACRO definition). The structure 
that is given in the MACRO definition will be written in the main program each 
time the CSMP translator encounters a call to it. Two such calls (for two plant 
species) are: 

TWTl,LAIl=GROWTH(TWTIl,MCl,CVFl,ALUl,LARl) 
TWT2,LAI2 = GROWTH(TWTI2,MC2,CVF2, ALU2,LAR2) 

It is good practice to put the input variables of the MACRO in the right hand 
list. In the main program these variables should either be calculated or be given 
as parameters and initial constants. In this example TWTI1 and TWTI2 must be 
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given separately on an INCON line, and likewise MCI, MC2, CVF1, CVF2, 
ALU1, ALU2, LAR1 and LAR2 on PARAM lines. There may also be variables 
that are common to both species, here for example LAIT. Therefore this vari­
able does not occur in the argument list and is defined in the main program: 

LAIT = LAI 1 + LAI2 

Obviously the TIMER and output control statements must be specified in the 
normal way. 

A variable like GTW, which is used only inside the MACRO, is not known in 
the main program, because its name was not listed as an argument. It can be 
made common to the main program by including it in the argument list. 

Exercise 18 
Complete the program that was started here, run it and study the UPDATE, as 
well as the output. 

2.3.4 Iterative techniques 

An iterative procedure in a simulation model can be used to calculate the ' 
value of a state variable, when its time coefficient (Subsection 2.1.7) is small in ̂  
comparison with the integration interval. This technique can be useful in com- ^ 
plex models that span three hierarchical levels (Subsection 1.4.4). Then we may 
assume that this state variable is in equilibrium with its environment after each ' 
time step. This steady state can be found by an iterative technique that searches 
the point where the rate of change of the integral is zero. Of course, the sign of 
the feedback that controls the rate of change must be negative. As an example 
we shall treat the simulation of production and consumption of assimilates that 
flow through a reserve pool. The time coefficient of such a reserve pool is in the 
order of half a day, so that every day must take care of its own demand. When a 
diurnal course is simulated and the integration step is on the order of minutes, 
the reserve pool can be treated as a state variable (Subsection 3.3.3). For simu­
lation of the growth throughout a season, a convenient time step is one day and 
the equilibrium level of reserves must be found by iteration. For comparison, 
we shall first consider the state variable formulation: 

TITLE RESERVES AS A STATE VARIABLE 
INCON RESLI = 0.1 

RESI = RESLI * TWT 
DYNAMIC 

RESL = RES/TWT 
RES = INTGRL(RESI,GPHRED - MAINT - CGR) 
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MAINT = 0.015 *TWT 
CGR = 0.1* RES/(RESL + KRESL) 

PAR AM KRESL = 0.1,TWT = (2000.,1 (XXX).) 
GPHRED = GPHOT * REDF 
GPHOT = GPHST*(1.-EXP(-0.7*LAI)) 
REDF = AFGEN(REDFT,RESL) 
LAI = AMIN1(WSH/5(X).,5.) 
WSH = 0.7*TWT 

FUNCTION REDFT = 0.,1.,0.2,1.,0.25,0.,0.5,0. 
PARAM GPHST = 400. 
TIMER FINTIM = 20.,PRDEL= 1. 
PRINT RES,RESL,GPHRED 
END 
STOP 
ENDJOB 

In the INITIAL the reserve level is set to 0.1 of the total plant weight TWT, and 
then the initial amount of reserves RESI is calculated. In the DYNAMIC the 
amount of reserves RES is integrated with a rate calculated as gross photosyn­
thesis GPHRED, minus maintenance respiration MAINT, minus consumption 
rate for growth CGR; all rates being expressed in glucose and in kg ha"1 d_1. 
The rate of maintenance respiration is 1.5% of the total dry weight per day and 
independent of the reserve level. The consumption rate for growth CGR shows 
a saturation type curve response to the reserve level (Moldau & Sober, 1981). In 
this example a hyperbolic relation is used with a Michaelis-Menten constant 
(KRESL) of 0.1. The maximum rate of consumption is taken as 0.1 of the total 
dry weight per day. 

Exercise 19 
What do these numbers mean for the time coefficient of the reserve level? 

