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22 A Introduction 

In a model designed for a population with only one generation, the develop­
ment stage can be treated as a single state variable (Subsection 2.2.3). However, 
when there is a distribution of ages, or stages of development, the boxcar train is 
a suitable method that can be used to simulate the development process of the 
entire population (Subsection 2.2.4). During the simulation process, some disper­
sion (variability) may occur within the development rates of different individuals. 
Three types of boxcar train are possible, differing mainly in this dispersion of 
development rate. In the escalator boxcar train, dispersion is virtually absent 
(Subsection 2.2.5). In the fixed boxcar train, dispersion is quite substantial and 
rigidly determined by the number of boxcars (Subsection 2.2.6). The fractional 
boxcar train includes a parameter which allows the dispersion to be varied 
between these two extremes, and to be altered during the simulation process itself 
(Subsection 2.2.7). 

The CSMP statements (see Appendix 5), and FORTRAN subroutines used to 
implement these methods are given, and the approach is illustrated with a simple 
application. 

222 Development and delay 

A good example of a stable and well measurable rate of development can be 
found in a bird's egg; the time between laying and hatching is rather fixed. Both 
moments are two clearly marked milestones in the life of a bird. Because the 
duration of time between these moments is rather stable, the rate of hatching in 
a population of birds is the same as the rate of laying, delayed over the period of 
brooding. Such delays are quite common in the description of biological pro­
cesses. For instance, the well-known equation for exponential growth: 

dy 
— = r • y Equation 25 

can be written more specifically to describe adult birds only as: 

- — = r#yt_n Equation 26 
dt p 

where p stands for the duration of egg and juvenile stages combined. The value of 
the relative growth rate, r, is not the same in Equations 25 and 26. In the 
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development of disease for example, latency periods can often cause delays (see 
Chapter 3). 

When the delay period is always the same, a simple CSMP function (see 
Appendix 5) can be used to implement the delay: 

OUTFL = DELAY(N, PERIOD, INFLOW) 

where the rate INFLOW is delayed over a period PERIOD to produce the 
outflow rate OUTFL. N stands for the number of sampling points describing the 
shape of the inflow rate during the delay period, and should typically be of the 
order of PERIOD/DELT (DELT is the time step of integration, At). 

Exercise 22 
Use this DELAY function to simulate hatching 20 days after laying. During days 
1 and 2, 100 eggs are laid, and no more afterwards. 

A major limitation of the DELAY function is that it cannot be used with 
variable delay periods. Another limitation is that operations on the quantities 
delayed, such as mortality or emigration, are not possible. 

2.2 J Simulation of development of a single generation 

In warm-blooded animals, development and ageing can hardly be distin­
guished, but in other organisms these rates can be completely different. For 
instance, plants of the same species may flower at moments that are more 
determined by temperature and day length than by time since emergence. 
Usually, at low temperatures the developmental processes run much slower than 
at high temperatures. 

Discernible stages of development have been given names, for instance 'anth-
esis', 'dough-ripe' (in wheat), 'silking' (in maize), and are largely species specific. 
Numbers have also been given to these stages, so that they can be more easily 
quantified. For instance, in the general scale of development, as used in the crop 
growth model SUCROS87 (Section .4.1), 'anthesis' was given the value 1, and 
'maturation' the value 2. In the literature, more refined scales have been develop­
ed, e.g. for wheat (Zadoks et al., 1974; Reinink et al., 1986), maize (Groot et al., 
1986) and rape seed (Remmelzwaal & Habekotte, 1986). 

Rate of development can be defined as the numerical distance between two 
stages, divided by the time required to pass from one stage to the other. The 
problem with empirical scales is that the time intervals between subsequent 
stages are often not equal, even under constant conditions. Then, the empirical 
scale must be projected onto a Active scale that meets this requirement of 
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a homogeneous rate. Alternatively, the rate of development varies with the stage 
of development. 

In the following example (Remmelzwaal & Habekotte, 1986), a simulation 
approach will be shown for the development of rape seed from stage 9 (end of 
flowering) to stage 15 (maturation). Over this range, the development rate 
(DEVR) is proportional to temperature above 6°C, but it is assumed here that 
above 25 °C no further acceleration occurs. This means that the response be­
tween 6°C and 25 °C can be quantified in terms of degree-days with a base 
temperature of 6°C. 490 degree-days are needed to proceed from stage 9 to stage 
15. 

Exercise 23 
How long would this period be at 10 °C and how long at 20 °C? What would be 
the rate of development at these temperatures? 

The state variable 'stage of development' (STAGE) can now be simulated by 
the following CSMP statements: 

STAGE = INTGRL(9., DEVR) 
DEVR = AFGEN(DEVTB, TA) 
FUNCTION DEVTB = (0., 0.), (6., 0.), (25., 0.233), (30., 0.233) 

where TA stands for air temperature in °C, and DEVTB for DEVelopment TaBle 
with the development rate as a function of temperature. 

Exercise 24 
Check the consistency of this model and the manual calculation of Exercise 23 by 
running this simple model for 10 °C and for 20 °C. 

2.2.4 The boxcar train 

Using the above method, it is only possible to keep track of the stage of 
development of the entire population, because all individuals are synchronized. 
This situation is quite common in field crops. In insect populations, especially if 
they are polyvoltine, several stages of development occur simultaneously. Each 
stage would then require its own simulation. Also, new generations are continu­
ously being born, which adds to the complexity. 

The boxcar train technique provides for all possible development stages 
simultaneously. Before simulation starts, the developmental axis of one stage is 
broken up into a number of classes or boxcars, each with identical development 
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widths. If necessary, several separate boxcar trains may be chained; for instance, 
one to allow for all egg stages, one for all juvenile stages and one for all adult 
stages. This separation may be necessary to fulfil the requirement of homogeneity 
of development rate within a boxcar train. It is then much easier to acquire 
boxcars of identical development widths, at least within the boxcar train. 

After this classification, each boxcar is initialized with the number of indivi­
duals contained in it. In principle, a histogram can now be drawn for the 
development distribution of the population in the stage considered (Figure 13a). 

If a higher resolution of the development axis is required, the number of 
boxcars in the boxcar train should be increased (Figure 13b). In Figure 13b, the 
vertical axis is scaled so that the total area is still the same as in Figure 13a. This 
can be achieved by plotting vertically not just the number per boxcar, but this 
number divided by its development width y. The number obtained in this way is 
a boxcar-averaged concentration c, as an approximation of the 'true' concentra­
tion which could vary with stage g, given by the broken line in Figure 13b. 

If there is no mortality, this concentration-distribution function simply shifts 
to the right without any change in shape. Of course, new individuals may enter at 
g = 0, and at g = gf individuals are removed from the scene. Theoretically, it is 
possible to store the shape of the graph of c(g) into a computer with a very high 
degree of resolution and, accordingly, to simulate the development process. 
However, computer limitations prevent this procedure, and we have to live with 
a representation as given by histograms in Figure 13a. 

The question now is how to allow for the continuously occurring development 
drift, which shifts all individuals to a higher stage of development at the same 
rate. In principle, there are two options available to simulate this process: 
1. Continuously shift the entire distribution, shown by the histogram in Figure 

13, to higher values of development, including the boxcar boundaries. Only 
the beginning (g = 0) and the end (g = gf) are fixed. This system is called the 
escalator boxcar train. 
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Figure 13. Distribution of numbers of individuals (A) or of concentrations (c) with stage of 
development (g). gf stands for the final value of g, and y for the width of a single boxcar. For 
explanation see text. 
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2. Keep the location of the boundaries of the boxcars (the bars in the histogram) 
fixed, but allow the individuals to flow from one boxcar to the next. The rate 
of movement is proportional to the rate of development, and also to the 
concentration (height of the bar). This system is called the fixed boxcar train. 

These two types of boxcar train do not differ in mean delay time. However, in 
the escalator boxcar train all individuals are about equally delayed, whereas in 
the fixed boxcar train some are more and others less delayed. The reason for this 
variability is that for each individual the probability of flowing to the next boxcar 
is the same, whether that individual has just arrived or has been waiting quite 
a while. Due to this stochastic process, there is variance in the residence time in 
each boxcar. The variance of duration of through-flow through the fixed boxcar 
train, causes a levelling of peaks and dips originally present in the inflow curve 
(Berger & Jones, 1985). An intensive but brief pulse will be buffered in the 
relatively long residence time of the boxcars, and will result in dispersion during 
development. This so-called numerical 'dispersion' is an artefact of the system, 
but is a useful by-product of the boxcar train. Whenever such variance is 
observed in nature, the fixed boxcar train may help to simulate this phenomenon, 
although it does not add any explanatory value about its causes. 

