
4.1 Crop production under semi-arid conditions, as determined by moisture 
availability 

H. van Keulen 

4.1.1 Introduction 

In the Sections 3.2. and 3.3 a detailed, physiologically based process model of 
plant growth has been described. An essential prerequisite for application of 
that model is that the supply of water and nutrients to the crop is not a limiting 
factor for production. Such a favourable situation is, however, an exception 
rather than the rule in the various agricultural production systems around the 
world. Adverse weather conditions, soils low in natural fertility and lack of 
capital means required for improvements, lead to systems where the low supply 
of water or plant nutrients to the crop during its growth cycle is the major deter
minant for its production potential. To simulate the productivity in such situa
tions, it is necessary also to pay attention to the below-ground plant parts and to 
the processes taking place in the soil that determine the availability of water and 
nutrients to the roots. In principle, these elements could be added to the compre
hensive model indicated above, but that would increase the size of that model 
substantially, and bring it to a level that is hardly manageable. Moreover, some 
of the processes that are treated in detail in that model lose much of their rele
vance when the supply of water or nutrients is the major constraint for produc
tion (see Subsection 1.2.2). 

Here a model is treated, dealing with simulation of crop production under 
conditions where moisture is the main limiting factor. The model, named ARID y 

CROP, was developed to simulate growth and water use of fertilized natural^ 
pastures in the Mediterranean region. Following the principle of the hierarchical 
approach, results of BACROS and other detailed models are incorporated in a 
simplified fashion in the present model. Since it is impossible to treat the com
plete model within the scope of this contribution, only a number of features will 
be highlighted. For further information reference is made to detailed descrip
tions by van Keulen and coworkers (van Keulen et al., 1981; van Keulen, 1975). 
The meteorological and physiological aspects of the relationship between plant 
production and water use are discussed in Subsection 4.1.2, followed by an ex
ample in which these principles are applied (Subsection 4.1.3). The way in which 
growth of the vegetation is simulated in ARID CROP is explained in Subsection 
4.1.4, emphasizing the differences with descriptions discussed earlier, in Sub
sections 3.3.3 and 3.3.6. In the Subsections 4.1.5 and 4.1.6, the results obtained 
with this model are discussed, and possibilities for applying the model in other 
regions are indicated (Subsections 4.1.7 and 4.1.8). 

A FORTRAN version of ARID CROP, programmed by Ungar & van Keulen 
(1982), is available. 
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4.1.2 Water use and plant production 

Since water is the major production factor considered in the present model, 
we will first examine the relation between water use by plants and the associated 
dry matter production. This relation has been subject of extensive experimenta
tion, ever since the work by Briggs & Shantz (1913). De Wit's (1958) analysis of 
the subject, based on a description of the physical and physiological processes 
governing transpiration and photosynthesis in plants, indicated that the relation 
between dry matter production and water use depends on the prevailing level of 
irradiance during the growing period. The nature of this relation will be con
sidered below. 

The rate of water loss from a crop surface (£) (and that from a free water sur
face as well) is practically proportional to the level of irradiance. The rate of 
photosynthesis (A) is, however, proportional to irradiance only at low levels, 
since eventually the rate of C02 diffusion towards the active sites becomes the 
rate limiting factor (Section 3.2). These dependencies and their ratio are shown 
schematically in Figure 44. The values at very low levels of irradiance are not of 
practical importance, since under such conditions low temperatures will prevent 
any crop growth. At intermediate levels, which are characteristic for the larger 
part of the temperate zone, the ratio E/A remains constant and is independent 
of the radiation level. At the right-hand side of Figure 44, where conditions are 
represented that prevail in arid and semi-arid regions situated around the equa-

E;A; E/A 

Figure 44. The relation between transpiration (£), assimilation (A) and their ratio (E/A) 
on the one hand and radiation intensity (H) on the other. 
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torial deserts, the ratio E/A is approximately proportional to the level of irra-
diance or the free-water evaporation. On the basis of these considerations, de 
Wit derived the relation: 