The rate of gross photosynthesis GPHRED is reduced by some hypothesized 
inhibiting factor when the reserve level rises above 20%. This reduction is ob­
tained by multiplication with the reduction factor REDF, which drops to zero at 
and above 25%. The combined action of these processes on the rate of reserve 
accumulation is given in Figure 18, where GPHRED,MAINT and CGR have 
been drawn. At the point of equilibrium GPHRED is equal to MAINT + CGR. 

In view of the comparison with an iterative solution of the reserve level the 
total weight of the crop has been fixed during the simulation. The output (Table 
4) shows the equilibrium values with TWT = 2000. as 0.22548 for RESL and 
168.55 for GPHRED, almost reached in about 2 days. With TWT= 10000. they 
are 0.0312 and 387.92. 

70 



rate of 
assimilate 
production 

or 
consumption 

i 

( X) 

GPHRED 

surplus \ 
of \ 

assimilates \ / 
I \ 

i i i i 

005 0.1 0.15 0.2 

equilibrium CGR* MAINT 

deficit of 
assimilates 

\GPHRED 
\ 

0.25 0.3 

CGR 

MAINT 

MAINT 

RESL 

Figure 18. Production and consumption of assimilates as a function of reserve level 
(RESL). 

There are several iterative methods available, of which only two will be dis­
cussed. More elaborate methods can be found in handbooks for numerical analy­
sis. All iteration methods have in common that a value for an unknown variable 
(here RESL) must be found for which two rates are equal. It is then implicitly 
assumed that sufficient time has passed within the time interval for integration 
to establish an equilibrium. Here the production rate GPHRED must be equal 
to the total consumption rate CGR + MAINT. Often this problem is graph­
ically represented as the problem to find the intersect of two lines (Figure 18). 

In CSMP, the IMPLicit loop is available as a method to solve this problem. 
Essentially the method is based on repeated substitution. First a value for RESL 
is guessed, the corresponding rate of photosynthesis is calculated, then the re­
serve level is calculated at which the total consumption rate is equal to the pre­
viously calculated photosynthesis rate and the procedure is repeated until suf­
ficient convergence is reached. The first drawback of this method is that one of 
the relations between rate and unknown variable must be inverted: RESL must 
be written either as a function of total consumption rate or as a function of 
photosynthesis. When AFGEN functions have been used such an inversion is 
not possible. Therefore RESL cannot be written as a function of photosynthe-

Table 4. Simulated time course of amount of reserves (RES), the reserve level (RESL) 
and gross CO2 assimilation (GPHRED) with the state variable approach. 

TIME RES RESL GPHRED 

0. 
1. 
2. 
3. 
4. 
5. 

200.00 
394.69 
449.30 
450.% 
450.95 
450.95 

0.10000 
0.19735 
0.22465 
0.22545 
0.22547 
0.22548 

343.66 
343.66 
174.24 
168.72 
168.57 
168.55 
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sis, but must be written as a function of CGR by making RESL explicit in the 
hyperbolic equation. The resulting IMPLicit loop is given in the following simu­
lation program: 

TITLE RESERVE LEVEL WITH IMPLICIT LOOP 
INCON RESLI = 0.23 

MAINT=0.015 *TWT 
GPHOT=GPHST * (1. - EXP( - 0.7 * LAI)) 
LAI = AMINl(WSH/500.,5.) 
WSH = 0.7*TWT 

RESL = IMPL(RESLI,0.0001,RESL1) 
REDF = AFGEN(REDFT,RESL) 
GPHRED = GPHOT * REDF \ implicit loop 
CGR = GPHRED - MAINT 
RESL1 = CGR*KRESL/(0.1 *TWT-CGR) 

PARAM GPHST=400. 
PARAM KRESL = 0.1,TWT=(2000., 10000.) 
FUNCTION REDFT = 0.,1.,0.2,1.,0.25,0.,0.5,0. 
TIMER FINTIM=1., PRDEL=1. 
METHOD RECT 
PRINT RESL.GPHRED 
END 
STOP 
ENDJOB 

In this program there is no integral RES. Instead, RESL is calculated as the 
result of the implicit loop that starts with 

RESL = IMPL(RESLI,0.0001,RESL1) 

Here RESLI is the initial guess, 0.0001 is the convergence criterion and RESL1 
is the name of the variable that closes the implicit loop. This closing statement is 
in fact the hyperbolic equation for the dependence of CGR on RESL in which 
RESL has been made explicit. The three statements in between replace the state 
variable formulation. 