It will be explained later that it is possible to hybridize both systems into the 
fractional boxcar train. Using this hybrid method, the degree of variance of 
through-flow can be controlled to match the observed variance. 

2.2.5 The escalator boxcar train 

In the escalator boxcar train, the developmental process is simulated by 
a continuous developmental drift of the boxcar boundaries. It is essential that 
these boundaries are chosen so that each boxcar covers the same developmental 
width; this means that the duration between adjacent boundaries are made equal 
for all of them. After the developmental process has completed one such sub-unit 
of development, boxcar width y (Figure 14), the entire population will have 
gradually shifted to the right by exactly one boxcar, and so all boxcar numbers 
can be reset. 

This process is schematically given in Figure 14. An escalator boxcar train with 
4 boxcars is presented here, so that the total development range covered (gf) is 
equal to Ay. Although the rate of development is not necessarily constant, it 
should change simultaneously for all boxcar boundaries. 

Immediately following the start of simulation, a gap opens between g = 0 and 
the lower boundary of boxcar 1. This gap is filled by a new boxcar, with number 0, 
which will receive the newcomers into the boxcar train. As far as the functioning 
of the boxcar train is concerned, it does not matter where these newcomers have 
come from, whether they have been generated as an external driving force, been 
produced as offspring from the boxcar train itself, or have simply come from 
a preceding boxcar train. 
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Figure 14. The escalator boxcar train. Time dependence of position of the boxcars and 
their numbering. For explanation see text. 

At the other end of the boxcar train, the last boxcar is contained between 
a fixed end boundary and an upward-moving lower boundary. The distance 
between them (y — g') keeps shrinking, and so without outflow the concentration 
in the last boxcar, cN, would grow beyond limit. Such unlimited compression is 
prevented because there is also a rate of outflow, Qout, defined as: 

Qout = V • CN 

with 

cN = AN/(y - g') 

where v is the rate of development, AN is the amount in the last boxcar and g' the 
cyclic development stage (0 < g' < y, Figure 14). 

When there is no mortality, the relative rate of decrease of amount AN and of 
the remaining width y — g' are equal, and so the concentration cN does not 
change. The rate of outflow Qout is then proportional to the rate of development 
v, exactly as we want it to be. 

When there is mortality, Qout decreases within each development cycle. In fact 
all boxcars, including the zero boxcar and the last one, may or may not loose 
individuals due to mortality, but they do not exchange them. This lack of 
exchange preserves the shape of the development distribution curve. 

The resetting event occurs when the development process has covered one 
sub-unit 7, the width of one boxcar. At that moment, each boxcar has reached the 
position occupied by its successor at the start of the simulation. The boxcar 
numbers are then reset, the last boxcar is removed entirely and a new zero boxcar 
is opened. 
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A calculation of the delay values and residual dispersion in the escalator 
boxcar train is given in Appendix 3. 

Exercise 25 
If the escalator boxcar train is used to describe the development of rape seed from 
stage 9 to stage 15, in 4 boxcars, what is then the value of y? How would you 
formulate the development rate DEVR? If the degree-day simplification is 
permitted (6 < Ta < 25 °C), on how many degree-days does the resetting (or 
'shift') event occur? 

2.2.6 The fixed boxcar train 

With fixed boundaries between the boxcars, there is a continuous forward flow 
from each boxcar into the next to allow for the development drift. Water, 
cascading from tanks can be used as a physical model to visualize how the fixed 
boxcar train operates. The flow from a boxcar is proportional to the concentra­
tion c in it, and to the development rate, v: 

Qi +1 = v • Cj Equation 27 

where Qi + x is the flow rate from boxcar i to boxcar i + 1. The concentration q is 
given by: 

c. = Aj/y Equation 28 

To understand the behaviour of the population contents in the fixed boxcar train, 
it is best to consider first the simplified situation under a constant development 
rate v. Then, each boxcar will act as a first order exponential delay, which means 
that a single sharp input pulse will give rise to an exponentially declining output 
flow (Figure 15). Of course, the total area of both pulses must be the same. 

The exponential shape of the decline can be derived as follows. Imagine that at 
time zero the boxcar considered is empty, and that consequently the output flow 
is also zero. Suddenly, a very brief, sharply peaked input flow fills the boxcar with 
an amount A0. According to Equations 27 and 28, the output flow Qout is directly 
proportional to the contents A: 

Qout = A • v/y 

In the situation described, the inflow will be zero immediately after the passage of 
the brief pulse, and so the differential equation for the contents A is: 

• = — A • v/y Equation 29 
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Figure 15. Output flow of a sub-unit in the fixed boxcar train in response to a sharply 
peaked input pulse. 

Since v and y are constant in this simplified situation, the solution of this 
differential equation for A is an exponentially declining function: 

A = A 0 exp ( - v t / y ) 

with A0 as the initial value of A, and the outflow Qout given by: 

Qout = (v/y) A0 exp ( - v • t/y) Equation 30 

With regard to the relationship between the inflow peak and the outflow function 
(Figure 15), two observations can be made: (1) on average, the outflow is delayed 
with respect to the inflow; (2) the shape of the outflow is more dispersed over time 
than the inflow. 

To find the value of the average delay we should remember that the inflow 
pulse was localized at time zero, and so the average delay is equal to the mean of 
time t of outflow in Equation 30. To find this mean time T, time t should be 
integrated between zero (start) and infinity, weighted with the value of Qout: 

00 

T = tQoutdt/A0 

o 

Substitution of Qout according to Equation 30 gives: 
00 

T = t • (v/y) exp (— v • t/y) dt 
V 

0 
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which has the solution: 

T = - exp( -v t /y ) ( t + y/v)]g> 

or T = y/v. In fact, this answer is not surprising since y/v is the time coefficient in 
the argument of the exponential function in Equation 30, and also in differential 
Equation 29. This is similar to the derivation in Subsection 2.1.5. 

So far, the derivation has only concerned a single infinitely sharp inflow pulse, 
and one might wonder whether the value of the delay is independent of the shape 
of the inflow. This simple thought is correct, since any shape of the inflow can be 
broken up into a series of sharp pulses, each giving rise to its own exponentially 
delayed outflow. Since the whole system is linear (meaning that outflow is 
proportional to contents, Equation 29), the contents and outflows due to the 
subsequent pulses can simply be added together. Therefore, the average delay is 
also equal to y/v (or T), independent of the shape of the inflow. Each boxcar will 
add this delay to result in the total delay of the entire boxcar train: 

Ttotai = N • T Equation 31 

With regard to the average value of the total delay, the fixed boxcar train and the 
escalator boxcar train are similar. The difference between these methods appears 
in the effect on the shape of the outflow. Whereas the outflow is identical in shape 
to the inflow in the escalator boxcar train, it is much more dispersed in the fixed 
boxcar train. This means that a considerable amount of variance has been added 
to the time distribution of the inflow. 

Statistically, the variance o2 is the second order moment of the time of outflow, 
which can be calculated as the mean value of (t — T)2, weighted with Qout/A0: 

00 

ff2 = (t-t)2Qo u tdt/A0 

0 

With Qout given by Equation 30, and using y/v = T, G2 can be written as 
00 

<r2 = (t-T)2(l/T)exp(-t/T)dt 

0 

By using of a table of indefinite integrals, and some algebra, this expression can be 
shown to lead to (see Appendix 4): 

< 7 2 = T
2 

Since each boxcar will add this amount of variance, irrespective of the other 
boxcars and of its own position in the cascade, the total amount of variance 
added by the entire boxcar train is given by: 

*«2ot.i = N • T 2 
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Combining this expression with the one for total delay (Equation 31) gives the 
interesting result for relative 'dispersion' RD: 

^totalM total = V\/ N 

The relative 'dispersion' RD (or 'coefficient of variation CV) of the outflow time, 
in response to a peaked inflow decreases with the number of boxcars N. This 
result could be understood more easily if one were to imagine more (but nar­
rower) boxcars in the boxcar train. 

