
6.1 Pests, diseases and crop production 

R. Rabbinge 

6.1.1 Introduction 

Knowledge of plant growth, insight into crop and soil management and 
appropriate agronomic measures have led in practice to production levels that 
sometimes equal the potential level. In Section 1.2, four different crop produc­
tion levels are distinguished, depending on availability of growth requirements 
and abiotic conditions. At all production levels, pests and diseases may depress 
the attainable yield through different mechanisms. The nature and species of 
pests and diseases may differ at different yield levels. 

In this chapter we deal with crops grown at Production level 1, thus in the 
case of ample plant nutrients and soil water all the time. To attain these optimal 
conditions capital investments and large amounts of fossil energy have to be 
used. Only a very small fraction of this is used for crop protection measures. 
However, the financial costs of using and applying pesticides are increasing 
and the environmental side effects of these compounds are becoming a prob­
lem. Therefore interest in crop protection systems with a reduced usage of pesti­
cides is increasing, and crop protection is developing more and more into a 
science for planning and managing the crop pathogen system. 

In most studies on pest and disease management, population dynamics of 
pest and disease organisms are emphasized, but the combination with the growing 
crop is virtually neglected. This make it impossible to assess the damage proper­
ly, and limits the use of these models. To overcome this limitation, it is neces­
sary to link them with crop growth models. The dynamic character of the inter­
relations between host and parasite requires a dynamic description of the sub­
strate, i.e. the crop, and of the environment of a pathogenic organism. 

Only a few combination models exist in which both crop growth and popula­
tion dynamics of the pest or disease organisms are based on detailed analysis. 
Such combination models are often of a dualistic nature, containing on the one 
hand a great number of descriptive elements, and on the other a great deal of 
detailed knowledge of sub-processes. When too many phenomena observed at 
the system level are introduced into the model, its behaviour is governed by the 
descriptive relationships. In those cases the explanatory value of the models is 
limited and the modelling effort becomes a sophisticated method of curve fitting. 
Comprehensive models with a satisfactory compromise between completeness 
of basic data, time needed, for experimental and modelling effort, and reliable 
output are rare indeed (Section 1.3). 

In this section I give some of the basic relations in population dynamics (Sub­
section 6.1.2), and describe some attempts at their modelling (Subsection 6.1.3). 

253 



Then I present two types of combination models: first I discuss summary models 
(Subsection 6.1.4). These models are designed to produce a shortcut to the 
objectives of the comprehensive model, without losing the sensitivity of the full 
analysis (Section 1.3). Models of this type are used to simulate the effect of a 
pest or a disease on crop growth without further consideration of the nature of 
damage. 

Crop-pathogen interactions are introduced in these models to compute the 
impact of the perturbations. The simulations give some insight into the relative 
importance of the nature of crop pathogen interrelations. A complete explana­
tion cannot be given as too many basic relations are neglected. Secondly I dis­
cuss an example of a comprehensive model of crop growth and a disease (Sub­
section 6.1.5). This combination model is used to test hypotheses on the nature 
of the disease-crop interrelations. The summary model of crop growth (SU-
CROS, Section 3.1) suffices in cases where the effect of diseases or pests on crop 
growth is assessed, whereas the complicated BACROS model (de Wit et al., 
1978) is used to test some hypotheses on the nature of the disease-crop interrela­
tions. An extrapolation of use of models for crop protection in practice is dis­
cussed briefly in Subsection 6.1.6. 

6.1.2 Population dynamics of pests or disease causing organisms 

When a population grows without constraints, the well known exponential 
growth curve describes the number of organisms in time (Section 2.1). This curve 
transforms into a logistic curve when there is a limited supply of food, or when a 
growth-retarding compound is produced during the growth process. For example 
yeast growth is inhibited by alcohol, which is produced during bud formation, 
the multiplication process in yeast (de Wit & Goudriaan, 1978). Mathematically 
the growth process can be described by 

dG/dt = RGR . G. (1.0 - RED) (101) 
in which RGR represents the relative growth rate, and RED expresses a /educ­
tion factor. RED may be described by the ratio between actual amount of 
organisms (yeast cells, G) and the maximum amount (GM): 

RED = G/GM (102) 

The amount of yeast cells is found by the analytical solution of the rate equation 

G = GM/(1.0 + K. exp(- RGR.t)) (103) 

Exercise 65 
a. Compute K from an initial value of G and its maximum value. What process 
or ratio is described by this factor? 
b. Derive the rate equation (Equation 101) from the analytical formula (Equa­
tion 103) by differentiation. 
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The exponential growth equation is only valid in very few cases of population 
growth and during short periods. The logistic equation (Equation 103) is appro­
priate as a description of the growth of population numbers in simple organisms 
like yeasts. 