With TWT = 10000., the results of this program correspond with those of the 
state variable approach. 

Exercise 20 
Check this by comparing the results of the two methods. Repeat the calculation 
with both programs for TWT = 2000. 
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Figure 19. Course of the iteration process followed by the IMPLicit loop to find equilib­
rium between production and consumption of assimilates. 

For TWT = 2000., the results of the implicit loop are disappointing. The cal­
culated reserve level is negative! The reason for this bad behaviour is shown 
graphically in Figure 19. It is related to divergence of the repeated substitution 
method. This danger is always present in the CSMP-provided IMPLicit loop 
and when it strikes it can be resolved by rearrangement of the statements within 
the implicit loop. However, then the other equation with the unknown variable 
has to be inverted, which is not always possible. In this example it is hard to 
write RESL as a function of photosynthesis. 

To summarize, the implicit loop may or may not work, dependent on the 
sequence of the statements. Of course, this is an uncomfortable feature of the 
implicit loop. In contrast, the halving/doubling method also known as bisection 
method is absolutely reliable, but its programming requires more work. This 
method is based on very simple reasoning. First a lower and an upper value are 
guessed, which certainly comprise the range of the unknown variable. In this 
example one might choose the values 0. and 0.25. For each of the two guesses 
the rates of production and consumption are calculated, and, of course, the 
signs of their differences are opposite. That means that the point where produc­
tion and consumption match, must lie somewhere in between. Therefore the 
value halfway is trial and its accompanying production and consumption values. 
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Figure 20. Listing of CSMP program that employs the halving-doubling iteration method, 
and its output. 

TITLE RESERVELEVEL WITH HALVlNb/DOUBLlNG ITERATION METHOD 
INITIAL 
INCON RESL1*0.»RESL2*.25 
• LOWER VALUE OF RESL IS ZERO* HMD URPER VALUE IS 25 PERCENT 

DYNAMIC 
• FOR DEMONSTRATION PURPOSES* TUT IS MADE A FUNCTION OF TIME: 

TWT=20.*TIME 

MAINT»0.015*TWT 
LHI=AM1N1 tWvH/t>00.»5.) 
WSH*0.7*TWT 
GPH0T*GPHST*<1.-EXPC-0.7*LHI>) 
GPHRED=GPHOT*AFGtN<REDFT.RESD 

PROCEDURE R£SL=ITERA<RESLl>RESL2»bPH0T) 
COUNT*0. 

130 CGR1=0. 1*TWT*RESL1/<RESLH-KRESL) 
CGR2=0.1*TWT*RESL2/<RESLZ+KRESL) 
AVAIL1-6PH0T*AFGEN<PEDFT.RESL1)-MAINT 
AVAIL2*GPHQT*AFGEN<REDFT,RESL2)-MAINT 
COUNT=COUNT«-l. 
IF<COUNT.GT.100.)GOTO 150 

IF<<,CGR1-AVRIL1)*<CGR2-AVA1L2>.LT.0.) GOTO 110 
• IF THE SOLUTION IS WITHIN THE CHOSEN RANGE GOTO 110 

• ELSE DOUBLE THE RANGE 1NTD 1HE CORRECT DIRECTION: 
IF<CGR1.GT.AVAIL1) RESL1-2.•RESL1-RESL2 
IF CCGR2.LT.AVAIL2> RESL2=2.•RESL2-RESL1 

• AND TRY AGAIN: 
GOTO 130 

• RESL3 LIES HHLFWHY THE LOWER AND THE UPPER VALUE 
110 RESL3=*<RESL1+RESL2)*0.5 

CGR3»0.1*TWT*RESL3/<RESL3*KRESL> 
AVAIL3=GPH0T*AFGEN<REDFT»RESL3)-MA1NT 

• TEST FOR THE PRESET CONVERGENCE CRITERION: 
IF<ABS<CGR3-AVAIL3).LT.ERROR) GOTO 200 

• CRITERION NOT SATISFIED.SO INCREMENT THE COUNT AND HALVE THE RANGE 
COUNT-COUNT*1. 
IF(COUNT.GT.100.) GOTO 150 
IF<.<CGR3-AVAIL3)*<CGR1-HVAIL1).GT.0.) GOTO 100 

