
A i • mm

Appendix 5

A.5 CSMP, Continuous System Modeling Program

H.H. van Laar and P.A. Leffelaar

A.5.1 Introduction
CSMP stands for Continuous System Modeling Program, version III. It has

been extensively described in the Program Reference Manual by IBM
(SH19-7001-3, 1975). CSMP is a specific dynamic simulation language used to
integrate rate equations to obtain the state of the model as a function of time.
CSMP is a non-procedural language, which means that the user can write
programs in a conceptual order and CSMP will sort the statements in a computa­
tional order. An important feature in CSMP is the availability of numerical
integration routines which are easy to use. Moreover, CSMP automatically
keeps track of time in dynamic simulation. CSMP provides special functions (e.g.
interpolation), and as its source program is written in FORTRAN (FORmula
TRANslation), the researcher may use FORTRAN statements as well as all
FORTRAN library functions in more advanced models. Tabular and/or graphi­
cal output can be obtained by just listing the variables on a special label.

A.5.2 The structure of the model

One starts a program with a TITLE label containing a short identification of
the program. In a CSMP program, 3 segments can be distinguished: INITIAL,

TITLE CSMP STRUCTURE

INITIAL

NOSORT

SORT

sorting

no sorting

sorting

DYNAMIC

NOSORT

SORT

sorting

no sorting

sorting

TERMINAL
no sorting

END
STOP
ENDJOB

Figure A. 1. General layout of a CSMP program. Sorting: sorted by CSMP. No sorting:
must be sorted by the user.

365

DYNAMIC and TERMINAL. These statements (labels) indicate that the com­
putations must be performed before, during and after a simulation run, respect­
ively (Figure A.l). If one is using these segments, then each segment label closes
the former segment. To close the entire program, one must use the statements
END, STOP and ENDJOB, respectively, each on a separate line, and ENDJOB
must start in the first column.

In the INITIAL segment, computations are executed only once per run. The
use of the segment is optional. The INITIAL segment can be used for computing
the results which are used as input data for the dynamic section of the program.
All initial conditions and parameters can be given values in this segment. The
segment where the simulation takes place is the DYNAMIC. This segment is
normally the most extensive one in a model. It contains the complete description
of the model dynamics, together with any other computation required during the
simulation. For some models, the program consists of just the DYNAMIC
segment. The segment may be declared explicitly by the label DYNAMIC, but if
there is no INITIAL or TERMINAL segment, the DYNAMIC label can be
omitted. The TERMINAL segment can be used for computations required at the
end of the run, after completing the simulation. This can be a calculation based
on the final values of one or more variables. As in the INITIAL segment, the
computations are executed only once. Also the TERMINAL segment is op­
tional.

CSMP is provided with a sorting algorithm to free the user from the task of
correctly sequencing the statements. The user can then focus his attention on
defining the problem, and can put the statements in a conceptual order. The
statements will be put in computational order during the translation phase, and
are then written into UPDATE, a subroutine created by the CSMP compiler
which contains the structure of the model with sorted FORTRAN statements.
All statements in the INITIAL and DYNAMIC segments are placed in computa­
tional order. The statements in the TERMINAL segment, however, must be
sorted by the user.

It is sometimes disirable for statements in the program not to be sorted by the
compiler, for instance where branching conditions are desired, or a decision must
be made. In that case the statements, written either in CSMP or FORTRAN,
must stay in a fixed order. There are two ways in CSMP to avoid sorting the
statements. The simplest method is to divide the INITIAL and DYNAMIC
segments into sections by means of the labels NOSORT, which prevents the
statements from being sorted, and SORT, which ends a NOSORT section. Thus,
the program will be split into individual blocks. The program blocks between the
NOSORT-SORT sections will now be sorted individually, and during the trans­
lation phase, statements from one SORT section cannot be moved to another
SORT section. Since this usually gives computational problems, it is recommen­
ded to write full sections in NOSORT or to use PROCEDURES. FORTRAN
statements must always be sequenced in computational order and can be defined
only in a non-sortable section.