To distinguish between development and size of organisms is in these cases 
not necessary. However as soon as more complicated organisms are considered, 
development and growth should be treated separately, as is the case with many 
pest and disease organisms. For example in fungi each spore is not immediately 
ready to produce new spores, but a whole phase of its life cycle has to be passed 
before sporulation may start (latent period). A young larva of a pest organism 
is not able to produce offspring but has to become adult before there is any new 
egg produced. An adult pest organism is only able to produce offspring during a 
short period, and the same holds for a sporulating lesion (infectious period). To 
account for this delay in population development van der Plank (1963) developed 
a rate equation with which the population growth of many disease organisms can 
be described: 

dNt/dt = R(Nt_p - Nt^p) (1 - Nt/Nm) (104) 

In which Nt is the number of visibly diseased sites at time /; R is the number of 
lesions per sporulating lesion per day, or relative growth rate; p is the duration 
(d) of the latent period; i is the duration (d) of the infectious period; Nm is the 
maximum number of sites which can become infected. 

Exercise 66 
a. When does this formula transform in the logistic growth equation? 
b. What is the maximum number of sites on a field of 0.5 ha, when the mini­
mum size of a lesion is 0.1 mm2 and the crop has a LAI of 4? 

It is difficult to solve Equation 104 analytically, so numerical methods have 
to be used. With the numerical integration of the van der Plank equation, dyna­
mic simulation was introduced in botanical epidemiology (Zadoks, 1971; Wag­
goner et al., 1972). In pest population dynamics, numerical methods were used 
earlier, but extensive use of numerical simulation models started only recently 
(Fransz, 1974; Gutierrez et al., 1975; de Wit & Goudriaan, 1978; Rabbinge, 
1976). 

6.1.3 Simulation models of population dynamics 

Models for pest or disease organisms are in fact a quantitative description of 
their life cycle. For example, take the life cycle of a fungus. The infection cycle 
starts when a spore reaches the plant and germinates. After a certain period (the 
incubation period) the infection becomes visible on the plant. (In the formula­
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Figure 81. Relational diagram of a summary model of 
a fungus epidemic. 

tion of Equation 104, incubation period and latent period are taken to be iden­
tical). The time between infection and time of sporulation by an infected lesion 
is called the latent period. In many plant fungi the latent period exceeds the in­
cubation period. (In many human diseases the incubation period is larger than 
the latent period, so that a carrier of the disease is already infectious for other 
people before the symptoms of the disease are visible.) The newly formed spores 
are dispersed and may cause new infections on fresh leaf material. The time of 
sporulation is finite and is called infectious period. In Figure 81 a relational dia­
gram of a fungus epidemic is given. Latent (LAT), infectious (INF) and re­
moved (REM) lesions are distinguished and the rate of decrease and increase of 
each of these variables is indicated. 

Exercise 67 
When the incubation period q is not equal to the latent period /?, what changes 
in the rate equation (Equation 104) are then necessary? 

Exereise 68 
Express the number of latent, infectious and removed lesions with the symbols 
used in Equation 104. 

On basis of the simple relational diagram of Figure 81 a simulation model can 
be constructed that may answer questions concerning the relative importance of 
the parameters: relative rate of infection R, the length of the latent period P, the 
length of the infectious period J and the maximum number of lesions ML 
Zadoks (1971) developed such a model and demonstrated the dominating role 
of the length of the latent period, as shown in Figure 82. 
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Figure 82. Simulated epidemics, a. The effect of various durations of the latent period 
(LP), b. The effect of a limited possible number of infections (MI), c. The effect of vary­
ing the duration of the infectious period (IP), d. The effect of varying daily multiplication 
factor (R). Vertical ordinate scale: lg of visible infections. (From: Zadoks, 1971). 

Exercise 69 
Try to explain the results of Figure 82 by reasoning. 

More elaborate population models include other time delays and dispersion 
in time (Subsection 2.1.8) during development (de Wit & Goudriaan, 1978; 
Rabbinge, 1976). These models incorporate more or less complicated submodels 
of the processes and of their relation to climate, crop condition and natural ene­
mies. Processes like lesion growth, spore dispersal and the geographical distri­
bution of disease populations in crops have been studied in this way (Shrum, 
1975); Waggoner, 1977; Kampmeijer & Zadoks, 1977; Rijsdijk, 1980). Elabo­
rate models describing parasite and/or predator populations in relation to pest 
organisms have also been made (Gutierrez et al., 1975; Rabbinge, 1976; Sabelis, 
1981). These models incorporate age distribution of the pest organism and dis­
persion during development. Moreover the complicated predator-prey relations 
are introduced. 
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6.1.4 Interactions between plant and disease or pest organisms 

In most models of population dynamics the crop is considered as a constant 
substrate which imposes only limitations when all sites are becoming occupied. 
Most crop models on the other hand treat pest and/or disease causing organ­
isms as unimportant biotic factors that do not affect the productivity. Combi­
nation models are seldom developed, as their architects have to speak two lan­
guages, namely that of the agronomist developing crop growth models and that 
of the plant pathologist developing epidemiological and population dynamical 
models. 

