
2.2 Introduction of CSMP by an elementary simulation program

L.J.M. Basstanie and H.H. van Laar

2.2.1 Introduction

The scientific approach toward studying ecological and physiological phe­
nomena often results in their being described by mathematical expressions. A
great deal of these phenomena behave in a 'dynamic' fashion which means the
'state* of the ecological system changes with time. With knowlegde of the proc­
esses within the system one can develop a mathematical model to study the
dynamic behaviour of the system.

De Wit & Goudriaan (1978), Ferrari (1978) and Brockington (1979) have writ­
ten introductory textbooks on simulation of ecological processes. Although the
main topic of this book is modelling of growth processes and related phenomena,
those textbooks are useful for their complementary explanations and illustra­
tions.

In this section we introduce the simulation language CSMP (Continuous Sim­
ulation Modeling Program) (IBM, 1975), which is used throughout this book.
Basic principles of its use are demonstrated by construction of a simple program
for the simulation of crop dry-matter production (Subsection 2.2.2). In its first
form the program calculates photosynthesis, respiration, dry-matter distribu­
tion, and leaf area index during a growth season, assuming a constant environ­
ment. Subsequently the program is modified to account for a varying environ­
ment and its effect on some of the processes (Subsection 2.2.3). Starting from
this basic level has the advantage that the reader who is not familiar with growth
modelling and programming in CSMP can find handholds in such a simple pro­
gram. Gradually, as processes are treated in more detail in the following sec­
tions, more elaborate modelling techniques and their programming in CSMP
will be discussed.

Subject of this section is also the internal structure of a CSMP program with
special attention to the sorting mechanism (Subsection 2.2.4). Finally some basic
CSMP programming knowledge is summarized (Subsection 2.2.5) to provide
sufficient information for a good comprehension of the following sections. In
Section 2.3 some of these aspects will be elaborated. The CSMP manual (IBM,
1975) may be useful for those with some programming experience.

2.2.2 An elementary simulation program for dry-matter production

In a first approximation dry-matter production of a crop can be simulated
based on the simple model depicted in Figure 16. Gross C02 assimilation feeds a
pool of carbohydrates that supplies material for growth and respiration. Part of

50

IA1NT

J POOL
::. OF
CARBOHYDRATES

Figure 16. Flow of carbohydrates in a simple crop-production
model.

his pool is needed for maintenance of the crop, a process usually defined as
maintenance respiration. The substrate for growth is also taken from this pool,
Lnd the conversion into shoot and root biomass involves a loss of carbohydrates,
tefined as synthesis respiration. The relational diagram of such a system has
leen presented in Figure 2, Section 1.2.

Because we would like to describe this model and use it for simulation of
rowth on a day-to-day basis, one simplification of the relational diagram has
0 be made: we will assume that all carbohydrates from photosynthesis are con­
tinued by growth and maintenance processes within one day. As a result, we can
|mit the pool of carbohydrates as a separate variable from the model. In Sec-
i0n 3.3 this simplification will be explained more extensively.
The relational diagram reveals the kind of quantitative information that

uould be available. A standard value for the gross photosynthetic rate
^PHST) of a green and completely closed canopy, well supplied with water
nd nutrients is in terms of glucose production on the order of 400 kg ha"]d~l

n clear summer days. When the canopy is not fully closed the actual value of
l e gross photosynthetic rate (GPHOT) is a fraction of GPHST. This fraction
^responds with the fraction of absorbed visible radiation, calculated with an
^Ponential extinction of radiation as function of the leaf area index (LAI, an
re.a Action of leaves to ground surface, in m2m~2). A value of 0.7 for the
^jnction coefficient results in a fraction (1. - EXP(-0.7 * LAI)) of absorbed
lsib'e light.
Maintenance respiration (MAINT), expressed in glucose, is related to the

Kal dry matter weight (TWT), a proportionality factor of 0.015 kg kg"1 d"1 is
a ir estimation. As for growth, a conversion factor (CVF, in kilogram of dry

[5tter Per kilogram of glucose) of 0.7 quantifies reasonably well the efficiency
synthesis of structural material from the carbohydrates, the remainder being

jst as respiration. Dry matter is distributed between shoot (WSH) and root
**) , both in kg ha -1; fixed fractions of respectively 0.7 and 0.3 have been

*ur n f ° r t l l e p u rP° s e °f th*s example.
l t n tnis information the equations characterizing the model can be written.

