
2.2 Introduction of CSMP by an elementary simulation program 

L.J.M. Basstanie and H.H. van Laar 

2.2.1 Introduction 

The scientific approach toward studying ecological and physiological phe­
nomena often results in their being described by mathematical expressions. A 
great deal of these phenomena behave in a 'dynamic' fashion which means the 
'state* of the ecological system changes with time. With knowlegde of the proc­
esses within the system one can develop a mathematical model to study the 
dynamic behaviour of the system. 

De Wit & Goudriaan (1978), Ferrari (1978) and Brockington (1979) have writ­
ten introductory textbooks on simulation of ecological processes. Although the 
main topic of this book is modelling of growth processes and related phenomena, 
those textbooks are useful for their complementary explanations and illustra­
tions. 

In this section we introduce the simulation language CSMP (Continuous Sim­
ulation Modeling Program) (IBM, 1975), which is used throughout this book. 
Basic principles of its use are demonstrated by construction of a simple program 
for the simulation of crop dry-matter production (Subsection 2.2.2). In its first 
form the program calculates photosynthesis, respiration, dry-matter distribu­
tion, and leaf area index during a growth season, assuming a constant environ­
ment. Subsequently the program is modified to account for a varying environ­
ment and its effect on some of the processes (Subsection 2.2.3). Starting from 
this basic level has the advantage that the reader who is not familiar with growth 
modelling and programming in CSMP can find handholds in such a simple pro­
gram. Gradually, as processes are treated in more detail in the following sec­
tions, more elaborate modelling techniques and their programming in CSMP 
will be discussed. 

Subject of this section is also the internal structure of a CSMP program with 
special attention to the sorting mechanism (Subsection 2.2.4). Finally some basic 
CSMP programming knowledge is summarized (Subsection 2.2.5) to provide 
sufficient information for a good comprehension of the following sections. In 
Section 2.3 some of these aspects will be elaborated. The CSMP manual (IBM, 
1975) may be useful for those with some programming experience. 

2.2.2 An elementary simulation program for dry-matter production 

In a first approximation dry-matter production of a crop can be simulated 
based on the simple model depicted in Figure 16. Gross C02 assimilation feeds a 
pool of carbohydrates that supplies material for growth and respiration. Part of 
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Figure 16. Flow of carbohydrates in a simple crop-production 
model. 

his pool is needed for maintenance of the crop, a process usually defined as 
maintenance respiration. The substrate for growth is also taken from this pool, 
Lnd the conversion into shoot and root biomass involves a loss of carbohydrates, 
tefined as synthesis respiration. The relational diagram of such a system has 
leen presented in Figure 2, Section 1.2. 

Because we would like to describe this model and use it for simulation of 
rowth on a day-to-day basis, one simplification of the relational diagram has 
0 be made: we will assume that all carbohydrates from photosynthesis are con­
tinued by growth and maintenance processes within one day. As a result, we can 
|mit the pool of carbohydrates as a separate variable from the model. In Sec-
i0n 3.3 this simplification will be explained more extensively. 
The relational diagram reveals the kind of quantitative information that 

uould be available. A standard value for the gross photosynthetic rate 
^PHST) of a green and completely closed canopy, well supplied with water 
nd nutrients is in terms of glucose production on the order of 400 kg ha" ]d~l 

n clear summer days. When the canopy is not fully closed the actual value of 
l e gross photosynthetic rate (GPHOT) is a fraction of GPHST. This fraction 
^responds with the fraction of absorbed visible radiation, calculated with an 
^Ponential extinction of radiation as function of the leaf area index (LAI, an 
re.a Action of leaves to ground surface, in m2m~2). A value of 0.7 for the 
^jnction coefficient results in a fraction (1. - EXP(-0.7 * LAI)) of absorbed 
lsib'e light. 
Maintenance respiration (MAINT), expressed in glucose, is related to the 

Kal dry matter weight (TWT), a proportionality factor of 0.015 kg kg"1 d"1 is 
a ir estimation. As for growth, a conversion factor (CVF, in kilogram of dry 