To demonstrate the interactions for some pests and disease-causing organ­
isms, simple pest and disease models, as demonstrated above, are connected to 
the simplified crop model, SUCROS (Section 3.1). In addition, one example of 
an interaction between a more elaborate crop model and disease model will be 
discussed in the next subsection. 

Mutilation of leaf mass 
To demonstrate the effect of a leaf consumer on crop growth, a simplified 

simulator of population growth of the cereal leaf beetle has been attached to the 
simple model of a wheat crop discussed in Section 3.1. 

Larvae of cereal leaf beetles (Lema cyanella) consume leaf mass at a rate of 
about 250 cm2 d"l (= 1.5 g dry matter). Only the larvae consume leaves. After 
growth and development they pupate and later moult into adults that may give 
rise to another generation. The rate of increase of the numbers of cereal leaf 
beetle larvae is considered here as an autonomous process, thus it depends on 
the egg-laying rate of the adult beetles. After hatching, the larvae immediately 
start feeding. Their effect on crop growth is introduced into the model as a 
drain on the leaf weight. This rate of decrease of leaf weight is assumed to be 
proportional to the number of larvae of the beetle, lumping all developmental 
phases of the larvae together. Consumption of leaf mass by the adults is ne­
glected, and dependency of ageing and reproduction rate on food quality are not 
considered. The beetle population is introduced in a very simple way by distin­
guishing four morphological stages: eggs, larvae, pupae and adults. The adult 
population is assumed to be 50% male, so that after egg-laying only 50% develop 
into individuals which contribute to the next generation. Reproduction of the 
adult beetles is diminished when excessively high larval densities are reached; 
this depends on the ratio number of larvae/weight of leaves. The simulated ef-
feet of the growth of the population of beetles on grain growth is shown in 
Figure 83. 

Exercise 70 
Develop a simple population model of Lema cyanella when the environmental 
conditions are considered to be constant and the different development stages 
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Figure 83. Simulated increase in weight of the storage organs for different levels of 
cereal leaf beetle attacks (1, no beetles; 2, 3, 4 and 5 starting with 50, 100, 200, 500 adult 
beetles, respectively at Day 350). 

last 5,10,4,20 days for the egg, larval, pupal and adult stages, respectively, and 
when there are initially 100 adult cereal leaf beetles that produce eggs at a rate of 
3 per day. Assume that there is no influence of larval density on the rate of re­
production. 

Exercise 71 
Link the model of SUCROS and the simple population model and use this com­
bination model to evaluate the effects of different cereal leaf beetle attacks. As­
sume that the adult cereal leaf beetles enter the crop at Day 350. The simulation 
should reproduce the results of Figure 83. 
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Leaf coverage 
To demonstrate the effect of a disease that covers the leaves with a thin layer 

and promotes leaf senescence, the powdery mildew Erysiphe graminis is coupled 
to the simple crop model, SUCROS (Section 3.1). The fungus is simulated with 
the van der Plank equation (Equation 104). Neither individual spores nor pustu­
les are distinguished; instead, the sites are simulated, i.e. the leaf surface is ex­
pressed in terms of potential sites, each site representing the minimum size of 
one lesion. A field of 1 ha with LAI = 4 contains 4.1011 sites. 

Only the leaf covering effect of mildew epidemics is introduced in this exam­
ple; no physiological damage that might occur is considered. This is done by 
multiplying the gross photosynthetic rate by the ratio between the leaf area not 
covered and the total leaf area. The simulated effect of a mildew attack on grain 
growth is shown in Figure 84. 

Exercise 72 
Construct this combination model and run it for different densities of the disea­
se by setting the initial number of lesions to 109, 1010, 2.1010, 5.1010 ha -1, the 
relative infection rate R = 0.3, the latent period equals 10 days and the infecti­
ous period 4 days. Use the DELAY function, explained in Table 2, Section 2.2, 
and take N = 10 (integer). 