Exercise 26 
How many boxcars are needed to simulate a delay of 20 days with a 'dispersion' of 
2days(RD = 0.1)? 

A system of N fixed boxcars is often termed an Nth order delay. The dynamic 
response of the outflow after a stepwise change in inflow is given in Figure 16 for 
different values of N (Ferrari, 1978). 

2.2.7 The fractional boxcar train 

Compared with the DELAY function of CSMP, both the escalator and the 
fixed boxcar trains are much more flexible, in that they permit variable develop­
ment rates. However, they still lack flexibility in the relative 'dispersion' (or RD) 
of outflow. The escalator boxcar train has almost no dispersion (except for the 
small amount due to the distribution over a single boxcar) and the fixed boxcar 
train has a fixed RD of 1/^/N which, once chosen, cannot be changed during the 
simulation. But in several experimental data sets there is evidence that delay and 
dispersion are not equally influenced by e.g. temperature, and so the relative 

f low 
rate 

average delay *—>time 

Figure 16. Response of outflow to a stepwise change in inflow for a fixed boxcar train with 
different numbers of boxcars. 
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dispersion also varies. To allow for this change during simulation, a more flexible 
method than that of the fixed boxcar train is needed. Such a flexible method can 
be obtained by hybridizing the methods of both the fixed and the escalator 
boxcar trains. This method will be termed the fractional boxcar train, because it 
is based on a fractional repeated shift. 

In the escalator boxcar train, a complete shift to the next boxcar occurs at the 
moment of resetting. In the fractional boxcar train, it is not the complete contents 
that are shifted, but only a fraction F of each boxcar's contents. To compensate 
for the smaller amount, the shift must occur more frequently. In the escalator 
boxcar train the renumbering (or shift) occurs upon completion of a full develop­
ment cycle, 7. In the fractional boxcar train method, the fractional shift occurs 
upon completion of a fraction F of the development cycle. This fraction ranges 
between 0 and 1 and can be changed during simulation. A possible time path of 
the boundaries between the boxcars is illustrated in Figure 17. 
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Figure 17. Sawtooth shape of time path of the boxcar boundaries in the fractional boxcar 
train. For explanation see text. 
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The value of the fraction F determines how often resetting and partial transfer 
of contents occurs. When F is equal to 1, the escalator boxcar train is effectively 
restored (Figure 14). On the other hand, when F approaches zero, the sawtooth 
shape of the boundaries between the boxcars is practically straight, so that the 
fixed boxcar train is approached. During simulation, the value of F can be varied 
anywhere between these two extremes, so that gradual adaptations can be made 
in the value of the desired dispersion. 

Since movement through the boxcars is pulsewise, the differential equations 
must be replaced by difference equations. The cyclic development stage, g\ 
stands for the development elapsed since the last resetting occurred. In the 
escalator boxcar train, g' triggers the renumbering when it exceeds y. Here, in the 
fractional boxcar train, the trigger level is set at Fy. When this level is exceeded, 
fractional shift occurs and g' is decreased by Fy. The contents of boxcar i are also 
reduced: 

A* • = A* • * — F*A- • t 

where j counts the number of shifts since the start. Here, as for Equation 29, it is 
assumed that inflow into Aj is zero. A{ j is then given by 

A u = A,.0(l - FY 

A special situation occurs in the zero boxcar. The contents of this boxcar are 
entirely transferred to the first one, so that after the shift, 

Aoj = 0. 

The delay in the fractional boxcar train The first fractional shift does not occur at 
time zero, but only when g' equals Fy. When the development rate, v, is constant, 
this occurs at time Fy/v, or at time FT. The expression for the average residence 
time, r, is: 

f = - ^ - f j F t A 0 ( l - F ) j " 1 F Equation 32 
Ao j = i 

time quantity transferred 

This expression can be evaluated using the general expression for the sum of the 
series 

PT>~i=jrhy 0<r<l 

In this equation, r can be replaced by l — F, and Equation 32 then yields 

f = T 

This result shows that the delay per boxcar is independent of the value of F. Also, 
the total delay Ttota, of the boxcar train is independent of F, and equal to Nr. 
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The variance in the fractional boxcar train The variance can be evaluated from 

1 °° 
<J 2 = 

A 0 j = i 
£ G F T - T ) 2 A0(l - F y - ' F Equation33 

deviation quantity transferred 

By using the sum of the series given above, and also the following one: 
00 1 4- r 
S / ' ' - ' - ^ 0<r< l 

we find that Equation 33 can be simplified to: 

G
2 = T

2(i _ F) 

This result shows that the variance is linearly related to the value of the fraction 
F. This variance occurs in each boxcar, so that the total variance of the whole 
boxcar train is 

total = NT2(1 - F ) Equation 34 

22.8 Implementation of the boxcar train in CSMP 

The fixed boxcar train (see Figure 18) First, the three types of boxcar train will be 
applied in a simple example. There will be 5 boxcars with initial content zero: 

A = INTGRL(AI, RA, 5) 
state initial rate number of 

state integrals 

In the rest of the program, A and RA can be referred to as indexed variables, just 
as in FORTRAN: A(I) stands for element I of the array A. The array AI (initial 
values) is set at zero. It is convenient to use DO loops to calculate rates and 
concentrations: 

DO I = 1,5 
C(I) = A(I)/GAMMA (see Equation 28) 

ENDDO 

Here, GAMMA is the name for the mathematical symbol y, the width of a boxcar 
in development units, and is defined as 1/N. This implies that the full range of 
development has the numerical value of unity. This is an arbitrary choice which 
could have been 100 or any other figure. In the case of another value for the full 
range of development, the width of the boxcars is adapted proportionally. 

The rate of flow from boxcar I to boxcar I -f l is given by the rate of develop­
ment, v (DEVR), multiplied by the concentration C(I): 

FLOW(I + 1) = DEVR * C(I) (see Equation 27) 
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An inflow pulse of total size UNITY occurring at time PTIME can be obtained 
by: 

INFL = IMPULS(PTIME,FINTIM)*UNITY/DELT 
PARAM PTIME = 0., UNITY = I. 

The rate of development (DEVR), is also integrated to yield the physiological 
time, G, which can be considered to be the state of development of an immortal 
individual born at time zero: 

G = INTGRL(0.,DEVR) 

It should be noted that G always increases. 
The inflow into the boxcar train, generated somewhere else, is used here. 

FLOW(l) = INFL 

and the outflow is made equal to FLOW(N 4- 1): 

OUTFL = FLOW(N + 1) 

The net flow of a boxcar is given by: 

NETFLO(I) = FLOW(I) - FLOW(I + 1) 

and, since there is no mortality so far, 

RA(I) = NETFLO(I) 

The outflow can be collected in a separate integral 

AOUT = INTGRL(0., OUTFL) 

In this example the inflow was kept at zero, except for a single pulse at time zero 
with height UNITY/DELT. This discontinuous behaviour of the inflow requires 
the use of the rectangular integration method: 

METHOD RECT 

The following optional statements for monitoring purposes would normally not 
be included in a model, but study of their formulation and behaviour improves 
the understanding. 

For this simple situation, the average delay period (ADP) can also be cal­
culated numerically: 

ADP = INTGRL(0.,(TIME - PTIME) * OUTFL)/UNITY 

The "expression for the variance (VAR) is given by: 

VAR = INTGRL(0.,(TIME - PTIME - ADPG)**2*OUTFL)/UNITY 

ADPG must be a constant and, in fact, be equal to the final value of ADP at time 
FINTIM. Therefore, two runs are required, the first one to find ADP and the 
second one to find VAR. Fortunately, in normal simulations, there is no necessity 
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to calculate both ADP and VAR. Here, it is done simply to check our model and 
to compare it with the theoretical results. The timing is defined in a TIMER 
statement: 

TIMER FINTIM = 1000.,PRDEL = 100.,DELT = 1. 

Here, we require the variables AOUT, ATOT, A(l — 5), ADP and VAR as 
printed output on intervals PRDEL. The variables ATOT and BALANC are 
used only to check the balances. Although they may seem unnecessary, in more 
complicated models these balance variables are extremely useful to detect omit­
ted or twice-defined flows. 

The development rate (DEVR) is given in a PARAMeter statement as 0.005, 
and N as 5. The variables N and I are declared fixed, and for the arrays NETFLO, 
FLOW and C, ample space is reserved by a STORAGE statement. For variables 
in the array integral this reservation is done by default. 