[5tter Per kilogram of glucose) of 0.7 quantifies reasonably well the efficiency 
synthesis of structural material from the carbohydrates, the remainder being 

jst as respiration. Dry matter is distributed between shoot (WSH) and root 
** ) , both in kg ha -1; fixed fractions of respectively 0.7 and 0.3 have been 

*ur n f ° r t l l e p u rP° s e °f th*s example. 
l t n tnis information the equations characterizing the model can be written. 
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By using a simulation language, such as CSMP, these equations can be easily 
coded into a small set of statements comprehensible to reader and computer. 
Figure 17 represents the actual computer program of the simple model that is 
developed above. A computer program is normally the last stage in the con­
struction of a 'working version' of a simulation model. When the program is 
submitted to a computer, the output gives a picture of the behaviour of the 
model. Numerical values of state variables are computed starting from their 
initial value at simulation time zero until the end of the simulation period. For 
defined time intervals, a list of calculated values of variables in which one is 
interested can be printed. 

We will discuss the program of Figure 17 line by line. It is useful to start by iden­
tifying the program with a TITLE statement: 

TITLE DRY MATTER PRODUCTION 

Subsequently the structure of the model is defined. The goal of the simulation is 
the total dry matter weight (TWT), which is the sum of the dry matter weight of 
the shoots (WSH) and the roots (WRT): 

TWT = WSH + WRT 

WSH and WRT are state variables in the model that change according to their 
characteristic growth rates GSH and GRT. Integration of these growth rates 
gives the actual values of WSH and WRT at any moment. CSMP provides the 
INTGRL function (Table 2) as a means to integrate numerically a specified rate 
in time: 

WSH = INTGRL (WSHI, GSH) 
WRT = INTGRL (WRTI, GRT) 

Initial conditions (WSHI, WRTI) and relevant rates (GSH, GRT) have to be 
specified as arguments of the INTGRL function and are placed between brackets. 
At time zero, WSH equals WSHI and the current value of WSH at any time is 
found by integrating GSH. A similar reasoning is valid for WRT. At the begin­
ning of the growth season, shoot and root dry weight can be estimated at 50 kg 
ha"1. In an INCON statement we can assign numerical values to these INitial 
CONditions: 

INCON WSHI = 50., WRTI = 50. 

The growth rates GSH and GRT are calculated as 

GSH = 0.7 * GTW 
GRT = 0.3 * GTW 

in which GTW is the net rate of total dry matter increase (kg ha"1 d"1). As 
illustrated in Figure 16, we can express GTW as 

GTW = (GPHOT - MAINT) * CVF 

&*\ 



Figure 17. Listing of the simulation program for calculation of 'dry matter production' 
and its output. 

TITLE 

INCON 

DRY MfiTTER PRODUCTION 
TWT «WSH*WRT 
WSH »INTGRL(WSHI.GSH> 
UlRT -1NTGRL<WRTI»GRT> 
WSH1*50.» WRT1*50. 
GSH «0.7*6TW 
GRT «0.3*6TW 
GTW *<GPHOT-MfilNT>*CVF 
M*1NT «<WSH*WRT> •0.015 
GPHOT *&PHST*<l.-EXP<-.7*LflI>> 
LFtI *RMlNl<WSH/500. t5 .> 

PflRfiM C V F * . 7 . GPHST=400. 
TIMER F1NT1M*100.» DELTM.» PRDEL«5.> OUTDEL-5. 
METHOD RECT 
PRINT TWT»WSH.WRT»GTW 
OUTPUT TWT 
END 
STOP 
ENDJOB 

1 DRY MH1TER PRODUCTION 
0 TIME 

0.0000000*00 
5.0000U0D*00 
1.0000000*01 
1.5000000*01 
2.0000000*01 
2.5000000*01 
3.0000000*01 
3.5000000*01 
4. 0000000*01 
4.5000000*01 
5.0000000*01 
5.5000000*01 
6.0000000*01 
6.5000000*01 
7.0000000*01 
7.5000000*01 
8.0000000*01 
8.5000000*01 
9.0000000*01 
9.5000000*01 
1.0000000*02 