51

By using a simulation language, such as CSMP, these equations can be easily
coded into a small set of statements comprehensible to reader and computer.
Figure 17 represents the actual computer program of the simple model that is
developed above. A computer program is normally the last stage in the con­
struction of a 'working version' of a simulation model. When the program is
submitted to a computer, the output gives a picture of the behaviour of the
model. Numerical values of state variables are computed starting from their
initial value at simulation time zero until the end of the simulation period. For
defined time intervals, a list of calculated values of variables in which one is
interested can be printed.

We will discuss the program of Figure 17 line by line. It is useful to start by iden­
tifying the program with a TITLE statement:

TITLE DRY MATTER PRODUCTION

Subsequently the structure of the model is defined. The goal of the simulation is
the total dry matter weight (TWT), which is the sum of the dry matter weight of
the shoots (WSH) and the roots (WRT):

TWT = WSH + WRT

WSH and WRT are state variables in the model that change according to their
characteristic growth rates GSH and GRT. Integration of these growth rates
gives the actual values of WSH and WRT at any moment. CSMP provides the
INTGRL function (Table 2) as a means to integrate numerically a specified rate
in time:

WSH = INTGRL (WSHI, GSH)
WRT = INTGRL (WRTI, GRT)

Initial conditions (WSHI, WRTI) and relevant rates (GSH, GRT) have to be
specified as arguments of the INTGRL function and are placed between brackets.
At time zero, WSH equals WSHI and the current value of WSH at any time is
found by integrating GSH. A similar reasoning is valid for WRT. At the begin­
ning of the growth season, shoot and root dry weight can be estimated at 50 kg
ha"1. In an INCON statement we can assign numerical values to these INitial
CONditions:

INCON WSHI = 50., WRTI = 50.

The growth rates GSH and GRT are calculated as

GSH = 0.7 * GTW
GRT = 0.3 * GTW

in which GTW is the net rate of total dry matter increase (kg ha"1 d"1). As
illustrated in Figure 16, we can express GTW as

GTW = (GPHOT - MAINT) * CVF

&*\

Figure 17. Listing of the simulation program for calculation of 'dry matter production'
and its output.

TITLE

INCON

DRY MfiTTER PRODUCTION
TWT «WSH*WRT
WSH »INTGRL(WSHI.GSH>
UlRT -1NTGRL<WRTI»GRT>
WSH1*50.» WRT1*50.
GSH «0.7*6TW
GRT «0.3*6TW
GTW *<GPHOT-MfilNT>*CVF
M*1NT «<WSH*WRT> •0.015
GPHOT *&PHST*<l.-EXP<-.7*LflI>>
LFtI *RMlNl<WSH/500. t5 .>

PflRfiM C V F * . 7 . GPHST=400.
TIMER F1NT1M*100.» DELTM.» PRDEL«5.> OUTDEL-5.
METHOD RECT
PRINT TWT»WSH.WRT»GTW
OUTPUT TWT
END
STOP
ENDJOB

1 DRY MH1TER PRODUCTION
0 TIME

0.0000000*00
5.0000U0D*00
1.0000000*01
1.5000000*01
2.0000000*01
2.5000000*01
3.0000000*01
3.5000000*01
4. 0000000*01
4.5000000*01
5.0000000*01
5.5000000*01
6.0000000*01
6.5000000*01
7.0000000*01
7.5000000*01
8.0000000*01
8.5000000*01
9.0000000*01
9.5000000*01
1.0000000*02

1SSS SIMULATION
TIME

0.00000E*O0
5.0000
10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000
55.000
60.000
65.000
70.000
75.UOO
80.000
85.0U0
90.000
95.000
100.00

ISff CONTINUOUS

TWT
100.00
243.08
614.06
1347.1
2384.7
3542.1
4689.0
5777.5
6810.0
7789.4
8718.4
9599.7
10436.
11229.
11981.
12695.
13371.
14014.
14623.
15200.
15749.

HMLTEO FOR F
TWT
100.00
243.08
614.06
1347.1
2384.7
3542 .1
4 6 8 9 . 0
5 7 7 7 . 5
fc>810.0
7 789 . 4
8 7 1 8 . 4
9 5 9 9 . 7
10436.
11229.
11981 .
12695.
13371 .
14014.
14623.
15dOO.
15749.