P = M. W.EQ* (53) 

where P is the total dry matter production in kilograms, in most cases referring 
to above ground material only, W is the total water loss by the plants in kg, E0 

the average daily free water evaporation in kg ha"l d~l and Ma proportionality 
factor, representing water use efficiency. M depends on plant species only, and 
has as dimension kg ha - 1 d"1. The value of x appeared to be 1 for conditions 
characterized by high levels of irradiance, and 0 for those where low levels pre
vail (Figure 44). This relation described satisfactorily the results of a variety of 
experiments on water use efficiency carried out in containers as well as under 
field conditions, some of which are summarized in Table 15. 

There is a remarkable difference in the value of M between wheat and alfalfa 

Table 15. Summary of measured M values for a number of crops. 

Crop 

Wheat 

Sorghum 

Alfalfa 

Maize 

Site 

Great Plains 
Turkey 

. Central Great Plains 
Central Negev 
Central Israel 

Great Plains 
Great Plains 
Central Great Plains 

Great Plains 
Central Negev 
Central Negev 
Central Negev 
Wisconsin 

Great Plains 
Logan 
Fort Collins 
Yuma 
Davis 
Central Israel 

Condi
tion* 

C 
F 
F 
C 
C 

C 
F 
F 

C 
F 
C 
C 
F 

C 
F 
F 
F 
F 
F 

M 
(kgha^d- 1 ) 

115 
106 
125 
102-140 
88 

207 
210 
140 

55 
105 
108 
53 

214 

213 
215 
258 
262 
314 
290 

Reference 

de Wit, 1958 
Janssen, 1972 
Hanks et al., 1969b 
van Keulen, 1975 
Meyer (unpublished) 

de Wit, 1958 
Doss et al., 1964 
Hanks et al., 1969b 

de Wit, 1958 
Tadmor et al., 1972 
van Keulen, 1975 
Meyer (unpublished) 
Tanner & Sinclair, 1982 

Briggs & Shantz, 1913 
Stewart et al., 1977 
Stewart et al., 1977 
Stewart et al., 1977 
Stewart et al., 1977 
Yanuka et al., 1981 

* C = container; F = field experiment. 
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on the one hand, and sorghum and maize on the other hand. This contrast re
flects the different photosynthetic pathways for the species: wheat and alfalfa 
are C3 plants, sorghum and maize are C4 plants. The main carboxylating enzyme 
in C4 plants has an affinity to C02 that is about twice as great as that of the 
carboxylating enzyme in C3 plants. Moreover the photorespiratory process is 
absent in C4 plants. As a consequence the light saturated rate of C02 assimila
tion in C4 plants is about twice as high as that in C3 plants (Subsection 3.2.2). 

Under some conditions, the assimilation process is controlled in such a way 
that the C02 concentration in the intercellular spaces of the leaves is regulated 
over a wide range of light intensities and external C02 concentrations through 
adaptation of the stomatal opening (Subsection 3.2.6). The level at which the 
concentration is maintained is about 210 cm3 m"3 for C3 plants and 120 cm3 

m"3 for C4 plants. The consequence of this difference is that at low levels of 
irradiance and at normal external C02 concentrations of about 330 cm3 m~3, 
net C02 assimilation is about the same for both plant types but stomatal con
ductivity and hence the rate of transpiration is about half as great in C4 plants as 
in C3 plants. At high levels of irradiance, the net C02 assimilation of C4 plants is 
twice that of C3 plants at comparable values for stomatal conductivity, thus at 
approximately the same transpiration rate. Assimilation rate and transpiration 
rate are the main determinants for the M value which is consequently roughly 
twice as great for C4 as for C3 plants, irrespective of the level of irradiance. 

Regulation of internal C02 concentration does not always occur, however. 
Some of the differences in the data of Table 15, especially those for alfalfa, can 
be understood if regulation was present in some cases and in others absent. 

