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Abstract 

Our objective was to use data mining to develop and validate a detection model for clinical 

mastitis (CM) using sensor data collected at nine Dutch dairy herds milking automatically. 

Sensor data was available for almost 3.5 million quarter milkings (QM) from 1,109 cows; 348 

QM with CM were observed by the participating farmers.  

Data was divided into a training and a test set, stratified at the cow level. For model building, 

QM with CM (n = 243) from the training set were taken together with 24,987 QM with a 

somatic cell count less than 200,000 cells/ml on a milk production test day from cows that 

never exceeded this threshold during all test days within parity and that were never visually 

checked by the farmers for CM. The model used decision tree (DT) induction as base 

classifier, with and without bagging and boosting techniques. Both bagging and boosting 

techniques work by building models using the base classifier on various samples of the 

training data. For validation two test sets were created. The first included 105 QM with CM 

and 13,313 QM without CM, using the same selection as for the training. This test set 

(Test_GreyOut) excluded the large pool of QM that have a less clear mastitis status. The 

second test set included the same 105 QM with CM but this dataset included QM with a less 

clear mastitis status (Test_GreyIn): for negative examples, those QM that were not scored as 

having CM by the farmers were labeled as negative for CM. From this large sample (n = 

1,146,544), a random sample of 50,000 QM was selected. Sensitivity levels were computed at 

fixed SP levels, and the transformed partial area under the curve (pAUC) was calculated for 

specificity values of 97% or more to evaluate performance. To visualize performance of the 

detection models for specificity values of 97% or more, receiver operating characteristic 

(ROC) curves were constructed. 

When using the Test_GreyOut set, the transformed pAUC increased from 0.713 when using 

the base classifier alone, to 0.787 when combined with boosting, to 0.800 when combined 

with bagging. At a specificity of 99%, sensitivity was 43.5% for the base classifier, 60.0% 

when combined with boosting and 61% when combined with bagging. When testing on the 

TestInGrey set, pAUC values were lower, but still increased when bagging and boosting 

techniques were used: values increased from 0.643 when using the base classifier alone, to 

0.677 when combined with boosting, to 0.702 when combined with bagging. At a specificity 

of 99%, sensitivity was 24.7% for the base classifier, 30.5% when combined with boosting 

and 35.2% when combined with bagging. These results were obtained using very narrow 

time-windows. It is therefore concluded that models developed by DT induction are 

promising for future implementation. 
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Introduction 

Detection of clinical mastitis (CM) is always important, independent of whether cows are 

being milked in a conventional milking parlour, or by an automatic milking (AM) system. 

Detection is important to maintain an acceptable standard of milk quality, to initiate an 

antibiotic treatment when necessary, and to safe-guard the welfare of the herd. As there are no 

milkers present during the milking process with AM, these systems use several in-line sensors 

that measure different milk and milking features that can be used to detect cows with CM. 
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These sensor data are then used by CM detection models to generate mastitis alert lists, 

reporting those cows and quarters likely to have mastitis. It is up to the famers themselves to 

check the reported cows and quarters visually for CM at a later stage. It seems that farmers 

using an AM system are able to detect severe cases of CM, as their bulk tank somatic cell 

count (SCC) levels are comparable to that of conventional milkers (Van der Vorst et al., 

2002). However, there is room for improvement in sensitivity (SE) of current detection 

models. In addition, famers working with AM systems experience a large number of alerts on 

the mastitis alert lists that turn out to be false, indicating that specificity (SP) levels need 

improvement as well.  

 One of the major difficulties of developing CM detection models is the fact that sensor 

data itself is noisy and often incomplete. In addition, the low prevalence of CM results in 

highly imbalanced data, which makes modelling even more difficult. Data mining is a 

technique which tries to discover new knowledge in large amounts of data. The technique is 

often used to improve decision making processes (Mitchell, 1999). Decision-tree (DT) 

induction is a commonly used data mining technique (Quinlan, 1986), often used for 

classification problems, e.g., whether to grant a credit loan or not. The decision whether a 

quarter or cow has CM or not is a classification problem as well, and a previous study 

conducted by Kamphuis et al. (2009) already concluded that DT induction showed potential 

for developing automated detection models for CM using sensor data from AM systems. 

Models developed in that specific study showed performances that were comparable with 

models currently used by AM systems. In that study we suggested to improve performances 

by including more CM cases, by using a stronger selection for negative examples for CM 

cases for the training process, and by using other data mining techniques that are believed to 

improve detection performances, like bagging and boosting techniques.  