Exercise 27 
Use this program to generate the curves of Figure 16 for N = 1,2,5 and 10. 

Exercise 28 
Run the simulation model of Figure 18. Compare the simulated (mimicked) delay 
period (ADP) and its variance (VAR) with the values calculated arithmetically 
(Ttota, respectively (r?oia]). When are the simulated values significant? 

The escalator boxcar train (Figure 19) Most statements are the same as for the 
fixed boxcar train, so here only the differences will be mentioned. The criterion 
for renumbering (shifting) is when the cyclic development stage, g', (GCYCL) has 
reached the value GAMMA (the width of a boxcar): 

IF (GCYCL.GE.GAMM A) CALL SHIFT(N, GAMMA, GCYCL, A, A0) 

The subroutine 'SHIFT is explained at the end of this Subsection. The use of the 
IF statement requires a preceding NOSORT label. The shift is formulated in 
a FORTRAN subroutine with the necessary arguments N (number of boxcars), 
and the names of the treated integrals. Here, the zero boxcar (A0) appears 
separately because, unfortunately, the indexing of array integrals begins with one 
and not with zero. In the main program, A0 must also be formulated separately: 

A0 = INTGRL(0., RAO) 
and 

RAO = INFL 
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Figure 18. Listing of a program, including the fixed boxcar train. 

TITLE FIXED BOXCARTRAIN 
STORAGE FL0W(6), NETFL0(5), C(5) 
FIXED N,I 

INITIAL 

TABLE AI(l-5)=5*0. 
PARAM DEVR=0.005, N=5 
GAMMA = l./N 
PARAM PTIME=0.,UNITY=1. 

DYNAMIC 
NOSORT 

Calculation of the states 
G =INTGRL(0.,DEVR) 
A =INTGRL(AI,RA,5) 
AOUT=INTGRL(0.,OUTFL) 

*Calculation of the rates 
INFLF =IMPULS(PTIME,FINTIM) 
INFL =UNITY*INFLF/DELT 
FL0W(1)=INFL 
DO 1=1,N 

C(I)=A(I)/GAMMA 
FL0W(I+1)=DEVR * C(I) 

• NETFL0(I)=FL0W(I) - FL0W(I+1) 
* no mortality 

RA(I) =NETFL0(I) 
ENDDO 
OUTFL =FL0W(N+1) 

* Balance should be zero 
AT0T=0. 
DO 1=1,N 

AT0T=AT0T + A(I) 
ENDDO 
BALANC=ATOT + AOUT -INTGRL(0.,INFL) 

*0ptional statements for study and checking purposes: 
ADPG=1./DEVR 
ADP =INTGRL(0.,(TIME-PTIME)*OUTFL)/ UNITY 
VAR =INTGRL(0.,(TIME-PTIME-ADPG)**2 * OUTFL)/ UNITY 
S =SQRT(VAR) 

TIMER FINTIM=1000.,PRDEL=100.,DELT=1. 
METHOD RECT 
PRINT AOUT.ATOT.Ad-Sj.ADP.VAR.S.BALANC 

END 
STOP 
ENDJOB 



Figure 19. Listing of a program, including the escalator boxcar train. 

TITLE ESCALATOR BOXCARTRAIN 
STORAGE C(5) 
FIXED N,I 

INITIAL 

TABLE AI(l-5)=5*0. 
PARAM DEVR=0.005, N=5 
GAMMA =1./N 
*The cyclic development starts halfway 
GCYCLI=0.5*GAMMA 
PARAM PTIME=0.,UNITY=1. 

DYNAMIC 
NOSORT 

*Calculation of the states 
GCYCL =INTGRL(GCYCLI,DEVR) 
G =INTGRL(0.,DEVR) 
AO =INTGRL(0.,RAO) 
A =INTGRL(AI,RA,5) 
AOUT =INTGRL(0.,OUTFL) 

IF(GCYCL.GE.GAMMA) CALL SHIFT(N,GAMMA,GCYCL,A,AO) 

Calculations of the rates 
INFLF =IMPULS(PTIME,FINTIM) 
INFL =INFLF*UNITY/DELT 
RAO =INFL 

DO 1=1,N-l 
* no mortality 

RA(I)=0. 
ENDDO 
C(N) =A(N)/(GAMMA-GCYCL) 

*To prevent a negative value of A(N), the AMINl-function is used 
OUTFL =AMIN1(DEVR * C(N),A(N)/DELT) 
RA(N) =-0UTFL 

* Balance should be zero 
ATOT =A0 
DO 1=1,N 

ATOT=ATOT + A(I) 
ENDDO 
BALANC=ATOT + AOUT - INTGRL(0.,INFL) 
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*Optional statements for study and checking purposes: 
ADPG=1./0EVR 
ADP =INTGRL(0.,(TIME-PTIME)*OUTFL) / UNITY 
VAR =INTGRL(0.,(TIME-PTIME-ADPG)**2 *0UTFL) / UNITY 
S =SQRT(VAR) 

TIMER FINTIM=200.,PRDEL=20.,DELT=1. 
METHOD RECT 
PRINT AO.ACl-S^AOUT.ATOT.BALANC.G.GCYCL.ADP.VAR.S 

END 
STOP 

SUBROUTINE SHIFT(N,GAMMA,GCYCL,A,AO) 
DIMENSION A(N) 
DO I =N,2,-1 

A(I)=A(I-1) 
ENDDO 
A(l) =A0 
AO =0. 

GCYCL=GCYCL-GAMMA 
RETURN 
END 

ENDJOB 

Since the flows between boxcars are zero (by definition in the escalator boxcar 
train), the names FLOW and NETFLO are not required. Only the outflow from 
the last boxcar must be defined (see Subsection 2.2.5): 

OUTFL = AMIN1(DEVR * C(N), A(N)/DELT) 
and 

RA(N) =-OUTFL 

The other rates of change in the boxcars are zero (no mortality yet): 

D O I = l , N - l 
RA(I) = 0 

ENDDO 

which can be stated in the INITIAL segment. The concentration C(N) of the last 
boxcar must be calculated in a different way than in the fixed boxcar train: 

C(N) = A(N)/(GAMMA - GCYCL) 

The cyclic development stage, GCYCL, is formulated in exactly the same way as 
G: 

GCYCL = INTGRL(GCYCLI,DEVR) 
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It is not equal to G, however, because GCYCL is modified in the subroutine 
SHIFT. 

The subroutine 'SHIFT'This subroutine definition is placed between the CSMP 
labels STOP and ENDJOB. 

The list of arguments transfers the values from the main program to the 
subroutine and vice versa. A separate DIMENSION declaration of A is necess­
ary in the subroutine. With ample memory space available, over-dimensioning is 
convenient. The DO loop must be a backward one, because a forward loop 
would fill all array elements with the first one. 

DO I = N ,2 , -1 
A(I) = A(I - 1) 

ENDDO 
A(1) = A0 
A0 = 0. 
GCYCL = GCYCL - GAMMA 

It is important that GCYCL is decreased by GAMMA, and not reset to zero. The 
shift is triggered when g' reaches y, but this does not necessarily occur at an exact 
multiple of DELT. The excess value of g' above y before the shift must be 
retained. 

The escalator boxcar train, applied to a demographic problem The best method for 
solving demographic problems is the escalator boxcar train, because age, which 
is used as a characteristic, does not disperse. To illustrate its use, the same 
example will be given for the growth of the Dutch population, described by de 
Wit & Goudriaan (1978). For reasons of clarity, only the female proportion of the 
population is simulated, the male proportion being taken for granted. The ratio 
of boys to girls at birth (FRBOY), is used to calculate the fraction of girls 
(FRGIRL). The age dependence relating to relative death rate and relative birth 
rate is given in Figure 20. The corresponding fraction of survival (FS) is found by 
simulating a single cohort from birth onwards. Mathematically, the relative 
death rate (RDR) and the fraction survival (FS) are related by: 

RDR = -(d(FS)/dA)/FS 

where A stands for aee. 
The listing of the CSMP program used is given in Figure 21. Data concerning 

the initial age distribution of the population are supplied. This is done by 
a TABLE specifying the contents of the twenty 5-year classes of the population 
array AI. Then, two FUNCTIONS with a list of coordinate points of the 
relationship between relative death and birth rates and age are supplied. In the 
INITIAL segment some computations are done for the discretization of age and 
development scale. This is necessary before the actual simulation in the DY­
NAMIC segment occurs. The simulation itself requires computation of the rates 
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Figure 20. The age dependence of relative death rate (RDR) and of relative birth rate 
(RBR). The fraction survival (fs, dashed line) is a function of RDR. 