366

A more elegant method of defining sections which are not sorted by the CSMP
compiler, but which may be sorted as a whole, is to define PROCEDURES. The
PROCEDURE is treated as an entity. It is sorted as a functional block on the
basis of input and output names given by the user when defining the PRO­
CEDURE. These names correspond with those of the statements in the func­
tional block. A PROCEDURE is defined as:

PROCEDURE OUTPl,OUTP2 = NAME(INPUTl,INPUT2)
CSMP and/or FORTRAN
statements
sorted by the user

ENDPROCEDURE

sorted by
CSMP

The statements describing the PROCEDURE are placed between the statements
labelled PROCEDURE and ENDPROCEDURE and are not sorted internally.
Variables defined within a PROCEDURE block and not appearing in the
definition, e.g. because they are not needed to sort the block, are not available for
data output by means of PRINT or OUTPUT (see also section 'Labels'). If these
variables are needed for output, they should be included as output names in the
PROCEDURE definition. A PROCEDURE is a block of sequenced statements
which is executed where defined. Contrary to PROCEDURES, SUBROU­
TINES can be called for more than once in a program.

SUBROUTINES are another way of structuring programs. SUBROUTINES
can be called from within the CSMP program, but are defined between the labels
STOP and ENDJOB. The simplest way to use SUBROUTINES will be dis­
cussed below. A SUBROUTINE is called for by the sortable statement:

OUTl,OUT2 = SUBNAM(INl,IN2,IN3) Equation (A.2)

where the variables on the left hand side of the equals-sign are the results of the
calculations performed in the SUBROUTINE named SUBNAM. (Note that
there must be at least two variables on the left hand side, otherwise the translator
accepts SUBNAM as a FUNCTION; for details see below.) The input variables
for these calculations are listed between brackets following the name of the
SUBROUTINE. The variable names, either referring to reals, integers or arrays,
serve different purposes: (1) they are used to sort the statement within the CSMP
program, as in the case of a PROCEDURE, (2) they attend to the communication
between the CSMP program and the SUBROUTINE. The CSMP compiler
interprets Equation A.2 as:

CALL SUBNAM(INl,IN2,IN3,OUTl,OUT2)

which is placed in UPDATE. Thus, the output variables are placed just after the
input variables without changing their sequence. Statements placed between
STOP and ENDJOB are not processed by the CSMP compiler. Thus SUBROU-

367

TINE definitions are directly placed into UPDATE, and the arguments in the
definition must agree with the call to the SUBROUTINE as generated by the
CSMP translator:

SUBROUTINE SUBNAM(INl,IN2,IN3,OUTl,OUT2)

The positions of the variable names in the call statement and in the definition of
the SUBROUTINE correspond to one another, but need not have the same
names. However, corresponding places in the list of variables must contain the
same type of variable.
All the usual FORTRAN rules apply to SUBROUTINES. Some important rules
are:
1. Statements begin in column 7 or higher; numbers of continuation labels must

be placed in the first 5 columns; column 6 is reserved to indicate whether the
line is a continuation of the preceding one by, for example, placing a dollar (S)
sign there.

2. Variables beginning with I, J, K, L, M or N are considered integer, while
others are considered real. This may be cumbersome, as in CSMP all
variables are considered real except those placed on the FIXED label. It is
good practice to apply this rule to FORTRAN as well by introducing the
statements:

IMPLICIT REAL(A-Z)
INTEGER...

directly after the line which defines the SUBROUTINE. The first statement
declares all variables beginning with A up to and including Z real; subse­
quently, the specific variables listed after the INTEGER label are declared
integer. The INTEGER label in FORTRAN is equivalent to the FIXED
label.in CSMP.

3. Array variables in SUBROUTINES need memory storage:
DIMENSION A(100),...

Here, 100 locations are reserved for the variable A. The DIMENSION label
in FORTRAN is equivalent to the STORAGE label in CSMP.

4. More than one RETURN statement may be used to return to the place in the
CSMP program where the SUBROUTINE was called. However, a SUB­
ROUTINE is always terminated by the statements:

RETURN
END

The general layout of a SUBROUTINE is shown in Figure A.2.