 The objective of this current study was to use DT induction to develop and to validate 

a detection model for CM using sensor data collected during AM that can be used for 

practical implementation in the nearby future.  

 

Materials and Methods 

Data collection and preparation 

Data used in the current study was collected at nine Dutch dairy farms using twelve AM 

systems (Lely Industries N.V., Maassluis, the Netherlands). Farmers were selected for 

participation based on the primary criterion that they were dealing with mastitis seriously. As 

a criterion of this, we expected from the farmers that they used the mastitis alert list on a daily 

basis in a consistent way to select cows being suspicious of CM. In addition, they had to use 

AM for at least one year. Data collection started at two farms in December 2006. From 

October 2007 onwards, data was collected at all farms. Data collection continued until March 

2009. 

 A separate remote computer was installed at each AM system to collect raw sensor 

data. This raw data included average electrical conductivity (EC), red, green, and blue values 

and estimated yield for each quarter milking (QM), as well as EC, red, green, and blue values 

measured for each 100 ml of quarter milk produced. Date and time was recorded when a cow 

entered the AM system, when teat cups were attached and when milk flow started. Quarter 

milkings where the AM system failed to connect the teat cup, those with missing data for teat 

cup attachment and 100ml measurements, and those without data at the QM level (sensor 

measurement averages, start milk flow, teat cup attachment, etc) were deleted from the data 

set. For the remaining QM, recorded 100ml values for EC, red, green, and blue outside the 

mean +/- four times the standard deviation were regarded as likely data errors and were set at 

missing. 
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 A protocol was designed to standardise the visual assessment of the actual mastitis 

status of the quarters that were checked visually by the farmers, although it was left to farmers 

themselves to decide which cows and quarters were suspicious enough to check. Their 

suspicion could be based on the mastitis alert lists, but also on other information, like the 

somatic cell count determined during the monthly milk production test days or the presence of 

clots on the milk filter. Although this resulted in slightly different approaches in which 

quarters were checked per farm (e.g., checking only the quarter mentioned on the mastitis 

alert list, or checking all four quarters of a particular cow when at least one was mentioned on 

the alert list), quarters that were checked visually were checked uniformly. Farmers were 

instructed to visually score the 5th and 6th squirts of milk of all quarters they checked using a 

clean black paddle as commonly used for the Californian Mastitis Test (without using the 

reagent normally used when applying this test). When visually normal, the milk was scored 

with 1. When abnormal, the milk could be scored a 2) watery milk, 3) flakes, 4) clots, 5) 

serum like milk, or 6) milk with blood. Farmers were instructed to record the cow 

identification number, quarter, date and time of scoring, and the score assigned to the quarter. 

Every four to six weeks, farmers were visited to collect data from the remote computer and 

the scoring forms. During these visits, the scoring forms were discussed with the farmer to 

ensure a proper use of the protocol. Each visual quarter milk assessment was linked with the 

sensor data of the most recent milking recorded for that same quarter by the remote computer, 

within a 24 hour time window prior to the visual assessment time. 

 Sensor data were combined with data from SCC determination on the milk production 

test days. The SCC values of a specific cow are combined with all QM recorded by the AM 

system at a specific test day.  

 Descriptive variables at the QM level were derived from the 100ml average sensor 

data as described in Kamphuis et al. (2008): for four sensors (EC, red, green, blue) and two 

derived measurement patterns (an average value of the red, green, and blue values and milk 

flow), three time frames, five comparison types, and twelve pattern descriptors were 

developed. As the remote computers logged additional milk and milking features, three 

additional measurement patterns (milk flow delay, dead milking time, and milk production) 

were derived, involving one single value for the whole QM. For these three measurement 

patterns, the same five comparison types were used to define descriptive variables. A total of 

1,065 descriptive variables were used as independent input variables for the CM detection 

model. 

 

Model development and validation 

Sensor data was available from 1,109 cows and almost 3.5 million QM. In total, 1,593 QM 

were visually checked by the farmers. QM that received a score from 2 through 5 were 

considered as gold standard positive (n = 348). Data was divided into a training set 

(containing 2/3 of all data) and a test set, stratified at the cow level, so cows in the training set 

could not be present in the test set as well and vice versa. The stratification was done in such a 

way that the number of CM cases in the training set was also about 2/3 of all available CM 

cases. 

 The original training set included slightly more than 2.3 million QM from 738 cows. 