Figure 21. Listing of the program of the model simulating the growth of the Netherlands 
population. 

TITLE GROWTH OF THE NETHERLANDS POPULATION 
STORAGE A6E(20)IM0RR(20),FRACA(20) 
FIXED I,N 

INITIAL 
NOSORT 
* Relative death rate, in promille per year, as a function of age 

FUNCTION RMRTB= 0.,10., 2.5,4., 5.,1.8, 7.5,0.8, 10.,0.5, 
15.,0.3, 20.,0.3, 30.,0.6, 40.,1.6, 50.,4.9, 
60.,8.5, 65.,14., 70.,25., 75.,55., 82.5,180., ... 
87.5,380., 92.5,760., 97.5,900., 105.,900. 

* Relative birth rate per year, as a function of age 
FUNCTION RBRTB= 0..0., 12.5,0., 17.5,.02, 22.5,.137, 25.,.166,... 

27.5,.188, 30.,.166, 32.5,.113," 37.5,.055, 
42.5,.016, 47.5,.002, 50.,0., 105.,0. 

* Fraction young born boys 
PARAM FRB0Y=0.512 

* 100 years of age (AGET0T=ADP) is covered in 20 classes (N) 
PARAM AGET0T=100.,N=20 

* Residence time in one age class 
• TC =AGET0T/N 

* Development rate is standardized and constant 
DEVR =1./AGET0T 

* Development width covered by one ageclass 
GAMMA =1./N 

* The fraction girl of the young borns 
FRGIRL=1.-FRB0Y 

* Calculation of the initial amounts 
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* Initial contents of ageclasses of 5 years wide, expressed in thousands 
TABLE AI(l-20)=582.,587.,553.,543.,554.,420.,380.,381.,378., ... 

376.,330.,323.,298.,226.,226.,150.,70.,25.,13.,0. 
* Initialization of integrals 

AT0TI=0. 
DO 1=1,N 

AI(I)=AI(I)*1000. 
A(I) -AI(I) 
AT0TI=AT0TI + AI(I) 

ENDD0 
A0 =0. 
G =0. 
GCYCL=0. 

DYNAMIC 
N0S0RT 
* Calculation of the states 
* Development 

G =INTGRL(0.,DEVR) 
GCYCL =INTGRL(0.,DEVR) 

* Calculation of the number of each boxcar 
A0 =INTGRL(0.,RA0) 
A =INTGRL(AI,RA,20) 
A0UT =INTGRL(0.,0UTFL) 

* When GCYCL exceeds GAMMA, the shift is applied. 
* In this situation, this is after every 5 years 

PUSH =IMPULS(5.,5.) 
IF(PUSH.EQ.l.) CALL SHIFT(N,GAMMA,GCYCL,A,AO) 

* Calculation of the rates 
* The total birth rate of girls is first set to zero 

TBR =0. 
**The zero's boxcar 
* The age of the centre 

AGE0 = 0 . 5 * GCYCL*AGET0T 
* The mortality rate 

MORRO =A0 * 0.001*AFGEN(RMRTB,AGE0) 
TMORT =M0RR0 

**The 1 - (N-l)'s boxcar 
BO 1=1,N-l 

* The age of the centre of each boxcar 
AGE(I) =TC*(I-0.5)+GCYCL*AGET0T 

* Mortality rate of each class 
M0RR(I)=A(I)*0.001*AFGEN(RMRTB,AGE(I)) 

* Total mortality 
TMORT =TM0RT + MORR(I) 

* The 1 - (N-l)'s class only change by death 
RA(I) =-M0RR(I) 

* Total birth rate of girls 
TBR =TBR + A(I) * AFGEN(RBRTB,AGE(I))*FRGIRL 

ENDDO 
**The N's boxcar 

AGE(N) =TC*(N-0.5)+0.5*GCYCL*AGET0T 
RMRN =0.001*AFGEN(RMRTB,AGE(N)) 
MORR(N)=A(N)*RMRN 
TMORT =TM0RT + MORR(N) 

* The zero's class increases by birth, and decreases by death 
RAO =TBR - MORRO 

* The N's boxcar decreases by death and by an outflow of people 
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* older then 100 years old. 
CN =A(N)/(GAMMA-GCYCL) 
OUTFL =AMINl(DEVR*CN*(l.-RMRN),A(N)/DELT) 
RA(N) =-0UTFL - MORR(N) 

* The balance should be zero: 
ATOT =A0 
DO 1=1,N 

ATOT =AT0T+A(I) 
EH000 
T0TM0R=INTGRL(0.,TM0RT) 
TOTBIR=INTGRL(0.,TBR) 
BALANC=ATOT +T0TM0R + AOUT - ATOTI - TOTBIR 

* Calculation of the age-distribution 
FRACA0=A0/AT0T 
DO I=1,N 

FRACA(I)=A(I)/ATOT 
ENDDO 

* Time is expressed in years 
TIMER FINTIM=1000.,DELT=1.,PRDEL=100. 
PRINT A0,A(1-20),AOUT,AT0T,FRACA0(FRACA(1-20),TBR,TM0RT,BALANC 
METHOD RECT 

END 
STOP 

SUBROUTINE SHIFT(N,GAMMA,GCYCL,A,AO) 
DIMENSION A(N) 
DO I=N,2,-1 

A(I)=A(I-1) 
ENDDO 
A(l) =A0 
AO =0. 
GCYCL=GCYCL-GAMMA 
RETURN 
END 

ENDJOB 

of change and, of course, the integration of these rates, which is done by the 
INTGRL statement. Also, whole population totals are computed by summation 
over all age classes in a regular FORTRAN DO loop. The data supplied for the 
FUNCTIONS are read by an AFGEN statement. 

Exercise 29 
Find FS (Figure 20) by simulation. Make the birth rate constant, for instance 
1000 per year, and after 100 years the age distribution will have the same shape as 
the fraction FS. 

Exercise 30 
In the normal simulation, with the birth rate coupled to the number of fertile 
women, the population size will not be constant. After a long enough period of 
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simulation, exponential growth will result, with a corresponding age distribution 
and relative growth rate. To find these, run the model, as given here, for 1000 
years. Compare the age distribution with FS found in Exercise 29. 

The fractional boxcar train (see Figure 22) This boxcar train can be used when 
the relative dispersion of through-flow is known to vary during simulation, so 
both the desired delay and dispersion must be computed in the DYNAMIC 
segment of the main program. The rate of development, v or DEVR, often has 
a simpler relation with environmental conditions than the delay (germination 
period, longevity, etc.) itself: 

DEVR = AFGEN(DEVT,TEMP) 

In this example, the rate of development is a function of temperature. The shape 
of the function must be specified in a separate list of paired numbers with the 
name DEVT. In a similar way, the relative dispersion RD (crtotal/Ttotal) is a func­
tion of temperature: 

RD = AFGEN(RDT,TEMP) 

The procedure of the fractional boxcar train is described in a subroutine called 
'BOXCAR' which can be used as a separate module. In the main program, this 
subroutine is called: 

A0,A,ATOT,MORFL,OUTFL,GAMMA,GCYCL 
BOXCAR(l,AI,DEVR,RD,RMR,INFL,N,DELT,TIME) 

Inputs for this subroutine are: a number which serves to identify the boxcar train 
in the event of a computing error, the initial amount in the boxcars of the train 
(AI(1—N)), the development rate (DEVR), the relative dispersion (RD), the 
relative mortality rate (RMR), the inflow into the zero boxcar (INFL), the 
number of boxcars in the train (N), DELT and TIME, respectively. These inputs 
must be given or calculated in the main program. Time is available by default. 
Outputs of this subroutine are the amount in the zero boxcar (A0), the amount in 
the other boxcars (A(l — N)), the total amount in the boxcar train (ATOT), the 
total mortality rate in the boxcar train (MORFL), the outflow of the last (Nlh) 
boxcar (OUTFL), the development width (GAMMA) and the cyclic develop­
ment stage (GCYCL). In the main program, memory storage should be reserved 
for two array variables AI and A, e.g. when N equals 10: 

STORAGE AI(10),A(10) 

N, the number of boxcars, should be declared integer 

FIXED N 

In the initial segment of the main program, the initial amount in the boxcar train 
and the number of boxcars should be given: 
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TABLEAI(1-10) = .... 
PARAMN =10 

In the subroutine 'BOXCAR', the boxcar train is initialized by calling subroutine 
'BOXINF. In this subroutine, A0 and GCYCL are set to zero, GAMMA is 
computed as 1/N and A(l — N) is initialized. 