SYSTEM MODEL

WSH
50.000
150.16
409.84
922.94
lb49.3
2459.5
3262.3
4024.2
4747.0
5432.6
6082.9
6699.8
7285.0
7840.1
8366.7
8866.2
9340.0
9789.5
10216.
10620.
11004.

INISH CDMOI

•

WRT
50.000
92.924
204.22
424.12
735.40
1082.6
1426.7
1753.2
2063.0
2356.8
2635.5
2899.9
3150.7
3388.6
3614.3
3828.4
4031.4
4224.1
4406.8
4580.1
4744.6

TION TIME

Nb PR06RRM

GTW
17.880
50.534
115.80
188.94
227.14
233.86
222.31
210.88
200.04
189.76
180.00
170.75
161.97
153.64
145.74
138.25
131.14
124.40
118.01
111.94
106.19

100.00

- •

—••

II V1M3 EXECUTION OUTPUT Sff

53

Table 2. Some CSMP III functions. From: IBM (1975).

CSMPHI Functions

In tegra tor

Y»INTGRL(IC ,X)

where: IC • y^

Arbitrary function generator
(l inear interpolation)
Y-AFGEN(FUNCT,X)

Arbitrary function generator

(quadratic interpolation)

Y-NLFGEN(FUNCT,X)

Modulo function

Y-AMOD (X,P)

L im i te r

Y*LIMIT(P1,P2,X)

Not

Y-NOT(X)

Input Switch Relay

Y* INSW(X1,X2,X3)

Equivalent Mathematical Expression

y (t) » J xd t • y (t 0)

t o
where: t 0 « star t t ime

t " t i m e

i

V
y - f (x)

V
y - f (x)

y «x - nP |

n is an integer P
value such that \

04 y < P

>y

— V

^

i - v

y
. p

— P —

y -P] ; * < p ,

y '»P 2 ;x>p 2 v Pi

7
y - x ; p,< x < p2

y

/ ,

y « 1 if x < 0

y « 0 if x >0

y » x 2 i f X] < 0

y » x 3 if x , ^ 0

-te> X

• X

The maintenance respiration is supposed to be 1.5 percent of the total dry matter
per day:

MAINT = (WSH + WRT) * 0.015

The equation respresenting the relation of the gross photosynthetic rate and
green surface has an exponential form:

GPHOT = GPHST * (1. - EXP (-0.7 * LAI))

The leaf area index (LAI) is here assumed to be proportional to the shoot dry
matter (WSH) to a maximum of 5 ha ha"1. The AMIN1 function (Table 3) can
be used to achieve this:

LAI = AMIN1 (WSH/500., 5.)

The AMIN1 function takes the minimum value of its arguments separated by
comma's.

Dead time (DELAY)

Y.DELAY(N.P.X)

where: P»delay time
N • number of po in ts
sampled in interval p
(integer constant) and
must be>3.and < 16,378

y»x(t-p) ; t> p

y»0 ; t < p

Equivalent Laplace Transfer Function:
Y (s l . e-ps
X(s)

Implicit function

Y«IMPL(IC,P.FOFY)

where: IC«first guess
P « error bound

FOFY« output name
from final statement
in algebraic loop
definition

y» f (y)

| y-f(y>| < p | y l

Impulse generator

Y«IMPULS(P1,P2)

where:P1 »time of first pulse
P2» interval between pulses

y O ; t <p t

y»1 i t t - p ^ k p j

y O ;(t-p1)^kp2

k- 0,1.2,3,

i't>t
• * - t

The parameters CVF and GPHST have to be specified to complete the nume­
rical information for the program. The PARAMeter statement is used to assign
values to variables used as parameters:

PARAM CVF = 0.7, GPHST = 400.

So far the structure of the model has been transformed into a simulation pro­
gram that can be executed. Only timing, output format and an appropriate inte­
gration method must still be specified. A TIMER statement gives the time of
finishing the simulation (FINTIM), the printed output interval (PRDEL) and
plotted output interval (OUTDEL), and the size of the time step for integration
(DELT):

TIMER FINTIM = 100., DELT = 1., PRDEL = 5., OUTDEL = 5.

All TIMER variables are expressed in days, as this is the basic unit of time in
this program. A numerical integration method is selected from a set of available

55

Table 3. Some FORTRAN functions, which can be used in CSMP III statements. From:
IBM (1975).