In the call of a SUBROUTINE in CSMP, at least two variables must be listed
on the left hand side of the equals-sign. If there is only one variable listed, the
CSMP compiler interprets the statement as a so-called function subroutine,
where the result of the calculation is returned to the calling program using the
name of the subroutine rather than the output variable. This implies also that
only a single variable can be output from a function subroutine, while often array

368

column
1234567

SUBROUTINE SUBNAM(NLOC,INl,IN2,IN3,INTB,OUTl,OUT2)
IMPLICIT REAL(A-Z)
INTEGER NLOC,....
DIMENSION....

OUT1 = AFGEN(NLOC,INTB,INl)

RETURN
END

Figure A.2. General layout of a SUBROUTINE.

results are needed, and that can only be achieved by arguments in subroutines.
The function subroutine is not discussed here, but when there is one output
variable in the subroutine, misinterpretation by the CSMP compiler is avoided
by including a dummy variable in the list of output variables. This dummy
variable must also be given in the definition.

Many CSMP functions may be used within SUBROUTINES, but specifically
excluded is the INTGRL function. The use of functions such as LIMIT, EXP and
SQRT is similar to their use in CSMP. When functions starting with I, J, K, L,
M or N are used (e.g. INSW or LIMIT, which are examples of function
subroutines) the name needs to be declared real either by:

REAL INSW, LIMIT

or implicitly as explained above. History functions require both past and present
values of the inputs to calculate their outputs. When history functions, e.g.
AFGEN or NLFGEN, are used in SUBROUTINES, storage locations must be
indicated. This is done in the CSMP program by:

HISTORY SUBNAM(5)

at the beginning of the program. The number '5' corresponds to the number of
storage locations for an AFGEN function, which is used in SUBROUTINE
SUBNAM. For the use of other functions, reference is made to the CSMP
manual. The function which is interpolated by AFGEN is transferred to the
SUBROUTINE by including its name in the list of input variables. The combina­
tion of the HISTORY label and the call for the SUBROUTINE SUBNAM:

OUTl,OUT2 = SUBNAM(INl,IN2,IN3,INTB)

where INTB is the function name, causes the generation of the following UP-

369

column
1234567

SUBROUTINE SUBNAM(INl,IN2,IN3,OUTl,OUT2)
IMPLICIT REAL(A-Z)
INTEGER
DIMENSION....

IF() RETURN

10 CONTINUE

RETURN
END

Figure A.3. General layout of a SUBROUTINE containing a history function.

DATE statement:

CALLSUBNAM(l,INl,IN2,IN3,INTB,OUTl,OUT2)

The first argument between brackets, e.g. 1, contains a number corresponding
with the first storage location assigned to the SUBROUTINE. The SUBROU­
TINE definition must agree with the call generated by the CSMP compiler. The
general layout of a SUBROUTINE containing an AFGEN function is shown in
Figure A.3. The integer variable NLOC (Figure A.3) takes the value assigned by
the CSMP compiler in the SUBROUTINE call in UPDATE. Figure A.4 sum­
marizes all this. This demonstration program simulates the change in the amount
of water in two lakes connected in series when an instantaneous doubling of
water inflow occurs.

A.5.3 Some elements of CSMP

Numeric constants There are two types of constants: integer and real. Integers are
whole numbers with a maximum of 10 digits without a decimal point. Real
(floating-point) constants are numbers written with a decimal point, with a maxi­
mum of 7 digits. A real constant may be followed by a decimal exponent written
as the letter E, followed by a signed or unsigned one or two digit integer constant.
The decimal E format forms a real constant that is the product of the real
constant portion multiplied by 10 raised to the desired power; e.g. 213.15
= 2.1315E2 = 2131.5E—01. Real constants are restricted to a total of 12
characters.

370

Figure A.4. Example of the use of subroutines in CSMP.

TITLE Demonstration program on how a subroutine can be used
INITIAL
HISTORY INICON(5),FLOWS(5)
FIXED N
STORAGE FL0W(3)
***** Defenition of parameters *****************************
PARAM DTSYS=8., N=2

***** Timer variables and integration method ***************
TIMER FINTIM=14., 0UTDEL=2., DELT=2.
METHOD RECT

***** Output results ***************************************
OUTPUT H(l), H(2)

***** Function defining inflow rate into the first reservoir
FUNCTION INTB = 0.0,100., 1.99,100., ...

2.0,200., 14.0,200.