The fraction F for the fractional boxcar train is calculated by Equation 34, 
written with F on the left: 

F = 1 - N * R D * R D 

When this computed value of F is used, the fractional boxcar train will produce 
the desired dispersion. 

Although this method is flexible, it cannot be stretched beyond its limits. An 
undue inbalance between the number of boxcars N and the desired RD will be 
revealed in nonsense values of F. Theoretically, it is immediately clear that 
F must lie between zero and unity. The upper end of this range is exceeded if the 
number of boxcars N is too small for the low RD that we wish to simulate. To 
select an appropriate value for N, it should be kept in mind that a minimum 
amount of dispersion cannot be avoided. Even when F is set at unity, some 
dispersion remains within the boxcar width. Usually this amount can be neglect­
ed. 

The lower end of the range of F is zero, but a closer inspection indicates that 
F must also be larger than the fraction that would normally be transferred in each 
integration interval in the fixed boxcar train: DELT* DEVR/GAMMA. If F is 
smaller than this value, the chosen number of boxcars N was too high. N must be 
smaller than 1 divided by the maximally occurring value of RD squared. About 
three-quarters of this maximum number is usually sufficient. If this does not solve 
the problems, it could mean that DELT is too large. It is good practice to include 
finish conditions for these sorts of criteria: 

IF(DELT.GT.(F * GAMMA/DEVR)) THEN 
CALL EXIT 

ENDIF 

Both time-interval of integration and residence-time in the boxcars of a boxcar 
train characterize the degree of temporal resolution required in the model. 
Therefore, there is little point in choosing At much smaller than the residence 
time y/v. In this case, the general rule that At must not exceed one-tenth of the 
time coefficient of the fastest model component can be relaxed a little. The 
requirement here is less stringent, thanks to the negative feedback within the 
boxcar train: a numerical error in the rate of transition only affects the distribu­
tion among adjacent boxcars and has hardly any effect on removal from the 
boxcar train as a whole. The conclusion is that At should not exceed Fy/v, but 
may well be greater than 1/10 of y/v. 
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If the program is aborted on account of one of these finish conditions, the 
programmer should first search for bugs in the data set such as AFGEN 
functions, or in other parts of the program before trying to repair the failure by 
adapting of N or DELT. Now that F has been adequately defined, it is used in the 
trigger for the shift: 

IF (GCYCL.GE.F*GAMMA) CALL SHIFT... 
(N,F, AO, A,GAMMA, GCYCL) 

In the subroutine SHIFT, the list of arguments is repeated, and the array 
declaration follows: 

DIMENSION A(N) 
A(N) = A(N) + A(N-1)*F 
DOI = N - 1,2,-1 

A(I) = A(I)*(1-F) + A(I-1)*F 
ENDDO 
A(1) = A(1)*(1-F) + AO 
A0 = 0. 
GCYCL = GCYCL - F * GAMMA 

These lines suffice to implement the theory of Subsection 2.2.6. There are no 
further changes in comparison to the escalator boxcar train. 

2.2.9 A practical application using the fractional boxcar train 

The fractional boxcar train can be used to simulate the population devel­
opment of insects. This will be illustrated with an example of an orchard tortricid 
moth Pandemis heparana (DENN. et SCHIFF.), which is an important pest in 
European apple orchards. Control of these insects mainly relies on the use of 
broad-spectrum insecticides, but since these also kill beneficial insects, research 
has been directed towards more specific insect growth-regulators. These prevent 
metamorphosis but are only effective if applied at the right time: at emergence of 
the last-instar larvae. The best application time can be well predicted using 
a simulation model of population development. 

P. heparana usually has one generation per year. Adult female moths deposit 
their eggs in August. Second or third larval instars hibernate until the end of 
March when they become active; the sixth larval instar pupates in June. Adult 
moths are, therefore, found from June to August. 

The model presented in Figure 22 is a simplified version of that described by de 
Reede & de Wilde (1986), which simulates the post-hibernation phenology of P. 
heparana (in 1982 in Wageningen, the Netherlands). Each development stage 
(diapause-stage, 3-5th stage larvae, 6th stage male and female larvae, and male and 
female pupae) is described by a fractional boxcar train, which mimics the mean 
delay and temporal dispersion. Experiments showed temperature to be the only 
important determinant of the development rate. Temperature is computed as 
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Figure 22. Listing of a program, including the fractional boxcar train. 

TITLE DEVELOPMENT PANDEMIS HEPARANA 1982 
STORAGE DIAINIU) 

L3INN10) 
L4INI(8) 
L5INI(3) 

ML6INIC10) 
FL6INI 4) 
MPINI(IO) 
FPINI(IO) 

INITIAL 

DIA(4) 
L3(10) 
L4(8) 
L5(3) 

ML6(10) 
FL614) 

MP(10) 
FP(10) 

•Initial numbers in boxcartrains 
TABLE DIAINI(l-4) = 4*25. 
TABLE L3INI 1-10)=10* 0. 
TABLE L4INI(l-8) = 8* 0. 
TABLE L5INI(l-3) = 3* 0. 
TABLE ML6INI(1-10)=10* 0. 
TABLE FL6INI 1-4) = 4* 0. 
TABLE MPINI(1-10)=10* 0. 
TABLE FPINI(1-10)=10* 0. 

*Total initial amount of diapause larvae 
TINDIA=100. 

•Fraction male 
PARAM SEXR=0.5 

•Fraction DIA3/DIA2 
PARAM G=0.7 

PI=ATAN(1.)M. 

DYNAMIC 

•Temperature 
TEMP =AVTEMP + AMPTMP*(-C0S(2.^PI^TIME)) 
AVTEMP=0.5 • (MAXT+MINT) 
AMPTMP=0.5 • (MAXT-MINT) 
MAXT =AFGEN(MXTT,DAY) 
MINT =AFGEN(MNTT,DAY) 

DAY =STDAY + TIME 
PARAM STDAY= 32. 

•Relative Mortality Rate 
PARAMETER RMRL3 =0., RMRL4=0., RMRL5=0., RMRML6=0.f 

RMRFL6=0., RMRDIA=0., RMRMP=0., RMRFP =0. 

•Deve 
DRDIA 
DRL3 
DRL4 
DRL5 
DRML6 
DRFL6 
DRMP 
DRFP 

lopment 
=AFGENI 
=AFGENI 
=AFGENI 
=AFGENi 
=AFGENl 
=AFGENI 
=AFGENI 
=AFGENi 

Rate 
DRDIAT 
DRL3T 
DRL4T 
DRL5T 
DRML6T 
DRFL6T 
DRMPT 
DRFPT 

JEMP 
JEMP' 
JEMP 
,TEMP' 
JEMP 
JEMP 
JEMP' 
JEMP, 
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*Relative Dispersion 
RDDIA =AFGEN(RDDIAT,TEMP) 
RDL3 =AFGEN(RDL3T ,TEMP) 
R0L4 =AFGEN(RDL4T ,TEMP) 
RDL5 =AFGEN(RDL5T ,TEMP 
RDML6 =AFGEN(RDML6T,TEMP) 

RDFL6 =AFGEN(RDFL6T,TEMP) 
RDMP =AFGEN(RDMPT ,TEMP) 
RDFP. =AFGEN(RDFPT ,TEMP) 

*Subsequent boxcar calls must be done in a nosort section 
NOSORT 
PIDIA=0. 
DIA0,DIA,DIAT0T,MRDIA,PDDIA,GAMMA1,GCYCL1=. 

B0XCAR(1,DIAINI,DRDIA,RDDIA,RMRDIA 
PIL3=(1.-G)*PDDIA 
L30, L3, L3T0T, MRL3, PDL3, GAMMA2,GCYCL2=. 

B0XCAR(2, L3INI, DRL3, RDL3, RMRL3 
PIL4=G *PDDIA + PDL3 
L40, L4, L4T0T, MRL4, PDL4, GAMMA3,GCYCL3=. 