FORTRAN Functions

Exponential
Y - E X P (X)

Trigonometric sine

Y - S I N (X)

Trigonometric cosine

Y -COS (X)

Square roo t

Y . SORT (X)

Largest value
(Real arguments and output)

Y - A M A X K X 1 . X 2)

Smallest value
(Real arguments and output)

Y -AMIN1 (X1,X2)

Equivalent Mathematical Expression

y » e x

y «sin (x)

y » c o s (x)

y / x

y » m a x (x , , x 2)

y »min (x v x 2)

routines in CSMP (Subsection 2.3.7). For instance, to perform the simulation
using the rectangular method after Euler, the next statement has to be used:

METHOD RECT

Printed output of the variables is obtained by means of:

PRINT TWT, WSH, WRT, GTW

Plotted out can be obtained by:

OUTPUT TWT

The END statement defines the end of the simulation model and the STOP state­
ment the end of the simulation program.

END
STOP
ENDJOB

The ENDJOB statement finishes the computer job. Figure 17 shows a complete
listing of the example model and the output after execution.

56

Exercise 11
Run the program. (Subsection 2.2.5 may be helpful when you are editing your
program).

During a simulation run all statements defining the structure of the model are
executed several times, the number of which equals FINTIM divided by DELT,
when using the rectangular method. DELT, equivalent to At in Section 2.1,
plays a critical role since it indicates the size of the time interval for integration.
For a CSMP statement with an integral function like:

WSH = INTGRL (WSHI, GSH)

the equivalent numerical expression when using a rectangular integration
method, as in Subsections 1.1.3 and 2.1.5, is:

WSHnow = WSHprcvi0US + GSH . DELT

From this equation it is clear that the rectangular integration method implicates
a constant growth rate during the whole time step DELT. Taking appropriate
time steps, such that the rate of change can be regarded as effectively constant,
will give good approximations of the value of the state variable (cf. Subsection
2.3.6).

Exercise 12
a. Simplify the program for the case that you are only interested in the total dry
matter increase (do not consider biomass distribution into shoots and roots).
Assume that the crop is completely covering the soil (GPHOT = GPHST). Run
this program.
b. Explain why the results of this simple model are qualitatively similar to the
filling of a water tank as discussed in Subsection 2.1.4. Write the governing dif­
ferential equation for this system and derive from this the time coefficient and
equilibrium level.
c. What is the implication of the introduction of the relationships in which
gross photosynthesis depends on LAI, and LAI depends on WSH in the form
discussed above? What happens with the time coefficient?

2.2.3 Program modifications with forcing functions

Until now we assumed that all external conditions, or driving variables (Sub­
section 1.1.2), are constant. However, C02 assimilation rates are strongly

57

dependent on irradiation and irradiation itself can vary from day to day over a
relatively wide range. If we want to make the model realistic, we should intro­
duce the actual irradiation level instead of a fixed rate of gross C02 assimilation.
Irradiation will drive C02 assimilation in the model and is not affected by the
state of the system. Therefore we call it a driving or forcing function. More
generally, forcing functions are defined as those variables that are not affected
by processes within the system, but characterize the influence from outside
(Subsection 1.1.3). They are an input to the model. In very simplified models,
forcing functions can be introduced in the program as parameters:

PARAM GPHST = 400.

Very often forcing functions show a characteristic pattern over a certain time
period (day or year). An equation describing such regular fluctuations in time
may provide approximate values for the use in a general program. For example,
the yearly course of daily incoming short-wave irradiation is reasonably well
represented by a sinusoidal curve, just like daily gross photosynthesis. For the
daily gross photosynthesis (GPHST, expressed as glucose) the equation is

GPHST = 300. + 2(X).*SIN(2*PI*(DAY-(365./4.) + 10.)/365.)
PARAM PI = 3.141592

DAY stands for the number of a day in the year; counting starts from 1 January.
GPHST reaches a minimum value of 100.0 (kg ha"1 d"1) on 21 December
(DAY = 355) and a maximum value of 500.0 on 21 June (DAY = 172). DAY
can be calculated by:

DAY = STDAY + TIME
PARAM STDAY = 60.