1SSS SIMULATION 
TIME 

0.00000E*O0 
5.0000 
10.000 
15.000 
20.000 
25.000 
30.000 
35.000 
40.000 
45.000 
50.000 
55.000 
60.000 
65.000 
70.000 
75.UOO 
80.000 
85.0U0 
90.000 
95.000 
100.00 

ISff CONTINUOUS 

TWT 
100.00 
243.08 
614.06 
1347.1 
2384.7 
3542.1 
4689.0 
5777.5 
6810.0 
7789.4 
8718.4 
9599.7 
10436. 
11229. 
11981. 
12695. 
13371. 
14014. 
14623. 
15200. 
15749. 

HMLTEO FOR F 
TWT 
100.00 
243.08 
614.06 
1347.1 
2384.7 
3542 .1 
4 6 8 9 . 0 
5 7 7 7 . 5 
fc>810.0 
7 789 . 4 
8 7 1 8 . 4 
9 5 9 9 . 7 
10436. 
11229. 
11981 . 
12695. 
13371 . 
14014. 
14623. 
15dOO. 
15749. 

SYSTEM MODEL 

WSH 
50.000 
150.16 
409.84 
922.94 
lb49.3 
2459.5 
3262.3 
4024.2 
4747.0 
5432.6 
6082.9 
6699.8 
7285.0 
7840.1 
8366.7 
8866.2 
9340.0 
9789.5 
10216. 
10620. 
11004. 

INISH CDMOI 

• 

WRT 
50.000 
92.924 
204.22 
424.12 
735.40 
1082.6 
1426.7 
1753.2 
2063.0 
2356.8 
2635.5 
2899.9 
3150.7 
3388.6 
3614.3 
3828.4 
4031.4 
4224.1 
4406.8 
4580.1 
4744.6 

TION TIME 

Nb PR06RRM 

GTW 
17.880 
50.534 
115.80 
188.94 
227.14 
233.86 
222.31 
210.88 
200.04 
189.76 
180.00 
170.75 
161.97 
153.64 
145.74 
138.25 
131.14 
124.40 
118.01 
111.94 
106.19 

100.00 

- • 

—•• 

II V1M3 EXECUTION OUTPUT Sff 
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Table 2. Some CSMP III functions. From: IBM (1975). 

CSMPHI Functions 

In tegra tor 

Y»INTGRL( IC ,X ) 

where: IC • y^ 

Arbitrary function generator 
( l inear interpolation) 
Y-AFGEN(FUNCT,X) 

Arbitrary function generator 

(quadratic interpolation) 

Y-NLFGEN(FUNCT,X) 

Modulo function 

Y-AMOD (X,P) 

L im i te r 

Y*LIMIT(P1,P2,X) 

Not 

Y-NOT(X) 

Input Switch Relay 

Y* INSW(X1,X2,X3) 

Equivalent Mathematical Expression 

y ( t ) » J xd t • y ( t 0 ) 

t o 
where: t 0 « star t t ime 

t " t i m e 

i 

V 
y - f ( x ) 

V 
y - f ( x ) 

y «x - nP | 

n is an integer P 
value such that \ 

04 y < P 

>y 

— V 

^ 

i - v 

y 
. p 

— P — 

y -P] ; * < p , 

y '»P 2 ;x>p 2 v Pi 

7 
y - x ; p,< x < p2 

y 

/ , 

y « 1 if x < 0 

y « 0 if x >0 

y » x 2 i f X] < 0 

y » x 3 if x , ^ 0 

-te> X 

• X 

The maintenance respiration is supposed to be 1.5 percent of the total dry matter 
per day: 

MAINT = (WSH + WRT) * 0.015 

The equation respresenting the relation of the gross photosynthetic rate and 
green surface has an exponential form: 

GPHOT = GPHST * (1. - EXP ( -0.7 * LAI)) 

The leaf area index (LAI) is here assumed to be proportional to the shoot dry 
matter (WSH) to a maximum of 5 ha ha"1. The AMIN1 function (Table 3) can 
be used to achieve this: 

LAI = AMIN1 (WSH/500., 5.) 