B0XCAR(3, L4INI, DRL4, RDL4, RMRL4 
PIL5=PDL4 
L50, L5, L5T0T, MRL5, PDL5, GAMMA4,GCYCL4=. 

B0XCAR(4, L5INI, DRL5, RDL5, RMRL5 
PIML6=SEXR * PDL5 
ML60,ML6,ML6T0T,MRML6,PDML6,GAMMA5,GCYCL5=. 

BOXCAR(5,ML6INI,DRML6,RDML6,RMRML6 
PIFL6=(1.-SEXR) * PDL5 
FL60,FL6]FL6T0T,MRFL6,PDFL6,GAMMA6,GCYCL6=. 

B0XCAR(6,FL6INI,DRFL6,RDFL6,RMRFL6 
PIMP=PDML6 
MPO, MP, MPTOT, MRMP, PDMP, GAMMA7,GCYCL7=. 

B0XCAR(7, MPINI, DRMP, RDMP, RMRMP 
PIFP=PDFL6 
FPO, FP, FPTOT, MRFP, PDFP, GAMMA8,GCYCL8=. 

B0XCAR(8, FPINI, DRFP, RDFP, RMRFP 
SORT 

PIDIA , 4,DELT,TIME) 

PIL3 .lO.DELT.TIME) 

PIL4 , 8.DELT.TIME) 

PIL5 , 3.DELT.TIME) 

PIML6,10,DELT,TIME) 

PIFL6 ,4,DELT,TIME) 

PIMP ,10,DELT,TIME) 

PIFP ,10,DELT,TIME) 

CUML3 * 
CUML4 : 
CUML5 : 
CUMML6= 
CUMFL6= 
CUMMP : 
CUMFP = 
CUMMM : 
CUMFM • 

CUPL3 • 
CUPL4 « 
CUPL5 : 
CUPML6= 
CUPFL6= 
CUPMP : 
CUPFP = 
CUPMM « 
CUPFM •• 

INTGRLfO. 
INTGRL(0. 

<INTGRL(0. 
<INTGRL(0. 
INTGRL(0. 
INTGRLfO. 
INTGRL(0. 
INTGRLfO. 
INTGRL(0. 

PIL3) 
PIL4) 
PIL5) 
PIML6) 
PIFL6) 
PIMP) 
PIFP) 
PDMP) 
PDFP) 

»100.*CUML3/(TINDIA*(1.-G)) 
<100.*CUML4/TINDIA 
>100.*CUML5/TINDIA 
100.*CUMML6/(TINDIA*SEXR) 
100.*CUMFL6/(TINDIA*(1.-SEXR)) 
100.*CUMMP/(TINDIA*SEXR) 
100.*CUMFP/(TINDIA*(1.-SEXR)) 
100.*CUMMM/(TINDIA*SEXR) 
100.*CUMFM/(TINDIA*(1.-SEXR)) 
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* Balance should be zero: 
TM0RR=MRDIA + MRL3 + MRL4 + MRL5 + MRML6 + MRFL6 + MRMP + MRFP 
ATOT =DIAT0T+ L3T0T+L4T0T +L5T0T + ML6T0T+ FL6T0T+ MPTOT+FPTOT .. 

+ CUMMM + CUMFM 
BALANC=ATOT-TINDIA+INTGRL(0.,TMORR-PIDIA) 

PRINT DAY,DIATOT,CUPL3,CUPL4,CUPL5,CUPML6,CUPFL6,... 
CUPMP,CUPFP,CUPMM,CUPFM,BALANC 

TIMER FINTIM=220.,DELT=0.0417,PRDEL=2. 
METHOD RECT 

'Development Rate 
FUNCTION ORDIAT = -10. 

16. 
35. 

FUNCTION DRL3T = -10. 
35. 

FUNCTION DRL4T = -10. 
35. 

FUNCTION DRL5T = -10. 
35. 

FUNCTION DRML6T = -10. 
35. 

FUNCTION DRFL6T = -10. 
35. 

FUNCTION DRMPT = -10. 
35. 

FUNCTION DRFPT = -10. 
35. 

'Relative Dispersion 
FUNCTION RDDIAT = -10. 

19. 
FUNCTION RDL3T = -10. 

22. 
» -10. 

22. 
= -10. 

19. 
FUNCTION RDML6T = -10. 

19. 
FUNCTION RDFL6T = -10. 

19. 
FUNCTION RDMPT = -10. 

19. 
FUNCTION RDFPT = -10. 

19. 

.0000, 

.0412, 

.1015 

.0000, 

.2585 

.0000, 

.2460 

.0000, 

.2204 

.0000, 

.1355 

.0000, 

.1246 

.0000, 

.1190 

.0000, 

.1190 

6.0,0.0000, 11.,0.0181 
19.,0.0621, 22.,0.0831 

9.4,0.0000, 16.,0.1093 

8.0,0.0000, 16.,0.1155 

7.2,0.0000, 16.,0.1088 

6.3,0.0000, 16.,0.0704 

7.8,0.0000, 16.,0.0594 

8.2,0.0000, 16.,0.0551 

8.2,0.0000, 16.,0.0551 

13. 
25. 

25. 

25. 

25. 

25. 

25. 

25. 

25. 

0.0251,. 
0.1015,. 

0.2585,. 

0.2460,. 

0.2204,. 

0.1355,. 

0.1246,. 

0.1190,. 

0.1190,. 

FUNCTION RDL4T 

FUNCTION RDL5T 

,0.00 
,0.45 
,0.00, 
,0.10 
,0.00 
,0.24 
,0.00, 
,0.23 
,0.00, 
,0.14, 
,0.00, 
,0.10, 
,0.00, 
,0.06, 
,0.00, 
,0.06, 

, 6.0,0.00, 
, 22. ,0.20 
, 9.4,0.00, 
, 25. ,0.13, 
, 8 .0,0.00 
, 25. ,0.30 
, 7.2,0.00, 
, 22. ,0.11, 

6.3,0.00, 
22.,0.07, 

, 7.8,0.00, 
, 22. ,0.13, 
, 8.2,0.00, 

22. ,0.22, 
8.2,0.00, 
22. ,0.22, 

, 11., 
r 25., 
r 13.< 
r 35., 
r 13., 
, 35. 
, 11.. 
r 25., 

11., 
r 25., 
, 11., 
r 25., 
r 11. 
r 25., 
, 11., 

25., 

r0.23, 13. , 
0.24, 35. , 

r0.04, 16., 
,0.13 
r0.30, 16., 
,0.30 
,0.23, 13. , 
,0.13, 35. , 
0.25, 13. , 

,0.08, 35. , 
,0.25, 13. , 
,0.16, 35. , 
0.03, 13. , 

,0.26, 35. , 
,0.03, 13. , 
0.26, 35. , 

0.32, 16.,0.18 
0.24 

0.11, 19.,0.11 

0.19, 19.,0.18 

0.57, 16.,0.15 
0.13 
0.16, 16.,0.14 
0.08 
0.06, 16.,0.49 
0.16 
0.06, 16.,0.08 
0.26 
0.06, 16.,0.08 
0.26 

*Maximium daily temperature 
FUNCTION MXTT= 1., 7. , 2., 11., 3.,11.6, 4.,11.4, 

etc. weatherdata Wageningen, 1982 

'Minimum daily temperature 
FUNCTION MNTT= 1..2.1, 2., 4.5, 3., 6.4, 4., 7.4, 

etc. weatherdata Wageningen, 1982 
END 
STOP 

5., 9.8 , 

5., 0.2, 

...WAG1982 

...WAG1982 
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£*••**•••••*•**•••••*•***••*••*••••***••**•••** 

SUBROUTINE BOXCARfCOUNT.AI.DEVR^RMRJNFLADELTJIME, 
$ AO, A, ATOT, MORFL, OUTFL, GAMMA, GCYCL) 

r•••**••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••p 
C To use this subroutine, memory storage has to be reserved for 
C the initial- and actual values of each boxcar of a particular boxcar 
C train by typing in the INITIAL-part: STORAGE AI(N),A(N) 
C in which AI and A are the names of the arrays of that boxcar train. 
C For N, the total number of boxcars in that boxcar train has to be 
C substituted. N is an integer, which has to be declared by: FIXED N 
C The initial conditions of AI can be given by means of a 
C TABLE statement: TABLE AI(1-N)=..,..,.., or can be calculated in 
C a 00 loop. 
C N has to be calculated as a function of the residence time and 
C its standard deviation and has to be given as a parameter in the 
C main program. For a fractional boxcar train: 
C N < minimum of 1/RD**2 
C Usually 3/4 * minimum of 1/RD**2 is taken.(In practice a value of 
C N=4 usually seems to mimick delay and dispersion very well). 