• UPPER BOUNDARY IS REPLACED BY THE HALFWAY VALUE: 
RESL2=RESL3 
GOTO 110 

• LOWER BOUNDARY IS REPLACED BY THE HALFWAY VALUE: 
100 RESL1=RESL3 

GOTO 110 

150 WRITEC6.800) 
800 FORMAT*' TOO MANY ITERATIONS') 
200 RESL=RESL3 

• THE RANGE FOR THE NEXT TIME INTERVAL IS CHOSEN: 
RESL1=RESL3 
RESL2=RESL3*0.001 

ENDPRO 

PARAM ERRORsO.001 
PARAM KRESL-0.1 
PARAM GPHST=400. 
FUNCTION REDFT*0.»1.* 0.2>1.»U.25> 0. 
TIMER FINT1M=500.»PRDEL=20..DELT*20. 
METHOD RECT 
PRINT TWT»RESL»GPHRED 
END 
STOP 
ENDJOB 
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1 FESEPVELEVEL WITH HftLVING/liOUfcLING ITERATION METHOD 
0 TIME Tl.lT RESL GPHRED 

O.OOOOOOD+00 0.OOOOOE+OO 0.OOOOOE*00 0.O0O00E+0O 
2.0000U0D+01 4D0.00 0.23685 34.125 
4.0000000*01 800.00 0.23434 68.072 
6.0000000*01 1200.0 0.23160 101.81 
8.0000000*01 1600.0 0.22863 135.31 
1.0000O0D4-02 2000.0 0.22548 168.55 
4.0000000*02 8000.0 5.03535E-02 387.92 
4.2000000*02 8400.0 4.53091E-02 387.92 
4.4000000*02 8800.0 4.10078E-02 387.92 
4.60000004*02 9200i«0 3.72974E-02 387.92 
4.8000000*02 9600.0 3.40635E-02 387.92 
5.0000000*02 10000. 3.12200E-02 387.92 

1SSS SIMULATION HRLTED FOR FINISH CONDITION TIME 500.00 
lfSS CONTINUOUS SYSTEM MODELING PROGRAM III VIM3 EXECUTION OUTPUT ft* 

The sign of their difference is compared with that of the lower value. If it is the 
same, the halfway value replaces the old lower value in its function as lower 
value and the procedure is repeated. If the sign is opposite the halfway value be­
comes the new upper value, and the procedure is repeated. This iteration is con­
tinued until the difference between the upper and lower value is reduced to a 
preset convergence criterion. Every iteration cycle the possible range is halved, 
so that 10 iterations are required to obtain an accuracy of 1/1000 of the initial 
range (210=1024), and by 20 we have a reduction by a factor of 106. This 
method never fails provided there is only one possible solution between the two 
starting positions. 

When we use this method in simulation, most likely the current situation does 
not differ considerably from that at the previous time interval. It could then be 
advantageous to use the last solution as one of the starting points, and accept 
the possibility that the solution is outside the chosen range. We then have to 
make a provision for being able to double the range in the correct direction until 
it contains the solution, after which we apply the halving method again. In Fig­
ure 20, a self-explanatory listing is given of a CSMP program for the calculation 
of crop photosynthesis where the halving/doubling iteration method is used. 
From the output we see that at time 100 when the assumed crop weight is 2000, 
the result is equal to that of the state variable method. At time 0, when crop 
weight is assumed zero, of course no result can be obtained. The sturdiness of 
the method is shown by the absence of zero divisions or overflows for this situa­
tion, and resumption of its usual performance at time 20. 

A special use of an implicit loop for a crop-water-balance simulation, using 
one hour time steps, is explained in Subsection 3.3.7. 