In this way simulation starts on 1 March (STDAY = 60.). TIME is a variable
generated by CSMP which expresses the current time during simulation. At the
start of simulation TIME = 0., and its value is augmented by DELT when the
integration of all state variables is accomplished. (The symbolic name TIME is
reserved by CSMP to keep track of time, and cannot be used for other purposes).
A second way of keeping track of the number of the day is to give the variable
TIME an initial value. This can be done in the TIMER statement:

TIMER TIME = 60., FINTIM = 210., DELT = 1., PRDEL = 5.

When the time course of a driving variable has been measured, direct use of
these values is another option for formulating a forcing function. Measured
values, with the corresponding dates can be introduced by a FUNCTION state"-
ment:

FUNCTION GPHSTB = (60., 300.), (100., 400.), (150., 450.), (210., 500.)

In this statement, an ordered set of pairs defines the content of a table, named
GPHSTB. The first value in each pair of numbers between parentheses stands

58

ior ine inuepenueni vanaoie ^nivic, u;, me seconu expresses me uepenueni
variable (GPHST, kg ha"1 d"1). The distance between the coordinates of two
pairs does not have to be equal in size; the value of the independent variable
should always increase, but the dependent variable can vary in an arbitrary way.
The current value of the dependent variable is calculated by means of an AFGEN
function (Arbitrary Function GENerator), which performs a linear interpola­
tion in the function table. Function name and independent variable should be
specified as arguments of the AFGEN function:

GPHST = AFGEN(GPHSTB, TIME)

Exercise 13
The gross photosynthetic rate, expressed as C02 assimilated, is proportional to
the absorbed short-wave radiation with a proportionality factor of 4.35 10~9 kg
Joule"1; the conversion factor from C02 to CH20 (glucose) is 30.0/44.0. Use
following values for daily totals of incoming visible (400-700 nm) irradiation
(DTR) in 106 Joule m"2 d"1 on a standard clear day for a latitude of 50° N
(Goudriaan & van Laar, 1978):

FUNCTION RADTB = (15., 2.61), (46., 4.80), (74., 8.07), . . .
(105., 12.20), (135., 15.44), (166., 17.01), . . .
(196., 16.41), (227., 13.75), (258., 9,80), . . .
(288., 5.96), (319., 3.19), (349., 2.11)

DTR = AFGEN (RADTB, TIME) * 1.E6 * 1.E4

Assume that 10% of the irradiation is reflected. Formulate the new equations
and replace the former equations of the model of Figure 17. Use the program to
calculate the dry matter production from Day 60 until Day 210.

Another example of a forcing function that plays a critical role in growth
models is temperature. The next exercise illustrates how maintenance respira­
tion can be modelled more realistically by taking the effect of temperature into
account.

Exercise 14
Extend the program of Exercise 13 so that maintenance respiration becomes
dependent on temperature. Assume a linear temperature course for the simula­
tion period between 10 °C on the first day and 20 °C on the last day. Use the
following table:
TEMPERATURE 10. 20. 30.
MAINTENANCE COEFFICIENT 0.008 0.015 0.030
Repeat the simulation for a more realistic course of the temperature.

59

AFGEN provides a simple linear interpolation between 2 points (xx> yx) and
(*2» ^2)* The function value y for a certain x is expressed as:

.y = y\ + (V2 - ^1) • (* ~ *i)/(*2 ~ *i)

In a sense, a broken line is generated by connecting subsequent points. If we
want to employ a higher order interpolation we need more than two points:
three points for a parabolic and four points for a cubic relation. Generally,
through n points fits a curve of order n - 1 . The CSMP function NLFGEN
(Non Linear Function GENerator) does this job with n = 3. Although theoret­
ically NLFGEN is applicable in many cases, caution should be exercised in its
use. For an AFGEN function it is not so difficult to imagine what happens:
straight lines connect two points. The situation is much more complicated for a
NLFGEN function which fits a parabolic interpolation function to three neigh­
bouring points. For this reason application of NLFGEN is less self-evident as it
might be for the AFGEN function. In particular, if the data points imply an
abrupt discontinuity, we should take into account large distortion there if using
NLFGEN. For such situations it may be preferable to use AFGEN. Exercise 15
illustrates this hidden danger of using NLFGEN.

Exercise 15
Consider the next program:

FUNCTION XTB = (0., 1.), (1., 1.), (2., 0.), (3., 0.)
XI = AFGEN (XTB, TIME)
X2 = NLFGEN (XTB, TIME)
TIMER FINTIM = 3.0, OUTDEL = 0.1, DELT = 0.1
OUTPUT XI, X2

Compare the output of the AFGEN and NLFGEN function.