From these QM, 1,034 QM were checked by the farmer of which 243 QM had CM. It was 

decided to train the models on clear examples of QM with or without CM. Only those QM 

from cows that never exceeded a SCC level of 200,000cells/ml on the milk production test 

days within lactation, and in addition were never visually checked by the farmers (over 

lactations) were selected at first. From these cows, only those QM that were combined with 

information from the milk production test days, including SCC information, were labelled as 

gold standard negative QM. By doing so, a large number of QM which we were not able to 
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classify as positive or negative for CM – further referred to as the grey area - were excluded 

for training. The final training set that was used for model development included a total of 

25,230 QM from 430 cows, of which 243 were gold standard positive and 24,987 were gold 

standard negative.  

 Decision-tree (DT) induction was used for model development. A DT is a graphic 

representation of a divide-and-conquer approach of a classification problem and consists of 

nodes at which a variable is tested. The construction of a DT can be expressed recursively: a 

variable is selected to split the data set at the first node (root node). For each possible outcome 

of the test involved at the node, a branch is made ending in a daughter node. As a next step, 

the process can be repeated for each branch, using only those records that actually reach the 

branch. If at any time all records at a node have the same classification – that is, a leaf node is 

created – that part of the tree stops developing (Witten and Frank, 2005). In a previous study 

DT induction was already implemented to develop an automated detection model for CM 

(Kamphuis et al., 2009), using the J48 algorithm as implemented in WEKA (Witten and 

Frank, 2005). The same algorithm was used in this current study, where it was combined with 

the data mining techniques of bagging and boosting to study their effect on detection 

performance. Both boosting and bagging are techniques that can be used with any base 

classifier, like the J48 algorithm, and both techniques operate by selectively resampling from 

the training data set to generate derived training sets to which the base classifier is applied 

(Webb, 2000). The differences between bagging and boosting can be summarized as follows: 

bagging uses resampling of records in each iteration t, it uses the uniform distribution over the 

records in the training set and in forming the final output or classification, it gives equal 

weight to each of the individual models build at each iteration t. On the contrary, boosting 

uses reweighting of records in each iteration t, it modifies the distribution over records in the 

training set, and finally, in forming the final output, boosting gives a ‘good’ model, with less 

errors, more weight in the final classification (Freund and Schapire, 1996). In this study, the 

J48 algorithm with default settings was used as base classifier. This base classifier was used 

alone or in combination with bagging or boosting. The number of iterations for bagging and 

boosting was set at 10. For boosting the Adaboost.M1 algorithm was used (Witten and Frank, 

2005).  

 The software used for model building and validation showed limitations in the amount 

of data that could be analysed. It could not cope with the large number of records and all the 

1,065 independent variables. In order to develop a model with all the available 25,230 QM in 

the training set, it was decided to decrease the number of independent variables in a first step. 

This was done by building 10 DT models, each developed by using the 243 QM with CM 

from the training set and one out of 10 random samples of size 3,000 from the pool of 24,987 

gold standard negatives in the training set. These 10 models used a total of 224 different 

independent variables. These variables were selected from the training set before the J48 

algorithm, with or without bagging and boosting, was used using all the 25,230 QM 

mentioned above. 

 The original test set, including approximately 1/3 of all data, was used for validation. 

It included over 1.1 million QM from 371 cows that did not appear in the training set. A total 

of 559 QM were visually checked by the farmers of which 105 were recorded as having CM. 

To validate the developed models, two test sets were created. For the first test set 

(Test_GreyOut), the same selection that was used in the training set to define QM negative 

for CM was applied. This test set included the 105 gold standard positive QM and 13,418 

gold standard negative QM from 217 cows. The second test set (Test_GreyIn) included the 

same 105 gold standard positive QM. However, this time the grey area of QM was included 

as well: all QM that were not labelled as gold standard positive were labelled as gold standard 
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negatives. From all these QM, a random selection of 50,000 QM was made. This second test 

set included 50,105 records from 366 cows.  

 To evaluate model performance on both test sets, SE and SP of the models when 

applied on the test sets were calculated. Receiver operating characteristic (ROC) curves were 

constructed to visualise the performance of the developed DT models (Detilleux et al., 1999; 

Witten and Frank, 2005). ROC-curves are graphic representations of the TP rate (or SN) 

versus the FP rate (or 1-SP) over the whole range of possible threshold values (Detilleux et 

al., 1999). To summarise the ROC-curves into a single quantity, the partial AUC was 

computed, which is restricted to just a relevant portion of the total AUC (Detilleux et al., 

1999). In this study, the partial AUC is calculated using the trapezoidal rule for a false 

positive rate ranging from 0.0 to 0.03 (or SP values of 97% or higher). In order to be able to 

use the same interpretation as the total AUC, the partial AUC values were transformed to the 

same scale (McClish, 1989).  