The M value is a useful parameter to describe the relation between production 
and water use, integrated over a reasonable period of time. It is especially suit
able to compare different locations, different growing periods or different 
species. However, its application in the prediction of the growth pattern is much 
more limited. For regions with high levels of irradiance, to which most of the 
arid zone belongs, this is clear already from its numerical value: this value repre
sents in fact the maximum attainable growth rate in situations where transpira
tion is equal to the free-water evaporation. Of course, the growth pattern of 
crops is such that the potential growth rate in mass of dry matter is low in the 
beginning of the growth period with incomplete light interception, whereas it in
creases to values of 200 (for C3 plants) to 350 (for C4 plants) kg ha"l d~l when 
complete cover is reached. The latter values could never be realized by using M 
values as tabulated in Table 15. Moreover, there are considerable fluctuations in 
M values when they are calculated over short periods of time, as is illustrated in 
Figure 45. These fluctuations are caused by different influences of the vapour 
pressure deficit of the air on crop transpiration and free-water evaporation. For 
a crop canopy the transpiring surface - the leaf area - may be a multiple of 
the surface area. Each of the leaf layers reacts practically independently to the 
vapour pressure deficit in the atmosphere and the transpiration increases virtu
ally proportionally with increasing leaf area index. Thus, when the vapour pres-
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Figure 45. The variation in the calculated proportionality factor M for weekly periods in 
Avdat (Israel) 1972/1973. 

sure deficit increases, crop transpiration increases relatively more than free-
water evaporation, consequently the ratio W/E will increase, leading to lower 
values for M. 

To avoid these difficulties the actual value of the transpiration coefficient 
((W/P) from Equation 53) may be calculated in a simulation model for each 
individual time interval. The transpiration coefficient of the crop at a certain 
moment is equal to the ratio of potential crop transpiration rate, and potential 
dry matter production rate, both of which are obtained independently from the 
meteorological data of the current day. 

4.1.3 Application in the simple crop growth model 

The water use efficiency concept, worked out in Subsection 4.1.2 can be 
applied in a simplified way to obtain an indication of the water requirement of a 
crop growing at its potential rate in a high irradiation environment. 

When for a C3 plant an average M value of 125 kg ha ' 1 d"1 is assumed 
(Table 15), the ratio between dry matter production and transpiration can be 
estimated when E0, the average rate of free-water evaporation (or the evapora
tion from an evaporation pan) is known. As an example a value of 4 mm d_1 is 
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taken, which is equivalent to 40(XX) kg ha"1 d_1 of water. The production of 
1 kg of dry matter is then coupled with a transpiration loss of (Equation 53) 
40 000/125 = 320 kg of water, thus giving a transpiration coefficient of 320. 

In the model presented in Section 3.1 the rate of increase in dry matter (GTW) 
is simulated. Multiplying that with the transpiration coefficient (TRPCF) yields 
the crop water requirement WREQ (kg ha"1 d"1), which can be integrated to 
obtain total water requirement (TWREQ): 

PARAM TRPCF = 320. 
WREQ = GTW* TRPCF 
TWREQ = INTGRL (0., WREQ) 

To illustrate the influence of water shortage on crop production in an example, 
a very simple soil water balance can be added to the model (the next section 
treats this subject extensively). The amount of water available in the profile may 
be tracked in an integral (SWAT), initialized with pre-emergence soil water stor
age (ISWAT), and with effective rainfall (RAIN) and transpiration (TRANS) as 
rate variables. The rate of transpiration equals the actual growth rate (AGTW) 
times the transpiration coefficient. AGTW equals GTW when sufficient water is 
available, but becomes lower when moisture shortage occurs: 

AGTW = GTW * RED 
RED = AFGEN (REDTB, SWAT/SWATM) 
FUNCTION REDTB = (0., 0.), (0.04, 0.), (0.06,1.). (l.,l.) 
PARAM SWATM = 150.E4 

The degree of reduction in growth (RED) is related to the relative content of 
available water in the soil, which equals the actual amount in the soil (SWAT) 
divided by its maximum value (SWATM). Both quantities have the units kg ha" l . 