The AMIN1 function takes the minimum value of its arguments separated by 
comma's. 



Dead time (DELAY) 

Y.DELAY(N.P.X) 

where: P»delay time 
N • number of po in ts 
sampled in interval p 
(integer constant) and 
must be>3.and < 16,378 

y»x(t-p) ; t> p 

y»0 ; t < p 

Equivalent Laplace Transfer Function: 
Y ( s l . e-ps 
X(s) 

Implicit function 

Y«IMPL(IC,P.FOFY) 

where: IC«first guess 
P « error bound 

FOFY« output name 
from final statement 
in algebraic loop 
definition 

y» f (y) 

| y-f(y>| < p | y l 

Impulse generator 

Y«IMPULS(P1,P2) 

where:P1 »time of first pulse 
P2» interval between pulses 

y O ; t <p t 

y»1 i t t - p ^ k p j 

y O ;(t-p1)^kp2 

k- 0,1.2,3, 

i't>t 
• * - t 

The parameters CVF and GPHST have to be specified to complete the nume­
rical information for the program. The PARAMeter statement is used to assign 
values to variables used as parameters: 

PARAM CVF = 0.7, GPHST = 400. 

So far the structure of the model has been transformed into a simulation pro­
gram that can be executed. Only timing, output format and an appropriate inte­
gration method must still be specified. A TIMER statement gives the time of 
finishing the simulation (FINTIM), the printed output interval (PRDEL) and 
plotted output interval (OUTDEL), and the size of the time step for integration 
(DELT): 

TIMER FINTIM = 100., DELT = 1., PRDEL = 5., OUTDEL = 5. 

All TIMER variables are expressed in days, as this is the basic unit of time in 
this program. A numerical integration method is selected from a set of available 
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Table 3. Some FORTRAN functions, which can be used in CSMP III statements. From: 
IBM (1975). 

FORTRAN Functions 

Exponential 
Y - E X P ( X ) 

Trigonometric sine 

Y - S I N ( X ) 

Trigonometric cosine 

Y -COS (X) 

Square roo t 

Y . SORT (X) 

Largest value 
(Real arguments and output) 

Y - A M A X K X 1 . X 2 ) 

Smallest value 
(Real arguments and output) 

Y -AMIN1 (X1,X2) 

Equivalent Mathematical Expression 

y » e x 

y «sin ( x ) 

y » c o s ( x ) 

y / x 

y » m a x ( x , , x 2 ) 

y »min ( x v x 2 ) 

routines in CSMP (Subsection 2.3.7). For instance, to perform the simulation 
using the rectangular method after Euler, the next statement has to be used: 

METHOD RECT 

Printed output of the variables is obtained by means of: 

PRINT TWT, WSH, WRT, GTW 

Plotted out can be obtained by: 

OUTPUT TWT 

The END statement defines the end of the simulation model and the STOP state­
ment the end of the simulation program. 

END 
STOP 
ENDJOB 

The ENDJOB statement finishes the computer job. Figure 17 shows a complete 
listing of the example model and the output after execution. 
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Exercise 11 
Run the program. (Subsection 2.2.5 may be helpful when you are editing your 
program). 

During a simulation run all statements defining the structure of the model are 
executed several times, the number of which equals FINTIM divided by DELT, 
when using the rectangular method. DELT, equivalent to At in Section 2.1, 
plays a critical role since it indicates the size of the time interval for integration. 
For a CSMP statement with an integral function like: 

WSH = INTGRL (WSHI, GSH) 

the equivalent numerical expression when using a rectangular integration 
method, as in Subsections 1.1.3 and 2.1.5, is: 

WSHnow = WSHprcvi0US + GSH . DELT 

From this equation it is clear that the rectangular integration method implicates 
a constant growth rate during the whole time step DELT. Taking appropriate 
time steps, such that the rate of change can be regarded as effectively constant, 
will give good approximations of the value of the state variable (cf. Subsection 
2.3.6). 