***** initial calculations *********************************
REALN =N
TC =DTSYS/REALN

***** initial conditions of reservoirs *********************
IH,DUM1 =INICON(N,INTB,TIME,TC)

*

*

DYNAMIC
H =INTGRL(IH,NETFLO,2)

***** Net flow for each reservoir **************************
NETFLO,DUM2 =NETFLS(N,FLOW)

***** individual flows into and out of each reservoir ******
FLOW,DUM3 =FLOWS(N,INTB,TIME,TC,H)

END
STOP
*

****** subroutines called from initial *********************
*

SUBROUTINE INICON(NLOC,N,INTB,TIME,TC,
$ IH,DUM1)

IMPLICIT REAL(A-Z)
INTEGER I,N,NLOC
DIMENSION IH(2)
IN =AFGEN(NLOC,INTB,TIME)
DO 10 I =1,N

IH(I)=IN*TC
10 CONTINUE

RETURN
END

371

*

****** Subroutines called from dynamic *********************
*

SUBROUTINE NETFLS(N,FLOW,
$ NETFL0/DUM2)

IMPLICIT REAL(A-Z)
INTEGER I,N
DIMENSION FLOW(3),NETFLO(2)
DO 10 I =1,N

NETFLO(I)=FLOW(I)-FLOW(1+1)
10 CONTINUE

RETURN
END

••••A***

SUBROUTINE FLOWS(NLOC,N,INTB,TIME,TC,H,
$ FLOW,DUM3)

IMPLICIT REAL(A-Z)
INTEGER I,N,NLOC
DIMENSION H(2),FLOW(3)
IN =AFGEN(NLOC,INTB,TIME)
FLOW(l) =IN
DO 10 I =2,N+1

FLOW(I)=H(I-l)/TC
10 CONTINUE

RETURN
END

*

ENDJOB

Variables The name of a variable can contain one to six characters and the first
character must be a letter. No blanks or special characters (e.g. +,*(-:/).') are
allowed. For so-called 'reserved words' one is referred to the Reference Manual.
All names of labels, functions and data statements are reserved words. In CSMP
programs, before the label STOP all variables are declared real. When using
integer variables in a program, these variables should be explicitly declared at the
beginning of the program by the label FIXED.

Operators As.in FORTRAN, the operators and the order in which operations are
performed are:

() grouping of variables and/or constants 1st
** exponentiation 2nd
* multiplication ^ ~ ,
/ A- - - \ 3rd
/ division }

+ addition , ,
— subtraction *
= replacement 5th

372

Functions and expressions within parentheses are always evaluated first. For
operators of the same order, the component operations of the expression are
performed from left to right. There is an exception for exponentiation, where the
evaluation is performed from right to left. Thus, the expression A**B**C is
evaluated as A**(B**C).

Functions A description of various CSMP and FORTRAN functions is given in
Tables A.l and A.2. Extra attention will be given here to the INTGRL en
AFGEN functions. The general instruction to execute computations with rela­
tion to numerical integration is:

A = INTGRL(IA,RATE)

in which A is the output of an integrator, RATE is the rate of change of A, which is
integrated over time, and IA is the initial condition of A in a simulation run.
Initial conditions are introduced using an INCON label. The feature of inte­
grator arrays is very useful when simulating spatially distributed systems, e.g. gas
diffusion through water, or dispersion in time (exponential delays), where space
or time is divided into layers or classes. Each class or layer is represented by an
integrator and, between layers, transport takes place (Figure A.4 gives an
example of the use of an integrator array of length 2). One can use array integrals
with subscripted variables for computations that have a similar structure. The
statement:

A = INTGRL(IA,RATE,10)

specifies an array of 10 integrators in which A(I), IA(I) and RATE (I) are,
respectively, the output, initial conditions and input variables. The third argu­
ment, 10, is an integer constant. The initial conditions of an integrator array must
be given by means of a TABLE statement, e.g.

TABLE IA(1-10) = 10*5.
TABLEIA(1-10) = 2.,4.,6.,3.,7.,1.,4*0.