SWAT = INTGRL (ISWAT, RAIN - TRANS) 
INCON ISWAT = 150.E4 
TRANS = AGTW* TRPCF 

For simplicity, soil evaporation is neglected in this model. In this very schemat
ized way some indications may be obtained about total water requirement for 
crops growing under different conditions, as well as about the necessity for 
supplemental irrigation. 

Exercise 55 
Add this water balance to the model SUCROS (Table 9, Section 3.1); replace 
GTW by AGTW in the Lines 107 and 108. Assume a rainfall of 15 mm each 
14th day. Reduce the integration interval to 1 d. 
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Because of the considerable discontinuity introduced by the sudden rainfall 
expressed on a daily basis, simulation must proceed with time steps of 1 d (Sec
tion 2.3). Usually this will not cause any inconvenience. However, if the supply 
of water is as regular as in Exercise 55, as for an irrigation scheme, one might 
want to use time steps of 7 d to reduce computer costs. Particularly with the in
tegration method RECT, a high rate of transpiration at the beginning of a time 
step may be extrapolated for too long, which leads to a negative soil water con
tent and other nonsensical results. A way around such a problem is to compare 
SWAT plus the RAIN during a period with a duration of DELT with the amount 
of water potentially transpired in the period (WREQ * DELT), and to set the 
actual amount of water transpired equal to the lowest of these. The actual rate 
of transpiration in kg ha"1 d~! is then equal to 

TRANS = AMIN1(WREQ*DELT, SWAT 4- RAIN * DELT)/DELT 

The potential growth in such a period is not computed from the relative soil 
water content, which changes too much in this period, but directly from the 
amount of water transpired: 

AGTW = GTW* (TRANS * DELT)/(WREQ * DELT) 

Exercise 56 
Make these changes in the program of Exercise 55. Assume a soil with initially 
50 mm water in the profile, irrigation of 25 mm every 14 days and DELT = 7. 

4.1 A Crop growth in the simulation model ARID CROP 

In this subsection a brief overview will be given of the growth part of the 
comprehensive model ARID CROP. The soil section is treated in more detail in 
Section 4.2. 

At the onset of the growing season seeds start to germinate after the first 
rains. Germination is assumed to be completed when the seeds, present in the 
upper 10 cm of the profile, are in a moist environment long enough to accu
mulate a heat sum of 150 degree-days (temperature above 0 °C). When the top 
soil compartments dry out before that moment, the seedlings die and a new 
wave of germination starts after rewetting only. When the required heat sum is 
accumulated, above ground and below ground dry matter is initialized with a 
predetermined initial biomass. 

After initialization, the growth rate of the canopy, that is the rate of increase 
in dry weight of structural plant material, is obtained from the actual rate of 
transpiration and the value of the transpiration coefficient (Subsection 4.1.2). 
The latter is calculated as the ratio between the potential growth rate of the 
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canopy and the potential rate of transpiration ('potential* is defined here with 
respect to the actual state of the vegetation, but disregarding effects of water 
shortage). The potential growth rate follows from the rate of gross C02 assimi
lation, calculated from the leaf area index, the level of irradiance and the photo
synthesis light-response curve of individual leaves (Subsection 3.2.4). Respira
tory losses include maintenance respiration as a function of total amount of 
material present and temperature, and growth respiration, expressed as a weight 
conversion efficiency (Subsection 3.3.4). The potential rate of transpiration of 
the canopy is determined by the evaporative demand of the atmosphere (Sub
section 3.2.5) and the leaf area index of the vegetation. The value of the transpi
ration coefficient is assumed to be independent of phenological stage of the 
canopy or moisture conditions in the soil. The latter assumption is an over
simplification, but one that has only a small effect on the ultimate dry matter pro
duction, since the amount of water transpired during drought periods is small. 
The actual rate of transpiration follows from the potential rate taking into ac
count the interactive effects of rooting depth and soil moisture status. 