2.2.4 The structure of the CSMP language

CSMP is a problem-oriented language designed to facilitate the digital simula­
tion of continuous processes on large-scale digital computers. The advantage of
using such a language is that it simplifies the programming. The user is not con­
cerned with the rather difficult programming of numerical integration and in­
terpolation methods, and he need not to worry about the computational order
of the statements. (We will return to this important point). A convenient output
form is provided by the program itself. The programmer is only responsible for
writing the statements that define the model and supplying it with a proper data
set. An additional advantage specific for CSMP is that the full capability of the
widely used FORTRAN language is available. In addition to FORTRAN facil­
ities, CSMP includes a set of functions that are particularly suited to working
with a continuous system (e.g. INTGRL and AFGEN functions).

60

Every simulation run essentially starts from a well defined initial condition.
When needed, one can separate this part from the description of the structure of
the model itself. The determination of the final situation of a simulation run
and decision for a possible new run can be separated as well in a program. To
do so, a CSMP model can be divided into three segments - INITIAL, DYNA­
MIC and TERMINAL - that describe the computations to be performed be­
fore, during and after each simulation run. The TERMINAL segment will not
be discussed here.

The INITIAL segment is exclusively used for initialization of variables and
computations of variables to be expressed in more basic parameters. Statements
in the INITIAL segment are executed only once per simulation run. Assume for
example the initial weights of shoot and root depend on the weight of the seed
sown, then the simulation model can be modified as:

TITLE DRY MATTER PRODUCTION
INITIAL
INCONSEED = 150.
WSHI = SEED * 0.6 * 0.5
WRTI = SEED * 0.6 * 0.5

The factor 0.6 is a reasonable value for conversion of seed into plant material; a
shootrroot ratio of 1. is used here.

The DYNAMIC segment contains the complete description of the system
dynamics, together with any other computations and decisions to be performed
for successful simulation. For most simple models, the DYNAMIC segment
consists of one section:

DYNAMIC
TWT = WSH + WRT
WSH = INTGRL (WSHI, GSH)

and so on, as in Figure 17 until:

END

In more complicated systems, the DYNAMIC segment can be divided in several
sections, each section dealing with a separate submodel (Subsection 2.3.2).

Specification of an INITIAL segment is optional and is often omitted for
small models. In that case the DYNAMIC segment has not to be declared ex­
plicitly by the DYNAMIC label.

One of the main advantages of CSMP is its sorting routine. It enables the user
to write a simulation program with its statements in the same order as he thinks
about the process or system and in which he considers it most lucid and read­
able. Such an order of statements, however, is often the reverse of what the
computational order must be. The CSMP sorting routine finds the proper order
from any sequence of statements presented. Sorting of statements is necessary

61

because computations have to be performed in a correct order: calculation of
rate variables must always preceed the updating of state variables. This is a con­
sequence of the concept of dynamic simulation (Section 1.1). Also all variables,
used to compute rate variables at time /, must have the appropriate value, and
not one corresponding with one time interval DELT earlier or later. Sequencing
statements in an appropriate computational order is also required if one pro­
grams in FORTRAN, but with FORTRAN the sequencing must be done by the
programmer (and one is usually not warned when it is done incorrectly).

The FORTRAN program that results from the sorting and some other con­
versions by the CSMP compiler is called UPDATE. It is accessible like other
computer generated files.

Exercise 16
Put the statements of the model of Subsection 2.2.2 in a computational order,
and notice the difference with the order presented. Request the translation of
the program into FORTRAN (the UPDATE-version) by submitting the pro­
gram. Compare the results with your own sorting. Spell a name incorrectly, and
see what happens. What can occur if a statement is incorrect. For example try

MAINT = (GSH + GRT) * 0.015

The CSMP programming system sorts the statements in the INITIAL and
DYNAMIC segments automatically, independently of each other.

2.2.5 Some basic CSMP programming rules

To write a correct CSMP program, a minimum knowledge of the common
expressions of this language is necessary. The intention of this part is to provide
a summary of frequently used CSMP statements. Readers who want to know
more are referred to a CSMP manual (IBM, 1975).