It is shown in Figure 84 that when the assumption is made that the fungus is 
homogeneously distributed in the canopy a considerable loss occurs. However 
in most cases the fungus grows from the bottom of the canopy towards the top, 
and it is mainly located in the lower leaf layers. Losses are much lower if this 
location effect is introduced into the crop model. 

Exercise 73 
Demonstrate these effects by adapting the combination model and running it 
for different initial fungus densities. 

This combination model is still too simple to be realistic, because many other 
effects of E. graminis are not included. For example, the effect of E. graminis 
on respiration rate and photosynthetic rate are not quantified and introduced in 
the model. Moreover the use of assimilates by the fungus is not introduced in 
the model. 

4&0%# 



weight storage organs 

(t ha"1) 
4 

Figure 84. Simulated increase in weight of storage organs under influence of mildew (1: 
no disease, 2: mildew epidemic reaches a maximum of 67% leaf coverage mainly concen­
trated in the lower leaf layers, 3: mildew epidemic reaches a maximum of 67fo leaf cover­
age, homogeneously distributed in the canopy). 

6.1.5 Stripe rust (Puccinia striiformis) and winter wheat 

In an ecophysiological study of crop losses, exemplified in the infection of 
wheat by leaf rust, van der Wal et al. (1975) demonstrated that leaf rust infec­
tion increased the transpiration rate of spring wheat. Similar effects were shown 
for wheat with stripe rust (F.H. Rijsdijk, unpublished data). The increased 
transpiration rate may have been due to an increase in leaf conductance or to a 
shift in shoot-root ratio, a combination of both, or other effects. Simulation 
studies may help to test the hypothesis that the sporulating pustules of the fun­
gus are just little holes in the leaf cuticle and determine the consequences of 
such an effect. Summary models of crop growth with simplified relations for 
water balance and water use are insufficiently detailed to study this problem. 
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An elaborate and detailed model of assimilation, transpiration and respiration 
of crop surfaces is needed to test the effect of stripe rust on crop behaviour. 

The model BACROS is used to simulate this 'hole making* effect of stripe 
rust. Within this model, transpiration is computed with a Penman type formu­
la, in which leaf resistance is one of the most important variables (Subsection 
3.2.6). Leaf resistance decreases as a result of the many little holes, which leads 
to an increase in transpiration. Holes in the cuticle can be viewed as non regu­
lating stomata, which in this case are assumed to permit only the diffusion of 
H20. 

The diffusion resistance of the holes, parallel to that of the stomata, is intro­
duced by using the calculations for a membrane with cylindrical pores (e.g. Pen­
man & Schofield, 1951; Monteith, 1973). For such a porous membrane made up 
of n cylindrical pores, length / and diameter d, per unit of surface, the resistance 
Rm> is normally taken to be: 

Rm = 4. l/(cPnD) + 2 . l/(2nDd) (105) 

in which D is the diffusion coefficient for H20, which depends on temperature. 
The first term of this formula is the diffusion resistance of the tubes proper. The 
second term is the expression for the diffusional 'end effects' at both sides of 
the membrane. It represents the diffusion resistance of a semi-infinite space, 
completely insulated at the free surface with the exception of n independent 
spots of given constant and uniform concentration. To compute the diffusion 
resistance of a canopy that contains a large number of these pores, the first part 
of Equation 105 is small compared to the second one and can be neglected (Stig-
ter & Lammers, 1974). 

The number of pores is calculated as follows: when the diameter d of a rust 
pore (= size of pustule) equals 1.6 mm, the potential number of pores (ri), in a 
canopy with LAI = 5, equals 5 . KFcmVOr • (0.08)2) = 2.5 • lO^ha"1, or 250 
cm -2. When there is a 100% infection of the leaves, about 20% of the leaf area 
is replaced by pores (Rijsdijk, 1980). D equals 0.2 cm2 s"1, so that the diffusion 
resistance of a surface with these holes amounts to: 

R = 1/(50.0.2.0.16) = 0.62 s cm-1 

This corresponds with an increase of the conductivity of the canopy of 0.016 m 
s - l , which indicates that a considerable increase in the transpiration rate is to be 
expected on basis of this hypothesis. To test this, the assumption was intro­
duced in a computer simulation that a maximum leaf coverage of 20% exists 
continuously for 30 days. The results of such simulation show that when the 
other efforts of leaf rust on assimilation, etc., are neglected, the total produc­
tion of dry matter is not much lower, but that there is a shift in shoot-root ratio; 
the shoot weight is about 10% lower and the root weight is about 20% greater 
than without rust attack (Figure 85). The transpiration rate of the canopy is on 
average about twice the normal transpiration rate. These results illustrate the in­
fluence of .the functional balance (Subsection 3.3.6). 