During continuous testing of the model, using an increasing number of avail
able data sets, it became clear that prolonged water stress influences some of the 
basic plant properties. The relative transpiration deficit (RTRDEF) is therefore 
included as a measure of the degree of moisture stress that the plant experiences. 
It is defined as the difference between potential (PTRAN) and actual (ATRAN) 
transpiration, as a fraction of the former: 

RTRDEF = (PTRAN - ATRAN)/PTRAN 

Its value divided by a time coefficient (in this case 10 days) is integrated to yield 
the cumulative relative transpiration deficit (CTRDEF). The assumption that a 
mild water stress will not have any lasting effect on plant performance, has 
resulted in a formulation that accumulates the relative transpiration deficit only 
when it exceeds the, rather arbitrarily chosen, value of 0.4: 

CTRDEF = INTGRL (0., RARDEF - RDRDEF) 
RARDEF = INSW (RTRDEF - 0.4, 0., RTRDEF/10.)*(1. - CTRDEF) 

The value of the cumulative transpiration deficit is constrained between 0. and 
1. by multiplying its rate of accumulation by 1. minus its own value. 

Exercise 57 
What other formulation could have been chosen to limit the range of CTRDEF? 
What are the implications for the hypothesis on which these formulations are 
based? 

• f%t\ 



When after a drought moisture becomes available again, the effect of the pre
vious period of water shortage gradually disappears. This is described by an 
exponential extinction of the cumulative transpiration deficit (RDRDEF) at a 
relative rate of 0.1 d"1, when the value of the relative transpiration deficit is be
low 0.4. 

RDRDEF = INSW (RTRDEF - 0.4, CTRDEF/10., 0.) 

Qualitatively this approximation provides a satisfactory description of the pro
cesses involved. 

The light-use efficiency at low levels of irradiance and the C02 diffusion limited 
maximum value at light saturation of the photosynthesis light-response curve 
for individual leaves are both defined as state variables in ARID CROP. Both 
are initialized with the value valid for leaves grown under optimum conditions. 
There are indications that the C02 assimilation capacity of leaves, subjected to a 
prolonged period of water stress is impaired. This is taken into account by 
assuming that both the initial efficiency and the maximum level of C02 assimi
lation decrease when the cumulative relative transpiration deficit (CTRDEF) 
exceeds 0.5. The relative rate of decline of both state variables increases linearly 
from 0. when CTRDEF is below or equal to 0.5 to a maximum value of 0.05 
d"1 when the latter reaches 1. When the cause of the stress is removed, i.e. when 
the relative transpiration deficit drops below 0.4, the photosynthetic capacity re
covers at a rate proportional to the relative growth rate of the vegetation. Suffi
ciently prolonged favourable conditions may lead to complete restoration of the 
photosynthetic capacity of all remaining leaves. Such behaviour seems reason
able considering the fact that the newly formed leaves will have the maximum 
photosynthetic capacity and that in the surviving old leaves, impaired enzymes 
and membranes may be rebuilt. 

The total amount of structural plant material produced each day is partitioned 
between roots, leaf blades, non-leaf vegetative material (stems and leaf sheaths) 
and seeds. As explained in Subsection 3.4.2, the physiological principles govern
ing the morphogenetic characteristics of plants are only partially understood 
and it is difficult therefore to include morphogenesis in models at this stage. 
However for the type of models discussed here it is of prime importance to take 
the distribution pattern into account because it determines the division between 
below ground and above ground material, the latter being amenable to valida
tion. Moreover the dry matter produced is in most cases exploited by grazing. 
To take that into account, the possibility of selective removal of certain plant 
organs (leaves) must be present. 