Data statements

Data statements are used to assign numeric values to parameters, constants
and initial conditions. For instance:

PARAMP1 = , P 2 =
CONSTANT CI = , C2 =
INCONI1 = , 12 =

Parameters specified in a PARAM statement are constant during the simulation
run. Variables can be introduced by means of a FUNCTION label (see Subsec­
tion 2.2.3).

62

Structure statements

Structure statements describe the functional relationships between the vari­
ables of the model. FORTRAN statements can be used within a CSMP program,
and all FORTRAN functions are valid (Table 3). Some examples of structure
statements:

Y = (A + B) * C
ROOT = SQRT (X * * 2 + Y * * 2)
A = INTGRL (2., X * * 2 + R/D)

For more information about available CSMP and FORTRAN functions see
Tables 2 and 3 and particularly the Program Reference Manual (IBM, 1975).

Expressions should be written at the right hand side of the equal sign and
their numeric value is assigned to the variable at the left. The calculation of an
expression is performed according to the standard hierarchy:
- evaluation of brackets (in combination with FORTRAN or CSMP func­

tions)
- exponentiation (* *)
- multiplication and division (*, /)
- addition and subtraction (+ , -)
Operators of the same hierarchy are performed from left to right.

Output control statements

The TITLE statement allows the user to specify the program and it appears at
the top of each page of the output listing. A PRINT statement is used to specify
variables whose values will be printed at each PRDEL interval. For output of
some variables in printed graph form the OUTPUT statement is used. For ex­
amples see Subsection 2.2.2, and Table 9 and Figure 24 of Section 3.1.

Execution control statements

In a TIMER statement we specify the values of certain system variables.
FINTIM : finish time for terminating a simulation
OUTDEL: time interval for print-plot output
PRDEL : time interval for printing the values of requested variables
DELT : integration interval (see also Subsection 2.3.5)
TIME : initial value of time, to be specified only if not zero.

A condition to terminate the simulation, e.g. when TWT exceeds 20000 kg
ha"1, can be introduced by a FINISH label:

FINISH TWT = 20000.

Also the integration method is specified in an execution control statement,
for instance:

63

METHOD RECT

If METHOD RECT is not specified, the RKS method is used by default (see
Section 2.3).

The statement
END : completes the specifications of the model.
STOP : terminates the simulation run(s)
ENDJOB: terminates the job.

Reruns

If the simulation is to be repeated with new data and/or output and execution
control statements, these statements are to be placed between two END-state-
ments:

END
PARAM
TIMER .
END
STOP
ENDJOB

Only data statements with labels such as PARAM, CONST, INCON and
FUNCTION can be used to specify reruns, not equations. Running a program a
number of times for multiple values of a parameter is induced by writing their
values between parentheses. For example:

PARAM GPHST = (300., 400., 500.)

This feature can be used for only one variable in each rerun.

Exercise 17
Use these features to study in only one program the total dry matter production
for all combinations of the values 300., 400., 500. for GPHST and values 400.,
500., 600. for the ratio kg (shoot dry matter) ha"1 (leaf surface) in the calcula­
tion of LAI. Start from the program described in Subsection 2.2.2.

Syntax

Some syntactic rules may be helpful when editing a program.
- maximum 6 characters for names of variables
- each statement on one line
- a statement followed by three dots (. . .) means that statement will be con­

tinual on the next line; this is not allowed within a MACRO! (Subsection 4.2.3)

- spaces between variable names and operators are allowed
- columns 1 to 72 can be used for the program, columns 73-80 are for identi­

fication
- statements can begin in any column, except for ENDJOB, which must begin

in the first column
- * in the first column stands for comment.

Tracing errors

If the proper Job Control Language is used, the computer will give an answer
to your problem. If the program is not free of errors, the computer will give one
or more error messages. Sometimes these messages are self-explanatory, other­
wise you should consult the CSMP reference manual (IBM, 1975).

If the computer is generating no diagnostics and the results seem to be cor­
rect, you still cannot be sure whether your program is free of errors, especially
when the program is large and has a complex structure. Some ways of checking
are:
- make sure the dimensions are correct. Check them. This can also be quite in­

structive as one can learn more about the significance of the various coeffi­
cients and parameters

- run your program for extreme conditions
- make use of the DEBUG feature. For example, write just before the END

statement:

NOSORT
CALL DEBUG (2, 10.)

All variables, not only those specified in the output list, are printed twice, first
at time 10 and then after one integration step. This allows you to check all com­
putations.

65