Exercise 12 
a. Simplify the program for the case that you are only interested in the total dry 
matter increase (do not consider biomass distribution into shoots and roots). 
Assume that the crop is completely covering the soil (GPHOT = GPHST). Run 
this program. 
b. Explain why the results of this simple model are qualitatively similar to the 
filling of a water tank as discussed in Subsection 2.1.4. Write the governing dif­
ferential equation for this system and derive from this the time coefficient and 
equilibrium level. 
c. What is the implication of the introduction of the relationships in which 
gross photosynthesis depends on LAI, and LAI depends on WSH in the form 
discussed above? What happens with the time coefficient? 

2.2.3 Program modifications with forcing functions 

Until now we assumed that all external conditions, or driving variables (Sub­
section 1.1.2), are constant. However, C02 assimilation rates are strongly 
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dependent on irradiation and irradiation itself can vary from day to day over a 
relatively wide range. If we want to make the model realistic, we should intro­
duce the actual irradiation level instead of a fixed rate of gross C02 assimilation. 
Irradiation will drive C02 assimilation in the model and is not affected by the 
state of the system. Therefore we call it a driving or forcing function. More 
generally, forcing functions are defined as those variables that are not affected 
by processes within the system, but characterize the influence from outside 
(Subsection 1.1.3). They are an input to the model. In very simplified models, 
forcing functions can be introduced in the program as parameters: 

PARAM GPHST = 400. 

Very often forcing functions show a characteristic pattern over a certain time 
period (day or year). An equation describing such regular fluctuations in time 
may provide approximate values for the use in a general program. For example, 
the yearly course of daily incoming short-wave irradiation is reasonably well 
represented by a sinusoidal curve, just like daily gross photosynthesis. For the 
daily gross photosynthesis (GPHST, expressed as glucose) the equation is 

GPHST = 300. + 2(X).*SIN(2*PI*(DAY-(365./4.) + 10.)/365.) 
PARAM PI = 3.141592 

DAY stands for the number of a day in the year; counting starts from 1 January. 
GPHST reaches a minimum value of 100.0 (kg ha"1 d"1) on 21 December 
(DAY = 355) and a maximum value of 500.0 on 21 June (DAY = 172). DAY 
can be calculated by: 

DAY = STDAY + TIME 
PARAM STDAY = 60. 

In this way simulation starts on 1 March (STDAY = 60.). TIME is a variable 
generated by CSMP which expresses the current time during simulation. At the 
start of simulation TIME = 0., and its value is augmented by DELT when the 
integration of all state variables is accomplished. (The symbolic name TIME is 
reserved by CSMP to keep track of time, and cannot be used for other purposes). 
A second way of keeping track of the number of the day is to give the variable 
TIME an initial value. This can be done in the TIMER statement: 

TIMER TIME = 60., FINTIM = 210., DELT = 1., PRDEL = 5. 

When the time course of a driving variable has been measured, direct use of 
these values is another option for formulating a forcing function. Measured 
values, with the corresponding dates can be introduced by a FUNCTION state"-
ment: 

FUNCTION GPHSTB = (60., 300.), (100., 400.), (150., 450.), (210., 500.) 

In this statement, an ordered set of pairs defines the content of a table, named 
GPHSTB. The first value in each pair of numbers between parentheses stands 
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ior ine inuepenueni vanaoie ^nivic, u;, me seconu expresses me uepenueni 
variable (GPHST, kg ha"1 d"1). The distance between the coordinates of two 
pairs does not have to be equal in size; the value of the independent variable 
should always increase, but the dependent variable can vary in an arbitrary way. 
The current value of the dependent variable is calculated by means of an AFGEN 
function (Arbitrary Function GENerator), which performs a linear interpola­
tion in the function table. Function name and independent variable should be 
specified as arguments of the AFGEN function: 

GPHST = AFGEN(GPHSTB, TIME) 