2.3.5 Some numerical integration methods 

Popular numerical integration methods, all available in CSMP, are the rectan­
gular method (METHOD RECT), the trapezoidal method (METHOD TRAPZ), 
the Runge-Kutta method with fixed integration interval (METHOD RKSFX), 
and the Runge-Kutta method with a self-adapting integration interval (METHOD 
RKS). The latter is used by default in CSMP, in the situation that the model 
builder did not specify a method. To make a proper choice of integration method 
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for a model, it is worthwhile to consider them a bit further. 
The simplest method, the rectangular one, will be discussed first. In this 

method a rate calculation is followed by an integration step, then time is in­
cremented by the time interval DELT, and the procedure is repeated for the 
next time interval. Graphically, it is convenient to represent the integral as an 
area under a curve, where the rate of change corresponds to the function value 
of the curve. In Figure 21 an example is given. The 'true' area is the area under 
the continuous curve, and the result of the rectangular method is given by the 
area of the vertical bars. In this case, where a rising curve is integrated the 
numerical result is less than the true area; with a decreasing function it would be 
the opposite. Even if we do not know the exact value of the difference between 
the numerical result and the 'true' area it is possible to estimate it. In this case 
the error of the numerical integration is approximately equal to the sum of the 
areas of the triangles above the vertical bars, formed by connecting their corners. 

As a standard example we shall study the integration of the exponential func­
tion of time: 

R = Ro. EXP(RGR . T) (1) 

where R is the rate to be integrated, RGR the relative growth rate, T time and RQ 
the rate at time zero. Formulated in this way, R is a driving force, that means a 
function of time only and not dependent on the result of the integration. The 
dimension of the relative growth rate RGR is T~ *, so that the product RGR . T 
is dimensionless. (It is good practice to verify that arguments of exponentials, 
logarithms, etc., are dimensionless.) Because the expression for the rate R 
(Equation 1) can be integrated analytically (which we will consider as the 'true* 
result), it is possible to find the errors caused by different numerical integration 
methods. Assuming the value of Ro is unity, the analytical solution of the in­
tegral (A) of R between time T0 and time Tj is: 

A = (EXP(RGR . T,) - EXP(RGR . T0))/RGR 

Using the values RGR = 1, T0 = 0 and Tj = 4 we find A = 53.598150. 

(2) 

|~Af- . |~Af- |—Af-| 
time 

Figure 21. Graphical representation of numerical integra­
tion. The rate of change (R) is on the vertical axis, so that 
areas represent values integrated over time intervals A/. 
Exponential function of time (solid line), rectangular inte­
gration (HB3), trapezoidal integration {W^+^m ); 
At is time interval of integration. 
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Exercise 21 
Write a CSMP program to find the numerical integral of R with time intervals 
(DELT) of 1, 0.1 and 0.01. Calculate the error as the difference between the 
analytical and numerical result. Use the methods RECT, TRAPZ and RKSFX. 

2.3.6 Error analysis 

Integration of a driving force (no feedback) 
Obviously the results are better using TRAPZ, and still more so with RKSFX. 

The errors of these methods are explained graphically in Figures 21 and 22. By 
using TRAPZ the triangles above the vertical bars have been included in the in­
tegral value, because this method averages the rate at the beginning and at the 
end of the time interval. Graphically, such averaging can be represented by con­
necting the corners of the vertical bars by straight lines. We have seen that the 
error of RECT was just about equal to the area of the triangles formed. 

Now we shall try to make a quantitative estimate of the error and how it is re­
lated to the time interval of integration. The conclusions of the paragraphs be­
low are summarized in Table 6. 

To derive these conclusions, a thorough analysis of the integration procedure 
is required. For the sake of simplicity this is not done here iii full detail. Addi­
tional information can be found in Scheid (1968) and Lanczos (1967). 

Life is made simple, because R, the rate of change of the integral A of Equa­
tion 2, grows exponentially, so that each time interval the same fraction is added 
to its value and the same relative error is made over and over again. In fact, for 
RECT the relative error is equal to the ratio of the area of the triangle to that of 
the vertical bar. This ratio is: 

Ercl = RGR . DELT/2 

Since this ratio does not change, the absolute error at the end is 

Eabs = RGR . DELT . A/2 

(3) 

(4) 

Table 5. Numerical integration results (A) and their errors for three values of integration 
steps with the integration methods RECT, TRAPZ and RKSFX. 