In the latter TABLE statement, the first 6 numbers represent real numbers, the '4'
represents an integer number to indicate that the last four numbers have the same
value (e.g. zero). For subscripted variables, one usually needs to reserve memory
storage. For variables in integrator arrays, however, this happens automatically.
The computer system generates:

STORAGE A(10), IA(10), RATE(IO)

The rates RATE(l) to RATE(IO) can be computed in a DO loop:

DO 100 I = 1,10
RATE(I) =

100 CONTINUE

373

Table A. 1. Some CSMP functions.

CSMPIH Functions

In tegra to r

Y-INTGRL(IC ,X)

where: IC»y^

Arbitrary function generator
(l inear interpolation)
Y«AFGEN(FUNCT,X)

Arbitrary function generator

(quadratic interpolation)

Y»NLFGEN(FUNIC T,X)

Modulo function

Y-AMOD (X,P)

L im i te r

Y»LIMIT(P1,P2,X)

Not

Y .NOT(X)

Input Switch Relay

Y»INSW(X1,X2,X3)

Equivalent Mathematical Expression

y (t) * J xdt • y (tQ)

t o
where: t 0 * s tar t t ime

t - t i m e

y . f (x)

V
y » f (x)

y »x - nP j

n is an integer P
value such that \

04. y < P

^

— >

y
-,

— p - ^ .

y - p , ; * < p .

y » P 2 ; x > p 2 V Pi

7
y x ; p,< x i p2

y

^ *

y . 1 if x < 0

y « 0 if x >0

y » x 2 i f x , < 0

y « x 3 if x t i 0

in which 100 is the 'name' of the DO loop, I is a counter which takes the values 1,
2,3,... 10, successively so that all RATEs will be computed. I should be an integer
variable; therefore, it must be declared integer by the statement FIXED I. A DO
loop cannot be sorted by CSMP, so it must be put in a NOSORT-SORT section,
a PROCEDURE or in a SUBROUTINE.

The INTGRL statement merely indicates that the specified RATEs have to be
integrated. The numerical integration method has still to be specified. This is
done on the METHOD label, e.g. METHOD RECT, which causes rectangular
integration to take place.

The Arbitrary Function GENerator (AFGEN function) in CSM P interpolates
linearly between supplied points (e.g. xl,yl and x2,y2). The function value y for
a certain x is then calculated by the expression:

y = yl + (x - xl)• (y2 - yl)/(x2 - xl)

374

Table A. 1. Continued.

Dead t ime (DELAY)

Y-DELAY(N,P,X)

where: P»delay t ime
N» number of points
sampled in interval p
(integer constant) and
must be>3, and < 16,378

y » x (t - p) ; t > p

y « 0 ; t < p

Equivalent Laplace Transfer Function:

X(s)

Implicit function

Y«IMPL(IC,P,FOFY)

where : IC» f irst guess
P » error bound

FOFY» output name
from final statement
in algebraic loop
definition

y ((y)

| y - f (y) | < p | y

Impulse generator

Y. IMPULS(P1.P2)

where: P1 »time of first pulse
P2» interval between pulses

y » 0 ; t < p ,

y»1 ; (t - p ,) « k p 2

y O ; (t - p ,) r f kp 2

k-0 ,1 .2 ,3 ,

y

1

and is written in CSMP: Y = AFGEN(XYTB,X)
FUNCTION XYTB = (0.,0.),(2.,0.4),(6.,0.1)

where the first number of a pair represents the variable x; the values of x must
increase monotonically. In most models, linear interpolation suffices. For higher
order interpolation methods, reference is made to the CSMP manual.

A. 5.4 Labels

Output control statements:
TITLE allows the user to identify the program, and the title appears on top

of each page of the output listing;
PRINT is used to specify upto 55 variables whose values will be printed at

each PRDEL interval in a tabular form (only real and not integer
variables!). The PRINT label can be used only once in a CSMP
program, as a second label would override the first;

OUTPUT is used to obtain printed output together with graphical output of

375

Table A.2. Some FORTRAN functions, which can be used in CSMP statements.

FORTRAN Functions

Exponential
Y -EXP(X)

Trigonometric sine
(argument in radians)

Y-SINI(X)

Trigonometric cosine
(argument in radiam)

Y -COS (X)

Square root

Y • SORT (X)

Largest value
(Real arguments and output)

Y -AMAXKX1 .X2)

Smallest value
(Real arguments and output)

Y-AMIN1 (X1,X2)

Equivalent Mathematical Expression

y » e x

y «sin (x)

y»cos(x)

y / x

y« max (x, , x2)

y *min lx},x2)

PRINT

upto 5 variables at each OUTDEL interval. When the number of
OUTPUT variables exceeds 5, graphical output is suppressed and
printed output (of upto 55 variables) is given alone,
is used to organize the graphical OUTPUT.