Exercise 13 
The gross photosynthetic rate, expressed as C02 assimilated, is proportional to 
the absorbed short-wave radiation with a proportionality factor of 4.35 10~9 kg 
Joule"1; the conversion factor from C02 to CH20 (glucose) is 30.0/44.0. Use 
following values for daily totals of incoming visible (400-700 nm) irradiation 
(DTR) in 106 Joule m"2 d"1 on a standard clear day for a latitude of 50° N 
(Goudriaan & van Laar, 1978): 

FUNCTION RADTB = (15., 2.61), (46., 4.80), (74., 8.07), . . . 
(105., 12.20), (135., 15.44), (166., 17.01), . . . 
(196., 16.41), (227., 13.75), (258., 9,80), . . . 
(288., 5.96), (319., 3.19), (349., 2.11) 

DTR = AFGEN (RADTB, TIME) * 1.E6 * 1.E4 

Assume that 10% of the irradiation is reflected. Formulate the new equations 
and replace the former equations of the model of Figure 17. Use the program to 
calculate the dry matter production from Day 60 until Day 210. 

Another example of a forcing function that plays a critical role in growth 
models is temperature. The next exercise illustrates how maintenance respira­
tion can be modelled more realistically by taking the effect of temperature into 
account. 

Exercise 14 
Extend the program of Exercise 13 so that maintenance respiration becomes 
dependent on temperature. Assume a linear temperature course for the simula­
tion period between 10 °C on the first day and 20 °C on the last day. Use the 
following table: 
TEMPERATURE 10. 20. 30. 
MAINTENANCE COEFFICIENT 0.008 0.015 0.030 
Repeat the simulation for a more realistic course of the temperature. 
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AFGEN provides a simple linear interpolation between 2 points (xx> yx) and 
(*2» ^2)* The function value y for a certain x is expressed as: 

.y = y\ + (V2 - ^1) • (* ~ *i)/(*2 ~ *i) 

In a sense, a broken line is generated by connecting subsequent points. If we 
want to employ a higher order interpolation we need more than two points: 
three points for a parabolic and four points for a cubic relation. Generally, 
through n points fits a curve of order n - 1 . The CSMP function NLFGEN 
(Non Linear Function GENerator) does this job with n = 3. Although theoret­
ically NLFGEN is applicable in many cases, caution should be exercised in its 
use. For an AFGEN function it is not so difficult to imagine what happens: 
straight lines connect two points. The situation is much more complicated for a 
NLFGEN function which fits a parabolic interpolation function to three neigh­
bouring points. For this reason application of NLFGEN is less self-evident as it 
might be for the AFGEN function. In particular, if the data points imply an 
abrupt discontinuity, we should take into account large distortion there if using 
NLFGEN. For such situations it may be preferable to use AFGEN. Exercise 15 
illustrates this hidden danger of using NLFGEN. 

Exercise 15 
Consider the next program: 

FUNCTION XTB = (0., 1.), (1., 1.), (2., 0.), (3., 0.) 
XI = AFGEN (XTB, TIME) 
X2 = NLFGEN (XTB, TIME) 
TIMER FINTIM = 3.0, OUTDEL = 0.1, DELT = 0.1 
OUTPUT XI, X2 

Compare the output of the AFGEN and NLFGEN function. 

2.2.4 The structure of the CSMP language 

CSMP is a problem-oriented language designed to facilitate the digital simula­
tion of continuous processes on large-scale digital computers. The advantage of 
using such a language is that it simplifies the programming. The user is not con­
cerned with the rather difficult programming of numerical integration and in­
terpolation methods, and he need not to worry about the computational order 
of the statements. (We will return to this important point). A convenient output 
form is provided by the program itself. The programmer is only responsible for 
writing the statements that define the model and supplying it with a proper data 
set. An additional advantage specific for CSMP is that the full capability of the 
widely used FORTRAN language is available. In addition to FORTRAN facil­
ities, CSMP includes a set of functions that are particularly suited to working 
with a continuous system (e.g. INTGRL and AFGEN functions). 
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Every simulation run essentially starts from a well defined initial condition. 
When needed, one can separate this part from the description of the structure of 
the model itself. The determination of the final situation of a simulation run 
and decision for a possible new run can be separated as well in a program. To 
do so, a CSMP model can be divided into three segments - INITIAL, DYNA­
MIC and TERMINAL - that describe the computations to be performed be­
fore, during and after each simulation run. The TERMINAL segment will not 
be discussed here. 