DELT 

1 
0.1 
0.01 

RECT 

A 

31.193 
50.963 
53.331 

ERROR 

22.405 
2.6353 
0.26754 

TRAPZ 

A 

57.992 
53.643 
53.599 

ERROR 

-4.3938 
-0.04466 
-0.000446 

RKSFX 

A 

53.616 
53.598 
53.598 

ERROR 

-0.01807 
-0.0000014 
-0.0000005 
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Table 6. Relative errors of the numerical integration results 

With feedback Without feedback 

RECT 

TRAPZ 

RKSFX 

2. (DELT/TAU). (TIME/TAU) 

(DELT/TAU)2. (TIME/TAU)/6 

(DELT/TAU)4. (TIME/TAU)/120 

(DELT/TAU)/2 

-(DELT/TAU)2/12 

- (DELT/TAU)4/2880 

We can check with Table 5 that this estimate is quite good, except for DELT= 1, 
in which case the result is just too far off. Note that A in Equation 4 is numeri­
cally not identical to A in Equation 2, as its value depends on method and DELT 
chosen. 

In the trapezoidal method the triangles have been taken into account, so that 
the error is much smaller. The remaining error is given in Figure 22 as the area 
between the straight line and the curved solid line. The best estimate of this area 
is obtained when a parabola is constructed through the function values at time 
T, T + DELT/2 and T + DELT and the area between the parabola and the 
straight line is taken. Some algebraic work shows that the remaining relative 
error is now: 

Erel = -(RGR . DELT)2/12 (5) 

In Table 5 this result can be checked. Similarly it was derived that for METHOD 
RKSFX, the relative error is given by 

Erel = -(RGR . DELT)V2880 (6) 

Figure 22. Geometrical representation of the 
trapezoidal (below straight line) and Runge-
Kutta (below curved dashed line) integration 
methods. The curved solid line is the exponen­
tial which has to be integrated. The rate of 
change (R) is on the vertical axis, so that areas 
represent integrated values. 
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For DELT = 0.01 the resulting relative error is drowned in the truncation errors 
that always occur. The exponent of the dimensionless product (RGR . DELT) 
that occurs in the expression for the relative errors, reflects that the method 
RECT, TRAPZ and RKSFX are of the first, second and fourth order, respec­
tively. This result has wider applicability than just this example of integration of 
the exponential function. However, there are exceptions where with some luck a 
lower-order integration method does just as well as a higher-order one. 

Exercise 22 
Repeat Exercise 21 for the integration of 

a. R = TIME 
b. R = TIME**2 
c. R = SIN(2*PI*TIME) 

between TIME 0. and TIME 0.5, and with PI = 3.141592 

Integration with feedback 
Influence of feedback on development of errors is considerable. With feed­

back (Subsection 2.1.6), either positive or negative, the situation is worse than 
discussed before, because errors will propagate. In exponential growth of a 
single plant, an underestimation of leaf area will cause an underestimation of 
photosynthesis, and hence growth, and hence leaf area. With numerical integra­
tion the same thing happens, and moreover a new error will be added every time 
interval. Therefore, in contrast to integration of a driving force, relative errors 
tend to grow during simulation time, although negative feedback may some­
times help us. The error analysis is slightly different from that for a driving 
force, because the relative error will refer to the total integral value, which con­
sists of integrated amount and initial value together. 

As an example we shall study the integration of the rate R = RGR • A. Ideally 
the result of this integration is the same as integration of the exponential func­
tion EXP(RGR . T), but by linking the rate to the integral value A itself, feed­
back is introduced. In the rectangular method the value of the integral A after 
one integration step will equal: 

AT+DELT = AT . (1 + RGR . DELT) (7) 

so that the rate at time T 4- DELT is given by 

RT+DELT = R G R • AT . (1 + RGR . DELT) (8) 

In the trapezoidal method this rate and the one at time T are averaged and used 
to find a better estimate of AT+DELT. The corrected estimate can be written as: 

AT+DELT = AT . (1 + RGR . DELT + (RGR * DELT)2/2) (9) 
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As before, we assume that the difference between the result for TRAPZ and 
RECT is a good estimate for the error involved in RECT. By comparing Equa­
tion 7 and Equation 9 we find that for one integration interval the relative error 
in RECT can be estimated as: 