A useful option is the following example:
PAGE GROUP, NTAB = 0, WIDTH = 80
OUTPUT A(l), A(3)
OUTPUT A(1),A(10)
PRINT A(1),A(3),A(10)

Here the graphical output of A(l) and A(3), and A(l) and A(10) may easily be
compared as these variables are plotted on the same scale (PAGE GROUP). On
the plots no tabular output is given (PAGE NTAB = 0), so as to obtain the largest
possible graphs.
Tabular output for these variables is obtained by the PRINT statement.
The statement PAGE WIDTH = 80 causes the graphs to be inspected on the
computer terminal. A PAGE statement preceding all the OUTPUT statements
applies to the whole group. A PAGE statement that follows an OUTPUT
statement is assigned to that statement.

376

Execution control statements:
Values of timing variables are specified with the TIMER statement:
FINTIM final value of time for terminating a simulation;

time interval for graphical output;
time interval for tabular output;
integration interval;
initial value of time, to be specified only if not zero.
TIMER FINTIM = 100., PRDEL = 5., OUTDEL = 5.
TIMER DELT = 1.
TIMER TIME = 10.

OUTDEL
PRDEL
DELT
TIME
Example:

METHOD identifies the desired integration routine. Note that if the integra­
tion method is not specified, the integration routine RKS is default.

Example: METHOD RECT

END completes the specifications of the model;
STOP terminates the simulation run;
ENDJOB terminates the job.

If a simulation is to be repeated with new data and/or execution control state­
ments, the statements are to be placed between two END statements:
Example:

PARAM A = 10.
TIMER FINTIM = 50.
END
PARAM A = 20.
TIMER FINTIM = 100.
END
STOP
ENDJOB

Data statements:
PARAM
CONST
INCON
TABLE
FUNCTION
Example:

assignment of a numeric value to a parameter;
assignment of a numeric value to a constant;
assignment of a numeric value to an initial condition;
assignment of numeric values of (initial) constants to arrays;
assignment of the numeric relation between two variables.
PARAM A = 10., B = 20.
CONST PI = 3.1415
INCONIA = 0.,IB = 5.
TABLE A(l - 5)= l.,2.,3.,4.,5.
FUNCTION TEMPTB = (0.,0.),(10.,1.),(40.,1.5)

377

A.5.5 Syntax

Some syntax rules may be helpful to make programs more readable:
- try to split up your program into an INITIAL, a DYNAMIC and, if necess­

ary, a TERMINAL segment. Remember that statements in a TERMINAL
segment must be sequenced by the user;

- lump all parameter specifications at the beginning of your program, so as to
have a better overview of them;

- place all INTGRL statements together, e.g. just at the beginning of the
DYNAMIC;

- lump all FUNCTIONS that remain unchanged between simulation runs at
the end of the CSMP part of your program before the label END. Other
FUNCTIONS can be put near the parameter specifications at the beginning
of the program.

- start CSMP statements in the first column;
- start FORTRAN statements in the seventh column;
- make short comments in your program in the proper place;
- use ***** to begin comments in CSMP;
- use C**** to begin comments in FORTRAN subroutines;
- use blank lines and ***-lines to distinguish between different program parts;
- use blanks (spaces) to line up, e.g. equals-signs (=) and to distinguish between

pairs of data in FUNCTION statements;
- continue CSMP statements on the next line by typing three dots (...) on the

line to be continued;
- continue FORTRAN statements in subroutines by typing a dollar sign ($) in

the sixth column of the line following the line which is to be continued;
- when the history function AFGEN is used within a subroutine, the user

should reserve 5 storage locations using the label HISTORY SUBNAM(5) in
the CSMP program. Here, SUBNAM stands for the name of the subroutine
where the AFGEN is to be used. If AFGEN is used in the CSMP program
itself, memory is automatically allocated by the translator .

378