IMPLICIT REAL(A-Z) 
INTEGER I,N,COUNT 

DIMENSION AI(N),A(N),MORR(50) 

C C 
C Initiation of the boxcar train C 
C C 

IF (TIME.EQ.O.) CALL B0XINI(AI,N,A0,A,GAMMA,GCYCL) 

C C 
C Calculation of fraction F C 
C C 

CALL FRACT(COUNT,DEVR,RD,N,DELT,GAMMA,F) 

C C 
C Calculation of the rates 
C C 

IF (TIME.EQ.O.) GO TO 10 
C the rate of inflow (INFL) is given or calculated in the main program 

C mortality rate (MORR) and total mortality flow (MORFL) 
M0RR0 =RMR * AO 
MORFL =M0RR0 
DO 1=1,N 

MORR(I) =RMR * A(I) 
MORFL =M0RFL + MORR(I) 

ENDDO 

C the rate of outflow (OUTFL) is calculated 
C note the outflow is also subject to mortality 

CN =A(N)/(GAMMA - GCYCL) 
OUTFL =DEVR * CN * (1. - RMR * DELT) 

C C 
C Calculation of the states (integrals) C 

C development 
GCYCL =GCYCL + DEVR*DELT 
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C amount in each boxcar (A), after mortality flow and 
C inflow and outflow in respectively AO and A(N) 

AO =A0 - M0RR0*DELT + INFL*DELT 
DO I=1,N-1 

A(I) =A(I) - MORR(I)*DELT 
ENDDO 
A(N) =A(N) -MORR(N)*DELT - OUTFL*DELT 

C amount in each boxcar (A), after shift (discontinuous process) 
IF(GCYCL.GE.F*GAMMA) CALL SHIFT(N,F(AO,A,GAMMA,GCYCL) 

10 CONTINUE 

C total amount in boxcar train (ATOT) 
AT0T= AO 
00 1=1,N 

ATOT =AT0T + A(I) 
ENDDO 

RETURN 
END 

SUBROUTINE BOXINUAI.N.AO.A.GAMMA.GCYCL) 

IMPLICIT REAL(A-Z) 
INTEGER I,N 
DIMENSION AI(N),A(N) 

GCYCL =0. 
GAMMA =1./FL0AT(N) 

AO =0. 
DO I=1,N 

A ( D = AI(I) 
ENDDO 

RETURN 
END 

SUBROUTINE FRACTfCOUNT.DEVR.RD.N.DELT.GAhW^) 

IMPLICIT REAL(A-Z) 
INTEGER N,C0UNT 

F = 1. - N * RD * RD 

C DELT has to be smaller than a fraction F of the smallest time coefficient 
C of one boxcar 

IF (DELT.GT.(F*GAMMA/(DEVR+1.E-10))) THEN 
WRITE (6,'(A,12,A)1) ' Delt too large for boxcar no: \C0UNT 

$ ,' or too many boxes N: F too small • 
CALL EXIT 

ENDIF 

RETURN 
END 
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r****••**•••***•****•**•****•**•****************************************r 

SUBROUTINE SHIFT(N(F(AO,A,GAMMA,GCYCL) 
r•••••••••••**••••••••••••••*•*•*••**••*•***•**••*•••*•*••••••••**•*•**•(* 

IMPLICIT REAL(A-Z) 
INTEGER I,N 
DIMENSION A(N) 

A(N) = A(N) + A(N-1)*F 
DO I=N-1.2f-l 

A(I)=A(I)*(1.-F) + A(I-1)*F 
ENDDO 
A(1)=A(1)*(1.-F) + AO 
AO = 0. 

GCYCL =GCYCL - F*GAMMA 

RETURN 
END 

C C 

ENDJOB 

a simple sinusoidal curve through the daily maximum and minimum tempera­
tures, which were measured in a Stevenson screen, 1.5 m high. The time step for 
numerical integration is one hour (1/24 = 0.0417 day), to allow for diurnal 
fluctuations in temperature. The model is started by initializing the total number 
of diapause larvae entering the first boxcar trains; the numbers of all other stages 
are set to zero. Input data are the development rates and relative dispersions of 
the various stages at different temperatures, the relative mortality rate, the sex 
ratio, the initial ratio of the numbers of L3 and L2 larvae in diapause, the startday 
and the minimum and maximum daily temperatures. For each development 
stage (except the adult stage), the subroutine BOXCAR is called at each time step. 
The inputs for this subroutine are: the initial content of each boxcar, which is an 
array variable (...INI); the development rate (DR...); the relative dispersion 
(RD...); the relative mortality rate (RMR...); the inflow into the boxcar train 
(PI...); the number of boxcars (N); DELT and TIME. 

The outputs of the BOXCAR subroutine are: the content of the zero boxcar 
(...0); the content of the other boxcars, which is an array variable (e.g. L3(I) in 
which I is the number of the boxcar from 1 — N); the total content of the boxcar 
train (...TOT), which equals the sum of the contents of each boxcar (from 0—N); 
the total mortality rate (MR...); the outflow of the boxcar train (PD...); the cyclic 
development stage (GCYCL.) and the width of the boxcar in development units 
(GAMMA.). 

Figure 23 compares the simulation results with field sample data on L5, L6, 
pupae and adult moths (in which the sexes are combined). From this figure, it is 
clear that phenology can be simulated well, using the fractional boxcar train 
when the temperature fluctuates. 
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Figure 23. Simulation (—) and measured phenology of L5 (x), L6 (0), pupae (A) and 
adult moths (O) of Pandemis heparana. 

2.2.10 Effect of the type of boxcar train on population growth 

With the fractional boxcar train being intermediate, the greatest difference can 
be expected between the escalator boxcar train and the fixed boxcar train types. 
To evaluate the effect of the chosen method, the demographic example (Figures 
20 and 21) was used. To establish a control, the fixed boxcar train was also run 
with 1-year classes, to find an accurate estimate of the equilibrium age distribu­
tion and of the relative growth rate corresponding to the used mortality and 
fertility distributions. This equilibrium age distribution was then used as input 
for both the fixed and the escalator boxcar trains with 5-year classes. The 1-year 
control yielded an equilibrium relative growth rate of 8.29 10"3 yr~ *, which was 
closely approximated by the 5-year escalator boxcar train (8.27 10"3 yr~1). The 
5-year fixed boxcar train resulted in a lower simulated relative growth rate: 7.24 
10"3 yr"l. The explanation for this underestimation is the numerical dispersion 
in the fixed boxcar train method. In a growing population, as simulated here, the 
younger age groups will contain many more individuals, so that the numerical 
dispersion will cause an apparent artificial 'ageing', slowing down the simulated 
population growth. 

The price for the high accuracy of the escalator boxcar train is a slight 
irregularity in the simulated relative growth rate (RGR) following a 5-year cycle 
around the mean value of 8.27 10"3 yr"1, and ranging between 7.97 and 8.59 
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10 3 yr l. This irregularity is caused by the sawtooth ageing tendency of the 
5-year classes. 

2.2.11 Discussion 

Clearly, the fixed boxcar train method is the simplest and, if possible, should be 
preferred for that very reason. As shown in the demographic example, it is much 
easier to use 1-year classes in combination with a time interval of integration of 
one year than to use the escalator boxcar train with 5-year classes. Simplicity of 
program formulation is then bought for computer time, which is often a profit­
able deal. In both methods, numerical dispersion is avoided. 

Compelling reasons for using the more complicated boxcar train versions may 
be found in the desire to simulate fluctuating rates of development and disper­
sion. However, one must still remain aware of the unpleasant fact that dispersion 
is simply mimicked by a numerical tool, and that it is not really simulated from 
the underlying processes. This should stimulate further research so that the true 
reasons for the dispersion can be explained. 

The merit of the methods presented here is that they enable effects of the 
observed characteristics of population dynamics in other situations to be evalu­
ated, and can also serve as a tool for prognostic and management purposes. 
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