Erd = (RGR . DELT)2/2 (10) 

In contrast to Equation 3, RGR. DELT occurs here in an quadratic form. This 
is so because in Equation 3 the error is related to the integral, not considering its 
initial value. In Equation 10, the initial value is included because with feedback 
one is interested in the total result. This relative error occurs each integration 
step, and in contrast to the situation without feedback, these errors accumulate. 
At time T, when T/DELT integration steps have been performed, the resulting 
relative error is 

EreI = RGR2 . T . DELT/2 (11) 

Interestingly, the relative error is again proportional with DELT, both with and 
without feedback. A similar procedure for evaluation of the errors involved in 
TRAPZ and in RKSFX yields the result presented in Table 6. In this table RGR 
has been replaced by 1/TAU, where TAU stands for time coefficient. Time 
coefficient has a more general meaning than relative growth rate and it can be 
loosely defined as the shortest duration of time in which at least one of the in­
tegrals or driving forces of the model system can change considerably (cf. Sub­
sections 1.4.4 and 2.1.7). 

In principle the results of Table 6 are also valid when the feedback is negative, 
but it should be remembered that they refer to the difference between the inte­
gral and the equilibrium level. Since that difference decreases in time, the abso­
lute error decreases as well. The relative error of the difference between equilib­
rium and integral increases all the time, but in most applications that is not dis­
turbing. If we define relative error as absolute error divided by integral itself, 
negative feedback will help to dissipate old errors. Only in the extreme situation 
that the time interval exceeds the time coefficient is the dampening effect of the 
negative feedback insufficient to constrain the growth of the integration errors. 

Integration with discontinuities 
Discontinuities in forcing functions also need to be considered. The error 

analysis discussed before is not possible when a discontinuity occurs, because 
the derivatives do not exist at the breaking point. When an integration interval 
overlaps a discontinuity, the error in any integration method will be large. To 
estimate how large, we must first find out what type of discontinuity we are 
dealing with. In Figure 23 different types of discontinuities have been illus­
trated. The time course has been given of the content of an integral (state) and 
its corresponding rate of change is above it. The first discontinuity in this graph 
is characterized by a jump in the integral content (point t0). Such a jump can 
only be realized if the rate gets an infinitely high value at this moment during an 
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Figure 23. Discontinuities of zero-th, 
first and second order in a rate variable 
and their consequences for the state vari­
able. 

infinitely short duration of time, in such a way that the area of this pulse is 
equal to the jump of the integral. In physics such a pulse is called a Dirac pulse 
and often denoted by 5(/0). Let us call this phenomenon a discontinuity of the 
zero-th order. In the second example, at time tx the rate shows a jump, resulting 
in a change of slope in the state. This is a discontinuity of the first order. The 
last example shows a discontinuity of the second order at time t2\ it is hardly 
noticeable in the graph of the state. 

It is clear that these discontinuities have a decreasing order of difficulty for 
simulation. The most serious one, the discontinuity of the zero-th order, occurs 
when the content of an integral has to be changed instantaneously, e.g. when a 
crop is harvested. Then the only permissable integration method is METHOD 
RECT. The Dirac pulse of the rate is approximated by a pulse with width DELT 
and a height equal to the amount of change divided by the time interval. For in­
stance, if an integral must be emptied we get 

AT+DELT = AT - DELT . (AT/DELT) (12) 

It is characteristic for these constructions that a division by DELT occurs some­
where in the program. It ensures that the numerical error because of the discon­
tinuity itself has been corrected, and that the remaining errors can be analyzed 
in the traditional way. 

Discontinuities of the first and second order may occur when weather data 
are available as daily totals or as daily averages. For instance, the average tem­
perature may jump at midnight. Usually these discontinuities can be handled by 
a self-adapting method like RKS. Whatever method is used, the error will be 
proportional to the time interval around the discontinuity; and so it can be made 
as small as one wishes. In Table 7 a summary is given of the line of reasoning 
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Table 7. Decision table for integration method and time interval. 

Do discontinuities of the zero-th order occur? 