The partitioning of dry matter between shoot and root is governed by a phenol
ogy-dependent distribution factor (Subsection 3.3.6) and is furthermore influ
enced by the moisture status of the vegetation. The functional balance between ' 
shoot and root (Subsections 3.3.6 and 3.4.3) implies that moisture stress in the ' 
plant leads to sub-optimal growth rates for the above-ground plant parts, which " 
results in increased growth of the roots and hence in a shift in the shoot/root ^ 
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ratio. The function presently applied in the model to restrict the share of the 
shoot in favour of the root in relation to the value of the relative transpiration 
deficit, is presented in Figure 46. 

The material available for growth of the above-ground plant parts is parti
tioned into seeds, leaves and non-leaf material. Growth of the seeds starts at 
flowering and a constant fraction of the available dry matter is henceforth al
located to the seeds. (Both the development stage at flowering and the fraction 
allotted to the seeds are estimates based on field observations, which is a simpli
fication especially when applied to a mixed sward. The differences in develop
ment pattern between species are often considerable, e.g. legumes and many 
other dicotyledons with indeterminate flowering as compared to grasses with 
determinate flowering.) The material remaining after the seeds have had their 
share is divided between leaf blades and other structures. The applied distribu
tion factor is again a function of the development stage of the vegetation. The 
general shape is such that progressively less of the available dry matter is invested 
in the formation of new leaves (cf. Figure 33 of Section 3.3). The actual values 
used in ARID CROP are at the moment subject of renewed investigations. 

Once plant tissue has been formed, it can lose its viability and die/In the 
model, two causes of death are considered. Upon completion of the plant's life 
cycle its vegetative structures stop functioning and dry up, either because of 
physiologically determined processes or due to translocation of vital elements 
from these structures to the developing seeds. Dying because of senescence also 
occurs at earlier stages of plant development, since the leaves have a limited life
span and the first leaves will disappear at an early stage. This phenomenon 
could be taken into account if the developing leaves were kept in age classes. 
Where that is not the case, as in the present model, application of a relative 
death rate to the actual leaf mass present at any moment will overestimate senes
cence in the early stages. It has been assumed therefore that until the onset of 
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seed-fill leaf death from senescence is negligible. From then on, leaves die at a 
relative rate of 0.005 d~* initially, a value that increases to a maximum of 0.1 
d"1, attained at maturity (cf. Subsection 3.1.2). These values describe fairly 
realistically the situation in the field, where towards maturity the vegetation 
dries up in about a fortnight, even when soil moisture is still available. 

A second cause of death, especially important in the present context, is insuf
ficient moisture in the soil. In the present formulation of the model, death 
under the influence of moisture stress is governed by the combined effect of the 
moisture status in the soil and the evaporative demand of the atmosphere. Espe
cially during periods, characterized by high temperatures and low humidity (re
ferred to in Israel as 'chamsin') the vegetation visibly deteriorates, even when 
soil moisture is well above wilting point. Evidently a situation develops, where 
even complete closure of the stomata does not prevent dehydration of plant tis
sue and subsequent death. It is assumed now that the rate of dying due to water 
shortage is proportional to the difference between the actual daily transpiration 
rate and the potential water loss through cuticular transpiration. The time coef
ficient for dying is set at 5 days, reflecting the considerable buffering capacity of 
the plant and the heterogeneity of the soil. The relative death rate is applied to 
both the leaf blades and to the non-leaf material, of which, in reality, the leaf 
sheaths will be much sooner affected than the stem proper. The result of this 
description is that appreciable death of leaves only takes place when the soil has 
dried out till permanent wilting point, except in situations where actual transpi
ration rates fall far short of the evaporative demand. 