The INITIAL segment is exclusively used for initialization of variables and 
computations of variables to be expressed in more basic parameters. Statements 
in the INITIAL segment are executed only once per simulation run. Assume for 
example the initial weights of shoot and root depend on the weight of the seed 
sown, then the simulation model can be modified as: 

TITLE DRY MATTER PRODUCTION 
INITIAL 
INCONSEED = 150. 
WSHI = SEED * 0.6 * 0.5 
WRTI = SEED * 0.6 * 0.5 

The factor 0.6 is a reasonable value for conversion of seed into plant material; a 
shootrroot ratio of 1. is used here. 

The DYNAMIC segment contains the complete description of the system 
dynamics, together with any other computations and decisions to be performed 
for successful simulation. For most simple models, the DYNAMIC segment 
consists of one section: 

DYNAMIC 
TWT = WSH + WRT 
WSH = INTGRL (WSHI, GSH) 

and so on, as in Figure 17 until: 

END 

In more complicated systems, the DYNAMIC segment can be divided in several 
sections, each section dealing with a separate submodel (Subsection 2.3.2). 

Specification of an INITIAL segment is optional and is often omitted for 
small models. In that case the DYNAMIC segment has not to be declared ex­
plicitly by the DYNAMIC label. 

One of the main advantages of CSMP is its sorting routine. It enables the user 
to write a simulation program with its statements in the same order as he thinks 
about the process or system and in which he considers it most lucid and read­
able. Such an order of statements, however, is often the reverse of what the 
computational order must be. The CSMP sorting routine finds the proper order 
from any sequence of statements presented. Sorting of statements is necessary 
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because computations have to be performed in a correct order: calculation of 
rate variables must always preceed the updating of state variables. This is a con­
sequence of the concept of dynamic simulation (Section 1.1). Also all variables, 
used to compute rate variables at time /, must have the appropriate value, and 
not one corresponding with one time interval DELT earlier or later. Sequencing 
statements in an appropriate computational order is also required if one pro­
grams in FORTRAN, but with FORTRAN the sequencing must be done by the 
programmer (and one is usually not warned when it is done incorrectly). 

The FORTRAN program that results from the sorting and some other con­
versions by the CSMP compiler is called UPDATE. It is accessible like other 
computer generated files. 

Exercise 16 
Put the statements of the model of Subsection 2.2.2 in a computational order, 
and notice the difference with the order presented. Request the translation of 
the program into FORTRAN (the UPDATE-version) by submitting the pro­
gram. Compare the results with your own sorting. Spell a name incorrectly, and 
see what happens. What can occur if a statement is incorrect. For example try 

MAINT = (GSH + GRT) * 0.015 

The CSMP programming system sorts the statements in the INITIAL and 
DYNAMIC segments automatically, independently of each other. 

2.2.5 Some basic CSMP programming rules 

To write a correct CSMP program, a minimum knowledge of the common 
expressions of this language is necessary. The intention of this part is to provide 
a summary of frequently used CSMP statements. Readers who want to know 
more are referred to a CSMP manual (IBM, 1975). 

Data statements 

Data statements are used to assign numeric values to parameters, constants 
and initial conditions. For instance: 

PARAMP1 = . . . . , P 2 = . . . . 
CONSTANT CI = . . . . , C2 = . . . . 
INCONI1 = . . . . , 12 = . . . . 

Parameters specified in a PARAM statement are constant during the simulation 
run. Variables can be introduced by means of a FUNCTION label (see Subsec­
tion 2.2.3). 
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Structure statements 

Structure statements describe the functional relationships between the vari­
ables of the model. FORTRAN statements can be used within a CSMP program, 
and all FORTRAN functions are valid (Table 3). Some examples of structure 
statements: 

Y = (A + B) * C 
ROOT = SQRT ( X * * 2 + Y * * 2 ) 
A = INTGRL (2., X * * 2 + R/D) 

For more information about available CSMP and FORTRAN functions see 
Tables 2 and 3 and particularly the Program Reference Manual (IBM, 1975). 