Yes: Choose METHOD RECT 
Synchronize DELT with the discontinuities if they appear at regular intervals. 
Choose DELT smaller than the smallest time coefficient, usually about 1/10 of it. 

No: Is the time coefficient stable and known? 
Yes: Choose METHOD RKSFX 

Choose DELT about l/i of the time coefficient. 
No: Specify neither METHOD (RKS is default) 

nor DELT (is automatically adapted) 

that must be followed to arrive at the proper integration method. 

2.3.7 Computation schemes of the integration methods 

From the scheme in Table 8 it is possible to find how many times the UPDATE 
is executed for each integration interval DELT. The calculation of the rate(s) R 
is represented by a call of the UPDATE (see Subsection 2.2.4): R = UPDATE 
(AjpT,,) in which A represents the state variable and T time. In RECT this call is 
done once, in TRAPZ twice and in RKSFX four times. This larger expenditure 
is more than compensated by the much larger size of time intervals that can be 
taken to reach the same accuracy. For instance, with a required accuracy of 
0.1 % for each simulation period of one time coefficient we need 500 computa­
tions with RECT, 25 with TRAPZ and only seven with RKSFX. When we know 
the time coefficient, we can make an estimate of the needed time step before­
hand. In complicated systems with many simultaneous processes such an esti­
mate is difficult. It is possible to use an empirical method like running the model 
twice with different time steps. It is also possible to use the CSMP-provided in­
tegration method RKS that chooses the time step itself. In this method two in­
tegration routines are executed simultaneously, their results are compared, and 
when they differ too much the time step is halved. If the deviation is much 
smaller than required, DELT will be doubled for the next step. 

Sometimes the preset error criterion is not met, and DELT is decreased below 
the minimum value DELMIN. Then the error message 'DELT IS LESS THAN 
DELMIN* is given, and the simulation is automatically terminated. Such an 
event usually means a programming or conceptual error, or at least an awkward 
model structure. Because of the feature of automatic adaption of the time-inter­
val of integration, the method RKS is recommended as a standard method. 

In the RKS method, the statements of the computer programs are executed 
many times, only to obtain a preliminary estimation of the rates. How many 
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Table 8. Summary of the integration methods RECT, TRAPZ, RKSFX. T stands for 
TIME. 

RECTANGULAR 

R = UPDATE(Art,T„) 
A„+1 = An 4- DELT^R 
T„+i = T„ + DELT 

TRAPZ 

Rl=UPDATE(An,Tn) 
A1=A„ + DELT.R1 
T„+, = T„ + DELT 
R2 = UPDATE(Al,Tn+1) 
A„+1 = A„ + DELT*(Rl+R2)/2 

RKSFX 

Rl=UPDATE(An,Tn) 
Al=An+DELT.R1.0.5 
Xi+w = T„ 4- DELT-0.5 
R2 = UPDATE(Al,Tn+1/i) 
A2 = An+DELT.R2-0.5 
R3 = UPDATE(A2, Tn+*) 
A3 = A„ + DELT«R3 
Tn+1 = Tn + DELT 
R4 = UPDATE(A3,T„+1) 
A„+1 = An+DELT.(Rl+2.R2 + 2«R3 + R4)/6 

times this execution is done can be checked by introduction of some counters into 
the program. To this end, an initial segment is introduced, in which the counters 
COUNT1 and COUNT2 are set to zero. At the very end of the DYNAMIC seg­
ment, that is evaluated each time interval, a section is introduced with the card 
NOSORT to indicate that the statements after this card cannot be sorted. 

NOSORT 
COUNTl=COUNTl + l 
COUNT2 = COUNT2 + KEEP 
END 
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These statements cannot be sorted because the same variables occur to the left 
and to the right of the equal sign (see Subsection 2.3.2). Each time this state­
ment is executed, COUNT1 is incremented by 1, and COUNT2 by KEEP. The 
variable KEEP is an internal CSMP variable and has the value 1 if the integra­
tion step is actually executed, and a value 0 if the statements are only executed 
for a preliminary evaluation. In this way both the number of time intervals and 
the number of calculations of the whole program can be kept track of. 

Exercise 23 
Use this NOSORT block with the program introduced in Exercise 21; change 
the NOSORT block into a PROCEDURE and repeat the calculations. 
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