4.1.5 Evaluation of ARID CROP 

Since the proof of the pudding is in the eating, the degree to which the model' 
represents reality must be judged by comparison of its behaviour against that of 
the real world system. For this purpose it is of prime importance to have at 
one's disposal a number of data sets collected completely independently from 
the development of the model. In practice, however, the situation is often such 
that data collection and model development proceed in parallel, done by the 
same person or group. That fact introduces the danger of strong interactions be-' 
tween data collection and model development, and consequently the use of the 
model as a sophisticated curve-fitting method (cf. Subsection 1.3.6). Such be-' 
haviour is especially obvious when only one data set is available. In our situa
tion we have at least the advantage that a relatively large number of years, each 
one with its own specific environmental conditions, is available to test the model. 
These data sets were collected in the northern Negev desert of Israel, a semi-arid 
environment with an average annual rainfall of 250 mm. The vegetation consists 
of a mixture of annual species, typical of abandoned crop land (van Keulen, 
1975). 

The results of two reasonably representative years are presented here in Fig
ures 47 and 48, a more complete validation has been described by van Keulen et 
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al. (1981). The 1972/1973 growing season was a 'wet' year with high rainfall, 
favourably distributed over the growing season, whereas 1975/1976 was a year 
of prolonged drought, sufficiently severe to create stress conditions for the 
vegetation. 

The measured and simulated growth curves for 1972/1973 (Figure 47a) are in 
excellent agreement for most of the growing season, except for a burst of growth 
towards the end of the growing period. The simulated and measured values of 
soil moisture in the rooting zone (Figure 47b) are also in close agreement. 

In Figure 48a the measured and simulated course of dry matter production is 
given for the 1975/1976 growing season. Also for this season, the results of the 
model are in close agreement with the measured values. The present description 
of the influence of moisture stress on growth and development seems to be satis
factory, but needs further confirmation. Data on the moisture balance are given 
in Figure 48b. Only small changes occur over the growing season and there is a 
tendency for the simulated values to be lower than the measured ones, but the 
deviations are within the error bound set by the accuracy of the moisture sam
pling technique used. 

The results presented here indicate that the model performs reasonably well in 
two growing seasons with strongly contrasting environmental conditions. 
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Figure 47a. Comparison between measured (•) and simulated (x) dry matter accumula
tion of natural pasture in Migda (Israel) 1972/1973. 
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Figure 47b. Comparison between measured (*) and simulated (•) total soil moisture un
der natural pasture in Migda (Israel) 1972/1973. 
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Figure 48a. Comparison between measured (•) and simulated (x) dry matter accumula
tion of natural pasture in Migda (Israel) 1975/1976. 
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Figure 48b. Comparison between measured (*) and simulated (•) total soil moisture 
under natural pasture in Migda (Israel) 1975/1976. 

4.1.6 Major problem areas in the model 

Although the performance of the model is often realistic when compared to 
real-world behaviour, a number of weak points are known to exist. Most of these 
points are related to plant physiological questions. Some of them are briefly dis
cussed here: 
- The amount of dry matter present at the completion of the germination stage 
depends on the number of seedlings of the various species that can establish 
themselves. That number not only depends on the conditions during the germi
nation process, such as the length of the wet period, temperature, etc., but is co-
determined by the composition and the quality of the seed stock present in the 
soil. It is, at the moment, virtually impossible to determine the quantity of seeds 
present and it is even less clear how their viability should be appraised. The pro
cess of germination itself is complex, and although our insight into the various 
parameters influencing it is increasing, it is not yet possible to include that 
knowledge in a model as the one presented here. Prediction of the initial bio-
mass therefore remains a major difficulty that needs attention. The best alterna
tive at the moment is to measure biomass early in the growing season and adjust 
the initial value accordingly. 
- The influence of prolonged moisture shortage on assimilation, partitioning 
of dry matter and dying of the tissue in ARID CROP is based on intelligent 
guesses. Much more experimental work is needed, both to determine these rela
tions under controlled conditions and to collect data in the field that can serve 
for validation of the model results. 
- Although the influence of moisture shortage on production is fairly well de
scribed, its effect on plant survival is largely unknown. What happens in the 
transition zone between the end of a positive carbon balance and the complete 
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disappearance of the vegetation has not been investigated in enough detail. 
- Crop morphogenesis is by no means understood and the functions now 
governing the distribution of dry matter among the various plant organs are 
speculative. More research into quantitative aspects of leaf formation and the 
effects of environmental factors on the process are needed. 
- Phenological development of the vegetation is also incompletely understood. 
In most cases the present description, in which the development rate is governed 
by temperature, satisfactorily predicts the behaviour of the canopy. However, 
in a subsequent season, where germination was very late - towards the end of 
December - temperature only proved to be inadequate to predict development. 
Apparently day length also plays a role then (cf. Subsection 3.3.2), as in many 
species found in the Sahelian region. Due to lack of observations these effects 
are still difficult to quantify. 
- A point which needs attention is the fate of the root system under conditions 
where above ground material dies of water shortage. It seems reasonable to 
assume that the plants will hang on to the roots as long as possible, when water 
becomes scarce. However, when whole tops die, so will their roots. Since this 
process is not taken into account in the model, a situation may develop where, 
under severe stress, virtually all the above ground material is dead, yet a sub
stantial root system is maintained. 