Expressions should be written at the right hand side of the equal sign and 
their numeric value is assigned to the variable at the left. The calculation of an 
expression is performed according to the standard hierarchy: 
- evaluation of brackets (in combination with FORTRAN or CSMP func­

tions) 
- exponentiation (* *) 
- multiplication and division (*, /) 
- addition and subtraction (+ , - ) 
Operators of the same hierarchy are performed from left to right. 

Output control statements 

The TITLE statement allows the user to specify the program and it appears at 
the top of each page of the output listing. A PRINT statement is used to specify 
variables whose values will be printed at each PRDEL interval. For output of 
some variables in printed graph form the OUTPUT statement is used. For ex­
amples see Subsection 2.2.2, and Table 9 and Figure 24 of Section 3.1. 

Execution control statements 

In a TIMER statement we specify the values of certain system variables. 
FINTIM : finish time for terminating a simulation 
OUTDEL: time interval for print-plot output 
PRDEL : time interval for printing the values of requested variables 
DELT : integration interval (see also Subsection 2.3.5) 
TIME : initial value of time, to be specified only if not zero. 

A condition to terminate the simulation, e.g. when TWT exceeds 20000 kg 
ha"1, can be introduced by a FINISH label: 

FINISH TWT = 20000. 

Also the integration method is specified in an execution control statement, 
for instance: 
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METHOD RECT 

If METHOD RECT is not specified, the RKS method is used by default (see 
Section 2.3). 

The statement 
END : completes the specifications of the model. 
STOP : terminates the simulation run(s) 
ENDJOB: terminates the job. 

Reruns 

If the simulation is to be repeated with new data and/or output and execution 
control statements, these statements are to be placed between two END-state-
ments: 

END 
PARAM 
TIMER . 
END 
STOP 
ENDJOB 

Only data statements with labels such as PARAM, CONST, INCON and 
FUNCTION can be used to specify reruns, not equations. Running a program a 
number of times for multiple values of a parameter is induced by writing their 
values between parentheses. For example: 

PARAM GPHST = (300., 400., 500.) 

This feature can be used for only one variable in each rerun. 

Exercise 17 
Use these features to study in only one program the total dry matter production 
for all combinations of the values 300., 400., 500. for GPHST and values 400., 
500., 600. for the ratio kg (shoot dry matter) ha"1 (leaf surface) in the calcula­
tion of LAI. Start from the program described in Subsection 2.2.2. 

Syntax 

Some syntactic rules may be helpful when editing a program. 
- maximum 6 characters for names of variables 
- each statement on one line 
- a statement followed by three dots ( . . .) means that statement will be con­

tinual on the next line; this is not allowed within a MACRO! (Subsection 4.2.3) 



- spaces between variable names and operators are allowed 
- columns 1 to 72 can be used for the program, columns 73-80 are for identi­

fication 
- statements can begin in any column, except for ENDJOB, which must begin 

in the first column 
- * in the first column stands for comment. 

Tracing errors 

If the proper Job Control Language is used, the computer will give an answer 
to your problem. If the program is not free of errors, the computer will give one 
or more error messages. Sometimes these messages are self-explanatory, other­
wise you should consult the CSMP reference manual (IBM, 1975). 

If the computer is generating no diagnostics and the results seem to be cor­
rect, you still cannot be sure whether your program is free of errors, especially 
when the program is large and has a complex structure. Some ways of checking 
are: 
- make sure the dimensions are correct. Check them. This can also be quite in­

structive as one can learn more about the significance of the various coeffi­
cients and parameters 

- run your program for extreme conditions 
- make use of the DEBUG feature. For example, write just before the END 

statement: 

NOSORT 
CALL DEBUG (2, 10.) 

All variables, not only those specified in the output list, are printed twice, first 
at time 10 and then after one integration step. This allows you to check all com­
putations. 
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