 Data preparation was done using SAS (version 9.1, SAS Institute Inc., Cary, NC). 

Development of several DT models with probability estimates for each quarter milking for 

having CM and the computation of SN and SP were done in WEKA version 3.4.8 (Witten and 

Frank, 2005). Data produced in WEKA were used in SAS to compute transformed partial 

AUC values and in S+ (version 8.1, TIBCO Sportfire Software Inc.) to construct ROC-curves. 

 

Results  
Figure 1 plots the ROC-curves of the DT models validated on the Test_GreyOut set. The 

curves are shown for a maximum false positive fraction of 0.03  – that is for SP values of 97% 

or higher. When the J48 is combined with bagging or boosting, it is clear that there is an 

improved detection performance: both curves lie above the curve of the DT model using the 

J48 alone during the whole false positive rate range of interest. The figure looked similar (not 

shown) when models were validated on the Test_GreyIn set: the DT models showed similar 

curves, and the bagging and boosting models were higher on the y-axis than the model using 

J48 alone during the whole range of interest. However, all curves had lower true positive rate 

values, or in other words, lower SE values. In addition, the differences between the curves 

were less pronounced.   
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Figure 1. Receiver operating characteristic curves from three detection models validated on a 

test set excluding the grey area (J48 = ─○─); J48 with boosting = ─●─; J48 with bagging = 

───), for a false positive rate range of 0-0.03 ( or Specificity levels of 97% or higher). 
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 Table 1 shows the SE and SP of the different DT models when validated on the two 

test sets. These values are based on a cut-off value of 0.50 for the probability estimate for 

having CM. SE values range from 28.6 to 31.4% and are similar for both test sets. This could 

be expected, as both test sets contain the same gold standard positive QM. SP values range 

from 98.6 to 99.7%, where SP for the Test_GreyIn set are all lower than those for the 

Test_GreyOut. For both test sets, SE and SP levels were higher when the J48 base classifier 

was combined with bagging and boosting techniques. At a SP level of 97%, the SE is 78% 

when the J48 is combined with bagging and when the grey area of QM is excluded for 

validation. When the grey area is included, SE decreased to 61%. SE levels decrease 

considerably when a SP level of 99% is chosen: the SE is 24.7% when the J48 is used alone 

and 35.2% when the J48 is combined with bagging, and when the grey area of QM is included 

for validation. Table 1 also summarizes the transformed pAUC values that ranged from 0.643 

to 0.800. All pAUC values were higher for the Test_GreyOut set. Although there are 

differences in the pAUC values between models when tested on the Test_GreyIn set, the 

differences are larger when the models are tested on the Test_GreyOut set.  

 

Table 1: Sensitivity, Specificity, and transformed partial area under the curve (pAUC) for the 

three clinical mastitis detection models (J48 alone, J48 combined with Boosting, and J48 

combined with Bagging) when validated on two different test sets (one excluding the grey 

area (Test_GreyOut) and the other including the grey area (Test_GreyIn)), as well as the 

Sensitivity of the three clinical mastitis detection models when Specificity was fixed (two 

levels: 97% and 99%) 

 Test_GreyOut  Test_GreyIn 

 J48 J48 –  

Boosting 

J48 – 

Bagging 

 J48 J48 –  

Boosting 

J48 – 

Bagging 

        Sensitivity (%) 28.6 32.4 31.4  28.6 32.4 31.4 

        Specificity (%) 99.5 99.8 99.7  98.6 98.9 99.1 

        pAUC
* 

0.713 0.787 0.800  0.643 0.677 0.702 

        Sensitivity (%) 

at a Specificity 

level of 97%
 

60.0 69.5 78.0  47 54.4 61.0 

Sensitivity (%) 

at a Specificity 

level of 99%
 

43.5 60.0 61.0  24.7 30.5 35.2 

        *
 Transformed partial AUC values are computed for specificity levels of 97% or higher; 

 

Discussion  

The current study used DT induction, with and without bagging and boosting techniques, to 

develop and validate CM detection models using on-farm collected (sensor) data. One of the 

major concerns in any model-developing study is the gold standard definition, and discussions 

about the true gold standard are still lively (Mein and Rasmussen, 2008). The ideal situation 

would be a truly independent observation of all CM cases – that is, data used for gold 

standard definitions of CM is independent of data used by the model – and that all QM were 

checked for CM. However, this approach would be far too expensive and time consuming 

because, when applied to this study, it would take continuous monitoring of nine herds for 

two years. Therefore, the current study collected data on CM cases using a more practical 

approach, which are CM cases as observed by farmers themselves. Farmers were asked to 

record observations of each QM they visually checked by using the scoring protocol, but it 

was left to the farmers themselves to decide which quarters were suspicious enough to check.  
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This suspicion could be based on the mastitis alert lists, but as 76% of all the 1,593 visually 

checked QM did not receive an attention by the AM system (result not shown), there is a 

strong indication that farmers also used other sources (e.g., clots on the filter) to detect CM 

cases. Therefore, it seems fair to conclude that the gold standard used for CM definitions, is 

largely independent from data used for model development.  