262 



weight of shoot • ear 
(t ha'1) 

14 

10 

6 

2 

0 
• 

i 

1 

• 

9 

l ._ .* 

1 

• 

a 
o 
• 

a 

> . . 

0 

o 

x 

. 1 
80 100 120 140 160 180 200 

t ime(d) 

weight of root 
( t ha"') 
4 r 

o 

<S 

el 
8 

°dO 

tfi 

± ± J_ 
100 120 140 160 180 200 

t ime(d) 

April May | June July 

Figure 85. Simulated increase in weight of shoot and ear (a), and weight of root (b) with 
a comprehensive crop growth simulator. D = unattacked crop; o = crop infected by a 
stripe-rust epidemic, maximum leaf coverage of 20¥o, during a period of 30 days; x = 
crop infected by strip-rust epidemic, reaching maximum leaf coverage of 100%, i.e. 20fo 
of leaf area replaced by holes, using a realistic simulator of the rust epidemics. 

Although these results seem quite logical, they are not in agreement with 
results obtained from field and container experiments by van der Wal et al. 
(1975). This is probably because it was unrealistic and incorrect to assume that 
the decrease in assimilation rate of the canopy and the increase in respiration 
due to the production of rust material could be neglected. As a next step in hy­
pothesis testing, the decrease of the C02 assimilation rate due to absence of 
photosynthetic activity in the pustules was introduced by multiplying the net 
C02 assimilation rate by the fraction of the total leaf area attacked. As a result, 
the total amount of above-ground dry matter simulated with the model was 
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about 25% less in infected than in non-infected control plants, i.e. a yield loss 
of about 2500 kg ha" K Again the root weight is higher than in the control. Such 
figures are 'in the ball park*. 

Finally, the crop growth model BACROS was linked to a simulation model 
of stripe rust epidemics, enabling latent, infectious and removed sites to be dis­
tinguished. The results of these calculations (Figure 85) show that a heavy 
attack of stripe rust causes a considerable decrease in shoot weight and a slight 
decrease in root weight, a result that is confirmed by field observations. Still the 
model does not correspond completely with experimental results. Although the 
total loss in crop yield agrees rather well with the experimental outcome, the 
relative increase in root weight does not agree completely with some experimen­
tal results. This may be due to the incompleteness of the model, e.g. effects on 
maintenance respiration are neglected, or it may be caused by insufficient 
understanding of the way hormonal processes interfere with partitioning of car­
bohydrates. However, in spite of their imperfections, these examples show how 
an effort is being made to gain a full understanding of various processes that 
play a role in the crop-pathogen interrelations. 

6.1.6 Using a disease crop production model in practice 

The latter combination model is used as a research tool that leads to un­
derstanding of the effects of a pest or disease organism on its host plant. This 
insight may lead to better measures. The detailed population dynamic, crop and 
combination models themselves are seldom used for actual decision-making in 
crop protection. Their role is to test hypotheses, to gain insight and to pinpoint 
the most decisive variables for the rate of development of pests and diseases. 
They are used to compute the range of acceptable disease or pest levels accor­
ding to the weather and the condition and developmental stage of the plants. 
These calculations have been made for different diseases and pests in winter 
wheat and this has resulted in simplified summary models and/or decision rules, 
which are used to determine whether control measures are needed. In 'the 
Netherlands these results are used in a supervised control system called EPIPRE 
(EPIdemics PREvention) (Rijsdijk et a!., 1981). EPIPRE is developed for 
wheat farmers. It works on a field by field basis and gives specific recommenda­
tions for every individual wheat field included. This was done in 1979-1980 by a 
team of research workers for 1000 fields and based on field information. This 
information is stored in a data bank and includes data on location, sowing time, 
cultivar, a few simple physical and chemical soil characteristics, herbicide appli­
cation and nitrogen (N) fertilization. The information per field is updated 
whenever additional information is supplied by the farmer on the research 
team. 

This information is used to run the simplified combination or the decision 
rules models to obtain recommendations that are then sent immediately to the 
farmers. This EPIPRE supervised control system is now operational in several 
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European countries and has lead to an improved economic plant protection 
system with reduced pesticide use and with optimal economic results. This opti­
mal yield may be different from maximum yield as cost-benefit analyses are the 
basis for the advice. 

At present this supervised control system of pests and diseases in winter wheat 
does not supply information and advice on supervised weed control or N and P 
fertilization. Reliable simulation models on N in soils and crops (Sections 
5.1-5.3) are gradually becoming available, which may be used in future to advise 
on timing and amount of N added to winter wheat. The same holds for weed 
control. In this way an integrated crop protection system may be developed in 
which costs are reduced and economic yields are optimized. 