4. L 7 Application of the model ARID CROP in a summer rainfall region 

The model ARID CROP, developed for the conditions prevailing in the 
northern Negev desert, was subsequently applied in the Sahel (Penning de Vries 
& Djiteye, 1982). Apart from the introduction of the appropriate parameter 
values and driving variables for climate and soil conditions, a few modifications 
of the model were necessary to obtain a realistic behaviour. For changes in the 
soil water balance, see Subsection 4.2.3. 

Description of the germination process along the lines applied for the winter 
annuals in the Northern Negev was not applicable to the conditions in the Sahel, 
where it rains in the summer. Therefore the start of the growing season is empi
rically defined as the moment that a certain amount of biomass is present in the 
field. 

A summary submodel in ARID CROP accounts for the reduction of canopy 
transpiration as a result of stomatal closure of leaves at low light levels down in 
the canopy. This summary model in the form of a set of tables in ARID CROP 
is computed with BACROS (Subsection 3.3.8) for the appropriate conditions 
(van Keulen, 1975). It turned out that these values are much more invariable in 
the warm Sahel area than in the cool Mediterranean region of the Negev, and 
they could be replaced by the constant of 0.7 for the whole growing season. 

Small changes are also introduced with respect to the quantification of the 
respiratory processes described by van Keulen (1975): the conversion efficiency 
is changed to 0.70, whereas a maintenance respiration requirement of 0.015 kg 
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kg ~ * d ~ * is applied, since the high levels of irradiance permit a greater contribu
tion directly from assimilatory processes. 

The Sahelian species are in general quite sensitive to day length. Phenological 
development is therefore governed by both temperature and day length (see also 
Subsection 3.3.2). Semi-empirical formulations, based on extensive experimen
tation (de Ridder, 1979) are introduced in the model. 

Some of the results obtained for the Sahelian region are presented in Section 
4.2. 

4.1.8 Concluding remarks 

The results presented in this paper and elsewhere (van Keulen et al., 1981) 
show that ARID CROP performs well in relatively wet years, but most pro
blems arise in the relatively dry growing seasons, thus the model does not quite 
live up to its name. This points to the fact that the survival and recovery re
sponse of annual plants subjected to moisture stress for a prolonged period can
not be explained without reference to the effects of that stress on morphological 
development, photosynthetic performance and phenology of the species in
volved. That in itself is, however, in a way a major justification for the devel
opment of the model, since it clearly points to the limits of the concepts under
lying the model, in explaining the behaviour of arid production systems. 

The model in its general outline seems applicable for different ecological con
ditions, provided that water is the major production determining factor. How
ever, certain adaptations, related to specific plant properties, either physiologi
cal or phenological may be necessary. Lack of sufficient understanding ofsome 
of the basic principles, which leads to the application of partly descriptive rather 
than explanatory formulations, is the major reason for this requirement. 
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