 Bagging and boosting are both techniques that have been used in the field of data 

mining to improve detection performance. Quinlan (1996) reported results of applying both 

techniques to a DT algorithm and concluded that both approaches substantially improved the 

predictive accuracy. The reported improvement was subscribed to the fact that error rates of 

boosted and bagged classifiers are lower than those of single classifiers. This explanation was 

also provided for the boosting algorithm by Freund and Schapire (1996). The improved 

predictive accuracy of bagging and boosting is confirmed by the pAUC values in the current 

study as well. The transformed pAUC values for bagging and boosting were higher than when 

the base classifier J48 was used alone, independent whether the models were validated on data 

including or excluding the grey area of QM. Models were also robust as a second random 

sample of 50,000 QM (including the grey area) that were labelled as negative for CM was 

used for validation, and detection performances of the DT models were similar.  

 Earlier studies also found high levels of SE and SP for mastitis detection models, but 

results were based on wide time windows in which an alert by the model was considered as 

true positive (Maatje et al., 1992), or results were based on a highly selected validation set 

including only clear examples of cows being healthy or having CM. For example, a study by 

Friggens et al. (2007) tested a LDH-based CM detection model on a dataset including less 

than 1% of the full dataset, with a strict selection of negative cases of CM and only severe 

cases with CM that required veterinary treatments. Using wide time windows will result in 

models showing a good detection performance (Sherlock et al., 2008), but at the same time 

these models will lose their goal as in practice an automatic CM detection model should 

generate an alert within a very limited period of time before or only at the milking when CM 

occurs. Developing models with only clear examples of healthy and diseased animals will 

also result in methods that will only be able to classify data that include similar clear 

examples. Unfortunately, it is a fact that only a small part of real field data exists of these 

clear examples. The effect of including the large amount of less clear examples in a validation 

set becomes very clear in the current study. Whereas the J48 combined with bagging showed 

a SE of 78% when validated on the Test_GreyOut set, the SE decreased considerably to 61% 

when the model was validated on the Test_GreyIn set, indicating that the large grey area, 

where much of the field data can be found, is just not easily classified by the detection model. 

Still, the validation on the Test_GreyIn set shows higher SE levels compared to results found 

in a study by Mollenhorst and Hogeveen (2008). This latter study was conducted to evaluate 

detection performances of models currently available at AM systems. They showed a SE level 

of 36.8% at a SP level of 97.9%. The DT combined with the bagging technique in the present 

current study reached a SE of 49.5% at the same SP level when validated on the Test_GreyIn 

set, and this is an improvement. In addition, a SP level of 99% has been suggested by Mein et 

al. (2008) as a level that should be met by detection models when applied in practice. In the 

current study, the DT combined with bagging showed an SE of 35.2% when tested on the 

Test_GreyIn set and one could argue that this model still not over performing. However, it 

remains a matter of discussion whether this SE level will be perceived as being too low by 

farmers when it is applied in practice. After all, when this 35.2% of detected QM with CM 

includes a high proportion of the more severe cases of CM (e.g., milk with clots or serum-like 

milk in the current study), then two major demands of an automated CM detection model are 

fulfilled with this DT model. That is, at least the more severe cases of CM are detected using 
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a very narrow time window, while at the same time, the number of false positive alerts is at a 

level that has been suggested as being of practical use.  

 

Conclusion  
The results found in this study show that DT models do have difficulties when validated on a 

test set that includes the grey area of less clear examples of CM, of which field data is largely 

composed. Although performance estimates decreased, when compared to results of a test set 

excluding the grey area, results of the test set including the grey area reflect the performance 

when the model would be applied in the real world. Still, DT induction seems to be able to 

reach higher SE levels than models currently available on AM systems. As these results were 

obtained using very narrow time-windows in which an alert by the model was accounted for 

as positive, it is concluded that models developed by DT induction are promising for future 

implementation. 
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